L LS SDL and TTCN Suite

TTCN Suite Methodology Guidelines

Methodology Guidelines

INtrodUCtioN Y,
1. The TTCN Introduction o e e e 1
INtrOdUCLIONo 2
Background. 3
Black Box Implementations. 3
Lower Tester and Upper Testero e 3
Test NOtation 4
Forms of TTCN ... e e e 5
Requirements on TTCNo e 5
ACaSE StUAY . ..o 6
The Test Case . . oottt 6
Case Study Road-Map oo e 8
The Test Configuration. e 9
Specification of Test System Behaviour 13
BehavioUr TreeSo 13
Statement Lines i 15
Executionand Matching. 16
TTCN Typesand Values e 19
Predefined TYPeS . ..ot 19
Value Denotationt 20
Simple User Defined Typeso 20
SHIUCTUNEA TYPES. . o ottt e e e e 22
ASN.ITypesand Values e 23
Type References, Value References and Identifiers. 23
Identifiersand Underscoret i e 23
ASN.L SIMple TYPeS . . oo 24
ASN.L CoNStTUCTIOIS . . .ot e e 26
PCOS aNd CPS. . .ot 29
The CommunicationModel 29
Sending an ASP ... 29
Receiving an ASP. 30
Declaring PCO TYPeS. . . v v vttt 30
Declaring PCOS oo 31
Using PCOS and CPSt e 32
PCO and CP Snapshotst e 32
Declaring CPS.o 33
The SEND Statement e 34
Sending an ASP . . .o 34

April 2009 IBM Rational SDL and TTCN Suite 6.3 i

Executinga SEND Statement. i 34

Sending aPDU 35
Sending a Coordination Messageottt 35
The RECEIVE Statement.t i 35
ReceiVINg an ASPo 35
Executing a RECEIVE Statement i 36
Receilving aPDU o 36
Receiving a Coordination Message, 37
The OTHERWISE Statement. e 37
Defining ASP, PDU and CM TYPES. . . .ot ittt e e 38
CompleX TTCN TYPES . o v ottt e e e 38
Chaining . ..o 39
Complex ASN. L TYPES. . vttt e e 39
Local Type Definitions. e 40
Type Definitions by Reference. i i, 40
Defining ASPS 42
Defining PDUSo 43
Substructuring ASPsand PDUSo 46
Defining Coordination Message TYPeSot 48
Using ASPs and PDUs in Behaviour Trees 50
TTCN EXPreSSIONS . . . oottt e e et e e e e e e e e 51
TTCN OPEratOrs. . ottt et e e e e e e e 51
TTCN Operationsot e e e 53
Specifying ASP, PDUand CM Values.t 56
Static and Dynamic Chaining. i 56
Complex ASN.LValues e 57
ASP CONSLIaINtSo 58
PDU CONStraintS.ottt e e e 60
Structured Type CONStraintS.t 62
CM CoNStraints.ottt 64
Constraint References.o 66
Parameterized Constraints 67
Sending and Receiving Constraints i 68
Matching Received Constraint Values 73
Specific Values. 73
Matching Mechanisms 76
ENCOOINGot 81
ENCOdiNg ASPS. . ..o 81
Encoding PDUS 81
Manipulation of Encodingst 81

IBM Rational SDL and TTCN Suite 6.3 April 2009

Referencing Components of CompleX Types. 82

References in the Context of SEND and RECEIVE 82
Referencing ASN.L Elements. 83
Capturing Incoming ASPsand PDUS. 85
VOGS, « . ottt 86
The Result Variable 86
Preliminary Results i 87
Final Verdictso 87
The GOTO StatemMEeNt.ottt e e e e e e 89
TImer StateMENTSottt 90
The TIMeoUt Listo e e e e 91
The TIMEQUT Statementt e e 91
TIMer SNapPshotSo 92
The START Timer Operationt 92
The CANCEL Timer Operation.outiin i 93
Constantsand Variables. 94
Test Suite Constants and Test Suite Parameters. 95
Test Suite and Test Case Variables 97
Variables in Concurrent TTCNt e 98
Dynamic Behaviour Descriptions. 99
Test case Identifiers and Test Group References. 100
Test Purpose and Objective 100
Configuration o 100
Default Behaviour 100
USIiNg ALIASES . . o oo 102
Modularization of TeSt Cases.o vttt e e 104
TSt SO PS . . oot 104
Default Behaviour 108
Parameter Lists in TTCN 112
Formal Parameter Lists.t 112
Actual Parameter ListSo 112
Call-By-Reference 112
Call-By-Value. 113
Test Case SeleCtion. ot 113
Selection EXPressSionS. . ..o vttt 113
Structure of a TTCN TeSt SUIteot e 114
Partsof a TESESUITE oot e 114
Suite OVEIVIEW Part 114
Declarations Part 114
Constraints Partttt 116

April 2009 IBM Rational SDL and TTCN Suite 6.3 iii

DynamicPart
Distributed Development i

The Complete Case Study,
Suite Overview Part i
Declarations Part.t
Constraints Part. ot
DynamicPart

IBM Rational SDL and TTCN Suite 6.3

April 2009

IBM Rational TTCN Suite 6.3

Methodology Guidelines

This edition applies to IBM Rational SDL Suite 6.3 and IBM Rational TTCN Suite 6.3 and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1993, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright Notice

This information was developed for products and services offered in the U.S.A. IBM may not offer the products,
services, or features discussed in this document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any reference to an IBM product, pro-
gram, or service is not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any
non-1BM product, program, or service.

Copyright © 2009 by IBM Corporation.

IBM Patents and Licensing

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send written license inquir-
ies to the following:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange
of information between independently created programs and other programs (including this one) and (ii) the mu-
tual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software|

IBM Corporation

1 Rogers Street

Cambridge, Massachusetts 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, pay-
ment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Disclaimer of Warranty

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGE-
MENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions. Therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

April 2009

without notice.

Any references in this information to non-1BM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials
for this IBM product and use of those Web sites is at your own risk.

Any performance data contained herein was determined in a controlled environment. Therefore, the results ob-
tained in other operating environments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements will be the same on generally
available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the ca-
pabilities of non-1BM products should be addressed to the suppliers of those products.

Confidential Information

IBM may use or distribute any of the information you supply in any way it believes appropriate without incur-
ring any obligation to you.

This information contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.

Additional legal notices are described in the legal_information.html file that is included in your software instal-
lation.

Sample Code Copyright

This information contains sample application programs in source language, which illustrate programming tech-
niques on various operating platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or distributing application pro-
grams conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as
follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

IBM Trademarks

For a list of IBM trademarks, visit this Web site www.ibm.com/legal/copytrade.html. This contains a current
listing of United States trademarks owned by IBM. Please note that laws concerning use and marking of trade-
marks or product names vary by country. Always consult a local attorney for additional guidance. Those trade-
marks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or com-
mon law marks of IBM in the United States.

Not all common law marks used by IBM are listed on this page. Because of the large number of products mar-
keted by IBM, IBM's practice is to list only the most important of its common law marks. Failure of a mark to
appear on this page does not mean that IBM does not use the mark nor does it mean that the product is not ac-
tively marketed or is not significant within its relevant market.

Third-party Trademarks

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript are trademarks of Adobe Sys-
tems Incorporated or its subsidiaries and may be registered in certain jurisdictions.

AlX and Informix are trademarks or registered trademarks of International Business Machines Corporation in
the United States, other countries, or both.

IBM Rational TTCN Suite 6.3 Methodology Guidelines iii

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
Acresso and FLEXnet are registered trademarks or trademarks of Acresso Software Inc.

Microsoft, Windows, Windows 2003, Windows XP, Windows Vista and/or other Microsoft products referenced
herein are either trademarks or registered trademarks of Microsoft Corporation.

Netscape and Netscape Enterprise Server are registered trademarks of Netscape Communications Corporation
in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries.

Pentium is a trademark of Intel Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names may be trademarks or service marks of others.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Introduction

April 2009

About this Manual

This volume, Methodology Guidelines, contains a selection of topics
that we hope will assist you in understanding how to take advantage of
the TTCN language in a TTCN Suite environment.

The TTCN language, concepts, and data types are described, including
the use of ASN.1. The features of TTCN are introduced using a bottom-
up approach with the help of a simple case study. Concurrent TTCN is
also addressed.

Documentation Overview

A general description of the documentation can be found in “Documen-
tation” on page viii in the Release Guide.

Typographic Conventions

The typographic conventions that are used in the documentation are de-
scribed in “Typographic Conventions” on page X in the Release Guide.

How to Contact Customer Support

Detailed contact information for IBM Rational Customer Support can
be found in “How to Contact Customer Support” on page iv in the Re-

lease Guide.

IBM Rational TTCN Suite 6.3 Methodology Guidelines v

vi

IBM Rational TTCN Suite 6.3 Methodology Guidelines

April 2009

Chapter

1 The TTCN Introduction

This chapter is intended to provide an easy — but not necessarily
trivial — introduction to TTCN for the beginner.

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines

Chapter 1 The TTCN Introduction

Introduction

ISO/IEC 9646 (ITU X.290 series) is a five-part standard which defines
a framework and methodology for conformance testing of implementa-
tions of OSl and ITU protocols. The test notation, the Tree and Tabular
Combined Notation (TTCN), is the third part of this standard, i.e.
ISO/IEC 9646-3.

The use of TTCN is increasing, and as the notation has now become an
ISO International Standard and a ITU Recommendation, we believe
there exists a need for a guideline on TTCN.

We do not describe the TTCN in the same order that it is presented in
the standard, but instead have used a bottom-up approach. We begin by
introducing some basic TTCN features developed round a simple exam-
ple. Additional features are introduced as required. We have tried to
concentrate on aspects that have been introduced in the IS version of the
notation, especially concerning the use of ASN.1. We also address the
concurrent TTCN.

We hope that readers will find this approach instructive. The guidelines
intends to provide:

e an easy, but not necessarily trivial, introduction for the new-comer
to TTCN;

e anoverview of the TTCN for those users of the notation who are fa-
miliar with earlier versions and who require a quick up-date on the
later features; note, for example, the summary of the extensions.

2 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Background

Background

April 2009

Among other things, parts 1 and 2 of ISO/IEC 9646 define the basic
concepts and abstract methods that are the cornerstone of standardized
conformance testing. It is beyond the scope of this guideline to examine
these concepts in detail, but a knowledge of the terms and concepts de-
scribed below is helpful to understanding the TTCN.

Black Box Implementations

One of the basic premises of the conformance standard is that the im-
plementation of the protocol, called an implementation under test (IUT)
is a black box.

Any conclusions that we may draw about the conformance of that IUT
will be made by observing and controlling the events that occur at the
lower and upper service interfaces of the IUT. In ISO/IEC 9646 terms
these interactions occur at points of control and observation (PCO) and
are expressed in terms of protocol data units (PDUs) embedded in ab-
stract service primitives (ASPs).

An IUT is tested by a test system. In TTCN the different parts of the test
system are called test components. A test component created by the
main test system is referred to as a Parallel Test Component (PTC).

Lower Tester and Upper Tester

In simple terms, the test components which communicate with the IUT
via the PCOs at the lower interface are collectively called the lower
tester (LT). The test components which communicate with the IUT via
the PCOs at the upper interface are collectively called the upper tester
(UT). There must be at least one test component always present in the
test system. This is called the master test component (MTC) and it is re-
sponsible for coordinating and controlling the test and for setting the fi-
nal verdict of the test.

Communication between test components in the LT is achieved via co-
ordination points (CP). Similarly, UT test components may communi-
cate with each other via CPs.

Coordination between the LT and the UT is achieved by test coordina-
tion procedures (TCP).

IBM Rational TTCN Suite 6.3 Methodology Guidelines 3

Chapter 1 The TTCN Introduction

Systern Under Test

Upper Tester

Master Test Cormponert Farallel Test Compaonert

1
E (FTE4)
1

[MTLC)
6 i i i
Test Coordination ?
i PFrocedures 1 FTCurn
1, !

L |iNHER

[N}FDUs

Implementation Under
Test

T

Figure 1: Generalized parallel test architecture (illustrated for a single-layer implementation)

The lower tester is the more complex of the two components as it is also
responsible for the control and observation of the protocol data units
(PDUs) embedded in the ASPs that it sends and receives. In fact, at any
given time the LT, when executing a test case, is implementing a portion
of the relevant protocol.

Test Notation

In order to test the IUT we need to specify the sequences of interactions,
or test events, that we wish the test system to control and observe. A se-

4 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Background

April 2009

quence of such events that specify a complete test purpose is called a
test case. A set of test cases for a particular protocol is called a test suite.

The TTCN is a notation that has been developed for the specification of
test cases at a level that is abstracted from the architecture of any real
test system that these test cases may eventually be run on.

The abstract test cases contain all the information that is necessary to
fully specify the test purpose in terms of the protocol that the IUT is sup-
posed to implement. It does not include test system specific informa-
tion. However, this does not mean to imply that the notation itself is ab-
stract - during the last few years the definition of TTCN has become
very precise, with regard to both syntax and operational semantics, and
is now close to a programming language.

Forms of TTCN

The main body of ISO/IEC 9646-3 defines the graphical form of the no-
tation (TTCN-GR), where all information is presented using tables.
There is also an underlying machine processable format (TTCN-MP)
specified in an extended form of BNF (Backus-Naur Form). In this
guideline we shall concentrate on the TTCN-GR.

Requirements on TTCN

From Figure 1 it can be seen that, generally speaking, the ISO conform-
ance standard requires that tests are specified in terms of (N-1)-layer
ASPs, (N)-layer ASPs and (N)-layer PDUs. In order to fulfil these re-
quirements the minimum functionality that the TTCN should provide is:

« the ability to specify the ASPs to be sent and/or received by the test
system;

« the ability to specify the PDUs embedded in the ASPs;

« specification of the order in which ASPs are to be sent and/or re-
ceived at specific PCOs.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 5

Chapter 1 The TTCN Introduction

In order to do this the TTCN allows:

¢ declaration of ASP and PDU types;

» declaration of PCOs;

« specification of actual ASPs and PDUs;

« specification of instances of behaviour.

We shall examine in detail how these, and other, features are supported
in TTCN to make it a powerful notation for specifying abstract test cas-
es.

A Case Study

The Test Case

For the purposes of this guideline we shall invent a simple case study
for an imaginary protocol, which we shall call the X-Protocol. The case
study is based on the architecture introduced in the previous section.
The IUT is an implementation of the X-protocol.

We shall assume that there is an underlying service provider that pro-
vides a network service (N), over which we shall run the test. This leads
to the following:

e the LT will be specified in terms of N-SERVICE primitives and X-
PDUs,

« N_DATArequest and CR_PDU;
e the UT will be specified in terms of X-SERVICE primitives,
¢ X_CONNECTrequest;

Description of the Case Study

Our examples will introduce the TTCN features necessary to specify the
simple scenario described below:

e The MTC initiates the test by CREATING the necessary PTCs. One
lower PTC and one upper PTC for each connection.

e The lower PTC then establishes an X-connection with the upper
PTC via the IUT. For the sake of simplicity we will assume that an
(N)-connection has already been set up, and that the X-protocol
does not allow an X_CONNECTrequest to be refused (the example

6 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

A Case Study

April 2009

has been created to illustrate TTCN features, rather than to specify
a sensible protocol).

The test then continues with the data phase, where the lower PTC
transmits a data packet which shall be returned by the upper PTC via
the IUT. The packet shall be returned within a given period of time.
This process is repeated a given number of times.

After the data transfer the lower PTC disconnects and sends its pre-
liminary result to the MTC which then computes the final verdict
and the test terminates

Purpose of the Test Case
The case study has two test purposes, these can be stated as:

1.

The IUT shall accept and return a given number of data packets
within the time limitations of the protocol over a single X-connec-
tion.

The IUT shall accept and return a given number of data packets
within the time limitations of the protocol over two simultaneous X-
connections.

Each test purpose will be expressed as a separate test case.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 7

Chapter 1 The TTCN Introduction

Case Study Road-Map

We shall create a TTCN complete mini-test suite that contains all the
TTCN necessary to specify the above test cases. The following table
(this is not a TTCN table!) shows the main sections of this example in
the order in which they would appear in a real test suite. The complete
study can be found in “The Complete Case Study” on page 120. The
right-hand column of the table tells you where these sections are de-
scribed in this guideline:

Section of test suite

Described in this guideline

Overview

“Suite Overview Part” on page 114

Configurations

“The Test Configuration” on page 9

Test Suite Parameterization

“Test Case Selection” on page 113

Global Type Definitions

“TTCN Types and Values” on page 19

Global Declarations

“Constants and Variables” on page 94

PCO and CP declarations

“PCOs and CPs” on page 29

Timer Declarations

“Timer Statements” on page 90

ASP, PDU and CM Definitions

“Defining ASP, PDU and CM Types” on page 38

ASP, PDU and CM Values

“Specifying ASP, PDU and CM Values” on page
56

Behaviour Descriptions

“Dynamic Behaviour Descriptions” on page 99

8 IBM Rational TTCN Suite 6.3 Methodology Guidelines

April 2009

The Test Configuration

The Test Configuration

LOWER_TESTER1

Let us start by specifying the test component configurations needed in
the test suite. The conformance standard defines various abstract test
methods. For the purposes of this guideline we shall assume that the
IUT is a single-layer implementation and that we are testing with the
distributed method. Also, we are testing in a multi-party context be-
cause our second test purpose requires more than one connection.

In this case, the architecture of Figure 1 says that we need:

e one MTC;

e two lower PTCs

e two upper PTCs;

¢ one (N-1) service provider;

« four PCOs (two lower L1 and L2 and two upper and U1 and U2);

« two coordination points (CP1 and CP2) between the lower PTCs
and the MTC.

This is illustrated in the following figure:

UPFER_TESTER1

UFFER_TESTERZ

LOWER_TESTERZ

[M-1] SERVICE FROVIDERS

April 2009

Figure 2: Illlustration of the multi-party distributed test method

IBM Rational TTCN Suite 6.3 Methodology Guidelines 9

Chapter 1 The TTCN Introduction

In concurrent TTCN this architecture is specified using the following
tables:

e Test Component Declarations

« Test Component Configuration Declaration (one table per defini-
tion)

Case study 1: This table lists all the test components that may be used

in the test suite. They can be thought of as building-blocks that can be

used to construct different configurations. A test component may have

the role of main test component (MTC), or parallel test component

(PTC).

Test Component Declarations in TTCH_TUTORIAL

File Edit DataDictionary Show Tools SDTLink Help

|] (] A S 8] E B B [t +2] 2] 2]

Test Component Declarations
Cormnponent Name Component Role Nt PCOs MHr GPs Cornme nts

W4 S TER_LOWER_TE | MTS a =4 hizin Test Component

STER

LOWER_TESTERY PTG 1 1 Pamlke| Test
Component

LOWER_TESTERZ FTC 1 1 Famle| Test
Component

UFFER_TESTER1 FTC 1 [u] FPamlkel Test
Component

UPPER_TESTERZ FTC 1 u} Famlel Test
Component

Detailed Comments :

Figure 3: Test Component Declarations

10 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

The Test Configuration

Case study 2: This table shows the configuration for the single-connec-
tion test case. In any one configuration there should never be more than
one MTC.

SINGLE _PARTY in TTCH_TUTORIAL

File Edit DalaDictionary Show Tools SDTLink Help

|l [S]A][]| L[5 [+t 2]]2

Test Components Configuration Daclaration
Configuration Mame: SINGLE_PARTY

Comrents : Configurtion 1o test 2 single connaction.

Components Used PC:s Used CPs Used Cornments
MASTER_LOWER_TESTER GFA MTS
LOWER_TESTERH L1 CPA LowerPTC
LO>WER_TESTERZ U4 UpperP TS

Detailed Gomments :

Figure 4: Test Component Configuration Declaration (SINGLE_PARTY)

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 11

Chapter 1 The TTCN Introduction

12

Case study 3: This table shows the configuration for the multi-connec-
tion test

case.

MULTI PARTY in TTCH _TUTORIAL

File Edit DataDictionary Show Tools SDTLink

Test Components Configuration Declaration

Configutation Harme @ MULTI_PARTY

C:ornments o Configurtion to test two simultaneocus connections,
] Components Used FCs Used CF= Usad Comments
MASTER_LOWER_TESTER CF1, CPZ TS
LOWER_TESTER Li CP Lowveer PTG
LOWER_TESTERZ L2 CP2 UpperPTS
UPFPER_TESTERA U4 Lowwer PTG
{[orrerrestere | e vpperpc

Detailed Commments :

Figure 5: Test Component Configuration (MULTI_PARTY)

IBM Rational TTCN Suite 6.3 Methodology Guidelines

April 2009

Specification of Test System Behaviour

Specification of Test System Behaviour

Before we continue with the declaration of the test case let us now look
at how TTCN describes the behaviour of the various test components.
Many standardized service definitions and protocol specifications use
state diagrams and/or state tables to describe the behaviour of the ser-
vice or protocol.

