Logiscope

Release 6.6

TestChecker
Getting Started

IBM Rational Logiscope
TestChecker - Getting Started

Before using this information, be sure to read the general information under “Notices” section, on
page 107.

This edition applies to VERSION 6.6, IBM Rational LOGISCOPE (product number 5724V81) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 71985, 2009
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

ii IBM Rational Logiscope TestChecker - Getting Started

Table of Contents

Chapter 1 About this manual

Chapter 2 Notion of Test Coverage

2.1
2.2
23
24

2.5
2.6

Suggested APPIOaCRES........occuieiiiiiiieie ettt et 1
INSrUCtion BIOCKSviiiiiiiiiiciiciecte ettt et eene e ees 2
Decision to Decision Pathsccciiiiiiiiiiiiiicicce e 2
Modified Condition/DECISIONccveevierierieieereereeresreseeseesreeseesseesseesseesseeseenses 4
2.4.1 DEINITION ..ttt et et 4
242 TSt COVEIAZE .. eeuvieetieetieeriie ettt et e et e et e sbee st e snteeeateesseesneeennseenneeas 6
COVETAZE PrECISION ..eccuiiieiiiciieciieeie ettt ettt e e e b e et e e et ae s sbaeesteeesneesaseeneseenns 7
COVEIAZE GAIN ...vveeevieiieeieeiieie et eteeeeeteseteseaestaestaesseesseesseesseesseesseesseesseenseensenssennses 7
2.6.1) 2001 o) (< S 8
2.6.2 EXAMPLE 2.ttt ettt et aae s 9

Chapter 3 Building C++ Instrumented Code with Logiscope Studio

3.1
32
33
34
3.5
3.6

BefOre YOU STAT.....eeitiiiieiieieeieeeee ettt et ettt et st neesaeesaee 11
Starting a Logiscope Studio SESSION........ccviiriierrieriieriiereeieeteereere e seeeseresenesnesenes 11
Creating a TestChecker PrOJECL........cooiviiiieiieieieeeeeteee et 12
Introducing LogiScope StUAIO........ccvieriieriieriieiieiecie et sree st este e esreesseesneens 19
Building the Instrumented Executable............ccoocveiiiniiniiniiieieneeceeeeeeee 21
Updating the alias file........ccceevvieriiiiiieciieiicie ettt s sresenesree 23
3.6.1 Syntax of the filecooieiieiiiiii e 23
3.6.2 EXAMPIC...iiiiiiiiiiiieceeceeeeeee ettt 24

Chapter 4 Testing on a Host Machine

4.1
4.2

43
4.4
45

The Logiscope TestChecker Windowc.ccccvevcieereiieiiiieniienieeeieeeiee e 27
Creating and Running Your First Test........ccccveriiiiiniiiiiiiniieeeeeceeee e 29
4.2.1 Starting the TESTcecuvevierieriieieere ettt see e e see e esaenseens 29
422 Viewing Coverage While Testing is in Progressccocvvevvvevveecvennennnn. 30
423 Creating and Running More Testsccccoveuerierienienienieeieecie e 32
Displaying Tested and Untested DDPS........ccccoovieiiiiieiiieiieieceecie e 32
Displaying the Source Codecocveeieriiriiiiieeierieseeee et 34
Saving and cloSing @ PrOJECL........ccviivieeiiiiiiierieere et sene 35

Chapter 5 Analyzing Test Coverage from Logiscope Studio and Viewer

5.1

April 2009

Test Coverage Analysis Using Logiscope StUdIO...........cccoevvevvvevveeienrieieiieneenne 37
5.1.1 TSt COVETAZE ...ceuveeentiieiieeiie ettt ettt ettt sttt e et 37
5.1.2 BT A S 010 P 38

IBM Rational Logiscope TestChecker - Getting Started iii

5.2 Test Coverage Analysis Using Logiscope Viewer...........ccccoooeiiiiioeniiiiioeeenennens 40

5.2.1 Selecting/Deselecting a FUNCtionccccveeveeecieeciieecie e 42
5.2.2 Viewing Test Coverage Resultscccoceevieiienienienieeeieeieeeeeee, 43
5.2.3 Ending Viewer and Studio SESSIONS........cccevverierienienieenieeieeieereeveeenes 47

Chapter 6 Building a C Instrumented Code for MC/DC Analysis

6.1 BefOre YOU STATt..c..iiiierieiicieiiecee et reere et et e teesbeesbeesbeesbessbessbesebessaesesesssesseeneeas 49
6.2 Creating a TestChecker Project..........cccveeuiriiiieniinieieseese et 49
6.3 Building an Instrumented Executable............ccocvvvviiiiiiiiiieniesienieeeeeseeeee 56
6.4 Testing the Instrumented Executable..........ccocveiiiiiiiiiieniiiieeeeeee e 59

6.4.1 Starting the TeSt......ccvveevieciieeieeie ettt sttt sre e e enseensees 59

6.4.2 Viewing MC/DC While Testing.........cccevveiviieriieriienieeeiee e evee e 59
6.5 Refining Modified CONditionsccceeeveeeieriieriinienienee e seeseesieesseeseeseeseennes 61

Chapter 7 Testing on a Target Machine

7.1 PTElIMINATIES ..c.veviiieiiiiieiieiieiei ettt ettt ettt sttt s b e bt e e e eaeeneens 63
7.2 Creating and Running Your First TeSt........cccccevviiiviieeiiiiieecie et 65
7.2.1 Starting the TeSt......ccvveeiieciieiieie ettt se et e e e esseenseas 65
7.2.2 Viewing Coverage Rates While Testing is in Progress.........c.ccecevveeenee. 66

Chapter 8 Creating and Testing Ada Instrumented Code

8.1 BefOre YOU StAIt.....cciiiiiiiieiiieieecie ettt ettt ettt e tee e e ebeeebeeetaeeseseeeneenes 69
8.2 Creating an Ada TestChecker PTOJECTc.vccueeiveieeieeierieseeseeseesie e sae e e 69
8.3 Inserting Pragmas for the Probescccceeviieviiiiiieniiececce e 76
8.4 Building the Instrumented Executable...........ccoccveviiriieniierieciieieiecee e 76
8.5 Testing the Instrumented Executable...........ccoeeviieciiiiciiiiiciece e 78
8.6 Customizing the Instrumentation Primitives..........ccoccveriveriecieriieniieniesieneesieeniens 82

Chapter 9 Building and Testing Java Instrumented Code

L2 B 2 1S5 o) (o 1V U] 71 o ARSI 85
9.2 Creating a Java TestChecker Project..........ccovieviiniiiienienieeeeceeeee e 85
9.3 Building the Instrumented Executable..........ccocvevvieiiiiiiiiiiecieciece e 91
9.4 Testing the Instrumented Executable...........cocovviiiiiiiiiiiiiniiieieeeeeeeeee e 94
9.4.1 SEULIIIES ©eevveeuveereeiieieeteete et etesteebesebestsessaesteesseesseessaesseessaesseenseeseenses 94
94.2 INEW TESt ittt s 95

IBM Rational Logiscope TestChecker - Getting Started April 2009

Chapter 10 Command Line Mode

Chapter 11

April 2009

10.1 LOZISCOPE CIEALEcveevieeieiieieeteeieeieeeteetesieeettesaeesttesteesseesseeseenseensesnsesnsesnsesseens 97
10.1.1 Command Line Mode.........cccoeieviiiininiiiiiinieeeeee e 97
10.1.2 Makefile MOde......ocueeiieiiieieeeee e 98
TO.1.3 OPLIONS cueieniieiieiieie ettt ettt ettt sttt bee st e steesbeebeenseenseeseenseeans 99

10.2 LogISCOPE DALC ...ttt e s 103
TO.2.1 OPLIONS c.eeiieiiiecieeciee ettt ettt et e et e e steeestbeetaeetaeesseessseessseesaseesssens 103
10.2.2 EXAMPIES Of USE.....occuvoeiaiiiieieeeee et 104

10.3 LogiSCOPe IGAYNLA....ccueiiiiiiiiieiie ettt e s 105
TO.3.T OPLIONS weneieiiieiiieiieeie ettt ete st e ettt et te bt ebeesteesbeebeenteentesntesntesneesneesseens 105
10.3.2 EXamples OF USC....ccieciieciieiiiieiieeiesiertete st se et ee e eese e snne s 105
10.3.3 Merging .1 Files ...ooiiiiiiiiiiiieciiecee et 106

Notices

IBM Rational Logiscope TestChecker - Getting Started v

Vi

IBM Rational Logiscope TestChecker - Getting Started

April 2009

IBM Rational Logiscope

Chapter 1

About this manual

Audience

This manual introduces IBM® Rational® Logiscope™ TestChecker and get you started.
Within one hour you will be familiar with the tool main features and concepts. Step-by-
step instructions will show you Logiscope TestChecker from different points of view.

Overview

Throughout this document you will observe how to take advantage of test coverage
measurements produced by Logiscope TestChecker to improve testing strategy for the
software application under test and how to generate automatically test coverage reports.
Applications can be written in Ada, C, C++ or Java and all these cases will be seen
throughout this manual.

This consists in the following phases:

1.

0 % N o

An introduction to the notion of Test Coverage presenting the various levels of
coverage produced by Logiscope: e.g. Decision To Decision Path (DDP) coverage,
Multiple Conditions / Decisions Coverage (MC/DC).

. Building C++ Instrumented Code with Logiscope Studio.

In this second phase you will discover Logiscope Studio (if you are not yet familiar
with it) and you will produce your program instrumented binary through a
TestChecker project.

. Testing on a Host Machine with Logiscope TestChecker.

You will create your first test sessions, generate and analyse your application first test
coverage results.

. Viewing Results from Logiscope Studio and Viewer.

Previous results will be viewed in different types in these two tools. You will get
acquainted with Logiscope Viewer if you never met it.

Building C Instrumented Code. In this part, you will enhance your knowledge of
Studio and TestChecker through the a C example introducing the MCDC.

Testing on a Target Machine with TestChecker TcGatway.
Building and Testing an Ada Instrumented Code.
Building and Testing a Java Instrumented Code.

. Using TestChecker in Command Line mode.

About this manual 1

IBM Rational Logiscope

Related Documents

Additional information can be found in:
» [BM Rational Logiscope TestChecker - Testing on a target machine.
* IBM Rational Logiscope Studio Reference Manual.

Conventions

The following writing conventions are used in this manual:

* bold: names of commands (e.g. ves), files and folders (e.g. LogiscopeProjects), and
file extensions (.res)

* italic: names of user-defined textual elements (version I, component 2), notes,
* typewriter: screen messages (Reference filename)requiring user action,

+ keycaps (<Enter>).

<InstallationDir> will refer to the Rational Logiscope installation directory.

<Version> will refer to the Logiscope current version: e.g. 6.6 or upper.

Note: Screen displays in this manual can be slightly different from those you get when
running the Getting Started.

2 |BM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Contacting IBM Rational Software Support

If the self-help resources have not provided a resolution to your problem, you can contact
IBM® Rational® Software Support for assistance in resolving product issues.

Note If you are a heritage Telelogic customer, you can go to
http://support.telelogic.com/toolbar and download the IBM Rational Telelogic
Software Support browser toolbar. This toolbar helps simplify the transition to the
IBM Rational Telelogic product online resources. Also, a single reference site for
all IBM Rational Telelogic support resources is located at http://www.ibm.com/
software/rational/support/telelogic/

Prerequisites

To submit your problem to IBM Rational Software Support, you must have an active
Passport Advantage® software maintenance agreement. Passport Advantage is the IBM
comprehensive software licensing and software maintenance (product upgrades and
technical support) offering. You can enroll online in Passport Advantage from http://
www.ibm.com/software/lotus/passportadvantage/howtoenroll.html

» To learn more about Passport Advantage, visit the Passport Advantage FAQs at http://
www.ibm.com/software/lotus/passportadvantage/ brochures_fags quickguides. html.

 For further assisance, contact your IBM representative

To submit your problem online (from the IBM Web site) to IBM Rational Software Sup-
port, you must additionally:

* Bearegistered user on the IBM Rational Software Support Web site. For details about
registering, go to http://www-01.ibm.com/software/support/..

» Be listed as an authorized caller in the service request tool

Submitting problems
To submit your problem to IBM Rational Software Support:

1. Determine the business impact of your problem. When you report a problem to
IBM, you are asked to supply a severity level. Therefore, you need to understand
and assess the business impact of the problem that you are reporting.

About this manual 3

http://support.telelogic.com/toolbar
http://support.telelogic.com/toolbar
http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www-01.ibm.com/software/support/
http://www-01.ibm.com/software/support/

IBM Rational Logiscope

Use the following table to determine the severity level.

Severity

Description

The problem has a critical business impact. You are unable to
use the program, resulting in a critical impact on operation.
This condition requires an immediate solution.

The problem has a significant! business impact. The program
is usable, but it is severely limited.

The problem has a some business impact.The program is
usable, but less significant features (not critical to operation)
are unavailable.

The problem has a minimal business impact.The problem
causes little impact on operations or a reasonnable circumven-
tion to the problem was implemented.

Describe your problem and gather background information, When
describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Rational Software Support specialists
can help you solve the problem efficiently. To save time, know the answers
to these questions:

What software versions were you running when the problem occurred?

To determine the exact product name and version, use the option
applicable to you:

» Start the IBM Installation Manager and select File > View Installed
Packages. Expand a package group and select a package to see the
package name and version number.

» Start your product, and click Help > About to see the offering name and
version number.

What is your operating system and version number (including any

service packs or patches)?

Do you have logs, traces, and messages that are related to the problem

symptoms?

Can you recreate the problem? If so, what steps do you perform to

recreate the problem?

Did you make any changes to the system? For example, did you make

changes to the hardware, operating system, networking software, or

other system components?

Are you currently using a workaround for the problem? If so, be

prepared to describe the workaround when you report the problem.

4 |IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

3. Submit your problem to IBM Rational Software Support. You can submit
your problem to IBM Rational Software Support in the following ways:

Online: Go to the IBM Rational Software Support Web site at https://
www.ibm.com/software/rational/support/ and in the Rational support
task navigator, click Open Service Request. Select the electronic
problem reporting tool, and open a Problem Management Record
(PMR), describing the problem accurately in your own words.

For more information about opening a service request, go to http://
www.ibm.com/software/support/help.html

You can also open an online service request using the IBM Support
Assistant. For more information, go to http://www-01.ibm.com/
software/support/isa/faq.html.

By phone: For the phone number to call in your country or region, go
to the IBM directory of worldwide contacts at http://www.ibm.com/
planetwide/ and click the name of your country or geographic region.
Through your IBM Representative: If you cannot access IBM
Rational Software Support online or by phone, contact your IBM
Representative. If necessary, your IBM Representative can open a
service request for you. You can find complete contact information for
each country at http://www.ibm.com/planetwide/.

If the problem you submit is for a software defect or for missing or inaccurate documen-
tation, IBM Rational Software Support creates an Authorized Program Analysis Report
(APAR). The APAR describes the problem in detail. Whenever possible, IBM Rational
Software Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Rational
Software Support Web site daily, so that other users who experience the same problem
can benefit from the same resolution.

About this manual 5

https://www.ibm.com/software/rational/support/
http://www.ibm.com/software/support/help.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

IBM Rational Logiscope

6 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Chapter 2

Notion of Test Coverage

2.1

Suggested Approaches

In order to evaluate the completeness of the tests performed, Logiscope measures the test
coverage as the following ratio:

number of objects executed
number of objects to be executed

which just leaves the notion of object to be defined.
Test coverage represents the percentage of objects exercised by executed tests.

As execution paths cannot be identified automatically, objects are considered as portions
of the execution paths.

The larger the size of these portions, the more they integrate control structure
combinations. The effort to obtain maximum test coverage is greater but the risk of
software failure is reduced.

Logiscope proposes several types of approach to measuring test coverage.
Objects considered are:

* Instruction Blocks (IBs),

* Decision-to-Decision Paths (DDPs),

* Modified Conditions/Decisions (MC/DCs).

IBM Rational Logiscope TestChecker - Getting Started 1

IBM Rational Logiscope

2.2 Instruction Blocks

Instruction Blocks (or IBs) represent sequential instructions in the function such that the
execution of the first instruction block leads to the execution of the last. They are
symbolized on the control graph by squares.

Example:
Instruction Blocks Y Y
& 0 i, A A X
Control graph with 4 IBs
Note:

Only Logiscope Viewer makes possible the display of IB coverage in graphic and tabu-
lar form. For details, refer to the Logiscope Viewer online help.

2.3 Decision to Decision Paths

A Decision-to-Decision Path (or DDP) is a sequence of instructions whose origin is the
entry point of the function or a decision (if, while,...) and whose end is the exit point of
the function or the next decision. No decision should be found between the point of
origin and the end point. Control instructions are symbolized on the graph by nodes ().
Components beginning and end, symbolized on the graph by nodes (X), are taken as
decisions feedback.

