LLDB Installation and Basic Commands
Usage Guide

Document Version: 1.0

Last Updated: 21°* Jan 2026

Document Owner:
Dhruv Srivastava
dhruv.srivastava@ibm.com
IBM AIX

mailto:dhruv.srivastava@ibm.com

O KN W N

© © N O

1.Table of Contents

L] o1 o T i 07 o (=T 1 1 £ PPN 2
| 207 o Lo X 1 N 3
T L7 €2 1117 Y= 1 Lo | o N 3
) = 1 172 7= Lo | o 3
ComMMANA USQEE: ...cueuruinieiiininiieieiesieretessorcesasssesassssesassssesessssessssssesssassssesssss 4
Help and Command diSCOVEIYccciiiiuieieiiiiieiecereiecretecesessssesesesesasssesesesasssssesesnss 4
Program EXecution CONTIol......cccceieiiieiuieieniireinieiesesecretecesessssesesesesasseseresesasassosesesnss 4
(=T == 12 o o Y1 | €S 4
Stepping throUugh Codecciieieieiiiiiiieiereiieiirecesesasrerecesasassesesesassssssesesssassssesesssasasse 5
Stack and Frame INSPeCtiON...ccciiiiiiiiiiiiieiiiieieieteterettececetetotessssssasececesessssssasscscesassses 5
Variable, Memory and Register INSPectioncccccceiiiiieieieiiiicieieiereiecrerececesecseseseens 5
Disassembly and SYMDBOLSccccceieiiiiiniereiiiiiieieiesesecretetesessssesetesesassssesesesasassssesesess 6
Shared libraries and Modules........cccieieieiieieiiniiiiiiiiiiiieieiieiiiiiieiiieieiieiteieiieceieeeeees 6
Process and Thread INformationccceeieiieiiiieiiiiiiiiiiiiiiiinieieniniiiesrecasiesessesesassess 6
Logging and DebUZEING ..ccc.vuiuiuiuieiiiiiiiniereniieieteiesesssretesesessssesesesssassssesssssassssesesesass 6
USefUl SettiNgs . cuiuinieieiiiiiiieieiiiiiiietereieitetetetesecseresesesessssssesesasessssssssesassssssesesnsasssns 7
Quick References for Common Command AliaSeseeeeeeeeeeeeeererrereeaennnens 7
Command Mapping — DBX VS GDB VS LLDB.............cccecieiuieiiniaseiiiocesssocesssecasss 8
Sample Debugging WOrKFIOWccceveiininianiiniasieieiosessecessssecossssesssasssscssasses 10
DocuUmMENt DELAIlSeuueeunenninnienienieniinienieniinieenienieeieeeceeceeisasescesssassescensees 12

2.Purpose

This document provides a practical reference for installation, ways to get started
and the most commonly used LLDB commands, with reference to IBM AIX. The
intention of this document is to help users debug applications efficiently by
understanding the syntax and use-cases of the essential commands for program
execution control, breakpoints, inspection, memory analysis, stack navigation,
symbol inspection and more.

3.Installing lldb

There are two possible scenarios for installing LLDB on your AlX lpar:

1. LLDB fileset installation:
If you have downloaded the lldb fileset from IBM’s official AIX Web-download
site, please install the fileset using the install command along with the required
options. Fore.g.:
installp -acgXYd . lldb.rte

2. Tarball package from AIX:
If you have received a tarball from IBM you can use the install-lldb.sh script
received along with it to install lldb binaries in the appropriate places.
Run the script install-lldb.sh to setup lldb files in /opt/lldb/bin
The script creates link within the /usr/bin so you can directly run:

lldb application \

Please make sure that both lldb and Wldb-server are present in /usr/bin together.

4.Starting Udb

You can launch a debugging session as follows:

1. For launching an application

lldb application

3. For attaching to a running process

lldb -p <pid>

4. For debugging an AIX coredump

lldb --core ./core

5.Command Usage:

This section gives information about functionality and usage of the most commonly
used commands in a debugging session with LLDB.

a. Help and Command discovery

LLDB has an auto-complete feature which lets you check all the possible options

related to your commands within the lldb-prompt itself, which can be utilized to

check all the possible commands related to your keyword.

Command

Description

help

List all available commands

help <command>

Show help and relevant options for a specific
command. This command gives details for all the
command and its option variants based on your input.
e.g.: help image dump sections

apropos <keyword>

Search command details by using any specific
keyword related to it

The help command can also give you the details about a full-length command with
multiple options as given in the example in the table above, and this can be utilized
to know details about specialized options/keywords along with the command.