Test cases are derived from these specifications. However, because con-
formance testing is concerned with observing and controlling sequences
of interactions at service interfaces it is more appropriate that we spec-
ify test system behaviour as a tree which has branches for all the possi-
ble sequences of interactions that may occur between any two given
protocol states.

Behaviour Trees

In TTCN atree of interactions is called a behaviour tree. The tree struc-
ture is represented by using increasing levels of indentation to indicate
progression into the tree with respect to time.

I'I:lg_'—|

@)

Tree is represented in

0, i () roves

The shaded nodes af thetyee arethe tevminal podes (or leaves) & TTCH
¥ @. 2ach leafis usuollp assipned o verdict.

Figure 6: A tree is represented in TTCN using indentation

Note that an absolute level of indentation does not necessarily mean that nodes are siblings. For
example, although the nodes F and G are numerically at the same level of indentation (i.e. 3) as |
and J, the nodes F and G are in one branch of the tree and the nodes | and J are in another

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 13

Chapter 1 The TTCN Introduction

14

Behaviour Lines

A node in a behaviour tree is called a behaviour line. A behaviour line
consists of the following components:

¢ line number;

e label;

* statement line;

* constraint reference;

* verdict;

¢ behaviour line comment.

Exactly which components of the behaviour line are used at a specific
time varies. For example, line numbers and comments are always op-
tional and constraint references and verdicts shall only be used when re-
quired.

TTCN Behaviour Description

Behaviour lines are specified in dynamic behaviour tables. There are
three kinds of behaviour tables, each consisting of a header and a body.

e Test Case Dynamic Behaviour;
e Test Step Dynamic Behaviour;
¢ Default Dynamic Behaviour.

The visual difference between these three tables is in the header. The
format of the body is the same for all three. However, there is a signifi-
cant difference, which will be explained later, in how these different ta-
bles are used.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Specification of Test System Behaviour

=
=

Labul

Behaviour D¢ erpton Comtraintt Ret | werdiet | Com ment

W0 = n R Ed R o

-
(=]

Figure 7: The body of a dynamic behavior table

The table body shows the columns for the line numbers, labels, statement lines, constraint refer-
ences, verdicts and comments. The light shading indicates the extent of a single behaviour line. The
dark shading indicates the extent of a single statement line.

April 2009

Statement Lines

A sequence of one or more statements, together with the indentation in-
formation, in a single behaviour line is called a statement line. State-
ment lines appear in the behaviour description column of dynamic be-
haviour tables.

Statements

The behaviour of the test system, such as sending and receiving ASPs,
is expressed using TTCN statements. Statements can be split into three
distinct types:

e events;

e actions;

e qualifiers.
Events

Some statements will be successful, i.e. match, depending on the occur-
rence of certain events. There are two types of event: input events and
timer events. An input event is the arrival of an ASP at a named PCO or
a message at a named CP. A timer event is the expiry of a protocol tim-
er. The TTCN statements that are events are:

 RECEIVE

IBM Rational TTCN Suite 6.3 Methodology Guidelines 15

Chapter 1 The TTCN Introduction

16

« OTHERWISE
« TIMEOUT

Actions

Some statements will always be successful, i.e. execute. We shall call
such statements actions, although this term is not used in ISO/IEC
9646-3. These are actions that are executed by the test system, and
TTCN assumes that they can always be executed successfully. The
TTCN statements that are actions are:

« SEND

e IMPLICIT_SEND

* ASSIGNMENT_LIST
« TIMER_OPERATION
« GOTO

Qualifiers

Statement lines may include a qualifier statement, i.e. a boolean expres-
sion. We call such statement lines qualified statement lines. No event
can match, nor can any action be executed unless the qualifier included
in the statement line evaluates to TRUE. An unqualified statement line
is one that does not include a qualifier.

A TTCN qualifier is simply a:

« BOOLEAN_EXPRESSION

Combinations of Events, Actions and Qualifiers

The actual combinations of events, actions and qualifiers that are al-
lowed are defined by the TTCN-MP. The different combinations will be
described at the relevant points in this guideline.

Execution and Matching
We shall now consider how a behaviour tree is traversed and executed.

Alternatives

A set of statement lines at the same level of indentation, and in the same
branch of the tree are called a set of alternative statement lines, or alter-

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Specification of Test System Behaviour

April 2009

natives for short. Thus, in the Figure 6 on page 13 (A,B), (C, D, E), (F,
G), (1, J) and (H) are all different sets of alternatives.

Because the ordering within any given set of alternatives is significant
it is important that all events and qualified statements appear before any
unqualified actions.

Execution of the Behaviour Tree

Execution starts at the root of the tree. That is, the first set of alternatives
is repeatedly looped with each alternative being evaluated in the order
of its appearance in the set. This looping continues until a statement line
is successfully executed or matched. If a statement line is successful
then the next set of alternatives (if any) is entered, and the process is re-
peated.

Execution stops when a leaf of the tree is reached. A final verdict will
also halt execution, see “Verdicts” on page 86.

In the example shown in Figure 7 on page 15 execution starts by loop-
ing through the first set of alternatives (A, B). If B is successful then ex-
ecution terminates. If A is successful then the next set of alternatives (C,
D, E) is entered. Let’s assume that the statement line E is successful:
then the next set of alternatives is (1, J). If either | or J is successful then
execution terminates. Note that if no statement line in any set of alter-
natives is ever successful then execution gets ‘stuck’ as we repeatedly
loop through those alternatives.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 17

Chapter 1 The TTCN Introduction

Eveoute TastCasa [
Clst zet of ate natuess

¥
ACTIONE ACTIONE
o) 1. TAKESHAPSHOTS Ly 1. EMTER NE<T SETOF
2. UPDATETIMERS ALTERNATMES
et
arenatl e [k aR
! u Mal e
]
! : L
\ ! ACTICNS
! 1
1. COMPUTEWERD IGT
4 2. RESET vARELES
3. RESET TIMERS
arenatl s
]
o wes

iTQF

FUAE SMLPSHOTE i
descrided in 2O gpad OF5

POATE TRAEEE as
descrided in Tper Shakananss,

COMPOTE VERDIT s
Sangvidad in Fomdist

BESET is descrided im
Chxsronts gnd Vorjadles and
Timer Shodemenis,

Figure 8: Cycle of execution of a test case behavior tree

18 IBM Rational TTCN Suite 6.3 Methodology Guidelines

April 2009

TTCN Types and Values

TTCN Types and Values

We shall now discuss TTCN data types and their values. These are used
to specify the data types, including ASPs and PDUs that are used in the
behaviour descriptions.

TTCN has been tailored to interface with the Abstract Syntax Notation
One (ASN.1, ISO/IEC 8824:1990). There is no clear boundary between
TTCN types and ASN.1 types; the distinction is an artificial one. It is
there, however, to allow test suite specifiers to build the types, ASPs,
PDUs, etc. they need without using ASN.1 if they do not wish to do so.
This is relevant, for example, in lower-layer protocols, where ASN.1 is
not normally used in the protocol specifications.

TTCN contains a number of predefined types. It also allows the user to
construct his own types from the predefined types. This may be done us-
ing the following tables:

« Simple Type Definitions
e Structured Type Definition (one table per definition)

Predefined Types

TTCN supports a rich set of predefined (built-in) types. The predefined
TTCN types, with the exception of HEXSTRING, are a subset of the
ASN.1 built-in types and are compatible with their ASN.1 counterparts.
The HEXSTRING type does not exist in ASN.1. The remaining ASN.1
built-in types may also be used without being explicitly defined.

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 19

Chapter 1 The TTCN Introduction

20

HEXSTERING | FPredcfined npe unigue o T

| Pradefined fpes dofined in doth BOEC 0595-3 and
| moaEo s

Buijr-in npes defined in BOUIRC RE2G, and which
way also de wiedin TTCITest suites without deing
explicitiy declared.

Figure 9: List of predefined types that may be used in TTCN Test Suites

Value Denotation

The value denotation for the predefined types is the same in both TTCN
and ASN.1, see “ASN.1 Types and Values” on page 23.

Simple User Defined Types

The TTCN user can construct other types based on the simple pre-
defined types, without the need to resort to ASN.1 syntax. These sub-
types are defined in the Simple Type Definitions table, and they may be
used anywhere in the test suite. They are constructed by restricting the
predefined types (and possibly previously declared subtypes) by speci-
fying:
* value lists,

which are lists whose elements may consist of literal values only;

* ranges,
which may be used to restrict INTEGER types only;

* length restrictions,
which may be used to restrict string types only.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

TTCN Types and Values

Note:

The TTCN syntax does allow the use of ASN.1 in the Simple Type
Definitions table if wished. We recommend, however, that the spe-
cial tables for ASN.1 types be used instead.

imple Type Definitions in TTCH_TUTORIAL

File Edit DalaDictionary Show Tools SDTLink

|l (S A)][o] | L 5 E [t 2] 2] [7]

Help

April 2009

Simple Type Definitions
Twpe Name

Type Definition

Type Encoding

Comments

hinid Ip ha

IASString(*AY, 'BF, "G

List of lterml chamctars.

All positive INTEGER
numbe rs.

AllINTEGER number=
between O and 127 inclusive

Eyte BITSTRING [8] BITSTRING of length exactly
8 bits
NibbleOrEyte BITSTRING [4..8] BITSTRING of minimurm

kength of 4 bits and a
maccirunn kength of & bits.

Detmiled Comments :

Figure 10: Some miscellaneous simple type definitions

IBM Rational TTCN Suite 6.3 Methodology Guidelines

21

Chapter 1 The TTCN Introduction

Case study 4: Definition of a user type for test case results.

Simple Type Definitions in TTCM_TUTORIA

ile Edit Dala Dictionary Show Tools SDTLink

Simple Type Definitions

Typ= Name Ty pe Definition Typ= Encaoding Commeants

{| RESULT_TYPE F_Type

Detailed Comments :

Figure 11: Simple Type Definitions

Structured Types

TTCN has tables for the declaration of structured (i.e., complex) types.
These types, like the predefined types and the simple types may be used
anywhere (that is why they are defined early on in the test suite). How-
ever, their main use is to substructure ASPs and PDUs and we shall
therefore discuss them in *Specifying ASP, PDU and CM Values” on

page 56.

22 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

ASN.1 Types and Values

ASN.1 Types and Values

April 2009

ASN.1 is used to describe data types. It is often used as a means for de-
fining the PDU structures of many OSI protocols. In the following we
shall give an overview of the ASN.1 type and value notation.

Type References, Value References and
Identifiers

A type reference is the “name” of an ASN.1 type constructed by the
ASN.1 user. The ASN.1 standard requires that the initial character of a
type reference is always an upper case letter.

A value reference is the “name” of an ASN.1 value constructed by the
ASN.1 user. The ASN.1 standard requires that the initial character of a
value reference is always a lower case letter.

Note:

Many test suite specifiers ignore this convention, indeed, so does
ISO/IEC 9646-3!

As you will see shortly, type references in SETs and SEQUENCES etc.
may be “labeled”. Such labels are called identifiers. The ASN.1 stan-
dard requires that the initial character of an identifier is always a lower
case letter. Value references and identifiers are distinguished by con-
text.

Identifiers and Underscore

The ASN.1 standard allows the character dash (-) in identifiers. TTCN
does not (otherwise there would be ambiguity in arithmetic expressions
between dash and minus). TTCN uses underscore (_) instead. If ASN.1
definitions are imported, copied, borrowed etc. from external specifica-
tions (e.g. the PDU definitions for a particular protocol) then all occur-
rences of dash in identifiers should be changed to underscore.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 23

Chapter 1 The TTCN Introduction

ASN.1 Simple Types

BOOLEAN

BOOLEAN is a type denoted by two distinguished values: TRUE and
FALSE. The TTCN has operators for values of any type whose base
type is BOOLEAN.

INTEGER

INTEGER is a type denoted by the distinguished values which are the
positive and negative whole numbers, including zero. TTCN has oper-
ators for any values whose base type is INTEGER.

REAL

REAL is a data type specified as a triple of three INTEGERS consisting
of:

+ mantissa*base®XPonent
The base is limited to 2 or 10.

« piREAL :={314159, 10, -5 }

TTCN does not have any operators for values of REAL types. If REAL
arithmetic is absolutely necessary this can be achieved by user defined
operations.

BIT STRING

BIT STRING is a type whose distinguished values are the ordered se-
quences of zero, one, or more BITs. Individual BITs in the BIT
STRING may be named.

» ABItString ::= BIT STRING { bitl (0), bit2 (1), bit3 (2), bit4 (3) }
e a-value ABitString ::= “1001°B

24 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

ASN.1 Types and Values

April 2009

OCTET STRING

OCTET STRING is a type whose distinguished values are the ordered
sequences of zero or an even number of HEX digits, each digit corre-

sponding to an ordered sequence of four bits. Individual OCTETSs in
the OCTET STRING may be named.

¢ AnOctetString ::= OCTET STRING { octetl (0), octet2(1) }
e a-value AnOctetString ::= ‘OF'H
Note:

There is an incompatibility between TTCN and ASN.1 over the val-
ue denotation of OCTET STRING. TTCN terminates OCTET
STRING values with the keyword ‘O’ rather than the keyword ‘H’.

CharacterString

A variety of character sets are supported. For the purposes of this guide-
line we shall restrict ourselves to using the ITU character set IA5String.

ENUMERATED

ENUMERATED types represent the complete set of values (domain)

that an instance of a data type may take.

e transport-classes ENUMERATED ::={ class1 (0), class2 (1), class3
(2), class4 (3), class5 (4) }

No TTCN operators can be applied to values of ENUMERATED type.

OBJECT IDENTIFIER

OBJECT IDENTIFIER denotes a named object as a sequence of non-
negative INTEGERSs. The naming hierarchy of specific objects is decid-
ed by the relevant authority (e.g. ISO or ITU). An OBJECT IDENTIFI-
ER specifies a unique path in this hierarchy, i.e. all objects are uniquely
named.

e tten-standard OBJECT IDENTIFIER ::={iso (1) standard (0) 9646
3}
The OBJECT IDENTIFIER for ISO/IEC 9646-3 would be 1.0.9646.3

Objects that TTCN needs to reference in this manner might be ASN.1
modules (PDUs etc.) and PICS, PXIT documents.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 25

Chapter 1 The TTCN Introduction

26

OBJECT DESCRIPTOR

OBJECT DESCRIPTOR denotes a text string that references an object.
The difference between an OBJECT IDENTIFIER and an OBJECT
DESCRIPTOR is that the former is unique, while the latter may not be.

* ttcn-standard OBJECT DESCRIPTOR ::="The TTCN: ISO/IEC
9646, part 3"

ASN.1 Constructors

Complex data types can be built from the simple predefined types (ex-
cepting HEXSTRING) using ASN.1 constructors. This process is re-
cursive, i.e. constructors can use other constructors (including them-
selves) to an arbitrary level of nesting. The constructor types are:

SEQUENCE
SEQUENCE OF
SET

SET OF
CHOICE

SEQUENCE

SEQUENCE is a data type denoting an ordered set of elements. This set
may be empty. The elements of this set may be of any ASN.1 type and
may be of different types. The elements in the set may be named.

» ASequence ::= SEQUENCE {fieldl INTEGER, field2 BOOL-
EAN}
e a-value ASequence ::= { field1 123, field2 TRUE }

SEQUENCE OF

SEQUENCE OF is a data type denoting an ordered set of elements.
This set may be empty. The elements of this set may be of any ASN.1
type but they shall all be of the same type. The elements in the set may
be named.

* ASequenceOf ::= SEQUENCE OF INTEGER { field1, field2 }

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

ASN.1 Types and Values

April 2009

SET

SET is a data type denoting an unordered set of elements. This set may
be empty. The elements of this set may be of any ASN.1 type and may
be of different types. The elements in the set may be hamed.

e ASet::= SET { fieldl INTEGER, field2 BOOLEAN }

SET OF

SET OF is a data type denoting an unordered set of elements. This set
may be empty. The elements of this set may be of any ASN.1 type but
shall all be of the same type. The elements in the set may be named.

e ASetOf ::= SET OF INTEGER { field1, field2 }

At first glance SEQUENCE and SET may appear the same. The differ-
ence is that a SEQUENCE is ordered, a SET is not. For instance, in the
previous examples when the SET is eventually encoded it can be trans-
mitted by sending field2 before fieldl, if wished. In the case of SE-
QUENCE field1 must always precede field2. This has implications
when testing, which will be discussed later.

The same applies to SEQUENCE OF and SET OF.

In short, SEQUENCE and SEQUENCE OF rely on ordering to avoid
ambiguity. SET and SET OF rely on the data type and/or tag of each el-
ement to uniquely distinguish each element.

OPTIONAL

The keyword OPTIONAL in a SEQUENCE or SET indicates that the
presence of that element in the SEQUENCE is not mandatory and may
be included or omitted at will.

e ASequence ::= SEQUENCE { field1 INTEGER OPTIONAL,
field2 BOOLEAN }

e a-valuel ASequence ::= {123, TRUE }

e a-value2 ASequence ::= { TRUE }

The same applies for SEQUENCE OF, SET and SET OF.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 27

Chapter 1 The TTCN Introduction

28

DEFAULT

In certain cases it is useful to be able to specify a DEFAULT value to
be used (in encoding) if the element is not present in the data type.

e ASequence ::= SEQUENCE { field1 INTEGER DEFAULT O,
field2 BOOLEAN }

CHOICE

A CHOICE type is a data type that defines the union of one or more data
types. The alternatives in this union may be named. Any given instance,
i.e. value, of a CHOICE shall be exactly one of the alternatives of the
CHOICE. This has implications for testing which will be discussed lat-
er.

e AlIPDUs ::= CHOICE {pdul SEQUENCE{ }, pdu2 SE-
QUENCE{ }, pdu3 SEQUENCE { } }
¢ a_pdu AlIPDUs ::= pdu2

TAGGED TYPES
Tags are used to distinguish between different occurrences of the same
type. Tags are denoted by a non-negative INTEGER enclosed in square
brackets. Tags are included in the encoding of the data type. There are
four classes of tags:
* UNIVERSAL
Universal tags are globally unique and are only defined in the
ASN.1 standard. These tags have a meaning world-wide.
* PRIVATE
Private-use tags are unique within a given enterprise, and are de-
fined by agreement of the parties involved in the enterprise. These
tags have no meaning outside the scope of the enterprise.
e APPLICATION

Application-wide tags are unique within a specific ASN.1 module.
These tags have no meaning outside of the ASN.1 module that they
are used in.

e CONTEXT

Context-specific tags are unique within a specific constructor type.
For example, elements in a particular SET may be tagged to unique-

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

PCOs and CPs

ly distinguish them. These tags have no meaning outside of the
ASN.1 type that they are used in.

IMPLICIT

The keyword IMPLICIT may be used together with the definition of the
tagged type. IMPLICIT is an instruction to an ASN.1 encoder that only
the tag need be encoded and thus transmitted over the network. This is
done to reduce the amount of transmitted data. IMPLICIT may only be
used where no loss of essential information would occur. For example,
it should not be used with CHOICE.

EXTERNAL
Use of the EXTERNAL type is not allowed in TTCN.

PCOs and CPs

April 2009

The TTCN supports an asynchronous communication model. Commu-
nication between the test components and the IUT or service provider is
achieved via points of control and observation (PCOs). Communication
between the test components themselves is achieved via coordination
points (CPs).

The Communication Model
We shall use the same queue model to describe both PCOs and CPs:

¢ each PCO/CP has two unbounded first-in-first-out (FIFO) queues;

e one queue for SEND, and

e one queue for RECEIVE;

« exactly two parties must be connected to a single PCO or CP;

« the SEND queue for one party is the RECEIVE queue for the other,
and vice versa.

Sending an ASP

The SEND action appends an ASP to the relevant PCO send queue.
Even in the case of the IUT and the underlying service provider the send
queue is considered to be unbounded, and that the IUT or service pro-
vider will always accept the ASPs sent by an LT or UT.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 29

Chapter 1 The TTCN Introduction

Receiving an ASP

A successful RECEIVE pops the ASP from the top of the RECEIVE
queue. We shall see later that RECEIVE involves two steps:

e receipt of the ASP;
« checking its contents.

Lower Tester or Upper Tester

Service Provider or IUT

Figure 12: Illustration of the PCO and CP queue model

Declaring PCO Types
All PCO types that are used in the test suite must be declared in the

¢ PCO Type Declarations
Each PCO Type requires the following information:

¢ the name the PCO Type
« the role of the PCO, which is either of the keywords LT or UT,;

30 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

PCOs and CPs

Case study 5: Declaration of the PCO Types N_SAP and X_SAP.

