1ELD] RN Statemate

Configuration Management

Rational Statemate Configuration
Management

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to IBM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Configuration Management TOOl e 1
Rational Statemate CM Interface 2
The Project Databank 2
Configuration emMS e 3
LOCKING .« . .ttt e 3
VErsion NUMDEIS . ..o e 4
Protection Levels and GroUPS.ottt e e e e 4
Chart-File Format 4

The Databank e e 35
Starting and Using the Databank 35
Databank Main WINdOW e 35
Configuration Item List e 36

e PrO IS . . . o 36

EXIiSting Version List e e 37

The Workarea. 37
Configuration Management Operationst 38
Using Configuration Management. 40
Selecting a CM Tool for a Rational Statemate Project. 41
Defining Third-Party CM Tool Interfaces 43
Script-Based Interface to CM TOOIS. e 43
How Rational Statemate Determines Available CM TOOIS e 44
Mapping Individual CM Operations t0 SCHptS oottt e e e 45
Creating CM Operation SCrPLS o oo e e e e 46
ParamM e el TYPES. .« . o 47

CM SCript REIBIENCE . . . oot e e e e e e e e e e 48
calC_arChiVe_Name e 48
delete_from_bank 48

Jelete _TeVISION . . o 49

gt fil. 49
get_locked by e 51

[0 S € L= 11 (=1 o 51

Rational Statemate

Table of Contents

get_ver _from_bank e 51
L VEBISIONS . . . oottt et e e e e e e 52
NIt e 53
is_file N _bank 54
is_locked in_bank. 54
IOCK file . . oo e e e 54
modify _to_archive 54
PUL Il o 55
UNIOCK _filE . o o 56
User Function Interface to CM TOOl. e 57
STM_CM_begin_databank_operation i e e 58
STM_CM_calC_arChive _name e e e e e e 59
STM _CM _ClOSE. . . o e 59
STM_CM_delete_from_bank 59
STM_CM_delete_reViSION.o e e 60
STM_CM_end_databank_operationttt e 60
STM _CM _get file . .. e e 61
STM_CM_get_files list. 62
STM_CM_get_file_last_ modified_date 62
STM_CM_get_locked by e 63
STM_CM gl PateIN . . o . e 63
STM_CM_get_ver_from_bank 64
STM _CM gL VEISIONS. . .ttt e e e e e e 65
STM_CM NIt e e 66
STM CM NIt M L o e e e e 66
STM_CM_is_file_in_bank 67
STM_CM_is_locked_in_bank 67
STM_CM_IoCK_file . . o 68
STM_CM_modify_to_arChive e e e e 68
STM_CM _pUL_file . . o 69
STM_CM _rollbackK. e 70
STM_CM_standalone_lock_file. 71
STM _CM _UNIOCK_file . . 71
Information Specific to PVCS e 73
RS IONS oo 73
BranChing. e e 73

iv Configuration Management

Configuration Management Tool

Rational® Statemate® ncludes a Configuration Management (CM) tool with built-in “checkin-
checkout” capabilities. However, you might transparently substitute the revision engine and
repository format of a third-party configuration management tool. Interface modules are
available for the following widely-used, third-party configuration management tools:

¢ Continuus Software Corp. Continuus/CM

¢ Intersolv PVCS Version Manager
+ Rational® Software® ClearCase®

Note

To use ClearCase as the CM tool, install Rational Clear Case and set it as the Source Code
Control (SCC) provider.

Set STM_SCC_CLEARCASE environment variable, and when creating a project, select
SCC in the CM Tool field.

On Windows, third-party tools are supported by Source Code Control (SCC), a common interface
introduced by Microsoft.

If you want Rational Statemate to work with a different CM tool, an add-on module is available
that allows you to create a script-based interface to your CM tool of choice.

Rational Statemate 1

Configuration Management Tool

Note

* When using the Rational Statemate interface with a third-party CM tool, you cannot use
the Rational Statemate interface to modify or delete Rational Statemate project files. You
cannot use the third-party CM tool to check in or check out files from a repository used to
hold a Rational Statemate project. You might use the Rational Statemate interface for
read-only operations such as viewing, searching, and reporting.

+ Rational Statemate does not support checking out different revisions of the same file. Only
one revision can be checked out at a time.

Rational Statemate CM Interface

Regardless of which CM engine and repository you use, the configuration management operations
in the Rational Statemate user interface remain almost exactly the same. The intent is to make the
underlying mechanism as transparent to your project members as possible.

Note

Only few operations are supported by Rational Statemate, which is not intended to serve as
a full user interface for any third-party CM tool. Many operations available in third-party

tools, such as comparing or merging versions, cannot be performed within Rational
Statemate.

The remainder of this section provides a brief overview of the user interface to the Rational
Rational Statemate built-in configuration management tool. Subsequent sections describe how to
replace the built-in facility with third-party tools.

The Project Databank

Each Rational Statemate project has a common repository area called the databank, which
contains the charts and files belonging to the entire project. When a new project is created, the
databank can be placed in any directory to which the project manager has read and write access.

Many sites designate a special location for project databanks; check with your system
administrator.

2 Configuration Management

Rational Statemate CM Interface

Configuration Items

Elements stored in the databank are called configuration items and are stored as ASCI| files. For
example, configuration items are:

+ Charts - Statecharts, Activity charts, Flowcharts, Use Case Diagrams, Sequence Diagrams,
Module Charts, Continuous Diagrams, and Global Definition Sets (GDSs)

* Analysis profiles

¢ Simulation Control Language (SCL) files

* Waveform profiles

+ Status files

¢ Check Model profiles

¢ Code generation profiles

¢+ Documentor (DGL) templates

¢ Include files

+ Configuration files

+ Panels

¢ Components

* Targets and Cards

Locking

Rational Statemate uses the standard “lock” paradigm to prevent configuration items from being
modified by more than one person at any time. When checking an item out, the following occurs:

¢ The project member can optionally lock the item, preventing anyone else from modifying
it. Other project members continue to have read access to the item but they cannot lock it.

* A copy of the item is created in the project member’s designated disk space, which is
called a workarea. Any project member can modify a copy of an item in their workarea,
but only the project member who holds the lock on the item can check it in.

When checking an item in, the following occurs:

¢ The project member can choose to retain or release the lock. Until the lock is released, no
one else can modify the item. When more than one project member needs to modify an
item, it is important to unlock the item.

¢ The project member can choose to save or delete the copy of the item in the workarea.

Rational Statemate 3

Configuration Management Tool

Version Numbers

Each configuration item has a version number. Typically, the highest version number represents
the current working design. Lower version numbers represent earlier designs. Each time a project
member checks an item in, Rational Statemate assigns it a version number by incrementing the
highest existing version number.

The Rational Statemate built-in CM tool tracks versions using whole numbers (positive integers).
When you create a new item and check it into the databank, Rational Statemate assigns it a “1”
version number. If a third-party CM tool uses a different system of version numbering, the version
numbers displayed by Rational Statemate conform to the format of the third-party tool.

