
LLDB Installation and Basic Commands
Usage Guide

Document Version: 1.0

Last Updated: 21st Jan 2026

Document Owner:
Dhruv Srivastava

dhruv.srivastava@ibm.com
IBM AIX

mailto:dhruv.srivastava@ibm.com

1. Table of Contents
1. Table of Contents .. 2

2. Purpose .. 3

3. Installing lldb .. 3

4. Starting lldb .. 3

5. Command Usage: ... 4

a. Help and Command discovery ...4

b. Program Execution Control ..4

c. Breakpoints ...4

d. Stepping through Code ..5

e. Stack and Frame Inspection...5

f. Variable, Memory and Register Inspection ...5

g. Disassembly and Symbols ...6

h. Shared libraries and Modules...6

i. Process and Thread Information ..6

j. Logging and Debugging ..6

k. Useful Settings ..7

6. Quick References for Common Command Aliases .. 7

7. Command Mapping – DBX vs GDB vs LLDB .. 8

8. Sample Debugging Workflow .. 10

9. Document Details ... 12

2. Purpose
This document provides a practical reference for installation, ways to get started
and the most commonly used LLDB commands, with reference to IBM AIX. The
intention of this document is to help users debug applications efficiently by
understanding the syntax and use-cases of the essential commands for program
execution control, breakpoints, inspection, memory analysis, stack navigation,
symbol inspection and more.

3. Installing lldb
There are two possible scenarios for installing LLDB on your AIX lpar:

1. LLDB fileset installation:
If you have downloaded the lldb fileset from IBM’s official AIX Web-download
site, please install the fileset using the install command along with the required
options. For e.g.:
 installp -acgXYd . lldb.rte

2. Tarball package from AIX:
If you have received a tarball from IBM you can use the install-lldb.sh script
received along with it to install lldb binaries in the appropriate places.
Run the script install-lldb.sh to setup lldb files in /opt/lldb/bin
The script creates link within the /usr/bin so you can directly run:

 lldb application

Please make sure that both lldb and lldb-server are present in /usr/bin together.

4. Starting lldb
You can launch a debugging session as follows:

1. For launching an application

lldb application

3. For attaching to a running process

 lldb -p <pid>

4. For debugging an AIX coredump

lldb --core ./core

5. Command Usage:
This section gives information about functionality and usage of the most commonly
used commands in a debugging session with LLDB.

a. Help and Command discovery
LLDB has an auto-complete feature which lets you check all the possible options
related to your commands within the lldb-prompt itself, which can be utilized to
check all the possible commands related to your keyword.

Command Description
help List all available commands

help <command> Show help and relevant options for a specific
command. This command gives details for all the
command and its option variants based on your input.
e.g.: help image dump sections

apropos <keyword> Search command details by using any specific
keyword related to it

The help command can also give you the details about a full-length command with
multiple options as given in the example in the table above, and this can be utilized
to know details about specialized options/keywords along with the command.

b. Program Execution Control
Command Alias Description
run r Start program execution

run arg1 arg2 … r arg1 arg2 … Start execution with arguments

continue c Resume execution after stopping

process kill kill
k

Terminate the current process

quit q Exit lldb

c. Breakpoints
Command Alias Description

breakpoint set --name
<func>

b <func> Set breakpoint in function named
<func>

breakpoint set --file
<file.c> --line <line >

b <file.c>:<line> Set breakpoint in file at a particular
line number

breakpoint set --address
<addr>

b <addr> Set breakpoint at an address

breakpoint list br list List all existing breakpoints

breakpoint delete <id> br del <id> Delete breakpoint with id <id>

breakpoint disable <id> br di <id> Disable breakpoint with id <id>

breakpoint enable <id> br e <id> Enable breakpoint with id <id>

d. Stepping through Code
Command Alias Description
step s Step into function

next n Move to the next line OR Step over function

finish Run until the current function returns

thread step-inst stepi Step one instruction

thread step-inst-
over

nexti Step over for one instruction

e. Stack and Frame Inspection
Command Alias Description
bt bt Show backtrace of the current thread’s call

stack
frame info Show current frame

frame variable fr v Show all local variables

frame variable x fr v x Show variable x’s details

f. Variable, Memory and Register Inspection
Command Alias Description
print <var> p <var> Print variable

memory read
<address>

m read
<addr>

Read memory at address

register read reg read Display all register values

register info reg info Display register information

register write <reg>
<value>

reg w <reg>
<val>

Modify register value

g. Disassembly and Symbols
Command Alias Description
disassemble di Disassemble from current instruction