Notion of Test Coverage 2

IBM Rational Logiscope

Example:

In the component represented by the pseudo-code illustrated below, the following five
DDPs and control graph are detailed:

1 2 3
Beginning Qf Cgmponent mmmsrssamsmsmEs s s aEmsem s s mEmm
decizion [Blogl{_]_] I
T If [condition] then e ien
[Block?]
Elze
[Block3]
Endif 4 5
;ﬂ_'_'_'_'_'_,_-lf [Cond] then AN S RN EEEEEEESEEEESEEEEEEEEEEEEEEI........
decizion [Block_4]
At Else
'the Else Endaf
=EE | [Blocks]

End of component

Exzecuted Decision-to-Decision Paths

DDP example

Logiscope Viewer enhances the qualitative aspect provided by Logiscope TestChecker
by displaying DDP coverage in graphic (see control graph above) and tabular form. It
also indicates necessary conditions to execute non-tested DDPs. For details, refer to the
Logiscope Viewer online help.

IBM Rational Logiscope TestChecker - Getting Started 3

IBM Rational Logiscope

2.4

241

Modified Condition/Decision

The Modified Condition/Decision Coverage (MC/DC) provides most of the benefits of
multiple—condition testing while keeping the number of required tests from growing
exponentially.

The DO-178B standard (Software Considerations in Airborne Systems and Equipment
Certification) defines testing objectives according to the application degree of criticality,
as it relates to real-life aircraft failure conditions.

DO-178B classifies software according to consequences of failure ranking from Level
A: the most critical to Level E. Level A corresponds to software whose failure “would
cause or contribute to a failure of system function resulting in a catastrophic failure
condition for the aircraft.”

For the verification process, DO-178B states that level A software requires 100% of
Modified Condition/Decision Coverage .

Definition

The Modified Condition/Decision Coverage criterion is satisfied if the following
requirements are met:

* Requirement 1: every entry and exit point of the program module under
consideration has been invoked at least once, and each program decision has switched
to all possible outcome values at least once.

* Requirement 2: program decisions having been broken down into basic Boolean
conditions connected by logical operators (AND, OR, etc.), every one of these
conditions has taken all possible outcome values; every condition has acted on the
outcome of the decision independently. In other words, the outcome of a decision has
changed as a result of changing a single condition.

Example:

Notion of Test Coverage 4

IBM Rational Logiscope

The following example illustrates a simple Modified Condition/Decision Coverage test:

begin
[block 1]
if 3 and 1) then
[block 2] DDP B
else [block 3]
[block 4]
end DDP A
—a
1 2 s "
DDP C
X Y Re sult
Test 1 T T T
Test 2 T F F
Teat 3 F T F
Test 4 F F F

Exzecuted Decisionto-Decision Paths

Modified Condition/Decision Coverage

In this basic example a 100% DDP (Decision-to-Decision Path) coverage rate is
achieved: test 1 with X = T (True) and Y = T (True) covers DDPs A and C, and test 3
with X = F (False) and Y = T (True) covers DDPs A and B. The outcome of these tests
also satisfies requirement 1. Note that expression Y has not taken on the value F, which
means that more testing has to be conducted to satisfy requirement 2. Tests 1 and 3 have
not shown that Y independently affects the outcome of the decision.

The truth table in Figure 2 shows that the (T,T) test is required, as it is the only one that
will allow to reach the T value. The (F,T) test is also required as it is the only test that
will change the value of X as well as the outcome of the decision, thus showing the
independence of X. Similarly, the (T,F) test is required to show the independence of Y.
Therefore, three tests are required to meet requirements 1 and 2.

IBM Rational Logiscope TestChecker - Getting Started 5

IBM Rational Logiscope

2.4.2 Test Coverage

The table below details tests for the example decision (X and (Y or Z)).

X Y z Reault | X Y z
Teg 1 [T T T T 5
Teg 2 [T T F T 6 4
Teg 3 [T F T T 7 4
Teg 4 |T F F F 2 3
Tedt 5 | F T T F 1
Ted 6 |F T F F 2
Ted 7 |F F T F 3
Ted 8 |F F F F

Pair table for (X and (Y or 7))

The first column lists test case numbers, and three columns on the right are used to pair
tests relevant for conditions X, Y and Z. This table shows that the pair of a given test
case for a condition is the test case which establishes the independence of this condition.
From Figure 3 it can be demonstrated that test case 1 (T,T,T) and test case 5 (F,T,T) can
be paired to show the independence of X. Consequently, test case 1 is the unique pair for
test case 5 as far as condition X is concerned.

As mentioned above, the pair table indicates that test case 1 (T,T,T) and test case 5
(F,T,T) show the independence of X. Similarly, test case 2 (T, T,F) and test case 4 (T,F,F)
show the independence of Y, and test case 3 (T,F,T) and test case 4 (T,F,F) can be paired
to show the independence of Z. As a result, the test set {1,5,2,4,3} satisfies the Modified
Condition/Decision Coverage for the expression X, Y and Z. Obviously, this is not the
only possible combination.

Coverage rates are obtained by calculating, from executed tests, a set of tests sufficient to
demonstrate that all conditions of the decision are indeed independent. Coverage is
obtained from the result of the following ratio:

nummn ber of taas
mumber of tasts + minimal moumber of tasts raquired

Notion of Test Coverage 6

2.5

2.6

IBM Rational Logiscope

Coverage Precision

Let us illustrate this with the control graph of the previous figure. In the testing phase
executed test cases have made it possible to pass through some structures in the control
graph. In the control graph, paths taken are represented by a continuous line and paths
that have not been taken are represented by a broken line.

Control graph of paths taken

With respect to the various objects, running these test cases has covered:

objects proportion coverage
IBs 4 out of 4 100%
DDPs 4 out of 5 80%
MC/DCs 3 outof 6 50%

These three approaches correspond to three degrees of measurement precision, and the
choice of which approach to use will depend on the criticality of the software to be tested
and the objective to be reached.
n for a trivial application, an IB coverage rate of 100% may be sufficient,
n for a critical application, a DDP coverage rate close to 100% may be advisable,
n for a very critical application, a MC/DC coverage rate close to 100% may be
required.

Coverage Gain

Gain, or improvement represents the percentage of objects specifically executed during a
test. In other words it gives the percentage of objects executed exclusively by a test. This
notion is a dynamic one. Each time a test is added (executed) or removed using
Logiscope TestChecker, the gain of each test may decrease or increase accordingly.

IBM Rational Logiscope TestChecker - Getting Started 7

IBM Rational Logiscope

2.6.1 Example 1

Here is an example to illustrate the notion of gain. Suppose to analyze a program
containing a function which has 5 DDPs, and 3 tests (T1, T2 and T3) executing some of
these DDPs for this function. The table below provides DDP coverage, the percentage
covered by each test or by the sum of all tests, and gain for each test.

100 %

T 3 T2

X (in uppercase) indicates a DDP which is executed by one test only. Gain is positive for

this test.
x (in lowercase) indicates a DDP which is executed by several tests. Gain is null for this
test and for this DDP.
DDP
Tests 1 2 3 4 5 Coverage Gain
T1 X X X 60 % 40 %
T2 X X 40 % 20 %
T3 X X 40 % 20 %
T1+T2+T3 X X X X X 100%

Notion of Test Coverage 8

IBM Rational Logiscope

2.6.2 Example 2

Assuming the execution of another test (T4) at this point. Look at the resulting change in
the gain column below. In fact, this new test will not increase global coverage because all

covered DDPs have already been executed by another test, in other words, gain will be
0%.

In addition to this, gain for T1 will decrease because 2 out 3 of the DDPs covered by T1
have already been executed by other tests: T4 will execute DDP1, which has already
been tested by T1.

In such a case, deleting T4 will not affect global coverage. The list of “efficient™ tests
will still be T1, T2, T3.

DDP
Tests 1 2 3 4 5 Coverage Gain
™ X X X 60 % 20 %
X X 40 % 20 %
X X 40 % 20 %
T4 X X 40 % 0%
T1+T2+T3+T4 X X X X X 100%

100 %

IBM Rational Logiscope TestChecker - Getting Started 9

IBM Rational Logiscope

Notion of Test Coverage 10

IBM Rational Logiscope

Chapter 3

Building C++ Instrumented
Code with Logiscope Studio

3.1 Before you start

3.2

Along with this chapter, you are provided with a program written in C++ language, an
implementation of an ATM machine. The program has been carefully designed for you
to use all features of Logiscope TestChecker .

Source files of this program are stored in the directory
<InstallationDir>\samples\Tchk\C++\ATM.

As a precaution to keep original files safe, it is highly recommended that you copy this
subdirectory into a working directory of your own: e.g. C:\ATM. on Windows,
$SHOME/ATM on UNIX.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of
files containing internal data used by Logiscope. It is recommended to a create a
dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

Starting a Logiscope Studio Session

1. To begin a Logiscope Studio session:

* On Windows:

- click the Start button and select the IBM Rational Logiscope <version> item in
the IBM Rational Programs Group.

* On UNIX (i.e. Solaris or Linux):
- launch the ves binary .

The Logiscope splash screen is first displayed and then the Logiscope Studio main
window appears as follows:

Building C++ Instrumented Code with Logiscope Studio 11

IBM Rational Logiscope

| File Edit Wew Browse Project Link Tools ‘Window Help
DEE@| smBXxoaEs| 2w || |
|jrm vl (% (@8t ee@|:csa@ad

i -

File Yigw

x|
2

AT T T Messages £ || 1 I [
Far Help, press F1 3 | [

3.3 Creating a TestChecker Project

First, you shall define a Logiscope TestChecker project which mainly consists in:

* the list of source files to be first instrumented and then being tested for test coverage
analysis,

+ applicable source code instrumentation options according to the compilation
environment,

+ the special traces that will be generated by the Logiscope libraries during the
execution of the test cases on the instrumented application.

2. In the File menu, select the New... command or click the u icon.

12 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

The New Logiscope Projects dialog box appears.

3. In the Project name: pane, enter the name for the new Logiscope project to be
created. In the context of the guided tour, this simply can be the name of the
application under test: e.g. ATM.

The information provided in this pane will be then refer as the <ProjectName>.

4. Then select its Location: i.e. the directory where the Logiscope project (i.c. a “.ttp”
file) and the associated Logiscope repository will be created; the Logiscope repository
is a folder in which Logiscope internal analysis result files are generated.

The information provided there will be then refer as the <LogiscopeRepository>.

Note: By default, the project name is automatically added to the specified location. This
implies that a subdirectory named <ProjectName> is automatically created.

Filez Frojects l Wworkspaces]

Logizcope Project Project name:
|mw|
Location:
|E: SLogizcopeProjects AT D

' Create new workspace

~

5. Click OK to access to the Logiscope Project Definition first window.

Building C++ Instrumented Code with Logiscope Studio 13

IBM Rational Logiscope

Logizcope Project Defimtion

Project Language Project Modules
* Ada [QualityChecker
" C [CodeReducer
A [BuleChecker
" Java [TestChecker

@ At least one module should be selected.

6. Select the Project Language: i.e. the programming language in which are written
the source code files to be analysed.
For the ATM project, select C++.

Note: Only one language can be selected. If your application contains source code
files written in several languages, you should create several distinct Logiscope
projects: one for each language.

7. Select the Project Modules: i.e. the verification modules to be activated on the
source files of the project .
For the guided tour, select TestChecker.

Notes: At least one module should be selected. The TestChecker module cannot be
selected with another module.

For more details on QualityChecker and RuleChecker modules, please refer to /IBM
Rational Logiscope QualityChecker & RuleChecker Getting Started.

For more details on CodeReducer module, please refer to /BM Rational Logiscope
CodeReducer - Identifying Code Similarities .

8. Click the Next button to continue the creation.

14 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

The Project Source Files dialog box allows to specify what source files are to be
analysed and where they are located.

Project Source Files

Source files root directorny:
CAATM | El

Directories

* |nchude all subdirectaries

" Do nat include subdirectaries

" Customize subdirectaries to include

Suffizes
Source Files |x-'3F'F'Jx- oo o
Header Files |x-hix-hHH;“.hh
Inline Files | -1

Source files root directory shall specify the location directory of the source files to be

analyzed.

9. Browse to select the directory where the ATM sample source files are located: i.e. in
the samples/Tchk/C++/ATM folder of the Logiscope installation directory or in the
directory where the source files have been copied as recommended in previous
section: e.g. C:/ATM

The Directories choice allows to select the list of repertories covering the application

source files.

- Include all subdirectories means that selected files will be searched for in every sub-
directory of the source file root directory.

- Do not include subdirectories means that only files included in the application
directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories
that include application files through a new page.

Suffixes choices allow to specify applicable source, header and inline file extensions
needed in the above selected directories. Extensions shall be separated with a semi-
colon.

10.Click the Next button.

Building C++ Instrumented Code with Logiscope Studio 15

IBM Rational Logiscope

The TestChecker Settings dialog box is now displayed. It allows to specify some of the
key settings of a Logiscope TestChecker project.

\ TestChecker Settings

WWorking directon:

|I::"-.Lu:ugisccupeF'rDiectS"-.-'-‘-.T|'--1'x.

‘ Erecutable for test zezsion:

b ake command [with a Logiscope target];

11. The Test repository: is the directory in which instrumented code and traces files
generated when executing the instrumented executable will be saved.
Keep the default location i.e. a Test folder to be created in the Logiscope repository
specified in the New Logiscope Projects dialog box (see Item 3.).

12.The Working directory: is the directory where the make file can be found and where
the executable will be generated (unless otherwise specified by the make file).

13.The Executable for a test session: shall specify the instrumented executable.
In this context, the executable is not yet generated and will be chosen later.

14. The Make command file shall contains the command to build the instrumented
executable. Type the following:
on UNIX: make Igatm
on Windows, cmd /c MakeLog.bat

Note: According to your DOS version, use the equivalent of the ‘cmd’ command.

The Make command will launch the make file in which a Logiscope target has been
defined, to compile and link-edit together the instrumented source files and the
instrumentation library file located in <InstallationDir>/instr/src/vigtchk.c.

In the next section “Building the Instrumented Executable”, you will be prompted to edit
and modify the make file specified in this pane to adapt it to your compilation
environment.

16 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

15.Click the Next button.

The following wizard box will allow you to complete the project specification with some
specifics of the C++ language .

In the Instrumentation method part, you can choose Memory instrumentation
checkbox but it is an advanced usage for some targets only.

In the Parser configuration part, you can choose the tool in charge of parsing and
instrumenting the source code.

TCL and alias files are defined by default (included in Logiscope product).You can find
details about updating the alias file in section 4.5 Updating the alias file.

C++ TestChecker Settings

Ingtrumentation method
TCL file uzed faor instrumentation:

[Memary instrumentation wzing linkage file:

Parser configuration
Aliaz file:

|E:'\F'r|:|gram Filez\TelelogichLogizcope_6. 5 wutilog_in

|grore: file:

16.Click the Next button to confirm.

The last wizard window is displayed. You can check if all files are correct by expanding
folders.

Building C++ Instrumented Code with Logiscope Studio 17

IBM Rational Logiscope

Logiscope Project Summary

Project Language:
C++

Project Modules:
TestChecker

account.cc
atm.cc

E] bank.cc
cardauth.cc —
cazhcard.co

cazhier.co

cazhiers.co

cazhiert.co

congort o il

| LLLERY LLLTVRYLCCEAY ACTEFAY LCCPAf ICTH LJM{J

17. Click Finish to create your first C++ TestChecker project.

The Studio main window is now updated and contains the workspace view of your
project (see next section).

Two files has been created by this process and are of the form: <ProjectName>.ttp for
project and <ProjectName>.ttw for associated workspace. They are both located in the
folder specified as the Logiscope Repository.

18 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

3.4 Introducing Logiscope Studio

Once the Logiscope TestChecker project has been created, the Logiscope Studio main
window looks as below:

“fl-lﬁg-dll E}EN,E,TQME Eu:u[gm Ijm ﬁm‘mw Help
[ceealizex (D5
la-laﬂgrnanl ezt vzp [:é__:i] Lietaull

e wedl® e &
| EE % Hargrman est viw

=-E# HanomanTest vsp
EI'E Snure Files

% GenercDlg.cpp
E Ilangmar.cpp
-] Hangmar3z cpp
--[E] Hangrar4201c cpp
E] HinDlg.cop
- |E] PichreButtor.cop

: EI Stddfe crp
@ Ea H=zader Files

E GencncDlg h

- E Harginar .h

[Z] Hangmar32 h
E] Hangmar32Jlc h
£] HinDlgh

f'_.la_is;;.l =R

)]

i“ Locizcope

i]

=l

% FizlureBuLiton b

D prarnic Fles

“ehk1 dmn
L[] T ck2 dwn
=) Fiion [Quaity| A Tests| o Comprents |

Al osdirg Budlic D'ata. - -
_l:l udi= Data Loaddsd.

e o N o7
FoiHelp prass F1

(9)]

i
WUM [

It contains the following components:

Building C++ Instrumented Code with Logiscope Studio 19

IBM Rational Logiscope

1 Tool Bar
IDEE@ s BeXo S 2R

Provides shortcuts for most commonly used commands of File and Edit menus.