Protection Levels and Groups

The databank directory structure is created with “world read/write,” permissions but specific items
within the structure can be protected differently. You can assign one of the following protection
levels (common to most operating systems) to configuration items in the databank:

+ None - The item cannot be checked out.

¢ Read-Only - The item can be checked out without a lock and used or modified, but cannot
be checked in.

¢ Read-Write - The item can be checked out with a lock (guarantees that other users cannot
change it while you are working on it) and checked in.

You can assign a protection level to the following groups:

¢ Owner - The project member who first created the configuration item in the databank.

¢ Group - Project members who belong to the same group as the owner (according to the
definitions set by the operating system).

¢ Others - All project members.
All versions of a configuration item belong to the same owner and have the same protection level.

Chart-File Format
The various charts of the model are saved as text files in the chart directory of the databank.
The format of the chart-file is as described:

First 2 lines are :
chart-file format version 4.6
-- Statemate version 4.6.1

4 Configuration Management

Rational Statemate CM Interface

¢ Chart file records format - This section decribes the exact format of all kinds of records
that may be found in a chart file. The following conventions are used in this section:
Optional fields are enclosed in square brackets [..].

+ Multiple fields (fields that may appear more than once in a record) are enclosed in {..}.
These fields are always optional.

+ Anitem enclosed in <..> describes the type of the information that appears at that place.
The values of these items appear at the end of the document in a dictionary.

1. Chart itself
The following record describes the subject chart:

chart :
name : <STM_name>
type : <chart_type>
usage : <chart_usage_type>
created : <time> -- <ASCII_time>
creator : <user_name>
modified : <time> -- <ASCII_time>
{parameter : <parameter_name> <parameter_type> <parameter_mode>} -- for
-- generic charts only
{local_data :
name : <name>
data_type : <data_basic_type>
data_structure : <data_structure>
end local_data} -- Procedural Statecharts only
[short description: <short_des>]
[external_file : <external_file_path>]
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end attribute}
{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :
name : <name>
value :

Rational Statemate 5

Configuration Management Tool

<free_text>
end value
enforced : <yes_no>

end design_attribute}

[long description :
<free text>

end long description]
scale with zoom : <yes no>
arrow style : <arrow_style>
[scope : <activitychart_name>] -- For Sequence Diagrams
[used_gds : <gds_names>]
{change :
time : <time>
date : Date: <ASCII_time>
user_name : User: <user_name>
version : <version>
description :
<text>
end description
related_element :

<element_name>

end related_element
end change}

end chart

Note: Only one such record should appear in a chart file.

2. Activity or data-store

The following record describes an activity or a data-store defined in the
subject activity-chart:

activity :
name : <STM_formatted_name> | ACTIVITY#<id_number>
-- the second option is
-- used only for unnamed boxes
created : <time-stamp>
type : <activity_type>
[is : <chart_name> <instance_type>] -- for instance boxes only
{binding : <parameter_name> <parameter_type> <parameter_expression>}
-- for instance boxes only
[parent : <activity_name>] -- missing only when diagram or error-hook

6 Configuration Management

Rational Statemate CM Interface

[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external file_path>]
[external_desc : <external_desc_name>]
[external_desc_version : <version> <time>]
[mode : <box_mode>]
line width : <line_width>
color : <color>
name color : <color>
name font : <font-definition>
name alignment : <alignment>
[termination : <termination_type>]
[is activity : <box_name>] -- activity or data-store name,
-- used also for "is data-store™
[implemented by : <unique_name>] -- module name, used also
-- for "resides in"
[mini spec :
<mini_spec_body>
end mini spec]
{combinatorial logic:
assignment: <combinatorial_assignement_expression>
assignment position: <position>
end combinatorial logic}
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end attribute}
{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end design_attribute}
[name position :

Rational Statemate

Configuration Management Tool

<position>] -- position is in the activity borders
[graphics coordinates : -- missing in ERROR-HOOK, ENVIRONMENT,EXTERNAL
<position> -- ordered in circle,
<position> -- must create right angles
<position>
<position>
{<position>}] -- when polygon has more than 4 edges

[long description :
<free_text>
end long description]
[callback bindings : <enable_disable>
<callback_binding_expression>
end callback bindings]
[user-code bindings : <enable_disable>
<code_binding_expression>
end user-code binding]
selected implementation : <activity_selected_implementation>
[scenario resources :
<free_text>
end scenario resources]
{scenario :
scenario :
<name>
end scenario
pre_conditions :
<text>
end pre_conditions
description :
<text>
end description
post_conditions :
<text>
end post_conditions
referenced_diagram :
<chart_name>
end referenced_diagram
end scenario}

[extention_points :

{<text>}

end extention_points]

[referenced_ac :

{<activitychart_name>:<activity_name> | <activitychart_name>}
end referenced_ac]

8 Configuration Management

Rational Statemate CM Interface

[referenced_st :
{<statechart_name>:<state_name> | <statechart_name>}
end referenced_st]

end activity

Notes: o The data-store is considered as a type of an activity.
0 This record appears only in an activity-chart file.
o Two activity records are mandatory in an activity-chart file:
(a) Activity named ACTIVITY#0 of type DIAGRAM. The relevant fields
in this case are name, type, and graphic coordinates that
determine the chart size.
(b) Activity named ACTIVITY#1 of type ERROR_HOOK. The relevant
fields in this case are name and type. This box is used by
the AGE to deal with erroneous graphical elements.
0 The parent of top-level activities and external activities is:
"<chart_name>:" (see dictionary below).

3. State
The following record describes a state defined in the subject chart:

state :
name : <STM_formatted_name> | STATE#<id_number>
-- the second option is
-- used only for unnamed boxes
created : <time-stamp>
type : <state_type>
[is : <chart_name> <instance_type>] -- for instance boxes only
{binding : <parameter_name> <parameter_type> <parameter_expression>}
-- for instance boxes only
[parent : <state_name>] -- missing only when DIAGRAM or ERROR-HOOK
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external_file_path>]
[mode : <box_mode>]
line width : <line_width>
color : <color>
name color : <color>
name font : <font-definition>
name alignment : <alignment>
{active : <activity_name> [<active_type>]} -- activity_name = STM_name
[static reaction :

Rational Statemate 9

Configuration Management Tool

<static_reaction_body>

end static reaction]

{combinatorial logic:

assignment: <combinatorial_assignement_expression>

assignment position: <position>
end combinatorial logic}
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end attribute}
{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end design_attribute}
[name position :
<position>] -- position is in the activity borders
[graphics coordinates : -- missing when error-hook
<position> -- ordered in circle,
<position> -- must create right angles
<position>
<position>
{<position>}] -- when polygon has more than 4 edges

{and line : -- for and-states

<position> -- must start and end on state borders
<position> -- must create 90-degree angles
{<position>}}

[long description :
<free_text>
end long description]
[callback bindings : <enable_disable>
<callback_binding_expression>
end callback bindings]

10

Configuration Management

Rational Statemate CM Interface

end state

Notes: o Two state records are mandatory in a statechart file:

(a) State named STATE#O of type DIAGRAM. The relevant fields in
this case are name, type, and graphic coordinates that
determine the chart size.

