
Telelogic Logiscope

Basic Concepts

Version 6.5

Before using this information, be sure to read the general information under “Notices” section, on
page 151.

This edition applies to VERSION 6.5, TELELOGIC LOGISCOPE (product number 5724V81) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1985, 2008
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii Telelogic Logiscope Basic Concepts October 2008

About this manual

Audience
This manual is intended for people who wish to find out on the key concepts of
Telelogic® Logiscope™ . This manual should be read before the others.

Overview
This manual contains the following chapters:

Chapter 1 describes Logiscope tools in their environment, the main tool functions and
their input/output files.

Chapter 2 provides information on Call Graphs.

Chapter 3 provides information on Control Graphs.

Chapter 4 explains how to use Logiscope QualityChecker for evaluating software quality
using source code metrics..

Chapter 5 specifies the predefined standard metrics used with Logiscope
QualityChecker.

Chapter 6 describes the structure and syntax of the Logiscope Quality Model file and
Rule Set file.

The manual ends with a bibliography and a glossary on Logiscope concepts.

Conventions
The following writing conventions are used in this manual:
• bold: names of commands (call) and file extensions (.res)
• italic: names of user-defined textual elements (version_1, component_2), notes,
• typewriter: screen messages (Reference filename) requiring user action,
• keycaps (<Enter>).
October 2008 Telelogic Logiscope Basic Concepts iii

Contacting IBM Rational Software Support
Support and information for Telelogic products is currently being transitioned from the
Telelogic Support site to the IBM Rational Software Support site. During this transition
phase, your product support location depends on your customer history.

Product support
• If you are a heritage customer, meaning you were a Telelogic customer prior to

November 1, 2008, please visit the Logiscope Support Web site.

Telelogic customers will be redirected automatically to the IBM Rational Software
Support site after the product information has been migrated.

• If you are a new Rational customer, meaning you did not have Telelogic-licensed
products prior to November 1, 2008, please visit the IBM Rational Software Support
site.

Before you contact Support, gather the background information that you will need to
describe your problem. When describing a problem to an IBM software support
specialist, be as specific as possible and include all relevant background information so
that the specialist can help you solve the problem efficiently. To save time, know the
answers to these questions:
• What software versions were you running when the problem occurred?
• Do you have logs, traces, or messages that are related to the problem?
• Can you reproduce the problem? If so, what steps do you take to reproduce it?
• Is there a workaround for the problem? If so, be prepared to describe the workaround.

Other information
For Rational software product news, events, and other information, visit the IBM
Rational Software Web site.
iv Telelogic Logiscope Basic Concepts October 2008

http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
https://support.telelogic.com/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/

Table of Contents

Chapter 1 The Logiscope Environment
1.1 Life-cycle Environment ... 1

1.1.1 Design and Development Phases .. 2
1.1.2 Test Phases .. 2
1.1.3 Validation .. 2
1.1.4 Maintenance .. 2
1.1.5 Project Management.. 3

Chapter 2 The Call Graph
2.1 Presentation.. 5
2.2 Component Numbering... 8
2.3 Relative Call Graph .. 9
2.4 Calling/called Component List .. 9
2.5 Removal of External Components.. 10
2.6 Node Grouping ... 11

Chapter 3 The Control Graph
3.1 Introduction.. 13
3.2 Definitions ... 14
3.3 Pseudo Code ... 19

3.3.1 Instruction Numbers .. 20
3.3.2 Line Numbers .. 21

3.4 Structured graph.. 22
3.4.1 Restructuring Patterns ... 23

3.5 Reduction .. 32
3.5.1 Principle .. 32

3.6 Intrinsic Characteristics ... 36

Chapter 4 Evaluating Quality Using Source Code Metrics
4.1 Introduction.. 37
4.2 Modeling Quality... 38
4.3 Quality Evaluation Using Logiscope... 39
4.4 Metrics .. 40

4.4.1 Kiviat Analysis .. 40
4.4.2 Metric Kiviat table .. 43
4.4.3 Average Kiviat Graph ... 44
4.4.4 Average Metrics Table .. 45
4.4.5 Metrics Distribution .. 46
October 2008 Telelogic Logiscope Basic Concepts v

4.5 Criteria.. 48
4.5.1 Criteria Graph ... 49
4.5.2 Criteria Distribution.. 50

4.6 Quality Report.. 51

Chapter 5 Standard Metrics Definition
5.1 Introduction ... 53
5.2 Function Scope.. 54

5.2.1 Line Counting ... 54
5.2.2 Lexical and Syntactic Items.. 56
5.2.3 Data Flow ... 57
5.2.4 Halstead Metrics ... 61
5.2.5 Structured Programming... 64
5.2.6 Control Graph ... 65
5.2.7 Calling/Called Relations... 70
5.2.8 Relative Call Graph .. 72

5.3 Class Scope .. 74
5.3.1 Lexical and Syntactic Items.. 74
5.3.2 Data Flow ... 75
5.3.3 Function Aggregates... 80
5.3.4 Statistical Aggregates of Function Metrics .. 83
5.3.5 Inheritance Tree .. 86
5.3.6 Use Graph ... 87

5.4 Module Scope... 89
5.4.1 Lines Counting ... 89
5.4.2 Data Flow ... 90
5.4.3 Textual Elements .. 91
5.4.4 Interface .. 93

5.5 Package Scope.. 96
5.5.1 Packages Aggregates .. 96
5.5.2 Textual Elements .. 96
5.5.3 Statistical Aggregates of Class Metrics .. 97
5.5.4 Statistical Aggregates of Function Metrics .. 98
5.5.5 Inheritance .. 100

5.6 Application Scope .. 101
5.6.1 Line Counting ... 101
5.6.2 Function Aggregates... 103
5.6.3 Sum of Class Metrics.. 104
5.6.4 MOOD .. 105
5.6.5 Application Call Graph... 110
5.6.6 Inheritance Tree .. 113

Chapter 6 Project Configuration Files
6.1 Quality Model ... 117
6.2 Rule Set ... 127
vi Telelogic Logiscope Basic Concepts October 2008

Chapter 7 Bibliography

Chapter 8 Terms and Definitions

Chapter 9 Notices
October 2008 Telelogic Logiscope Basic Concepts vii

viii Telelogic Logiscope Basic Concepts October 2008

Telelogic Logiscope
 Chapter 1

The Logiscope Environment

1.1 Life-cycle Environment
The quality of a software product is constructed throughout its life-cycle.
Quality requirements should be expressed and defined during the earliest phases of
development. They should be taken into account and verified in all subsequent phases.
Telelogic Logiscope is a toolset used to verify that quality requirements have been
fulfilled in the developed software.

Quality requirements mentioned during the specification phase are formalized during
design and development phases.
The Logiscope Environment 1

Telelogic Logiscope
1.1.1 Design and Development Phases
Using Logiscope during design and development phases allows validation of the quality
of the software architecture and coding. Using Logiscope during these phases makes it
possible to detect critical elements at the earliest possible stages and to act before
corrective and maintenance efforts become prohibitive.

Developers and designers are becoming aware of the importance of mastering quality in
the same way that the development of a function must be mastered. With Logiscope,
users learn as they advance through the project.

The documentation drawn from these phases constitutes the reference elements for
subsequent phases and for the software maintenance period. Logiscope helps to draft
standardized in-house documentation for improved communication between different
groups involved in the project.

Test strategies are defined while the software is being constructed. Logiscope helps to
draw up these strategies and to adapt the test effort to software complexity.

1.1.2 Test Phases
Testing is more efficient with Logiscope which can be used to measure the completeness
of test coverage with respect to software structure. The objective assessment of test
efficiency in terms of paths covered makes it possible to ensure that a satisfactory level
of testing has been obtained. When used by testers, it helps to define complementary
tests in order to guarantee a satisfactory level of reliability. In particular, it can be used to
draft test reports.

1.1.3 Validation
Validation must verify that all functions defined in the specification are fulfilled. Among
other things, validation must ensure that quality requirements are met. Logiscope
measures the product’s intrinsic characteristics (structure, modularity, readability, etc.)
and the test level. These measurements can be compared with standards defined at the
start of the project in order to meet quality requirements.

1.1.4 Maintenance
Maintenance alone could be considered as a software production cycle except that it is
based on existing software.

If the existing software is a program whose quality has been assured, maintenance will
take place naturally, the only preoccupation being not to introduce regression. This can
easily be verified by using Logiscope.

However, if the state of the existing software is uncertain, a study will have to be carried
out in order to plan the maintenance effort. Logiscope can rapidly propose an evaluation
of the software quality.
2 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
1.1.5 Project Management
Logiscope provides project management groups with results necessary for good
development either in terms of cost and deadlines or of quality. With concise results
allowing quality to be assessed, project management itself monitors the progress made in
the project.
The Logiscope Environment 3

Telelogic Logiscope
4 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
 Chapter 2

The Call Graph

2.1 Presentation
The call graph shows the overall architecture of an application by displaying calling
relations between components of the application. For Ada, C++ and Java Projects, the
call graph is an estimated call graph (no evaluation of parameters type).

In this type of graph, nodes symbolize components and edges symbolize calling
relationships between components. Calling relations are read from top to bottom (except
for recursive calls). Below is an example of a suimple call graph.
The Call Graph 5

Telelogic Logiscope
There are several types of calling relationships:

– simple call

EBNF component calls the Tabulate component.

A level skip is illustrated in the call graph by a broken edge: GetSym component calls
SkipLine and GetCh components, SkipLine also calls GetCh.

A level skip corresponds to a call between components separated by hierarchical levels
(here there is an intermediate level - Skipline between GetSym and Getch).

In Logiscope Viewer, the level skips are displayed in blue.

– direct recursive call

The TraverseTr component calls itself. It is recursive or re-entrant (depending on the lan-
guage).

In Logiscope Viewer, the recursive calling relations are displayed in red.

<EBNF>

Tabulate Production InitTable
6 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
– indirect recursive call

The Expression component calls Term which calls the Factor component. The Factor
component calls Expression. Expression is also considered as a recursive or re-
entrant component but in an indirect way.

Several operations are possible on a call graph, for example:

– component numbering,

– view of the graph from a particular component,

– calling/called component list,

– reduction,

– simplification by node grouping,

These functions are described in the following pages.
The Call Graph 7

Telelogic Logiscope
2.2 Component Numbering
Component identification numbers given in the component list window are linked to call
graph nodes.

Numbering Call Graph Nodes for Figure 1
8 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
2.3 Relative Call Graph
By default, the view of the graph is displayed from the virtual root considered as calling
the main root(s).

Any component can be selected as the new root from which the following graph can be
displayed:
• the graph of components called by the root and calling the root and their call relations.

Graph of Components Calling and Called by the <Record> Root

2.4 Calling/called Component List
This function lists the roots of the application call graph, this is useful to know the names
of the roots in complex applications with graphs which are difficult to read on the screen.
Only one level of calls is displayed.
The Call Graph 9

Telelogic Logiscope
2.5 Removal of External Components
This operation removes non-analyzed components from the call graph so that only the
calling relationships between selected components are displayed.

Reduced Call Graph
10 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
2.6 Node Grouping
This operation groups together, in a single node, all components selected either
• according to a common part or all of their names,
• according to the files they belong to, or
• according to their complexity properties.

In this way, components from the same file, the same package or the same procedure,
depending on the programming language used, can be grouped together.

The name of the component group is set between square brackets. The component group
name is user-defined. The default component group identifier is a number.

Simplified Call Graph with two node groups: [TABLE] groups all components beginning

with the Table character string and [EBNF] and all components beginning with EBNF
The Call Graph 11

Telelogic Logiscope
12 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
 Chapter 3

The Control Graph

3.1 Introduction
Many international standards highly recommend the use of graphic abstraction to
evaluate the quality of software product.

For instance, the IEC international standard for Functional safety of electrical /
electronic / programmable electronic safety related systems recommend control flow
analysis to “detect poor and potentially incorrect program structures” [61508-7].

According to [61508-7] section C.5.9, the description of this testing technique is the
following:

“Control flow analysis is a static testing technique for finding suspect areas ofcode that
do not follow good programming practice. The program is analysed producing a
directed graph which can be further analysed for

– inaccessible code, for instance unconditional jumps which leaves blocks of code
unreachable;

– knotted code. Well-structured code has a control graph which is reducible by
successive graph reductions to a single node. In contrast, poorly structured code can
only be reduced to a knot composed of several nodes.”

Logiscope QualityChecker fully supports this static analysis testing technique by
providing the control graphs of each function or method defined in the project under
analysis.
The Control Graph 13

Telelogic Logiscope
3.2 Definitions
A control graph displays the logical structure of a component. It consists of nodes,
representing statements, and edges representing the transfer of the control flow between
nodes.
Nodes are represented differently according to the semantics they convey. The meaning
of graphic symbols is as follows:

Control structures of analyzed code are represented by combining nodes and edges.
Combinations depend on structures expressed by programming languages. For example,
the switch control structure (specific to C/C++ language) will be found in C/C++ control
graphs only.

a sequence of n statements.

main or auxiliary entry or exit of a component.

a test (generally beginning of a control structure) with a #
inside for preprocessor tests.
end of a control structure with a # inside for preprocessor
control structures.
beginning of an exception sequence (Ada).

end of an exception sequence (Ada).

a real-time clause (accept statement in Ada).

a call to an Ada entry.

raising of an exception (raise statement in Ada).

a break in a sequence (branch).

a break in a sequence (unconditional branching).

symbol added to a node referencing a call

An edge is represented by:
reduction of a structure on a control graph.
14 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Fig.1 Example of a control graph

Main structures handled by the Logiscope control graph are:

while - do - end of

repeat until

infinite
ITERATIVE STRUCTURES
The Control Graph 15

Telelogic Logiscope
if then - end if if then - else - end if

if then - elsif - end if

case of - end of case switch (in C)

SELECTIVE STRUCTURES

branch conditional branch

main entry / auxiliary entry auxiliary exit / main exit

SPECIFIC STRUCTURES
16 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Specific structures from control graphs presented in the last two figures are language-
specific representations and do not correspond to typical algorithm structures.
Although control graphs are produced by programs written in different languages, they
may look identical.
The control graph is a representation of the logic of the component at a given time. The
representation is not language-dependent.
The Control Graph 17

Telelogic Logiscope
Interpreting a control graph

The control graph above should be interpreted as follows:

– B: beginning of the component,

– S1: Switch - End of Switch type structure

– S2: If-Then-End If structure comprising:
 1: block of sequential statements
S3: While-Do-End of While structure with statements
2: block of sequential statements
S4: If-Then-Else-End If structure comprising
3: block of sequential statements
S5: Repeat Until type structure

– S6: a While-Do-End of While structure (E)

– E: End of the component.

Various requests can be performed on a control graph:

– textual representation,

– node numbering:
– with statement numbers,
– with source code line numbers,

– structured view,
– graph reduction,
– intrinsic characteristics,
– zoom.

S1 S2 S6

1

2

3

EB

S3

S4

S5
18 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
3.3 Pseudo Code
This is a textual representation of the displayed graph. The pseudo code terms (if then...)
can be modified from the Quality Model file. This makes it possible to obtain an
interpretation that is close to the source program or to an algorithmic view, etc. The
textual representation of the control graph in Fig. 1 is given below:
Begin
 Case
 When (Condition) ==>
 2 Statement (s);
 When (Condition) ==>
 2 Statement (s);
 When (Condition) ==>
 2 Statement (s);
 End of Case;
 If (Condition) Then
 1 Statement (s);
 For (Condition) Do
 1 Statement (s);
 If (Condition) Then
 1 Statement (s);
 Else
 1 Statement (s);
 Repeat
 1 Statement (s);
 Until (Condition);
 End If;
 End For;
 1 Statement (s);
 End If;
 While (Condition) do
 1 Statement (s);
 End of While;
End;

When viewing this textual representation, it is possible to select a pseudo code statement;
the corresponding node is highlighted in the control graph. Selecting the control graph
node also highlights the pseudo code line.
The Control Graph 19

Telelogic Logiscope
3.3.1 Instruction Numbers
Numbers appearing on graph nodes are also displayed in the corresponding pseudo code.
Note that this numbering takes into account the number of statements in the blocks.

 Begin
2 Case
 When (Condition) ==>
3 2 Statement (s);
 When (Condition) ==>
5 2 Statement (s);
 When (Condition) ==>
7 2 Statement (s);
9 End of Case;
10 If (Condition) Then
11 1 Statement (s);
12 For (Condition) Do
13 1 Statement (s);
14 If (Condition) Then
15 1 Statement (s);
 Else
17 1 Statement (s);
18 Repeat
19 1 Statement (s);
20 Until (Condition);
21 End If;
22 End For;
23 1 Statement (s);
24 End If;
25 While (Condition) do
26 1 Statement (s);
27 End of While;
28 End;

Graph and pseudo code with statement numbers
20 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
3.3.2 Line Numbers

 Begin
7 Case
 When (Condition) ==>
8 2 Statement (s);
 When (Condition) ==>
9 2 Statement (s);
 When (Condition) ==>
10 2 Statement (s);
11 End of Case;
12 If (Condition) Then
14 1 Statement (s);
15 For (Condition) Do
17 1 Statement (s);
18 If (Condition) Then
19 1 Statement (s);
 Else
22 1 Statement (s);
23 Repeat
24 1 Statement (s);
25 Until (Condition);
26 End If;
27 End For;
28 1 Statement (s);
29 End If;
30 While (Condition) do
32 1 Statement (s);
33 End of While;
34 End;

Graph and pseudo code with source line numbers

0 7

8

9

10 11 12

14 15

17 18 19

22 23

24

25

26

27 28

29 30

32

33 34
The Control Graph 21

Telelogic Logiscope
3.4 Structured graph
Any algorithm can be expressed in the form of a succession of sequences, iterations and
selections.

Due to the fact that certain programming languages do not allow direct translation of
algorithmic control structures, the programmer must create his own structures by means
of structures such as If Then - End If and branches (GoTo).

Since the early days of computing, programming rules have undergone considerable
changes: program structuring is now of the utmost importance and code readability is a
major objective. But the notion of structured programming is relatively recent and
certain applications do not obey these new rules.

Certain applications, for reasons of performance, are developed according to specific
programming rules advocating the use of simple but more efficient structures rather than
advanced control structures.

Control graphs of such applications may be viewed as critical: their structure does exist
but is expressed in a different way.

The structured view of control graphs makes possible to find underlying structures and to
show structuring that does not appear explicitly. For example, it can reveal which GoTo
statements are indicative of structured programming and which GoTo are not.
22 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
3.4.1 Restructuring Patterns
Several patterns are possible:

– combinations of If - Then - Else - End - If and branches expressing selective structures,

– combinations of If - Then - End - If and branches representing iterative structures.