2 Browse Bar

5

‘ Provides shortcuts for Browse menu commands.

3 Tel Script Bar

T
JJ o | The script wizard: Logiscope internal data navigator.

4 UML Browser Bar
[e=20@ma

Allows navigation in HTML documents and internal data.

5 Project Bar
|J|HangmanTest.vsp leefauIt leﬂ Logizcope j |*_“’| g=a | & [Fd

Build the project and start the Viewer and TestChecker tools.
6 Logiscope TestChecker Bar

@ Allows to display key TestChecker results.
* Test Coverage,
 HTML Test Coverage Report

7 Workspace View
Displays a specific view related to the project: header files, the quality model file and
source files.
With a double-click on any file, the original one is displayed in the Result Pane.

8 Result Pane
Used to display various windows.

9 Status Bar
Indicators when building 7| and idle [£ . The status bar also shows short definitions
corresponding to toolbars described above.

10 Output Window
Displays project messages as the first tab is created; also shows errors messages,
warnings or results.

You can use the View command to customize toolbars.

20 IBM Rational Logiscope TestChecker - Getting Started

3.5

IBM Rational Logiscope

Building the Instrumented Executable

Your project is ready to be built. Building consists in:
* instrumenting the code using the instrumentation method selected for the project,

+ generating (i.e. compiling and linking) the instrumented executable.

When building the instrumented executable, in order the makefile works, the original
sources files are temporarly replaced by the instrumented ones and then restored.

First of all, you must adapt the Make Command to your compilation environment:
1. Open a text editor and load either the file makefile file or the file makefile.vc if you
intend to compile the code using a Microsoft Visual compiler.
It starts by the following lines:
makefile for ATM c++ exampleV1.5
LOGISCOPE INSTALL = ../../../..

2. Adapt the value of the variable LoGISsCOPE INSTALL to correspond to the path of the
Logiscope installation directory.

3. On Windows only: open a text editor and load the MakeLog.bat file located in the
directory where the ATM source files are: e.g. C:\ATM.
It contains the two following commands:

call "c:\program files\microsoft visual studio\vc98\bin\vcvars32.bat"

nmake /A /F makefile.vc lgatm

4. Update the path specified in the call command to correspond to the installation
directory of the compiler to be used.

Once the Make command has been adapted:

5. Select the Project-Build command or click the g icon. A new tab is added in the
Output window and will contain code instrumentation and generation messages:

Instrumenting: ../ATM/account.cc...
Instrumenting: ../ATM/atm.cc...
Instrumenting: ../ATM/bank.cc...

gcc -¢ -I../../../../instr/include ./account.cc -o Objects/account.o ...
gcec -¢ -I../../../../instr/include ./atm.cc -o Objects/atm.o ...
gcec -¢ -I../../../../instr/include ./bank.cc -o Objects/bank.o ...

lgatm Objects/account.o Objects/atm.o

Build finished

After building the project, the Message tab of the Output window will contain final
results.

The project is built. Otherwise this window will display error messages.

You will now end up TestChecker settings specifications.

Building C++ Instrumented Code with Logiscope Studio 21

IBM Rational Logiscope

6. Select Project-Settings option or run the <Alt+F7> command to specify the
executable file. Or, use a shortcut: right click on the Project filename as follows:

Sk

@ Insert Files. ..

Mew Faolder, .,

Set as Active Project

Link,
Properties. . Alk+Enter
I
7. Select the TestChecker tab.
E Logiscope General] Modules TestChecker | |nstrumentation
=25 ATH_tt -
@ D_I,Inzmic Files —| TestChecker Settings
-1-+3] Header Files]
= account h T est repositony:
atmuh |E:"~Lu:ugiscu:upeF'ru:uiects"«.-’-'-.TM'xTest
bank.h S -
cardauth b “Working directony:
cazhcard.h |E:"~Ln:ngis::n:npeF'raie-:ts"«.-‘-‘-.TM'x.
cashierh _ T
cashicrs h || Executable for test session:
cazhiert. b |
conzorti.h T
custamer b Make cormmand [with a Logiscope tanget):
entrysta.h |-:mu:| /o Makelog bat
protog.h
remotetr.b
gtartup.h
support. b

8. You can now specify the Executable for test session: i.e.the command to launch the
instrumented executable:

On Windows: Click on the _| button.

A browse window appears. Select the 4TM.exe executable file that has been
generated in the Objects sub-directory of the Working Directory when running the
Build command.

On Unix: Type xterm -e Igatm

22 |BM Rational Logiscope TestChecker - Getting Started

3.6

3.6.1

IBM Rational Logiscope

If you command name has blank spaces put it between double-quotes (). The space is
interpreted as the separator between the command and its parameters.

9. Click OK to take changes into account.
10.Save your project with File-Save Workspace.

The instrumented executable generation is complete, your project is ready to be tested.
For this you are going to use the Logiscope TestChecker tool. Move to the next chapter.

Updating the alias file

The alias file can be used to inform the parser about special macros.

Syntax of the file

// Introduces a line of comments
<macro-name>| <replacement>
<macro-name>()| <replacement>

<macro-name>(<param>[,<param>]*)| <replacement>

where:

<macro-name> is the name of the macro to replace

<param> is either ## for "normal parameter" or $$ for "special parameter" (see below)
<replacement> is one of the following:

{ : the macro is to be considered as an opening curly bracket

} : the macro is to be considered as a closing curly bracket

function{ : the macro id to be considered as a function definition containing the first
opening bracket, the $$ parameter will indicate the position of the name of
the function. Other parameters will be ##

function : same as function{ but not containing the first opening bracket
: : the macro is to be considered as a semicolon.

for : the macro is to be considered as a "for" instruction, the $$ parameter
indicates the position of the loop condition

while : the macro is to be considered as a "while" instruction, the $$ parameter
indicates the position of the loop condition

Building C++ Instrumented Code with Logiscope Studio 23

IBM Rational Logiscope

if

switch{

switch

case:

case

default:

default
catch{

catch

: the macro is to be considered as a "if" instruction, the $$ parameter

indicates the position of the condition

: the macro is to be considered as a "switch" instruction including the

opening curly bracket. The $$ parameter indicates the position of the
"expression" of the switch.

: same as the previous one but not including the opening curly bracket.

: the macro is to be considered as a "case" instruction including the colon

symbol. The $$ parameter indicates the position of the condition.

: same as the previous one, but not including the colon symbol.

: the macro is to be considered as a default instruction including the colon

symbol.

: same as the previous one, but not including the colon symbol

: the macro is to be considered as a "catch" instruction including the opening

curly bracket. The $$ parameter indicates the position of the catch
expression.

: same as the previous one, but not including the opening curly bracket.

3.6.2 Example

Source file:

#define DECLARE (x,y,z) void x(y,z)

#define FOR(x,vy,z) for (x;z;Vy)

DECLARE (f, int argc, char **argv)

{
A a;

FOR (int x=0, x++, x<10) {

a.print () ;

}

Analyzing this code without a correct alias file will provide the following output:

Output without correct alias file:

/* file begin */
#include "log inst.h"

#define DECLARE (x,y,z) void x(y,z)

#define FOR(x,y,z) for (x;z;y)

24 |BM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

DECLARE (f, int argc, char **argv)

{

/* function begin */

char *vlg funcname = "::DECLARE::5"; <== The function should be named
nEn

VLG _DDP1 (vlg funcname, "05/11/04-17:40:04");

{

A a;

FOR (int x=0, x++, x<10) { <== the for condition has not been
detected

a.print();
}

}/* function end */

}

/* file end */

If we add the following lines in the alias file (log_inst.al):
DECLARE($S,##,##) |function
FOR(##,##,39) |for

Output with a correct alias file:

/* file begin */
#include "log inst.h"

#define DECLARE (x,y,z) void x(y,z)

#define FOR(x,y,z) for (x;z;y)

DECLARE (f,int argc, char **argv)

{

/* function begin */

char *vlg funcname = "::f::5"; <== The name of the function is correct
VLG _DDP1(vlg funcname, "05/11/04-17:40:04");

{

A a;
FOR (int x=0, x++,VLG COND(vlg funcname, (x<10) 2 1 : 0, 2, 3)) {
<== for condition has been detected

a.print();
}

}/* function end */

}

Building C++ Instrumented Code with Logiscope Studio 25

IBM Rational Logiscope

/* file end */

26 |IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Chapter 4

Testing on a Host Machine

4.1 The Logiscope TestChecker Window

1. In Logiscope Studio, open the Project menu and select the Start TestChecker
option or click the El icon in the Logiscope toolbar.

The Logiscope TestChecker tool opens up and looks like this:

Eile Edit “iew Build ‘#indow Help
Dle(E] Blmely B

Components | Tests @

[=- HangmanT ezt

- GenencDla.cpp

- Hangman.cpp

- Hangman32. cpp

- Hangman32Dlg.cp
- HintD'g.cpp

- PictureButton.cpp

12| Bl 2 2]

Far Help, press F1 MNUM |SCRL 2

1. Project window
The Components pane displays the list of analyzed files. If you select and expand one

Testing on a Host Machine 27

IBM Rational Logiscope

of these items, corresponding source file components (functions or methods) appear.
The Tests pane shows the list of Logiscope test result files. At this point, nothing can
be displayed because no test has been executed yet.

2. Tool bar
Provides shortcuts to most commonly used Logiscope TestChecker commands.

3. Project window tabs
Used to switch between the Test pane and the Component pane.

4. Result pane
This pane will be used later to display TestChecker results. Component or Test pane
will also be used to navigate from one result set to the other.

5. Messages window
Displays error and warning messages

28 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

4.2 Creating and Running Your First Test

Tests are stored in test suites. You can create as many test suites as you need. They allow
you to handle tests according to how your testing process is organized. Before running a
test, you must create a test suite. This test suite will contain test coverage results. Of
course, if a test suite has already been created it can be reused.

4.2.1 Starting the Test

1. Select the Test pane of the Project window by clicking on the Tests tab. You are ready
to create a test suite.

2. Select the File-New command or use the El toolbar icon to create the test suite.
A test suite window is displayed with the name 7chkl, as shown in the illustration
below.

File Edit Wiew Build “Window Help

Components |T.33|;3 I

[=1-ATM

¥l account.cc
-akm.cc
-bark.cc
-cardauth.co
-cashcard.co
-cashier.cc
-cashiers.cc
-cashiert.cc
-consarki,co
-customer,cc
-enkrysta.cc
-remaketr.cc —
-startup.cc
- suppark,co
-suppart. b

B3

% DDP's Co... | % DDP's Impro...

(%

Loading TestChecker data...

3. Select the test suite you just created by clicking on it and select the Edit-New Test

command or click the {3l| icon.

This action creates a new test in the current test suite. The default name for this new
testis TEST 1.

Testing on a Host Machine 29

IBM Rational Logiscope

Components l Testz] & Tehkt E|[E|El
=/ AT A frest=> [w%00PscCo.. | %D0PsImpra.. | -

+- account, co 0,00 %, 0,00 .
atm.co
bank.cc
cardauth.cc
cashcard.co
cashier.cc
cashiers.cc
cashiert. cc
consarki.co
cuskamer,cc

e O s O O B R

4.2.2 Viewing Coverage While Testing is in Progress
1. Select the View-DDP Spy command.The DDP Spy window appears.

DOP Spy
— Coverage — Impravement
lobal Current
100 % 100.00 %
a0 % A0.00 %
0% 0.00 %
0.00 .00 0.00

It will display the progress of code coverage during testing:
- the Global bar shows the cumulated coverage for all tests,
- the Current bar shows the coverage for the current test,

- the Improvement bar shows the global coverage improvement secured through the
execution of the current test.

2. Click on TEST 1. This is the test you are going to run.

3. Press the <F5> key or click the icon.
The test begins: a window appears in which you simulate a withdrawing operation.

30 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

ATM STIMULATION

FLEASE CHOOSE A LANGUAGE
Englizh
Francais

Choice

— Ghoix

As you execute / test the ATM program, you can see coverage rates increase in the DDP
Spy window, but TEST 1 is the only test executed for the moment so three indicators
display identical values.

At the end of the test execution, the DDP Spy window displays the total coverage of the
TEST 1.

Components l Tests]

= ATM

+

e O O O O O O O O e B

account, oo
atm.co
bank.cc
cardauth.cc
cashcard.co
cashier.cc
cashiers.cc
cashiert. cc
consarki.co
cuskamer,cc
entryskta.co
remaoketr.co
sbartup.co
suppork,cc
support. b

F

b

& Tchki

% DDP's Co... | % DDP's Impra... | - |

Coverage | mprovement

[Global Current

B217 %

Testing on a Host Machine 31

IBM Rational Logiscope

4.2.3 Creating and Running More Tests

1. Create another test TEST 2 in the Tchkl test suite and run it as indicated before.
2. Create another test suite, 7chk?2 for instance.
3. Similarly create and run another test TEST 3 in Tchk?2.

At this point, your TestChecker window should look approximately like the illustration
below, although test coverage figures may somewhat differ.

File Edit W%iew Buld ‘Window Help

olele] 2[(e]] 8 sl 12| @] 8] epe

Components Tests l & Tchk1
=|- ATM % DDP's Co,.. | % DDP's Impro...
=+ Tchkl 3510 9% 212 %
TEST_1 37.83 % 1.85 %
TEST 2
= Tchkz
TEST 3

% DDP's Co,,, | % DDP's Impra..,
25,93 %% 25,93 %

Loading TestChecker data...

4.3 Displaying Tested and Untested
DDPs

Logiscope TestChecker can display tested and untested Decision-to-Decision Paths
(DDPs) for a function or a method. This will help you design complementary tests to
achieve a better overall test coverage of the program.

To display the DDP Coverage window for a component:

32 |IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

1. Select a component, either in a Component window or in the Components pane of the
Project window.

2. Select the View-DDP Coverage command.

The DDP Coverage window appears and shows tested and untested DDPs for the
function or method currently selected.

Campanents l Tests | IZ DDP Coverage [Update::Execute::B6]
=) update. cc A Tested | Lime .| #cofDDP | DDP
voperatar << 10 v a6 1 Eegin
f':":'erat':'r ; ; f;:f' v 103 2 Case Kind==USERCRDER
Lokl ':' " 107 3 while Amount <=0
ate;:Execute
v - =
Lipdate:: Genlnit: 64 114 4 End-while: noki Amaount <=0}
Update::Update: 71 W 117 5 If Amount <{account- =Ealar
Update::Update:: 76 121 fi Elze nu:u.t(.ﬁ.mnunt <laccounk-:
Update::p_conneck_Account: ;239 v 125 7 Case Kind==USERORDER_D
Ilpdate::p_connect_Transackion::219 126 : Repeat Amount <=0
Ipdate::p_disconnect_account: 244 <
Ilpdate:;p_disconnect_Transaction:: 224
Ipdate:;set_Account: 229
L T T T LR Lu]

Unreached DDPs are displayed in red. Covered DDPs are displayed in your standard font
color.

Note: Tested and untested DDPs color display depend on your computer settings.

The above illustration shows that at line 107 the required condition to execute the
untested DDP: while Amount <= 0 must be true.

You just have to design a new test case in order to cover this DDP and thus increase the
test coverage.

Testing on a Host Machine 33

IBM Rational Logiscope

4.4 Displaying the Source Code

Logiscope TestChecker can also display the source code related to a function/method or
to a DDP.
To display the Source Code window:

1. Select a Component in a Component window or in the Components pane, or a DDP in
a DDP Coverage window.

2. Select the View - Source Code command.

3. The Code window pops up and displays the source code of the function/method or
decision selected: e.g. Update::Execute in the file update.cc.

I"QDPCH ggg| pdate::Execute::B6]

of DDP DDP *
Eedin

Case Kind==USERORDER,_WITHDR AWM AL
While Amount <=0
End-wWhile nok{Amount <=0}
IF Amount ={ account- =Balance+account- =CreditLimit)
Else nok{amount < account- =Balance+account- =CreditLim
Case Kind==USERORDER,_DEPOSIT
Fepeat Amount <=0

L Y I w R 0 B o R

comment { " nAMOTHT 7 o "snMOHTANT @ . : ~
SSoiny rAmount =
Filteri=td: cin., Amount):
while {(Amount <= 07 {
comment { "~t IThcorrect Amounts~n" .

"“t Montant incorrectn"): ==
comment { "nAmount ¥ o ",

"*nMontant ¥ : ")
SAoine rAmount
Filteri=td: cin. Amount):

4. Select another component: the Source Code window is updated accordingly.

5. In a DDP Coverage window, select a decision line: here again, the Source Code
displays appropriate lines of code.

34 |IBM Rational Logiscope TestChecker - Getting Started

4.5

IBM Rational Logiscope

Saving and closing a Project

To save the current project:
1. Select File-Save All command. Save test sessions under Tchk1.dyn and Tchk2.dyn.

2. When TestChecker is closed, a warning message pops up from Logiscope Studio
asking for reloading the current modified workspace. Click Yes to reload.