(b) State named STATE#1 of type ERROR_HOOK. The relevant fields in
this case are name and type. This box is used by the SGE to
deal with erroneous graphical elements.

0 The parent of top level state is "<chart_name>:" (see dictionary
below).

4. Module
The following record describes a module defined in the subject chart:

module :
name : <STM_formatted_name> | MODULE#<id_number>
-- the second option is
-- used only for unnamed boxes
created : <time-stamp>
type : <module_type>
[is : <chart_name> <instance_type>] -- for instance boxes only
{binding : <parameter_name> <parameter_type> <parameter_expression>}
-- for instance boxes only
[described by: <chart_name>] -- describing activity-chart
[parent : <module_name>] -- missing only when DIAGRAM or ERROR-HOOK
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external_file_path>]
line width : <line_width>
color : <color>
name color : <color>
name font : <font-definition>
name alignment : <alignment>
[purpose type : <module_purpose_type>]
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>
value :

Rational Statemate 11

Configuration Management Tool

<free_text>
end value
enforced : <yes_no>
end attribute}
{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end design_attribute}
[name position :

<position>]
[graphics coordinates : -- missing in ERROR-HOOK, ENVIRONMENT, EXTERNAL
<position> -- ordered in circle
<position> -- must create 90-degree angles
<position>
<position>

{<position>}] -- when polygon has more than 4 edges
[long description :
<free_text>
end long description]
end module

Notes: o Two module records are mandatory in a module-chart file:
(@) Module named MODULE#0 of type DIAGRAM. The relevant fields in
this case are name, type, and graphic coordinates that
determine the chart size.
(b) Module named MODULE#1 of type ERROR_HOOK. The relevant fields in
this case are name and type. This box is used by the MGE to deal
with erroneous graphical elements.

0 Environment module is treated as module occurrence of a module
without graphics of type ENVIRONMENT. All environment modules that
have the same name are considered as occurrences of the same
module, which has a unique form.

Therefore, for each group of environment modules with the same name
there is one module record of type ENVIRONMENT, that has no
graphical description and contains all the information appearing

in its form.

0 The parent of top level regular module and environment module is:
"<chart_name>:" (see dictionary below).

12 Configuration Management

Rational Statemate CM Interface

5. Module occurrence

The following record describes a module occurrence which is relevant only
in module-chart files. Such record must appear for each module occurrence
of an environmentor or external module appearing in the module-chart.

module occurrence :
name : MODULE_OCCURRENCE#<id_number>
module : <module_name> -- the name of the "source" module
name position : <position> -- must be inside the module borders
parent : <module_name>
line width : <line_width>
color : <color>
name color : <color>
name font : <font-definition>
name alignment : <alignment>
graphics coordinates :

<position> -- ordered in circle

<position> -- must create 90-degree angles
<position>
<position>

{<position>} -- when polygon has more than 4 edges

end module occurrence
6. Activity occurrence

The following record describes a activity occurrence which is relevant only
in activity-chart files. Such record must appear for each activity
occurrence of an environmentor or external activity appearing in the
activity-chart.

activity occurrence :
name : ACTIVITY_OCCURRENCE#<id_number>
activity : <activity_name> -- the name of the "source" activity
name position : <position> -- must be inside the activity borders
parent : <activity name>
[mode : <use_case_mode>]
line width : <line_width>
color : <color>
name color : <color>
name font : <font-definition>
name alignment : <alignment>

Rational Statemate 13

Configuration Management Tool

graphics coordinates :

<position> -- ordered in circle

<position> -- must create 90-degree angles
<position>
<position>

{<position>} -- when polygon has more than 4 edges
end activity occurrence

7. Data-item

The following record describes a data-item defined in the subject chart:

data_item :
name : <STM_name>
created : <time-stamp>
usage_type : <data_item_usage>
<type_definition>
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external file_path>]
[initial string :
<string-default-value>
end initial string]
[definition :
<data_item_expression_body>
end definition]
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end attribute}
{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :
name : <name>
value :
<free_text>
end value

-- mandatory for compound/alias/constant

14

Configuration Management

Rational Statemate CM Interface

enforced : <yes_no>
end design_attribute}
[long description :
<free_text>
end long description]
[callback bindings : <enable_disable>
<callback_binding_expression>
end callback bindings]
end data_item

8. Data-type (user defined type)

The following record describes a data-type (user defined type) defined
in the subject chart:

data_type :
name : <STM_name>
created : <time-stamp>
<type_definition>
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external_file_path>]
[initial string :
<string-default-value>
end initial string]
[definition : -- for enumerated types only.
<enumerated_type_definition>
end definition]
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end attribute}
{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :
name : <name>
value :

Rational Statemate 15

Configuration Management Tool

<free_text>

end value

enforced : <yes_no>
end design_attribute}
[long description :

<free text>
end long description]
end data_type

9. Event

The following record describes an event defined in the subject chart:

event :
name : <STM_name>
created : <time-stamp>
[data_type : <event_type>]
[lindex :
<array_index>
end lindex] -- relevant only for arrays
[rindex :
<array_index>
end rindex] -- relevant only for arrays
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external_file_path>]
[definition :
<event_expression_body>
end definition]
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end attribute}
{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :

16

Configuration Management

Rational Statemate CM Interface

name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end design_attribute}
[long description :
<free_text>
end long description]
[callback bindings : <enable_disable>
<callback_binding_expression>
end callback bindings]
end event

10. Condition
The following record describes a condition defined in the subject chart:

condition :
name : <STM_name>
created : <time-stamp>
usage_type : <data_item_usage>
[data_type : <condition_type>]
[lindex :
<array_index>
end lindex] -- relevant only for arrays
[rindex :
<array_index>
end rindex] -- relevant only for arrays
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external_file_path>]
[initial value :
<initial_value>
end initial value]
[definition :
<condition_expression_body>
end definition]
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>

Rational Statemate 17

Configuration Management Tool

value :
<free_text>

end value

enforced : <yes_no>
end attribute}
{design_attribute resources :

<free_text>

end design_attribute resources}
{design_attribute :

name : <name>

value :

<free_text>

end value

enforced : <yes_no>
end design_attribute}
[long description :

<free text>
end long description]
[callback bindings : <enable_disable>
<callback_binding_expression>
end callback bindings]
end condition

11. Information-flow

The following record describes an information-flow defined in the subject
chart:

information_flow :
name : <STM_name>
created : <time-stamp>
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external_file_path>]
{consists : <information_flow_name> | <data_item_name> |
<condition_name> | <event_name>}
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>
value :
<free_text>

18 Configuration Management

Rational Statemate CM Interface

end value
enforced : <yes_no>
end attribute}
{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end design_attribute}
[long description :
<free_text>
end long description]
end information_flow

