

Before using this information, be sure to read the general information under “Notices” section, on
page 22.

This edition applies to VERSION 6.6, IBM Rational LOGISCOPE (product number 5724V81) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1985, 2009
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

ii IBM Rational Logiscope TestChecker - Testing on a target machine

Table of Contents
1. Overview...6

1.1. Instrumented code..6
1.2. Support libraries..6

2. Instrumentation..7
2.1. C...7
2.2. C++..10
2.3. Java..12
2.4. Ada...15

3. File formats..16
3.1. .dyn files..16
3.2. .trc files..17

4. Communicating with Logiscope TestChecker..19
4.1. Using TcGatWay...19
4.2. Using files..20

5. Special cases..21
5.1. Multi tasking OSes and/or multi processor machines...21
5.2. Tight environments..21

IBM Rational Logiscope TestChecker - Testing on a Target Machine iii

IBM Rational Logiscope

About this manual

Audience
This reference manual in intended for IBM® Rational® Logiscope™ TestChecker users such as
software developers, project managers or quality engineers who want to perform structural based
testing and test coverage analysis and on a remote machine.

Overview
Chapter 1 explains the concepts involved in the instrumentation of an application.

Chapter 2 explains how code is instrumented.

Chapter 3 describes the file format used to store execution results.

Chapter 4 discusses the possible means to transfer the execution results to Logiscope TestChecker
tool.

Chapter 5 presents general considerations to tailor the instrumented application in order to
accommodate some common difficulties.

How to use this manual
This manual is a complement to the IBM Rational Logiscope TestCkecker Getting Started.
Reading this document first is highly recommended.

Conventions
The following typographical conventions are used in this manual:

italics names of textual elements (filename), notes, documentation titles.

typewriter screen and file examples.

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 1

IBM Rational Logiscope

Contacting IBM Rational Software Support

If the self-help resources have not provided a resolution to your problem,
you can contact IBM® Rational® Software Support for assistance in
resolving product issues.

Note. If you are a heritage Telelogic customer, you can go to
http://support.telelogic.com/toolbar and download the IBM Rational
Telelogic Software Support browser toolbar. This toolbar helps
simplify the transition to the IBM Rational Telelogic product online
resources. Also, a single reference site for all IBM Rational Telelogic
support resources is located at:
http://www.ibm.com/software/rational/support/telelogic/

Prequisites
To submit your problem to IBM Rational Software Support, you must have
an active Passport Advantage® software maintenance agreement. Passport
Advantage is the IBM comprehensive software licensing and software
maintenance (product upgrades and technical support) offering. You can
enroll online in Passport Advantage from
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html .

• To learn more about Passport Advantage, visit the Passport
Advantage FAQs at
http://www.ibm.com/software/lotus/passportadvantage/brochures_fa
qs _quickguides.html .

• For further assistance, contact your IBM representative

To submit your problem online (from the IBM Web site) to IBM Rational
Software Support, you must additionally:

• Be a registered user on the IBM Rational Software Support Web site.
For details about registering, go to
http://www-01.ibm.com/software/support/ .

• Be listed as an authorized caller in the service request tool.

Submitting problems
To submit your problem to IBM Rational Software Support:

1) Determine the business impact of your problem. When you report a
problem to IBM, you are asked to supply a severity level. Therefore, you
need to understand and assess the business impact of the problem that
you are reporting.

2 IBM Rational Logiscope TestChecker - Testing on a Target Machine

http://support.telelogic.com/toolbar
http://www-01.ibm.com/software/support/
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs%20_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs%20_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/rational/support/telelogic/

IBM Rational Logiscope

Use the following table to determine the severity level.

Severity Description
1 The problem has a critical business impact. You are

unable to use the program, resulting in a critical impact on
operation. This condition requires an immediate solution.

2 The problem has a significant business impact.
The program is usable, but it is severely limited

3 The problem has a some business impact.
The program is usable, but less significant features
(not critical to operation) are unavailable.

4 The problem has a minimal business impact.
The problem causes little impact on operations or a
reasonable circumvention to the problem was
implemented.

2) Describe your problem and gather background information, When
describing a problem to IBM, be as specific as possible. Include all
relevant background information so that IBM Rational Software Support
specialists can help you solve the problem efficiently. To save time,
know the answers to these questions:

• What software versions were you running when the problem
occurred?