The Studio main view is updated taking into account test sessions done previously.
These are stored in the Dynamic Files folder in the tree structure of the project.

3. In TestChecker window, select the File - Save Project command.

To close the current project:
4. Select the File-Close Project command.
5. Select File-Exit to quit Logiscope TestChecker tool.

Testing on a Host Machine 35

IBM Rational Logiscope

36 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Chapter 5

Analyzing Test Coverage from
Logiscope Studio and Viewer

5.1

5.1.1

At the end of the previous chapter, you have executed several test cases on the ATM
program.

Logiscope Studio and Viewer help you reviewing the progress of the testing process
using test coverage results.

Test Coverage Analysis Using
Logiscope Studio

Test Coverage

1. Select Browse-Test-Component Coverage menu or click the ﬂ icon.
A new tab is added to the Output window containing the list of tested components
with the associated DDP (Decision-to-Decision Path) coverage rate, as well as the
whole test set to which each component belongs.

ﬂ Comparent | DOF Coverage | Test list
& Tranzaction:p_connect L pdate:;: 45 10000 TEST_1.TEST_Z
& Tranzaction: Tranzaction:: 16 10000 TEST_1.TEST_Z TEST_3
& Tranzaction: ~Tranzaction: 21 100,00 TEST_1.TEST_Z2
& Update: Genlnit: 54 100,00 TEST_1.TEST_Z2
& Update:p_connect_Tranzaction;: 219 100,00 TEST_1.TEST_2
& Update:p_dizconnect_Transaction: 224 10000 TEST_1.TEST_Z
& Update::Update: 71 100,00 TEST_1.TEST_Z2
& Update;:~Update: &2 100,00 TEST_1.TEST_Z2
| | | r".l Meszages b, Coverage § ||_|

If you double click on the component, the corresponding source code appears.

Analyzing Test Coverage from Logiscope Studio and Viewer 37

IBM Rational Logiscope

You can rank components according to their coverage rate by clicking on the DDP
Coverage column. By default, they are sorted alphabetically.

5.1.2 Test Report

1. Select Browse-Test-Test Report menu or click the jgj icon. An HTML window is
displayed containing a synthesis of your application test coverage.

Rational Logiscope Test Coverage Report

Date: 11 Mar 2004

This document contains infarmation concerning the test checking of the project ATH made with Logiscope
TestChecker which is part of IBME Rational® Logiscope.

DDP Coverage

¥ of coraponent
e

207

I

0-10%
10-20%

20-30%,
30-40%,
40-50%,
S0-60%:
60-T0%
T0-20%
E0-20%,
Q0-100%,

You can use the HTML Browser Toolbar to navigate back and forth within the Test
Report. It is possible to save it using the command File-Save As...

Note: Histograms shown in the following chapters are not available on UNIX. They are
replaced by tables. If you want to generate a report with histograms, change HTML
reports option in Tools-Options... command (you will see them in your favorite Internet
navigator).

38 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

2. Click on the 60-70% yellow bar. The list of components whose DDP coverage is
between 60% and 70% is displayed.

DPP coverage between 60% and 70%

Name Dilp Tests

Cardfwthorizationzp disconnect RemoteTransaction:126 | 60.00% TEST_1, TEST_2

PolyText:GetText:117 60.00% TEST_1, TEST_2, TEST_3
moperator==:196 66.67% | TEST_2
moperator==n33 66.67% | TEST_1, TEST_2
Account:unset Customers 127 66.67% | TEST_1, TEST_2, TEST_3
Bank:unset Consertivm:: 105 66.67% | TEST_1, TEST_2, TEST_3
Cardfwthorizationzunset Bank::Gs 66.67% | TEST_1, TEST_2, TEST_3
Cardfiwthorizationzunset Customer:: 139 66.67% | TEST_1, TEST_2, TEST_3
CashCardzunset CardAwthorization::44 66.67% | TEST_1, TEST_2, TEST_3
TextuSetStraié G6.67% TEST_1, TEST_2, TEST_3
Update:unset Transaction:Z14 66.67% | TEST_1, TEST_2
3. Select the Home icon ﬁ in the HTML toolbar to go back to the Report first page.
4. Click on the ATMTest hypertext link. The list of project source files appears.
5. Select File-Close to close the Test Report.
6. Select File-Close Workspace to save all project modifications before lanching

Logiscope Viewer and get more results on test coverage

Analyzing Test Coverage from Logiscope Studio and Viewer 39

IBM Rational Logiscope

5.2 Test Coverage Analysis Using

Logiscope Viewer

Open Logiscope Viewer from the Project-Start Viewer menu of Logiscope Studio or
click the El icon..

The Logiscope Viewer main window looks as follows:

File Edit Seleck
D& ¥ =] o @2 [8 84| £l===] A5 Z[E| (x| €€
(ﬁ.‘le‘ererties j @llﬁlol}_lmlﬁlﬁl

& Workspace? - Component list [_ O]
Mo, == I [armne AI

CAboutDlg: s CaboukDlg:: 17

Mavigate ‘iew Options ‘Window Help

I Murnber

I'W'Drk&pau:eE - D:umpu:urj

----- [T CAboutDlg:Ca =
----- [CaboutDlg:Dc

1
2 ChboutDlg::DoDataExchange:: 24

----- [T CGenericDlg:(3 CGenericDlg: :CGenericDlg: 20

----- [T CGenercDlg:L 4 CigenericDlg::DoDataExchange 27

..... [T CGenercDlg:s 5 CigenericDlg: :SetQuote: 44

..... [T CHangman32? ? E:angmang;ipp::ICI-_lt.?ng'lz'naHSE.i?p::Zﬁ

_____ angran3z2app: :InitInstance::

_____ I': Egz:gzz:gi & CHangman3ZApp::ProcessMessageFiker:: 77
9 CHangman320lg:: CHanaman3z20la: 41

H&)F CHangman320 10 CHangman320lg: :DobataExchange: 149 @
- CHangman320 11 CHangman3ZDlg::Doloser: 635

----- [T CHangman3z2C 12 CHangman3zDlg: :Dowwinner: :659

..... [T CHangman32C 13 CHangman3zDlg::DrawPic:: 704

..... [T CHangman32C 14 CHangmanSZD:g::OnButtDnlD_J::SlE-

15 CHangman3z2Dlg::OnButtonll K327

""" [’ CHangman32t 16 CHangman3zDlg::OnButton1Z_L:i336

""" I EHangman32t 17 CHangman320lg:: OnButtonl3_M::549

""" ™ CHangman32C 18 CHangman32Dlg::orButtanle f:i360

----- [T CHangman3ZC 19 CHangman3zDlg::onButkon1S_o00371

----- [T CHangman32C 20 CHangman3Z2Dlg::onButkonls_P:i362

..... — FHnnnmnnirlll 21 CHangman32Dlg::OnButkonly _Q::393 -
‘ ’ —— —_r] - A -
KN |4 I_'*I

+ loading project:
+ loaded 79 function(s]
+ loaded 0 class[es]

®

Press F1 For Help

MoN RECEPTION

| e |

A

40 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

This window contains the following elements:

1

Toolbar
Provides shortcuts for most commonly used commands of File and Edit menus.

Status Bar
Indicates the status (RECEPTION, NON RECEPTION) of the active window dis-
played in the Result Pane.

Control Palette: Workspacel-Component list Window
Displays a view of the components after loading a Logiscope project. Select or dese-
lect the one you want to explore.

Navigation bar
Provides shortcuts for the commands of the Navigate menu.

Selection Bar
Provides shortcuts for the most commonly used commands of the Select menu.

Component windows bar
Allows to display graphical results: control graph, source code, metric and criteria
Kiviat graph, and to go to the Application window.

Selector Bar

Uses the selectors to choose and display additional information in the active Domain
window. The content of this bar depends on the view being displayed in the active
Domain window.

Messages window
Displays error messages or indications on the loading project.

Result Pane
Used to display window command results.

Use the View menu to show or hide some items described above and to customize the
Viewer main window as you wish.

Analyzing Test Coverage from Logiscope Studio and Viewer 41

IBM Rational Logiscope

5.2.1 Selecting/Deselecting a Function

All functions and methods defined in the program are listed in Workspacel-
Component list window as well as in the Control Palette .

You can use indifferently either the Control Palette or the Workspacel-Component
list window to select or deselect functions.

1. In the Control Palette, click the function Update::Execute::86.

|Wu:urkspau:e'| - Component list ﬂ

[T Tranzaction
[T Tranzaction

[T Tranzaction:
[T Tranzaction:
[T Tranzaction:
[T Tranzaction:
[T Tranzaction:
[T Tranzaction:
[T Tranzaction:
[T Tranzaction:

[T Tranzaction

sGenlnit: 10

s Tranzaction:: 16
add_Update: 35
p_connect_EntySI
p_connect_LJpdate
p_dizconnect_Entr,
p_dizconnect_|lpd
ren_|lpdate:;: 40
zet_EntyStation:5
unzet_EntrpStation
s Tranzaction: 21

-~

[+ Update:Esecute: 35

[T Update:;:Genlnit:54

[T Update:;:Update: 71

[T Update:;:Update: 75

[T Update:p_connect_Account: 2

[T Update:p_connect_Tranzachior

[T Update:p_disconnect_Account

[T Update:p_disconnect_Transacl

[T Update::set_Account: 229

[T Update::set_Tranzaction::209

[T Update:unset_Account: 234

[T Update:;:unset_Transaction: 214

[T Update:;: ~“Update::82 “
< >

The selection has been propagated to the Workspacel-Component list window.

You can select a particular function in every Domain window displayed in the Result
Pane.

42 IBM Rational Logiscope TestChecker - Getting Started

5.2.2 Viewing Test Coverage Results

Decision to Decision Path Coverage

1. Select View-DDP Coverage Distribution. The component list window is updated.

2. Select Options-Scale to change the display format.

IBM Rational Logiscope

= Workspace1 - Metric distribution

Yo
100,
90
80
70
60155.9
507
40
30
20
104
0 |

05

DOF

5.2
05 =05 05

371

b

1<

00 100 200 300 400 500 600 VOO 800 900 1000

M.
[

You can parametrize Scale Display using Options-Scale Parameters... command.

Scale parameters

Lowver limnit I]
Upper lirnit ; I 1an

Intervals

S

20

)

Ok
Cancel
Apply
Iritial

Help

dlls

Analyzing Test Coverage from Logiscope Studio and Viewer 43

IBM Rational Logiscope

Let us go back to the Workspacel- Metric distribution window.

If you select a bar, it becomes blue and all components in this category are check-marked
in the workspace view as well as selected in the Control Palette.

This distribution is the same as the one in the Test Report representation (see previous
chapter).

3. Select View-Component List to make the list of all project components appears.

4. Select the component Update::Execute::86 .

5. Select Window-Control or click the EI icon. The corresponding control graph is
displayed in a new window.
The control graph is the graphical representation of the selected function with
featuring geometric symbols (nodes) linked by arrows (edges). It represents the
logical structure of the function.
If you place the cursor over the first diamond-shaped node the pseudo-code linked
with it is displayed as shown below:

r Lipdate:: Execute::86 - Control Graph EI[E|E|

For more details on the control graph representation, please refer to the /BM Rational
Logiscope Basic Concepts manual.

44 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

6. Select Options-DDP Numbers to add DDPs numbers to the graph.

7. Select Options-Coverage to display covered and not covered paths.

Now the control graph looks like this:

.- Update::Execute::86 - Control Graph

Covered paths are represented by black solid lines and not covered paths by red dotted
lines.

For instance, the DDP #3 has not yet been exercised by the executed test cases. you can
used many way to understand what decision shall be satisfied to test this untested path:

» place the cursor over the corresponding diamond-shaped node as shown previously,

* select the DDP starting node and display the entire pseudo-code at the same time as
the control graph thanks to Window-Split command,

 use the Window-Source command to display the source code of the function in a new
window and then, select the DDP starting node to highlight the corresponding code.

Analyzing Test Coverage from Logiscope Studio and Viewer 45

IBM Rational Logiscope

Lpdate::Execute::86 - Control Graph

woid ~
9 =ztatement{=): il
switch

caze Kind==USERORDER_WITHDR

2 =tatement (=)

while Amount<=0 {
3 =tatement{=):

if Amount < {account—:Balance
2 =tatementi{=):

T else {

1 =tatemnenti=):

2 =tatementi{=):
1 h]

ul 1. - L [u]

% Update::Execute::B6 - Source - update.cc

103 casze SEROFDERE_WITHDEAWAL:

104 comment (" nAMOUHT +* o ",

105 Seoiny rAmount

106 Filteri=td: :cin. Amount):

while (Amcunt <= 0} 7

comment ("t Inhcorrect Amount~n",
"~ Hontant incorrect~n"):

109

1

1l =tatemnenti{=);

breal:

caze Kind==USERCORDEER_DEFOSI

dee {1 |, -

110 comnmnent { "~nAmount 7 !

111 "“nMontant Y : "):

112 SOCiny rAmount

113 Filteri=std: cin. Amount):

114 ! L

| 2

These representations can be configured with the File-Preferences menu.

8. Select Window-Coverage or click the ﬂl icon. Rearrange both windows to compare

all results.

ii Update:: Execute::86 - DDP Coverage

CoP 1 Z 3 4] & 7 = E 10 11 12

TEST_1 1 1 a 1 1 0 1 0 1 0 a a a 0
TEST_2 1 0 a a a 0 0 0 0 1 a 1 a 1
TEST_3 0 0 a a a 0 0 0 0 0 a a a 0
Tokal 2 1] 1 1 0 1 0 1 1] 1] 1

In the DDP Coverage window, you can see the coverage of each test case and for each
DDP of the function: value is 1 for covered DDP and 0 for uncovered. The Total line

indicates how many times the DDP has been exercised by the test cases.

46 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Test Coverage: Instructions Block Coverage
1. Select the Workspacel- Metric distribution window.
1.

2. Select View-IB Coverage Distribution.
The Workspace view is updated

= Workspacel - Metric distribution

%0
100,
a0 ;
80

70
501587

50

407 33.8
30

201

104
33 23 09
g 05 . — 05 0

00 100 200 200 400 500 600 700 800 900 1000
in hlax.

[

You can repeat the steps of the previous paragraph about control graph replacing DDP
by IB.

5.2.3 Ending Viewer and Studio Sessions

1. In Logiscope Viewer, select File-Exit to end the Logiscope Viewer session.
2. In Logiscope Studio, select File-Exit to end the Logiscope Studio session.

Analyzing Test Coverage from Logiscope Studio and Viewer 47

IBM Rational Logiscope

48 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Chapter 6

Building a C Instrumented Code
for MC/DC Analysis

6.1

6.2

Before you start

Along with this chapter, you are provided with a program written in C language, an
implementation of the Mastermind game. The program has been carefully designed for
you to use all features of Logiscope TestChecker.

Source files of this program are stored in the directory
<InstallationDir>\samples\Tchk\C\Mstrmind.

As a precaution to keep original files safe, it is highly recommended that you copy this
subdirectory into a working directory of your own: e.g. C:\Mstrmind. on Windows,
$HOME/Mstrmind on UNIX.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of
files containing internal data used by Logiscope. It is recommended to a create a
dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

Creating a TestChecker Project

First, you shall define a Logiscope TestChecker project which mainly consists in:

* the list of source files to be first instrumented and then being tested for test coverage
analysis,

+ applicable source code instrumentation options according to the compilation
environment,

* the special traces that will be generated by the Logiscope libraries during the
execution of the test cases on the instrumented application.

1. Open a Logiscope Studio session (see section 3.2).

2. In the File menu, select the New... command or click the E icon.

Building a C Instrumented Code for MC/DC Analysis 49

IBM Rational Logiscope

The New Logiscope Projects dialog box appears.

3. In the Project name: pane, enter the name for the new Logiscope project to be
created. In the context of the guided tour, this simply can be the name of the
application under test: e.g. Mastermind.

The information provided in this pane will be then refer as the <ProjectName>.

4. Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp”
file) and the associated Logiscope repository will be created; the Logiscope repository
is a folder in which Logiscope internal analysis result files are generated.

The information provided there will be then refer as the <LogiscopeRepository>.

Note: By default, the project name is automatically added to the specified location. This
implies that a subdirectory named <ProjectName> is automatically created.

Filez Frojects l Wiorkspaces]

@ Logizcope Project Froject name:
|I'-.-1asterminu:|

Location:

|E:HLngi$cnpeF'rDiects"uMastermind J

{* Create new warkspace

" Add to current waork space

5. Click OK to access to the Logiscope Project Definition first window.

50 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Logizcope Project Defimtion

Project Language Project Modules
i+ Ada [QualiyChecker
i C [CodeReducer
" C++ [BuleChecker
" Java [TestChecker

@ At leazt one module should be zelected.

6. Select the Project Language: i.e. the programming language in which are written
the source code files to be analysed.
For the Mastermind project, select C.

Note: Only one language can be selected. If your application contains source code

files written in several languages, you should create several distinct Logiscope
projects: one for each language.