12. Action
The following record describes an action defined in the subject chart:

action :
name : <STM_name>
created : <time-stamp>
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external_file_path>]
[definition :
<action_expression_bhody>
end definition]
[long description :
<free_text>
end long description]
selected implementation : <action_selected_implementation>
end action

13. Arrow

The following record describes an arrow drawn in the subject chart
(using the corresponding graphics editor). This record is used for
the three types of arrows: transitions in statechart, a-flow-lines

Rational Statemate 19

Configuration Management Tool

(data-flow and control-flow) in activity-chart and m-flow-lines
in module-chart.

arrow :
created : <time-stamp>
type : <arrow_type>
source : <source_target> <source_type> [<src_tgt_port>]
target : <source_target> <target_type> [<src_tgt_port>]
line width : <line_width>
color : <color>
label color : <color>
label font : <font-definition>
label alignment : <alignment>
graphics coordinates : -- the control points of the arrow
<position> -- they must be consistent with the source
<position> -- and target information above
{<position>}
angles : <cos> <sin> -- of the arrow angle in its target
<cos> <sin> -- of the arrow angle in its source
[label :
<label>
end label]
[label position : <position>]
source_message : <id_number>
target_message : <id_number>
message_note : <id_number>
end arrow

14. Connector

The following record describes a connector drawn in the subject chart
(using the corresponding graphics editor). This record is used for
connectors in three types of charts.

connector :
name : CONNECTOR#<id_number>
type : <connector_type> ['<connector_label>"] -- label when DIAGRAM
parent : <connector_parent> -- the box in which the connector resides
color : <color>
position : <position>
text color : <color>
text font : <font-definition>
end connector

20

Configuration Management

Rational Statemate CM Interface

15. Note
The following record describes a note drawn in the subject chart :

note :
name : NOTE#<id_number>
type : <note_type>
color : <color>
font : <font-definition>
alignment : <alignment>
position : <position>
[graphics coordinates : -- missing when no attached arrow
<position>
{<position>}] -- any number of points are allowed
[body :
<free_text>
end body]
end note

16. Block

The following record describes a block defined in the subject block-diagram
chart:

block :
name : <STM_formatted_name> | BLOCK#<id_number>
-- the second option is
-- used only for unnamed boxes
type : <block_type>
[is : <chart_name> <instance_type>] -- for instance boxes only
{binding : <parameter_name> <parameter_type> <parameter_expression>}
-- for instance boxes only
[parent : <block_name>] -- missing only when diagram or error-hook
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external_file_path>]
line width : <line_width>
color : <color>
name color : <color>
name font : <font-definition>
name alignment : <alignment>
[termination : <termination_type>]

Rational Statemate 21

Configuration Management Tool

[mini spec :
<mini_spec_body>
end mini spec]

{combinatorial logic:
assignment: <combinatorial_assignement_expression>
assignment position: <position>
end combinatorial logic}

{attribute resources :

<free_text>

end attribute resources}

{attribute :

name : <name>
value :
<free_text>
end value
enforced : <yes_no>

end attribute}

{design_attribute resources :

<free_text>

end design_attribute resources}

{design_attribute :

name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end design_attribute}
[name position :

<position>] -- position is in the activity borders
[graphics coordinates : -- missing in ERROR-HOOK, ENVIRONMENT,EXTERNAL
<position> -- ordered in circle,
<position> -- must create right angles
<position>
<position>
{<position>}] -- when polygon has more than 4 edges

[long description :
<free_text>
end long description]
[user-code bindings : <enable_disable>
<code_binding_expression>
end user-code binding]
{port :
name : <STM_name>
id : <integer>

22 Configuration Management

Rational Statemate CM Interface

mode : <port-mode>
color : <color>
position :
<position>
name color : <color>
name position :
<position>
name font : <font-definition>
name alignment : <alignment>
end port}
end block

Notes: o This record appears only in a block-diagram chart file.
0 Two block records are mandatory in a block-diagram chart file:

(a) Block named BLOCK#0 of type DIAGRAM. The relevant fields
in this case are name, type, and graphic coordinates that
determine the chart size.

(b) Block named BLOCK#1 of type ERROR_HOOK. The relevant
fields in this case are name and type. This box is used by
the BGE to deal with erroneous graphical elements.

0 The parent of top-level blocks and external blocks is:

"<chart_name>:" (see dictionary below).

17. Subroutine

The following record describes a subroutine defined in the subject chart:

subroutine :
name : <name>
created : <time-stamp>
usage_type : <subroutine_usage>
[return_type : <data_basic_type>]
[synonym : <STM_short_name>]
[short description: <short_des>]
[external_file : <external_file_path>]
{attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end attribute}

Rational Statemate 23

Configuration Management Tool

{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end design_attribute}
[long description :
<free_text>
end long description]
{parameter :
name : <name>
data_type : <data_basic_type>
data_structure : <data_structure>
mode : <port-mode>
end parameter}
{local_data :
name : <name>
data_type : <data_basic_type>
data_structure : <data_structure>
end local_data}
{global_data : <name> <port-mode>}
selected implementation : <selected_implementation>
{lookup_table resources :
<free_text>
end lookup_table resources}
{lookup_table :

abscissa :

<value>
end abscissa
ordinate :

<value>

end ordinate

end lookup_table}
connected_chart : <name>
{c_code:
<free_text>
end c_code}
{ansi_c_code:
<free_text>
end ansi_c_code}

24

Configuration Management

Rational Statemate CM Interface

{ada_code:
<free_text>
end ada_code}
{vhdl_code:
<free_text>
end vhdl_code}
{verilog_code:
<free_text>
end verilog_code}
{external_tool_code:
<free_text>
end external_tool_code}
[definition :
<subroutine_expression_body>
end definition]
end subroutine

18. Truth-table
The following record describes a Truth-table defined in the subject chart:

truth_table :
matrix resources :
<matrix_resources_body>
end matrix resources
dimensions : (<integer>,<integer>,<integer>,<integer>)
-- # of rows, # of columns, # of inputs, # of outputs
action column : <yes_no>
default row : <yes _no>
execution mode : <execution_mode>
cell :
index : (<integer>,<integer>)
type : <cell_type>
[factorized : <cell_factorization>]
{expression :
<cell_expression_body>
end expression
} -- Only for REGULAR cells
end cell

-- ... Entry for each cell.

end truth_table

Rational Statemate 25

Configuration Management Tool

Dictionary of identifiers

This section describes each identifier used in the above section. When there
are several values for the identifier we list these values are separated

by "|". Optional parts are surrounded by square brackets "[]".