To determine the exact product name and version, use the option
applicable to you:

● Start the IBM Installation Manager and select File > View
Installed Packages. Expand a package group and select a
package to see the package name and version number.

● Start your product, and click Help > About to see the offering
name and version number.

• What is your operating system and version number (including any
service packs or patches)?

• Do you have logs, traces, and messages that are related to the
problem symptoms?

• Can you recreate the problem? If so, what steps do you perform to
recreate the problem?

• Did you make any changes to the system? For example, did you
make changes to the hardware, operating system, networking
software, or other system components?

• Are you currently using a workaround for the problem? If so, be
prepared to describe the workaround when you report the

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 3

IBM Rational Logiscope

problem.

3) Submit your problem to IBM Rational Software Support. You can submit
your problem to IBM Rational Software Support in the following ways:

• Online: Go to the IBM Rational Software Support Web site at
https://www.ibm.com/software/rational/support/ and in the
Rational support task navigator, click Open Service Request. Select
the electronic problem reporting tool, and open a Problem
Management Record (PMR), describing the problem accurately in
your own words.

For more information about opening a service request, go to
http://www.ibm.com/software/support/help.html .

You can also open an online service request using the IBM Support
Assistant. For more information, go to:
http://www-01.ibm.com/ software/support/isa/faq.html

• By phone: For the phone number to call in your country or region,
go to the IBM directory of worldwide contacts at
http://www.ibm.com/planetwide/ and click the name of your
country or geographic region.

• Through your IBM Representative: If you cannot access IBM
Rational Software Support online or by phone, contact your IBM
Representative. If necessary, your IBM Representative can open a
service request for you. You can find complete contact information
for each country at http://www.ibm.com/planetwide/ .

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Rational Software Support creates an Authorized Program
Analysis Report (APAR). The APAR describes the problem in detail. Whenever
possible, IBM Rational Software Support provides a workaround that you can
implement until the APAR is resolved and a fix is delivered. IBM publishes
resolved APARs on the IBM Rational Software Support Web site daily, so that
other users who experience the same problem can benefit from the same resolution.

4 IBM Rational Logiscope TestChecker - Testing on a Target Machine

http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/software/support/help.html
https://www.ibm.com/software/rational/support/

IBM Rational Logiscope

Bibliography

[TCL94] JOHN K. OUSTERHOUT

Tcl and the Tk Toolkit - Addison-Wesley Professional Computing Series

1994 ISBN 0-201-63337-X

[TCL03] BRENT WELCH, KEN JONES, JEFFREY HOBBS

Practical Programming in Tcl and Tk (4th Edition) – Prentice Hall

2003 ISBN 0-130-38560-3

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 5

IBM Rational Logiscope

1. Overview
An instrumented application is produced by modify the source code of the application. Extraneous
instructions are inserted at the beginning of function, at every Decision to Decision Point (DDP),
that is at every test or loop, at every function call point and, if applicable, at every complex boolean
expression (only for MC/DC).

The extra instructions are simple: they consist only in function calls to external functions. These
functions are to be defined by the support libraries, which are responsible to format the events into a
form that can be understood by Logiscope TestChecker.

The border between what is done by the instrumented code and what is done by the support library
is hazy, especially for the C language, for which the instrumentation may be heavily customized.

1.1. Instrumented code
The inserted instructions allow to record events of interest during execution of the source code:

• Entering a function. The data associated with this event are the Logiscope name of the function
and the date of the Logiscope analysis that produced the instrumented code.

• Executing a DDP(other than the first) of a function. The data associated with this event are the
Logiscope name of the function and the number of the ddp.

• Calling a function. The data associated with this event are the Logiscope name of the calling
function and the Logiscope name of the called function.

• Executing a complex boolean expression (for MC/DC). The data associated with this event are
the Logiscope name of the function, the number of the condition in the function, the truth value
of the condition and a vector of truth values of the inner conditions.

1.2. Support libraries
Every execution event detected by the instrumented code is directed to a function that must be
defined by a support library. The library is responsible for determining how to communicate with
Logiscope TestChecker, and to format the event data to fit the communication mean.