b. Program Execution Control

Command Alias Description
run r Start program execution
run arg1 arg2 ... rarglarg2 ... Start execution with arguments
continue c Resume execution after stopping
process kill kill Terminate the current process
k
quit q Exit ldb
c. Breakpoints
| Command Alias Description

breakpoint set --name
<func>

b <func>

Set breakpoint in function named
<func>

breakpoint set --file
<file.c> --line <line >

b <file.c>:<line>

Set breakpoint in file at a particular
line number

breakpoint set --address | b <addr> Set breakpoint at an address
<addr>

breakpoint list br list List all existing breakpoints
breakpoint delete <id> br del <id> Delete breakpoint with id <id>
breakpoint disable <id> br di <id> Disable breakpoint with id <id>
breakpoint enable <id> br e <id> Enable breakpoint with id <id>

d. Stepping through Code

Command Alias Description

step S Step into function

next n Move to the next line OR Step over function
finish Run until the current function returns
thread step-inst stepi Step one instruction

thread step-inst- nexti Step over for one instruction

over

e. Stack and Frame Inspection

Command Alias Description

bt bt Show backtrace of the current thread’s call
stack

frame info Show current frame

frame variable frv Show all local variables

frame variable x frv x Show variable x’s details

f. Variable, Memory and Register Inspection

Command Alias Description

print <var> p <var> Print variable

memory read m read Read memory at address
<address> <addr>

register read reg read Display all register values
register info reg info Display register information
register write <reg> | reg w <reg> Modify register value
<value> <val>

g. Disassembly and Symbols

Command

Alias

Description

disassemble

di

Disassemble from current instruction

disassemble —
start-address

di -a <addr>

Disassemble from current address

<address>

image lookup -n Lookup the given symbol

<symbol>

image lookup -a Lookup the symbol related to the given
<address> address

image dump Dump the symbol table of the target module
symtab

h. Shared libraries and Modules

Command

Description

image list

List current executable and dependent
shared library images

image dump sections

Dump the sections from one or more target
modules

image dump symfile

Dump the debug symbol file for one or more
target modules

i. Process and Thread Information

Command

Description

process status

Process state details

process attach -p <pid>

Attach to a process with pid <pid>

detach

Detach from the current process

j. Logging and Debugging

The lldb logging channel is a pretty friendly interface to get the lldb workflow logs

during your debugging session. It is divided into four channels which is further

divided into subchannels. You can enable multiple subchannels at once as per the
needs to get the debugging sessions log information. Use the below command to get
info on all the available logging channels and subchannels:

| log list |

You can use them as follows:

| log enable lldb all |

\ log enable lldb process platform target \

| log enable dwarf info \

| log disable |

k. Useful Settings

You can also configure LLDB for a ton of configurable settings and make it behave
accordingly. All these configurable settings can be listed using:

\ settings show \

Add the required setting using settings set, as given below for example:

| settings set target.process.thread.step-avoid-libraries \

6. Quick References for Common Command

Aliases
Alias Command
b main breakpoint set --name main
b file.c:20 breakpoint set --file file.c --line 20
r run
c continue
n next
S step
bt thread backtrace
p X print x
frv frame variable
di disassembly
regr register read
x <addr> memory read <addr>
q quit

7.Command Mapping - DBX vs GDB vs LLDB

Command DBX LLDB GDB
Breakpoint stop in FuncName/LineNum Breakpoint at Function break FuncName
Commands = breakpoint set --

stin FuncName/LineNum

name FuncName
= brs-nFuncName
= b FuncName
Breakpoint at a line
= breakpoint set --file
FileName --line
LineNum
= brs-fFileName -l
LineNumber
b FileName: LineNumber

break

FileName:LineNumber

List all Breakpoints status breakpoint list info break
brl
Delete a Breakpoint | delete BreakPointNumber breakpoint delete delete

BreakPointNumber

br del BreakPointNumber

BreakPointNumber

Disable a
Breakpoint

disable BreakPointNumber

breakpoint disable
BreakPointNumber

br dis BreakPointNumber

disable
BreakPointNumber

Enable a Breakpoint

enable BreakPointNumber

breakpoint enable
BreakPointNumber

br en BreakPointNumber

enable
BreakPointNumber

Launch a process run <args> process launch -- <args> run <args>
with and without r <args> run <args> r <args>
arguments run r <args> run
r process launch r

run

r
Do a source level step step step
single step in the S s s
currently selected
thread
Do an instruction stepi thread step-inst stepi
level single step in stepi Si
the currently Si
selected thread
Do an instruction nexti thread step-inst-over nexti
level single step nexti ni

over in the currently
selected thread

ni

Step out of the
currently selected
frame

return

thread step-out
finish

finish

Examining Variables

print VariableName
p VariableName

print VariableName
p VariableName

print VariableName

p VariableName

tav VariableName
(global)

fr v VariableName (local)