The code and the control graph above express the structured view illustrated below.

[1] [2]

if (condition) then
go to Label

endif
[1]

Label: [2]

[1]

[2]

if not (condition) then

endif
[1]

[2]
The Control Graph 23

Telelogic Logiscope
The code and the control graph above express the structured view illustrated below.0

[1]

[2] [3]

if (condition) then
[1]
go to Label

endif
[2]

Label: [3]

[2]

[1] [3]

if (condition) then
[1]

else
[2]

[3]
endif
24 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
The code and the control graph above express the structured view illustrated below.

[4]

[2]

[3]

[1]

if (condition) then
[1]
go to Label1

endif
[2]

Label1: [3]
Label2: [4]

go to Label2

[4]

[2]

[3][1]

if (condition) then
[1]

else
[2]

[4]
endif

[3]
The Control Graph 25

Telelogic Logiscope
The code and the control graph above express the structured view illustrated below.

[4]

[2]

[3][1]

if (condition) then
[1]

else

endif

[2]

Label: [4]

go to Label

[3]

[4]

[2]

[3][1]

if (condition) then
[1]

else
[2]

[4]
endif

[3]
26 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
The code and the control graph above express the structured view illustrated below.

[1]

if (condition) then

endif
go to Label1

Label1: [1]

[1]
[1]

Repeat

until not (condition)
The Control Graph 27

Telelogic Logiscope
The code and the control graph above express the structured view illustrated below.

[1] [2]

if (condition) then

endif

Label2:

Label1:
go to Label2

[1]
go to Label1
[2]

[1]

[2]

while (condition) do
[1]
not

end of while
[2]
28 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
The code and the control graph above express the structured view illustrated below.

[1] [2]

if (condition) then

endif

Label2:

Label1:

go to Label2

go to Label1
[2]

[1]

[1]

[2]

if (condition) then
[1]

endif

Label:

loop

go to

loop end
[2]

Etiq
The Control Graph 29

Telelogic Logiscope
The code and the control graph above express the structured view illustrated below.

Applying these different restructuring patterns to a control graph containing branches ()
helps to assess the underlying structure (see the following two figures).

[1]

go to Label
Label: [1]

[1]

[1]
loop

end of loop
30 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Initial control graph

Structured view of the same control graph
The Control Graph 31

Telelogic Logiscope
3.5 Reduction
The purpose of reducing a graph is in many ways the same as that of obtaining a
structured view: to check that a program complies with rules of structured programming.

A control graph which, by successive simplifications, can be reduced to a graph whose
cyclomatic number (V(G)) is 1, is said to be structured. Otherwise it is not structured.

The cyclomatic number of a graph reduced to the maximum has an essential complexity
equal to 1, indicating that structured programming rules have been applied.

If the control graph is not structured, reduction will clearly show elements that do not
comply with the rules.

3.5.1 Principle
The principle of control graph reduction is to simplify its most deeply nested structured
subgraphs (one entry point and one exit point) into a single node.

Four cases result in an non-structured control graph [McCABE 76] are:

– branching into a selective structure,

– branching out of a selective structure,

– branching into an iterative structure,

– branching out of an iterative structure.

Let us look at the following control graph:

Control Graph Before Reduction

S1 S2 S6

S3

S4

S5
32 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
– first step: the structures without nesting and that complies with the rules of structured
programming (S1 and S6) and the most deeply nested structure (S5) are reduced. These
reductions are symbolized on the new graph by the following hatched squares (See the
following figures).

Control Graph after the First Reduction

– from the second to the last step (see the following three figures): the most deeply nested
structure (S4 then S3) is reduced.

Control Graph after the Second Reduction

Control Graph after the Third Reduction

The Control Graph 33

Telelogic Logiscope
Control Graph after Complete Reduction

Reduction can also be performed on the structured view of a control graph. But care must
be taken: even if it is possible to simplify the structured view to the maximum, this does
not mean that the control graph can always be reduced (see the following two figures).

Example

Fig. 2 Control Graph

Control Graph after Complete Reduction

It is not possible to reduce further this control graph.

Now let us look at the reduction of the structured view of the same graph.
34 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Structured View of the Control Graph Shown on Fig. 2

First Reduction
The Control Graph 35

Telelogic Logiscope
Complete Reduction is possible

The structured view of the graph in Fig. 2 respects programming rules of structure.

3.6 Intrinsic Characteristics
These are characteristic values of the current control graph (original control graph,
structured or reduced view).
These measurements are:
– all measurements that can be performed on a control graph,
– the number of reduced nodes,
– the number of restructuring performed, distributed by type of structure obtained.
Only measurements defined for the current graph with a non-null value will be
displayed.
36 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
 Chapter 4

Evaluating Quality Using
Source Code Metrics

4.1 Introduction
Many international standards highly recommend the use of source code metrics to
evaluate the quality of software product.

For instance, the IEC international standard for Functional safety of electrical /
electronic / programmable electronic safety related systems recommends source code
complexity metrics to “predict the attributes of program from properties of the software
itself or from its development or test history” [61508-7].

According to [61508-7] section C.5.14, the description of this testing technique is the
following:

“These models evaluate some structural properties of the software and relate this to a
desired attribute such as reliability or complexity. Software tools are required to
evaluate most of the measures. Some of the metrics which can be applied are given
below:

– graph theoretic complexity – this measure can be applied early in the lifecycle to
assess trade-offs, and is based on the complexity of the program control graph,
represented by its cyclomatic number;

– number of ways to activate a certain software module (accessibility) – the more a
software module can be accessed, the more likely it is to be debugged;

– Halstead type metrics science – this measure computes the program length by
counting the number of operators and operands; it provides a measure of
complexity and size that forms a baseline for comparison when estimating future
development resources;

– number of entries and exits per software module – minimising the number of
entry/exit points is a key feature of structured design and programming
techniques.”
Evaluating Quality Using Source Code Metrics 37

Telelogic Logiscope
Logiscope QualityChecker fully supports this static analysis testing technique by
providing source code metrics as well as quality modeling to allow rating of software
components.

4.2 Modeling Quality
In order to evaluate software quality, it must first of all be modeled. The modeling
approach used by Logiscope is similar to those defined by Boehm [BOEHM, 75] and
McCall [McCALL, 77] and compliant with the ISO/IEC 9126-1 international standard [91-
26].

According to this approach, software quality can be defined as a set of characteristics
which:
• are important to the user: quality factors,
• can be decided by the designer: quality criteria,
• can be measured for verification purposes: quality metrics.

The advantage of this approach is that quality is:
• specified in terms of factors,
• designed in terms of criteria,
• built with the help of programming rules,
• assessed by means of metrics.

For example, if maintainability is among the most crucial quality criteria of an
application, our first aim will be to find:

(a better) possibility of detecting, locating and correcting anomalies, of introducing
minor changes and then of accomplishing the required functions with the anticipated
resources [GAM - T17 (V2) July 1989].

In this case, the most crucial quality characteristics are determined from the maintenance
engineer’s point of view which will define the quality factor.

In order to satisfy this factor, software designers will opt for, among other things, a self-
descriptive application defined as follows:

(...) attributes of the software that provide explanation of the implementation of a
function [Ref. McCALL, 77].

Quality characteristics determined by software designers are quality criteria.

In order to reach a sufficient level of self-documentation, the following programming
rule will be respected when building the application:

the source code must contain at least 1 comment for 5 executable statements and 1 com-
ment at the most for 1 statement.
38 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
In order to check if this rule is respected throughout development, Logiscope will
measure the frequency of comments (number of comments/number of statements). This
frequency must be between 0.2 and 1.

This quality characteristic can be verified: it is a quality metric.

A quality factor can be assessed by means of a set of quality criteria.

For example, the self-description, modularity, readability, simplicity criteria, contribute
towards satisfying the maintainability quality factor.

In the same way, quality criteria can be assessed by means of a set of quality metrics.

For example, a correct comment frequency value contributes towards meeting the self-
describing quality criterion.

These contribution relationships allow the quality of an application to be modeled in tree
form:

4.3 Quality Evaluation Using Logiscope
The user can define a quality model adapted to his needs in Quality Model files.
Logiscope refers to this file to obtain a specific model to evaluate quality.

On the basis of the defined model, the approach to evaluating quality using Logiscope is
broken down into three successive stages:

– Metrics: comparison of measured values with limit values previously defined in the
Quality Model file on the basis of the programming rules,

– criteria: classification in different categories according to results obtained for metrics
related to each criterion in the Quality Model file,

– quality factor: classification in different categories according to results obtained at
criteria level for the factor in the Quality Model file.
Evaluating Quality Using Source Code Metrics 39

Telelogic Logiscope
4.4 Metrics
Logiscope QualityChecker proposes a set of basic metrics that allows to measure the
complexity at component or architecture level.

By combining Logiscope metrics, the user can add new metrics to the list of Logiscope
metrics.

For example, the “comments frequency” metric can be defined by combining two
Logiscope metrics: “number of comments” and “number of statements” as follows: COMF
= lc_comm /lc_stat.

For each metric in the quality model, the user associates limit values indicating minimum
and maximum values accepted for the metric.

At this stage of quality evaluation, the Logiscope Viewer provides the following results:

– Kiviat graph,

– metrics table.

4.4.1 Kiviat Analysis

Kiviat Graph

The Kiviat analysis provides a graphic display of the state of an object (component or
application) with respect to limit values:
• each axis represents a metric,
• limits are indicated by two circles: the inner circle corresponds to the minimum value

accepted, and the outer circle corresponds to the maximum value accepted,
• the polygon links all values obtained for the object analyzed,
• limit values defined and values found for the various metrics are given in the upper

left hand corner of the graph (See the graph below),
• the overall assessment of results is immediate. If values are acceptable, the polygon

will be drawn between the two circles. Kiviat graphs can thus be compared to a
template.
40 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
The two following figures respectively illustrate programming that meets the required
standards and programming that does not.

Programming meets the standards
Evaluating Quality Using Source Code Metrics 41

Telelogic Logiscope
Programming does not meet the standards

When a metric value cannot be calculated, it is represented by **** in the VALUE column
and does not appear on the graph. Overflow will be represented by a > in the VALUE
column and the metric is placed on the maximum level on the graph.

A maximum of 10 characters can be used to display the metrics mnemonics.
42 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
4.4.2 Metric Kiviat table
The metrics table provides the same information as the Kiviat graph, but in textual form.

This table contains:
• names of metrics,
• metric mnemonics,
• values measured,
• conformity with limit values: values that are not acceptable are indicated by an

asterisk “*” in the last column of the table.

Component Metrics Table

In the Value column, a metric value which cannot be calculated is represented by ****
and an overflow by the character >.
Evaluating Quality Using Source Code Metrics 43

Telelogic Logiscope
4.4.3 Average Kiviat Graph
This Kiviat graph displays average values and standard deviations obtained for metrics
for all analyzed components.

At synthesis level, only components with defined values will be taken into account (and
not those whose values could not be calculated or those above the capacity level).

The standard deviation each side of the mean value is represented.

Kiviat Graph of Averages

Reference values for each metric and the average obtained for all components are
indicated below the graph.

Reference values for each metric and the average obtained for all components are
indicated in the upper left hand corner.
44 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
4.4.4 Average Metrics Table
Metrics table provides the same information as the Kiviat graph of averages, but in
textual form. Characteristic values of the analyzed components in this table are:
• average,
• standard deviation,
• minimum value measured,
• maximum value measured.

The percentage of acceptable components and the percentage for which it was not
possible to calculate the metric are indicated in the last two columns of the table.

Statistics table

Non-calculated values will be represented by the characters **** and overflows by >.
Evaluating Quality Using Source Code Metrics 45

Telelogic Logiscope
4.4.5 Metrics Distribution
This histogram indicates the distribution of components, according to values of the
analyzed metric, between minimum and maximum values measured. The metric limit
values are represented by two arrows to show the distribution of components with
respect to these limits.

The Logiscope Viewer calculates the optimum number of bars, between 1 and 20,
according to values measured for the metric. In order to obtain a different view, the user
can:
• modify the number of bars,

Distribution after modifying the number of classes
46 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
• modify the distribution interval for a clearer view of part of the histogram,

Focus on part of the histogram

• obtain a distribution in three non-uniform classes, the distribution criterion being in
conformity with the metric limit values. The three classes are:
n [minimum value measured - lower limit[,
n [lower limit - upper limit],
n]upper limit - maximum value measured].

Metrics distribution (limit values)

For each distribution, results are displayed in textual form, as shown below:
Evaluating Quality Using Source Code Metrics 47

Telelogic Logiscope
4.5 Criteria
A criterion can be defined by means of a set of Logiscope metrics.

By associating a set of metrics with each criterion in the quality model, the user can
associate the “cyclomatic number” and “number of statements” metrics with the
simplicity criterion. For example, to create a “simplicity” criterion by combining the
ct_vg and lc_stat metrics.

In addition to this, the user can assign a weight coefficient to each metric. The weight
coefficient represents the share of the metrics in satisfying the criterion.

For example, if respecting rules established for the cyclomatic number seems more
important than respecting rules for other metrics, its metric should be weighted more.

An object is classified in a category according to:
• whether limit values for each metric are respected or not,
• the weight coefficient assigned to each metric.

In this second stage of quality evaluation, Logiscope provides the following results:
• criteria graph,
• criteria distribution.
48 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
4.5.1 Criteria Graph
The criteria graph ranks an object with respect to a set of quality criteria defined in the
model. The following information is presented in this graph:
• criterion/ metric associations,
• the metrics position with respect to limit values (see Kiviat graph),
• the category of the object is given for each criterion.

Criteria Graph

• On the component level criteria graph, the category of the object for the quality factor
is also given (see below).

• A maximum of 10 characters can be used to display the criteria mnemonics.
Evaluating Quality Using Source Code Metrics 49

Telelogic Logiscope
4.5.2 Criteria Distribution
This result presents the distribution of all components analyzed with respect to each
criterion defined.

In this histogram, each category of the criterion is represented by a column which is
proportional to the number of components that belong to the category.

Criteria distribution

For each distribution, results are displayed in textual form, as shown below:

List of components per criteria category (extract)
50 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
4.6 Quality Report
The user defines the quality factor as a set of categories that represents the extent to
which the factor has been fulfilled. Components are classified according to criteria
analysis.

A weight coefficient is associated with each criterion category when it is defined
indicating the contribution it makes towards the factor. Thus all defined criteria
contribute to the evaluation of the factor (except if the weight coefficient is zero).

The quality report is a pie chart showing the distribution of the components according to
the quality factor. It indicates the percentage of components belonging to each category
defined.

Component Quality Report

The following illustrates the quality report shown in textual form:
Evaluating Quality Using Source Code Metrics 51

Telelogic Logiscope
52 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
 Chapter 5

Standard Metrics Definition

5.1 Introduction
Logiscope QualityChecker proposes a set of standard source code metrics. Source code
metrics are static measurements (i.e. obtained without executing the program) to be used
to assess attributes (e.g. complexity, self-descriptiveness) or characteristics (e.g.
Maintainability, Reliability) of the software components (e.g. functions, classes,
modules, package, application) under evaluation.

The metrics can be combined to define new metrics more closely adapted to the quality
evaluation of the source code. For example, the “Comments Frequency” metric, well
suited to evaluate quality criteria such as Self-descriptiveness or Analyzability, can be
defined by combining two standard metrics: “Number of comments” and “Number of
statements”.

The user can associate threshold values with each of the quality model metrics,
indicating minimum and maximum reference values accepted for the metric.

For more details on using metrics to evaluation software product characteristics, please
refer to the previous chapter.

Source code metrics apply to different domains (e.g. control flow, data flow, calling
relationship) and the range of their scope varies. The scope of a metric designates the
element of the source code the metric will apply to.

The different scopes are:
• The Function scope: includes functions, procedures, methods, subprograms, tasks,

package body, etc. according to the related programming language,
• The Class scope: is represented by C++ and Java classes.

• The Module scope: is represented by a source code file.
• The Package scope: is represented by Java Packages; Packages contain a set of

classes.
• The Application scope: represented by the set of interrelated software components

(i.e. functions, classes) defined in the source code files under analysis.
Standard Metrics Definition 53

Telelogic Logiscope
Not all the standard metrics available in Logiscope QualityChecker are presented in the
following sub-sections. Only the metrics related to the most well-known theorical
approaches (Line Counting, Halstead, Cyclomatic Complexity, MOOD, etc.) are
introduced.

In case a metric is only available for some programming languages, this will be stated in
the “Language” item of the metric specification.

The complete list of standard metrics available in Logiscope QualityChecker Ada, C,
C++ and Java is provided in the corresponding Reference Manual:

• Telelogic Logiscope - QualityChecker & RuleChecker - Ada Reference Manual.

• Telelogic Logiscope - QualityChecker & RuleChecker - C Reference Manual.

• Telelogic Logiscope - QualityChecker & RuleChecker - C++ Reference Manual.

• Telelogic Logiscope - QualityChecker & RuleChecker - Java Reference Manual.

5.2 Function Scope

5.2.1 Line Counting
For more details on Line Counting Metrics, please refer to §5.6.1.

lc_cline Total number of lines

lc_cloc Number of lines of code

lc_cblank Number of empty lines

lc_ccomm Number of lines of comments

Definition Total number of lines in the function.

Definition Total number of lines containing executable code in the function.

Definition Number of lines containing only non printable characters in the function.

Definition Number of lines of comments in the function.
Alias LCOM
54 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
lc_csbra Number of lines with lone braces

lc_ccpp Number of preprocessor statements

lc_bcob Comments blocks before the function

lc_bcom Number of comments blocks in the function

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in
the function.

Languages C, C++, Java

Definition Number of preprocessor directives (e.g. #include, #define, #ifdef)
in the function.

Languages C, C++

Definition 0 if there is no block of comments used just before a function.
1 if there is a block of comments before; this may indicate that there is
comment header before the function.

Example /* this comment is not counted */
 /* as a comment before the function */
 int i;
 /* this one is counted
 as a comment */
 /* before the function */
 funct() ;
 {
 printf ("----------------------") ;
 printf ("----------------------") ;
 }

lc_bcob = 1
Languages C, C++

Definition Number of comment blocks used between a function header and the clos-
ing curly bracket (Blocks of COMments).
Several consecutive comments are counted as a single comment block.
Standard Metrics Definition 55

Telelogic Logiscope
5.2.2 Lexical and Syntactic Items

lc_algo Number of syntactic entities (algorithms)

lc_decl Number of syntactic entities (declarations)

lc_stat Number of Statements

lc_synt Number of syntactic entities

Example funct() ;
 {
 /* this is a comment */
 printf ("----------------------") ;
 /* this is a second */
 /* comment */
 printf ("----------------------") ;
 /* this is a third
 comment */
 }

lc_bcom value = 3
Languages C, C++

Definition Number of syntactic entities inside statements of a function that are not
counted as declarations.