The support library must define one interface function for every event type.

All the delivered support libraries may be customized in order to accommodate specific needs. This
is the simplest way to tailor the instrumented application to specific contexts and objectives.

The only constraints is to respect the interfaces used by the instrumented code.

6 IBM Rational Logiscope TestChecker - Testing on a Target Machine

IBM Rational Logiscope

2. Instrumentation

2.1. C
The instrumentation process for C uses the program log_cc, the startup syntax of which is described
in the Logiscope RuleChecker & QualityChecker C Reference Manual:
log_cc -inst master.c
produces a master.inst.c and a master.inst.h without instrumentation for MC/DC.
log_cc -inst -cond master.c
produces a master.inst.c and a master.inst.h with instrumentation for MC/DC.

The application header files are not instrumented: the .inst.c file contains the whole translation unit
for the C file, thus the instrumentation of the header files used in master.c is included in
master.inst.c.

The master.inst.h file is generated by a TCL file, which is evaluated by the Logiscope instrumenter.

Let's have a look at the instrumentation produced for the following code:
void main(int argc, char* argv[])
{
 char inst;
 int result;
 /* if a parameter is present, the machine code is displayed */
 if (argc > 1)
 JACKPOT = 1;

 while (!instruction()); /* to display game rules*/
 player = TRUE;
 game_won = FALSE;

 format_output("Do you want to guess, or make up the code,",0);
 format_output(" g/m [default is g] -> ",0);

 if ((inst = getchar()) != '\n')
 while (getchar() != '\n');

 /*result used for FullMCDC test */
 result =(inst == 'm' || inst == 'M');

The resulting master.inst.c file is (with MC/DC instrumentation):
void main (int argc , char * argv [])

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 7

IBM Rational Logiscope

{

VLG_MCDC_DEF_0(VLG_CM_NEST_COMP8,VLG_SZ_VECT_COMP8);
VLG_CD1(main,8)
 {
char inst ;
int result ;

if (argc > 1)
{
VLG_CDX(main,8,2)
JACKPOT = 1 ;
}
else
 VLG_CDX(main,8,3)
{
int vlgbrk = 0;
while (VLG_CM_0(0,main,8,88,4,1,1, ! VLG_EVAL_0(0, 0,
(VLG_CALL(main,8,1,9,1),instruction()))))
{
VLG_CDX(main,8,4)
;
}
if (!vlgbrk) VLG_CDX(main,8,5)
}
player = 1 ;
game_won = 0 ;
(VLG_CALL(main,8,2,3,2),format_output ("Do you want to guess, or
make up the code," , 0));
(VLG_CALL(main,8,3,3,2),format_output (" g/m [default is g] -> " ,
0));
if ((inst = (-- ((& _iob [0])) -> _cnt >= 0 ? 0xff & *
((& _iob [0])) -> _ptr ++ : (VLG_CALL(main,8,4,2,3),_filbuf
((& _iob [0]))))) != '\n')
{
VLG_CDX(main,8,6)
{
int vlgbrk = 0;
while ((-- ((& _iob [0])) -> _cnt >= 0 ? 0xff & * ((& _iob

8 IBM Rational Logiscope TestChecker - Testing on a Target Machine

IBM Rational Logiscope

[0])) -> _ptr ++ : (VLG_CALL(main,8,5,2,3),_filbuf ((& _iob
[0])))) != '\n')
{
VLG_CDX(main,8,7)
;
}
if (!vlgbrk) VLG_CDX(main,8,8)
}
}
else
 VLG_CDX(main,8,9)
result = VLG_CM_0(0,main,8,99,0,2,2, (VLG_EVAL_0(0, 0, inst == 'm')
|| VLG_EVAL_0(0, 1, inst == 'M'))) ;

(Note that the macros are expanded in the instrumented C code).

When instrumenting the C code, Logiscope TestChecker introduces macro calls in the code:

• VLG_CD1: entry of the function.

• VLG_CDX: another ddp.

• VLG_CALL: a function call.

• VLG_MCDC_DEF_0: initialization of the data structure needed to keep tracks of the MC/DC
events.

• VLG_CM_0: a complex boolean expression.

• VLG_EVAL_0: an inner condition in a complex boolean condition.