Curled parenthesis "{}" denote zero or more iterations of their contents.
<ASCII_time> => String with the time represented by <time>

<action_expression_body> => unlimited number of lines (each at most 2000
characters long) denoting an action (see STATEMATE syntax)

<activity_name> => <box_name> | ACTIVITY#<id_number>

The second option is used only for unnamed activities defined in the

chart by using their ID number
<activity_type> => DIAGRAM | ERROR_HOOK | INTERNAL | EXTERNAL |
ENVIRONMENT |

CONTROL | DATA_STORE | ROUTER | EXTERNAL_ROUTER
<a_flow_line_source_target> => <activity_name> | <connector_name>
<a_flow_line_type>=> DATA_FLOW | CONTROL_FLOW

<alignment> => <x_alignment> <y_alignment>

<arrow_type>=> TRANSITION | M_FLOW_LINE | <b_flow_line_type> |
<a_flow_line_type> | <relation_type> | <seq_diagram_type>

<arrow_style> => SPLINE | STRAIGHT | RECTILINEAR | ROUNDED
<array_index> => <integer>
<p_flow_line_type> => SIGNAL | BUS

<relation_type> => ASSOCIATION | EXTEND_RELATION | INCLUDE_RELATION |
GENERELIZE_RELATION

seq_diagram_type> => SIMPLE_MESSAGE | TIMING_CONSTRAINT |
ORDER_INSIGNIFICANT | PARTITION_LINE

26 Configuration Management

Rational Statemate CM Interface

bg-color-name> => <color-name>

<block_name> => <box_name> | BLOCK#<id_number>
The second option is used only for unnamed blocks defined in the
chart by using their ID number

<block_type> => DIAGRAM | ERROR_HOOK | INTERNAL | EXTERNAL | ENVIRONMENT |
CONTROL

<box_name> => [.]{<STM_name>.}<STM_name>

It is used when a unique name of a box within the chart is required.
It optionally contains the ancestors names of the box. The leading dot

" is used only before the top level box name.

<callback_binding_expression> => unlimited number of lines (each at most 2000
characters long) denoting callback bindings. (see STATEMATE syntax)

<chart_name> => <STM_name> appears in the file as the name of a chart

<chart_type>=> ACTIVITY_CHART | STATECHART | MODULE_CHART | DICTIONARY |
FLOWCHART | SEQUENCE_DIAGRAM | USE_CASE_DIAGRAM

<chart_usage_type> => REGULAR | GENERIC | PROCEDURAL | COMPONENT | PRIVATE

<code_bhinding_expression> => unlimited number of lines (each at most 2000
characters long) denoting code bindings. (see STATEMATE syntax)

<color> => <color-name> <bg-color-name> <on_off>

<color-name> => string

<combinatorial_assignement_expression> => unlimited number of lines
(each at most 2000 characters long) denoting combinational assignment

(see STATEMATE syntax)

<condition_expression_body> => unlimited number of lines (each at most 2000
characters long) denoting condition (see STATEMATE syntax)

<condition_name> => <STM_name> appears in the file as the name of a condition
<condition_type> => ARRAY - appears only for array of conditions

<connector_name> => CONNECTOR#<id_number>

Rational Statemate 27

Configuration Management Tool

<connector_parent> => <activity_name> | <module_name> | <state_name>
The option depends on the subject chart type.

<connector_type> => DIAGRAM | DEFAULT | HISTORY | DEEP_HISTORY | CONDITION |
SELECTION | JUNCTION | JOINT | TERMINATION | CONTROL | COMPOSITION

<constant_identifier> => <STM_name> -- data-item defined somewhere as constant
integer
<coordinate> => real number with precision up to 12 decimal digits,
principally there is no lower or upper bound. In STATEMATE graphics
editors the default initial dimensions of a chart are 25 X 19.2
where (0,0) is the lower left corner.

<cos> => Cosine of an angle, real number with precision up to 12 decimal
digits

<data_item_expression_body> => unlimited number of lines (each at most 2000
characters long) denoting a numeric expression (see STATEMATE syntax)

<data_item_name> => <STM_name> appears in the file as the name of a data_item
<data_type_name> => <STM_name> appears in the file as the name of a data_type
<data_item_usage> => PRIMITIVE | CONSTANT | COMPOUND | ALIAS
<data_basic_type> => INTEGER | REAL | STRING | BIT | BIT-ARRAY | CONDITION |
RECORD | UNION |
USER_TYPE <data_type_name>
<data_structure> => SINGLE | ARRAY | QUEUE
<dt_basic_type> => <data_basic_type> | ENUMERATED_TYPE
<enable_disable> => ENABLE | DISABLE
<enumerated_type_definition> => unlimited number of lines (each at most 2000
characters long) denoting a definition of enumerated type. (see STATEMATE

syntax)

<event_expression_body> => unlimited number of lines (each at most 2000
characters long) denoting event (see STATEMATE syntax)

28 Configuration Management

Rational Statemate CM Interface

<event_name> => <STM_name> appears in the file as the name of an event
<event_type> => ARRAY - appears only for array of events

<explicit-port> => PORT: <port-name>

<font-definition> => <font-family> <font-size> [BOLD] [ITALIC]
<font-family> => Fixed | Courier | Helvetica | Times | LucidaTypewriter
<font-size> => <integer>

<flow_line_label> => <information_flow_name> | <event_name> |
<condition_name> | <data_item_name>

<free_text> => Free text spanning multiple lines
<gds_names> => GDS names and/or "<All-Public-GDS>"
id_number>=>0=<n<2**14

<information_flow_name> => <STM_name> appears in the file as the name of an
information-flow

<implicit-port> => IMPLICIT PORT: <port-mode>

<instance_type> => OFFPAGE | GENERIC | COMPONENT

<integer> => <integer_value> | <constant_identifier>

<integer_value> => integer number (negative, zero, or positive)
<is_activity_box_name> => <box_name> | <chart_name> > <box_name>
<label> => <transition_label> | <flow_line_label>

<line_width> => <integer>

<m_flow_line_type> => DATA_FLOW | CONTROL_FLOW

<m_flow_line_source_target> => <module_name> | <module_occurrence_name> |
<connector_name>

<mini_spec_body> => unlimited number of lines of in the format of labels

Rational Statemate 29

Configuration Management Tool

(i.e. trigger/action) or action (i.e action) . Any of the trigger or
action parts may span several lines.

<module_name> => <box_name> | MODULE#<id_number>

The second option is used only for unnamed modules defined in the chart

by using their ID number
<module_occurrence_name> => MODULE_OCCURRENCE#<id_number>
<module_purpose_type> => REGULAR | STORAGE | CONTROLLER | LIBRARY | BUS

<module_type> => DIAGRAM | ERROR_HOOK | SUBSYSTEM | ENVIRONMENT |
EXTERNAL

<note_type>=> TEXTUAL | GRAPHICAL | SEPARATOR | MESSAGE | TM_CONSTRAINT |
TR_PRIORITY

<on_off>=>ON | OFF

<parameter_expression> => constant literal | <STM_name> |
<specific_array_element> | <specific_array_slice>

<parameter_name> => <STM_name>
<parameter_mode> => IN | OUT | IN/OUT | CONSTANT |
IN_SIGNAL | IN_VARIABLE | IN_CONSTANT |
OUT_SIGNAL | OUT_VARIABLE | BUFFER |
IN/OUT_SIGNAL | IN/OUT_VARIABLE
<parameter_type> => DATA_ITEM | EVENT | CONDITION | ACTIVITY
<port-mode>=> IN | OUT | INOUT
<port-name> => <STM_name>
<position> => <coordinate> <coordinate> -- X position, y position
<selected_implementation> => BEST_MATCH | ACTION_LANGUAGE |
GRAPHICAL_PROCEDURE | TRUTH_TABLE |
C_CODE | ANSI_C_CODE | ADA_CODE |
VHDL_CODE | VERILOG_CODE | LOOKUP_TABLE |
NONE

<short_des> => String of at most 80 characters enclosed in"'.