Languages C++, Ada

Definition Number of syntactic entities in the declaration part of a function.
Languages C++, Ada

Definition Number of executable statements in a function’s body
For a detailed specification of executable statements in Ada, C, C++ and
Java, refer to the corresponding Telelogic Logiscope manual:
• QualityChecker & RuleChecker - Ada Reference Manual.
• QualityChecker & RuleChecker - C Reference Manual.
• QualityChecker & RuleChecker - C++ Reference Manual.
• QualityChecker & RuleChecker - Java Reference Manual.

Alias STMT

Definition Number of structures used in a function to represent the program.
56 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.2.3 Data Flow

dc_consts Numbers of declared constants

dc_types Number of declared types

dc_vars Number of declared variables

dc_excs Number of declared exceptions

dc_lvars Number of local variables

dc_clas_var Number of class-type local variables

Note lc_synt is the sum of lc_decl and lc_algo.
Languages C++, Ada

Definition Number of constants in a function declared by:
• the #define statement,
• variables having a simple type declared as const,
• enum elements.

Languages C++, Ada
Alias dc_const, NCONST

Definition Number of types declared in a function with the typedef, struct,
class or enum statement.

Language C++, Ada
Alias dc_type

Definition Number of variables declared in a function.
Languages C++, Ada
Alias dc_var

Definition Number of exceptions declared in the exception declarations in a function.
Language Ada

Definition Total number of variables declared in a function (Local VARiables).
Languages C, C++
Alias LVAR
Standard Metrics Definition 57

Telelogic Logiscope
dc_other_clas_var Number of other class-type local variables

ic_except Number of raised exceptions

ic_param Number of parameters

ic_parvar Variable number of parameters

ic_paradd Number of parameters passed by reference

ic_parcl Number of class-type parameters

Definition Number of class type variables which are local to a function. This metric
shows a specific type of coupling between classes.

Language C++
Alias LVARop

Definition Number of class type variables which are local to a function, where the
class is different from the current class. If the function being analyzed is a
non-member function, then the value is 0.
This metric is used to compute the cl_dep_meth metric.

Language C++

Definition Number of exceptions declared by the keyword throws in a method.
Languages Java

Definition Number of formal parameters.
Alias PARA

Definition Equal to 1 if the function has a variable number of parameters,
0 otherwise.

Language C++

Definition Number of parameters passed by reference of a function. If the function
returns a value, then the returned value is considered as a passed by refer-
ence parameter.

Language C++
Alias PARAadd
58 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
ic_par_othercl Number of other class-type parameters

ic_parval Number of parameters passed by value

ic_usedp Number of parameters used

ic_vare Number of uses of external attributes

ic_vari Number of uses of internal attributes

Definition Number of class-type parameters of a function. If the function returns a
class-type value then the returned value is considered as a class-type
parameter. This metric shows a specific type of coupling between classes.

Language C++
Alias PARAc

Definition Number of a function class-type parameters, where the class is different
from the current class.
If the function being analyzed is a non-member function, then the value is
0.

Language C++

Definition Number of parameters passed by value of a function.
Language C++
Alias PARAval

Definition Number of function parameters used in a function body.
A parameter is said to be used whenever it appears in the function code.
Combined with the number of function parameters, this metric is a good
indicator of the consistency of the function's interface.

Language C++
Alias U_PARA

Definition Number of uses of attributes uses defined outside the class.
An attribute is said to be "external" if it belongs to another class.
All attribute occurrences are counted.

Language C++
Alias VARe
Standard Metrics Definition 59

Telelogic Logiscope
ic_varpe Number of distinct uses of external attributes

ic_varpi Number of distinct uses of internal attributes

Definition Number of uses of attributes defined in the class.
An attribute is said to be "internal" if it belongs to the class of the function
being analyzed.
All attribute occurrences are counted.

Language C++
Alias VARi

Definition Number of distinct times attributes defined outside the class are used.
An attribute is said to be "external" if it belongs to another class.
Different uses of the same attribute count for one.

Language C++
Alias VAR_PATHSe

Definition Number of times the distinct class attributes are used.
An attribute is said to be "internal" if it belongs to the class of the function
being analyzed.
Different uses of the same attribute count for one.

Language C++
Alias VAR_PATHSi
60 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.2.4 Halstead Metrics
In "Elements of Software Science" [HALS, 77], M.H. Halstead developed a theory that
deduces a program production and quality characteristics from a small number of
parameters: the numbers of operands and operators used in the software component.

The Halstead theory is based on the following four textual metrics:

 n1 Number of distinct operators

N1 Total number of operators

n2 Number of distinct operands

 N2 Total number of operands

For a detailed specification of operands and operators in Ada, C, C++ and Java, refer to
the corresponding manual:
• Telelogic Logiscope - QualityChecker & RuleChecker - Ada Reference Manual,
• Telelogic Logiscope - QualityChecker & RuleChecker - C Reference Manual.
• Telelogic Logiscope - QualityChecker & RuleChecker - C++ Reference Manual.
• Telelogic Logiscope - QualityChecker & RuleChecker - Java Reference Manual.

Halstead established and later validated many examples based on these metrics, rules
that govern a program length, its volume, the implementation level of an algorithm or the
language level of the program used.

Then Halstead suggests to use these rules to assess or plan for development time, the
time requested to understand software or the number of possible errors.

Definition Number of different operators used in a function.
Alias ha_dopt

Definition Total number of operators used in a function.
Alias ha_topt

Definition Number of different operands used in a function.
Alias ha_dopd

Definition Total number of operands used in a function.
Alias ha_topd
Standard Metrics Definition 61

Telelogic Logiscope
Halstead metrics available are presented below.

n Halstead Vocabulary

N Halstead Program Length

CN Halstead Estimated length

 V Halstead Program Volume

L Halstead Program Level

Potential Volume V* is the most abridged form into which an algorithm can be
expressed. According to Halstead, this most abridged form would use the following (in a
language ideally adapted to the algorithm to be translated):
• 2 operators (the name of the function and the assignment operator) and,

Definition n = n1 + n2
Alias ha_voc

Definition N = N1 + N2
Halstead considers Observed Length N as the program length observed a
posteriori. It takes into account all textual elements present in the code.

Alias ha_olg

Definition
= n1 * log2(n1) + n2 * log2(n2)

According to Halstead, N and differ by 10% and the correlation coeffi-

cient is close to 1. The relation between N (observed length) and (esti-
mated length) seems valid. Then Halstead uses this relation to evaluate
other metrics.

Alias ha_elg

Definition V = N * log2(n)
According to Halstead, Program Volume V corresponds to the minimum
number of bits required for program coding.
For each occurrence of N operator or operand which appears in the pro-
gram, a number v of bits are required to specify it such that n = 2v, thus
v = log2n. The above formula is deduced from this.

Languages Ada, C, C++
Alias ha_vol

Definition L = (2 * n2) / (n1 * N2)
Alias ha_lev

N̂

N̂

N̂

62 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
• n2* operands where n2* is equal to the number of distinct component input or output
parameters.

Program Level L defines a ratio between the Potential Volume V* of the algorithm and
its actual volume V: L = V* / V

Program Level L represents the implementation level of the algorithm characterized by
V*. For the same algorithm, the program level decreases as the program volume
increases.

Using the Potential Volume evaluation formula produces the above definition.

D Halstead Program Difficulty

I Halstead Intelligent Content

E Halstead Mental Effort

Definition D = 1/L
Alias ha_dif

Definition I = L * V
According to Halstead, it represents the algorithm complexity regardless
of the language used.
If L is assessed (used to calculate I) to be close to the actual value of Pro-
gram Level (based on Potential Volume V*), we can deduce that I is a
good estimate value of Potential Volume V*.

Alias ha_int

Definition E = V / L
The mental effort E required to both develop and understand a program is
expressed by Halstead in "basic reasoning units". It increases with Pro-
gram Volume V and decreases with Program Level L.
Halstead showed that a program written in PL/1 requires three times less
comprehension effort than a program written in assembly language. He
proposed mental effort E as a measurement of program text complexity.

Alias ha_eff
Standard Metrics Definition 63

Telelogic Logiscope
5.2.5 Structured Programming
In structured programming:

• a function shall have a single entry point and a single exit point,
• each iterative of selective structures shall have a single exit point: i.e. no goto,

break,continue or return statement in the structure.

Structured programming improves source code maintainability.

ct_bran Number of destructuring statements

ct_break Number of BREAK and CONTINUE branchings

ct_exit Number of out statements

ct_goto Number of GOTO statements

ESS_CPX Essentiel Complexity

Definition Number of destructuring statements in a function (break and continue
in loops, and goto statements).

Definition Number of break or continue statements used to exit from loop struc-
tures in the function.
break statements in switch structures are not counted.

Languages C, C++

Definition Number of nodes associated with an explicit exit from a function:
return, exit.

Alias N_OUT

Definition Number of goto statements.
Alias GOTO

Definition Cyclomatic Number of the “reduced” control graph of the function.
The “reduced” control graph is obtained by removing all structured con-
structs from the control graph of the function.
A structured contruct is a selective or iterative structure that does not con-
tain a exit statements: goto, break, continue or return.

Justification When the Essentiel Complexity is equal to 1, the function complies with
the structured programming rules.
Note that the ct_exit and ct_bran metrics already provide such an infor-
mation on the structuring of the function with more details.
64 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.2.6 Control Graph

ct_andthen Number of “and_then” operators

ct_break_inloop Number of BREAK in loop

ct_break_inswitch Number of BREAK in switch

ct_case Number of case labels

ct_casepath Number of case blocks statements

Definition Number of occurrences of the logical operator “&& ” in the function.
Languages C

Definition Number of break statements used to exit from embedding loop struc-
tures in the function.

Languages C

Definition Number of break statements used to exit from embedding switch state-
ments in the function.

Languages C

Definition Total number of case and default labels in the function.
Example switch(var)

 {
 case A:
 case B: ;
 case C:
 /* A first block of statements */
 i = j + 1;
 break;
 case D:
 case E:
 /* A second block of statements */
 i = k + 1;
 break;
 default:
 /* A third block of statements */
 break;
 };

ct_case = 6
Languages C

Definition Total number of blocks of statements in switch statements in the func-
tion.
Sequential case labels are counted for one block of statements.
Standard Metrics Definition 65

Telelogic Logiscope
ct_continue Number of CONTINUE statements

ct_dowhile Number of DOWHILE statements

ct_for Number of FOR statements

ct_if Number of IF statements

ct_orelse Number of “or_else” operators

Example switch(var)
 {
 case A:
 case B: ;
 case C:
 /* A first block of statements */
 i = j + 1;
 break;
 case D:
 case E:
 /* A second block of statements */
 i = k + 1;
 break;
 default:
 /* A third block of statements */
 break;
 };

ct_casepath = 3
Languages C

Definition Number of continue statements in the function.
Languages C

Definition Number of do ... while statements in the function.
Languages C

Definition Number of for statements in the function.
Languages C

Definition Number of if statements in the function.
Languages C

Definition Number of occurrences of the logical operator “||” in the function.
Languages C
66 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
ct_ternary Number of ternary operators

ct_nest Number of nestings

ct_decis Number of decisions

ct_loop Number of loops

ct_switch Number of SWITCH statements

ct_while Number of WHILE statements

ct_raise Number of Exception Raises

ct_node Number of nodes

ct_degree Maximum degree

Definition Number of occurrences of the ternary operator “?:” in the function.
Languages C

Definition Maximum nesting level of control structures in a function.

Definition Number of selective statements in a function:
if, case, switch, select,...

Alias N_STRUCT

Definition Number of iterative statements in a function (pre- and post- tested loops):
for, while, do while,

Definition Number of switch statements in the function.
Languages C

Definition Number of while statements in the function.
Languages C

Definition Number of occurrences of the throw clause within a function body.
Language C++, Java
Alias N_RAISE

Definition Number of nodes of a function control graph.
Languages C++, ADA, Java
Alias N_NODES

Definition Maximum number of edges departing from a node.
Standard Metrics Definition 67

Telelogic Logiscope
ct_edge Number of edges

ct_try Number of exceptions handlers

ct_vg Cyclomatic number (VG)

Languages C++, Ada, Java

Definition Number of edges of a function control graph.
Languages C++, Ada, Java
Alias N_EDGES

Definition Number of try blocks in a function.
Languages C++, Java
Alias N_EXCEPT

Definition Cyclomatic complexity number of the control graph of the function. This
number depends on the number of nodes of decision in the control graph
with the formula:

where
 ni is the number of edges departing from the node i.
When the control graph has exactly one terminal node (without departing
edge) and one origin node (without entering edge), the cyclomatic number
is equal to:
V(G) = e - n + 2

Justification Whatever the types of structured control used (selections, iterations,
branches or sequences) and whatever the way these structures have been
assembled (sequentially, nested, structured or not, etc.) the cyclomatic
number is the metric used to quantify the complexity of the resulting con-
trol structure.
It is therefore a good indicator of the effort the reader must make to under-
stand the function's algorithm and for evaluating the effort that will be
required to test its control structure. This metric can also be interpreted to
indicate the minimum number of tests cases that will have to be generated
to test the function.

Action A high cyclomatic number is often due to the fact that the function con-
tains too many executable decisions. So the number of decisions will have
to be reduced either by subdividing the function or by factorizing any code
repetitions that it contains.

v 1 ni 1–
NodesOfDecision

∑+=
68 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
ct_path Number of paths

DES_CPX Design Complexity

This subdivision will result in subroutines being created which will con-
tain the part of the control structure concerning them, thus reducing by as
much the original function's control structure. Instead of having a function
with a high cyclomatic number, the complexity will be distributed over
several functions that have a reasonable cyclomatic number.

Alias VG, ct_cyclo

Definition Number of non-cyclic execution paths of the control graph of the function.
It is calculated according to the transfers of control induced by the various
types of statement. The PATH for a sequence of statements with the same
nesting level is the product of each statement’s PATH. For nested struc-
tures, the sum of the PATH is calculated.
Therefore:
PATH (if then else endif) = PATH (body of then) + PATH (body of else)
PATH (while do -endwhile) = PATH (body of while) + 1
PATH (case of - endcase) = SUM (i=1,n) PATH (body of ist case),
 where n is the number of cases.
PATH (sequence) = 1

Justification PATH gives an idea more accurate than the cyclomatic number of the num-
ber of test cases required to fully test a function.
A high number-of-paths value is often due to the fact that the function has
too many executable statements. So the number of statements must be
reduced either by subdividing the function, or by factorizing any code rep-
etitions it contains.

Alias PATH

Definition Cyclomatic Number of the “design” control graph of the function.
The “design” control graph is obtained by removing all constructs that do
not contain calls from the control graph of the function.
Standard Metrics Definition 69

Telelogic Logiscope
5.2.7 Calling/Called Relations

CALL Number of Calls

dc_calls Number of Direct Calls

dc_calle Number of External Calls

dc_calli Number of Internal Calls

dc_callpe Number of External Direct Calls

Definition Number of calls in a function.
Each call to the same function counts for one.

Language C

Definition Number of direct calls in a function.
Different calls to the same function count for one call.

Languages C, C++
Alias DRCT_CALLS

Definition Number of Calls to Functions Defined outside the Class.
A function is said to be "defined outside" the class if the function does not
belong to the same class as the function being analyzed. If the function
being analyzed is a non-member function, then all functions called by the
function being analyzed are considered as "defined outside" the class.
All call occurrences are counted.

Language C++
Alias CALLe

Definition Number of Calls to Functions Defined in the Class.
A function is said to be "defined in" the class if the function belongs to the
same class as the function being analyzed. If the function being analyzed
is a non-member function, then there is no function "defined in" the class
(the value is 0).
All call occurrences are counted.

Language C++
Alias CALLi

Definition Number of distinct calls to functions defined outside the class of the func-
tion being analyzed (see dc_calle above).
70 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
dc_callpi Number of Internal Direct Calls

Example:

dc_stat_call Number of calls to static members

dc_calling Number of callers

Different calls to the same function count for one call.
Language C++
Alias CALL_PATHSe

Definition Number of distinct calls to functions defined in the class of the function
being analyzed (see dc_calli above).
Different calls to the same function count for one call.

Language C++
Alias CALL_PATHSi

dc_calle dc_calli dc_callpe dc_callpi

m 1(m2) 2(m1) 1(m2) 1(m1)

m3 2(m1, m4) 0 2(m1, m4) 0

Definition Number of calls to static member functions in a function.
Language C++

Definition Number of functions calling the designated function.
Languages Ada, C

 class C

m

m1

m3

m4m2
Standard Metrics Definition 71

Telelogic Logiscope
IND_CALLS Number of relative call graph call-paths

5.2.8 Relative Call Graph
Mohanty [MOH,76] and SCHUTT [SHT,77] have proposed several complexity metrics
derived from the call graph.
At function scope, Logiscope provides the following metrics :

cg_levels Number of relative call graph levels

cg_entropy Relative call graph entropy

cg_ hiercpx Relative call graph hierarchical complexity

cg_strucpx Relative call graph structural complexity

Alias NBCALLING

Definition Number of call paths in the relative call graph of the function.

Language Ada, C, C++,

Definition Number of levels of the relative call graph of the function.
Alias LEVELS

Definition This metric proposed by SCHUTT [SHT, 77] applies to the system call
graph. It is an indicator of call graph analysability, characterizing both
width and depth of the call graph:

where |xi| is the number of components in the ith path.
Alias ENTROPY

Definition Average number of components per level: i.e. number of components
divided by number of levels.

Alias HIER_CPX

Definition Average number of calls per component: i.e. number of calls between
components divided by the number of components.

Alias STRU_CPX

H GA() 1
x

i 1=

Np
xi log2

x
xi
-------=
72 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
cg_testab Relative call graph system testability
Definition

Np is the number of paths through the system.
TPi is the testability of the ith call path.
The definition involves the number of paths and the test difficulty level for
each path. The result obtained can help to evaluate the software reliability.