PCO Type Declarations in TTCWN_TUTCORIA

File Edit DalaDictionary Show Tools SDTLink Help |

@[S EEEE R

PCO Type Declarations
PO Type Role C:ormnments

Detmiled Comments :

Figure 13: PCO Type Declarations

Declaring PCOs
All PCOs that are used in the test suite must be declared in the

e PCO Declarations
Each PCO requires the following information:

e the name the PCO
¢ the type of the PCO;
« the role of the PCO, which is either of the keywords LT or UT;

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 31

Chapter 1 The TTCN Introduction

Case study 5: Declaration of the PCOs L and U.

CO Declarations

in TTCH_TUTORIAL

File Edit DataDictionary Show Tools SDTLink

Help |

-

PCO Declarations

PO MName

PCO Type

Fole

Comments

M-sanrice access points at
the owertester

H—senrize access points at
the uppertester

Detailed Commments :

32

Figure 14: PCO Declarations

Using PCOs and CPs

If the test suite only uses one PCO it is allowed to omit the PCO name
in the TTCN statements that use them. If there is more than one PCO
used (e.g. as in the distributed method) then the PCO and CP names (if
any) must appear in the TTCN statements that use PCOs or CPs.

PCO and CP Snapshots

We have already described how a behaviour tree is executed by repeat-
edly looping through a set of alternatives until a statement line is suc-
cessful. At the beginning of each loop a snapshot is taken of each input
queue in every PCO or CP. Statements are evaluated on the basis of the
state of the snapshots, not on the actual state of the PCO or CP queues.
This has the effect of freezing time while a set of alternatives is being
processed i.e. “prevents” the occurrence of an event in between snap-
shots. This means that the arrival of an ASP, PDU or CM during pro-

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

PCOs and CPs

cessing of a set of alternatives is not registered until the snapshots are
updated.

Declaring CPs

All CPs that are used in the test suite must be declared. This is done in
the CP Declarations table. Each PCO requires the following informa-
tion:
e the name of the CP;
e the role of the CP,
i.e. the two test components which communicate with each other
over the CP.

Case study 6: Declaration of the coordination points called CP1 and
CP2.

Coordination Point Declarations in TTCHW_TUTORIA

| File Edit DataDictionary Show Tools SDTLink Help

&)%) S|l

Coordination Point Dec larations
CF Name Cormrments

CFA1 Coomination between the MTC and the FTCs of the ower

Detmiled Gormments :

Figure 15: Test Component Declarations

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 33

Chapter 1 The TTCN Introduction

The SEND Statement

34

The transmission of ASPs and/or PDUs to the IUT or messages to other
test system components is one of the fundamental actions in a typical
TTCN behaviour tree.

Sending an ASP

The SEND statement allows the test suite specifier to express that an
ASP of a certain type is to be transmitted over anamed PCO. The SEND
statement is denoted by:

e PCO_ldentifier ! ASP_ldentifier

The SEND statement may be qualified and it may be followed by an
ASSIGNMENT_LIST and/or TIMER_OPERATION. The order in
which these statements may appear in the statement line is fixed, as
shown below; the square brackets indicate that the presence of the state-
ment in the statement line is optional:

« SEND®[QUALIFIER]! [ASSIGNMENT_LIST]?
[TIMER_OPERATION]*

Executing a SEND Statement

The numbers on the line above indicate the order, with respect to time,
in which the statements should be executed: the QUALIFIER (if any) is
evaluated first. If it evaluates to FALSE processing stops and the state-
ment line is not successful. If it evaluates to TRUE then the
ASSIGNMENT_LIST (if any) is executed. Only then can the SEND
statement be executed. Finally, the TIMER_OPERATION (if any) is
executed.

e LI N_DATArequest

means: send the Network data request service primitive to the PCO
named L;

e LI N_DATArequest [B=1]
means: if B is equal to 1 then execute the SEND;
e LI N_DATArequest [B=1] (X:=3)

means: if B is equal to 1 then assign the value 3 to X and then per-
form the SEND.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

The RECEIVE Statement

Sending a PDU

Normally PDUs are embedded in ASPs, and will not be explicitly
named in the SEND statement. However, not all protocols have a ser-
vice definition (e.g. X.25) and TTCN therefore permits the SEND state-
ment to be used explicitly with PDUs instead of ASPs. The action of
sending a PDU is denoted by:

¢ PCO_ldentifier ! PDU_Identifier

Other statements that may be associated with sending a message, and
the order in which the statement line is processed, is exactly the same as
for an ordinary SEND statement line.

Sending a Coordination Message

The SEND statement is also used to send messages to coordination
points. The action of sending a CM is denoted by:

e CP_ldentifier ! CM_Ildentifier

Other statements that may be associated with sending a message, and
the order in which the statement line is processed, is exactly the same as
for an ordinary SEND statement line.

The RECEIVE Statement

April 2009

The receipt of ASPs and/or PDUs from the IUT or messages from other
test system components is one of the fundamental events in a typical
TTCN behaviour tree.

Receiving an ASP

The RECEIVE statement allows the test suite specifier to express that
an ASP of a certain type is to be received over a named PCO. The RE-
CEIVE statement is denoted by:

e PCO_ldentifier ? ASP_ldentifier

The RECEIVE statement may be qualified and it may be followed by
an ASSIGNMENT _LIST and/or TIMER_OPERATION. The order in
which these statements appear in the statement line is fixed, as shown
below; the square brackets indicate that the presence of the statement in
the statement line is optional:

IBM Rational TTCN Suite 6.3 Methodology Guidelines 35

Chapter 1 The TTCN Introduction

36

« RECEIVE![QUALIFIER]? (ASSIGNMENT_LIST)?
[TIMER_OPERATION]*

Executing a RECEIVE Statement

The numbers on the line above indicate the order, with respect to time,
in which the statements should be executed: the RECEIVE is evaluated
first, and succeeds if an ASP of the correct type is at the head of the PCO
queue. If the RECEIVE fails then processing stops and the statement
line is not successful. If the RECEIVE is successful then the QUALIFI-
ER (if any) is evaluated. If the QUALIFIER evaluates to FALSE pro-
cessing stops and the statement line is not successful. If it evaluates to
TRUE then the ASSIGNMENT _LIST (if any) is executed. Finally, the
TIMER_OPERATION (if any) is executed. For example:

¢ L? N_DATArequest
means: the statement line matches if a Network data request primi-
tive is at the head of the PCO named L;

e L? N_DATArequest [B=1]
means: the statement line matches if the correct ASP is at the head
of the PCO L and if B is equal to 1;

* L? N_DATArequest [B=1] (X:=3)

means: the statement line matches if the correct ASP is at the head
of the PCO L and if B is equal to 1. Only when the match has oc-
curred can the ASSIGNMENT _LIST be executed.

Receiving a PDU

Normally PDUs are embedded in ASPs, and will not be explicitly
named in the RECEIVE statement. However, not all protocols have a
service definition (e.g. X.25) and TTCN therefore permits the RE-
CEIVE statement to be used explicitly with PDUs instead of ASPs. Re-
ceipt of a PDU is denoted by:

e PCO_ldentifier ? PDU_Identifier

Other statements that may be associated with sending a message, and
the order in which the statement line is processed, is exactly the same as
for an ordinary RECEIVE statement line.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

The OTHERWISE Statement

Receiving a Coordination Message

The RECEIVE statement is also used to accept messages from coordi-
nation points. Receipt of a CM is denoted by:

e CP_ldentifier ? CM_Identifier

Other statements that may be associated with receiving a message, and
the order in which the statement line is processed, is exactly the same as
for an ordinary RECEIVE statement line.

The OTHERWISE Statement

April 2009

The OTHERWISE statement allows the test suite specifier to express
that an ASP or PDU of any type is to be received over a named PCO.
Note that this includes objects that may not normally be recognized as
proper ASPs or PDUs, due to the fact that the IUT may not be working
correctly, i.e. OTHERWISE is a catch-all. The OTHERWISE statement
is denoted by:

e PCO_ldentifier ? OTHERWISE
OTHERWISE should not be used at coordination points.

Note:

Always have an OTHERWISE as an alternative to a RECEIVE
event.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 37

Chapter 1 The TTCN Introduction

Defining ASP, PDU and CM Types

38

ASPs are derived from the relevant standardized service definitions.
When using the distributed method, for example, ASP definitions are
needed for both the (N) and the (N-1) service. There should be one ASP
definition for each ASP used in the test suite.

PDUs are derived from the relevant protocol specifications. There
should be one PDU type definition for each PDU used in the test suite.
If, for the purposes of testing, it is required to use non-standard PDUs
then these too should also be defined in the test suite.

Coordination Messages are also defined by the test suite specifier.

TTCN has tables that allow the definition of ASPs, PDUs and CMs us-
ing either the simple TTCN tabular format or ASN.1.

Complex TTCN Types

TTCN has tables for the declaration of the following complex types:

ASP Type Definitions;

PDU Type Definitions;
Structured Type Definitions;
CM Type Definitions.

Using these complex types we can define arbitrarily structured ASPs
and PDUs (structured types are substructures of ASPs and PDUS). In es-
sence there is no real difference in TTCN between the composition of
the body of an ASP, PDU or structured type. Note the following:

¢ an ASP has parameters,

where the type of each parameter may be of any type except ASP
type;

e aPDU has fields,
where the type of each field may be of any type except ASP type;

e astructured type has elements,
where the type of each element may be of any type except ASP type.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Defining ASP, PDU and CM Types

Chaining

Normally, the ASP parameters, PDU fields and structure elements will
be predefined or simple types (note that this includes the use of ASN.1,
if wished). However, as noted above, the parameter, field or element
types may also be PDUs or structures to allow the chaining of these
types to build complex definitions.

ASP Type Def A typical complex user defined data type: a substructured PDU is em-
bedded in an ASP.
@ = PDU Type Def
[| Struct Type Def

Figure 16: Structuring ASPs and PDUs

Complex ASN.1 Types

In ASN.1, constructors such as SEQUENCE and SET are used to build
arbitrarily complex types. ASN.1 definitions may be used in the follow-
ing tables:

¢ ASN.1 Type Definitions;

e ASN.1 ASP Type Definitions;
e ASN.1PDU Type Definitions;
¢ ASN.1 CM Type Definitions.

It is always possible to express the TTCN tabular format in ASN.1, but
not vice versa. The two formats can be used in combination, if wished.
A common example is to use a tabular ASP to carry a structured PDU
defined in ASN.1.

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 39

Chapter 1 The TTCN Introduction

40

ASP Type Def A structured PDU defined in ASN.1 is chained to a tabular ASP.
[| ASN.1 PDU Type
® | ASN.1 Type Def

Figure 17: Structuring ASPs and PDUs using ASN.1

Local Type Definitions

There will always be at least one type definition in an ASN.1 table. This
is the main definition, and it is named in the table header. However,
these ASN.1 tables may also include any number of local definitions
which are only available to the type definitions defined within the table
itself, i.e. the main definition and other local definitions (if any).

Note that local definitions begin with typereference ::=. This is not the
case for the main definition as the type identifier already appears in the
header.

Type Definitions by Reference

In order to save repeating PDU and other type definitions that are spec-
ified in another standard TTCN allows the following types to be de-
clared by reference rather than explicitly:

¢ ASN.1 ASP Definitions;
* ASN.1 PDU Definitions;
¢ ASN.1 Type Definitions.

A single table is used for all references to a particular type. The refer-
ence tables are:

* ASN.1 ASP Definitions by Reference;
e ASN.1PDU Definitions by Reference;
¢ ASN.1 Type Definitions by Reference.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Defining ASP, PDU and CM Types

Note that because the entries in the Type Reference column and the
Module Identifier column follow ASN.1 syntax they may contain the
dash character. Note also that the module identifier may be followed by
an optional object identifier.

A5M,1 POU Tupe Definitions By Reference in TTCN_TUTORIA

File Edit

Data Dictionary Show Tools SDT Link Help

EIREE

& H L B]2l in][7]

ASN1 PDU Type Definitions By Beference

FDU Hame PCO Type Typ= Reference Module |dentifizy Enc Rule Enc Wariation Comments
CGR_PDU h_SaP GR_FDU pdus 1.0.123 4
CC_FDU N_SAP CC_FDU pdus1.0.122.4

|| cemilzd comm,

Ents

April 2009

Figure 18: Example of PDU definitions by reference

IBM Rational TTCN Suite 6.3 Methodology Guidelines 41

42

Chapter 1 The TTCN Introduction

Defining ASPs

OSI service primitives are often defined in a standard as a tuple, i.e. the
primitive name followed by a list of parameters. Each parameter is de-
fined using natural language descriptions and may represent service

control information or service user data. Some parameters are mandato-

ry (i.e. must always be present) while others are optional and, under cer-
tain circumstances, may be omitted.

In TTCN service primitives are called Abstract Service Primitives
(ASPs) and are declared in ASP Type Definition tables.

Case study 7: A service provider ASP type definition.

M_DATArequest in TTCH_TUTORIAL
File Edit DataDictionary Show Tools SDTLink

ol]S A M [S)E E H] E 22

ASP Type Definition
ASP Name: W_D4TAmquest

PCO Type : N_SAP

Comments : This is the type definition of the N_DATAmquest ASFP. It ha= a single pammeter used to camy userdata.

Parametzr Hame Farameter Type Comments

usar_dats, FOU The FDU metatype = used o indicats

that outgoing (i.e. from LT) FDUs ae
embaddad in this Metwork ASP

Detailed Comments :

Figure 19: ASP Type Definition (N_DATArequest)

The PDU Metatype

The above example uses the PDU metatype. This indicates that any type

of PDU, and not just a particular type of PDU may be embedded in this
ASP.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Defining ASP, PDU and CM Types

April 2009

Defining PDUs

In most OSI standards PDUs are usually defined using either:

« asimple tabular-like format, together with informal text; or
¢ ASN.1 together with informal text.

In the first case the specification may be rather loose, and typing of PDU
fields and substructuring of the PDUs is not always obvious. The test
suite specifier must transpose these definitions to the more powerful
and precise formats available in TTCN.

For example, a standard may describe a particular field as comprising

8-bits, implying that it shall be encoded as a BITSTRING. If none of the
bits in this BITSTRING need to be referenced individually, it may be

adequate for testing purposes (and easier to understand) if this field is

defined as an OCTETSTRING.

In the case of ASN.1 the types and structure of PDUs and their fields is
usually complete and well-defined, and may be taken directly from the
protocol standard, either by copying them or by reference.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 43

Chapter 1 The TTCN Introduction

Case study 8: Type definition of an X_PDU using the TTCN format.

_CR_PDUINTICH_TUTORIAL |

File Edit DataDictionary Show Tools SDTLink

Help

PDU Type Definition

{| Fou Nzme
{| Foo Tvee

: GR_PDU
o N_SAF

Encoding Rule Name :

Encoding Wariation

4| comments

: This i the type definition of the CR_FDU

Field Nama

Figld Typ=

Field Encoding

Comments

QCTETSTRING [1]

145:5ting [0 .. 32]

| Detmiled Comments :

44

Figure 20: PDU Type Definition (CR_PDU)

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Defining ASP, PDU and CM Types

CR_PDUIn TTCH _TUTOR|A

| File Edit DataDictionary Show Tools SDT Link Help
|l] A) S o] B B 2]]2

FDU Hame : GR_FDU
PCO Type : N_SAP

ASN.1 PDU Type Definition

Encoding Rule Mame :
Encoding Yariation

Cormnrments : The GR_TPLU type definition in ASN. 1.

Type Definition

SEQUENGE { type OGTET STRING (SIZE (4..41,
dst_mf BIT STRING (SIZE 443,
= _ref BIT STRING (SIZE (4..4)),

wanablk_part WARIAELE_PART, —- Refemnce to an ASK.1 type definition.
user_data 1ASSting (SI1ZE {0..32)) OF TIONAL
i

Detailed Gomments :

Figure 21: Type definition of the same X_PDU using ASN.1

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 45

Chapter 1

The TTCN Introduction

Substructuring ASPs and PDUs

TTCN structured types (which we will sometimes refer to simply as
structures) are only used to substructure ASPs, PDUs, CMs and other
structured types.

If ASN.1 is used then the ASN.1 type definition table may be used not
only to substructure ASPs, PDUs etc. but also to define types general to
the entire test suite.

Case study 9: Type definition of a PDU substructure using the TTCN
format.

File Edit DataDictionary Show Tools SDTLink

ARIGBLE PART in TTCH _TUTORIAL

|||

Eall

o] B[R B]2] [7]

Structured Ty pe Definition

Type Name : WARIAELE_FART

Encoding Wariation :

Gomments : This is the type definition of the vardable partof the CR_FDU and the SC_FDLU.

Elzmeant Nams Ty pa Definition Fizld Encading Comments
parmi_id BITSTRING [2] Fammeter identifier.
pomma | coteTsTANG . 4| |Cptenalpammenrd.
parmmB_id BITSTRING [2] Farmmeater identifier.
pamme | N e L

Detailed Commments :

Figure 22: Structure Type Definition (VARIABLE_PART)

46 IBM Rational TTCN Suite 6.3 Methodology Guidelines

April 2009

Defining ASP, PDU and CM Types

YARIABLE PART in TTCM _TUTORIAL
File Edit DalaDictionary Show Tools SDTLink Help

& 8] 5] A| A][o]] 2l 9

ASN 1 Type Definition
Type Name : VARIAELE_PART

Encoding Yariation :

Cormnrments : This is the type definition of the varzblke pant of the SR_FDU and the GSG_PDU in ASN.A.

Type Definition

SEQUENCE
{pammi_id BITSTRING (SIZE .20 OPTIONAL, ——Pammeter ide ntifier.
pammA OGTET STRING (SIZE (2.47) OPTIONAL, -—Optional pammeter A
pammB_id BITSTRING (SIZE 2. 20 OPTIONAL, ——Pammmeter ide ntifier.
pamme BOOLEAN OPTICNAL ——Cptional pammetar B

}

Detailed Comments :

Figure 23: Type definition of the same substructure using ASN.1

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines a7

Chapter 1 The TTCN Introduction

Defining Coordination Message Types

Coordination messages are special to each test suite and are created by
the test suite specifier. Either the tabular format or ASN.1 may be used.

Case study 10: Type definition of a coordination message.

PTC_RESULT in TTCHN _TUTORIAL

File Edit DataDictionary Show Tools SDTLink

Help

EREE

CM Type Definition

CM Mame

¢ PTC_RESULT
Comments | Goordination rmessage to tRnsfer preliminany esul from teh wertester PTCs to the MTC,
Fammeter Hame Fammeter Type Comments
== RESULT_TYFE Userdefined type.

Detailed Comments

48

Figure 24: CM Type Definition (PTC_RESULT)

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Defining ASP, PDU and CM Types

PTC _RESULT in TTCHN _TUTORIAL

File Edit DalaDictionary Show Tools SDTLink Help

ASNA CHW Type Definition
CM Name : PTG_RESULT

4| Comments :

Type Definition

{| secuence
mesult RESULT_TYFE —-Userdefined type
il:

Cetailed Comments ;

Figure 25: Type definition of the same coordination message using ASN.1

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 49

Chapter 1 The TTCN Introduction

Using ASPs and PDUs in Behaviour Trees

In this section we will expand our example a bit further and show how
the sequencing of ASPs w.r.t. time is expressed in TTCN behaviour de-
scriptions.

X-CONNECT X-CONNECT
response i T indication

N_DATA
indication

N_DATA
request

N-SERVICE PROVIDER

8

Figure 26: An N_DATArequest, carrying a CR_PDU, is sent over the network

It results in the IUT generating an X_CONNECTIindication, which is responded to by the UT tester
sending an X_CONNECTresponse. This results in an N_DATAindication, carrying a CC_PDU,
appearing at the LT.

Nr | Label | Behaviour Description Constraints Ref Verdict | Comments

1 L! N_DATArequest
2 L? N_DATAindication
3 L? OTHERWISE

Nr | Label | Behaviour Description Constraints Ref Verdict | Comments
1 U? X_CONNECTindication

2 U! X_CONNECTresponse

8 U? OTHERWISE

Figure 27: The above scenario can be expressed as two TTCN behavior trees
Note the introduction of the OTHERWISE statement.

50 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

TTCN Expressions

TTCN Expressions

All values in TTCN are quite simply expressions. Note that the TTCN
syntax allows the operands of expressions to be:

« literal values;

« constant or variable identifiers;

« formal parameter identifiers;

e ASP parameters;

* PDU or CM fields;

e structure elements;

« predefined and user defined operations;
e expressions, i.e. the syntax is recursive.

Exactly which variables etc. may be used in an expression depends on
the context in which the expression is used. This aspect will be dis-
cussed in the relevant sections.

TTCN Operators

TTCN supports the following kinds of operators for use in expressions:

e arithmetic;
* relational
¢ logical.