These macros, and the support data structure are defined in the master.inst.h, which is produced by
a TCL script.

Example: the simplest form of the VLG_CDX macro generating a .trc file would be:
#define VLG_CDX(name, functionIndex, ddpNumber) \

fprintf(TRCFILE, “X\n%s\n%d\n”, #name, ddpNumber);
This is a bit faulty, since the name of the function is not a correct Logiscope name.

The standard definition is:
#define VLG_CDX(name,num,num_cdd) \
 vlg_c_cdx(vlg_arrayfunc[num], num_cdd, PARAM);
and the master.inst.h file defines the array vlg_arrayfunc:

static char *vlg_arrayfunc[] = {
 "**"
 ,"rest"
 ,"_filbuf"

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 9

IBM Rational Logiscope

 ,"format_output"
 ,"setcolors"
 ,"time"
 ,"srand"
 ,"rand"
 ,"master/main" /* functionIndex is 8 */
 ,"instruction"
 ,"player_plays"
 ,"machine_plays"
 ,"exit"
};

Support library
The C support library is located in instr\src\vlgtchk.c.

Support libraries adapted for multi tasked applications under PSOS and VxWorks real time OSes
may be purchased separately. They are located in instr\rtos\psos_12.zip and
instr\rtos\vxworks_12.zip respectively.

2.2. C++
The instrumentation process for C uses the program lginst, the startup syntax of which is described
in the help file bin\lginst.hlp:
lginst -lang C++ Hangman.cpp
produces a Hangman.inst.cpp file. The C++ instrumenter does not support MC/DC.

Contrary to the C instrumenter, the C++ instrumenter instruments individually the header files:
lginst -lang C++ Hangman.cpp
produces a Hangman.inst.h file, analogous to the Hangman.inst.cpp file.

Let's have a look at the instrumentation produced for the following code:
BOOL CHangman::CheckLetter(char Letter)
{

BOOL LetterAdded = FALSE;
int Size =0;
int Index =0;

Size = m_CurrentWord.GetLength(); // Get length of current
word
 for(Index=0; Index<Size; Index++) // Step through word to
check

{

10 IBM Rational Logiscope TestChecker - Testing on a Target Machine

IBM Rational Logiscope

if(m_CurrentWord[Index] == Letter) // If we hit a
letter then

{
m_CurrentGuess.SetAt((Index*2), Letter); // Set

current guess to
LetterAdded = TRUE; // letter and change bool

}
}
if(LetterAdded == FALSE)

DecrementGuessRemain(); // If no letter added
decrement guesses remaining

IncrementTotalGuesses(); // Increment total guesses so
far

return(LetterAdded); // Return TRUE/FALSE if
letter added or not
}

The resulting Hangman.inst.cpp file is:
BOOL CHangman::CheckLetter(char Letter)
{
/* function begin */
char *vlg_funcname = "CHangman::CheckLetter::37";
VLG_DDP1(vlg_funcname, "10/17/02-11:59:56");
{

BOOL LetterAdded = FALSE;
int Size =0;
int Index =0;

Size = m_CurrentWord.GetLength(); // Get length of current
word
 for(Index=0;VLG_COND(vlg_funcname, (int) (Index<Size), 2, 3);
Index++) // Step through word to check

{
if(VLG_COND(vlg_funcname, (int) (m_CurrentWord[Index] ==

Letter), 4, 5)) // If we hit a letter then
{

m_CurrentGuess.SetAt((Index*2), Letter); // Set
current guess to

LetterAdded = TRUE; // letter and change bool

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 11

IBM Rational Logiscope

}
}
if(VLG_COND(vlg_funcname, (int) (LetterAdded == FALSE), 6,

7))
DecrementGuessRemain(); // If no letter added decrement

guesses remaining

IncrementTotalGuesses(); // Increment total guesses so far
{
/* return */
return(LetterAdded);
} // Return TRUE/FALSE if letter added or not

}/* function end */
}

(Note that the macros are NOT expanded in the instrumented C++ code).

The instrumentation introduces macro calls in the C++ code:

• VLG_DDP1(functionName, analysisDate): a function entry.

• VLG_COND(functionName, expressionValue, ddpIfTrue, ddpIfFalse):
another ddp of the function.