Alias TESTBTY

ST 1
Np
------- 1

TPi

i 1=

Np

∑
 
 
 
  1

=

Standard Metrics Definition 73

Telelogic Logiscope
5.3 Class Scope

5.3.1 Lexical and Syntactic Items

cl_line Number of Lines

cl_dclstat Number of Declarative Statements

cl_stat Number of Statements

cl_bcob Number of comments blocks before the class

cl_bcom Number of comments blocks in the class

Definition Total number of lines in a class or an interface.
Language Java

Definition Number of declarations of fields and methods in a class or an interface.
Language Java

Definition Number of statements in all methods and initialization code of a class.
This counting of statements and optional parameters "no_null_stat" and
"no_decl_stat" are explained in lc_stat in the Function Scope part.

Note Because the value of the metric cl_stat for the class scope depends on the
value of lc_stat for the method scope, it is strongly recommended to use
the same parameters for the two scopes.

Language Java

Definition Number of blocks of comments located between a class header and the
curly bracket of the previous class or between a class header and the
beginning of the file.

Languages C++
Alias BCOBc

Definition Number of blocks of comments in a class. Consecutive comments are
counted as belonging to the same block. Comments located outside the
class are not counted.

Languages C++
Alias BCOMc
74 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
cl_comm Number of Comment Lines

5.3.2 Data Flow

cl_base_priv Number of private base classes

cl_base_prot Number of protected base classes

cl_base_publ Number of public base classes

cl_base_virt Number of virtual base classes

cl_clas_frnd Number of friend classes

cl_interf Number of implemented interfaces

Definition Number of comment lines in a class. Comments located outside the class
are not counted.

Languages Java

Definition Number of declared classes from which a class inherits, whose names
appear after the private keyword.

Language C++

Definition Number of declared classes from which a class inherits, whose names
appear after the protected keyword.

Language C++

Definition Number of declared classes from which a class inherits, whose names
appear after the public keyword.

Language C++

Definition Number of declared classes from which a class inherits, whose names
appear after the virtual keyword.

Language C++

Definition Number of classes declared in a class definition, whose names appear after
the friend keyword.

Language C++

Definition Number of declared interfaces implemented by a class or extended by an
interface.

Language Java
Standard Metrics Definition 75

Telelogic Logiscope
cl_extend Number of extended classes

cl_subclass Number of included classes

cl_cobc Coupling between classes

cl_data Total number of attributes

cl_data_class Sum of class-type attributes

Definition Equals 1 if the class extends another class, 0 otherwise.
Language Java

Definition Number of classes or interfaces declared inside a class or an interface.
Note Anonymous classes are not taken into account.
Language Java

Definition Coupling between classes is the sum of:
• the number of inherited classes (see in in_data_class Number of Direct

Base Classes),
• the number of class type attributes for the class (see cl_data_class

below),
• two times the number of calls to static member functions for class

methods (see in dc_stat_call Number of Calls to Static Member Func-
tions),

• two times the number of class-type parameters for the class methods,
• three times the number of class-type local variables for the class meth-

ods (see in dc_clas_var Number of Class Type Local Variables).

Justification cl_cobc is an indicator of the degree of dependency of a class. The higher
the coupling metric is , the more complex it is to modify the class.

Language C++
Alias COBC, cl_dep_deg

Definition Total number of data members declared inside a class declaration.
Languages Java
Alias cl_field

Definition Number of class-type attributes for the class.

cl_cobc in_dbases cl_data_class 2 dc_stat_call¥

2 ic_parcl 3 dc_clas_var¥+¥+

(

)
methods

∑+ +=
76 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
cl_data_priv Number of private attributes

cl_data_prot Number of protected attributes

cl_data_publ Number of public attributes

cl_data_stat Number of static data members

cl_data_inh Number of inherited attributes

cl_data_final Number of final attributes

Justification This metric is used to examine class coupling relationships.
Language C++
Alias LACT

Definition Number of data members declared in the private section of a class.
Languages C++, Java
Alias LAPI, cl_field_priv

Definition Number of data members declared in the protected section of a class.
Languages C++, Java
Alias LAPO, cl_field_prot

Definition Number of data members declared in the public section of a class.
Languages C++, Java
Alias LAPU, cl_field_publ

Definition Number of data members declared after the static keyword in a class.
Language C++

Definition Number of public or protected attributes in the base classes of a class,
which are not overridden in that class.

Language C++

Definition Number of data members declared in a class declaration with the attribute
final.

Note For interfaces, cl_data_final is equal to cl_data.
Language Java
Alias cl_field_final
Standard Metrics Definition 77

Telelogic Logiscope
cl_data_const Number of constants

cl_data_static Number of class attributes

cl_data_pack Number of attributes in package scope

cl_data_nostat Number of instance attributes

cl_dep_meth Number of dependent methods

Definition Number of data members declared in a class declaration with the attributes
final and static.

Note For interfaces, cl_data_const is equal to cl_data.
Language Java
Alias cl_field_const

Definition Number of data members declared in a class declaration with the attribute
static and without the final attribute.

Note For interfaces, cl_data_static is equal to 0.
Language Java
Alias cl_field_static

Definition Number of data members declared in the class declaration without any of
the attributes private, protected or public.

Note For public classes or interfaces, cl_data_pack is equal to 0.
Language Java
Alias cl_field_pack

Definition Number of fields declared in a class declaration without attribute static.
Note For interfaces, cl_data_nostat is equal to 0.
Language Java
Alias cl_field_nostat

Definition Number of methods within the class depending on other classes. A method
is said to be dependent if:
• it calls a non-member function or other class methods (see in dc_calle

Number of Calls to functions Defined outside the Class),
• it uses an attribute which belongs to a different class (see in ic_vare

Number of Times External Attributes are used),
• it has a class instance parameter which belongs to a different class (see

in ic_par_othercl Number of Other Class Type Parameters),
• it declares a class instance variable which belongs to a different class

(see in dc_other_clas_var Number of other Class Type Local Vari-
ables).
78 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
cl_rfc Response for a class

cl_type Number of local types

cl_const Number of local constants

cl_genp Number of of parameters for templates

cl_oper_conv Number of conversion operators

cl_oper_std Number of standard operators

Language C++
Alias NMD

Definition Number of methods that can be invoked in response to a message to an
object of the class or by some method in the class.
This includes all methods accessible within the class hierarchy.

Language C++

Definition Number of types declared in a class.
Language C++

Definition Number of constants declared in a class. Constants are data members
declared with the keyword const, like const type name ..., or
type * const name ... (constant pointer), or type C::* const
name (constant pointer to member) for instance (but not pointers to con-
stant).

Language C++

Definition Number of parameters declared in a class for classes that are templates.
If cl_genp has the value 0 the class is not a template.

Language C++
Alias N-GENC

Definition Number of conversion operators declared in a class declaration.
Language C++

Definition Number of operators declared in a class, whose names belong to a certain
list being a parameter of the metric (by default, this list is empty).

Language C++

cl_dep_meth
1 dc_calle ic_vare ic_par_othercl dc_other_clas_var+ + + 0>⇔
0 otherwise




methods
∑=
Standard Metrics Definition 79

Telelogic Logiscope
cl_oper_affc Number of assignment operators

cl_oper_spec Number of special operators

5.3.3 Function Aggregates

cl_func Total number of methods

cl_func_priv Number of private methods

cl_func_prot Number of protected methods

cl_func_publ Number of public methods

cl_func_virt Number of virtual methods

Definition Number of operators declared in a class, whose names belong to a certain
list which is a parameter of the metric (by default, this list contains "=",
"+=", "-=", "*=", "/=", "%=", "^=", "&=", "|=", "<<=", ">>=",
"+", "-", "*", "/" and "[]").

Language C++

Definition Number of operators declared in a class, whose names belong to a certain
list which is a parameter of the metric (by default, this list contains "->",
"()", ",", "->*", "new", "delete", "new[]", and "delete[]").

Language C++

Definition Total number of methods declared inside a class.
Language Java
Alias cl_meth

Definition Number of methods declared in the private section of a class.
Languages C++, Java
Alias LMPL, cl_meth_priv

Definition Number of methods declared in the protected section of a class.
Languages C++, Java
Alias LMPO, cl_meth_prot

Definition Number of methods declared in the public section of a class.
Languages C++, Java
Alias LMPU, cl_meth_publ

Definition Number of methods declared after the virtual keyword in a class.
80 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
cl_func_pure Number of abstract methods

cl_func_cons Number of constant methods

cl_func_inln Number of inline methods

cl_func_excp Number of methods handling or raising exceptions

cl_func_frnd Number of friend functions

cl_func_inh Number of inherited methods

Language C++

Definition Number of methods declared after the virtual keyword and followed by
=0 in a class.

Language C++
Alias LMABS

Definition Number of methods declared after the const keyword in a class.
Language C++

Definition Number of methods declared after the inline keyword in a class.
Language C++

Definition Number of methods declared in a class declaration in which:
• the body of the function is a try block, or
• the function body contains a try block, or
• exceptions are specified using the throw keyword.

Language C++

Definition Number of methods declared after the friend keyword in a class.
Language C++

Definition Number of public or protected methods in the base classes of a class,
which are not overridden in that class.

Language C++
Standard Metrics Definition 81

Telelogic Logiscope
cl_func_abstract Number of abstract methods

cl_func_native Number of methods implemented in another lan-
guage

cl_func_pack Number of methods in package scope

cl_func_over Number of overridden methods

cl_func_static Number of class methods

Definition Number of methods declared in a class declaration with the attribute
abstract.

Note For interfaces, cl_func_abstract is equal to cl_func.
Language Java
Alias cl_meth_abstract

Definition Number of methods declared in a class declaration with the attribute
native.

Note For interfaces, cl_func_native should be 0.
Language Java
Alias cl_meth_native

Definition Number of methods declared in a class declaration without any of the
attributes private, protected or public.

Note For public interfaces, cl_func_pack is equal to 0.
Language JAVA
Alias cl_meth_pack

Definition Number of inherited methods which a class overrides.
Justification High values for cl_func_over tend to indicate design problems. Sub-

classes should generally add to and extend the functionality of the parent
classes rather than overriding them.

Language C++
Alias LMRE

Definition Number of methods declared in a class declaration with the attribute
static.

Note For interfaces, cl_func_static is equal to 0.
The sum of cl_func_static and cl_func_nostat gives the total number of
methods cl_func.

Language Java
Alias cl_meth_static
82 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
cl_func_nostat Number of instance methods

5.3.4 Statistical Aggregates of Function Metrics

cl_fpriv_path Sum of PATH for private class methods

cl_fprot_path Sum of PATH for protected class methodss

Definition Number of methods declared in a class declaration without the attribute
static.

Note For interfaces, cl_func_nostat is equal to cl_func.
The sum of cl_func_static and cl_func_nostat gives the total number of
methods cl_func.

Language Java
Alias cl_meth_nostat

Definition Sum of non-cyclic execution paths for each class’s private methods. This
metric is an indicator of the static complexity of the private part of the
class.

Languages C++, Java
Alias LMPIPATH

Definition Sum of non-cyclic execution paths for each class’s protected meth-
ods. This metric is an indicator of the static complexity of the class
protected part.

Languages C++, Java
Alias LMPOPATH
Standard Metrics Definition 83

Telelogic Logiscope
cl_fpubl_path Sum of PATH for public class methods

cl_func_calle Sum of dc_callpe of class methods

cl_func_calli Sum of dc_callpi of class methods

cl_usedp Sum of ic_usedp of class methods

cl_data_vare Sum of ic_varpe of class methods

Definition Sum of non-cyclic execution paths for each class’s public methods.
This metric is an indicator of the static complexity of the public part
of the class.

Languages C++,Java
Alias LMPUPATH

Definition Total number of calls from the class methods to functions defined outside
a class (non-member functions or member functions of other classes).

Language C++
Alias LMCALL_PATHSe

Definition Total number of calls from class methods to member functions of the same
class.

Language C++
Alias LMCALL_PATHSi

Definition Total number of parameters used in the class methods.

Language C++
Alias LMU_PARA

Definition Total number of times attributes which are external to the class (defined in
other classes) are used by the class methods.

cl_func_calle dc_callpe
methods
∑=

cl_func_calli dc_callpi
methods
∑=

cl_usedp ic_usedp
methods
∑=
84 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
cl_data_vari Sum of ic_varpi of class methods

The following metrics have been introduced by Shyam R. Chidamber and Chris F. Kemerer
in "A Metrics Suite for Object Oriented Design" (IEEE Transactions on Software Engineer-
ing, vol 20, pp. 476-493, June 1994).

cl_wmc Weighted Methods per Class

cl_locm Lack of cohesion of methods

Language C++
Alias LMVAR_PATHSe

Definition Total number of times the class's attributes are used by the class methods.

Language C++
Alias LMVAR_PATHSi

Definition This metric represents the Weighted Methods per Class (WMC). It is the
sum of static complexities of class methods. Static complexity is repre-
sented in this calculation by the ct_vg of functions (see in ct_cyclo Cyclo-
matic Number).

Justification The greater the WMC valu is, the more complex, the more difficult to
understand and to maintain the class is. Moreover, a high WMC class is
most probably specific which limits reuse possibilities.

Languages C++, Java
Alias LMVG, cl_cyclo

Definition Percentage of methods that do not access a specific attribute of a class
averaged over all attributes in that class.

where:

cl_data_vare ic_varpe
methods
∑=

cl_data_vari ic_varpi
methods
∑=

cl_wmc ct_vg
methods
∑=

cl_locm

1 Ac Ai()–()

i 1=

TA

∑

TA
--=
Standard Metrics Definition 85

Telelogic Logiscope
5.3.5 Inheritance Tree

in_dbases Number of direct base classes

in_bases Number of base classes

in_depth Depth of the inheritance tree

in_noc Number of children

and:

Justification A low percentage indicates high coupling between methods, which leads
to high testing effort (since many methods can affect the same attribute)
and potentially low reusability.

Language C++

Definition Number of classes from which a class directly inherits.
Note A value of in_dbases upper than 1 denotes multiple inheritance.
Justification If the in_dbases value is high, the use of multiple inheritance will be high,

increasing class complexity.
Language C++, Java
Alias MII, in_dinherits

Definition Number of classes from which a class inherits directly or not
If multiple inheritance is not used, the value of in_bases is equal to the
value of in_depth.

Language C++, Java
Alias in_inherits

Definition Maximum length of an inheritance chain starting from a class.
Languages C++, Java

Definition Number of classes which inherit directly from a class.
Justification The children number of a class is an indicator of the class criticalness

within a given system. In fact, more children a class has, more the modifi-
cations made to the class will induce changes in the global system.

Ac Ai()

is_accessed Ai Mj,()

j 1=

TM

∑

TM
---=

is_accessed Ai Mj,()
1 MjaccessesAi¤

0 otherwise



=

86 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
in_derived Number of derived classes

in_reinh Number of classes inherited several times

5.3.6 Use Graph
There are three kinds of use relationships between classes:
• characteristic use: that is when a class C1 derives from a class C2 (inheritance), or

when C2 is used for typing a C1 member,
• contextual use: that is when C2 is used for typing parameters or the return value of a

C1 function member,
• operational use: that is when C2 is locally used in a C1 function member body, for

typing a local variable, for creating an object (by the way of the new instruction), for
type conversion (cast), or for accessing a C1 static member directly.

The metrics below take the three kinds of use into account:

cu_level Depth of the Chain of Use

cu_cdused Number of direct used classes

cu_cused Number of used classes

Languages C++, Java
Alias NOC, in_dderived

Definition Total number of classes which inherit from a class directly or indirectly.
Languages C++, Java

Definition Number of classes from which a class inherits several times by different
inheritance chains.

Language C++

Definition Maximum length of a chain of use starting from a class (not counting use
loop).

Languages C++, JAVA

Definition Number of classes used directly by a class.
Languages C++, JAVA

Definition Number of classes used by the current class directly or not.
Languages C++, JAVA
Standard Metrics Definition 87

Telelogic Logiscope
cu_cdusers Number of direct users classes

cu_cusers Number of users classes

Definition Number of classes which use directly a class.
Languages C++, JAVA

Definition Total number of classes which use directly or not a class.
Languages C++, JAVA
88 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.4 Module Scope

5.4.1 Lines Counting
For more details on Line Counting Metrics, please refer to §5.6.1

md_blank Number of empty lines

md_comm Number of lines of comments

md_cpp Number of preprocessor statements

md_line Total number of lines

md_loc Number of lines of code

md_sbra Number of lines with lone braces

md_pro_c: Number of lines in Pro*C

Definition Number of lines containing only non printable characters in the module.

Definition Number of lines of comments in the module.
Alias LCOM

Definition Number of statements computed by the preprocessor (e.g. #include,
#define, #ifdef) in the module.

Languages C,C++

Definition Total number of lines in the module.

Definition Total number of lines containing executable code in the module.

Definition Number of lines containing only a single brace character : i.e. “{“ or “}” in
the module.

Languages C, C++,Java

Definition Total number of lines of PRO*C within the module.
Languages C++
Standard Metrics Definition 89

Telelogic Logiscope
md_dclstat: Number of declarative statements

md_stat: Number of statements

md_parse: Number of lines not parsed

5.4.2 Data Flow

md_consts Number of declared constants

md_excs: Number of declared exceptions

md_types Number of declared types

md_vars Number of declared variables

Definition Total number of declarations in the method bodies in the module.
Languages Java

Definition Total number of executable statements in the method bodies in the mod-
ule.

Languages Ada, C++, Java

Definition Total number of lines not parsed within the module.
Languages C++, Java

Definition Number of constants declared in the module.
Languages Ada, C++

Definition Total number of exceptions declared in the exception declaration in the
module.

Languages C++

Definition Number of types declared in the module.
Languages Ada, C++

Definition Number of variables declared in the module.
Languages Ada, C++
90 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.4.3 Textual Elements

md_algo Number of syntactic entities (algorithms)

md_decl Number of syntactic entities (declarations)

md_synt Number of syntactic entities

md_n1 Number of distinct operators

md_n2 Number of distinct operands

md_N1 Total number of operators

md_N2 Total number of operands

md_n Halstead Vocabulary

Definition Number of syntactic entities inside statements that are not counted as dec-
laration in a module.

Languages Ada, C++

Definition Number of syntactic entities in the declaration part of the module (func-
tion headers and declaration.

Languages Ada, C++

Definition Total number of syntactic entities in the module.
Languages Ada, C++

Definition Number of distinct operators referenced in the module.
Languages Ada, C++

Definition Number of distinct operands referenced in the module.
Languages Ada, C++

Definition Total number of operators referenced in the module.
Languages Ada, C++

Definition Total number of operands referenced in the module.
Languages Ada, C++

Definition Halstead Vocabulary of the module.
n = n1 + n2

Languages Ada, C++
Standard Metrics Definition 91

Telelogic Logiscope
md_N Halstead Program Length

md_CN Halstead Estimated Length

 md_V Halstead Program Volume

md_L Halstead Program Level

Definition Halstead observed length of the module.
N = N1 + N2

Languages Ada, C++

Definition Halstead estimated length of the module.