Show the stack where thread backtrace bt
backtrace for the bt thread apply all bt
current/all thread thread backtrace all
bt all
List of all help help help
commandsin a
debugger
Want to come out of | quit quit quit
debugging q q q
Data Type of whatis VariableName frame variable -T what VariableName
variable VariableName whatis VariableName

frv -T VariableName
frv VariableName
type lookup TypeName
(structure)

show the general registers register read info registers
purpose registers for

the current thread

Write a new decimal | registers register write RegisterName p RegisterName = Value
Value to the current Value

thread register

RegisterName

Show allregistersin | registers register read --all info all-registers
all register sets for rer-a

the current thread

Continuing Program | cont continue continue
Execution Until Next | c cont cont

Breakpoint or c c

Termination

List the threads in thread thread list info threads
your program

View Source Code list list list

Context

Attach to the attach -a PID process attach --pid PID attach PID
process

attach -p PID

process attach --name
BinaryName

pro at -n BinaryName

process attach --name
BinaryName --waitfor

attach BinaryName

attach --waitfor
BinaryName

pro at -n BinaryName -w

List the main map image list
executable and all
dependent shared
libraries

info shared

Dump all sections map image dump sections
from the main
executable and any
shared libraries

maintenance info
sections

display listi di

disassembled

machine code disassemble —-frame (current
function)
di -f

disassemble --name Func
(Any function named Func)
di -n Func

disassemble --start-address
ADDR1 --end-address ADDR2
(Address Range)

di -s ADDR1 -e ADDR2

disassemble

disassemble Func (Any
function named Func)

disassemble ADDR1
ADDR2 (Address Range)

di-aADDR
Show the current frame frame select frame
frame and source f
line process status

8.Sample Debugging Workflow

Below is an example debugging session:

Example testcase: testl.c
int func(int x)

{

X++;

1

return x;

}

int main()

{
inta=10;
return a + func(a);

}

Compilation:

ibm-clang_r test.c -o test -g

1ldb /home/dhruv/LLDB/tests/test1
(lldb) target create "/home/dhruv/LLDB/tests/test1"
Current executable set to '/home/dhruv/LLDB/tests/test1' (powerpc64).
(11db) b main
Breakpoint 1: where = test1 'main + 28 at test1.c:8, address = 0x000000010000097c¢
(lldb) r
Process 21823764 launched: '/home/dhruv/LLDB/tests/test1l' (powerpc64)
Process 21823764 stopped
* thread #1, name = 'test1’, stop reason = breakpoint 1.1
frame #0: 0x000000010000097c test1 ' main at test1.c:8
5}
6 int main()
7 A
->8 inta = 10;
9 return a + func(a);
10 }
(11db) bt
* thread #1, name = 'test1’, stop reason = breakpoint 1.1
* frame #0: 0x000000010000097c test1 main at test1.c:8
frame #1: 0x00000001000004ac testl’__start+ 116
(lldb) n
Process 21823764 stopped
* thread #1, name = 'test1’, stop reason = step over
frame #0: 0x0000000100000984 test1 main at test1.c:9
6 int main()

7 A
8 inta=10;

->9 return a + func(a);
10 }

(11db) s

Process 21823764 stopped

* thread #1, name = 'test1’, stop reason = step in
frame #0: 0x0000000100000924 test1 func(x=10) at test1.c:3
1 int func(int x)
2 {

->3 X++;

4 return x;
5}
6 int main()
7 A

(1ldb) di

test1 func:
0x100000920 <+0>: stw 3, -12(1)

-> 0x100000924 <+4>: lwz 3,-12(1)
0x100000928 <+8>: addi 3,3,1
0x10000092c <+12>:stw 3, -12(1)
0x100000930 <+16>:1lwa 3, -12(1)
0x100000934 <+20>: blr
0x100000938 <+24>: <unknown>
0x10000093c <+28>: <unknown>
0x100000940 <+32>: 1wz 0, 257(0)
0x100000944 <+36>: <unknown>
0x100000948 <+40>: <unknown>
0x10000094c <+44>: <unknown>

(lldb) fr v

(int) x=10

(lldb) p x

(int) 10

(lldb) image list

0x0000000100000438 /home/dhruv/LLDB/tests/testl
0x09fffffff0001000 /usr/ccs/bin/usla64
0x0900000000696200 /usr/lib/libpthreads.a (_shr_xpg5_64.0)
0x0900000000695420 /usr/lib/libcrypt.a (shr_64.0)
0x09000000001fd380 /usr/lib/libc.a (_shr_64.0)
0x09000000000891f8 /usr/lib/libpthreads.a (shr_xpg5_64.0)
0x09000000000001f8 /usr/lib/libc.a (shr_64.0)

——————
UL WN = O
it S e e A

[
(lldb) q

Quitting LLDB will kill one or more processes. Do you really want to proceed: [Y/n] y

#

9. Document Details

Document Owner: Dhruv Srivastava (dhruv.srivastava@ibm.com)

Organization: IBM AIX
Version History:
Current Version: 1.0

Dated: 21t Jan 2026

End of Document

mailto:dhruv.srivastava@ibm.com

	1. Table of Contents
	2. Purpose
	3. Installing lldb
	4. Starting lldb
	5. Command Usage:
	a. Help and Command discovery
	b. Program Execution Control
	c. Breakpoints
	d. Stepping through Code
	e. Stack and Frame Inspection
	f. Variable, Memory and Register Inspection
	g. Disassembly and Symbols
	h. Shared libraries and Modules
	i. Process and Thread Information
	j. Logging and Debugging
	k. Useful Settings

	6. Quick References for Common Command Aliases
	7. Command Mapping – DBX vs GDB vs LLDB
	8. Sample Debugging Workflow
	9. Document Details