Support library
The C++ support library is located in instr\src\vlgtchk.c.
These macros are defined in the instr\include\log_inst.h file, that may be customized to
accommodate different needs.

Support libraries adapted for multi tasked applications under PSOS and VxWorks real time OSes
may be purchased separately. They are located in instr\rtos\psos_12.zip and
instr\rtos\vxworks_12.zip respectively. The current version of these library needs minor tweaking to
be used with C++.

2.3. Java
The instrumentation process for Java uses the program lginst, the startup syntax of which is
described in the help file bin\lginst.hlp:
lginst -lang Java Hangman.java
produces a Hangman.inst.java file. The instrumentation does not support MC/DC.

Let's have a look at the instrumentation produced for the following code:

 public void init() {
 int i;

 // load in dance animation

12 IBM Rational Logiscope TestChecker - Testing on a Target Machine

IBM Rational Logiscope

danceMusic = getAudioClip(getCodeBase(), "dance.au");
danceImages = new Image[40];

for (i = 1; i < 8; i++) {
 Image im = getImage(getCodeBase(), "T" + i + ".gif");

 if (im == null) {
break;

 }
 danceImages[danceImagesLen++] = im;

 }

 // load in hangman image sequnce
 hangImages = new Image[maxTries];
 for (i=0; i<maxTries; i++) {

 hangImages[i] = getImage(getCodeBase(), "h"+(i+1)+".gif");
 }

 // initialize the word buffers.
 wrongLettersCount = 0;
 wrongLetters = new char[maxTries];

 secretWordLen = 0;
 secretWord = new char[maxWordLen];

 word = new char[maxWordLen];

 wordFont = new java.awt.Font("Courier", Font.BOLD, 24);

wordFontMetrics = getFontMetrics(wordFont);

resize((maxWordLen+1) * wordFontMetrics.charWidth('M') +
maxWordLen * 3,
 hangImagesHeight * 2 + wordFontMetrics.getHeight());
 }

The resulting Hangman.inst.java file is:

 public void init() {
 /* function begin */

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 13

IBM Rational Logiscope

 String vlg_funcname = "Hangman::init::120";
 VlgInstrument.ddp1(vlg_funcname, "10/17/02-11:59:56");
 {
 int i;

 // load in dance animation
danceMusic = getAudioClip(getCodeBase(), "dance.au");
danceImages = new Image[40];

for (i = 1;VlgInstrument.cond(vlg_funcname, (i < 8), 2, 3); i+
+) {

 Image im = getImage(getCodeBase(), "T" + i + ".gif");

 if (VlgInstrument.cond(vlg_funcname, (im == null), 4, 5)) {
break;

 }
 danceImages[danceImagesLen++] = im;

 }

 // load in hangman image sequnce
 hangImages = new Image[maxTries];
 for (i=0;VlgInstrument.cond(vlg_funcname, (i<maxTries), 6,
7); i++) {

 hangImages[i] = getImage(getCodeBase(), "h"+(i+1)+".gif");
 }

 // initialize the word buffers.
 wrongLettersCount = 0;
 wrongLetters = new char[maxTries];

 secretWordLen = 0;
 secretWord = new char[maxWordLen];

 word = new char[maxWordLen];

 wordFont = new java.awt.Font("Courier", Font.BOLD, 24);
wordFontMetrics = getFontMetrics(wordFont);

14 IBM Rational Logiscope TestChecker - Testing on a Target Machine

IBM Rational Logiscope

resize((maxWordLen+1) * wordFontMetrics.charWidth('M') +
maxWordLen * 3,
 hangImagesHeight * 2 + wordFontMetrics.getHeight());
 }/* function end */
 }

The instrumentation introduces function calls in the code:

• VlgInstrument.ddp1(String funcName, String anlysisDate): a function
entry.

• VlgInstrument.cond(String funcName, boolean conditionValue, int
ddpIfTrue, int ddpIfFalse): another ddp of the function.

The Java support library is located in instr\jv\VlgInstrument.java and instr\jv\VlgTrace.java.

2.4. Ada
The Ada instrumentation is described in the IBM Rational Logiscope TestChecker Getting Started
manual.

The Ada support libraries are located in the data\audit_ada\instrument.ada (Ada95) and
data\audit_ada\instrument83.ada (Ada83).