= n1 * log2(n1) + n2 * log2(n2)

According to Halstead, N and differ by 10% and the correlation coeffi-

cient is close to 1. The relation between N (observed length) and (esti-
mated length) seems valid. Then Halstead uses this relation to evaluate
other metrics.

Languages Ada, C++

Definition Halstead Program Volume
V = N * log2(n)
According to Halstead, Program Volume V corresponds to the minimum
number of bits required for program coding.
For each occurrence of N operator or operand which appears in the pro-
gram, a number v of bits are required to specify it such that n = 2v, thus
v = log2n. The above formula is deduced from this.

Languages Ada, C++

Definition Halstead Program Level
L = (2 * n2) / (n1 * N2)

Languages Ada, C++

N̂

N̂

N̂

92 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
md_D Halstead Program Difficulty

md_I Halstead Intelligent Content

md_E Halstead Mental Effort

5.4.4 Interface

md_class Number of classes

md_interf Number of interfaces

md_expco Number of exported constants

Definition Halstead Program Difficulty
D = 1/L

Languages Ada, C++

Definition Halstead Intelligent Content
I = L * V
According to Halstead, it represents the algorithm complexity regardless
of the language used.
If L is assessed (used to calculate I) to be close to the actual value of Pro-
gram Level (based on Potential Volume V*), we can deduce that I is a
good estimate value of Potential Volume V*.

Languages Ada, C++

Definition Halstead Intelligent Content
E = V / L
The mental effort E required to both develop and understand a program is
expressed by Halstead in "basic reasoning units". It increases with Pro-
gram Volume V and decreases with Program Level L.
Halstead showed that a program written in PL/1 requires three times less
comprehension effort than a program written in assembly language. He
proposed mental effort E as a measurement of program text complexity.

Languages Ada, C++

Definition Number of classes declared at the first level of a module.
Languages Java

Definition Number of interfaces declared at the first level of a module.
Languages Java

Definition Numbers of constants exported by the differents compilation units of the
module.
Standard Metrics Definition 93

Telelogic Logiscope
md_expex Number of exported exceptions

md_expty Number of exported types

md_expfn Number of exported functions

md_impmo Number of imported modules

md_import_pack Number of imported packages

md_import_demd Number of importations on demand

md_import_type Number of imported types

Languages Ada

Definition Numbers of exceptions exported by the differents compilation units of the
module.

Languages Ada

Definition Numbers of types exported by the differents compilation units of the mod-
ule.

Languages Ada

Definition C++: Number of non-static global functions defined in the module
Ada: Numbers of functions (packages, subprograms, tasks) exported by
the differents compilation units of the module.

Languages Ada, C++

Definition Number of modules included inside a module
Languages C++

Definition Number of packages appearing in the import statement of a module.
The parameter of the import stement is supposed to be a package name if
it is a simple name (without a dot in it) or if it is not used as a type in the
module.

Languages Java

Definition Number of import statements in a module whose parameter is a generic
name (ended by .*).

Languages Java

Definition Number of types appearing in the import statements of a module.
The parameter of the import stement is supposed to be a type name if it is
not a simple name (with at least a dot in it) or if it is used as a type in the
module.
94 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
md_with Number of WITH clauses

Languages Java

Definition Numbers of WITH clauses in the module.
Languages Ada
Standard Metrics Definition 95

Telelogic Logiscope
5.5 Package Scope
Metrics at Package scope are only available in Logiscope Java.

5.5.1 Packages Aggregates

 pk_line Number of lines

 pk_com: Number of lines of comments

pk_file Number of files

pk_pkused Number of imported packages

5.5.2 Textual Elements

pk_n1 Number of distinct operators

pk_n2 Number of distinct operands

pk_N1 Total number of operators

pk_N2 Total number of operands

pk_cpx_max Maximum size of statements

Definition Total number of lines in the source files containing the package.

Definition Total number of comment lines in a package.
Comments located outside the package are not counted.

Definition Total number of files within the package.

Definition Number of imported packages of the package.

Definition Number of distinct operators referenced in the package.

Definition Number of distinct operands referenced in the package.

Definition Total number of operators referenced in the package.

Definition Total number of operands referenced in the package.

Definition Maximum number of operands and operators in a statement of the pack-
age.
96 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.5.3 Statistical Aggregates of Class Metrics

pk_class Number of classes

pk_interf Number of interfaces

pk_const Number of constants

pk_data Number of data

pk_data_priv Number of private data

pk_data_prot Number of protected data

pk_data_publ Number of public data

pk_data_stat Number of static data

pk_except Number of raised exceptions

pk_raise Number of raising an exceptions raises

Definition Total number of classes declared in the package.
Nested classes are counted.

Definition Total number of interfaces declared in the package.

Definition Total number of constants declared in the classes of the package.

Definition Total number of data declared in the classes of the package.

Definition Total number of data explicitely declared with the “private” keyword in
the classes of the package.

Definition Total number of data explicitely declared with the “protected” keyword in
the classes of the package.

Definition Total number of data explicitely declared with the “public” keyword in
the classes of the package.

Definition Total number of data explicitely declared with the “static” keyword in the
classes of the package.

Definition Total number of exceptions declared by the keyword “throw” in the
method declaration of the package.

Definition Total number of occurrences of “throw” in the classes of the package.
Standard Metrics Definition 97

Telelogic Logiscope
pk_try Number of exception handlers

pk_type Number of public classes

5.5.4 Statistical Aggregates of Function Metrics

pk_func Number of functions

pk_func_priv Number of private functions

pk_func_prot Number of protected functions

pk_func_publ Number of public functions

pk_func_stat Number of static functions

pk_func_abstract Number of abstract functions

pk_func_used Number of called functions

Definition Total number of occurrences of “try” blocks in the classes of the package.

Definition Total number of public classes of the package.

Definition Total number of functions declared in the classes of the package

Definition Total number of functions explicitely declared with the “private” key-
word in the classes of the package.

Definition Total number of functions explicitely declared with the “protected” key-
wordin the classes of the package.

Definition Total number of functions explicitely declared with the “public” keyword
in the classes of the package.

Definition Total number of functions explicitely declared with the “static” keyword
in the classes of the package.

Definition Total number of abstract functions in the classes of the package.

Definition Number of calls of functions by a function declared in the classes of the
package.
98 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
pk_func_used_max Maximum number of called functions

pk_levl Sum of nested levels

pk_levl_max Maximum nested levels

pk_path Sum of non-cyclic paths

pk_path_max Maximum number of non-cyclic paths

pk_param Sum of parameters

pk_param_max Maximum number of parameters

pk_stmt Sum of executable statements

pk_stmt_max Maximum number of statements

Definition Maximum number of calls of functions by a function declared in the
classes of the package.

Definition Sum of nested levels (ct_nest) in the functions declared in the classes of
the package.

Definition Maximum number of nested levels (ct_nest) in a function declared in the
classes of the package.

Definition Sum of Non-Cyclic Paths (ct_path) in the functions declared in the classes
of the package.

Definition Maximum number of Non-Cyclic Paths (ct_path) in a function declared
in the classes of the package.

Definition Sum of the number of formal parameters (ic_param) in the functions
declared in the classes of the package.

Definition Maximum number of formal parameters (ic_param) in a function declared
in the classes of the package.

Definition Sum of executable statements (lc_stat) in the functions declared in the
classes of the package.

Definition Maximum number of executable statements (lc_stat) in a function
declared in the classes of the package.
Standard Metrics Definition 99

Telelogic Logiscope
pk_vg Sum of Cyclomatic Numbers

pk_vg_max Maximum Cyclomatic number

5.5.5 Inheritance

pk_extend: Number of inheritance using extend

pk_implement: Number of inheritance using implement

pk_inh_levl: Sum of depth of the inheritance tree

pk_inh_levl_max: Depth of the inheritance tree

Definition Sum of Cyclomatic Numbers (ct_vg) of the functions declared in the
classes of the package.

Definition Maximum Cyclomatic Number (ct_vg) in a function declared in the
classes of the package.

Definition Number of classes referenced in the “extend” directives of the classes in
the packages.
If a class is referenced several times, it is counted several times.

Definition Number of classes referenced in the “implement” directives of the classes
in the packages.
If a class is referenced several times, it is counted several times.

Definition Sum of the depth of the classes in the inheritance tree of the classes
declared in the package.

Definition Maximum length of an inheritance chain starting from a class declared in
the package.
100 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.6 Application Scope
The application is determined by the list of source files specified in the Logiscope projet.
Consequently, the value of metrics presented in this section may change depending on
the source files analyzed of not. It is therefore recommended to use these metrics results
exclusively for a complete application or for a coherent subsystem.

5.6.1 Line Counting
Lines Of Code (LOC) are often used for quantifying the productivity of the development
and maintenance phases ... even if such an approach is clearly subject to caution.

Logiscope QualityChecker provides many basic metrics that can be combined together
to provide the appropriate LOC counting regarding the context or the applicable
standard, for instance:
• Physical LOC: all lines in a source file (see ap_sline) where you may or not remove

substract the empty lines (see ap_sblank);
• Physical executable LOC: all lines containing executable code (see ap_sloc): i.e. all

lines except lines of comments (see ap_scomm) and empty lines (see ap_sblank);
• Effective LOC: same as above but removing also simple lines of code: i.e. lines

containing only braces for presentation purposes (see ap_ssbra) and preprocessing
directives (see ap_scpp).

• Logical LOC: not impacted by the the way the code is presented but only taken into
account syntactical executable statements as specified in the programming language
(see ap_stat).

The main basic metrics available in Logiscope QualityChecker for line counting are :

ap_sline Total number of lines

ap_sloc Number of lines of code

ap_sblank Number of empty lines

Definition Total number of lines in the application source files.

Definition Total number of lines containing executable in the application source files.

Definition Total number of lines containing only non printable characters in the
application source files.
Standard Metrics Definition 101

Telelogic Logiscope
ap_scomm Total number of lines of comments

ap_scpp Number of preprocessor statements

md_ssbra Number of lines with lone braces

Definition Number of lines of comments in the application source files.

Definition Number of preprocessor directives (e.g. #include, #define, #ifdef).
in the application source files.

Languages C, C++

Definition Number of lines containing only a single brace character : i.e. “{“ or “}”
application source files.

Languages C, C++, Java
102 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.6.2 Function Aggregates

ap_func Number of application functions

ap_interf_func Number of application interface functions

ap_mdf Sum of application defined methods

ap_npm Sum of application public methods

ap_nmm Sum of application member functions

ap_line Number of function lines

ap_stat Number of statements

Definition Number of functions in the application. The application is defined by the
list of analyzed files. For C++ language, this metric counts non-member
functions only.

Alias LMA

Definition Number of interface functions in the application.
Languages Java

Definition Number of methods defined in the application.
Language C++
Alias NMM

Definition Number of public methods in the application.
Language C++

Definition Number of member functions in the application. The application is
defined by the list of analyzed files.

Language C++
Alias NMM

Definition Sum of number of lines (i.e. lc_line) of all the functions defined in the
application.

Definition Sum of executables statements: (i.e. lc_stat) of all the functions defined in
the application.

ap_line lc_line
functions
∑=
Standard Metrics Definition 103

Telelogic Logiscope
ap_vg Sum of cyclomatic numbers of the functions

5.6.3 Sum of Class Metrics

ap_cbo Coupling between objects

ap_clas Number of application classes

Definition Sum of Cyclomatic Number: i.e. ct_vg of all the functions defined in the
application.

Alias VGA, ap_cyclo

Definition Sum of relationships from class to class other than inheritance relation-
ships:
- cl_func_calle Sum of dc_callpe from class methods
- cl_data_class Sum of class-type attributes.

Language C++
Alias CBO

Definition Number of classes in the application.
Languages C++, Java
Alias LCA

ap_stat lc_stat
functions
∑=

ap_vg ct_vg
functions
∑=

ap_cbo cl_func_calle cl_data_class+()

classes
∑=
104 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.6.4 MOOD
The MOOD (Metrics for Object Oriented Design) set of metrics described in this chapter
has been introduced by Fernando Brito e Abreu in "Object-Oriented Software
Engineering: Measuring and Controlling the Development Process" (Proceedings of the
4th International Conference on Software Quality, ASQC, McLean, VA, USA, October
1994).

Their definitions have been refined since their first introduction. The MOOD metrics
conform to last definitions and corresponding C++ bindings described in "Evaluating the
Impact of Object-Oriented Design on Software Quality" (Proceedings of the Third
International Software Metrics Symposium, IEEE, Berlin, Germany, March 1996).

This approach is only available for Logiscope C++ projects.

ap_mhf Method hiding factor
Definition

where:

and:

The MHF numerator is the sum of the invisibilities of all methods defined
in all classes. The invisibility of a method is the percentage of total classes
from which this method is not visible.
The MHF denominator is the total number of methods defined in the
project.

Alias MHF

ap_mhf

1 V Mmi()–()

m 1=

Md Ci()

∑
i 1=

TC

∑

Md Ci()

i 1=

TC

∑

---=

V Mmi()

is_visible Mmi Cj,()

j 1=

TC

∑

TC 1–
--=

is_visible Mmi Cj,()
1

j i¼
Cj may call M mi




¤

0 otherwise





=

Standard Metrics Definition 105

Telelogic Logiscope
The following C++ bindings are used to compute this metric:

ap_ahf Attribute hiding factor

The following C++ bindings are used to compute this metric:

MOOD C++
TC total classes total number of classes

methods constructors; destructors; function members;
operator definitions

Md(Ci) methods defined (not
inherited)

all methods declared in the class including
virtual (deferred) ones

V(Mmi) visibility - percentage of
total classes from which
the method Mmi is visible

= 1 for methods in public clauses;
= 0 for methods in private clauses;
= DC(Ci)/(TC-1) for methods in protected
clauses (DC(Ci) = descendants of Ci)

Definition

where:

and:

The AHF numerator is the sum of invisibilities of all attributes defined in
all classes. The invisibility of an attribute is the percentage of total classes
from which this attribute is not visible.
The AHF denominator is the total number of attributes defined in the
project.

Alias AHF

MOOD C++
Ad(Ci) attributes defined (not

inherited)
data members

ap_ahf

1 V Ami()–()

m 1=

Ad Ci()

∑
i 1=

TC

∑

Ad Ci()

i 1=

TC

∑

---=

V Ami()

is_visible Ami Cj,()

j 1=

TC

∑

TC 1–
---=

is_visible Ami Cj,()
1

j i¼
Cj may reference Ami




¤

0 otherwise





=

106 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
ap_mif Method inheritance factor

The following C++ bindings are used to compute this metric:

ap_aif Attribute inheritance factor

V(Ami) visibility - percentage of
total classes from which
the attribute Ami is visi-
ble

= 1 for attributes in public clauses;
= 0 for attributes in private clauses;
= DC(Ci)/(TC-1) for attributes in protected
clauses (DC(Ci) = descendants of Ci)

Definition

where:

The MIF numerator is the sum of inherited methods in all classes of the
project.
The MIF denominator is the total number of available methods (locally
defined plus inherited) for all classes.

Alias MIF

MOOD C++
Ma(Ci) available methods function members that can be invoked in

association with Ci

Md(Ci) methods defined function members declared within Ci

Mi(Ci) inherited methods function members inherited (and not overrid-
den) in Ci

Definition

where:

ap_mif

Mi Ci()

i 1=

TC

∑

Ma Ci()

i 1=

TC

∑

------------------------------=

Ma Ci() Md Ci() Mi Ci()+=

ap_aif

Ai Ci()

i 1=

TC

∑

Aa Ci()

i 1=

TC

∑

-----------------------------=

Aa Ci() Ad Ci() Ai Ci()+=
Standard Metrics Definition 107

Telelogic Logiscope
The following C++ bindings are used to compute this metric:

ap_pof Polymorphism factor

The AIF numerator is the sum of inherited attributes in all classes of the
project.
The AIF denominator is the total number of available attributes (locally
defined plus inherited) for all classes.

Alias AIF

MOOD C++
Aa(Ci) available attributes data members that can be invoked associated

with Ci

Ad(Ci) attributes defined data members declared within Ci

Ai(Ci) inherited attributes data members inherited (and not overridden)
in Ci

Definition

where:

The POF numerator is the sum of overriding methods in all classes. This is
the actual number of possible different polymorphic situations. Indeed, a
given message sent to a class can be bound, statically or dynamically, to a
named method implementation. The latter can have as many shapes (mor-
phos) as the number of times this same method is overridden (in that
class’s descendants).
The POF denominator represents the maximum number of possible dis-
tinct polymorphic situations for that class as the sum for each class of the
number of new methods multiplied by the number of descendants. This
value would be maximum if all new methods defined in each class would
be overridden in all of their derived classes.

Alias POF

ap_pof

Mo Ci()

i 1=

TC

∑

Mn Ci() DC Ci()¥[]

i 1=

TC

∑

--=

Md Ci() Mn Ci() Mo Ci()+=
108 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
The following C++ bindings are used to compute this metric:

ap_cof Coupling factor

Client-supplier relations can have several shapes:

MOOD C++
DC(Ci) descendants count number of classes descending from Ci

Mn(Ci) new methods function members declared within Ci that do
not override inherited ones

Mo(Ci) overriding methods function members declared within Ci that
override (redefine) inherited ones

Definition

where:

The COF denominator stands for the maximum possible number of cou-
plings in a system with TC classes.
The client-supplier relation (represented by Cc ⇒ Cs) means that Cc (cli-
ent class) contains at least one non-inheritance reference to a feature
(method or attribute) of class Cs (supplier class). The COF numerator then
represents the actual number of couplings not imputable to inheritance.

Alias COF

Client-supplier shapes C++
regular message passing call to the interface of a function member in

another class
"forced" message passing call to a visible or hidden function member in

another class by means of a friend clause
object allocation and deallocation call to a class constructor or destructor
semantic associations among classes
with a certain arity (e.g. 1:1, 1:n or
n:m)

reference to a supplier class as a data member or
as a formal parameter in a function member inter-
face

ap_cof

is_client Ci Cj,()
j 1=
∑

i 1=
∑

TC2 TC–
---=

is_client Ci Cj,()
1 Cc Cs⇒ Cc Cs≠∧⇔

0 otherwise



=

Standard Metrics Definition 109

Telelogic Logiscope
5.6.5 Application Call Graph

ap_cg_cycle Call Graph recursions

ap_cg_edge Number of Edges in the Call graph

ap_cg_levl Number of Levels in the Call graph

ap_cg_maxdeg Maximum of Calling/Called

ap_cg_maxin Maximum of Calling

Definition Number of recursive paths in the call graph for the application’s functions.
A recursive path can be for one or more functions.