7. Select the Project Modules: i.e. the verification modules to be activated on the
source files of the project .
For this guided tour, select TestChecker.

8. Click the Next button to continue the creation.

Building a C Instrumented Code for MC/DC Analysis 51

IBM Rational Logiscope

The Project Source Files dialog box allows to specify what source files are to be
analysed and where they are located.

Project Source Files

Source files root directorny:

C:Shstrrind ﬂ D

Directories

" Include all subdirectories
+' Do not include subdirectaries
" Customize subdirectonies o include

Suffixes

. no_ %
Source Files O

Source files root directory shall specify the location directory of the source files to be

analyzed.

9. Browse to select the directory where the Mastermind sample source files are located:
i.e. in the samples/Tchk/C/Mstrmind folder of the Logiscope installation directory
or in the directory where the source files have been copied as recommended: e.g. C:/
Mstrmind.

The Directories choice allows to select the list of repertories covering the application
source files.

- Include all subdirectories means that selected files will be searched for in every sub-
directory of the source file root directory.

- Do not include subdirectories means that only files included in the application
directory will be selected.

- Customize subdirectories to include allows the user to select the list of directories
that include application files through a new page.

Suffixes choices allow to specify applicable source file extensions needed in the above
selected directories. Extensions shall be separated with a semi-colon.

10.Click the Next button.

52 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

The C Language Settings dialog box allows setting up C source code parsing options:

C Language Settings

Drefinitian file: |E:"~F'ru:ugram Files\TelelogiciLogiscope_B.

Igrore File: |E:'\F‘ru:ugram Files\TelelogichLogizcope_B.

Preproceszor
kacro definitions and Include paths [-0 & -]

| [

[v expand macro, except for the ones listed in:

| -

The default values are here appropriate for the context of the Mastermind example.

For more details on these options, please refer to the chapter Parsing Options in the
IBM Rational Logiscope RuleChecker & QualityChecker C Reference Manual.

11.Click the Next button.

Building a C Instrumented Code for MC/DC Analysis 53

IBM Rational Logiscope

The TestChecker Settings dialog box is now displayed. It allows to specify some of the
key settings of a Logiscope TestChecker project.

TestChecker Settings

T est repozitony:

|E:HLDgischeriects‘\M astermind T est

YWhorking directony:

|E:'\Lu:ugisu:u:upeF'n:uieu:ts'\M asztermind®.

Executable for test zezsion:

b ake command [with a Logiscope target):
||:m|:| Jc Makelog bal

12. The Test repository: is the directory in which the traces files generated when
executing the instrumented executable will be saved.
Keep the default location i.e. a Test folder to be created in the Logiscope repository
specified in the New Logiscope Projects dialog box (see Item 3.).

13.The Working directory: is the directory where the make file can be found and where
the executable will be generated (unless otherwise specified by the make file).

14.The Executable for a test session: shall specify the instrumented executable.
In this context, the executable is not yet generated and will be chosen later.

15. The Make command file shall contains the command to build the instrumented
executable. Type the following command:
on UNIX: make Igmstrmind
on Windows, cmd /c MakeLog.bat

Note: According to your DOS version, use the equivalent of the ‘cmd’ command.

The Make command will launch the make file in which a Logiscope target has been
defined, to compile and link-edit together the instrumented source files and the
instrumentation library file located in <InstallationDir>/instr/src/vigtchk.c.

In the next section “Building the Instrumented Executable”, you will be prompted to edit
and modify the make file specified in this pane to adapt it to your compilation
environment.

54 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

16.Click Next.

The following wizard box will allow you to complete the TestChecker project
specification with some specifics of the C language.

17.In the Instrumentation method part, you can choose the way of instrumenting the
source code. In the context, keep the default instrumentation model provided with the

product.

18.As an example for this session, check the MC/DC instrumentation option to benefit
from the MC/DC advantages .

C TestChecker Settings

Instrumentation method

TLCL file uzed for ingtrumentation:
gram FileshT elelogichLogizcope_B. Bhutibinstrument tel

MC/DC instrumentation

[+ MC/DC instrumentation

For more details on MC/DC, please refer to Chapter 2.

19.Click Next.

The last wizard window is displayed. You can check if all files are correct by expanding
folders:

Building a C Instrumented Code for MC/DC Analysis 55

IBM Rational Logiscope

Logizcope Project Summary

Project Language:

Project Modules:
TestChecker

% maching. c
master.c
E| plaver.c
FCOME.C
util.c
wiike. c

TR TS R T

20. Click Finish to create your first C TestChecker project.

The Logiscope Studio main window is now updated and contains the workspace view of
your project (see next section).

Two files has been created by this process and are of the form: <ProjectName>.ttp for
project and <ProjectName>.ttw for associated workspace. They are both located in the
folder specified as the Logiscope Repository.

6.3 Building an Instrumented Executable

Your project is ready to be built. Building consists in:
* instrumenting the code using the instrumentation method selected for the project,

+ generating (i.e. compiling and linking) the instrumented executable.

When building the instrumented executable, in order the makefile works, the original
sources files are temporarly replaced by the instrumented ones and then restored.

First of all, you must adapt the Make Command to your compilation environment:

1. Open a text editor and load either the file makefile file or the file makefile.vc if you
intend to compile the code using a Microsoft Visual compiler.
It starts by the following lines:
makefile for Mastermind C example
LOGISCOPE INSTALL = ..\..\..\..

56 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

OUTDIR = Objects
INDIR = ..\Mstrmind

2. Adapt the value of the variable LoGIscoPE _INSTALL to correspond to the path of the
Logiscope installation directory.

3. On Windows only: open a text editor and load the MakeLog.bat file located in the
directory where the Mastermind source files are: e.g. C:\Mstrmind.
It contains the following lines:

set VC8=C:\Program Files\Microsoft Visual Studio 8\Vc\bin\vcvars32.bat
set VC7=C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin\vcvars32.bat

set VC6=C:\program files\microsoft visual studio\vc98\bin\vcvars32.bat

4. If you intend to compile the code using a Microsoft Visual compiler, set the
appropriate path to the installation directory of the compiler to be used.

Once the Make command has been adapted:

5. Select the Project-Build command or click the g icon. A new tab is added in the
Output window and will contain code instrumentation and generation messages:

Analyzing: ../Mstrmind/base.c...
log cc : using default options file : ANSI.def

Analyzing: ../Mstrmind/machine.c...
log cc : using default options file : ANSI.def

Analyzing: ../Mstrmind/master.c...
log cc : using default options file : ANSI.def

After building the project, the Message tab of the Output window will contain final
results.

The project is built. Otherwise this window will display error messages.

You will now end up TestChecker settings specifications.

6. Select Project-Settings option or run the <Alt+F7> command to specify the
executable file.

7. Select the TestChecker tab.

8. You can now specify the Executable for test session: i.e.the command to launch the
instrumented executable:

On Windows: Objects/Igmstrmind.exe

On Unix: xterm -e Igmstrmind

If you command name has blank spaces put it between double-quotes (). The space is
interpreted as the separator between the command and its parameters.

Building a C Instrumented Code for MC/DC Analysis 57

IBM Rational Logiscope

ELDgische General | Modules TestChecker Instrumentatiun] .-i'-.nal_l,lsis]
-l MetrmindT est_tt
DS Eﬁlm_l,l:;mi::ilesp TestChecker Settings
-3 Souce Files .
=] . Mstmind/base.c Test repository:

M strmind/machine. | Filez\Telelogic\Logizcope_B.ShzampleshT chk\ChLogiscopeProjects\ T est

. Matrmind/master. o o _ T
. Mstrmind/player.c Wwarking directory:

Mztmind/ scone. o |e|e|n:ngic:"-.Lu:ngisc:n:npe_E. Bhzamples\To
.M atrrmindutil ¢ _ T
 MMstmindAurite Executable for test session:

|EI bjectz/lamstrmind. exe

kdake command [with a Logiscope target]:
||:m|:| Jo Makelog.bat

9. Click OK to confirm.

10.Do not forget to save your project!
Select File-Save Workspace to save it.

The instrumented executable generation is complete, your project is ready to be tested.
For this you are going to use the Logiscope TestChecker tool.

58 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

6.4 Testing the Instrumented Executable

1. Select Project-Start TestChecker to load the Mastermind project in Logiscope
TestChecker. The main window looks as follows:

File Edit Wiew Build wWindow Help

Componerts |Tegt3 |

[=|- MskrmindTest
¥l base.c
-machine.c
-masker.c
-player.c
-SC00FE.C
-util.c
“wrikbe, c

Loading TestChecker data...

6.4.1 Starting the Test

1. Select the Test pane of the Project window by clicking on the Tests tab. You are
ready to create a test suite.

2. Select the File-New command or use the i’1| toolbar icon to create the test suite.

A test suite window is displayed with the name 7Tchkl.
3. Select the test suite you just created by clicking on it and select the Edit-New Test

command or click the 2| icon.
This action creates a new test in the current test suite. The default name for this new
test is TEST 1. This is the test you are going to run.

6.4.2 Viewing MC/DC While Testing

1. Select the View-MCDC Spy command.The MCDC Spy window appears.
It will display the progress of code coverage during testing:
- the Global bar shows the cumulated coverage for all tests,

Building a C Instrumented Code for MC/DC Analysis 59

IBM Rational Logiscope

- the Current bar shows the coverage for the current test,
- the Improvement bar shows the global coverage improvement secured through the
execution of the current test

2. Press the <F5> key or click the icon.
The test begins: a window appears in which you start playing mastermind.
Your screen will look like this:

=] &[5 IrlJ] 12| B 8| 2[W|

Components Tests | i aaﬁt
= MstrmindTest Test =3 | % DDP's Ca... | % DDP's Imp - |
+- Tchil TEST_1 0,00 % 0.

I
. Coverage Improvement
Global Current
100 % 100.00 %
A
L | .|_| 50 % 50.00 %
: 0% 000 % ——
Loading TestChecker data..
863 a63 a63

= Objects/LGMSTR~-1.EXE

WYould you like instructions,. ysn [default iz nl-> n
Do you want to guess, or make up the code,. g-m [default is gl -
PLAYER—>* Do you want coaching. ysn [default is nl —-> n

PLAYER—> Choosing a code for you to guess.
PLAYER—> Pleasze enter guess #1 - red ved vellow green
Ny

PLAYER—> guess,. refresh, print,. or guit [default is guess] —>*

60 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

6.5 Refining Modified Conditions

Logiscope TestChecker can refine further conditions of a decision coverage.

To do this:

1. Select a component or function in a Component window or in the Components pane
of the Project window for example machine.c/instruction.

2. Select the View-MC/DC command.

The Modified Condition/Decision Coverage window pops up and displays the modified
condition/decision coverage (MC/DC). This window lists boolean expressions of the
selected component and its MC/DC coverage.

i Modified Condition/Decizion Enverage [instruction]

Tested it ="y irst 1= " Result
83 [ins i W T T T
'IEIE [inst =="r' I| ifzt == 'N] EI.EIEI X T F F
114 [inst == "' |l inst == "W') 000 F T F
126 [inst == "' linst == "M') 000 %
128 [inst =="n' [inst =="M'] 000 %
144 [ingt == [linst == '] 000 %

3. Select a boolean expression in the left part of the window. In the right part of the
window appears the decomposition of the selected boolean expression.

4. Select the View — DDP Coverage command.

Beqgin

3 Elze notfinstl= y&&lnstl "]

93 4 Cazelang==T.R' f

102 5 I inst=="n"linzt=="M" I

104 E Elze notfinzt=="n"linzt=="M'] '
110 7

Caze lang==1."" :_j

ingt 1=y 1 ihst 1= " i Result i

Testedj
. 1 v T T T g
'IEIE [inst =="n'" || ingt == "N’] 0o0E T F F
114 [ingt =="n'" [l inzt == "H"| 0.00 % F T F 5
126 [ingt =="n'" [l inzt =="N'"| 0.00 % :
138 [inst =="n" [l inzt == "N"] 0.00 %
144 [inst == "' [l inzt =="F") 0.00 %

Building a C Instrumented Code for MC/DC Analysis 61

IBM Rational Logiscope

5. Select another boolean expression: the DDP Coverage window shows the DDP
associated to the selected expression.

6. Select another component: the Modified Condition/Decision Coverage and DDP
Coverage windows are updated accordingly.

62 |IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Chapter 7

Testing on a Target Machine

7.1 Preliminaries

The Logiscope product supplies as an example a way to test on the following Real Time
Operating System (RTOS) targets: VxWorks and PSOS. For other targets, please contact
your IBM Rational representative for customization.

When testing on a target machine, 7estChecker runs on the host machine and your
instrumented application runs on the target. Both processes communicate by a
communication program named TestChecker Gateway.

The C project construction used in this case is the same as before but it is now named
Target. The only difference is the executable command used to start your tests.

1. In Logiscope Studio after creating and building your project, open the Settings

window:
Settings
"4 Logiscape CTestChecker TestChecker |
= @ Target vzp
I:I ""ﬂ %UE:.:T;Z_C T est repositony:]E:'\Mstrmind'&TestTarget 1
5] master.c
. 5] playerc
: i e |E] scarec
; = T Warking directony: }E:'&Mstrmind]
: 2_ wirite.c
’ - |F] zhasec
5 i [] Diymamic Files Executable for T est session: 1TE|E|DEIiC'\LDEIi3¢DF'E"~t'iﬂ"'-TCGEtWﬂ_'r'-EHE“ el L. 1
i Make command:]Cmd fo MakELDg.bat
(]] Cancel i Help

Settings window for target testing

Testing on a Target Machine 63

IBM Rational Logiscope

The communication-handling program used for these tests is TcGatWay.exe located in
the <log install dir>\bin directory. It takes as parameter -port_name, where port name
is an available communication device (-tcp or -serial COM2 for example) for
communicating with the target machine on which the instrumented application will be
executed. Please refer to TestChecker on-line Help for information on the TcGatWay
options.

2. Save your project and load Logiscope TestChecker.

3. Select File-Open command and open the Mastermind Logiscope project.
At startup, the Logiscope TestChecker main window is as follows:

Xs:

t|- mazter.c
- player.c
H- score.c
¥l util.c

- wifnnt. b

- ke,

- zbase.c

ERCh

ST e I A R

..

i
[

R
ST e

FLUHIHIHIHIHIH I HIH IR HITHIS,
""““_h'-'“"i“""“n."’“"':“‘“ TR, SR T T Tl] S, TR LT L P

e S i e e T X
AHNING[ZZd] master sta :Duplicate "IntEdShraMudBZ" component. Cumpunent not Iua

ARNING[224] master.sta :Duplicate "Int64AShriMod32" component. Component not load
ARNING[224] master.sta Duplicate "GetFiberData" component. Component not loaded

For more information on main window fields, see Chapter 4, Testing on a Host Machine.

Then change the settings to allow the communication with TeGatWay:
1. Select Build-Settings.

2. On the Test tab, check Use standard communication pipe option.
3. Click OK to keep the changes.

64 |IBM Rational Logiscope TestChecker - Getting Started

7.2

7.21

IBM Rational Logiscope

Creating and Running Your First Test

Tests are stored in test suites. You can create as many test suites as you need. This allows
you to handle tests according to how your testing process is organized. Before running a
test, you must create a test suite. This test suite will contain the test coverage results. Of
course, if a test suite has already been created it can be reused.

Starting the Test

1. Select the Tests pane of the Project Window by clicking on the Test tab. You are ready
to create a test suite.

2. Select the File - New command, or use the _Q‘J toolbar icon to create the test suite.
A test suite window is displayed with the name 7chkl, as shown in the illustration
below.

Components Tests

= Target
o Tehk

3. Select the test suite you have just created by clicking on it,

4. Select the Edit - New Test command or click the _|_§|_| icon.
This action creates a new test in the current test suite. By default, this test is named
TEST 1.

Testing on a Target Machine 65

IBM Rational Logiscope

B Tchkl =]

4] | _“J.J

7.2.2 Viewing Coverage Rates While Testing is in
Progress

1.

Select the View - DDP Spy command.

The DDP Spy appears. This window will display the progress of code coverage
during testing:

- the Global gauge shows the cumulated coverage for all tests,

- the Current gauge shows the coverage for the current test,

- the Improvement gauge shows the global coverage improvement secured through
the execution of the current test.

. Click on TEST 1. This is the test you are going to run.
. Press the F5 key or click the icon.

TeGatWay starts up: an empty MS-DOS window appears. The Logiscope
TestChecker gateway is waiting for information from the instrumented binary.

Run the Mstrmind.exe instrumented application on the target machine and follow
instructions to play the mastermind game.

66 |IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

DOP Spy
~Coverage — |

Componerts Tests]

- T arget
[lobal Current

r“_‘“_ 100 2 r‘“—“— 100.00 % r‘_‘_‘*

& C:APROGRA~1ATELELO~1ALOGISC~14bin\TcG atWay.exe

As you play, you can see coverage rates increase in the DDP Spy window, but TEST [
being the only test that has been executed for the moment, three progress indicators
display identical values.