Arithmetic Operators

TTCN supports the following arithmetic operators for use only with op-
erands of INTEGER type or derivations of INTEGER type:

° +l 5 *1 /l MOD
Expressions that use these operators are called arithmetic expressions.

. 3%(Z+9)

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 51

Chapter 1 The TTCN Introduction

52

Equality Operator

The equal to and not equal to operators may be used on values of any
type:

. =<

Expressions that use these operators must always evaluate to a BOOL-
EAN value:

e B_string =‘01'B
e H_string <> ‘FF’H

Other Relational Operators

TTCN supports the following relational operators for use only with op-
erands of INTEGER type or derivations of INTEGER type:

o < > >z <=

Expressions that use these operators must always evaluate to a BOOL-
EAN value:

e X<=3*Y

Boolean Operators

TTCN supports the following logical operators for use only with oper-
ands of BOOLEAN type or derivations of BOOLEAN type:

* AND, OR, NOT

Expressions that use these operators must always evaluate to a BOOL-
EAN value:

« AAND NOT (B ORC)

Qualifiers
A qualifier is an expression enclosed in square brackets:

e [expression]
The expression must evaluate to a BOOLEAN value.

« [X <6AND H_string <> ‘FF’H]

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

TTCN Expressions

Assignment Lists
A TTCN statement may be an ASSIGNMENT _LIST, i.e. a list of as-
signments, separated by commas and enclosed in parentheses:

e (‘assignmenty,, assignment,)

The left-hand side (I.h.s.) of an assignment must resolve to a variable.
In the context of SEND and RECEIVE statements the I.h.s. of an assign-
ment may resolve to an ASP parameter reference, a PDU field reference
or a structure element reference. The right-hand side (r.h.s.) of the as-
signment is an expression, which must evaluate to a value of a type
compatible with the type of the L.h.s.
e (X:=3,A:="astring”, Y :=3*(Z+9), H := ‘FF’H)

Note:

By type compatibility we quite simply mean that a value, a, of type
A is type compatible with type B if a is a legal value of both type A
and type B.

TTCN Operations

TTCN supports both a number of predefined operations and a mecha-
nism that allows the definition of user operations. Operations may be
used as operands in expressions.

Predefined Operations

TTCN now supports a number of predefined operations. More are ex-
pected to be added by the work on TTCN extensions. Currently these
operations are:

e HEX_TO_INT (data_object_reference),
converts a HEXSTRING value to an INTEGER value;

e BIT_TO_INT (data_object_reference),
converts a BITSTRING value to an INTEGER value;

e INT_TO_HEX (data_object_reference),
converts an INTEGER value to an HEXSTRING valueg;

e INT_TO_BIT (data_object_reference),
converts an INTEGER value to an BITSTRING value;

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 53

Chapter 1 The TTCN Introduction

54

¢ LENGTH_OF (data_object_reference),
returns the length of the data object reference, which must be of
string type, in units of that string type, e.g. number of bits, number
of characters etc.;

« NUMBER_OF ELEMENTS (data_object_reference),
returns the number of elements in the data object reference (e.g.
PDU field) which must be of type SEQUENCE OF or SET OF,;

¢ IS _PRESENT (data_object_reference),

returns TRUE if an OPTIONAL or DEFAULT data object refer-
ence (e.g. PDU field) is present in a received PDU; otherwise re-
turns FALSE;

e IS_CHOSEN (data_object_reference),

this operation is used to indicate that we wish to accept a particular
element from a CHOICE. It returns TRUE if the data object refer-
ence (e.g. PDU field), which must be of CHOICE type, matches the
received value.

User Defined Operations

TTCN allows the informal definition of user define operations. A pos-
sible approach is to use a programing language to ‘describe’ the opera-
tion.

Note:

The TTCN amendment (PDAM 2) is currently exploring ways of
how user operation descriptions can be made more “formal’.

Like the predefined operations user defined operations may be used in
both behaviour trees and as ‘values’ in constraints.

Each user defined operations is declared in a Test Suite Operations ta-
ble.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

TTCN Expressions

Case study 11: Definition of a user defined operation.

INC in TTCH_TUTORIAL
File Edit DalaDictionary Show Tools SDTLink

e EEE A=

Test Suite Operation Definition
Cparation Hame : ING (INTESER)

{| Fesurt Tvp= . INTEGER

Cormnrments : The INGrEmentT ope=ton.

] Description
it (MG

int termp;

1l
: mtum femp+ 1) M etum the incremented value of i Motz that | k==K i not changed

Detailed Comments :

Figure 28: Test Suite Operation Definition

If an operator does not have any arguments it should be called with an
empty actual parameter list, e.g. DATE ().

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 55

Chapter 1 The TTCN Introduction

Specifying ASP, PDU and CM Values

The previous section showed how to define structured ASP, PDU and
CM types. However, when a tester SENDs or RECEIVES an ASP, PDU
or CM it is necessary to specify in detail actual values of these complex

types.

Values, or instances, of complete ASPs, PDUs and CMs are called con-
straints. For each ASP, PDU or CM definition table there should be at
least one corresponding constraint table.

The constraint declaration tables are:

¢ ASP Constraint Declaration;

* PDU Constraint Declaration;

e Structured Type Constraint Declarations;
¢ CM Constraint Declaration.

Static and Dynamic Chaining

ASPs, PDUs and structured types may be chained to allow the construc-
tion of arbitrarily complex ASPs and PDUs. Static chaining means that
the actual name of a PDU constraint or structure constraint appears as
the value of an ASP parameter, PDU field or structure element, i.e. the
structure is hardwired by symbolic references. Dynamic chaining
means that the linking occurs when the actual constraint is passed as a
parameter in the constraints reference.

56 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Specifying ASP, PDU and CM Values

B5F Type Def A hwical compler user defined data Dpe: a sudstructured PO is
emdedded in an ASF

L | FOU Type Def

L | Struct Twpe Def

RSP Constraint H
L T FOUConstrairt H
L g Btruct Conntraint

Foch valve ie copstraig, af thecompla: fpeillustated adovemust
vefTect the structuve of the e definifion.

Figure 29: Relation between structured ASP and PDU types and their constraints

Complex ASN.1 Values

The concept of chaining is an integral part of ASN.1, although it is not
described in those terms. It is expressed by the use of type references. If
a reference is made from one type definition to another then there
should be a corresponding value for that reference in the relevant con-
straints.

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 57

Chapter 1 The TTCN Introduction

ASP Constraints

Generally, for every ASP type definition, there will be at least one ASP
constraint declaration. However, some service definitions include ASPs
that do not have parameters. In such cases, a constraint is not necessary.
The same may apply to coordination messages, but it does not apply to
PDUs. A PDU without fields is a nonsense.

ASP constraints are very similar to PDU constraints, which are more
fully described in the next section. The rules that apply to PDU con-
straints, also apply to ASP constraints.

Case study 12a: A typical ASP constraint. Note that the constraint is
parameterized - more about that later.

MDr in TTCM _TUTORIAL

Fie Edit DataDictionary Show Tools SDTLink

ASP Constraint Declaration

Constraint Hame : NDAany_pdu:P DU

{| asp Tvp= © N_DATAmquest
Derivation Fath
Cromments © A constinton the N_DATARquest ASF.
Farameter Hame Farametzr Walue Comments
user_data amy_pdu The actual POU that i camed in the

ASP i dynamizally chained from the
constrints efemnce.

Detailed Comments

Figure 30: ASP Constraint Declaration (NDr)

58 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Specifying ASP, PDU and CM Values

April 2009

The DefCon Utility

The DefCon utility is a TTCN Access application that traverses a test
suite in . itex format and generates default constraints for all ASN.1
ASP:s found in the test suite. The output is directed to the standard ter-
minal output in .mp format.

Case study 12b: A test suite named MyTest . itex contains some
ASN.1 ASP:s. To generate default constraints for these ASP:s and to
store the constraints in a file named MyTestConstraints.mp, the Def-
Con utility should be called like this:

c:\> defcon MyTest.itex > MyTestConstraints.mp
The generated constraints can then be merged into the . itex file with
the Autolink Merge utility. See “Merging TTCN Test Suites in the
TTCN Suite” on page 1398 in chapter 35, TTCN Test Suite Generation
for more information.

Naming generated constraints

When calling DefCon, optional arguments may be provided. These ar-
guments specify which pre- and/or postfixes to use for naming the gen-
erated constraints.

The default naming scheme is defined like this:

If there is an ASN.1 ASP named "MyASP" in the test suite, DefCon
generates a constraint named "MyASPConstraint" from it. In other
words, the default prefix is empty and the default postfix is "Con-
straint".

The syntax for changing pre- and postfixes is:

defcon [-pre <prefix>] [-post <postfix>] <testsuites>
Note:

Pre- and postfix strings are given without quotes on the command
line.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 59

Chapter 1 The TTCN Introduction

60

PDU Constraints

Generally, for each field in the PDU type definition, there will be a cor-
responding field in the constraint. The value of the constraint field must
be compatible with the type definition for that field. We shall see later
how fields may be omitted or replaced, and how the derivation path en-
try should be used. We shall also see how constraint values are matched.

Case study 13: Declaration of an X_PDU constraint using the TTCN

tabular format.

CR1INTTCH _TUTOR|AL

File Edit DataDictionary Show Tools SDTLink

Help

] %) S|

PDU Constraint Declaration
Constraint Name : GRd

FDU Type : GR_PDU
Derivation Path
Encoding Rule Mame :

Encoding Wariation

Comments : A constrinton the GG_PDLU
Fizld Mame Field ¥alue Fizld Encoding Cormments
type FA
d=t_ref 00o4'E
sm_mef nooq'e
wariable_part warable_par_CRH Refemnce to a structumed
eonstaint
user_data, Helio

Detailed Commeants

Figure 31: PDU Constraint Declaration (CR1)

IBM Rational TTCN Suite 6.3 Methodology Guidelines

April 2009

Specifying ASP, PDU and CM Values

CR1 inTTCH _TUTORIAL
File Edit DalaDictionary Show Tools SDTLink Help

RN R RRERE

Constraint Name C GRd

ASN 1 PDU Constraint Declaration

FOU Type 1 GR_FDU
Derivation Path

Encoding Rule Hame :
Encoding Yariation

Comments 1 A constraint on the SR_PDU, using ASN.1 value notation.

Constraint Walue

{wp= Fie,
d=st_ref 0004 'E,
sm_mef Qo0o0'e,
wvanable_pant wvanable_par_GRH,
user_data *Hello*

'

Detmiled Comments :

Figure 32: Declaration of the same constraint using ASN.1

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 61

Chapter 1 The TTCN Introduction

Structured Type Constraints

Constraints on structured type definitions and ASN.1 type definitions
are constructed in the same way as ASPs and PDUs. Just as the type def-
initions may be used by both ASP and/or PDU type definitions, so also
may the constraints.

When the TTCN tabular format is used the structure of the constraints
shall be the same as the structure of the type definitions. That is, if a
PDU field is defined as being of structure type then there will be one
constraint for the PDU and one for the structure.

This rule is relaxed in ASN.1. The structure must be compatible but
there need not necessarily be a one-to-one correspondence between the
type tables and the constraint tables.

Case study 14: Declaration of a structured type constraint using TTCN
tabular format.

uariagle_part_cm iNTTCH_TUTORIA

File Edit DataDictionary Show Tools SDTLink

)| S|#] b

Structured Type Constraint Declaration
 vanable_par_CR1

T WARIABLE_PART

Help 1

Constraint Name
Structurad Type
Derivation Fath

Encoding Wariation :

Cromments © A constmint on the structue type VARIAELE_PART forteh CR_FDLU

Element Hame Element ¥alue Element Encoding Comments

it this field

Detailed Comments :

Figure 33: Structured Type Constraint Declaration (variable_part_CR1)

IBM Rational TTCN Suite 6.3 Methodology Guidelines

April 2009

Specifying ASP, PDU and CM Values

ari@le_part_cm in TTCH_TUTORIA

File Edit DalaDictionary Show Tools SDTLink Help

| oE - EL R]2l [7]

ASN 1 Type Constraint Declaration

Constraint Name :%\rariahle_part_cﬁﬂ
ASHA Type . VARIABLE_PART
Derivation Path

Encoding Variation :

Comments : Motz how the fist two pammeters ae omited in ASH .1

Constraint Yalue

{pammB_d Y1'B,
parmmB TRUE
i

Detailed Cormments :

Figure 34: Declaration of the same substructure constraint using ASN.1

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 63

Chapter 1 The TTCN Introduction

CM Constraints
Coordination message constraints are also similar to PDU constraints.

Case study 15: Declaration of a CM constraint using TTCN tabular for-
mat

PTC _RESINTTCHN TUTORIAL

File Edit DataDictionary Show Tools SDTLink Help

CM Constraint Declaration
Constraint Hame 1 PTC_RES (actual_esulk:RESULT_TVFE)

CM Ty pe : PTG_RESULT
Derivation Fath
Cromments : A constinton the PTC_RESULT coodination message.
Farameter Hame Farametzr Walue Comments
== actual_resul The actual esult = passed as a

pamreter o the const=int.

Detailed Comments :

Figure 35: CM Constraint Declaration (PTC_RES)

64 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Specifying ASP, PDU and CM Values

PTC _RESINTTCH TUTORIAL

File Edit DalaDictionary Show Tools SDTLink Help

ASN.1 CM Constraint Declaration
Constraint Name : PTS_RES(any_mesut: RESULT_TYFPE)

A oM Type . PTG_RESULT

Derivation Path

4| Comments

Constraint Walue

]|«
1 msult any_msult —— The actual msul s passed as a pammeter to the const=int.

Detiled Comments ;

Figure 36: Declaration of the same CM constraint using ASN (we shall assume
that RESULT_TYPE is an ASN.1 ENUMERATED type)

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 65

Chapter 1 The TTCN Introduction

Constraint References

66

The TTCN SEND and RECEIVE statements indicate only which ASP
or PDU type is to be transmitted or received. The constraints column in
dynamic behaviour tables is used to state exactly which ASP or PDU
value is to be sent, or is expected to be received. In other words, each
SEND or RECEIVE statement must be accompanied by a constraints

reference.

Note:

This rule can be relaxed for parameterless ASPs.

Nr | Label | Behaviour Description Constraints Ref Verdict | Comments
1 L! N_DATArequest ND_r
§ L? N_DATAindication NDi
L? OTHERWISE

Nr | Label | Behaviour Description Constraints Ref Verdict | Comments
1 U? X_CONNECTindication CONind
2 U! X_CONNECTresponse CONrsp
8 U? OTHERWISE

Figure 37: Using constraint references in behavior lines

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Constraint References

Parameterized Constraints

Constraints can be parameterized. That is, a constraint name may be
followed by an optional formal parameter list. The formal parameters
can be used in the value column of the constraint.

DT1in TTCH_TUTORIAL

File Edit DataDictionary Show Tools SDTLink Help
I (o] [2 1] 2] 2]
PDU Constraint Declaration
Constraint Name o DTH fawtualdatac |ASSting)
POU Type : OT_POU

Derivation Path
Encoding Rule Name :

Encoding Variation

Comments

: This i the type definition of the DT_FODU

Field Name Field ¥alus Field Encoding Ciornme nts

actual_data The actual data is passad
25 & pammeterto the
constraint.

Detailed Comments :

Figure 38: A parameterized constraint

The actual parameters are passed to the constraint when it is invoked
from the constraints column in a behaviour description.

Nr

Label

Behaviour Description Constraints Ref Verdict | Comments

L! DT_PDU DT1(“A string”)

April 2009

Figure 39: Invocation of a parameterized constraint

The actual parameter must always resolve to a specific value. In a
SEND constraint this is the value that will eventually be encoded and
transmitted.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 67

Chapter 1 The TTCN Introduction

In a RECEIVE constraint the actual parameter resolves to the value that
will be matched against the received value. No binding occurs, i.e. the
received value is not bound to the actual parameter. If it wished to cap-
ture received values, then this should be done by explicit assignment
statements in the behaviour descriptions.

Dynamic Chaining

A common use of parameterized constraints is to link ASPs, PDUs and
structures dynamically rather than statically, as we have described ear-
lier. The linking occurs when the actual constraint is passed as a param-
eter in the constraints reference.

Nr

Label

Behaviour Description Constraints Ref Verdict | Comments

L! N_DATArequest NDr (DT1)

Figure 40: Dynamic chaining of a parameterized PDU in an ASP

An N_DATArequest is used to carry the DT_PDU of the previous example.

68

Sending and Receiving Constraints

The rules for sending a constraint are not the same as those for receiving
one. We shall examine each of these aspects in turn.

Constraints and the SEND Statement

A constraint in the context of SEND specifies the values that will even-
tually be transmitted over the network (at this point in time we will ig-
nore encoding issues). In TTCN this transmitted object is called the
Send Object which is built from information in the relevant constraint.
Note that assignments may override values derived from the constraint
in the Send Object, which is why BUILD occurs before
ASSIGNMENT_LIST.

« SEND?®BUILD? [QUALIFIER]! [ASSIGNMENT _LIST]®
[TIMER_OPERATION]*

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Constraint References

April 2009

Constraint Values and SEND

In the context of SEND we shall use the term received constraint value
to mean the value of an ASP parameter, PDU field or CM field of the
ASP, PDU or CM constraint that the test specifier wishes to transmit.
The type of the constraint value is defined in the relevant ASP, PDU or
CM definition.

Constraint values for Send Objects should always be fully specified at
the time of transmission of the object.

Execute SEND
(Alternative;)

RETURN

QUALIFIER
=TRUE?
(if any)

»
|

no Return value := FALSE

yes or no qualifier

ACTIONS
- BUILD Send Obiject Return value := TRUE
. EXECUTE ASSIGNMENTS (if any)
. EXECUTE TIMER OPS (if any)
. CONFORMANCE LOG

A W N P

Figure 41: Execution of an alternative that contains SEND

Constraints and the RECEIVE Statement

The receipt of an ASP, PDU or CM is more complex than simply receiv-
ing an ASP, PDU or CM of the correct type. Testing often requires that
the composition of the ASP, PDU or CM is checked in detail. This is
achieved in TTCN by specifying a constraint that the ASP, PDU or CM
is expected to match. The RECEIVE event can be considered successful
only if all the conditions stipulated in the constraint are satisfied. We
shall, therefore, extend our description of the RECEIVE statement line
of “The RECEIVE Statement” on page 35 to be:

« RECEIVE! MATCH? [QUALIFIER]® [ASSIGNMENT _LIST]*
[TIMER_OPERATION]®

IBM Rational TTCN Suite 6.3 Methodology Guidelines 69

Chapter 1 The TTCN Introduction

70

Received Object

TTCN uses the term Received Object to mean the ASP, PDU or CM that
is currently at the top of the relevant incoming PCO or CP queue, and is
being checked during evaluation of a RECEIVE statement.

Constraint Values and RECEIVE

In the context of RECEIVE we shall use the term received constraint
value to mean the value of an ASP parameter, PDU field or CM field of
the ASP, PDU or CM field that the test specifier wishes the received
value to match. Sometimes the received constraint value is called the
expected value. The type of the expected value, defined in the relevant
ASP, PDU or CM definition, is called the expected type.

Received Value

We shall use the term received value to mean the value of received ob-
ject element. A received value is always, of course, a literal value, of a
type compatible with the type of the corresponding element in the ASP,
PDU or CM definition.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Constraint References

April 2009

Erecude RECENE
i e nigtie)

'

RETURHM
Constalt
matchez? i - Retary @he = FALSE
'}

es

QUALIFIER

' Retiry 1@ = TRUE

EXECUTE R=S5IGHMENTS (Fang
EXECUTETIMER OP3S (Fanj
POP Rece bedDbject
CONFORMANCE LOG

- Wk

Figure 42: Execution of an alternative that contains RECEIVE

IBM Rational TTCN Suite 6.3 Methodology Guidelines

71

Chapter 1 The TTCN Introduction

Constraints and the OTHERWISE Statement

Constraints are not used with the OTHERWISE statement. Remember,
OTHERWISE will always match if the named PCO incoming queue is
not empty. No other checking is required.

Execute OTHERWISE |;
o e reatiue :
¥
RETURN
Retary @me = FALSE = .

QUALIFIER
= TRUE?

(i anp

¥ armo qualiter

Retary @he = TRUE

LCTIONE

EXBECUTE ASSIGHNMENTS (fam
EXECUTETIMER OPs (ffanh
POP Recs bed Object
CONFORMANCE LOG

Ll

Figure 43: Execution of an alternative that contains OTHERWISE

72 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Matching Received Constraint Values

Matching Received Constraint Values

April 2009

In this section we shall take a closer look at the RECEIVE statement and
how it is used to check the received values against the specified con-
straint values.