30

Configuration Management

Rational Statemate CM Interface

Notice that no new-line symbol is allowed in string, therefore the field
of description in the file must be included in one line.

<sin> => Sine of an angle, real number with precision up to 12 decimal digits

<source_target> => <transition_source_target> | <a_flow_line_source_target> |
<m_flow_line_source_target>
The option depends on the subject chart type.

<source_type> => from | within
"from" is when the arrow starts at the box border.
"within" is when it exits from within the box and is not connected to
any box inside.

<specific_array_element> => <STM_name>(<integer>)
<specific_array_slice> => <STM_name>(<integer>..<integer>)
<src_tgt _port> => <implicit-port> | <explicit-port>

<state_name> => <box_name> | STATE#<id_number>
The second option is used only for unnamed states defined in the chart
by using their ID number

<state_type> => DIAGRAM | ERROR_HOOK | AND | OR

<static_reaction_body> => unlimited number of lines of in the format of labels
(i.e. trigger/action). Any of the trigger or action parts may span
several lines

<STM_formatted_name> => This is a (simple) name of STATEMATE box elements.
It consists of at most 64 characters : A-Z, 0-9, _, starting with a
letter, but in addition, a newline (2 characters - "\n"") may appers
between any letter or a number of letters. The newlines define the
format of the multi-line names displayed in the graphics editors.

<STM_name> => This is a (simple) name of STATEMATE elements. It consists of
at most 64 characters : A-Z, 0-9, _, starting with a letter.

<STM_short_name> => This is an identifier used for synonyms and attribue
names. It consist of at most 16 characters: A-Z, 0-9, starting with
a letter.

<subroutine_expression_body> => unlimited number of lines (each at most 2000

Rational Statemate 31

Configuration Management Tool

characters long) denoting a procedure / function (see STATEMATE syntax)
<subroutine_usage> => TASK | PROCEDURE | FUNCTION

<target_type>=>to | into
"to" is when the arrow ends at the box border.
"into" is when it enters into the box and is not connected to any box
inside.

<termination_type>=> SELF_TERMINATION | CONTROLLED_TERMINATION
<transition_label> => [<event_expression>][/ <action_expression>]
<transition_source_target> => <state_name> | <connector_name>

<time> => Integer number representing a time of last update of any field
of the requirement. The time integer is according to the internal system
representation.

<type_definition> =>
data_structure: <data_structure>
[data_type: <data_basic_type> | <dt_basic_type>] -- relevant for udt.
[word_size : <word_size>]
[Isb : <Isb_value>]

[lindex :
<array_index>
end lindex] -- relevant only for arrays
[rindex :
<array_index>
end rindex] -- relevant only for arrays
[length : <integer>] -- relevant only for integers, strings
[left bit : <integer>] -- relevant only for bit-arrays
[right bit : <integer>] -- relevant only for bit-arrays
[min value :
<integer>
end min value] -- relevant only for integers/real
[max value :
<integer>
end max value] -- relevant only for integers/real
[initial value :

<initial_value>
end initial value]
{field: <STM_name> -- relevant only for record/union
data_structure: <data_structure>

32

Configuration Management

Rational Statemate CM Interface

[data_type: <data_basic_type>

[lindex :
<array_index>
end lindex] -- relevant only for arrays
[rindex :
<array_index>
end rindex] -- relevant only for arrays
[length : <integer>] -- relevant only for integers, strings
[left bit : <integer>] -- relevant only for bit-arrays
[right bit : <integer>] -- relevant only for bit-arrays
[min value :
<integer>
end min value] -- relevant only for integers/real
[max value :
<integer>
end max value] -- relevant only for integers/real

[initial {value | definition} : <initial_value>]
[short description: <short_des>]
[external_file : <external_file_path>]
{attribute resources :
<free_text>
end attribute resources}
{attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end attribute}
{design_attribute resources :
<free_text>
end design_attribute resources}
{design_attribute :
name : <name>
value :
<free_text>
end value
enforced : <yes_no>
end design_attribute}
[long description :
<free_text>
end long description]
end field}

Rational Statemate

33

Configuration Management Tool

<unique_name> => [<chart_name>:]<box_name>
This name is used to reference boxes in other charts.

<user_name> => System user identifier

<x_alignment> => Left | Center | Right

<yes_no>=>YES | NO

<y_alignment> => ExtremeBottom | Bottom | Center | Top | ExtremeTop
<matrix_resources_body> => <free_text>

<cell_type> => REGULAR | EMPTY | DONT_CARE | GENERATE_EVENT |
NOT_GENERATE_EVENT

<cell_expression_body> => unlimited number of lines (each at most 2000
characters long) denoting an expression (see STATEMATE syntax)

<cell_factorization> => UP | DOWN | UP_DOWN

<activity_selected_implementation> => MINI_SPEC | SUBROUTINE_BINDING |
TRUTH_TABLE | BEST_MATCH | NONE

<action_selected_implementation> => DEFINITION | TRUTH_TABLE
<execution_mode> => EVERY_STEP | INPUT_CHANGES | NONE

<box_mode> => ACTION | INSTANCE | DECISION | SWITCH | EXTERNAL | INTERNAL |
TRANSPARENT | NON_TRANSPARENT | NONE

<use_case_mode> => ELLIPSE | ACTOR

34

Configuration Management

The Databank

The Databank

The Databank allows you to graphically navigate through the information in your databank.

Starting and Using the Databank

In the main project window, click the DataBank tab. The Databank main window opens. Select
View > Filter to choose the types of charts and files you want to be listed in the Databank main
window and click OK.

Databank Main Window

The Databank main window displays a list of the configuration items in the databank, along with
information about the selected item.

Pstatemateprosect ean peroG e i x|

File Edit WYiew Project Configuration Tools Utilities Mindow Help

|® 24 2R & X (BB BB | i |G/ %986 m6

@4 || Nane | Tupe | ficcess || Locked by || Last Yersion || Last Modifi | Selected Yersions ||
| [ATAEANK_TEST Activity-chart LUpdate : 4, 2008 10z

I»

Charts |Files Tlat.aBank |Sear‘ch I

o Y

{15258 Found 7 elements Fa

(152583 F
A eTRodRy M

ements
¥

Rational Statemate 35

Configuration Management Tool

Configuration Item List
The Configuration Item List displays a list of the configuration items in the databank, as specified
in the Show Files dialog:
+ The Name of the configuration item.
+ The Type of item (Statechart, Activity-chart, Configuration file, and so forth).

* The Access (protection level) consisting of one of the following values: none, read,
update.