Justification Excessive use of recursiveness increases the global complexity of the
application and may diminish system performances.

Alias GA_CYCLE

Definition Number of edges in the call graph of application functions.
Alias GA_EDGE

Definition Depth of the Call Graph: number of call graph levels.
Justification Too many call graph levels indicates a strong hierarchy of calls among

system functions. This may be due to incorrectly implemented object-cou-
pling relationships.

Alias GA_LEVL

Definition Maximum number of calling/called for nodes in the call graph of applica-
tion functions.

Languages C, ADA
Alias GA_MAXDEG

Definition Maximum number of “callings” for nodes in the call graph of Application
functions.

Alias GA_MAX_IN
110 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
 ap_cg_maxout Maximum of Called

ap_cg_node Number of Nodes in the Call graph

ap_cg_root Number of Roots

ap_cg_leaf Number of Leaves

Example:

Application call graph

j : called but not analyzed component.

Definition Maximum number of called functions for nodes in the call graph of Appli-
cation functions.

Alias GA_MAX_OUT

Definition Number of nodes in the call graph of Application functions. This metric
cumulates Application’s member and non-member functions as well as
called but not analyzed functions.

Alias GA_NODE

Definition Number of roots functions in the call graph of Application functions.
Alias GA_NSP

Definition Number of functions executing no call. In other words, number of leaves
nodes in the call graph of Application functions.

Alias GA_NSS
Standard Metrics Definition 111

Telelogic Logiscope
Call graph metric values:
112 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
5.6.6 Inheritance Tree

ap_inhg_cpx Inheritance tree hierarchical complexity

ap_inhg_edge Number of Edges in the Inheritance Graph

ap_inhg_levl Number of Levels in the Inheritance Graph

Definition The complexity of the inheritance tree is defined as a ratio between:
• the sum for all of the graph levels of the number of nodes on the level

times the level weight index,
• the number of graph nodes.
• Basic classes are on the top level and leaf classes on the lower levels

where N is the number of nodes for level i.
Justification This metric is an indicator of the graph structure:

• a tall and narrow graph has an ap_inhg_cpx value that goes to ,
• a graph as wide as long has an ap_inhg_cpx value that goes to 2,
• a graph as wide and long has an ap_inhg_cpx value that goes to 1.
The purpose of this metric is to measure the hierarchical complexity of a
graph.
An ap_inhg_cpx value greater than 2 indicates that the graph hierarchy is
too complex.

Languages C++, JAVA
Alias GH_CPX

Definition Number of inheritance relationships in the application.
Languages C++, JAVA
Alias GH_EDGE

Definition The Depth of the Inheritance Tree (DIT) is the number of classes in the
longest inheritance link.

Justification The greater the ap_inhg_levl value is, the greater is the number of inher-
ited functions and the more complex will be the application.

Languages C++, JAVA
Alias GH_LEVL

∞

Standard Metrics Definition 113

Telelogic Logiscope
ap_inhg_maxdeg Maximum Number of Derived/Inherited Classes

ap_inhg_maxin Maximum Number of Derived Classes.

ap_inhg_maxout Maximum Number of Inherited Classes.

ap_inhg_node Number of Classes in the Inheritance Graph

ap_inhg_leaf Number of Leaves Classes

ap_inhg_root Number of Basic Classes

Definition Maximum number of inheritance relationships for a given class. This met-
ric applies to the Application’s inheritance graph.

Languages C++, JAVA
Alias GH_MAX_ DEG

Definition Maximum number of derived classes for a given class in the inheritance
graph.

Languages C++, JAVA
Alias GH_MAX_ IN

Definition Maximum number of inherited classes for a given class in the inheritance
graph.

Languages C++, JAVA
Alias GH_MAX_ OUT

Definition Number of classes present in the inheritance graph.
Languages C++, JAVA
Alias GH_NODE

Definition Number of leaves classes in the application. A class is said to be a leaf
class if it has no child class.

Languages C++, JAVA
Alias GH_NSP

Definition Number of basic classes in the application. A class is said to be basic if it
does not inherit from any other class.

Languages C++, JAVA
Alias GH_NSS
114 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
ap_inhg_pc Protocol Complexity of the Inheritance Graph

ap_inhg_uri Number of Repeated Inheritances

Example

Inheritance graph of the application being analyzed

x y: y inherits from x

Definition Inheritance graph depth times the maximum number of functions in a
class of the inheritance graph over the total number of functions in the
inheritance graph classes

Languages C++, JAVA
Alias GH_PC

Definition Repeated inheritances consist in inheriting twice from the same class. The
number of repeated inheritances is the number of inherited class couples
leading to a repeated inheritance.

Justification Repeated inheritance is a cause of complexity and naming conflict in
cases of functions inherited several times. Nevertheless, in certain cases,
repeated inheritance can be useful but should not be used excessively.

Languages C++, JAVA
Alias GH_URI
Standard Metrics Definition 115

Telelogic Logiscope
ap_inhg_uri = 1 (C8 inherits from C4 via C6 and C7)

ap_inhg_maxdeg = 3 (C4)

ap_inhg_maxout = 2 (C8 or C5)

ap_inhg_maxin = 2 (C4)

ap_inhg_root = 3 (C1, C2, C3)

ap_inhg_leaf = 2 (C8, C5)

ap_inhg_edge = 7

ap_inhg_node = 8

ap_inhg_levl = 4

ap_inhg_cpx = 2 1×() 4 2×() 1 3×() 1 4×()+ + +
2 4 1 1+ + +

116 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
 Chapter 6

Project Configuration Files

6.1 Quality Model
The Quality Model is a user-accessible textual file containing the definition of the
Quality Model required to assess source code quality characteristics: Maintainability,
Reliability, Portability, etc.

Specifying a Quality Model file is mandatory when setting up a Logiscope
QualityChecker project.

In order to adapt the Quality Model to the project constraints and quality objectives, the
user can use the Quality Model Editor available in Logiscope Studio. The user can also
directly edit the Quality Model file. In such a case, the user shall respect the structure and
syntax described below.

Default Quality Model files are available in the directory <log_installation_dir>\Ref\
where <log_installation_dir> is the Telelogic Logiscope installation directory.

More information on how Quality Models are set up in Logiscope projects can be found
in the Logiscope QualityChecker & RuleChecker - Getting Started manual.

6.1.1 Quality Model File Structure
The # character at the beginning of a line indicates that the line is a comment.

The structure of a Quality Model file is as follows:
/language

identification of the related programming language:
language=Ada | C | C++ | Java

MD
definitions of user metrics

ME
selection of metrics that are actually calculated, definition of their limit values
and out-of-bounds messages

MC
definitions of quality criteria and categories
Project Configuration Files 117

Telelogic Logiscope
BQ
definitions of quality factors and categories

6.1.2 *MD* Section: User Defined Metric Specification

Notes
New metrics are defined using expressions combining:
- basic metrics (see Measuring complexity),
- previously user defined metrics.
The maximum number of metrics is 500.

Metric syntax
“description” : mnemonic [= expression] [{ presentation }]

description
brief metric syntax description.

mnemonic
name of the metric (letters, numbers and underscore “_”) used whenever the metric is
referred to (definition of other metrics, criteria, etc.).

expression
arithmetical expression using operators and operands.

The following operators are possible:
+ binary addition
- binary subtraction
* multiplication
/ division
** exponentiation (x**y means x raised to the power of y)
MOD modulo (x MOD y is equal to the remainder of the division of x by y)
LOG Neperian logarithm
LOG2 base 2 logarithm
MIN(x,y) includes the minimal value between x and y
MAX(x,y) includes the maximal value between x and y

Possible operands are numeric constants or metric names.
presentation
presentation of the metric (free syntax) that is displayed on the righthand side of the
double Properties box.
118 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Example
For example, the “comments frequency” metric can be defined by combining the
“number of blocks of comments” and “number of statements” basic metrics as follows :
COMF = (lc_bcom + lc_bcob) / (lc_stat)
MD

“COMments Frequency” :COMF = (lc_bcom + lc_bcob) / (lc_stat)

6.1.3 *ME* Section: Metric Threshold Specification
The *ME* section of the Quality Model file is used to set metric limits/thresholds.

Metric thresholds represent the value interval in which the metric value is deemed to be
acceptable.

Note: User defined Metrics referenced in this paragraph must be first defined in the *MD*
paragraph.

Metrics definition syntax
mnemonic format {min|-1} {max|+1}

mnemonic
name of the metric.

format
one of the following formats:
I: integer,
F: floating real (e.g.: 12.34).

min
lower limit (integer or real).
If no lower limit is required, enter –oo (which stands for -1).

max
upper limit (integer or real).
If no upper limit is required, enter +oo (which stands for +1).

NoteIn order to display the metric’s value in the related text, use the $value symbol.

Example
ME

COMF F 0.20 1.00
VG I 1 15
PATH I 1 80
Project Configuration Files 119

Telelogic Logiscope
6.1.4 *MC* Section: Quality Criteria Specification
The *MC* section of the Quality Model file is used to define quality criteria and
specify their:

• name and comments,
• calculation formula,
• categories or rating levels.

Reminder
A quality criterion has a name which identifies a specific formula based on a
combination of weighted metrics.

Each criterion-specific formula is calculated either according to limit values for metrics
used in the formula or on the basis of the metric value (whenever the VAL operator is
used).

Categories have to be defined for each criterion. Each component enters into one of the
criterion’s categories, as a function of the combination of its weighted metrics.

NotesThe maximum number of criteria is 100.

TMetrics referenced in this paragraph must be first defined in the *MD* and *ME*
paragraph.

Criterion definition syntax
criterion = formula?[{ presentation }]
categoryname min max f_weight
categoryname min max f_weight
...

criterion
Name of the quality criterion (letters, numbers and underscore “_”).

formula
A criterion formula is an arithmetical expression using operators and operands:
The following are possible operators:
+ binary addition
- binary subtraction
* multiplication
/ division
** exponentiation (x**y means x raised to the power of y)
MOD modulo (x MOD y is equal to the remainder of the division of x by y)
LOG Neperian logarithm
LOG2 base 2 logarithm
VAL operand value
The possible operands are numeric constants or metric names.
120 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
{ presentation}
Presentation of the criterion (free syntax) which is displayed in the righthand side
of the double Properties box.

categoryname
Name of the criterion’s category (letters, numbers and underscore “_”)
A category represents the diagnosis associated to a factor value. A category is a
range of values for which the diagnosis is identical.

min
Lower limit (inclusive) for the category concerned

max
Upper limit (exclusive except for the last category) for the category concerned

f_weight
Quality factor coefficient associated with the category (integer or real) used to
establish quality factors.
The third value in the definition of a criteria category corresponds to the Quality
factor coefficient. This value is used to calculate the overall quality assessment of
factors (see Quality model - File - Defining factors).

Note: One category’s lower value must be the next category’s upper value. Minimal and
maximal values can be integers or reals where –oo and +oo represent respec-
tively “minus the infinite” and “plus the infinite”.

Evaluating the quality criterion
Components are classified according to the following process:
• If there is no VAL operator, for any given component, if the value of a metric is

within its acceptable interval, the metric is associated with the value 1, otherwise it is
associated with 0. If there is a VAL operator, for any given component, the value
taken into account is the metric’s value.

• this type of evaluation is performed on all the metrics entering into the definition of
the criterion.

• the expression defining the criterion is calculated and gives the component the value
for the criterion concerned.

• this value determines the component’s category.

Example
MC

TESTABILITY = 40*VG + 40*LEVL +20*RETU
ACCEPTED 99 100 0
RESTRUCTURE 80 99 30
SUBDIVIDE 20 80 10
REWRITE 0 20 0
Project Configuration Files 121

Telelogic Logiscope
Interpretation of the example
The TESTABILITY criterion is based on whether or not the following 3 metrics are
within their acceptable interval:
• VG (cyclomatic number), with a weight coefficient of 40,
• LEVL (number of levels) with a weight coefficient of 40,
• RETU (number of exit points) with a weight coefficient of 20.

The table below gives all possible combinations for the 3 metrics (23), and the number of
points obtained for each combination. The maximum number of points is 100.

Total points obtained indicates the category that the component belongs to for the given
criterion. In our example, 60 enters into the SUBDIVIDE category ([20, 80[) for the
TESTABILITY criterion.

Example
MC

TESTABILITY = 4*VAL(VG + 4*VAL(LEVL) + 2*VAL(RETU)
VERY POOR 226 +oo
POOR 168 226
AVERAGE 126 168
CORRECT 56 168
EXCELLENT 0 56
122 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Interpretation of the example
The TESTABILITY criterion is calculated from the value of the VG, LEVL and RETU
metrics. The following table gives an example of definitions of categories associated to
the criterion.

Consider that an EXCELLENT component is a component whose VG value is included
between 0 and 3 and whose number of inputs is included between 0 and 2, the
component value for the TESTABILITY criterion will be included between 0 and 56.

6.1.5 *BQ* Section: Quality Factors Specification
The *BQ*section of the Quality Model file is used to define factors and specify their:
• name and comments,
• calculation formula,
• categories or rating levels.

Reminder
Within a given software quality system hierarchy, the top level attribute for quality
assessment is the quality factor.

A quality factor formula is evaluated by means of the quality criteria composing it.

A quality factor has a name which identifies a specific formula based on a combination
of criteria.

Each factor-specific formula is calculated either according to the value associated with
the criteria used in the formula or on the basis of the criterion value (whenever the VAL
operator is used).

The user defines the quality factor as a set of categories that represent the extent to which
the factor has been fulfilled. Components are classified according to the criteria analysis.

A weight coefficient is associated with each criterion category when it is defined which
indicates the contribution it makes towards the factor. All the defined criteria thus
contribute towards the evaluation of the factor (except if the weight coefficient is zero).
Project Configuration Files 123

Telelogic Logiscope
Categories have to be defined for each factor.

NotesThe maximum number of factors is 50.

The criteria referenced in this paragraph must be first defined in the *MC* paragraph.

Factor syntax
factor[:scope]?=?formula?[{ presentation }]
categoryname?min?max
categoryname?min?max
...

factor
name of the quality factor (letters, numbers and underscore “_”).

scope: component | class | application

NoteHere, component stands for a member or a non-member function.
formula

A factor formula is an arithmetical expression using operators and operands.
The following are possible operators:
+ binary addition
- binary subtraction
* multiplication
/ division
** exponentiation (x**y means x raised to the power of y)
MOD modulo (x MOD y is equal to the remainder of the division of x by y)
LOG Neperian logarithm
LOG2 base 2 logarithm
VAL operand value

The possible operands are numeric constants or criteria names.
{ presentation}

presentation of the factor (free syntax).
categoryname

Name of the factor’s category (letters, numbers and underscore “_”)
A category represents the diagnosis associated to a factor value. A category is a
range of values for which the diagnosis is identical.

min
Lower limit (inclusive) for the category concerned.

max
Upper limit (exclusive except if 100) for the category concerned.

NoteOne category’s lower value must be the next category’s upper value. Minimal and
maximal values can be integers where –oo and +oo represent respectively “minus
the infinite” and “plus the infinite”.
124 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Evaluating the quality factor
Components are classified according to the following process:
• If there is no VAL operator, for any given component, the criterion value taken into

account is f_weight associated with the component category for the criterion. If a
VAL operator is specified, the value taken into account is the result of the evaluation
of the criterion’s formula.

• this type of evaluation is performed on all the criteria entering into the definition of
the factor.

• the expression defining the factor is calculated and gives the component the value for
the factor concerned.

• this value determines the component’s category for the factor.

Example
MC

CRITERION1 = 40*VG + 40*LEVL + 20*RETU
GOOD v2 100 50
AVERAGE v1 v2 30
POOR 0 v1 10
CRITERION2 = 40*VG + 60*METn
GOOD v2 100 50
AVERAGE v1 v2 20
POOR 0 v1 0

BQ
FACTOR1: COMPONENT = CRITERION1 + CRITERION2
ACCEPTED 90 100
COMMENT 80 90
INSPECT 50 80
TEST 30 50
REWRITE 0 30

NoteIn this example, the sum of the highest f_weight coefficients for each quality criterion
shoud be equal to 100.

Interpretation of the example
The table below gives all the possible combinations for the two criteria and the
coefficient total for each combination.
Project Configuration Files 125

Telelogic Logiscope
The total points obtained indicates the quality factor category to which the component is
assigned. Value 80 in our example places the component in the quality factor’s
COMMENT category ([80,90[).

Example
The following example uses the possibilities of the VAL operator and the calculated
value of the criterion is used instead of the weight associated to the criterion category.

MC
CRITERION1 = 4*VG + 4*LEVL + 2*RETU
...
...
CRITERION2 = 4*VG + 6*METn
...
...

BQ
FACTOR1 = VAL(CRITERION1) + VAL(CRITERION2)
VERY POOR 350 +oo
POOR 336 350
AVERAGE 221 336
CORRECT 108 221
EXCELLENT 0 108

Interpretation of the example
The table below shows how the quality factor is calculated as well as the categories
associated with it.
126 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Consider that an “excellent” component should have a VG included between 0 and 10, a
LEVL between 0 and 3, an RETU between 0 and 2 and a METn between 0 and 2, the
limit values carried forward to the quality factor FACTOR leads to consider as
EXCELLENT the components having a value between 0 and 108.

6.2 Rule Set
A Rule Set is user-accessible textual file containing the specification of the programming
rules to be checked by Logiscope RuleChecker.

Specifying one or more Rule Set files is mandatory when setting up a Logiscope
RuleChecker project.

The Rule Sets allow to adapt Logiscope RuleChecker verification to a specific context
taking into the applicable coding standard.

• Rule checking can be activated or de-activated.

• Some rules have parameters that allow to customize the verification. Changing the
parameters changes the behaviour of the rule checking.

• The default name of a standard rule can be changed to fit to the name and/or identifier
specified in the applicable coding standard.
The same standard rule can even be used twice with different names and different
parameters.

• The default severity level of a rule can be modified.

• A new set of severity levels with a specific ordering: e.g. “Mandatory”, “Highly
recommended”, “Recommended”. acn be specified.

All these actions can be done by editing the Logiscope Rule Set and changing the
corresponding specification.

If you did not choose to generate a flat rule set when you created the project you may
have to edit the Rule Set file that is included in your project’s Rule Set file.
Project Configuration Files 127

Telelogic Logiscope
Default Rule Set files are available in the directories
<log_installation_dir>\Ref\RuleSets\<language>\ where <log_installation_dir> is the
Telelogic Logiscope installation directory and <language> is the programming language
of the Logiscope project under analysis: i.e. Ada, C, C++, Java.