Specific Values

In most cases a constraint value will be a specific value. Note that this
is not necessarily always a literal value. In TTCN a specific value is an
expression which evaluates to a value compatible with the correspond-
ing element type in the relevant ASP, PDU or CM definition. The
TTCN syntax allows the operands of these expressions to be:

o literal values;

e constant identifiers;

« formal parameter identifiers;

« predefined and user defined operations;
e expressions, i.e. the syntax is recursive.

When a specific value is used as a constraint value a successful match
means that the received value is exactly equal to the value to which the
constraint expression evaluates. Specific values can of course, be used
to specify constraint values of all types.

Note:

We will talk about matching in different contexts. For example, a re-
ceived value can match a constraint value. This does not mean of
course that the entire constraint matches. For that to happen all re-
ceived values must match all component values specified in the con-
straint.

Omitting Values

In many cases it may be necessary to omit ASP parameters or PDU
fields. In the tabular format all parameters or fields are considered to be
optional and may be omitted. This is denoted by writing a dash (-) in-
stead of value.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 73

Chapter 1 The TTCN Introduction

Case study 16: Omitting values.

ariaEIe_part_CR1 INTTCH_TUTORIAL 2

File Edit DataDictionary Show Tools SDTLink

Help

EREE

Structured Type Constraint Declaration

Constraint Name
Structured Type
Derivation Fath

Encoding Yariation :

: wanablke_par_GR1
: WARIAELE_FART

C:ornme nts © A constmint on the strustue tpe VARIABLE_PART forteh GR_FDU
Elemant Mame Element Yalue Element Encoding Cormments
parmmA_id - Crmit this field
parEmd - Crnit this field
pammB_id 01'B
parmmB TRUE

Detailed Comments :

Figure 44: Structured Type Constraint Declaration (variable_part_CR1)

In the ASN.1 only parameters or fields that are defined as being OP-
TIONAL or DEFAULT may be omitted. This can be indicated either by
explicitly using the OMIT keyword, or by not including the parameter
or field in the constraint.

74 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Matching Received Constraint Values

vari@le_part_cm in TTCH_TUTORIAL

File Edit DalaDictionary Show Tools SDTLink Help

]l S A]l

ASN .1 Type Constraint Declaration
Constraint Mame @ varable_pan_CHR1

ASHA Type : VARIAELE_PART
Detivation Fath
Encoding Yariation :

Cormnrments © Mote how the fist two pammeters ae omited in ASH.A

Constraint Yalue

{pammE_id YT1{'E,
pammE TRUE
i

Detmiled Comments :

- 5 the same as:
{pammi_id OMIT,
paEmA QNIT,
pammB_d YO1'E,
pam=me TRUE
i

Figure 45: Omitting values in ASN.1 constraints

Replacing Values

In ASN.1 constraints may be constructed from previously defined con-
straints by using the REPLACE keyword.

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 75

Chapter 1 The TTCN Introduction

76

variaEIe_part_CR£ inTTCM _TUTORIA

File Edit DataDictionary Show Tools SDTLink Help |

EREE

Gonstraint Hame © vanablke_part_GREZ
ASHA Type - WARIABLE_FART
Derivation Path o wanablk_par_GR1.
Encoding Yariation :

4| comments

REFLACE pammE BY FALSE

Detziled Cormments :

--

ASN A1 Type Constraint Declaration

Constraint Yalue

Figure 46: This table indicates that the constraint variable_part_CR2 is exactly the same as
variable_part_CR1, except that the value of paramB is set to FALSE

Matching Mechanisms

In many instances it is not possible, or even desirable, to specify that the
field of a received PDU shall have a specific value. It may be more ap-
propriate to say that a match occurs if the received value falls within
certain boundaries or fulfils certain conditions.

TTCN supports a number of matching mechanisms: matching symbols,
matching operations and attributes that allow the test specifier to ex-
press these matching conditions instead of specific values.These mech-
anisms include:

» lists of values
e complemented lists of values
¢ ranges of INTEGER values

e any value
e any value or omit value
* wildcards

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Matching Received Constraint Values

April 2009

e if present attribute
¢ length attributes

Matching Value Lists

A constraint value may be a list of one or more specific values (remem-
ber that specific values include expressions etc. so the elements in the
list may be quite complex). A match occurs only if the received value is
equal to any one of the values in the constraint value list, otherwise the
match fails.

e (‘00’B, “11’B) will match if the received value is either ‘00’B or
‘11°B.

Complementing Value Lists

If avalue list is preceded by the keyword COMPLEMENT then a match
occurs only if the received value is not equal to any of the values in the
constraint value list, otherwise the match fails. Complement can be used
on values of any type.

¢ COMPLEMENT (‘00’B, “11’B) will match if the received value is
either ‘01’B or “10’B. Note that this is the same as the list: (NOT
‘00’B, NOT “11B’).

Matching Ranges

Ranges may only be used to match values of INTEGER compatible
types. The keywords INFINITY and -INFINITY may be used to specify
ranges that may be unbounded in the positive and/or negative direction.

A range matches if the received value is within the range, including the
upper and lower boundary.

¢ therange (8 .. INFINITY) matches any INTEGER value greater
than 7.

Matching Any Value

In many cases the test suite specifier is prepared to accept any single
value for a particular field, provided that the actual value is compatible
with the corresponding element type.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 77

Chapter 1 The TTCN Introduction

78

The matching symbol AnyValue is denoted by “?”. A match will occur
if the received value is any value that is compatible with the expected

type.

e suppose that we have declared a BITSTRING of length exactly 2;
then AnyValue would match one of ‘00’B, ‘01’B, ‘10’B and ‘11’B
but nothing else;

« suppose that we have declared a value of SEQUENCE OF INTE-
GER type; then AnyValue will match any SEQUENCE OF INTE-
GER, except an empty sequence.

Matching Any Value, or Omitting It Altogether

The AnyOrOmit matching symbol, denoted by “*”, is similar to Any-
Value, except that the value may be omitted altogether. If there is a val-
ue present then a match will occur if the received value is any value that
is compatible with the expected type; otherwise the value must be omit-
ted. This is only allowed with optional fields.

e suppose that we have declared a BITSTRING of length exactly 2;
then AnyOrOmit would match one of ‘00’B, ‘01’B, “10°B and
‘11’B, or a value could be missing altogether;

« suppose that we have declared a value of SEQUENCE OF INTE-
GER type; then AnyOrOmit will match any SEQUENCE OF INTE-
GER, including an empty sequence.

Wildcards Within Values
There are two wildcards that may be used within values:

¢ AnyOne;

¢ AnyOrNone.

The AnyOne symbol, denoted by “?”, is used to replace single elements
within all the string types, and within SEQUENCE, SEQUENCE OF,
SET and SET OF types. However, the element may not be omitted.

e “?0’B would match either ‘00’B or ‘10’B;

« “ab?z” will match any character string of length 4 that begins with
ab and ends with z;

e Avalue of SEQUENCE OF INTEGER such as: {1, 2, ?, 3} means
that the third element matches any INTEGER value.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Matching Received Constraint Values

April 2009

Note that the denotation is the same as for AnyValue, but the semantics
of the symbol are not the same.

The AnyOrNone symbol, denoted by “*”, is used to replace single ele-
ments or a consecutive number of elements within all the string types,
and within SEQUENCE, SEQUENCE OF, SET and SET OF types. Al-
so, the element may be omitted.

e “*0’B would match any BITSTRING value that ended with a zero
bit;

e *“ab*z” will match any character string that begins with ab and ends
with z, including the string “abz”;

e Avalue of SEQUENCE OF INTEGER such as: {1, 2, *, 3} means
that any SEQUENCE OF INTEGER that begins with 1, 2 and ends
with 3, including {1,2,3}, will match.

The If_Present Attribute

The If_Presentattribute is intended for use with OPTIONAL fields. The
test suite specifier may not know beforehand whether the IUT will be
including an OPTIONAL value or not in a particular PDU - the protocol
allows either or. The test then has to specify that if the optional value is
present it should be checked.

e 3 IF_PRESENT means that either the INTEGER value of 3 will be
accepted for that particular field or no value shall be present.

Note that in the tabular format all fields are considered to be OPTION-
AL. The match will occur if the received value is any value that is al-
lowed by the specified expected type, i.e. they need not be explicitly de-
clared as such. In ASN.1 this is not the same case; any fields that are
OPTIONAL have to be declared as such.

Length Restrictions
Length restrictions apply to the following types:

* BITSTRING

+ HEXSTRING

* OCTETSTRING
e CharacterString
* SEQUENCE OF
 SETOF

IBM Rational TTCN Suite 6.3 Methodology Guidelines 79

Chapter 1 The TTCN Introduction

Essentially these are the same length restrictions that may be placed on
the type definitions. The restriction may state the precise length of the
string:

« HEXSTRING [8]

or it may define a range:

« HEXSTRING [4 .. 8]

_constraint in TTCH_TUTORIA
File Edit DataDictionary Show Tools SDT Link

PDU Constraint Declaration

Constraint Hame o a_constrint (FARBITSTRING)
FDU Type : A_TTGH_PDU

Derivation Fath

Encoding Rule Mame :

Encoding Wariation

Gomments : This ig a constmint on an incoming FDU
Fizld Name Field ¥Value Fizld Encaoding Commeants

fizldA M0'E, 44'B) Accepteither BITSTRING
00'B or44'E

fieldB CSOMPLEMENT (DO'E, H1'B) Accepteither BITSTRING
00'B or44'E

fieldC & INFINITY) Acceptany INTEGER value
==&

fiekdDr 70'B Acceptether BITSTRING
O0'B or40'E

fieldE *O'e Acceptany BITSTRING of
any kength that ends with 2
zem bit

fielF FAR [4.8] Acceptany BITSTRING of
kEngth ==4 and kngth ==&

Detailed Commeants

Figure 47: Examples of matching mechanisms used in a PDU constraint

80 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Encoding

Encoding

April 2009

The TTCN standard says nothing about the actual encoding of values
that are to be transmitted and received over the network. This aspect is
being addressed in the second TTCN amendment, WDAM 2. It will al-
low the TTCN user to specify encodings at several levels:

« forall ASPs and/or PDUs;

e for individual ASP types and/or PDU types;

e for individual ASP parameters and/or PDU fields;

e for individual ASP constraints and/or PDU constraints;

« for individual ASP constraint parameters and/or PDU constraint
fields.

Encoding ASPs

It is unusual for a standard to specify the types of the parameters that
constitute an ASP. How ASPs are realized is an implementation issue,
outside the scope of the standard. The types, therefore, that are given to
TTCN ASPs should not be considered binding - they are there to give a
consistent representation in the test suite, and are mainly for documen-
tation purposes.

In other words, checking of ASP parameters should be consistent with
the implementation of those ASPs in the test system, rather than the ex-
act TTCN specification.

Encoding PDUs

In contrast to ASPs, PDU fields are typed in the relevant protocol stan-
dard and it is essential that these types are implemented correctly in the
ETS. As far as encoding is concerned, TTCN currently refers to the
standards that the PDUs are derived from. For example, if ASN.1 is
used it is probable that the ASN.1 basic encoding rules (BER) rules ap-
ply, but not necessarily. Work needs to be done on this issue.

Manipulation of Encodings

In some cases of testing it may be necessary to manipulate the encoding
of values, e.g. in testing of the presentation layer. This aspect, too, is ad-
dressed in WDAM 2.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 81

Chapter 1 The TTCN Introduction

Referencing Components of Complex

Types

82

TTCN allows the use of individual components of complex types as op-
erands in expressions or as the I.h.s. of an assignment. Such components
include:

¢ asingle ASP parameter;

e asingle PDU field;

e asingle structure element;
e asingle CM field.

In the context of ASN.1 it is possible to access:

¢ anindividual BIT in a BITSTRING;

e anelement in a SEQUENCE or SEQUENCE OF,;
¢ anelementina SET or SET OF;

¢ anelementina CHOICE.

These references may be made either:

* inthe context of a SEND or RECEIVE statement; or
* by capturing an incoming ASP or PDU for later reference.

References in the Context of SEND and
RECEIVE

These are references to ASP parameters, PDU fields or structure ele-
ments made from a statement line that contains a SEND or RECEIVE
and, most importantly, an associated constraint. In their simplest form
these references are denoted by:

e ASP_ldentifier . Parameterldentifier

e PDU_ldentifer . Fieldldentifier

e CM_ldentifer . Fieldldentifier

e StructuredTypeldentifier . Elementldentifier

Suppose that a substructured PDU is chained to an ASP. To reference
the kt element in the structure from a statement line we could write:

* ASP_ldentifier . Parameter; . PDU_ldentifier . field; . Structure-
Identifier . element

However, because the ASP, PDU and structure identifiers are unique
within the test suite, it is allowed to simply use:

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Referencing Components of Complex Types

o Structureldentifier . elementy

For example, if we wish to preserve the value of the user_data field of
the incoming DT_PDU, embedded in an N_DATAindication. This
could be done by writing:

¢ A:=N_DATAindication . user_data. DT_PDU . user_data

This is rather verbose and because the PDU identifier is unique it is
enough to write:

e A:=DT_PDU. user_data

In other words the ‘dotted path’ need only contain the identifiers that are
enough to give a complete and unique reference.

Referencing ASN.1 Elements

The same mechanism can be used to reference elements in ASN.1 con-
straints that use SEQUENCE, SEQUENCE OF etc.

Suppose that we have defined the following PDU:

% POUINTTCH TUTORIAL
Fie Edit DataDictionary Show Tooks SDTLink Help

[AP SR R

ASN .1 PDU Type Definition

PDU Name A_PDU
PO Type D N_SAF
Encoding Rule Name :
Encoding Variation

4| comments

Type Definition

SEQUENGCE { fieldld EIT STRING,

] field2 SEQUENGCE OF INTEGER,
field®2 BOOLEAN

i

Detmiled Comments :

Figure 48: ATTCN PDU Type

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 83

Chapter 1 The TTCN Introduction

A constraint on that PDU may be:

a_pduin TTCHN TUTORIA

File Edit DataDictionary Show Tools SDTLink Help

ASN.1 PDU Constraint Declaration
Constraint Name ©a_pdu

1| Fou Tepe . A_PDU

Derivation Path
Encoding Rule Name :
Encoding Variation

4| Comments

Constraint Value

{fiekd DOO11'B,
fiekz {21, 22, 23,
fiek3 TRUE

¥

1| Detmiled Comments :

Figure 49: ATTCN PDU Constraint

Then writing:

Nr | Label | Behaviour Description Constraints Ref Verdict | Comments

L! A_PDU (A_PDU.field3 := FALSE) a_pdu

Figure 50: A Send Statement
means that the third field in the constraint is overridden and that the
send object a_pdu is transmitted with field3 having the value FALSE.

Note:

Where possible values should be set using parameters, rather than
by this mechanism.

84 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Referencing Components of Complex Types

In cases where the elements are not named, such as the elements in the
SEQUENCE OF INTEGER that compose field2 in our previous exam-
ples, it is possible to reference the element by position. For example, if
we wish to override the value 22 in field2 we simply write:

Nr | Label | Behaviour Description Constraints Ref Verdict | Comments

L! A PDU (A PDU field2.(2) := 33) a_pdu

Figure 51: A Send statement

Individual bits in a BIT STRING can also be accessed in a similar man-
ner. If we wish to change the third bit in the value of field1 from 0 to 1

we write:
Nr | Label | Behaviour Description Constraints Ref Verdict | Comments
L! A_PDU (A_PDU field1[3] := 1) a_pdu

Figure 52: A Send statement

This mechanism cannot be used with other string types.

Capturing Incoming ASPs and PDUs

An incoming ASP or PDU (i.e. received object) is only preserved for the
duration of a RECEIVE statement, i.e. components of the received ob-
ject cannot be accessed on statement lines subsequent to the RECEIVE
event. It is possible, however, to declare variables of ASP, PDU or
structure type. These variables are then bound to the received object.
Suppose the variable temp_pdu is of type A_PDU:

Nr | Label | Behaviour Description Constraints Ref Verdict | Comments

L? A_PDU temp_pdu := A_PDU a_pdu

Figure 53: A Receive statement

We can now access components of a_pdu on subsequent statement lines
and not just on the statement line that contains the RECEIVE statement:

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 85

Chapter 1 The TTCN Introduction

Nr | Label | Behaviour Description Constraints Ref Verdict | Comments
[temp_pdu.field3]
Figure 54: A Qualifier statement

86

There are two mechanisms in TTCN that provide assignment of verdicts
to a test case. These mechanisms are:

e preliminary results;

o explicit final verdicts.

A preliminary result or explicit final verdict may be associated with any
TTCN statement except for the following:

e IMPLICIT SEND;

« ATTACH;
« GOTO;
* REPEAT.

The Result Variable

TTCN has a predefined test case variable, known as the result variable,
called R. This variable may be used in expressions and the verdict col-
umn of a behaviour description. It is used to store preliminary results
and has the following characteristics:

< A preliminary verdict does not terminate execution of a test case;

e it may appear in expressions as a read-only variable, i.e. it may not
be used on the I.h.s. of an assignment;

¢ it may only take one of the values: pass, fail, inconc or type defini-
tion. These values are predefined identifiers, and are case sensitive;

« changes are made to its value by entries in the verdicts column;

e at the start of a test case R is bound to the value type definition.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Verdicts

April 2009

Preliminary Results

The value of R is changed by recording a preliminary result in the ver-
dicts column. A preliminary result may be one of the following:

¢ (P) or (PASS), meaning that some aspect of the test purpose has
been achieved,;

e () or (INCONC), meaning that something has occurred which
makes the test case inconclusive for some aspect of the test purpose;

e (F) or (FAIL), meaning that a protocol error has occurred or that
some aspect of the test purpose has resulted in failure.

For example:

e writing (FAIL) in the verdict column will bind R to the value fail.
Preliminary results have an order of precedence, for example:

¢ if R has the value fail and a preliminary result (PASS) is encoun-
tered in the verdict column, then R cannot be changed to pass and it
will remain bound to fail. On the other hand, if R has the value pass
and a preliminary result (FAIL) is encountered in the verdict col-
umn, then R is bound to the value fail.

The table below shows how R may be changed according to the prece-
dence rules:

Current Preliminary verdict

value of R (PASS) (INCONC) | (FAIL)
none pass inconc fail
pass pass inconc fail
inconc inconc inconc fail

fail fail fail fail

Figure 55: Calculation of the preliminary result variable R

Final Verdicts
Execution of a test case is terminated either by:

« reaching a leaf of the test case behaviour tree; and/or

« anexplicit final verdict on the behaviour line (i.e. in the verdict col-

umn).

IBM Rational TTCN Suite 6.3 Methodology Guidelines

Chapter 1

The TTCN Introduction

A final verdict may be one of the following:

P or PASS, meaning that a pass verdict is to be recorded,;

I or INCONC, meaning that an inconclusive verdict is to be record-
ed;

F or FAIL, meaning that a fail verdict is to be recorded,;

the predefined variable R, meaning that the value of R is to be taken
as the final verdict, unless the value of R is none in which case a test
case error is recorded instead of a final verdict.

If no explicit final verdict is reached, then the final verdict is the value
of R. If R is still bound to the value none then this is a test case error.

The final verdict must be consistent with the value of R. For example:

if R has the value fail and an explicit final verdict PASS is encoun-
tered in the verdict column, then a final verdict of fail and not pass
should be recorded. On the other hand, if R has the value pass and

an explicit final verdict FAIL is encountered in the verdict column,
then a final verdict of fail should be recorded.

The table below shows how the final verdict should be recorded accord-
ing to the value of R:

Current Final verdict

value of R | (pags) (INCONC) | (FAIL) R

none pass inconc fail *error*
pass pass inconc fail pass
inconc *error* inconc fail inconc
fail *error* *error* fail fail

IBM Rational TTCN Suite 6.3 Methodology Guidelines

Figure 56: Final verdict

April 2009

The GOTO Statement

The GOTO Statement

In order to be able to express repetitive behaviour in a convenient way,
TTCN allows statement lines to be labelled so that jumps may be made
to them from later points in the tree. A GOTO is denoted either by:

e -> Labelldentifier

or:

¢ GOTO Labelldentifier

Infinite loops should be avoided, i.e. entering the GOTO loop should al-
ways depend on some event occurring or condition being fulfilled.