disassemble –
start-address
<address>

di -a <addr> Disassemble from current address

image lookup -n
<symbol>

 Lookup the given symbol

image lookup -a
<address>

 Lookup the symbol related to the given
address

image dump
symtab

 Dump the symbol table of the target module

h. Shared libraries and Modules
Command Description
image list List current executable and dependent

shared library images
image dump sections Dump the sections from one or more target

modules

image dump symfile Dump the debug symbol file for one or more
target modules

i. Process and Thread Information
Command Description
process status Process state details

process attach -p <pid> Attach to a process with pid <pid>

detach Detach from the current process

j. Logging and Debugging
The lldb logging channel is a pretty friendly interface to get the lldb workflow logs
during your debugging session. It is divided into four channels which is further

divided into subchannels. You can enable multiple subchannels at once as per the
needs to get the debugging sessions log information. Use the below command to get
info on all the available logging channels and subchannels:

 log list

You can use them as follows:

 log enable lldb all

 log enable lldb process platform target

 log enable dwarf info

 log disable

k. Useful Settings
You can also configure LLDB for a ton of configurable settings and make it behave
accordingly. All these configurable settings can be listed using:

 settings show

Add the required setting using settings set, as given below for example:

 settings set target.process.thread.step-avoid-libraries

6. Quick References for Common Command
Aliases

Alias Command
b main breakpoint set --name main

b file.c:20 breakpoint set --file file.c --line 20
r run
c continue
n next
s step
bt thread backtrace
p x print x
fr v frame variable
di disassembly

reg r register read
x <addr> memory read <addr>

q quit

7. Command Mapping – DBX vs GDB vs LLDB
Command DBX LLDB GDB

Breakpoint
Commands

stop in FuncName/LineNum

st in FuncName/LineNum

Breakpoint at Function
▪ breakpoint set --

name FuncName
▪ br s -n FuncName
▪ b FuncName

Breakpoint at a line
▪ breakpoint set --file

FileName --line
LineNum

▪ br s -f FileName -l
LineNumber

b FileName: LineNumber

break FuncName

break
FileName:LineNumber

List all Breakpoints status breakpoint list
br l

info break

Delete a Breakpoint delete BreakPointNumber breakpoint delete
BreakPointNumber
br del BreakPointNumber

delete
BreakPointNumber

Disable a
Breakpoint

disable BreakPointNumber breakpoint disable
BreakPointNumber
br dis BreakPointNumber

disable
BreakPointNumber

Enable a Breakpoint enable BreakPointNumber breakpoint enable
BreakPointNumber
br en BreakPointNumber

enable
BreakPointNumber

Launch a process
with and without
arguments

run <args>
r <args>
run
r

process launch -- <args>
run <args>
r <args>
process launch
run
r

run <args>
r <args>
run
r

Do a source level
single step in the
currently selected
thread

step
s

step
s

step
s

Do an instruction
level single step in
the currently
selected thread

stepi thread step-inst
stepi
si

stepi
si

Do an instruction
level single step
over in the currently
selected thread

nexti thread step-inst-over
nexti
ni

nexti
ni

Step out of the
currently selected
frame

return thread step-out
finish

finish

Examining Variables print VariableName
p VariableName

print VariableName
p VariableName

print VariableName
p VariableName
ta v VariableName
(global)
fr v VariableName (local)

Show the stack
backtrace for the
current/all thread

where thread backtrace
bt
thread backtrace all
bt all

bt
thread apply all bt

List of all
commands in a
debugger

help help help

Want to come out of
debugging

quit
q

quit
q

quit
q

Data Type of
variable

whatis VariableName frame variable -T
VariableName
fr v -T VariableName
fr v VariableName
type lookup TypeName
(structure)

what VariableName
whatis VariableName

show the general
purpose registers for
the current thread

registers register read

info registers

Write a new decimal
Value to the current
thread register
RegisterName

registers register write RegisterName
Value

p RegisterName = Value

Show all registers in
all register sets for
the current thread

registers register read --all
 re r -a

info all-registers

Continuing Program
Execution Until Next
Breakpoint or
Termination

cont
c

continue
cont
c

continue
cont
c

List the threads in
your program

thread thread list info threads

View Source Code
Context

list list list

Attach to the
process

attach -a PID process attach --pid PID

attach -p PID

process attach --name
BinaryName

pro at -n BinaryName

process attach --name
BinaryName --waitfor

attach PID

attach BinaryName

attach --waitfor
BinaryName

pro at -n BinaryName -w

List the main
executable and all
dependent shared
libraries

map image list

info shared

Dump all sections
from the main
executable and any
shared libraries

map image dump sections

maintenance info
sections

display
disassembled
machine code

listi di

disassemble –frame (current
function)
di -f

disassemble --name Func
(Any function named Func)
di -n Func

disassemble --start-address
ADDR1 --end-address ADDR2
(Address Range)
di -s ADDR1 -e ADDR2

di -a ADDR

disassemble

disassemble Func (Any
function named Func)

disassemble ADDR1
ADDR2 (Address Range)