More information on how Rule Sets are used in Logiscope projects can be found in the
Telelogic Logiscope QualityChecker & RuleChecker Getting Started manual.

6.2.1 Rule Set File Syntaxes
Two types of Rule Set file can be used:

1. “.rst”: this type of Rule Set file contains rules and contexts, and may include other
rule sets; this is the format used in Logiscope RuleChecker projects since Logis-
cope version 6.2;

2. “.cfg”: this type of Rule Set file remains accessible for projects created prior to
Logiscope version 6.2 that are not upgraded to the current project format and when
using the batch mode.
Note: in order to calculate metrics, a Logiscope QualityChecker license is
required.

Both types of files are in text format and can be opened either in a text editor or in the
Logiscope Studio.

The syntax of the two types of Rule Set files is very similar. Includes, severity
management and rule renaming are only allowed in “.rst” format files. Metrics are only
allowed in “.cfg” format files.

The following sub-sections provide the syntax of the various types of Logiscope Rule
Set files using the EBNF notation.

Comments begin with /* and end with */. They cannot be nested.

Separators are blanks, tabulations, ends of lines, and comments.

“.rst” File Syntax
<file> ::= "METRICS" <version> <line>* "END" "METRICS"
<version> ::= "VERSION" "3"
<line> ::= <severity> | <context> | <include> | <standard> | <line_off>
<severity>::= "SEVERITY_VALUE" <level> <order> "END" "SEVERITY_VALUE"
<context> ::= "CONTEXT" <name> <status> <param>* "END" "CONTEXT"
<include> ::= "INCLUDE" <file_name> <path>* "END" "INCLUDE"
<standard> ::= "STANDARD" <name> SEVERITY <level> [RENAMING <name>]
 <status> <param>*
 "END" "STANDARD"
<line_off> ::= "CONTEXT" "OFF" | "STANDARD" "OFF"
<status> ::= "ON" | "OFF"
<level> ::= <name> | <string>
<order> ::= « an integer; example: 20»
<param> ::= {"MINMAX" <number> <number>}
 | {"LIST" <list_elem>+ "END" "LIST"}
 | <string>
<list_elem> ::= <param> | <string>
<path> ::= "IN" <path_name>
128 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
<name> ::= « sequence of letters, digits or underscore characters,
 beginning with a letter.
 Examples: asscal, Headercom, my_rule»
<file_name>::= «a sequence of letters, digits, underscore, "."
 characters.
 Example: RuleSet.rst»
<path_name>::= «a sequence of letters, digits, underscore, ".", "\"
 or "/" characters
 Example: C:\MyRuleSets\Ruleset.rst»
<number>::= «begins with an optional "-", then a sequence of digits
 and an optional decimal part ("." and a sequence of numbers)
 Examples: 1, -10, 0.345, -17.89, ...»
<string>::= « sequence of any characters surrounded with double quotes
 ("). Quotes inside the string must be doubled.
 Examples: "Highly Recommended" "no_null_stat" »

If an include line does not specify the path of the “.rst” file to include by using the
optional "IN" part, the file will be searched for as follows:

1. in the directory of the “.rst” file in which the include occurs,
2. in the directories in the LOG_RULE_ENV environment variable, with

RuleSets\<language> appended to them, where <language> is the programming
language of the Logiscope project under analysis: Ada, C, C++, Java.

3. in the <log_installation_dir>\Ref\RuleSets\<language> directory where
<log_installation_dir> is the Telelogic Logiscope installation directory and <lan-
guage> is the programming language of the Logiscope project under analysis:
Ada, C, C++, Java.

“.cfg” File Syntax
<file> ::= "METRICS" <version> <line>* "END" "METRICS"
<version> ::= "VERSION" "2"
<line> ::= <context> | <metric> | <standard> | <line_off>
<context> ::= "CONTEXT" <name> <status> <param>* "END" "CONTEXT"
<metric> ::= "METRIC" <table> <name> <status> <format> <param>* "END"
 "METRIC"
<standard> ::= "STANDARD" <name> <status> <param>* "END" "STANDARD"
<line_off> ::= "CONTEXT" "OFF" | "METRIC" "OFF" | "STANDARD" "OFF"
<table> ::= "functions" | "classes" | "module" | "application"
<status> ::= "ON" | "OFF"
<param> ::= {"MINMAX" <number> <number>}
 | {"LIST" <list_elem>+ "END" "LIST"}
 | <string>
<list_elem> ::= <param> | <string>
<format> ::= FORMAT « a sequence of digits and an optional decimal part
 ("." and a sequence of digits), surrounded by double quotes. The first
 number denotes the width of the format, the second must be provided
 only for numeric values and denotes the number of decimals.
 Examples: "1", "5.2", ... »
<name> ::= « sequence of letters, digits or underscore characters,
 beginning with a letter.
 Examples: Lc_comm, lc_comm, Hello, Hello1.»
<number> ::= « begins with an optional "-", then a sequence of digits
and an optional decimal part ("." and a sequence of numbers)
 Examples: 1, -10, 0.345, -17.89, ...»
<string> ::= « a sequence of any characters surrounded with double
quotes ("). Quotes inside the string must be doubled.
 Example: "no_null_stat" »
Project Configuration Files 129

Telelogic Logiscope
6.2.2 Activating or De-activating a Rule Checking
Activating the checking of a given rule is just done by changing the "OFF" switch into
"ON".

For example, to check the asscon rule, change the associated STANDARD line in the Rule
Set file as follows:

STANDARD asscon ON END STANDARD

De-activating the checking of a given rule by changing the "ON" switch into "OFF".

6.2.3 Renaming Rules
Rule Set files with “.rst” format allow to rename standard rules. Such a feature is of
great interest:
• to display and report rule names consistent with the user coding standard,
• to have as many versions of them as needed with different parameters.

In fact, renaming a rule can be considered as creating a new issue of an existing rule.
This is done by specifying a new STANDARD line and using the RENAMING option to select
the standard rule to be checked.

In the first example below, a new standard called R04_NoAssignInCondition is defined
as a new issue of the standard rule asscon.

STANDARD R04_NoAssignInCondition RENAMING asscon ON END STANDARD

Note that the standard rule asscon may still be checked according to its status in the Rule
Set. If you do not want to verify the rule anymore, you shall de-activate it (see previous
section).

In the second example, 3 new rules are created renaming the same standard rule
identfmt with different parameters ... thus giving 3 distinct naming rules ensuring
consistency with the coding standard:

STANDARD R05_MacroNames RENAMING identfmt ON
LIST "macro" "[A-Z0-9_x]*"
 "const" "[A-Z0-9_x]*"
END LIST END STANDARD

STANDARD R06_TypeNames RENAMING identfmt ON
LIST "enum" ".+_e"
 "type_struct" ".+_t"
END LIST END STANDARD

STANDARD R07_NoDollar RENAMING identfmt ON
LIST "any" "[^$]*"
END LIST END STANDARD
130 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
6.2.4 Managing Rule Severity
A level of severity is assigned to each standard rule. In most of the results provided by
Logiscope RuleChecker, the rules are first ordered according to their level of severity.

Default Rule Sets with “.rst” format come with predefined levels of severity for each
standard rule: i.e. “Required”, “Advisory”. These levels shall be considered as examples
as well as the default value set for each rule.

Rule Set files allow the user to:
• specify the applicable severity levels,
• setup the severity level of each rule.

Specifying the Applicable Severity Levels
Specifying severity levels is done using the SEVERITY_VALUE statement in the Rule Set.
The following example is extracted from the standard Rule Sets delivered with
Logiscope RuleChecker and is compliant with the approach of the MISRA guidelines
([MISRA-C:1998] and [MISRA-C:2004]):

SEVERITY_VALUE Required 20 END SEVERITY_VALUE

SEVERITY_VALUE Advisory 80 END SEVERITY_VALUE

In the example above, two levels of severity are defined : Required and Advisory. The
value following the level name is used to specify the ordering of the severity levels when
displaying results. The lowest the value, the first. So 0 would refer to the highest level of
severity: to be displayed first.

In the example, results related to the rules with severity Required are grouped and
displayed first before the Advisory related ones:

The user can easily edit the Rule Set to add more levels or even completely specify new
levels according to the applicable coding standard.
Project Configuration Files 131

Telelogic Logiscope
The example below provides the specification of 3 levels of severity:

SEVERITY_VALUE Mandatory 1 END SEVERITY_VALUE

SEVERITY_VALUE “Highly Recommended” 2 END SEVERITY_VALUE

SEVERITY_VALUE Recommended 3 END SEVERITY_VALUE

Setting up the Severity Level for a Rule
Setting up a severity level for a rule is done using the SEVERITY option in the rule
specification i.e. the corresponding STANDARD statement of the Rule Set.
This option shall be followed by one of the severity values specifed at the beginning of
the Rule Set.

For instance, to change the severity level of the rule asscon from Advisory to
Required, just modify the line:

STANDARD asscon SEVERITY Advisory ON END STANDARD

to:

STANDARD asscon SEVERITY Required ON END STANDARD
132 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
6.2.5 Importing External Violations
By checking the Activate external violations import box in the project settings, you
can specify a project folder in which you will put files that contain violation information
from external tools, for example compilation results, or the results of a program that you
have written. These files will then be taken into account and their violations added to the
violation information available in the project.

These data files containing the external violation information shall comply with the
following format.

Import data file format
The data file to import should contain lines respecting one of the following formats:

 "pathname" line_number "rule_mnemonic" ["message"]

or
"pathname" start_char end_char line_number "rule_mnemonic" ["message"]

where:

• pathname: is the pathname (either relative to the project, or the full path) of the
source file where a violation has been found,

• line_number: is the line number of the violation,

• rule_mnemonic: is the mnemonic of the violated rule,

• start_char: is the position of the first character of the text to select for the violation
(counting from the beginning of the file),

• end_char: is the position of the last character of text to select for the violation
(counting from the beginning of the file),

• message: is an optional free text comment associated to either the violation or the
rule.

When start_char and end_char are omitted, the whole line is selected when locating the
violation in the file.

Each line in the file will be transformed into a violation.

Example:
"C:\Mastermind\machine.c" 14 "indentation"
"C:\Mastermind\machine.c" 21 "indentation"
"C:\Mastermind\machine.c" 153 160 7 "reserved_classes"

Files to import can have any suffix as long as the data they contain respect the specified
format.
Project Configuration Files 133

Telelogic Logiscope
Adding a violation data file into a Logiscope Project

The files to be imported have to be added to the Logiscope Project as described below:

• Create a new folder in the Project named "Imported Files".

• Add all files to be imported in the newly created folder.

Add rule files to your project that correspond to the rules that are going to be found in the
violation file. The rule files should be in the following format:

• the file for the rule rule_mnemonic should be called rule_mnemonic.std

• the contents of the file should follow this syntax:
.NAME long_name
.DESCRIPTION user_description
.COMMAND external

where

• long_name is free text, that can include spaces. It’s a more detailled title of the rule. It
will appear as an explanation of the rule name in Logiscope.

• user_description is the description of the rule, that will be available in Logiscope.

• external is the type of command used for this rule, and should not be changed.

Example:

The rule file is called indentation.std.
134 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
It contains these lines:
.NAME Use indentation
.DESCRIPTION
Use correct indentation to clarify code.
.COMMAND external

The external rules should be added to the project. Go to the Rules tab in the project
settings. Click on the button to the right of the rule list. Select each of the rule files that
you have created.

The rules should now appear in the list of project rules, and their boxes should be
checked, so they are turned on.
Project Configuration Files 135

Telelogic Logiscope
You will need to rebuild the project to see the imported violations in the Logiscope
project. During the build of the project, a message such as the following should appear:

You will then see your external violations along with the Logiscope violations. In this
case the violation was on a line:
136 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
In this case, the violation used first and last character positions:
Project Configuration Files 137

Telelogic Logiscope
138 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Bibliography
[2167A] DoD

Military Standard - Defense System Software Development
DOD-STD-2167A.

[610.12] IEEE
Standard Glossary of Software Engineering Terminology
IEEE 610.12-1990.

[61508-3] IEC
Functional safety of electrical / electronic / programmable electronic safety related
systems - Part 3: Software requirements
IEC 61508-3:1998 (E).

[61508-7] IEC
Functional safety of electrical / electronic / programmable electronic safety related
systems - Part 7: Overview on techniques and measures
IEC 61508-7:2000 (E).

[2382-1] ISO/IEC
Information technology - Vocabulary - Part 1: Fundamental terms
ISO/IEC 2382-1:1993 (E).

[8402] ISO
Quality management and quality assurance - Vocabulary
ISO 8402:1994.

[9001] ISO
Quality systems - Model for quality assurance in design, development, production,
installation and servicing
ISO 9001:1994.

[9126-1] ISO/IEC
Software engineering - Product quality - Part 1: Quality model
ISO/IEC 9126-1:2001 (E).
Bibliography 139

Telelogic Logiscope
[9126-2] ISO/IEC
Software engineering - Product quality - Part 2: External metrics
ISO/IEC TR 9126-2.

[9126-3] ISO/IEC
Software engineering - Product quality - Part 3: Internal metrics
ISO/IEC TR 9126-3.

[9126-4] ISO/IEC
Software engineering - Product quality - Part 4:Quality in use metrics
ISO/IEC TR 9126-4.

[12119] ISO/IEC
Information technology - Software packages - Quality requirements and testing
ISO/IEC 12119:1994 (E).

[12207] ISO/IEC
Information technology - Software lifecycle processes
ISO/IEC 12207:1995 (E).

[14598-5] ISO/IEC
Information technology - Software product evaluation - Part 5: Process for evaluators
ISO/IEC 14598-5:1998 (E).

[14598-6] ISO/IEC
Information engineering - Product evaluation - Part 6: Documentation of evaluation
modules
ISO/IEC 14598-6.

[15504] ISO/IEC
Information technology - Software Process Assessment
ISO/IEC TR 15504 (all parts).

[DO178B] RTCA/EUROCAE
Software Considerations in Airborne Systems and Equipments Certifucation
Requirements and Technical Concepts for Aviation - RTCA SC167/DO-178B
European Organization for Civil Avaiton Electronics - EUROCAE ED-12B.
140 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
[BOEHM] B.W. BOEHM
Characteristics of Software Quality -
TRW North Holland, 1975.

Software Engineering Economics -
Prentice Hall.

[BRITO] F. BRITO E ABREU
"Object-Oriented Software Engineering: Measuring and Controlling the Development
Process"
Proceedings of the 4th International Conference on Software Quality, ASQC, McLean,
VA, USA, October 1994.

"Evaluating the Impact of Object-Oriented Design on Software Quality"
Proceedings of the Third International Software Metrics Symposium, IEEE, Berlin,
Germany, March 1996.

[GSWS] GALILEO
Galileo Software Standard (GSWS) -
Galileo Industries - GAL-SPE-GLI-SYST-A/0092 - Issue 7, 2004.

[HAL, 77] M.H. HALSTEAD
Elements of Software Science -
North Holland, Elsevier 1977.

[HENNEL] M.A. HENNELL, D. HEDLEY, M.R. WOODWARD
Experience with Path Analysis and Testing Programs -
University of LIVERPOOL Publication.

On Program Analysis -
University of LIVERPOOL Publication.

Quantifying the Test Effectiveness of Algol 68 Programs -
University of LIVERPOOL Publication.

[McC, 76] T. McCABE
A complexity Measure -
IEEE Transaction on Software Engineering - Vol. SE-2, n.4, pp. 308-320, Dec. 1976.

[McCALL, 77] J.A. McCALL
Factors in Software Quality -
General Electric n.77C1502, June 1977.
Bibliography 141

Telelogic Logiscope
[MEYERS-1] S. MEYERS
Effective C++: 50 Specific Ways to Improve Your Programs and Designs -
Addison-Wesley, second edition, 1997, ISBN: 0-201-92488-9.

[MEYERS-2] S. MEYERS
More Effective C++: 35 New Ways To Improve Your Programs And Designs -
Addison-Wesley, first edition, 1996, ISBN: 0-201-63371-X.

[MISRA-C:1998] MISRA
Guidelines For The Use Of The C Language In Vehicle Based Software -
Motor Industry Software Reliability Association, April 1998.

[MISRA-C:2004] MISRA
MISRA-C:2004 Guidelines for the use of the C language critical systems -
Motor Industry Software Reliability Association, October 2004.

[NEEJ, 88] B.A. NEEJMEH
NPATH : A Measure of Execution Path Complexity and its Applications -
Communication of the ACM, 1988, Vol. 31, n.2.

[MOH, 79] S.N. MOHANTY
Models and Measurements for Quality Assessment of Software Computing Surveys -
Vol.11, n.3, September 1979.

[SIGIST] SIGIST
Glossary of terms used in Software testing -
British Computer Society - Specialist Interest Group In Software Testing

[SHT, 77] D. SCHUTT
On a Hypergraph Oriented Measure for Applied Computer Science -
Proc. COMPCON, 1977, pp. 295-296.

[WOOD, 84] M.R. WOODWARD
An Investigation into Program Paths and their Representation -
Technique et Science Informatique, 1984, Vol.8, n.4.
142 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Terms and Definitions
Acceptance testing:
Formal testing conducted to enable a user, customer, or other authorised entity to determine whether
to accept a system or component. [SIGIST]

Accuracy:
The capability of the software product to provide the right or agreed results or effects with the
needed degree of precision. [9126-1]

Acquirer:
An organisation that acquires or procures a system, software product or software service from a sup-
plier. [12207]

Adaptability:
The capability of the software product to be adapted for different specified environments without
applying actions or means other than those provided for this purpose for the software considered.
[9126-1]

Analysability:
The capability of the software product to be diagnosed for deficiencies or causes of failures in the
software, or for the parts to be modified to be identified. [9126-1]

Attractiveness:
The capability of the software product to be attractive to the user. [9126-1]

Attibute:
A measurable physical or abstract property of an entity. [12207]

Black box testing:
See Functional test case design. [SIGIST]

Boundary value:
An input value or output value which is on the boundary between equivalence classes, or an incre-
mental distance either side of the boundary.[SIGIST]

Boundary value analysis:
A test case design technique for a component in which test cases are designed which include repre-
Terms and Definitions 143

Telelogic Logiscope
sentatives of boundary values. [SIGRIST]

Branch:
A conditional transfer of control from any statement to any other statement in a component, or an
unconditional transfer of control from any statement to any other statement in the component except
the next statement, or when a component has more than one entry point, a transfer of control to an
entry point of the component. [SIGIST]

Branch coverage:
The percentage of branches that have been exercised by a test case suite. [SIGIST]

Branch testing:
A test case design technique for a component in which test case are designed to execute branch out-
comes. [SIGIST]

Changeability:
The capability of the software product to enable a specified modification to be implemented. [9126-
1]

Code coverage:
An analysis method that determines which parts of the sofware have been executed (covered) by the
test case suite and which pars have not been executed and therefore may require additional attention.
[SIGIST].