Nr | Label | Behaviour Description Constraints Ref Verdict | Comments
4 |LAB L! N_DATArequest (count := count+1) NDr
5

[count <= max]

->LAB

April 2009

Figure 57: Using GOTO in a behavior tree
The following rules should be followed:

¢ aGOTO can only be made within a single tree in a behaviour de-
scription;

« the label should be unique within the behaviour description;
e line numbers may not be used as labels;

« the label must always be associated with the first statement line in a
given set of alternatives, i.e. a GOTO cannot cause a jump to the
middle of a set of alternatives;

e aresult of the previous rule means that a GOTO to the first level of
alternatives in a test step (i.e. the test step root) is not allowed;

¢« aGOTO may only be made to an ancestor node in the behaviour
tree, i.e. a jump to a part of the tree that has previously been execut-
ed;

* no other statements may be used in conjunction with a GOTO.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 89

Chapter 1 The TTCN Introduction

Timer Statements

TTCN timers are used to test timer events in the IUT. This is usually
done by timing an expected response from the IUT using the START
timer operation and the TIMEOUT event. The CANCEL timer opera-
tion is used to stop and reset a running or expired timer.All timers are
declared in the Timer Declarations table. The duration is the period of
time that will pass from the moment a timer is started to the moment it
expires. Duration is measured in one of the following units:

e ps(i.e. picosecond);
¢ ns (i.e. nanosecond);
e us (i.e. microsecond);
e ms (i.e. millisecond);
e s (i.e. second);

e min (i.e. minute).

Timer Declarations in TTCH_TUTORI&

File Edit DataDictionary Show Tools SDTLink Help |

)| S|#] b

Timer Declarations
Timer Narme Duration Unit Comments

o
"

Tirmer Mazimum sponse time

Detailed Commeants

Figure 58: Declaration of timers

90 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Timer Statements

April 2009

The Timeout List

TTCN maintains a timeout list. If a timer expires its name is added to
the timeout list. Three things can remove the name of the timer from the
timeout list:

e asuccessful TIMEOUT statement;
e a START timer operation;
¢ a CANCEL timer operation.

The TIMEOUT Statement

The test suite specifier may state that a named timer be checked to see
if it has timed-out. This is denoted by:
e ?TIMEOUT Timerldentifier

When this statement is encountered while processing a statement line
the TIMEOUT will match if the named timer is in the timeout list, oth-
erwise the TIMEOUT fails.

An alternative use of TIMEOUT is simply:

« ?TIMEOUT

i.e. no Timerldentifier is given. In this case the TIMEOUT statement
will succeed as long as the timeout list is not empty.

The TIMEOUT statement may be qualified and it may be followed by
an ASSIGNMENT _LIST and/or TIMER_OPERATION. The order in
which these statements may appear in the statement line is fixed, as
shown below; the square brackets indicate that the presence of the state-
ment in the statement line is optional:

« TIMEOUT? [QUALIFIER]* [ASSIGNMENT _LIST]®
[TIMER_OPERATION]*
Note:

TIMEOUT should not be used to guard against a faulty IUT not
sending a required response. It is the responsibility of the test system
to implement detection of such an occurrence.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 91

Chapter 1 The TTCN Introduction

92

Timer Snapshots

We have already mentioned that at the beginning of each cycle through
a set of alternatives a snapshot is taken of the incoming PCO queues.
The alternatives are then checked against this snapshot. The same thing
is done for the timeout list. A snapshot is taken of this list at the start of
each cycle and if a TIMEOUT alternative is encountered in the set of
alternatives it is checked against the timeout snapshot rather than the ac-
tual timeout list. This means that the expiry of a timer during processing
of a set of alternatives is not registered until the timer snapshot is updat-
ed.

The START Timer Operation

A named timer is started using the START timer operation. This is de-
noted by:
e START Timerldentifier

The duration for this timer is taken from the timer declaration. Alterna-
tively, an explicit duration may be given, which overrides the declared
duration:

e START Timerldentifier (Duration)

If the timer is already running when the START is invoked then the tim-
er is cancelled, reset and then started, i.e. the timer is re-started.

If the timer has expired then its name is removed from the timeout list
before it is re-started.

The START_TIMER statement may be qualified and it may be fol-
lowed by an ASSIGNMENT _LIST. The order in which these state-
ments may appear in the statement line is fixed, as shown below:

« [QUALIFIER]! [ASSIGNMENT _LIST]?[START_TIMER]®

Nr

Label

Behaviour Description Constraints Ref Verdict | Comments

START a_timer

?TIMEOUT a_timer

Figure 59: Using START and TIMEOQOUT in a behavior tree

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Timer Statements

April 2009

The CANCEL Timer Operation

A named timer is cancelled using the CANCEL operation. This is de-
noted by:

e CANCEL Timerldentifier
An alternative use of CANCEL is simply:

« CANCEL

i.e. no Timerldentifier is given. In this case all running timers are can-
celled and reset and the timeout list is cleared.

Cancelling a timer that is expired will result in the timer being reset and
its identifier is removed from the timeout list.

The CANCEL_TIMER statement may be qualified and it may be fol-
lowed by an ASSIGNMENT _LIST. The order in which these state-
ments may appear in the statement line is fixed, as shown below:

 [QUALIFIER]! [ASSIGNMENT_LIST]?[CANCEL_TIMER]?

Execute TUMER OF |

@ Te riatue)
RETURM
QUALIFIER - .
= TRUE? l
i Retirn@he = FALSE
it anj
yer orm qualiter
ACTIONE
1. EXECUTE&SSIGHMENTS (faw) Retiry i=ie = TRUE

2, EXBECUTETIMER OP
3. CONFORMANCE LOG

Figure 60: Execution of an alternative that contains a stand-alone timer operation

IBM Rational TTCN Suite 6.3 Methodology Guidelines 93

Chapter 1 The TTCN Introduction

Constants and Variables

TTCN supports both constants and variables. There are two types of
constants:

e test suite parameters;

* test suite constants;

and two types of variables:

e test suite variables;

* test case variables.

The tables used are:

e Test Suite Constant Declarations
e Test Suite Parameter Declarations

e Test Suite Variable Declarations
¢ Test Case Variable Declarations

94 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Constants and Variables

Test Suite Constants and Test Suite
Parameters

Test suite constants are declared globally and may be used anywhere in
the test suite, including the constraints part. The value of the constant is
specified at its point of declaration and may not be changed.

Case study 17: Declaration of test suite constants.

est SUite Constant Declarations in TTCH_TUTORIAL

File Edit DalaDictionary Show Tools SDTLink

|l [S]A][]| L[5 [+t 2]]2

TestSuite Constant Declarations
Constant Mame Ty p= Yalue Cornments

M INTEGER 5

data_string 1AS5trng 'This is 2 string"

Detmiled Commeants :

Figure 61: Test suite constant declarations

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 95

Chapter 1 The TTCN Introduction

96

Test Suite Parameters

Test suite parameters are also constants, but their actual values are not
known to the abstract test suite specifier. These values will depend on
which IUT is being tested, and possibly on the test system itself. In this
sense the values of test suite parameters will be different from IUT to
IUT, but during the testing of any given IUT they will remain constant.

Case study 18: Declaration of test suite parameters.

est Suite Parameter Declarations in TTCH_TUTORIAL

Fie Edit DataDictionary Show Tools SDTLink Help

Test Suite Parameter Declarations

Fammeter Hame Typ= PICS/FIXIT Ref Comments
it_addmss 1AS5ting FIEIT question »xx Lower tester add mss
ui_addmess 1AS5tring PIEIT question vy uppertester addmess

Detailed Comments

Figure 62: Test suite parameter declarations

The test suite parameter values are derived from the Protocol Imple-
mentation Conformance Statement (PICS) and the Protocol Implemen-
tation eXtra Information for Testing (PIXIT). These documents are like
checklists that are filled-in according to the characteristics of the IUT.

Prior to executing the tests the PICS and PIXIT are used to bind values
to the test suite parameters. This process is called test suite parameter-
ization.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Constants and Variables

Test Suite and Test Case Variables

Both test suite variables and test case variables are declared globally i.e.
they may be used by test cases, test steps and defaults throughout the

test suite. A default value may be specified for each variable, if wished.
If no default value is specified, then the variable is said to be unbound.

Variables should be bound before use, unless they appear on the I.h.s.
of an assignment.

Case study 19: Declaration of test case variables.

Test Case Variable Declarations in TTCHN _TUTORIAL

File Edit DalaDictionary Show Tools SDTLink Help

Test Case Variable Declarations

Wariable Name Ty pe Walue Comments

count INTEGER o This test case wanablke =
] uzed o countteh numberof
FDUs sent and meeivad.

Cetailed Comments ;

Figure 63: Test case variable declaration

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 97

Chapter 1 The TTCN Introduction

98

Resetting Default Values

The difference between the two kinds of variable is when they are reset
to their default values (if no default value is specified for a variable, then
resetting means that the variable becomes unbound):

* test suite variable are reset at the end of execution of the test suite,
which means that information may be retained between test case ex-
ecution;

* Testcase variables are reset at the end of execution of each test case,
i.e. test case variables begin each test case bound to their default val-
ues.

Variables in Concurrent TTCN

When more than one test component exists, as does with concurrent
TTCN, then each test component is supplied with its own copy of each
test case variable.

« In the case study we declare the test case variable count. This vari-
able is available to both the lower tester and the upper tester as a sep-
arate copy of count to each, i.e. if the lower tester changes the value
of count it only changes its copy of count, and not the upper tester’s
copy.

Test suite variables behave the same way in concurrent TTCN as they

do in the non-concurrent version.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Dynamic Behaviour Descriptions

Dynamic Behaviour Descriptions

File Edit DalaDictionary Show Tools SDTLink Help

There are three types of tables for specifying the behaviour descrip-
tions:

e Test Case Dynamic Behaviour;
e Test Step Dynamic Behaviour;
e Default Dynamic Behaviour.

We have already noted that the difference between the different behav-
iour tables is in the header, rather than in the body of the tables.

MP DATA TRAMSFER in TTCH_TUTORIAL

(&[5l B L E 5= 227

EREE

TestCase Dynamic Behaviour

Test Caze Name : MP_DATA_TRANSFER

Group

Furpoze

Configuration

{| cetaun

4| comments

Selaction Ref

o MULT/DATAS

¢ IUT shall meehe and 22nd 2 data within tiree linmit, 2 given numbarof times ower twa simultaneous
X-connections.

C MULTI_PARTY
: T_DEFAULT

: This testcase creates the otehr PTCs in the configurmtion necessary fora two-connection

configumtion.

Description : Datactmnsfer mulki-connection
1 Nr | Labsl Behaviour Description Constraints Ref Verdict Comments
1 GREATE(LOWER_TESTERA:LTS (L1, GPA), 11
LOWER_TESTERZ:LTS (L2, GPE),
UPPER_TESTERT:UTS (U1},
1 UPPER_TESTERZ:UTS (U2))
=3 CPA?PTC_RESULT FPTC_RES {pass) =]
e CPE7PTC_RESULT FTC_RES (pass) FASS 23,3
4 CP2?PTC_RESULT FTG_RES (fail) FAIL 2),3)
5 CPA?PTC_RESULT PTC_RES ifaily)
[a] GPE?YPTC_RESULT PTCG_RES (pass) FAIL 23,3
1l - GPE?PTS_RESULT PTG_RES (fail) FAIL 23,3

Detziled Comments : 1) The CREATE command binds specific test steps to the mlevant PTGs in the Test Component

Declamtions table. It albo implicitly stans execution of each test step (e, two instances of LT and
one instance of UT)

2} The preliminan msubs fom the buwertester FTSs am picked up heme.

3} Final verdict

Figure 64: Fragment of a test case behavior table, showing the header for the test case

April 2009

IBM Rational TTCN Suite 6.3 Methodology Guidelines 99

Chapter 1 The TTCN Introduction

Test case Identifiers and Test Group
References

The test case identifier appears in the first field and, like most TTCN
identifiers, it should be a name unique to the entire test suite. The sec-
ond field contains the test case reference, which is a path name that
specifies the test case’s location in the test suite structure.

In the case of test steps this path specifies the test step’s location in the
test step library. In the case of defaults it specifies the location of the de-
fault in the default library. These references have the general format:

 Suiteldentifier / Groupldentifiery /.. . / Groupldentifier,, /

Note the terminating slash, which is the last group name in the path. The
path may begin with the first Groupldentifier, i.e. the Suiteldentifier is
optional. If the test suite has no hierarchy then the reference is empty.

Test Purpose and Objective

In the test case table the third field is used to specify the test purpose.
The corresponding field in test steps and defaults is called the objective.

Configuration

The configuration entry is introduced by the concurrent TTCN to state
the configuration in which this test case behaviour description is used.
This field does not appear in test steps and defaults.

Default Behaviour

The default entry is used to state the default behaviour which should be
used, if any.

100 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Dynamic Behaviour Descriptions

Case study 20: Test step dynamic behaviour.

LT DATA TRAMSFER in TTCH _TUTORIA

File Edit DalaDictionary Show Tools SDTLink

Test Siep Dymamic Behaviour
{| Test Step Name : LT_DATA_TRANSFER (LN_SAF; GPR:GP)

Group 1 TEST_STEP_LIE/LOWERS
Objective : Testdata tmnsfer
Default : LT_DEFAULTIL)
Cormnrments : This test step implements the test body of ourexample test case on the ower testerside.
Description
1 He | Label Behaviour Description Constraints Ref Verdict Cormments
1 LAE LIDATAC Ut feount=1NG fmount)) WEADTH idata_string))
2
3
4_ -
a
[}
7 CPPIPTC_RESULT PTC_RESipass)

Cetziled Comments :

Figure 65: Test step dynamic behaviour (LT_DATA_TRANSFER)

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 101

Chapter 1 The TTCN Introduction

Using Aliases

102

One of the main aims of TTCN is to specify behaviour descriptions so
that the human reader can easily understand the TTCN specification of
the test purpose.

The conformance standard requires that behaviour be expressed in
terms of (N) and (N-1) ASPs. However, a behaviour tree consisting of
mostly (N-1)-data requests and indications says very little to the reader.
What is important are the PDUs embedded in these service primitives.
If static chaining is used the reader will have no idea, without turning to
the constraints, what PDU interactions are specified in the test.

The alias mechanism allows ASPs (and if necessary PDUS) to be re-
named to reflect the different PDUs that they carry. The (N-1)-data re-
quest and indication may have several aliases, depending on which (N)-
PDU they are carrying.

Alias Definitions in TTCHW_TUTORIAL

File Edit DataDictionary Show Tools SDTLink Help
41

Alias Definitions

Comments

Alims Hame

Expansion

h_Cw TAquest Alias for the N_DW TAmquest e nice

primitive used to camy a GR_PDU

h_Cw TAEquest

Alias for teh WN_DATARguest 5= wice
primitive used to camy an outgoing
Alias for the N_DATAINdication =2 nvice
used to camy a GG_PDU

Alizs for the N_DATAmquest sevice
primitive used to camy an incoming
Alias for the N_DW TAmRquest senice
primitive used camy an outgoing
DR_FDU

Detailed Comments :

IBM Rational TTCN Suite 6.3 Methodology Guidelines

Figure 66: Declaring aliases

April 2009

Using Aliases

In ISO/IEC 9646-3 aliases are defined as textual expansions. However,
it is probably easier to think of alias identifiers as alternatives to ASP or
PDU identifiers in the SEND and RECEIVE statements. The effect is

exactly the same, i.e.

e PCO_ldentifier ! Aliasldentifier
e PCO_ldentifier ? Aliasldentifier

T _DATA TRANSFER In TTCHW _TUTORIA

File Edit DalaDictionary Show Tools SDTLink Help

]Sl

Test Step Dyramic Behaviour
Test Step Name : LT_DATA_TRANSFER (L:N_SAP; GPFIGF)
Group : TEST_STEF_LIB/LOWERS
Dhjective : Testdata tmnsfer
Default : LT_DEFAULTIL)
Cormrents : This test step implements the test body of curexample test case on the bwer testerside.
Description
Mr | Label Eehaviour Description Constraints Ref Werdict Cormments
1 LAE LIDATAout {frount=IhG fzount)) WDADTH (data_string))
2 [eount == mac] START Timer
el L?DATAIR MDiDTH (data_string)) (FASE)
4 -=LAE
5 PTIMECUT Tirer (FAIL)
s || ererromesucr] e A N
7 CPPIPTC_RESULT PTC_RES(pass)
Detmiled Commeants :

Figure 67: Test Step dynamic behavior using aliases

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 103

Chapter 1 The TTCN Introduction

Modularization of Test Cases

104

Test cases can be long and complex. There exist two mechanisms that
allow test cases to be modularized: test steps and defaults.

Test Steps

Behaviour trees can be modularized by splitting them into sub-trees
called test steps. Test steps are either:

« local to a behaviour description; or

« reside in the test step library.

Test steps may be parameterized, i.e. the calling tree can pass PCOs,
variables, literal values, constraints etc. to the attached test step.

Local test steps

Local test steps may only be used within the behaviour description in
which they appear:

Dynamic Behaviour Test Step Library

| Tect Ston
main tree Test Step
[[
Ly
local tree 1

Figure 68: Illustration of local test trees and test step library

The Test Step Library

Test steps that belong to the test step library are specified in Test Step
behaviour tables. These steps may be called by any test case, test step
or default.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Modularization of Test Cases

The ATTACH Statement
The ATTACH statement is used to invoke a test step, and is denoted by:

e+ Treeldentifier ActualParameterList
for attachment of a local test step; or

e+ TestStepldentifier ActualParameterList
for attachment of a test step in the test step library.

In both cases the actual parameter list should only be used if the test step
has a formal parameter list. Note that a parameter may also be a PCO or
CP.

Case study 21: The following test step:

TS inTTCH _TUTORIA

File Edit DalaDictionary Show Tools SDTLink Help |

|l [S]A][]| L[5 [+t 2]]2

Test Step Dynamic Bekaviour
Test Step Mame: LTSIL:N_SAP;, GPFP:CP)
Group : TEST_STEP_LIB/LOWERY
Qhjective o IUT shall mceive and s2nd 2 data within tire limit, 2 given number of tires,
Default
Cormrents
Description
Mr | Label Eehaviour Description Constraints Ref Werdict Cormments
1 +ESTABLISH_COMMECTICML)
2 +LT_DATA_TRANSFERILCPF)
3 +CGLOSE_GONNECSTICNL)
Detailed Gomments :

Figure 69: Test Step Dynamic Behaviour (LTS)

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 105

Chapter 1 The TTCN Introduction

106

Case study 22: Is the same as:

File Edit DataDictionary Show Tools SDTLink

Help

]]S A]

Test Step Dynamic Behaviour

Test Step Mame : LTSIL:N_SAF; CPFICP)

Giroup : TEST_STEF_LIB/LOWERY

Crbje ctive ¢ IUT shall moeeive and s2nd & data within tiee limit, 2 given numberof ties.
Default : LT_DEFAULTL)

Comments

Description

He | Lab=l Behaviour Description Constraints Ref Werdict Comrmeants
1 +ESTABLISH_CONMECTICON(L)

2 LIDA TAout jount:= NG icount))

3

4__ 4

il

[

7

-]

Q__ 4

10

11 +CGLOSE_GOMNECTION(L)

Detailed Commments :

Figure 70: Test Step Dynamic Behaviour (LT)

Tree Attachment as a Subroutine Call

TTCN defines tree attachment as the actual expansion of the called tree,
i.e. the test step, into the calling tree, which may be a test case or another
test step. While this is a sensible approach, adequately described in the
TTCN standard, we feel that the view of treating test steps as subrou-
tines is a valid one, and one that implements the TTCN semantics for
tree attachment correctly. These semantics are easily understood by

anyone with a programming background.

IBM Rational TTCN Suite 6.3 Methodology Guidelines

April 2009

Modularization of Test Cases

April 2009

A test step can be considered as a subroutine when handled in the fol-
lowing manner:

when an attach statement is reached when looping through a set of
alternatives, control is passed to the attached test step;

if no alternative in the first set of alternatives in the test step is suc-
cessful during the first loop through that set of alternatives, then
control returns from the test step to the calling tree, and evaluation
continues with the other alternatives, if any, in the same set of alter-
natives as the attach statement; this has the same effect as if the test
step was actually expanded into the calling tree;

if an alternative in the first level of the test step is successful then
execution continues in the test step tree;

if a final verdict is reached in the test step tree then the execution of
the test step (i.e. the entire test case) is halted and control is not re-
turned to the calling tree;

if no final verdict is encountered, before a leaf of the test step tree is
reached then control returns to the calling tree, and execution con-
tinues with the next set of alternatives (if any) subsequent to the at-
tach statement, i.e. the next level of indentation.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 107

Chapter 1 The TTCN Introduction

108

m

J. RESET TIMERS
ﬁ s 1'r]
\f

Ezecute Test Step
1zt zet of atenatesn i

LCTICNS LCTIONS
afte re 3t
19, TAHESNAPSHOTS |- 19. ENTER MEXT SETOF :
A, UPDATE TINERS ALTERNATIES s
o

lear

1 1
Altere 3te ' .
; - OR
ves mal . rdcr
ml fimal wemlict Ak natue
. . '
: : LCTIONS
1. COMPUTEERDET N
eI I3
l 2. RESET waRWALES - TRUE
Retrs I@he
= FULSE

Figure 71: Execution of a test step

Default Behaviour

The conformance standard requires that a TTCN test case must be fully
specified, in terms of behaviour. This means that at any point in time a
tester must be prepared to accept all possible incoming ASPs or PDUs.
This includes not only the ASPs or PDUs that are allowed by the proto-
col but also any ASP, legal or otherwise, that the IUT or service provid-
er may issue

The easiest way to take care of this is by using the OTHERWISE state-
ment. However, TTCN requires that the OTHERWISE statement leads
to a fail verdict and this may not always be desirable. For example, it
may be perfectly legal for the underlying network service to issue an
N_DISCONNECTiIndication at any time. Certainly, an OTHERWISE

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Modularization of Test Cases

File Edit DalaDictionary Show Tools SDTLink

would pick this up, but a verdict of FAIL in such an instance would be
quite wrong. The only verdict that should be assigned in this case is IN-
CONClusive, i.e. use with care!