Show the current
frame and source
line

frame frame select
f
process status

frame

8. Sample Debugging Workflow
Below is an example debugging session:

Example testcase: test1.c

int func(int x)
{
 x++;
 return x;
}
int main()
{
 int a = 10;
 return a + func(a);
}

Compilation:

ibm-clang_r test.c -o test -g

lldb /home/dhruv/LLDB/tests/test1
(lldb) target create "/home/dhruv/LLDB/tests/test1"
Current executable set to '/home/dhruv/LLDB/tests/test1' (powerpc64).
(lldb) b main
Breakpoint 1: where = test1`main + 28 at test1.c:8, address = 0x000000010000097c
(lldb) r
Process 21823764 launched: '/home/dhruv/LLDB/tests/test1' (powerpc64)
Process 21823764 stopped
* thread #1, name = 'test1', stop reason = breakpoint 1.1
 frame #0: 0x000000010000097c test1`main at test1.c:8
 5 }
 6 int main()
 7 {
-> 8 int a = 10;
 9 return a + func(a);
 10 }
(lldb) bt
* thread #1, name = 'test1', stop reason = breakpoint 1.1
 * frame #0: 0x000000010000097c test1`main at test1.c:8
 frame #1: 0x00000001000004ac test1`__start + 116
(lldb) n
Process 21823764 stopped
* thread #1, name = 'test1', stop reason = step over
 frame #0: 0x0000000100000984 test1`main at test1.c:9
 6 int main()
 7 {
 8 int a = 10;
-> 9 return a + func(a);
 10 }
(lldb) s
Process 21823764 stopped
* thread #1, name = 'test1', stop reason = step in
 frame #0: 0x0000000100000924 test1`func(x=10) at test1.c:3
 1 int func(int x)
 2 {
-> 3 x++;
 4 return x;
 5 }
 6 int main()
 7 {
(lldb) di
test1`func:
 0x100000920 <+0>: stw 3, -12(1)
-> 0x100000924 <+4>: lwz 3, -12(1)
 0x100000928 <+8>: addi 3, 3, 1
 0x10000092c <+12>: stw 3, -12(1)
 0x100000930 <+16>: lwa 3, -12(1)
 0x100000934 <+20>: blr
 0x100000938 <+24>: <unknown>
 0x10000093c <+28>: <unknown>
 0x100000940 <+32>: lwz 0, 257(0)
 0x100000944 <+36>: <unknown>
 0x100000948 <+40>: <unknown>
 0x10000094c <+44>: <unknown>
(lldb) fr v
(int) x = 10
(lldb) p x
(int) 10
(lldb) image list

[0] 0x0000000100000438 /home/dhruv/LLDB/tests/test1
[1] 0x09fffffff0001000 /usr/ccs/bin/usla64
[2] 0x0900000000696200 /usr/lib/libpthreads.a (_shr_xpg5_64.o)
[3] 0x0900000000695420 /usr/lib/libcrypt.a (shr_64.o)
[4] 0x09000000001fd380 /usr/lib/libc.a (_shr_64.o)
[5] 0x09000000000891f8 /usr/lib/libpthreads.a (shr_xpg5_64.o)
[6] 0x09000000000001f8 /usr/lib/libc.a (shr_64.o)
(lldb) q
Quitting LLDB will kill one or more processes. Do you really want to proceed: [Y/n] y

9. Document Details

Document Owner: Dhruv Srivastava (dhruv.srivastava@ibm.com)

Organization: IBM AIX

Version History:

Current Version: 1.0

Dated: 21st Jan 2026

End of Document

mailto:dhruv.srivastava@ibm.com

	1. Table of Contents
	2. Purpose
	3. Installing lldb
	4. Starting lldb
	5. Command Usage:
	a. Help and Command discovery
	b. Program Execution Control
	c. Breakpoints
	d. Stepping through Code
	e. Stack and Frame Inspection
	f. Variable, Memory and Register Inspection
	g. Disassembly and Symbols
	h. Shared libraries and Modules
	i. Process and Thread Information
	j. Logging and Debugging
	k. Useful Settings

	6. Quick References for Common Command Aliases
	7. Command Mapping – DBX vs GDB vs LLDB
	8. Sample Debugging Workflow
	9. Document Details