Testing on a Target Machine 67

IBM Rational Logiscope

68 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Chapter 8

Creating and Testing Ada
Instrumented Code

8.1 Before you start

8.2

Along with this chapter, you are provided with a program written in Ada language, an
implementation of the One Armed Bandit game. The program has been carefully
designed for you to use all features of Logiscope TestChecker.

Source files of this program are stored in the directory
<InstallationDir>\samples\Tchk\Ada\OneArmedBandit.

As a precaution to keep original files safe, it is highly recommended that you copy this
subdirectory into a working directory of your own: e.g. C:\OneArmedBandit. on
Windows, SHOME/OneArmedBandit on UNIX.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of
files containing internal data used by Logiscope. It is recommended to a create a
dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

Creating an Ada TestChecker Project

First, you shall define a Logiscope TestChecker project which mainly consists in:

* the list of source files to be first instrumented and then being tested for test coverage
analysis,

+ applicable source code instrumentation options according to the compilation
environment,

* the special traces that will be generated by the Logiscope libraries during the
execution of the test cases on the instrumented application.

1. Open a Logiscope Studio session (see §3.1).

2. In the File menu, select the New... command or click the E icon.

Creating and Testing Ada Instrumented Code 69

IBM Rational Logiscope

The New Logiscope Projects dialog box appears.

3. In the Project name: pane, enter the name for the new Logiscope project to be
created. In the context of the guided tour, this simply can be the name of the
application under test: e.g. OneArmedBandit.

The information provided in this pane will be then refer as the <ProjectName>.

4. Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp”
file) and the associated Logiscope repository will be created; the Logiscope repository
is a folder in which Logiscope internal analysis result files are generated.

The information provided there will be then refer as the <LogiscopeRepository>.

Note: By default, the project name is automatically added to the specified location. This
implies that a subdirectory named <ProjectName> is automatically created.

Files Frajects l wiorkspaces]

@ Logiscope Project Project name:
|Elne.ﬁ.rmeu:lB atdit

Location:

|-:ugisu:u:upeF"ru:uieu:ts'xEl niedrmedB andit J

* Create new workspace

O Add to current work space

5. Click OK to access to the Logiscope Project Definition first window.

70 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Logizcope Project Defimtion

Project Language Project Modules
i+ Ada [QualiyChecker
i C [CodeReducer
" C++ [BuleChecker
" Java [TestChecker

@ At leazt one module should be zelected.

6. Select the Project Language: i.e. the programming language in which are written
the source code files to be analysed.
For the OneArmedBandit project, select Ada.

Note: Only one language can be selected. If your application contains source code

files written in several languages, you should create several distinct Logiscope
projects: one for each language.

7. Select the Project Modules: i.e. the verification modules to be activated on the
source files of the project .
For this guided tour, select TestChecker.

8. Click the Next button to continue the creation.

Creating and Testing Ada Instrumented Code 71

IBM Rational Logiscope

The Project Source Files dialog box allows to specify what source files are to be
analysed and where they are located.

Project Source Files

Source files root directorny:
C:ADnedrmed? andit 1]

Directonies

* |nclude all subdirectaries

" Do not include subdirectories

" Customize subdirectaries to include

Suffixes

S s " ada:”. adb:;” adz

9. Source files root directory shall specify the location directory of the source files to

be analyzed.

Browse to select the directory where the OneArmedBandit sample source files are
located: i.e. in the samples/Tchk/Ada/OneArmedBandit folder of the Logiscope
installation directory or in the directory where the source files have been copied as
recommended in section 1.2: e.g. C:/OneArmedBandit.

The Directories choice allows to select the list of repertories covering the application
source files.

Include all subdirectories means that selected files will be searched for in every sub-
directory of the source file root directory.

Do not include subdirectories means that only files included in the application
directory will be selected.

Customize subdirectories to include allows the user to select the list of directories
that include application files through a new page.

Suffixes choices allow to specify applicable source file extensions needed in the above
selected directories. Extensions shall be separated with a semi-colon.

10.In this case, you are going to include two file types only: *.adb and *.ads. So, you

can delete the *.ada extension.

11.Click the Next button.

72 |BM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

The TestChecker Settings dialog box is now displayed. It allows to specify some of the
key settings of a Logiscope TestChecker project.

TestChecker Settings

Working directony:;

|E:"~L-:ugisu:u:upeF'ru:uieu:ts'xD niedrmedB andith.

Esecutable for test sezsion:

b ake command [with a Logiscope tanget];

12. The Test repository: is the directory in which instrumented code files are generated .
Keep the default location i.e. a Test folder to be created in the Logiscope repository
specified in the New Logiscope Projects dialog box (see Item 3.).

13.The Working directory: is the directory where:
* the make file can be found
» the executable will be generated (unless otherwise specified by the make file) ,

» the traces files will be saved.

14.The Executable for a test session: shall specify the instrumented executable.
In this context, the executable is not yet generated and will be chosen later.

15. The Make command file shall contain the command to build the instrumented
executable. Type the following command:

On UNIX: MakeLogAda.

On Windows: cmd /c MakeLog.bat.
Note: According to your DOS version, use the equivalent of the “cmd’ command.

In the next section, you will be prompted to edit and modify the make file specified
in this pane to adapt it to your compilation environment.

16.Click Next.

Creating and Testing Ada Instrumented Code 73

IBM Rational Logiscope

The following wizard box will allow you to complete the TestChecker project
specification with some specifics of the Ada language.

Ada TestChecker Settings

Inztrumentation model
Instrumentation model file:

elogichLogizcope B.54datahaudit adahinstrument. ads

Instrumentation file
Linkage file:

| Separate body and specification

Thelnstrumentation model is an Ada file to be used as a template to generate the
instrumentation file when building the instrumented executable (see next section).

A default instrumentation model file named instrument.ada is provided in the
\data\audit_ada\ folder in the Logiscope installation directory. With this default
instrumentation model, the test coverage information is produced in a file named
instrum.dyn in the Working directory, which has a specific format.

In order not to write the test coverage information in such a file, or to modify the for-
mat of this file, the default file can be modified and use as a new instrumentation
model.

17.In this context, keep the default instrumentation model.

The Instrumentation file file is generated from the instrumentation template during the
building of the instrumented executable (see next section). Its purpose is to produce the
test coverage information during an execution of the instrumented executable. This file
must be compiled and linked with the instrumented application.It can consist:

either in a single file also named instrument.ada as the instrumentation template,

or in two separate files named audit_instrum.ads for the specification and
audit_instrum.adb for the body depending if the Separate body and specification
option is checked .

In some context, you can use the Linkage file pane to specify either the name of the file
to be generated or even an existing file.

18. In your case, as you have separate sources (.ads and .adb source files), check the

Separate body and specification option.

74 |BM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Instrumentation file
Link.age file:

| 2

I+ Separate body and specification

19.Click Next.

The last wizard window is displayed. You can check if all files are correct by expanding
folders.

Logiscope Project Summary

Project Language:
Ada

Project b odules:

TestChecker

=] OnedrmedE andit adb
OnedrmedE andit ads
Slot achine. adb

20. Click Finish to create your first Ada TestChecker project.

The Studio main window is now updated and contains the workspace view of your
project (see next section).

Two files has been created by this process and are of the form: <ProjectName>.ttp for
project and <ProjectName>.ttw for associated workspace. They are both located in the
folder specified as the Logiscope Repository.

Creating and Testing Ada Instrumented Code 75

IBM Rational Logiscope

8.3

8.4

Inserting Pragmas for the Probes

By default, during the execution, traces are written in a file called coverage file. In order
not to undermine time behaviour during execution, the coverage file is not written at
each trace, but before the end of execution, or at special defined steps.

This may be realized either directly inside the source code (before the instrumentation),
or inside the instrumented files. Inside the source code, insert the following statement:

pragma Audit Instrum;

This statement can be added at several places before the possible exits or at a place repre-
senting a partial execution which is of interest.

This pragma has no effect when the source code is compiled normally. When this code is
instrumented before compilation, all occurrences of this pragma are transformed into the
following statement:

Audit Instrum.Audit Stop;

which by default performs the writing of the coverage file.

The implementation of the Audit_Instrum.Audit_Stop procedure can be changed using
the instrumentation template: e.g. to write the test coverage results not into a file, change
the format of the traces.

An alternative to inserting the Audit_Instrum pragma in a source file is to insert the call
to Audit_Instrum.Audit_Stop into the corresponding instrumented file or even into a
non instrumented file, e.g. a main test program. In the last case, a with
Audit Instrum; statement shall also be inserted.

Building the Instrumented Executable

In this part, you will define necessary commands for this program compilation and link.
This information is contained in MakeLog.bat file for Windows and in MakeLogAda
for UNIX.

1. Select File-Open command. Change the file type in order to show the All files (*.%)
option.

76 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

DT s et e o B
Look. in: i:ﬂ OredrmedB andit _:'_j E‘I

|1 Logizcope ik ak, E] Slatkd achine. ada
2 Test 5 OnedmedBandit adh 3 SlatM achine. adb

] audit_inztrum.li % OnedrmedB andit. ads @ Slatt achine. ali

] b_SlatMachine.c] OnedrmedBandital [T SlotMachine. exe

r & intrumn. dyn OnedrmedE andit. vsp

El Logizcope.ref sl OnedmedBandit vew

File name: 1MakeLngat Open

Filez of type: i.-i'-.ll Files [*.7] _:_j Cancel I

2. Select MakeLog.bat file and click Open to edit it.

Bi MakelLog.bat =]

oo —o —Ilo:~OneirmedBandit~Test —gnatwu —gnatz? —gnato —g -I- &
goc —— —Io: ~OneArmedBandit~Test —ghatwu —gnat®? —gnato —g -I-
gos —— —Io: ~OneArmedBandit~Test —gnatwu —gnat=? —gnato —g -I-
gnatbind -z SlotMachine. ali
gnatlink —g SlotMachine. ali

[« | 25

These commands have been written for a Gnat compiler. If you have another compiler,
you shall replace them with the right commands. Note that you have to compile the
audit_instrum.adb file (coming from the instrumentation) with your program.

3. If you have changed some commands, save this file with the File-Save command

confirming the update or click on the Ej icon.

Your project is now ready to be built.
4. Select Project-Build to launch the generation of the instrumented executable.

Creating and Testing Ada Instrumented Code 77

IBM Rational Logiscope

E[onedrmedBandit . adb:160:07: warning: "Adt_Dummy 7" iz not referenced :J
HlonedrmedBandit adb:197:07: warnihg: "Adt_Dummv_8" i= not referenced
COneirmedBandit adb:257:07: warning: "Adt_Dummy_9" 1= not referenced
| |OnedrmedBandit adb:350:07: warning: "Adt_Dumnmv_10" i=s not referenced
|HoneArmnedBandit adb:433:07: warning: "Adt_Dummy_11" i= not refersenced

::C:\OneérmEdEandit>gnatbind —-® SlotMachine ali

HC:~OnedrmedBandit »gnatlink —g SlotMachine. ali

Buid | KN R

For Help, press F1 | ||

Results files of the binary generation are generated at the same level as the source files.

8.5 Testing the Instrumented Executable

In this section, you are going to proceed differently, executing directly the instrumented
binary outside the Logiscope tools.

For Logiscope Ada TestChecker projects there is only one way to proceed: first execute
outside 7estChecker and then add generated execution trace file (.dyn) to the project.

1. Double click on the SlotMachine.exe file. A DOS window opens up and you can start
playing. Good luck !!

& C:\ODneArmedB andit\SlotM achine_ exe
2

Which wheel do you wish to use 7 <only 1 to 4 iz allowed?
3

Which wheel do you wish to wse 7 <only 1 to 4 iz allowed?
4

COIN COIN SEUEHN FOUR_LEAVES _CLOUVER
You have lost 5

Your fortune comes to a total of =
How much do you want to het ¥

Bet depending on wour credit, thisz is to say L
How many wheels do wou wish to wuse 7 <only 1 to 4 is allowed>
2

Which wheel do you wish to wse 7 €only 1 to 4 i=s allowed?
3
Which wheel do you wish to wse 7 €only 1 to 4 is allowed?

4
COIH COIH SEUEH FOUR_LEAUVES _CLOVER
You have lost 5

Ctrl+C or close window to end

78 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

2. To end the test session, run <Ctrl+C> command. A test coverage file called
instrum.dyn is then generated in the Working directory .

Note: If you make others tests, results will be appended to this file.

3. This file should be added to your project to take into account tests results. To do this,

go back to Logiscope Studio, right click on OneArmedBanditTest.ttp in the
Workspace view.

—---- OredrmedBandit T est vawm

------ =3 Dynamic Files
E' -j Source Files

L. ﬂ OneArmedB andit T est_ wiss

| E OnedrmedB andit. 2
OnedrmedB andit. 2
we | Z] Slothd achine, adb

|

Inzert Files. .
Mew Folder

Eettings... Alt+FF

Set as Active F'r|:||ect

.‘ F'rn:npertles

Alt+Enter

4. The Open window is displayed. Select instrum.dyn file and click OK to insert it.

5. Select the newly added file and move it up to Dynamic Files folder as shown below:

|;I. OnedmedB anditT est.vsw

=2 DneArmedBanditTest. vs
- Dynamic Filss Intrum.

:j Sl:uurce Files

b d QnedmmedB andit. adb
-] OnetumedBandit. ads
- [E] Slottachine.adb

E-EgEl OnedmmedB anditT est.wvsw
E-E8 OneArmedBanditT est vsp f
—j Dynamic Files !
R |J instrum, dyn {
LJ __j Source Files
b |J QnedmmedE andit. adb
D Onetrmedt andit. ads
-] Slottachine.adb

6. Save your project with File-Save Workspace command.
7. Open the Logiscope TestChecker as you know how.
8. Double click on the ONEARMEDBANDIT.BET component:

Creating and Testing Ada Instrumented Code 79

IBM Rational Logiscope

Eile Edit “iew Buld “window Help

D] e (o]] Bl

1]2] f] 8] 2%

A I e I @A Test [DNEARMEDBANDIT.BET] =] E3
= Test =» % Coverage % Improvement Statuz | Comr =
& OncAmedBandtach [EIERESF o7 100.00 % 2222 % 0

- OMEARMEDBANDIT
-~ OMEARMEDBANDIT 2
- OMEARMEDBANDIT 2
-~ OMEARMEDBANDIT 2
- OMEARMEDBANDIT 2
- ONEARMEDBANDIT .2
JONEARMEDEANDIT.BET
-~ OMEARMEDBANDIT L
- OMEARMEDBANDIT F
-~ OMEARMEDBANDIT L
- OMEARMEDBANDIT F
-~ OMEARMEDBANDIT S
- OMEARMEDBANDIT.T
- ONEARMEDBANDIT
- OMEARMEDBANDIT
- OMEARMEDBANDIT

hll:.-\l:!hdl:ﬁn.ﬁhlﬁl:lll
1 I i 14

ARNING([1018] browser.dat [58,67]: Not load duplicate "ONEARMEDBANDIT.BET" comp |

ARNING[1018]) browser.dat [59,78]: Not load duplicate "ONEARMEDBANDIT.LOST [ACC(

ARMING[2008) browser.dat [61.7]: Unable to load '™ component _I:I
: r

[«] |

TEST_2 L E:S 0.00% 1]

i e

TestChecker main view

80 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

9. Select View-DDP Coverage.

EAAMEDBANDIT BE - i |]
j i Enverag31 4 Imprnvement_i Statu31 Comment - i
100.00 % 2222 %]
_ VR 0.00 %]
% 4 | _d“l J
j& DDP Coverage [DNEARMEDBANDIT BET] | _ O] x]
Tested i Line =>i #DfDDF‘i DDF
W' 2m 9 Begn
v 215 1 IFABET » FORTUME
v 219 2 Elze notfaBET > FORTUNE]
W 24 3 IFABET =0
W 225 5 IFMUMBER =4
W' 228 B Elze not(MUUMBER = 4)
v 224 2 For-Loop INDEX in1 .. NUMBER
W 233 7 End-Faor-Loop nat(for IMDEX in 1 .. HUMEER]
v 235 4 Elze not[aBET > 0)
ol] ©

ONEARMEDBANDIT. BET DDP Coverage

10. Select View-MCDC to visualize modified conditions:

i Modified Condition/Decision Coverage [DNEARMEDBANDIT PLAY]

Test. | RESULT =Ja . | SQUARE | THREE_OF . | Resut ||
194 [RESULT =JACK_POT ar S... 25.00 % T T T T
T F T T
F T T T
T T F T
T F F T
F T F T
F F T T
v F F F F

ONEARMEDBANDIT. BET MC/DC

As shown in Chapter 5, you can use the Studio and the Viewer to see tests coverage

results.

Creating and Testing Ada Instrumented Code 81

IBM Rational Logiscope

8.6

Customizing the Instrumentation
Primitives

The instrumentation model must contain several Ada subprograms which will be called
by the instrumented executable. These subprograms (called instrumentation primitives)
are aimed at detecting the passing through the different branches of the control graph, the
subprogram calls, and the MCDCs, and at producing the test coverage information. The
calls to these primitives are automatically inserted in the instrumented application during
the instrumentation.