* Locked by (the name of the person who checked it out).

+ The number of the Last Version to be checked in (a designation of . r indicates that the
version is part of a release).

+ Last Modified is the date the file was checked into the DataBank.
+ The Selected Version on which various operations can be performed.

Item Properties
Double-click on a single configuration item and the Selected Item Information shows more
detailed information, including a list of all existing versions.
* The name of the Owner of the item.
+ Whom, if anyone, the item is Locked by (the name of the person who checked it out).
+ The name of the Workarea containing the item.
+ The Permissions (access) available to the Owner, the project group, and all others.

x
Ouwner: ehopkins Wersionz]

Locked by: ehopkins 1

in Morkarea: Cihstm_projectz_efhyrear_defog_efh2,uwa

Permissions
IVDL\JHEI"‘: Update Group: Update Otherz; Read

36 Configuration Management

The Workarea

Existing Version List

In the Existing Version List, you can select a specific version (or versions) on which to apply
Configuration menu operations.

The Workarea

The Workarea allows you to graphically navigate through the information in your workarea. In the
main project window, select the Charts tab. The Workarea main window appears.

In the upper area, the main window displays all the charts in your workarea arranged in a
hierarchical tree, making it easy for you to see their relationships.

Select the Files tab and the main window displays a list of the charts and other configurable items
in your workarea, along with information about them, such as type and the checked-out version’s
mode, number, and modification status.

In update mode, all editing, viewing, and tool launch features are active (shown in the following
figure). In read-only mode, all viewing and tool launch features are active. The editing features
and drawing icons are disabled.

BT

File Edit Miew Project Configuration Tools Utilities MWindow Help

% EltBR X (25802 3|1 @®MEDET

oY @ REAR_DEFOG_GDS Hane || Defined In | Tupe |l 5tatus I =
— P (| |REAR_DEFOG_55 REAR_DEFOG_55 Activity Update
(4] CALC_REAR DEFOG STATE le; DEFOG_DRIVE_OUT REAR_DEFOG_SS Data-iten Update
[Bl DATABANE TEST g OB REAR_DEFOG_LO_SP Textual Update
£ REAR_DEFOG_EFH? v RIEFOG_LED REAR_DEFOG_S5 Condition Update
[REAR_DEFOG,_RELAT MGMT —+ RDEFOG_SW_STATUS REAR_DEFOG_SS Textual Update
o EE REAR_DEFOG_£S
LY [#] REAR_DEFOG_FEATURES
g E‘;‘t’ REAR_DEFOG_UCD
[rEsR_DEFOG_LO_SPEED_NO_LOAD
@‘ & SIMULATION
& ||« <> FLOWCHART_TEST
= < MODULE_CHART TEST
=l < &) STATECHART TEST
@ [L| REAR_DEFOG_7HI_SFEED_$LOAD1
(i | REAR_DEFOG_LO_SPEED_NO_LOAD
— [-) sEQUENCE_TEsT
L
=i
Charts IFiles IDataBank ISearch
{15258) Found 7 elenents o
1152580 Found 8 elements
{15246} Mo elements found
(15258) Found 5 elements
7
Hessages ILUg I
|

Rational Statemate 37

Configuration Management Tool

Configuration Management Operations

Most of the Rational Statemate Configuration Management operations are common to both the
Databank and the Workarea. For example, you can check items out from either the Databank or the
workarea. Some operations, however, are unique to one or the other. For example, you only can

check items in using the Workarea.

The following table show the configuration operations that can be performed in the databank and

the workarea.

Menu Operation Databank

Workarea

Description

Check In to Databank | No

Yes

Saves the current version of the selected
configurable items in the databank and
updates their current revision numbers.

Options are:
* Hold & Keep Lock
* Hold & Release Lock
¢ Check in & Delete

Check In to Databank | No
with Descendants

Yes

Saves the current version of the selected
configurable items and descendants in the
databank and updates their current
revision numbers.

Options are:
* Hold & Keep Lock
* Hold & Release Lock
* Check in & Delete

Check Out Yes
Check Out Chart/File

Yes

Copies and locks (if ‘with lock’ is selected)
files/charts from the databank to your
workarea (update mode).

Options are:
« With Lock
» Without Lock

Check Out With Yes
Descendants

Yes

Copies and locks (if ‘with lock’ is selected)
files/charts and descendants from the
databank to your workarea (update mode).

Options are:
* With Lock
¢ Without Lock

Update Workarea No

Yes

Opens Update Workarea dialog box.

38

Configuration Management

Configuration Management Operations

Menu Operation Databank Workarea Description
Advanced Update No Yes Options are:
Workarea « Remove Unused Elements
* Filtered Check Out from Databank of
Selected
* Filtered Check Out from Databank of
All
* Filtered Check Out of GDSs of
Selected Charts
* Filtered Check Out Parent from
Databank
Check Out Parent Yes Yes Copies parent charts from the databank to
from Databank your workarea
Release Lock Yes Yes Unlocks files/charts in the databank that
currently exist in your workarea (set read-
only mode).
Release Lock Yes No Notifies you when a lock, set by another
Notification user on a chartffile, is released
Lock Yes No Locks files/charts in the databank that
currently exist in your workarea (sets
update mode).
Purge Yes No Deletes older versions of files/charts in the
databank that you own.
Delete Yes No Deletes files/charts in the databank that
you own.
Create Configuration | No Yes Opens the Create Configuration dialog
box.
Execute Yes Yes Checks-out all chartsffiles in the
Configuration configuration file into the workarea.
Create/Modify No Yes Allows you to set up a component from a
Component selected generic chart or an existing
component.
Remove Component | No Yes Allows you to remove a component from
the workarea.
Component Versions | Yes Yes Displays the versions of a component

configuration file.

Rational Statemate

39

Configuration Management Tool

Using Configuration Management

A Configuration file is a “snapshot” of the current workarea, including all configuration item
versions. Configuration files are used primarily for capturing milestones or releases of a project.
Other users can execute a Configuration file to load the same items (and versions) that you have in
your workarea.

Configuration files are also useful when you upgrade to a new major Rational Statemate release.

Menu L
; Databank | Workarea Description
Operation

Create _ No Yes Creates a Configuration file that captures the

Configuration current workarea. You can include all files or only
selected files.
At the same time, you can check in the new
Configuration file and/or the files that are in the
configuration itself.

Execute Yes Yes Selects a previously created Configuration file and

Configuration loads charts/files into your workarea. The
Configuration file must exist in the workarea. If it
does not, check the Configuration file out of the
databank.

40

Configuration Management

Selecting a CM Tool for a Rational Statemate Project

Selecting a CM Tool for a Rational Statemate Project

The decision to use the Rational Statemate built-in facility or a third-party configuration
management tool must be made when you create a Rational Statemate project. You cannot change
the CM tool used by an existing project. You can, however, create a new project from an existing
project by importing all the objects.

The File > New Project dialog box contains a control named CM tool, as shown in the following
figure. Select an available tool from the CM Tool pull-down menu, as shown here.