It is possible to customize these code files to accommodate different needs.

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 15

IBM Rational Logiscope

3. File formats
Two file formats may be loaded in Logiscope TestChecker to describe test results for a project. The
first, and historical, one is the .dyn format; this is the format in which Logiscope TestChecker
saves the tests. The second, much more verbose, but of great importance for our purpose since it is
easier to fiddle with is the .trc format.

3.1. .dyn files
This file format is compact, but is difficult to modify and produce. This is the default file format
output by the support libraries when the instrumented programs are not launched from Logiscope
TestChecker.

Let's look at a .dyn file produced for the Hangman sample, interspersed with explanations in italics:
<archive VD2.0>
NA
... This is "current application" in french.

... Do not change this.

Application_courante
CV
... List of test suites in this file (there always be

... only one test suite in the file).

CURRENT_SUITE
CM
CURRENT_SUITE
... List of tests in the test suite named CURRENT_SUITE.

TEST_1 09/13/00-13:50:12
TEST_2 09/13/00-13:51:02
... Coverage results for test TEST_1.

MO
TEST_1 09/13/00-13:50:12
... Catalog of components (functions) executed during

... TEST_1.

.NM.
1 CHangman32App::CHangman32App::26 09/13/00-11:42:46
2 CHangman32App::InitInstance::41 09/13/00-11:42:46
3 CPictureButton::CPictureButton::18 09/13/00-11:42:46
... And so on for every component of the test catalog.

.CC.

... Component Changman32App::CHangman32App::26 has

... executed its first ddp.

16 IBM Rational Logiscope TestChecker - Testing on a Target Machine

IBM Rational Logiscope

1 1
... Component CHangman32App::InitInstance::41 has

... executed its ddp numbered 1, 3 and 4, but not 3.

2 1 0 1 1
3 1
... And so on for every component of the test catalog.

... Then the content is repeated for every test in

... the test suite.

3.2. .trc files
This format is more verbose than the .dyn format, but is easier to manipulate and produce. It
consists of one record for each occurrence of one of these events:

• Entering a function.

• Executing a ddp (other than the first) of a function.

• Calling a function.

• Executing a complex boolean expression (for MC/DC only).

A .trc file is produced by the support library vlgtchk.c if the environment variable VLGTYP is set to
TRACKS.

This is also the format that is used natively by Logiscope TestChecker to retrieve the execution
events from an instrumented application that it launches.

Let's have a look at this file format for the Mstrmind sample, heavily edited and interspersed with
explanations in italics:

... Entering function master/main. The function has been

... analyzed on January the 29th, 1999.

1
master/main
01/29/99-12:05:36
... Executing ddp number 3 of the function master/main.

X
master/main
3
... Calling function instruction from function master/main.

P
master/main
instruction
... Entering function instruction.

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 17

IBM Rational Logiscope

1
instruction
01/27/99-15:51:08
... Complex conditions executed (inst == 'm' || inst == 'M')

... this is complex condition number 2 in the function

... master/main. The result was true (1), and the first

... condition was true, and the second not evaluated (1-).

C
master/main
2
1
1-

18 IBM Rational Logiscope TestChecker - Testing on a Target Machine

IBM Rational Logiscope

4. Communicating with Logiscope TestChecker

4.1. Using TcGatWay
TcGatWay is a specialized application, designed to appear as an instrumented application to
Logiscope TestChecker. This tool merely pass back all information received on a TCP socket or a
serial link to Logiscope TestChecker.

TcGatWay startup syntax is different for serial links on Microsoft Windows and UNIX.

On Microsoft Windows:
TcGatWay [-serial <port> [-mode <mode>]] |

[-tcp [-reuse]] |
[[-tcp] [-reuse] -host <host> [-port <port>]] |
[[-tcp] [-reuse] [-host <host>] -port <port>]
-prefix <string>

• -serial designates the serial port (COM1, COM2, etc.).

• -mode designates the mode of operation of the serial port in usual Microsoft Windows syntax.