Code verification:
Ensures by static verification methods the conformance of source code to the specified design of the
software module, the required coding standards, and the safety planning requirements. [61508-3]

Code-based testing:
Designing tests based on objectives derived from the implementation (e.g. test that execute specific
control flow paths or use specific data items. [SIGIST]

Component:
A minimal software item for which a separate specification is available. [SIGIST]

Condition:
A boolean expression containing no boolean operators. For instance A<B is a condition but A and B
is not. [DO178B]

Co-existence:
The capability of the software product to co-exist with other independent software in a common
environment sharing common resources. [9126-1]
144 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Control flow:
An abstract representation of all possible sequences of events in a program's execution. [SIGIST]

Control [flow] graph:
The digrammatic representation of the possible alternative control flow paths through a component.
[SIGIST]

Coverage:
The degree, expressed as a percentage, to which a specified coverage item has been exercised by a
test case suite. [SIGIST]

Coverage item:
An entity or property used as a basis for testing. [SIGIST]
Note: item can be component, statement, branch, decision, etc.

Decision:
A program point at which the control flow has two or more alternatives routes. [SIGIST]

Decision coverage:
The percentage of decision oitcomes that have been exercised by a test case suite. [SIGIST]

Developer:
An organisation that performs development activities (including requirements analysis, design, test-
ing through acceptance) during the software lifecycle process. [12207]

Direct measure:
A measure of an attribute that does not depend upon a measure of any other attribute. [14598-1]

Dynamic analysis:
The process of evaluating a system or component based upon its behaviour during execution. [610-
12]

Effectiveness:
The capability of the software product to enable users to achieve specified goals with accuracy and
completeness in specified contexts of use. [9126-1]

Efficiency:
The capability of the software product to provide appropriate performance, relative to the amount of
resources used, under stated conditions. [9126-1]

Entry point:
The first executable statement within a component.[SIGIST]
Terms and Definitions 145

Telelogic Logiscope
Error:
A human action that produces an incorrect result. [610-12]

Evaluation method:
A procedure describing the action to be performed by the evaluator in order to obtain the results for
the specified measurement or verification applied on the specified product component or on the
product as a whole. [14598-5]

Evaluation module:
A package of evaluation technology for a specific software quality characteristic or subcharacteris-
tic. [14598-1]

Evaluation report:
The document that presents evaluation results and other information relevant to an evaluation.
[14598-5]

Evaluation records
Documented objective evidence of all activities performed and of all results achieved within the
evaluation process. [14598-5]

Evaluation requester
The person or organisation that requests an evaluation. [14598-5]

Evaluation tool
An instrument that can be used during evaluation to collect data, to perform interpretation of data or
to automate part of the evaluation. [14598-5]

Evaluator
The organisation that perfoms an evaluation. [14598-5]

Executable statement:
A statement which, when compiled, is translated into object code, which will be executed procedur-
ally when the program is running and may perform an action on program data. [SIGIST]

Exercised:
A program element is exercised by a test case when the input causes the execution of that element,
such as a statement, branch, or other structural element. [SIGIST]

Exit point:
The last executable statement within a component.[SIGIST]

External measure:
An indirect measure of a product derived from measures of the behaviour of the system of which it is
146 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
a part. [14598-1]

External quality:
The extent to which a product satisfies stated and implied needs when used under specified condi-
tions. [14598-1]

Failure:
1- Deviation of the software from its expected delivery or service. [SIGIST]
2- The termination of the ability of a product to perform a required function or its inability to per-
form within previously specified limits. [14598-1]

Fault:
1- A manifestation of an error in software. A fault, if encountered may cause a failure [DO178B].
2- An incorrect step, process or data definition in a computer program [610.12]

Fault tolerance:
The capability of the software product to maintain a specified level of performance in cases of soft-
ware faults or of infringement of its specified interface. [9126-1]

Feasable path:
A path for which there exists a set of input values and execution conditions which causes it to be exe-
cuted. [SIGIST]

Functionality:
The capability of the software product to provide functions which meet stated and implied needs
when the software is used under specified conditions. [9126-1]

Functional specification:
The document that describes in detail the characteristics of the product with regard to its intended
capability. [SIGIST]

Functional test case design:
Test case selection that is based on an analysis of the specification of the component without refer-
ence to its internal workings. [SIGIST]

Indicator:
A measure that can be used to estimate or predict another measure. [14598-1]

Indirect measure:
A measure of an attribute that is derived from measures of one or more other attributes. [14598-1]

Infeasable path:
A path for which cannot be executed by any set of possible input values. [SIGIST]
Terms and Definitions 147

Telelogic Logiscope
Input:
A variable (whether stored within a component or outside it) that is read by the component. [SIGIST]

Inspection:
A group review quality improvment process for written material. It consists of two aspects; product
(document itself) imporvement and process improvement (of both document production and inspec-
tion). [SIGIST]

Installability:
The capability of the software product to be installed in a specified environment. [9126-1]

Installability testing:
Testing concerned with the installation procedures for the system. [SIGIST]

Instrumentation:
The insertion of additional code into the program in order to collect information about program
behaviour during program execution.[SIGIST]

Instrumenter:
A software tool used to carry out instrumentation.[SIGIST]

Internal measure:
A measure of the product itself, either direct or indirect. [14598-1]

Internal quality:
The totality of attributes of a product that determine its ability to satisfy stated and implied needs
when used under specified conditions. [14598-1]

Interoperability:
The capability of the software product to interact with one or more specified systems. [9126-1]

Learnability:
The capability of the software product to enable the user to learn its application. [9126-1]

Level of performance:
The degree to which the needs are satisfied, represented by a specific set of values for the quality
characteristics.[9126-1]

Maintainability:
Capability of the software product to be modified. Modifications may include corrections, improve-
ments or adaptation of the software to changes in environment, and in requirements and functional
specifications. [9126-1]
148 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Maintainer:
An organisation that performs maintenance activities. [12207]

Maturity:
The capability of the software product to avoid failure as a result of faults in the software. [9126-1]

Measure (verd):
Make a measurement. [14598-1]

Measure (noun):
The number or category assigned to an attribute of an entity by making a measurement. [14598-1]

Measurement:
The use of a metric to assign a value (which may be a number or category) from a scale to an
attribute of an entity. [14598-1]

Metric:
The defined measurement method and the measurement scale. [14598-1]

Modified condition/decision coverage:
The percentage of all branch condition outcomes that independenly affect a decision outcome that
have been execrised by a test case suite. [DO178B]

Modified condition/decision testing:
A test case design technique in which test cases are designed to execute branch condition outcomes
that independenly affect a decision outcome. [DO178B]

Operability:
The capability of the software product to enable the user to operate and control it. [9126-1]

Operational testing:
Testing conducted to evaluatea system or component in its operational environment. [610.12]

Output:
A variable (whether stored within a component or outside it) that is written to by the component.
[SIGIST]

Package documentation:
The product description and the user documentation.

 Path:
A sequence of executable statements of a component, from an entry point to an exit point. [SIGIST]
Terms and Definitions 149

Telelogic Logiscope
Path coverage:
The percentage of paths in a component exercised by a test case suite. [SIGIST]

Portability:
The capability of the software product to be transferred from one environment to another. [9126-1]

Productivity:
The capability of the software product to enable users to expend appropriate amounts of resources in
relation to the effectiveness achieved in a specified context of use. [9126-1]

Product description:
A document stating properties of a software package, with the main purpose of helping potential
buyers in the evaluation of the suitability for themselves of the product before purchasing it. [12119]

Quality:
The totality of characteristics of an entity that bear on its ability to satisfy stated or implied needs
[8402].

Quality evaluation:
Systematic examination of the extent to which an entity is capable of fulfilling specified require-
ments [8402].

Quality in use:
The capability of the software product to enable specified users to achieve specified goals with effec-
tiveness, productivity, safety and satisfaction in specified contexts of use. [9126-1]

Quality model:
The set of characteristics and the relationships between them which provide the basis for specifying
quality requirements and evaluating quality. [14598-1]

Rating:
The action of mapping the measured value to the appropriate rating level. Used to determine the rat-
ing level associated with the software for a specific quality characteristic. [14598-1]

Rating level:
A scale point on an ordinal scale which is used to categorise a measurement scale. [14598-1]

Recoverability:
The capability of the software product to re-establish a specified level of performance and recover
the data directly affected in the case of a failure. [9126-1]
150 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Regression testing:
Retesting of a previously tested program following modification to ensure that faults have not been
introduced or uncovered as a result of the changes made. [SIGIST]

Reliability:
The capability of the software product to maintain a specified level of performance when used under
specified conditions. [9126-1]

Replaceability:
The capability of the software product to be used in place of another specified software product for
the same purpose in the same environment. [9126-1]

Requirement-based testing:
Designing tests based on objectives derived from requirements for the software component (e.g. tests
that exercise specific functions or probe the non-functional constraints such as performance or secu-
rity. [SIGIST]

Requirement document:
A document containing any combination of recommendations, requirements or regulations to be met
by a software package. [SIGIST]

Resource utilisation:
The capability of the software product to use appropriate amounts and types of resources when the
software performs its function under stated conditions. [9126-1]

Review:
A process or meeting during which a work product, or a set of work products, is presented to project
personnel, managers, users, or other interested parties for comment or approval. [610.12]

Safety:
The capability of the software product to achieve acceptable levels of risks of harm to people, busi-
ness, software, property or the environment in a specified context of use. [9126-1]

Satisfaction:
The capability of the software product to satisfy users in a specified context of use. [9126-1]

Scale:
A set of value with defined properties. [14598-1]

Security:
The capability of the software product to protect information and data so that unauthorised persons
or systems cannot read or modify them and authorised persons or systems are not denied access to
them. [9126-1]
Terms and Definitions 151

Telelogic Logiscope
Software:
All or a part of the programs, procedures, rules a,d associated documentatio, of an information pro-
cessing system. [2382-1].

Software product:
The set of computer programs, procedures, and possibly associated documentation and data. [12207]

Software product evaluation:
Technical operation that consistes of producing an assessment of one or more characteristics of a
software product according to a specified procedure. [14598-5]

Stability:
The capability of the software product to avoid unexpected effects from modifications of the soft-
ware. [9126-1]

Statement:
An entity in a programming language which is typically the smallest indivisible unit of execution.
[SIGIST]

Statement coverage:
The percentage of executable statements in a component that have been exercised by a test case
suite. [SIGIST]

Static testing:
Testing of an object without execution on a computer. [SIGIST]

Static analyser
A tool that carries out static analysis. [SIGIST]

Static analysis
Analysis of a program without execution on a computer. [SIGIST]

Structural coverage:
Coverage measures based in the internal structure of a component. [SIGIST]

Structural testing:
Test case selection that is based on an analysis of the internal structure of the component. [SIGIST]

Structured basis testing:
A test case design technique in which test cases are derived from the code logic to achieve 100%
branch coverage. [SIGIST]
152 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Structure-based testing
Designing tests based on objectives derived from the implementation (e.g., tests that execute specific
control flow paths or use specific data items).

Suitability:
The capability of the software product to provide an appropriate set of functions for specified tasks
and user objectives. [9126-1]

Supplier:
An organisation that enters into a contract with the acquirer for the supply of a system, software
product or software service under the terms of the contract. [12207].

System:
An integrated composite that consists or one or more of the processes, hardware, software, facilities
and people, that provide a capability to satisfy a stated need of objective. [12207]

Test:
Technical operation that consists of the determination of one or more characteristics of a given prod-
uct, process or service according to a specified procedure.

Testability:
The capability of the software product to enable modified software to be validated. [9126-1]

Test case:
1- A set of inputs, execution preconditions, and expected outcomes developed for a particular objec-
tive to exercise a particular program path or to verify compliance with a specific requirement.
[SIGIST]
2- A documented instruction for the tester that specifies how a function or a combination of func-
tions shall or should be tested. A test case includes detailed information on the following issues:

(a) the test objective;
(a) the functions to be tested;
(a) the testing environment and other conditions;
(a) the test data;
(a) the procedure;
(a) the expected behaviour of the system. [610-12]

Test case suite:
A collection of one or more test cases for the software under test. [SIGIST]

Test coverage:
See Coverage

Test plan:
Terms and Definitions 153

Telelogic Logiscope
A record of the test planning process detailing the degree of tester independence, the test environ-
ment, the test case design techniques and test measurement techniques to be used, and the rationale
for their choice. [SIGIST]

Test procedure:
A document providing detailed instructions for the execution of one or more test cases. [SIGIST]

Test records:
For each test, an unambiguous record of the identities and versions of the component under test, the
test specification, and actual outcome. [SIGIST]

Testing:
The process of exercising software to verify it satisfies requirements and to detect errors. [DO178B]

Time behaviour:
The capability of the software product to provide appropriate response and processing times and
throughput rates when performing its function, under stated conditions. [9126-1]

Understandability:
The capability of the software product to enable the user to understand whether the software is suit-
able, and how it can be used for particular tasks and conditions of use. [9126-1]

Usability:
The capability of the software product to be understood, learned, used and attractive to the user,
when used under specified conditions. [9126-1]

User:
An individual that uses the software product to perform a specific function. [14598-1]

User documentation:
The complete set of documents, available in printed or non-printed form, that is provided for the
application of the product and also is an integral part of the product.

Validation:
1- Determination of the correctness of the products of software development with respect to the user
needs and requirements. [SIGIST]
2- Confirmation by examination and provision of objective evidence that the particular requirements
for a specific intended use are fulfilled. [8402]

Verification:
1- The process of evaluating a system or component to determine whether the products of the given
development phase satisfy the conditions imposed at the start of that phase. [SIGIST]
2- Confirmation by examination and provision of objective evidence that specified requirements
154 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
have been fulfilled. [8402]

Walk-through:
A review of requirements, designs or code characterised by the author of the object under review
guiding the progression of the review. [SIGIST]

White box testing:
See Structural testing
Terms and Definitions 155

Telelogic Logiscope
156 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Notices
This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not grant you any license to these
patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact
the IBM Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.
Notices 157

Telelogic Logiscope
Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those
Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for
it are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation.
Actual results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance, compatibility
or any other claims related to non-IBM products. Questions on the capabilities of non-
IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may
not appear.
158 Telelogic Logiscope Basic Concepts

Telelogic Logiscope
Trademarks
IBM, the IBM logo, ibm.com, Telelogic, Telelogic Synergy, Telelogic Change,
Telelogic DOORS, Telelogic Tau, Telelogic DocExpress, Telelogic Rhapsody,
Telelogic Statemate, and Telelogic System Architect are trademarks or registered
trademarks of International Business Machine Corporation in the United States, other
countries, or both, are trademarks of Telelogic, an IBM Company, in the United States,
other countries, or both. These and other IBM trademarked terms are marked on their
first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on the Web at:

 www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are
trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision
Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other
Microsoft products referenced herein are either trademarks or registered trademarks of
Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of others.
Notices 159

Telelogic Logiscope
160 Telelogic Logiscope Basic Concepts

	The Logiscope Environment
	1.1 Life-cycle Environment
	1.1.1 Design and Development Phases
	1.1.2 Test Phases
	1.1.3 Validation
	1.1.4 Maintenance
	1.1.5 Project Management

	The Call Graph
	2.1 Presentation
	2.2 Component Numbering
	2.3 Relative Call Graph
	2.4 Calling/called Component List
	2.5 Removal of External Components
	2.6 Node Grouping

	The Control Graph
	3.1 Introduction
	3.2 Definitions
	3.3 Pseudo Code
	3.3.1 Instruction Numbers
	3.3.2 Line Numbers

	3.4 Structured graph
	3.4.1 Restructuring Patterns

	3.5 Reduction
	3.5.1 Principle

	3.6 Intrinsic Characteristics

	Evaluating Quality Using Source Code Metrics
	4.1 Introduction
	4.2 Modeling Quality
	4.3 Quality Evaluation Using Logiscope
	4.4 Metrics
	4.4.1 Kiviat Analysis
	4.4.2 Metric Kiviat table
	4.4.3 Average Kiviat Graph
	4.4.4 Average Metrics Table
	4.4.5 Metrics Distribution

	4.5 Criteria
	4.5.1 Criteria Graph
	4.5.2 Criteria Distribution

	4.6 Quality Report

	Standard Metrics Definition
	5.1 Introduction
	5.2 Function Scope
	5.2.1 Line Counting
	5.2.2 Lexical and Syntactic Items
	5.2.3 Data Flow
	5.2.4 Halstead Metrics
	5.2.5 Structured Programming
	5.2.6 Control Graph
	5.2.7 Calling/Called Relations
	5.2.8 Relative Call Graph

	5.3 Class Scope
	5.3.1 Lexical and Syntactic Items
	5.3.2 Data Flow
	5.3.3 Function Aggregates
	5.3.4 Statistical Aggregates of Function Metrics
	5.3.5 Inheritance Tree
	5.3.6 Use Graph

	5.4 Module Scope
	5.4.1 Lines Counting
	5.4.2 Data Flow
	5.4.3 Textual Elements
	5.4.4 Interface

	5.5 Package Scope
	5.5.1 Packages Aggregates
	5.5.2 Textual Elements
	5.5.3 Statistical Aggregates of Class Metrics
	5.5.4 Statistical Aggregates of Function Metrics
	5.5.5 Inheritance

	5.6 Application Scope
	5.6.1 Line Counting
	5.6.2 Function Aggregates
	5.6.3 Sum of Class Metrics
	5.6.4 MOOD
	5.6.5 Application Call Graph
	5.6.6 Inheritance Tree

	Project Configuration Files
	6.1 Quality Model
	6.1.1 Quality Model File Structure
	6.1.2 *MD* Section: User Defined Metric Specification
	6.1.3 *ME* Section: Metric Threshold Specification
	6.1.4 *MC* Section: Quality Criteria Specification
	6.1.5 *BQ* Section: Quality Factors Specification

	6.2 Rule Set
	6.2.1 Rule Set File Syntaxes
	6.2.2 Activating or De-activating a Rule Checking
	6.2.3 Renaming Rules
	6.2.4 Managing Rule Severity
	6.2.5 Importing External Violations

	Bibliography
	Terms and Definitions
	Notices