Specifying all possible combinations tends to clutter up the main behav-
iour description, detracting from the readability of the test case. The de-
fault behaviour can be used to specify this peripheral behaviour in a pre-
cise manner. It will often comprise the set of ASPs or PDUs that are al-
lowed by the protocol at any given time but which are not part of the test
purpose, and an OTHERWISE to catch all other unspecified events. It
is also common practice to include a general TIMEOUT in the default.

Case study 23: If we specify the following default behaviour.

LT DEFAULT in TTCH_TUTOR|A

|l [S]#]

o] B B]2 [7]

Default Dynamic Behaviour

Default Hame : LT_DEFAULTIL:N_SAP)
: DEFAULT_LIE!

Group
Objective

Comments

1 Genemlcatch-all forthe bwer tester

Description

Ne | Label Behaviour Description Constraints Ref Werdict Comrments

1 L*>THERWISE FAIL The test s
stopped
irnrnidizthy.

Detailed Gomments

April 2009

Figure 72: Default Dynamic Behaviour (LT_DEFAULT)

Modeling Default Behaviour

Default behaviour can be modeled as a tree attachment that is implicitly
called as the last alternative in every set of alternatives.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 109

Chapter 1 The TTCN Introduction

Defaults Reference

A test case or test step references this default behaviour in the Defaults
entry in its header. If this entry is empty then no default behaviour is ap-
plicable.

File Edit DataDictionary Show Tools SDTLink Help
I
Test Step Dynmamic Behaviour
Test Step Mame : LTSILN_SAP; CPP.CP)
Group : TEST_STEF_LIB/LOWERY
Obje ctive o IUT shall eeeive and s2nd 2 data within tiee limit, 2 given numberof tires.
Default : LT_DEFAULTIL)
C:ornments
Description
MHr | Labsl Behaviour Description Constraints Ref Werdict Cormments
1 +ESTABLISH_CONNECTION(L)
2 |Lae | UoaTeouw pountmcpouny | MOWDTigsm s ||
3 || peunssmesTARTTwwr | T
ST e T NOIDTisie stingy | PaSS) |
s || e
s Y e
I e L e
s |] eeeeremesor Pro_mesmn ||
o |1 sewesecommecmony | T
R e | e N
T e
Detailed Comments :
Figure 73: The test step with a default
110 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Modularization of Test Cases

File Edit DalaDictionary Show Tools SDTLink

Help

EEEEEL

(&L E [B 2] (7]

Test Step Dymamic Behaviour

Test Step Name : LTS(L:N_SAP; GFF:CF)

Group
Objective
Default
Comments

Description

: TEST_STEF_LIEB/LOWERY
¢ IUT shall moeive and s2nd & dataowithin tire limit, 2 given number of tirees.

. LT_DEFAULTIL)

He | Label

Behaviour Description Constraints Ref Verdict

Cormments

T B I B

+ESTABLISH_GOMMEGTIONL)

LPCTHERWISE FAIL

Detailed Gomments

April 2009

Figure 74: Is the same as the previous test step

IBM Rational TTCN Suite 6.3 Methodology Guidelines

111

Chapter 1 The TTCN Introduction

Parameter Lists in TTCN

112

The following TTCN objects may be parameterized:

« test suite operations
e constraints

* teststeps

e defaults

Formal Parameter Lists

In all cases parameterization is indicated by the relevant TTCN object
identifier being followed by a formal parameter list. For example:

e an_identifier (fparl, fpar2:INTEGER, fpar3:HEXSTRING)

Actual Parameter Lists

Parameterized objects are invoked with an actual parameter list. For
example:

¢ an_identifier(1, 2, FALSE)
The following rules apply:

< the number of parameters in the actual parameter list must be the
same as the number of parameters in the formal parameter list;

« the actual values in the actual parameter list must be of a type that
is compatible with the type of the corresponding formal parameters;

« all actual parameters shall be bound at the time of invocation of the
test suite operation, test step, constraint or default;

« all actual parameters must resolve to specific values.

Call-By-Reference

The TTCN uses textual substitution to define the passing of actual pa-
rameters in test steps and defaults. An alternative, and more intuitive,
way of describing parameter passing for test steps and defaults and yet
retain TTCN semantics is to describe the mechanism in terms of call-
by-reference, in which the called routine (test step or default) has access
to the original argument, not a local copy. All operations that effect that
argument have the same effect on the original.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Test Case Selection

Call-By-Value

The TTCN standard states that neither user defined operations nor con-
straints may change the values of any actual parameters that are passed
to them, i.e. they shall have no side-effects. Thus, for user defined op-
erations and constraints it is more suitable to describe the parameter
passing mechanism in terms of call-by-value in which the called routine
(user defined operations or constraint) works on a local copy of the ar-
gument. The original argument is not affected by the routine.

Test Case Selection

April 2009

A test suite contains many hundreds, perhaps thousands, of test cases.

In most cases of testing it will only be necessary to choose and run a se-
lection of tests taken from the test suite. This choosing process is called
test case selection. Depending on values and answers obtained from the
PICS and PIXIT only a subset of the entire test suite need be executed.

Selection Expressions

TTCN allows each test case to be associate with a selection expression.
These expressions are predicates that will evaluate to TRUE or FALSE
depending on the answers given to the relevant PICS and PIXIT ques-
tions. If no selection predicate is given then the test will always be se-
lected.

The predicates are defined in the Test Case Selection Expression Defi-
nitions table, and references are made to them from the Test Case Index.

Groups of test cases may be selected in a similar manner by making ref-
erences to selection expressions from the Test Suite Structure table.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 113

Chapter 1 The TTCN Introduction

Structure of a TTCN Test Suite

114

Each TTCN object has a specific position in the hierarchy of the test
suite.

Parts of a Test Suite

The different test suite components may only appear in a specific order.
A TTCN test suite consists of four parts:

e Overview

¢ Declarations
¢ Constraints
* Behaviour

Each part contains a number of TTCN tables. The order in which the ta-
bles appear is shown in the following list. Each bulleted item in this list
represents a TTCN table. The tables that have number subscripts are ta-
bles for single TTCN objects, e.g. PDUs and test cases. The tables that
do not have a subscript are multiple TTCN object tables, e.g. simple
type definitions or test suite variables.

Some tables may be displayed in a compact format. Tables printed in
italic font are defined in the TTCN extensions.

Suite Overview Part
The test suite overview consists of four tables:

e Test Suite Structure
e Test Case Index

e Test Step Index

¢ Default Index.

Declarations Part

The declarations part is concerned both with the definition of new (i.e.
not predefined) data types and operations and the declaration of all the
test suite components.

e Test Component Declarations

e Test Component Configuration Declarations
¢ Simple Type Definitions

» Structured Type Definition,

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Structure of a TTCN Test Suite

e ASN.1 Type Definition;

e ASN.1 Type Definitions By Reference
» Test Suite Operation Definition;

e Test Suite Parameter Declarations

e Test Case Selection Expression Definitions
¢ Test Suite Constant Declarations

e Test Suite Variable Declarations

¢ Test Case Variable Declarations

¢ PCO Declarations

¢ CP Declarations

¢ Timer Declarations

* ASP Type Definitiony

e ASN.1 ASP Type Definition;

¢ ASN.1 ASP Type Definitions By Reference
* PDU Type Definition,

* ASN.1PDU Type Definition;

¢ ASN.1PDU Type Definitions By Reference
e TTCN CM Type Definition;

e ASN.1 CM Type Definition,

¢ Alias Declarations

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 115

Chapter 1 The TTCN Introduction

116

Constraints Part
The constraints part contains the tables for all the ASP, PDU, structure
and CM constraints. Both in the tabular form and the ASN.1.

* ASP Constraint Declaration,
Note:
ASP Constraints may displayed in a compact format if wished.
* ASN.1 ASP Constraint Declaration,
Note:
ASN.1 ASP Constraints may displayed in a compact format if
wished.

* PDU Constraint Declaration;
Note:
PDU Constraints may displayed in a compact format if wished.
* ASN.1PDU Constraint Declaration,
Note:
ASN.1 PDUConstraints may displayed in a compact format if
wished.

o Structured Type Constraint Declaration,
Note:
Structured Type Constraints may displayed in a compact format if
wished.

e ASN.1 Type Constraint Declaration,
Note:

ASN.1 Type Constraints may displayed in a compact format if
wished.

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Structure of a TTCN Test Suite

April 2009

e CM Constraint Declaration,

ASN.1 CM Constraint Declaration;

Dynamic Part
The dynamic part contains all the test cases, all the test steps in the test
step library and the all the defaults in the default library.

» Test Case Dynamic Behaviour;

Note:
Test groups, i.e. the test suite structure, are not represented here.
Test cases may displayed in a compact format if wished.

» Test Step Dynamic Behavioury

Note:
Test step groups are not represented here.

o Default Dynamic Behaviour;

Note:
Default groups are not represented here.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 117

Chapter 1 The TTCN Introduction

Distributed Development

In the TTCN Suite, the implemented version of TTCN does support
modularization of a TTCN document. This support is conveniently used
to concurrently produce multiple documents with some definitions in
common or to cooperatively produce one large TTCN document.

The mechanism implemented assumes that each user have a private tar-
get directory and all collaborating users having the same source files.

The following figures depict how this is accomplished. In the figures TS
denotes a test suite and M denotes a TTCN module. Numbers are used
to distinguish separate documents.

TS1 TS2

~_ 7

M

Figure 75: Two Modular Test Suites using a common Module

Figure 75 depicts the case where two test suites are developed in paral-
lel by two different users with both test suites referencing objects de-
fined in a common module.

TS

TN

M1 M2

™~ 7

M3

Figure 76: A large Modular Test Suite

118 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

Distributed Development

April 2009

Figure 76 depicts the case where a large test suite (TS) is developed in
parallel by two different users, each responsible for one module of the
test suite (M1 and M2), with both modules referencing objects defined
in a common module (M3).

In the case where more than one user is to concurrently develop differ-
ent parts of a large test suite, here is a simple way to distribute the doc-
ument files in the file system.

1. First create or select a suitable readable and writable directory ac-
cessible to all users. This directory will be used to store all files
common to all users and so need to be accessible to all users with
the same path.

2. Next create a template system file in this directory containing refer-
ences to all documents (all document files referenced could conve-
niently be present in this directory), creating empty documents for
those documents that will be produced later, set the directory repre-
sentation to the absolute form, save everything, and finally make
this template system file unwritable to protect it from inadvertent
modifications.

At this point it may be wise to assign ownership of the documents
to the users that are responsible for them and inhibit write access for
others, and also to remove superfluous files (e.g. all TTCN files that
have an extra hash-sign, ‘#’, prepended to the file name).

3. Finally inform all users that they should follow these steps when
they start their work:

— Select or create a personal target directory, preferably on a local
disk for optimum speed
— Copy the template system file to it (i.e. create a personal copy)

The user may now change the directory representation back to the rela-
tive form if so wished.

IBM Rational TTCN Suite 6.3 Methodology Guidelines 119

Chapter 1 The TTCN Introduction

Suite Overview Part

The Complete Case Study

Test Suite Structure

Suite Name C TTGH_TUTSRIAL
Stndards Ref @ |SOJEC oo
PICS Ref L ISVIES aaaa
FIEIT Ref o ISCWIEC bbbb

Test Methodis): Distibuted single layer (DSE)

Comments
Test Group Reference Selection Ref Test Group Chjective Fage Nr
SINGLE! Tests un oversingke connection 32
SINGLEDATAS jeic]
MULTS Tests nun over mulip e 34
coonnextions
WAL TADoh TAS a4
Detailed Comments :
Figure 77: Test suite structure
Test Step Index
Test Step Group Reference Test Stepld Description Page Nr

TEST_STEF_LIB/LOWER! LTS 35
TEST_STEP_LIB/LOWERYS ESTABLISH_CONMECT 26

| es_ster_Leiower |4 LToaTa_tRawsrER | T B
TEST_STEP_LIB/LOWERYS GLOSE_SOMMNESTION 26
TEST_STEP_LIB/UFPER? uTs 36
TEST_STEP_LIB/UFPPERY ACCERPT_COMMECTION 26
TEST_STEP_LIB/UFPERY UT_DATA_TRANSFER a7
Detailed Comments :

Figure 78: Test step index
Default Index
Default Group Reference Default 1d Description Page He
DEFAULT_LIBS LT_DEFAULT 28
DEFAULT_LIB/ UT_DEFAULT 38
DEFAULT_LIB! T_DEFAULT 28
Detailed Comments :
Figure 79: Default index
IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

The Complete Case Study

April 2009

Declarations Part

Simple Type Definitions

Type Name Ty p= Definition Type Encoding Cornments
RESULT_TYPE R_Type
Detailed Comments ;
Figure 80: Simple type definitions
Structured Type Definition
Type Name : WARIABLE_FART
Encoding Variation :
Comments : This is the type definition of the vardablk pantof the CR_FDU and the SC_FDU.

Elernant Name Typa Definition Fizld Encoding Comrments
pamnd_id BITSTRING [2] Pammeter dentifier.
pammA OSTETSTRING [2 .. 4] Cptional pammeter A
pammE_id BITSTRING [2] Pammetar dentifier.
pam=mE BOOLEAN Cptional pammeter B

Cetailed Comments :

Figure 81: Definition of VARIABLE_PART

Test Suite Operation Definition

Cperation Name: ING [EINTEGER)
Result Type : INTEGER
C:orn me nts : The INGementT opemtion.
Description
it NG
int temp;
{

m=tum (temp+1); #etum the incementad walue of i Motz that i ks=i i not changed *f

)

Detailed Comments :

Figure 82: Definition of INC operation

Test Suite Parameter Declarations

Fammeter Hame Typ= PICS/FIXIT Ref Comments
it_addmss 1AS5ting FIEIT question »xx Lower tester add mss
ui_addmess 1AS5tring PIEIT question vy uppertester addmess

Detailed Commeants

Figure 83: Test suite parameter declarations

IBM Rational TTCN Suite 6.3 Methodology Guidelines

121

Chapter 1 The TTCN Introduction

122

Test Suite Constant Dec larations

Constant Name Type Walue Comments
mnac INTESER a
data_string 1ASString 'This 5 & string "
Detailzd Commeants
Figure 84: Test suite constant declarations
Test Case Variable Declarations
Wariable Name Ty p= Yalue Cornments

count

INTEGER

This test case vanablke =
usad to countteh numberof
FDUs sent and received.

Cetailed Comments :

Figure 85: Test case variable declarations

PCO Type Declarations

PCO Type Rale Comments

M_SAF LT

H_SAFP uTr

Detailed Comments :

Figure 86: PCO type declarations
PCO Declarations
PO Narme PO Type Role Cornments

L1 MN_SAFP LT M-szrviee access points at

the lowertester

H-senice access points at
the uppertester

Detmiled Comments :

IBM Rational TTCN Suite 6.3 Methodology Guidelines

Figure 87: PCO declarations

April 2009

The Complete Case Study

April 2009

Coordination Point Declarations

P Name

Comments

Coomdination between the MTC and the FTCs of t2h ower

Detailed Commeants

Figure 88: Coordination point declarations

Test Component Declarations

Component Name Component Raole Hr FCOs Hr Pz Comments
MASTER_LCWER_TE | mTC o 2 izin Test Component
STER
LOWER_TESTERY PTS 1 1 Pamliel Test

Somponent
LOWER_TESTERZ PTC 1 1 Pamliel Test
Gomponent
UPPER_TESTER1 PTG 1 [u] Pamlel Test
Sormponent
UFFER_TESTERZ PTG 1 o Pamlel Test
Component
Detailed Comments :
Figure 89: Test component declarations
Test Components Configuration Declaration
Configuration Name : SINGLE_PARTY
Cornmnents : Configurtion to t2st 2 single connection.
Cormponents Used PCOs Used CFPs Used Cormeants
WA STER_LOWER_TESTER Lo] TS
LOWER_TESTERY L1 SR Lozt PTC
LOWER_TESTERZ 4 Upper FTS

Detailed Comments :

Figure 90: Declaration of SINGLE_PARTY

IBM Rational TTCN Suite 6.3 Methodology Guidelines

123

Chapter 1 The TTCN Introduction

Test Components Configuration Dec laration
Configuiation Name @ MULTI_PARTY
Comments © Gonfigurtion to test o simultanecus connections,
Components Used P0s Used CFz Used Comments

A STER_LOWER_TESTER ZFP4, GPZ TS

LOWER_TESTERH L1 <P Lowwar PTS
LOWER_TESTERZ Lz [=) UpperPTC
UPFER_TESTER1 ud Lovwer PTG
[verer_testere | e pperPe
Detziled Cormments :

Figure 91: Declaration of MULTI_PARTY

ASP Type Definition

ASP Mame: N_DATAmRquast
PCO Type © M_SAP

Comments : This i the type definition of the N_DATAmquast ASF. It has a single pammeterused to camy userdata.

Farameter Namme Farameter Type Comrments

user_data FOU The PDU metatype s used to indicate
that utgoing (ie. fom LT) PDUs ae
embedded in this Network ASP

Cetailed Comments :

Figure 92: Definition of IN_DATArequest

ASP Type Definition

ASP Mame: N_DATAindization
PG Type © M_SAP

Comrments : This i the type definition of the N_DATAindication ASP. It has a single pammeter used to camy userdata.

Farametar Name Parameter Ty pe C:ornme nts

user_data FOU The PDU metatype i used to indicate
that utgoing (ie. from LT) PDUs ae
embedded in this Metwork ASP

Cetailed Comments :

Figure 93: Definition of IN_DATAindication

124 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

The Complete Case Study

ASP Type Definition

ASP Hame : X_CONNECTindieation
PCO Type : N_SAP
Comments © This i the type definition of the X_CONNEC Tindication ASP. These ASPs are Esued by IUT to the upper

testar,
Parameter Name Parameter Type Cormnrments
caled_address 1ASString
calling_addme=s 1ASStrng
user_data 1ASString [O .. 32]

Detailed Comments

Figure 94: Definition of X_CONNECTindication

ASP Type Definition

ASF Name: X_CONNEC Tesponss
PCO Type @ N_SAFP
Comments : This i the type definition of the X_CONNECTesponse ASP. These ASPs am issued by IUT 1o the uppar

testar.
Parameatzr Name Paramater Type Comments
called_addess |ASStAng
calling_sddmress 1ASStrng
user_data 1AS5Strng [0 .. 32]

Detailed Comments :

Figure 95: Definition of X_CONNECTresponse

ASP Type Definition

ASP Hame: X_DATARquast
PCO Type © X_SAP

Comments @ This i the type definition of the X_DW TAmquest ASP. These ASPs ame issued by the uppertestarto the
T,

Parameter Name Parameter Type Cormnrments

caled_address 1ASString

Detailed Comments :

Figure 96: Definition of X_DATArequest

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 125

Chapter 1 The TTCN Introduction

126

ASP Type Definition

POO Type : X_SAP

ASP Name: X_DATAindiation

Comrments : This i the type definition of the X_DATAindication ASP. These ASPs am issued by the uppertesterto the

T,
Farametar Name Parameter Ty pe C:ornme nts
caled_address |ASString
Detziled Cormments :
Figure 97: Definition of X_DATAindication
PDU Type Definition
FOU Name L GR_FDU
PO Type D N_SAP
Encoding Rule Name
Encoding Yariation
Cormments : This i the type definition of the CR_PDU
Fizld Name Fizld Typa Field Encoding Comments

user_data

QCTETSTRING [1]

1A5String [0 .. 32]

Detmiled Comments :

IBM Rational TTCN Suite 6.3 Methodology Guidelines

Figure 98: Definition of CR_PDU

April 2009

The Complete Case Study

PDU Type Definition

PDU Name T GC_PDU
PCO Type : N_SAP
Encoding Rule Name :

Encoding Wariation

C:orn me nts : This is the type definition of the CGC_FDU
Figld Name Figld Typ= Field Encoding Cornmeants
type OCTETSTRING [1]

user_dats 1A55trng [0 .. 32]

Detailed Comments :

Figure 99: Definition of CC_PDU

PDU Type Definition

FDU Name : DT_FDU
PCO Type N_SAP
Encoding Rule Mames:

Encoding Wariation

C:ornments : This is the type definition of the DT_PDU

Fizld Nams Fizld Typ= Fizld Encoding Comments
tpe OCTETSTRING [1]
user_data 1AS.String

Detailed Commeants

Figure 100: Definition of DT_PDU

CM Type Definition

CM Name | PTG_RESULT

Comments : Coomdination message to tensfer preliminan sl fmm teh bwer tester PTCS o the WTC.