On UNIX:
TcGatWay [-serial -in <fd>] |

[-tcp -in <fd>] | [-tcp [-reuse]] |
[[-tcp] [-reuse] -host <host> [-port <port>]] |
[[-tcp] [-reuse] [-host <host>] -port <port>]
-prefix <string>

• -serial means that the file file descriptor designated by the -in option is to be used as the serial
input. The serial port must have been configured beforehand with the command stty.

• -tcp means that a TCP socket is to be used. The default host is localhost, the default port is
6309. On UNIX systems, an already opened TCP socket may be used by specifying its file
descriptor with the -in option. The instrumented application is supposed to connect to the the port
used by TcGatWay.

To use TcGatWay with Logiscope TestCheker, a customized support library must be developed
and linked with the instrumented application. The library must connect to the TCP port of the
hostname, or the serial link, where TcGatWay has been launched from Logiscope TestCheker,
and then send the execution events in the .trc format on this communication link.

TcGatWay is useful in demo conditions, or when setting up things. Its interactive nature does not
turn it into the solution of choice for production environments. In these cases, it is easier to work
with files.

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 19

IBM Rational Logiscope

4.2. Using files
As outlined above, the easiest format to work with is the .trc format. If the target has a file system, it
is sufficient to store the execution results in a file, and transfer the file to the host at the end of the
test.

The file may then be loaded in Logiscope TestChecker to analyze the coverage of the test.

Any communication mean between the target machine and the host that can transfer text streams is
adequate for this task.

20 IBM Rational Logiscope TestChecker - Testing on a Target Machine

IBM Rational Logiscope

5. Special cases

5.1. Multi tasking OSes and/or multi processor machines
The .trc format allows the different event records to be interspersed freely, but the records must not
be broken.

A multi tasked application must then take special caution to not break the atomicity of the event
records. Several solutions are available:

• Synchronization; but this may disturb the expected time behavior of the application, and this may
forbid to instrument the interrupt service routines.

• One file (or stream) of event reports per thread of execution; this may complicate the sending of
the event reports if real time streams are used instead of pipes. This may also forbid to instrument
the code of the file system driver.

No single solution is a best fit for all situations. It is often necessary to examine closely the inner
workings of the application and the coverage measurement goals to find the appropriate solution for
a specific situation.

But, whatever the solution needed, the great flexibility of the articulation between the instrumented
code and the support library allows to implement it.

5.2. Tight environments
The instrumented application has more code than the original application. This may lead to troubles
if the target environment does not have enough program memory to accommodate the instrumented
application.

To reduce the program space needed by the instrumented application, it is possible to reduce the
number of event kinds sent by the application: in C, the call graph coverage is often not needed,
thus it suffice to #define out the VLG_CALL macro.

If this is not sufficient, it will be necessary to design a special instrumentation and library to
drastically reduce the memory requirements of the instrumented program. This involves the design
of a new format to store and transfer the execution events; then on the host, .trc file must be created
from this new format.

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 21

IBM Rational Logiscope

Notices

© Copyright 1985, 2009
US Government Users Restricted Rights—Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.
IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)

22 IBM Rational Logiscope TestChecker - Testing on a Target Machine

IBM Rational Logiscope

described in this publication at any time without notice.
Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.
The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.
Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.
Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.
If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 23

IBM Rational Logiscope

Copyright license
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.
Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, ibm.com are trademarks or registered trademarks of International
Business Machine Corp., registered in many jurisdictions worldwide. Other product and
services names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at:

 www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are
trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision
Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other
Microsoft products referenced herein are either trademarks or registered trademarks of
Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

24 IBM Rational Logiscope TestChecker - Testing on a Target Machine

http://www.ibm.com/legal/copytrade.html

IBM Rational Logiscope

ITIL is a registered trademark, and a registered community trademark of the Office of
Government Commerce, and is registered in the U.S Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of others.

 IBM Rational Logiscope TestChecker - Testing on a Target Machine 25

	1. Overview
	1.1. Instrumented code
	1.2. Support libraries

	2. Instrumentation
	2.1. C
	2.2. C++
	2.3. Java
	2.4. Ada

	3. File formats
	3.1. .dyn files
	3.2. .trc files

	4. Communicating with Logiscope TestChecker
	4.1. Using TcGatWay
	4.2. Using files

	5. Special cases
	5.1. Multi tasking OSes and/or multi processor machines
	5.2. Tight environments