To write a particular instrumentation template, the following primitives shall be
implemented:

* procedure Audit Init Application (Appli : String ; Data
String ; Max Func : Natural);

This procedure must be called at the beginning of the application. Its parameters
are the following:

Appli: name of the application,

Data: directory containing the results of the application analysis (control graph,
call graph, ...),

Max_Func: maximum number attributed to the subprograms in the application call
graph (>=0).

* procedure Audit Init Function (Func_Id : Positive ;
Func Name: String ; Func Date : String ; Nb Bran : Natural
; Nb Calls : Natural ; Nb Mcdcs : Natural);

This procedure must be called at the beginning of the application for each instru-
mented subprogram and for each external subprogram called in the application. Its
parameters are the following:

Func_Id: identifier of the subprogram; it must be unique in the instrumentation file
(>0),

Func Name: full name of the subprogram (prefixed with the possible package(s)
and containing the name of its possible parameters),

Func Date: time of the last analysis of the subprogram,

Nb_Bran: number of branches in the control graph of the function (>=0),
Nb_Calls: number of (distinct) subprogram calls inside the subprogram (>=0),
Nb_Mcdcs: number of MCDCs inside the subprogram (>=0).

* function Audit Start Func (Func_Id : Positive ; Vect Size
: Natural) return Boolean;

82 |IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

This function is called at the beginning of each instrumented subprogram. Its
parameters are the following:

Func_Id: identifier of the subprogram (>0),

Vect Size: maximum number of single conditions in the MCDCs of the subpro-
gram (>=0).

Its return value is not significant.

* procedure Audit Set Branch (Func_ Id : Positive ; Bran Id
Natural);

This procedure is called at the beginning of each branch of the control graph. Its
parameters are the following:

Func_Id: identifier of the current subprogram (>0),

Bran_Id: number of the corresponding branch (>=0); 0 corresponds to the main
branch, before any control structure; numbers greater than 0 are the same as in the
control graph files.

* procedure Audit Set Call (Func Id: Positive ;
Called Func Id : Positive);

function Audit Set Call (Func Id: Positive ;
Called Func Id : Positive) return Boolean;

This procedure or this function is called just before a subprogram call. Its parame-
ters are the following:

Func_Id: identifier of the current subprogram (the calling one) (>0).
Called Func_Id: identifier of the called subprogram (>0).
The return value of the function is not significant.

Because of certain restrictions of the Ada language, it is impossible to call this
primitive at the exact location of the call. Therefore, its execution does not fully
prove that the corresponding call has taken place.

* function Audit Set Mcdc (Func Id : Positive ; Mcdc Id
Positive ; Nb Cond : Positive ; Exp : Boolean) return Bool-
ean;

This function is called for each MCDC. Its parameters are the following:
Func_Id: identifier of the current subprogram (>0),

Mcdc_Id: identifier of the MCDC (>0).

Nb_Cond: number of single conditions in the MCDC (>0).

Exp: boolean result of the MCDC (which is returned by this function).

Creating and Testing Ada Instrumented Code 83

IBM Rational Logiscope

* function Audit Set Sgl Cond (Func_ Id : Positive ; Mcdc_ Id
Positive ; Index : Positive ; Exp : Boolean) return Bool-
ean;

This function is called for each single condition of a MCDC. Its parameters are the
following:

Func_Id: identifier of the current subprogram (>0),

Mcdc_Id: identifier of the current MCDC (>0).

Index: number of the condition in the MCDC (>0).

Exp: boolean value of the single condition (which is returned by this function).

* function Audit Set Bool Exp (Func Id : Positive ; Bran T,
Bran F : Natural ; Exp : Boolean) return Boolean;

This function is called for each boolean expression in an i f or exit when struc-
ture. Its parameters are the following:

Func_Id: identifier of the current subprogram (>0),

Bran_T: number of the control graph branch corresponding to the case where the
expression is true (>0).

Bran_F: number of the control graph branch corresponding to the case where the
expression is false (>0).

Exp: result of the boolean expression (which is returned by this function).

* procedure Audit Stop;

This procedure is aimed at producing the test coverage information.

In order to automatically include this procedure in the instrumented code, just add
the pragma Audit_Instrum in the source code. Each such pragma will be replaced
by a call to Audit_Stop during the instrumentation.

* procedure Audit Start;

This procedure is called at the beginning of the application.

During the instrumentation, a call to Audit_Init_Application will be automati-

cally inserted at its beginning, and for each instrumented subprogram, a call to
Audit_Init Function will be inserted at its end.

84 |BM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Chapter 9

Building and Testing Java
Instrumented Code

9.1

9.2

Before you start

Along with this chapter, you are provided with a program written in Java language, an
implementation of the Mine Finder game. The program has been carefully designed for
you to use all features of Logiscope TestChecker.

Source files of this program are stored in the directory:
<InstallationDir>\samples\Tchk\Java\JMineFinder.

As a precaution to keep original files safe, it is highly recommended that you copy this
subdirectory into a working directory of your own: e.g. C:\JMineFinder. on Windows,
SHOME/JMineFinder on UNIX.

In addition, you will create Logiscope projects and associated repositories: i.e. sets of
files containing internal data used by Logiscope. It is recommended to a create a
dedicated directory to store these data: e.g. a folder named LogiscopeProjects.

Creating a Java TestChecker Project

First, you shall define a Logiscope TestChecker project which mainly consists in:

* the list of source files to be first instrumented and then being tested for test coverage
analysis,

+ applicable source code instrumentation options according to the compilation
environment,

* the special traces that will be generated by the Logiscope libraries during the
execution of the test cases on the instrumented application.

1. Open a Logiscope Studio session (see section 4.1).

2. In the File menu, select the New... command or click the E icon.

Building and Testing Java Instrumented Code 85

IBM Rational Logiscope

3. In the Project name: pane, enter the name for the new Logiscope project to be
created. In the context of the guided tour, this simply can be the name of the
application under test: e.g. JMineFinder.

The information provided in this pane will be then refer as the <ProjectName>.

Filezs Projects | wiorkspaces]

@ Logizcope Project Froject name:
HMineFinder

Location:

|I::HLDgiscupeF'rniects"dMineFinl:Ier |:|

{+ Create new workspace

7 Add to curent wark space

4. Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp”
file) and the associated Logiscope repository will be created; the Logiscope repository
is a folder in which Logiscope internal analysis result files are generated.

The information provided there will be then refer as the <LogiscopeRepository>.

Note: By default, the project name is automatically added to the specified location. This
implies that a subdirectory named <ProjectName> is automatically created.

5. Click OK to access to the Logiscope Project Definition first window.

86 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Logizcope Project Defimtion

Project Language Project Modules
i+ Ada [QualityChecker
" C [CodeReducer
A [RuleChecker
" Java [TestChecker

@ At least one module should be selected.

6. Select the Project Language: i.e. the programming language in which are written
the source code files to be analysed.
For the JMineFinder project, select Java.

Note: Only one language can be selected. If your application contains source code

files written in several languages, you should create several distinct Logiscope
projects: one for each language.

7. Select the Project Modules: 1i.c. the verification modules to be activated on the
source files of the project .
For this guided tour, select TestChecker.

8. Click the Next button to continue the creation.

Building and Testing Java Instrumented Code 87

IBM Rational Logiscope

The Project Source Files dialog box allows to specify what source files are to be
analysed and where they are located.

Project Source Files

Source files root directorny:
C:\JMineFinder | El

Directories

* |nclude all subdirectories
" Do not include subdirectanies
" Customize subdirectonies o include

Suffizes

. o
Source Files 1ava

9. Source files root directory shall specify the location directory of the source files to

be analyzed.

Browse to select the directory where the OneArmedBandit sample source files are
located: i.e. in the samples/Tchk/Java/JMineFinder folder of the Logiscope
installation directory or in the directory where the source files have been copied as
recommended: e.g. C:/JMineFinder.

The Directories choice allows to select the list of repertories covering the application
source files.

Include all subdirectories means that selected files will be searched for in every sub-
directory of the source file root directory.

Do not include subdirectories means that only files included in the application
directory will be selected.

Customize subdirectories to include allows the user to select the list of directories
that include application files through a new page.

Suffixes choices allow to specify applicable source file extensions needed in the above
selected directories. Extensions shall be separated with a semi-colon.

10.Click the Next button.

88 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

The TestChecker Settings dialog box is now displayed. It allows to specify some of the
key settings of a Logiscope TestChecker project.

TestChecker Settings

T est repoziton:
|E: “LogizcopeProjects JMineFinder.T est

YWiorking directon;

|I:: YLogizcopeProjectsh MineFinderh.,

Executable for test zession:

b ake command [with a Logizcope target):

11. The Test repository: is the directory in which traces files generated when executing
the instrumented executable will be saved.
Keep the default location i.e. a Test folder to be created in the Logiscope repository
specified in the New Logiscope Projects dialog box (see item 4.).

12.The Working directory: is the directory where the make file can be found and where
the executable will be generated (unless otherwise specified by the make file).

13.The Executable for a test session: shall specify the instrumented executable.
In this context, the executable is not yet generated and will be chosen later.

14. The Make command shall contains the command to build the instrumented
executable. Type:

On UNIX: MakeLoglJava.

On Windows: cmd /¢ MakeLog.bat.
Note: According to your DOS version, use the equivalent of the “cmd’ command.

In the next section, you will be prompted to edit and modify the Make command
specified in this pane to adapt it to your compilation environment.

15.Click Next.

Building and Testing Java Instrumented Code 89

IBM Rational Logiscope

The following wizard box will allow you to complete the project specification with some
specifics of the Java language.

Java TestChecker Settings

Instrumentation method

TCL file uzed for instrumentatian;

Parser configuration
Aliaz file:

|E:'\F'r-:ugram Filez\TelelogichLogizcope_6. 5 wutilog_in

|grore: file:

16.In this dialog box, you can choose the Tcl instrumentation file between two files:

* log_inst.tcl using the Viglnstrument.java instrumentation library for Java applet
and,

* log_inst_jvt.tcl using theVIgTrace.java instrumentation library for Java application.

Note: TheViglnstrument.java file contains the socket declaration and related instru-
mentation functions. If your system does not support sockets, you can use the
VigTrace.java file saving results in trace files (with the extension “.trc¢” files) which
can be loaded in TestChecker).

The socket declaration must contain the real name of the target machine and the chosen

port number.
For more details, see the readme.txt file in the <InstallationDir>\instr\jv folder.

17.Click Next.

90 IBM Rational Logiscope TestChecker - Getting Started

9.3

IBM Rational Logiscope

The last wizard window is displayed. You can check if all files are correct by expanding
folders.

Logizcope Project Summary

Project Language:
Java

Project Modules:
TestChecker

zamplesz/jminefinder/core/Engine. java
zamples/jminefinder/core/State. java
zamplez/jminefinder/game/IMineFinder java
zampleszjminefinder/ui/ G ameFrame. java
zamples/jminefinder/ui/ G amelnfo. java
zamples/jminefinder/ui/ G amePanel java
zamplezjminefinderdui/t enuB ar java

JLLTFR) EETEPR QLI M}JIIII' i

18. Click Finish to create your first Java TestChecker project.

The Studio main window is now updated and contains the workspace view of your
project (see next section).

Two files has been created by this process and are of the form: <ProjectName>.ttp for
project and <ProjectName>.ttw for associated workspace. They are both located in the
folder specified as the Logiscope Repository.

Building the Instrumented Executable

In this part, you will define necessary commands for this program compilation and link.
This information is contained in MakeLog.bat file for Windows and in MakeLogJava
for UNIX. This file has been specified in the Make command pane when creating the
project.

1. Edit the MakeLog.bat file located in the JMineFinder folder.

The content of the file starts with the following lines:
@echo off

set JDK=C:/Program Files/Java/jdkl.5.0 10/bin
set LOGISCOPE INSTALL=../../../..

Building and Testing Java Instrumented Code 91

IBM Rational Logiscope

2. If necessary, modify the content of the Make file to adapt it to your environment: e.g.
- JDK: the path to access to the Java compiler,
- LOGISCOPE INSTALL the directory where Logiscope is installed.

3. And save it.

Note that you have to compile the VigInstrument.java file with your program.

Your project is now ready to be built.
4. Select Project-Build to launch the construction of the executable.

Building TestChecker Data for Project JMineFinder.ttp...
Instrumenting: C:\Jjminefinder\core\Engine.java...
Instrumenting: C:\Jjminefinder\core\State.java...

*** Instrumented Java classes compilation ***

C:\JMineFinder>"C:/Program Files/Java/jdkl.5.0 10/bin/javac" /jminefinder/core/
Engine.java

C:\Program Files\...\Logiscope 6.6\samples\Tchk\Java\JMineFinder>exit 0

Build finished.

5. Open Project-Settings window to specify the execution command.

92 |IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

6. In the Executable for test session field, enter the TcGatWay.exe path located in the
\bin install directory) between “ “ and specify -port 6309 as parameter (or another
value if you have changed the port number).

Fg Logiscape General] Modules TestChecker l |ﬂ3trumentatinn]
=28 JMineFinder_ttp -
(1 Dynamic Files TestChecker Settings
-4 Source Files .
=| Engine java T est repositony:
GameFrame. java |E:\LDgischePrniects'\.JMineFinder\TEgt

Gamelnfo.java

GamePanel java
JMineFinder java |E:hLDgiscnpeF‘rniects'\.JMineFinder'&.

YWiorking directony:

benub ar java

Statejava E wecutable for test zezzion:

|"T clatw'ap exe -part 5309

take command [with a Logiscope target):
||:m|:| /o Makelog.bat

7. Save your new TestChecker project settings.

You are now ready to start testing the newly created instrumentation executable.You will
use Logiscope TestChecker to manage the test execution.

Building and Testing Java Instrumented Code 93

IBM Rational Logiscope

9.4 Testing the Instrumented Executable

9.4.1 Settings

1. In Logiscope Studio main window, open the Project menu and select the Start

TestChecker option or click the El icon in the Logiscope toolbar.

Edit view Buld ‘Wwindaw Help

Components | Tests |

[=]- IMineFinder

- Engine.java
-GameFrame.java
-zamelnfo.java
-izamePanel. java
- IMineFinder . java
-MenuBar.java

- Skate.java

Loading TestChecker data...

2. Select Build-Settings.
3. Check Use standard communication pipe option.

Test |Euid |
Command: ITcGatWa_l,l.e:-ce
Parameters: I -port 5309

wharking Directary: IE:HF‘ngram FileshT elelogichLogizcope_B.54:

¥ Use standard communication pipe

4. Click OK to keep the changes.

94 |BM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

9.4.2 New Test

1.

Click File-New command to create a default test suite called Tchk1 in the Test panel.

2. Select Edit-New Test to create a test called TEST 1 under Tchk1.

Select Build-Go to start a test session.
The TcGatWay window pops up.
Do not close it; it will close automatically when the applet exits.

Go to the JMineFinder directory and launch the game: i.e.
on Windows: launch the script run.bat;
on UNIX: launch the script run.sh .

Make sure you have the DDP Spy window opened in TestChecker to see the increase
in code coverage.

. Let’s play.

Game Help

Guesses 1 Remaining mines .
1

7. To stop testing, just close the JMineFinder window.

Building and Testing Java Instrumented Code 95

IBM Rational Logiscope

Test coverage results are ready to be consulted.

File Edit Wiew Buld ‘Window Help

Components Tests | & Tchk1 |-_| |E El
=/ MineFinder % DOP's Impra. .
=~ Tehkl TEST 1 51,47 % 51.47 %
TEST_1
DDFP 5py
— Coverage — Impraverment
Global Current
4853 %
2426 %
. 0z 000 %
Loading TestChecker data
|51 A7 0.00 Q.00

96 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Chapter 10

Command Line Mode

10.1 Logiscope create

Logiscope projects: i.e. “.ttp” file are usually built using Logiscope Studio as described
in previous chapter.

The logiscope create tool builds Logiscope projects from a standalone command line or
within makefiles (replacing the compiler command) .

10.1.1 Command Line Mode

When started from a standard command line, The create tool creates a new project file
with the information provided on the command line.

For a complete description of the command line options, please refer to the Command
Line Options paragraph.

When used in this mode, there are two different ways for providing the files to be
included into the project:

Automatic search

This is the default mode where the tool automatically searches the files in the directories.
Key options having effect on this modes are:

-root <root_dir> : the root directory where the tool will start the search for source
files. This option is not mandatory, and if omitted the default is to start the search in the
current directory.

-recurse : if present indicates to the tool that the search for source files has to be
recursive, meaning that the tool will also search the subdirectories of the root directory.

File list

In this mode, the tool will look for the —1ist option which has to be followed by a file
name. This provided file contains a list of files to be included into the project. The file
shall contain one filename per line.