Farameter Namme Farmameter Type Comrments

result RESULT_TYFE Userdefined type.

Detailzd Commeants

Figure 101: Definition of PTC_RESULT

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines

127

Chapter 1 The TTCN Introduction

128

Alias Definitions

Alims Hame

Expansion

Comments

h_Cw TAquest

h_Cw TAEquest

Alias for the N_DW TAmquest e nice
primitive used to camy a GR_PDU

Alias for teh WN_DATARguest 5= wice
primitive used to camy an outgoing

Alias for the N_DATAINdication =2 nvice
used to camy a GG_PDU

Alizs for the N_DATAmquest sevice
primitive used to camy an incoming
Alias for the N_DW TAmRquest senice
primitive used camy an outgoing
DR_FDU

Detailed Comments :

IBM Rational TTCN Suite 6.3 Methodology Guidelines

Figure 102: Alias definitions

April 2009

The Complete Case Study

Constraints Part

Structured Type Constraint Declaration

Constraint Hame © wanable_pan_CRd
Structured Type : VARIABLE_PART
Derivation Path

Encoding Wariation :

C:omme nts : A constmint on the structure type VARIABELE_PART forteh CR_PDLU

Elzmeant Nams Elermeant Walus Elzment Encoding Comments

Detailed Comments :

Figure 103: Declaration of variable_part_CR1

Structured Type Constraint Declaration

Constraint Mame vanablke_par_CRZ
Structured Type @ VWARIABLE_FART
Derivation Fath

Encoding Yariation :

C:ornme nts © A constmint on the strustue tpe VARIABLE_PART forteh GR_FDU

Elemant Mame Element Yalue Element Encoding Cormments
parmmA_id Y0'B IF_FPRESENT Accept if presant.
parEmd " Ay value, or none.
pammB_id 1'E IF_FRESENT Accept if present.
parmmB " Any value, or none

Detailed Comments :

Figure 104: Declaration of variable_part_CR2

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines

129

Chapter 1 The TTCN Introduction

ASP Constraint Declaration

Constrmint Name : MDrany_pdu:PDUY
ASP Type o M_DATARqQuest
Detivation Fath

Comments © A constmint on the WN_DA TAmequest ASP.

Parmametzr Hame Parametar Walue Comments

user_data any_pdu The actual POU that is camed in the
ASP i dynamically chained fromm the
constrints mfemnce.

Detailed Comments :

Figure 105: Declaration of NDr

ASP Constraint Dec laration
Constemint Narme : MO fany_pdu:P DU
ASP Type o M_BATAIndication
Derivation Fath
Cormments : This is the type definition of the N_DATAindkcation ASP. It has a singlke pammetarusad to camy user
data.
Parametar Hame Parameter Walue Comments
user_data any_pdu The actual POU that i camed in the

ASFP & dynamically chained from the
constrRints mfarnce.

Detailed Comments :

Figure 106: Declaration of NDi

ASP Constraint Declaration

Constraint Mame : SOMNind
ASP Type ¢ B _CONNEC Tindication

Derivation Path

Comments : A constrmint on the X_CONNECTindication ASF.

Farametar Name Farametar ¥alue Cormments
caled_address ut_addmess From test suite pammeters.
caling_address t_addmess Fmorn test suite pammeters.
u=sEr_data - AccEpt any valle, or none

Detailed Gomments :

Figure 107: Declaration of CONind

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

The Complete Case Study

ASP Constraint Declaration

Constraint Name : CONeEp
ASP Type D K_CONMECTRsponse

Derivation Fath

Cromments © A constRinton the X_CONNES Tresponss ASP.

Farameter Hame Farmmmeter Value Comments
called_addmess ut_addmess Fmom test suite pammetars.
calling_address t_addmss From test suite pammetzrs.
user_data . Qnit o ptional userdata

Detziled Comments :

Figure 108: Declaration of CONrsp

April 2009

ASP Constraint Declaration
Constraint Hame : DATRg
ASP Type o H_DATARquest
Derivation Path
Cormnments T A constmint on the X_DATARquest ASP.
Farametzr Name Farametzr ¥alus Comments
caled_addmess data_string
Cetailed Comments :
Figure 109: Declaration of DATreq
ASP Constraint Declaration
Constraint Mame : DATind
ASP Twpe ¢ X _DATAIndization
Derivation Path
Comments © A constrinton the X_DATAindization ASF
Farametar Name Farametzr ¥alue Comments
caled_address data_string

Cetailed Comments :

Figure 110: Declaration of DATind

IBM Rational TTCN Suite 6.3 Methodology Guidelines

131

Chapter 1 The TTCN Introduction

132

PDU Constraint Declaration

Constraint Name
FDOU Type

Derivation Path

Encoding Yariation

Comments

DGR
: CR_FDU

Encoding Rule Hame :

: A constrminton the SC_PDU

Fiald Name

Field Valus

Fizld Encoding

Cormments

Refermnee 1o 2 structured
constraint

Figure 111: Declaration of CR1

PDU Constraint Declaration

Constraint Name

FDOU Type

]
1 CC_PDU

Derivation Path
Encoding Rule Hame :

Encoding Yariation

Comments © A constrminton the SC_PDU
Fizld Name Fizld Yalu= Fizld Encoding Comrments
type 'FEO
dst_ref 0oo04'e
sm_mref ooni'e
vanable_part vanabk_pan_CRZ Refer=nce 1o 2 structured
constraint
user_data *

IBM Rational TTCN Suite 6.3 Methodology Guidelines

Figure 112: Declaration of CC1

April 2009

The Complete Case Study

PDU Constraint Dec laration
Con stemint Harme : DTH fawtual dats:|ASSthng)
FDU Type : DT_FODU
Derivation Fath
Encoding Rule Name :
Encoding Yariation
Cormments : This i the type definition of the DT_PDU
Fiald Name Field ¥alus Field Encoding Cormments
type FI0
uszr_data, actual_data The actual data s passed
a5 a parmeterio the
constraint.
Detziled Cormments :
Figure 113: Declaration of DT1
CM Constraint Declaration
Constraint Name © FTG_RES {actualmesult: RESULT_TYFE)
oM Type . PTC_RESULT
Derivation Path
Comments : A constrinton the PTC_RESULT coodination message.
Parmetzr Hame Patzmeter Value Comrents
result actual_mesult The actual msult s passed as a
pammetario the constrzint.
Detailzd Commeants

Figure 114: Declaration of PTC_RES

April 2009 IBM Rational TTCN Suite 6.3 Methodology Guidelines 133

Chapter 1 The TTCN Introduction

Dynamic Part

][]] A][(o8 - R (B Y] 2] 2 2]

Test Case Dynamic Behaviour

Test Gase Name : SF_DCATA_TRANSFER
Group : SINGLE/DATA?
Purpase : IUT shall reeive and s=nd & dats within time lmit, 2 given number of times over s single X-sannectian

Configuration : SINGLE_FARTY

Default : T_DEFAULT
Comments : This test case creates the other PTG in the configumtion necessarny for 2 single—cannection
configumtion.

Selection Ref

Description : Data tanstersingle connection

Hr | Label Behaviour Description Constraints Ref Yerdict Comments

1 CREATE(LOWER_TESTER1:LTS (L1, GP{), 11
UFFER_TESTER1:UTS (U141

e | | eeeeromEsur PTC_RES fpass) | F Pass_ |e3

3 GFAFPTC_RESULT FTG_RES (tai) FaIL 2),3)

Detziled Comments . 1) The CREATE command binds specific test steps to the elevant PTCs in the Test Component
Declarations table. It ako impliily starts execution of each test step (ie. one instance of LT and
one instance of UT)

2 The preliminany msuls fom the kower tester P Tos ae picked up here.
3) Final vedict

Figure 115: Definition of SP_DATA_TRANSFER

134 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

The Complete Case Study

MP_DATA TRANSFER In TTCH_TUTORIAL

File Edit DataDictionary Show Tools SDTLink

][] A

(S]]l E B2 [+][7]

Test Case Dynamic Behaviour

Group

Furpose

Configutstion
Default

Comments

Test Case Name: MP_DATA_TRAMSFER

o MULT/DATAS

o IUT shall meeie and send 2 data within time limit, 2 gven numberof times ower wo simultaneous
H—connections.

: MULTI_FARTY
: T_DEFAULT

: This test case creates the otehr P TS in the configumtion necessany for a two—connection
configurtion.

Selection Ref

Description : Data trnsfer muki-connection
Mr | Labsl Behaviour Description Constraints Ref Werdict Comments
i CREATE(LOWER_TESTERY:LTS (L1, GP1), 1)

LOWER_TESTERZ:LTS (L2, GF2),
UPFER_TESTERA:UTS (U1},
UPFER_TESTERZ:UTS {U2})

GPZ?PTG_RESULT PTG_RES ffail) FAIL 23,3

Cetailed Comments : 1) The SREATE command binds specific test steps 1o the mlevant PTCs in the Test Somponent

Declamtions table. It also implicithy starts execution of 2ach test step (e, two instances of LT and
one instance of UT)

2) The prliminan esubls fom the bwer tester PTCs ae picked up hers.

3) Finalwvamrdict

April 2009

Figure 116: Definition of MP_DATA TRANSFER

IBM Rational TTCN Suite 6.3 Methodology Guidelines

135

Chapter 1 The TTCN Introduction

136

Test Step Dynamic Behaviour

Test Step Mame : LTSIL:N_SAP; CPP:CP)

Group : TEST_STEP_LIBLOWERY

Crbje ctive o IUT shall meeive and s2nd & data within tiee limit, 2 given numberof ties.

Default

Comments

Description

Hr | Labsl Behaviour Description Constraints Ref Werdict Gomments
1 +ESTAELISH_COMNNECTIONL)

2 +LT_DATA_TRAMSFERIL,GPP)

3 +CLOSE_CONNECTIOINL)

Detziled Comments

Figure 117: Definition of LTS

Test Step Dynamic Behaviour

Test Step Hame : ESTABLISH_GOMNMNECTICN (L:M_SAF)

Group : TEST_STEP_LIB/LOWER!

Qhjective : To establish 2 connection.

Default : LT_DEFALLTIL)

Cormments : This s a preamble test step used by the bwertestens) to et up a connection between the bwer
testens) and the uppert=stens). Forteh sake of simplicity we shall assurme that the connection cannot
be mfus=d.

Description

Mt | Label Eehaviour Description Constraints Ref Yerdict Cormments

q

2

Detailed Comments :

Figure 118: Definition of ESTABLISH_CONNECTION

IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

The Complete Case Study

Test Step Dynamic Behaviour
Test Step Name: LT_DATA_TRANSFER (L:N_SAP; CPP:CR)
Group : TEST_STEF_LIB/LOWER?
Cbjective : Testdata tmnsfar
Default : LT_DEFAULTIL)
Comments : This test step implerents the test body of ourexample testcase on the bwertesterside.
Description
HNr | Labsl Behaviour Description Constraints Ref Verdict Comments
1 LAE LID@ TAout feount=1 NG fcount)) NOADTA [data_string)
2 -
2
4
5
[}
7 GPPIPTC_RESULT FTC_RES(pass)
Detailzd Commeants

Figure 119: Definition of LT_DATA_TRANSFER

Test Step Dynamic Behaviour

Test Step Hame : CLOSE_CONNECTION(L:N_SAP)

Group : TEST_STEF_LIB/LOWER!

Objective : Chss teh connection to the [UT

Default

Comments : This is a postamble test step that closes a connection betwean the kbwertestens) and the upper
teste s

Description

Nr | Label Behaviour Description Constraints Ref Verdict Comments

1 LIDR MDACHY)

Detmiled Commeants :

April 2009

Figure 120: Definition of CLOSE_CONNECTION

IBM Rational TTCN Suite 6.3 Methodology Guidelines

137

Chapter 1 The TTCN Introduction

138

Test Step Dynamic Behaviour

Test Step Mame : UTS(UX_SAP)

Group : TEST_STEP_LIBJUFFER!

Crbje ctive o Accept connection and eceiedsend DATA & cetain number of times

Default

Comments

Description

Hr | Labsl Behaviour Description Constraints Ref Werdict Gomments
1 +ACCERT_CONNECTION(U)

2 +UT_DATA_TRAMSFER(U)

Detailed Commeants

Figure 121: Definition of UTS

Test Step Dynamic Behaviour

Test Step Hame : ACCGEPT_CONNECTICN{UX_SAF)

Group : TEST_STEP_LIE/UFFER!

Qhjective o Acceptan X_COMNNECTindization from the kwertester

Default : UT_DEFAULTIUY

Cormments : This s a preamblke test step used by the uppertestens) to accept an incoming connection Equest fom
the bwertestens).

Description

Mt | Label Eehaviour Description Constraints Ref Yerdict Cormments

1 U?H _CONNEC Tind ization SOMind

2 U _CONNES TRsponss COMNEp

Detailed Comments :

Figure 122: Definition of ACCEPT_CONNECTION

IBM Rational TTCN Suite 6.3 Methodology Guidelines

April 2009

The Complete Case Study

Test Step Dynamic Behaviour

Tazt Step Name :

UT_DATA_TRANSFER{U:X_SAP)

Group : TEST_STEF_LIE/UFFER!

Cbjective : Respond to incoming data.

Default : UT_DEFAULTIL)

Comments : This test step implerents t2h test body of ourexample testcase on the upper testerside.
Description

He | Label Behaviour Description Constraints Ref Verdict Comments

1 LAE UFH_D TAIndication jeount i= INGcount))

NDIDT1 data_string)

Detmiled Comments :

Figure 123: Definition of UT_DATA_ TRANSFER

Default Dynamic Behaviour

Default Mame : UT_DEFAULT{WX_SAF)

Group : DEFAULT_LIBS
Qhjective o Genemlcatch—all forthe uppertester,
Comments
Description
Hr | Labsl Behaviour Description Constraints Ref Verdict Comments
1 U THERWISE (FAIL)
Detailed Comments :

Figure 124: Definition of UT_DEFAULT

Default Dynamic Behaviour

Default Name : UT_DEFAULT{UX_SAF)
Group : DEFAULT_LIBS
Objective : Genemlcatch-all forthe uppertester.
Comments
Description
Ne | Label Behaviour Description Constraints Ref Werdict Comrments
1 UPSTHERWISE (FAIL)

Detailed Gomments

April 2009

Figure 125: Definition of UT_DEFAULT

IBM Rational TTCN Suite 6.3 Methodology Guidelines

139

Chapter 1 The TTCN Introduction

Default Dynamic Behaviour
Defzult Hame : T_DEFAULT
Group : DEFAULT_LIES
Crbje ctive o Geneml catch-all
C:ornments
Description
MHr | Labsl Behaviour Description Constraints Ref Werdict Cormments
1 LA?OTHERWISE FAalL
2 L2?OTHERWISE FAIL
3 1?7 THERWISE FAIL
4 Uz?OTHERWISE FAIL
Detailed Comments :

Figure 126: Definition of T_DEFAULT

140 IBM Rational TTCN Suite 6.3 Methodology Guidelines April 2009

D

DefCon Utility: 59

April 2009 IBM Rational SDL and TTCN Suite 6.3 141

142 IBM Rational SDL and TTCN Suite 6.3 April 2009

	Methodology Guidelines
	IBM Rational TTCN Suite 6.3
	Copyright Notice
	Introduction
	About this Manual
	Documentation Overview
	Typographic Conventions
	How to Contact Customer Support

	1 The TTCN Introduction
	Introduction
	Background
	Black Box Implementations
	Lower Tester and Upper Tester
	Test Notation
	Forms of TTCN
	Requirements on TTCN

	A Case Study
	The Test Case
	Description of the Case Study
	Purpose of the Test Case

	Case Study Road-Map

	The Test Configuration
	Specification of Test System Behaviour
	Behaviour Trees
	Behaviour Lines
	TTCN Behaviour Description

	Statement Lines
	Statements
	Events
	Actions
	Qualifiers
	Combinations of Events, Actions and Qualifiers

	Execution and Matching
	Alternatives
	Execution of the Behaviour Tree

	TTCN Types and Values
	Predefined Types
	Value Denotation
	Simple User Defined Types
	Structured Types

	ASN.1 Types and Values
	Type References, Value References and Identifiers
	Identifiers and Underscore
	ASN.1 Simple Types
	BOOLEAN
	INTEGER
	REAL
	BIT STRING
	OCTET STRING
	CharacterString
	ENUMERATED
	OBJECT IDENTIFIER
	OBJECT DESCRIPTOR

	ASN.1 Constructors
	SEQUENCE
	SEQUENCE OF
	SET
	SET OF
	OPTIONAL
	DEFAULT
	CHOICE
	TAGGED TYPES
	IMPLICIT
	EXTERNAL

	PCOs and CPs
	The Communication Model
	Sending an ASP
	Receiving an ASP
	Declaring PCO Types
	Declaring PCOs
	Using PCOs and CPs
	PCO and CP Snapshots
	Declaring CPs

	The SEND Statement
	Sending an ASP
	Executing a SEND Statement
	Sending a PDU
	Sending a Coordination Message

	The RECEIVE Statement
	Receiving an ASP
	Executing a RECEIVE Statement
	Receiving a PDU
	Receiving a Coordination Message

	The OTHERWISE Statement
	Defining ASP, PDU and CM Types
	Complex TTCN Types
	Chaining
	Complex ASN.1 Types
	Local Type Definitions
	Type Definitions by Reference
	Defining ASPs
	The PDU Metatype

	Defining PDUs
	Substructuring ASPs and PDUs
	Defining Coordination Message Types

	Using ASPs and PDUs in Behaviour Trees
	TTCN Expressions
	TTCN Operators
	Arithmetic Operators
	Equality Operator
	Other Relational Operators
	Boolean Operators
	Qualifiers
	Assignment Lists

	TTCN Operations
	Predefined Operations
	User Defined Operations

	Specifying ASP, PDU and CM Values
	Static and Dynamic Chaining
	Complex ASN.1 Values
	ASP Constraints
	The DefCon Utility

	PDU Constraints
	Structured Type Constraints
	CM Constraints

	Constraint References
	Parameterized Constraints
	Dynamic Chaining

	Sending and Receiving Constraints
	Constraints and the SEND Statement
	Constraint Values and SEND
	Constraints and the RECEIVE Statement
	Received Object
	Constraint Values and RECEIVE
	Received Value
	Constraints and the OTHERWISE Statement

	Matching Received Constraint Values
	Specific Values
	Omitting Values
	Replacing Values

	Matching Mechanisms
	Matching Value Lists
	Complementing Value Lists
	Matching Ranges
	Matching Any Value
	Matching Any Value, or Omitting It Altogether
	Wildcards Within Values
	The If_Present Attribute
	Length Restrictions

	Encoding
	Encoding ASPs
	Encoding PDUs
	Manipulation of Encodings

	Referencing Components of Complex Types
	References in the Context of SEND and RECEIVE
	Referencing ASN.1 Elements
	Capturing Incoming ASPs and PDUs

	Verdicts
	The Result Variable
	Preliminary Results
	Final Verdicts

	The GOTO Statement
	Timer Statements
	The Timeout List
	The TIMEOUT Statement
	Timer Snapshots
	The START Timer Operation
	The CANCEL Timer Operation

	Constants and Variables
	Test Suite Constants and Test Suite Parameters
	Test Suite Parameters

	Test Suite and Test Case Variables
	Resetting Default Values

	Variables in Concurrent TTCN

	Dynamic Behaviour Descriptions
	Test case Identifiers and Test Group References
	Test Purpose and Objective
	Configuration
	Default Behaviour

	Using Aliases
	Modularization of Test Cases
	Test Steps
	Local test steps
	The Test Step Library
	The ATTACH Statement
	Tree Attachment as a Subroutine Call

	Default Behaviour
	Modeling Default Behaviour
	Defaults Reference

	Parameter Lists in TTCN
	Formal Parameter Lists
	Actual Parameter Lists
	Call-By-Reference
	Call-By-Value

	Test Case Selection
	Selection Expressions

	Structure of a TTCN Test Suite
	Parts of a Test Suite
	Suite Overview Part
	Declarations Part
	Constraints Part
	Dynamic Part

	Distributed Development
	The Complete Case Study
	Suite Overview Part
	Declarations Part
	Constraints Part
	Dynamic Part