Example: Assuming a file named filelist.1st containing the 3 following lines:

Command Line Mode 97

IBM Rational Logiscope

/users/logiscope/samples/C/mstrmind/master.c
/users/logiscope/samples/C/mstrmind/player.c

/users/logiscope/samples/C/mstrmind/machine.c

Using the command line:
create aProject.ttp —-test -lang c -list filelist.lst

will create a new Logiscope C project file named aProject.ttp containing 3 files:
master.c, player.c and machine.c on which the 7estChecker module will be activated.

10.1.2 Makefile mode

When launched from makefiles, create is designed to intercept the command line usually
passed to the compiler and uses the arguments to build the Logiscope project.

The project makefiles must be modified in order to launch create instead of the
compiler. In this mode, the name of the project file (“.ttp” file) has to be an absolute path,
otherwise the process will stop.

When used inside a Makefile, create uses the same options as in command line mode,
except for:

-root, -recurse, -list : which are not available in this mode

-- : which introduces the compiler command.

The following lines can be introduced in a Makefile to build a Logiscope C project file :
CREATE=create /users/projects/myProject.ttp -test -lang c

CC=$ (CREATE) -- gcc

CPP=$ (CC) -E

In this mode, the project file building process is as follows:
1. create is invoked for each file by the make utility, instead of the compiler.

2. When create is invoked for a file it adds the file to the project, with appropriate
preprocessor options if any, then Create starts the normal compilation command which
will ensure that the normal build process will continue.

3. At the end of the make process, the Logiscope project is completed and can be used
either using Logiscope Studio or with the batch tool (see next section).

Note: Before executing the makefile, first clean the environment in order to force a full
rebuild and to ensure that the create will catch all files.

98 IBM Rational Logiscope TestChecker - Getting Started

10.1.3 Options

IBM Rational Logiscope

Logiscope Ada TestChecker Project Options

create —-test -lang ada
<ttp file>
[-root <directory>]

[-recurse]

[-list <list file>]

[-repository <directory>]:

[-source <suffixes>]

[-test dir <directory>]

[-working dir <directory>]:

[-make <cmd>]
[-exec <cmd>]

[-1link <file>]

[-sep]

[-model <file>]

Logiscope project file (".ttp" extension).
where <directory> is the starting point

of the source search. Default is the
current directory. This option is exclusive
with -1list option.

if present the source search is done
recursively in subfolders.

where <list file> is the name of a file
containing the list of filenames to add to
the project (one file per line).

This option is exclusive with -root option.
where <directory> is the name of the
directory where Logiscope derived files
will be stored.

where <suffixes> is the list of accepted
suffixes for source files (e.g. "*.ada").
where <directory> is the name of the
directory where Logiscope test information
will be stored.

where <directory> is the name of the
directory to go in before starting the
instrumented binary.

where <cmd> is the name of the command to
build the instrumented binary.

where <cmd> is the name of the command

to execute the instrumented binary.

where <file> is the name of the single
instrumentation file to generate in the
target directory.

causes the generation of 2 instrumentation
files:

- audit instrum.ads for the specification,
- audit instrum.adb for the body.
where <file> is the template to be used to
generate the instrumentation file(s).

Command Line Mode 99

IBM Rational Logiscope

Logiscope C TestChecker Project Options

create —-test —-lang c

<ttp file> : Logiscope project file (".ttp" extension)

[-root <directory>] : where <directory> is the starting point
of the source search. Default is the
current directory. This option is exclusive
with -list option.

[-recurse] : 1if present the source search is done
recursively in subfolders.

[-list <list file>] : where <list file> is the name of a file
containing the list of filenames to add to
the project (one file per line).

This option is exclusive with -root option.

[-repository <directory>] : where <directory> is the name of the
directory where Logiscope derived files
will be stored.

[-source <suffixes>] : where <suffixes> is the list of accepted
suffixes for source files (e.g. "*.c").
[-test dir <directory>] : where <directory> is the name of the

directory where Logiscope test information
will be stored.

[-working dir <directory>]: where <directory> is the name of the
directory to go in before starting the
instrumented binary.

[-make <cmd>] : where <cmd> is the name of the command to
build the instrumented binary.

[-exec <cmd>] : where <cmd> is the name of the command
to execute the instrumented binary.

[-mcdc] : 1f present sources are instrumented with
multiple decision/condition coverage
ativated.

[-tcl <tcl file>] : where <tcl file> is the name of the TCL
script used for instrumentation.

Default is <install dir>/util/instrument.tcl

[-dial <dialect name>] : where <dialect name> is one of the
available C dialects.

[-def <definition file>] : where <definition file> is a .def file
containing include paths and macro
definitions.

[-ign <ignore file>] : where <ignore file> is a .ign file
containing specification of C code to

ignore.
[-I<include path>]* : same syntax as a compiler. To be used only
To be used only if option -- is not used.
[-D<macro_name>]* : same syntax as a compiler.
To be used only if option -- is not used
[-U<macro_name>]* : same syntax as a compiler. To be used only
To be used only if option -- is not used.
[-mode=exp | noexp] * : to specify the mode of macros preprocessing.

100 IBM Rational Logiscope TestChecker - Getting Started

[-mac <macro_ file>]

IBM Rational Logiscope

Default is exp: macros are expanded. .

where <macro_file> is a text file specifying a list of
macros statements to be or not to be expanded
according to the value of the -mode option..

when used in a makefile, this option
introduces the compilation command with
its arguments.

Logiscope C++ TestChecker Project Options

create —-test -lang c++
<ttp file>
[-root <directory>]

[-recurse]

[-list <list file>]

[-repository <directory>]:

[-source <suffixes>]

[-test dir <directory>]

[-working dir <directory>]

[-make <cmd>]
[-exec <cmd>]

[-tcl <tcl file>]

[-alias <alias file>]

[-ign <ignore file>]

[-memory <file>]

Logiscope project file (".ttp" extension).
where <directory> is the starting point

of the source search. Default is the
current directory. This option is exclusive
with -1list option.

if present the source search is done
recursively in subfolders.

where <list file> is the name of a file
containing the list of filenames to add to
the project (one file per line).

This option is exclusive with -root option.
where <directory> is the name of the
directory where Logiscope derived files
will be stored.

where <suffixes> is the list of accepted

suffixes for source files (e.g. "*.c; *.cpp")

where <directory> is the name of the
directory where Logiscope test information
will be stored.

: where <directory> is the name of the

directory to go in before starting the
instrumented binary.

where <cmd> is the name of the command to
build the instrumented binary.

where <cmd> is the name of the command

to execute the instrumented binary.

where <tcl file> is the name of the TCL
script used for instrumentation.

Defaut is <install dir>/util/instrument.tcl
where <alias file> is the name of an alias
file (.al file).

Default is <install dir>/util/log inst.al
where <ignore file> is a .ign file
containing specification of code to ignore.
Default is <install dir>/util/log_inst.ign
where <file> is the name of the c++ file in
which coverage information is collected

Command Line Mode 101

IBM Rational Logiscope

during execution. Then, at the end of the
execution, coverage information is flushed.
when used in a makefile, this option
introduces the compilation command with
its arguments.

Logiscope Java TestChecker Project Options

create —-test —-lang java
<ttp file>
[-root <directory>]

[-recurse]

[-list <list file>]

[-repository <directory>]

[-source <suffixes>]

[-test dir <directory>]

[-working dir <directory>]:

[-make <cmd>]
[-exec <cmd>]

[-tcl <tcl file>]

[-alias <alias_ file>]

[-ign <ignore file>]

Logiscope project file (".ttp" extension)
where <directory> is the starting point

of the source search. Default is the
current directory. This option is
exclusive with -list option.

if present the source search is done
recursively in subfolders.

where <list file> is the name of a file
containing the list of filenames to add to
the project (one file per line).

This option is exclusive with -root option.
where <directory> is the name of the
directory where Logiscope derived files
will be stored.

where <suffixes> is the list of accepted
suffixes for source files (e.g. "*.java").
where <directory> is the name of the
directory where Logiscope test information
will be stored.

where <directory> is the name of the
directory to go in before starting the
instrumented binary.
where <cmd> is the name of the command to
build the instrumented binary.
where <cmd> is the name of the command

to execute the instrumented binary.

where <tcl file> is the name of the TCL
script used for instrumentation. Default is
<install dir>/util/instrument.tcl

where <alias file> is the name of an alias
file (.al file). Default is

<install dir>/util/log inst.al

where <ignore file> is a .ign file
containing specification of code to
ignore. Default is

<install dir>/util/log inst.ign

102 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

10.2 Logiscope batch

Logiscope batch is a tool designed to work with Logiscope in command line to:
* instrument the source code files specified in a Logiscope project: i.e. “.ttp” file,

 generate reports in HTML and/or CSV format automatically.

Note that before using batch, a Logiscope project shall have been created:
» using Logiscope Studio, refer to Section 1,

» or using Logiscope create, refer to the previous section.

Once the Logiscope project is created, batch is ready to use.

10.2.10ptions

The batch command line options are the following:

batch

<ttp file> the Logiscope TestChecker project file (with
“ttp” extension).

[-dyn <dynamicfile>] where <dynamicfile> is the name of the
dynamic file i.e. the file containing the execu-
tion traces generated when executing the
instrumented binary.

In case several dynamic files have been ger-
erated, they shall first be merged using the
lgdynld tool (see next section),

[-tcl <tcl file>] name of a Tel script to be used to generate the
reports instead of the default Tel scripts.

[-o <output directory>] directory where the all reports are generated.

[-nobuild] generate reports without rebuilding the
project. The project must have been built at
least once previously.

[-clean] before starting the build, the Logiscope build
mechanism removes all intermediate files and
empties the import project folder when the
external violation importation mechanism 1is
activated.

[-addin <addin> options] where addin nis the name of the addin to be
activated and options the associated options
generating the reports.

Command Line Mode 103

IBM Rational Logiscope

[-table] generate tables in predefined html reports
instead of slices or charts. By default, slices or
charts are generated (depending on the project
type).

This option is available only on Windows as
on Unix there are no slices or charts, only
tables are generated.

[-noframe] generate reports with no left frame.

[-V] display the version of the batch tool.

[-h] display help and options for batch.

[-err <log err folder>] directory where troubleshooting files

batch.err and batch.out should be put. By
default, messages are directed to standard out-
put and error.

10.2.2Examples of Use

Considering a Logiscope C TestChecker project LogProj.ttp as an example:

1 Produce an instrumented binary by typing on a command line or in a script:
batch LogProj.ttp

2 Execute the instrumented binary in order to produce one or more dynamic result files.

3 Merge the dynamic files, using the lgdynld command (see next section) in order to
obtain a single dynamic file named LogProj.dyn.

4 Generate a test coverage report using the default Logiscope Tcl script TestRe-
port.tcl. by typing on a command line or in a script:
batch LogProj.ttp -dyn LogProj.dyn

To read the report into an HTML browser, just open the LogProjtest.html file generated
in the <LogProj>/Logiscope/report directory.

104 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

10.3 Logiscope Igdynid

Igdynld is a tool designed to merge dynamic coverage files into one file.

10.3.10ptions

lgdynld

[<ttpfile>] Logiscope project.

-dyn <dynfilelist> dynfilelist is atext file containing the list of
the dynamic coverage files (one file per line) to
be merged.

[-skip] to merge or not with dynamic coverage files
already present in the .ttp file.

<outputfile> name of the resulting merged dynamic coverage

file. This file must have a .dyn extension.

10.3.2Examples of Use

There are two main ways to use Igdynld. One allows checking consistency of the
dynamic coverage files with the results of static analysis, the other one without checking.

Without Consistency Checking

lgdynld -dyn dynfilelist output.dyn

This call will merge the dynamic coverage files found in dynfilelist into output.dyn
file.

WARNING: this call makes no consistency check, the results of the static analysis
should be the same for all dynamic coverage files to be merged in order to ensure
the accuracy of the resulting output.dyn file.

With Consistency Checking

lgdynld project.ttp -dyn dynfilelist output.dyn

This call will merge the dynamic coverage files found in the ttp file and in the
dynfilelist into output.dyn file. The consistency with the project file is secured.
Anyway, the resulting dynamic coverage file is not loaded in the ttp file at the end of
the execution. This can be done through Logiscope Studio or Logiscope Batch.

lgdynld project.ttp -dyn dynfilelist -skip output.dyn

This call using -skip option has the same behavior as the previous one except that the
dynamic coverage files found in the ttp will not be merged into output.dyn file.

Command Line Mode 105

IBM Rational Logiscope

10.3.3Merging .trc Files

Igdynld also allows to merge raw trace files (.tre) with dynamic coverage files (.dyn)
and then generates a .dyn file.

Example:
lgdynld project.ttp —-dyn trcfilelist output.dyn

where trcfilelist may contain .tre files or .dyn files, and project.ttp is
optional.

106 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

Notices

| © Copyright 1985, 2009

U.S. Government Users Restricted Rights - Use, duplication, or disclosure restricted by
GSA ADP Schedule Contract with IBM corp.

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not grant you any license to these
patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact
the IBM Intellectual Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions. Therefore, this statement may not apply to you.

Notices 107

IBM Rational Logiscope

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those
Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

1 Rogers Street

Cambridge, Massachusetts 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for
it are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation.
Actual results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance, compatibility
or any other claims related to non-IBM products. Questions on the capabilities of non-
IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

108 IBM Rational Logiscope TestChecker - Getting Started

IBM Rational Logiscope

If you are viewing this information softcopy, the photographs and color illustrations may
not appear.

Trademarks

IBM, the IBM logo, ibm.com are trademarks or registered trademarks of International
Business Machine Corp., registered in many jurisdictions worldwide. Other product and
services names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at:

www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are
trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in
certain jurisdictions.

AIX and Informix are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision and FLEXnet are registered trademarks or trademarks of Macrovision
Corporation.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other
Microsoft products referenced herein are either trademarks or registered trademarks of
Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

ITIL is a registered trademark, and a registered community trademark of the Office of
Government Commerce, and is registered in the U.S Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of others.

Notices 109

IBM Rational Logiscope

110 IBM Rational Logiscope TestChecker - Getting Started

	About this manual
	Notion of Test Coverage
	2.1 Suggested Approaches
	2.2 Instruction Blocks
	2.3 Decision to Decision Paths
	2.4 Modified Condition/Decision
	2.4.1 Definition
	2.4.2 Test Coverage

	2.5 Coverage Precision
	2.6 Coverage Gain
	2.6.1 Example 1
	2.6.2 Example 2

	Building C++ Instrumented Code with Logiscope Studio
	3.1 Before you start
	3.2 Starting a Logiscope Studio Session
	3.3 Creating a TestChecker Project
	3.4 Introducing Logiscope Studio
	3.5 Building the Instrumented Executable
	3.6 Updating the alias file
	3.6.1 Syntax of the file
	3.6.2 Example

	Testing on a Host Machine
	4.1 The Logiscope TestChecker Window
	4.2 Creating and Running Your First Test
	4.2.1 Starting the Test
	4.2.2 Viewing Coverage While Testing is in Progress
	4.2.3 Creating and Running More Tests

	4.3 Displaying Tested and Untested DDPs
	4.4 Displaying the Source Code
	4.5 Saving and closing a Project

	Analyzing Test Coverage from Logiscope Studio and Viewer
	5.1 Test Coverage Analysis Using Logiscope Studio
	5.1.1 Test Coverage
	5.1.2 Test Report

	5.2 Test Coverage Analysis Using Logiscope Viewer
	5.2.1 Selecting/Deselecting a Function
	5.2.2 Viewing Test Coverage Results
	5.2.3 Ending Viewer and Studio Sessions

	Building a C Instrumented Code for MC/DC Analysis
	6.1 Before you start
	6.2 Creating a TestChecker Project
	6.3 Building an Instrumented Executable
	6.4 Testing the Instrumented Executable
	6.4.1 Starting the Test
	6.4.2 Viewing MC/DC While Testing

	6.5 Refining Modified Conditions

	Testing on a Target Machine
	7.1 Preliminaries
	7.2 Creating and Running Your First Test
	7.2.1 Starting the Test
	7.2.2 Viewing Coverage Rates While Testing is in Progress

	Creating and Testing Ada Instrumented Code
	8.1 Before you start
	8.2 Creating an Ada TestChecker Project
	8.3 Inserting Pragmas for the Probes
	8.4 Building the Instrumented Executable
	8.5 Testing the Instrumented Executable
	8.6 Customizing the Instrumentation Primitives

	Building and Testing Java Instrumented Code
	9.1 Before you start
	9.2 Creating a Java TestChecker Project
	9.3 Building the Instrumented Executable
	9.4 Testing the Instrumented Executable
	9.4.1 Settings
	9.4.2 New Test

	Command Line Mode
	10.1 Logiscope create
	10.1.1 Command Line Mode
	10.1.2 Makefile mode
	10.1.3 Options

	10.2 Logiscope batch
	10.2.1 Options
	10.2.2 Examples of Use

	10.3 Logiscope lgdynld
	10.3.1 Options
	10.3.2 Examples of Use
	10.3.3 Merging .trc Files

	Notices