Create New Project) x|

Mame: I
Hanager: Iehu:upkins j
Databanks |C: o

CH tool: [STATEMATE =]

BT project: I

05 Implementation: JMAIMLOOP_SC B
Description: =

TURBO_OSEKZ1

YECTOR_OSERKZ1
[~ Expand

(K | Cancel | Help |

You can specify the CM tool used by default for new projects in the Project > General
Preferences dialog box.

Rational Statemate 41

Configuration Management Tool

42

Configuration Management

Defining Third-Party CM Tool Interfaces

In addition to supported interface modules for certain widely-used CM tools, modules are
available that allow you to define interfaces to other CM tools. This section explains how to
define a new Rational Statemate interface to any third-party CM tool.

Note

When using the Rational Statemate interface to a third-party CM tool, you cannot use the
tool interface to modify or delete Statemate project files. You cannot use the third-party CM
tool to check in or check out files from a repository used to hold a Statemate project. You
can use the tool interface for read-only operations such as viewing, searching, and reporting.

Script-Based Interface to CM Tools

When using a third-party tool, the CM operations available in the Rational Statemate Databank
and Workarea are handled by external executable files. Statemate does not directly communicate
with your CM tool. Instead, it provides a generic CM interface. You provide the files that map
each operation in the Rational Statemate generic interface to some specific CM tool. For
convenience, these files are referred to simply as scripts in this section. Statemate provides a
sample implementation that you can copy. The flow of information between Statemate, the scripts,
and the CM tool is as follows:

Parameters

Statemate Script

Status Commands

and Data and
Parameters

CM Tool

Rational Statemate 43

Defining Third-Party CM Tool Interfaces

Since Rational Statemate simply issues requests to the operating system to execute files, these
scripts can be implemented using whatever programming resources are available to you. For
example, you can use the following:

+ Scripts, written in an interpreted language such as Perl or C shell, that communicate with
your CM tool through its command line interface.

+ Programs, written in a compiled language such as C or C++, that communicate with your
CM tool through its application programming interface.

You must provide a script for each of the CM operations described in this section. You can name
them and place them anywhere. However, you must also provide a file that maps the Rational
Statemate CM operations to your scripts, as explained in the sections that follow.

How Rational Statemate Determines Available CM Tools

In Rational Statemate dialog boxes, the list of CM tools available is composed of:

¢ STM, the built-in facility, which is always available.
¢ Any other CM tool for which there is a mapping file.
A mapping file is a text file named:

$STM_ROOT/etc/cmt/cm_tool_name.cmt

Replace cm_tool_name with your own CM tool’s name. For example, if the directory $STM_ROOT/
etc/cmt/ contains the following mapping files:

cm_toolA_cmt
cm_toolB.cmt

cm_toolC.cmt

In Rational Statemate dialog boxes, the CM Tool control shows the following tools

Statemate

cm_toolA

cm_toolB

cm_toolC

To add another CM tool to the list, simply create a new cm_tool_name.cmt file by copying
the template file cm.cmt_template.

44

Configuration Management

Script-Based Interface to CM Tools

Mapping Individual CM Operations to Scripts

The mapping file cm_tool_name.cmt is a text file that maps each CM operation in Rational
Statemate to a script that actually performs the operation. The contents of the mapping file
template are shown in the following table:

CM_USER_FUNC_init

path_of_scripts/init

CM_USER_FUNC_get_Tfile

path_of _scripts/get_file

CM_USER_FUNC_put_file

path_of_scripts/put_file

CM_USER_FUNC_is_file_in_bank

path_of_scripts/is_file_in_bank

CM_USER_FUNC_is_locked_in_bank

path_of_scripts/is_locked_in_bank

CM_USER_FUNC_get_ver_from_bank

path_of_scripts/get_ver_from_bank

CM_USER_FUNC unlock_file

path_of_scripts/unlock_file

CM_USER_FUNC_lock_file

path_of _scripts/lock File

CM_USER_FUNC_delete_from_bank

path_of_scripts/delete_from_bank

CM_USER_FUNC_delete_revision

path_of_scripts/delete_revision

CM_USER_FUNC_calc_archive_name

path_of_scripts/calc_archive_name

CM_USER_FUNC_get_pattern

path_of_scripts/get_pattern

CM_USER_FUNC_get_locked_by

path_of_scripts/get_locked_by

CM_USER_FUNC_get_versions

path_of_scripts/get_versions

CM_USER_FUNC_modify_to_archive

path_of_scripts/modify_to_archive

Note

The list of operations in this file is defined by Rational Statemate. You cannot add or
remove operations.

To define a new interface for a CM tool, edit the new mapping file and replace the string
path_of_scripts with the actual path of the directory that contains the scripts for your CM tool.
It is recommended that you do not change the names of the scripts. Creating the scripts is
described in the next section.

Rational Statemate 45

Defining Third-Party CM Tool Interfaces

Creating CM Operation Scripts

As stated previously, the scripts that implement individual CM operations can be:
+ Shell scripts or Perl scripts that communicate with the CM tool via its command line
interface.

+ Executable programs that communicate with the CM tool via its application programming
interface.

+ Any other implementation method available to you.

When Rational Statemate issues a request to the operating system to execute a specific script, it
passes parameters containing the information needed to perform the task. The script reads the
parameters from the argument vector. For example, this Perl statement stores the parameters in a
list variable:

#1/usr/bin/perl -w
($working_dir, $bank_dir, $tmp_result_file) = @ARGV;

It is recommended that you write the parameters to the standard output to assist in debugging. For

example:
$func = "init";
$echo = "$func : $working_dir,

$bank_dir, $tmp_result_file\n";

print $echo;

Then, the script calls the CM tool to perform the operation.

When the CM tool finishes, the script returns the result of the CM tool operation (and in some
cases data) to Rational Statemate by creating a temporary file. Rational Statemate deletes the
temporary file after reading it.

46 Configuration Management

Script-Based Interface to CM Tools

Parameter Types

The following table defines the set of parameter types used by Rational Statemate to communicate

with scripts
Parameter Description

bank_dir Full pathname of the databank directory.

ext Extension of the configuration item in the Workarea.

full_archive_name Full pathname of the archive file of the configuration item in the
databank.

lock lock state: 1 for “with lock”, O for “without lock”.

name Name of the configuration item in workarea (without extension).

ret_val Status: 1 for success, 0 for failure.

revision Version number in the CM tool’'s own format.

temp_result_file The name of a temporary file in which Rational Statemate expects the
script to return its results; Rational Statemate deletes this file after
reading it.

tmp_file_to_ci Temporary file of chart to be checked in.

workarea_dir Full pathname of the workarea.

workfile_name Name of the configuration item in the workarea (including extension).

working_dir Full pathname of the of the working directory within the workarea.

The following sections describe the specific scripts and input/output parameters.

Rational Statemate 47

Defining Third-Party CM Tool Interfaces

CM Script Reference

This section provides examples in the form of Perl scripts for an interface to RCS, the UNIX
Revision Control System.

calc_archive_name

Composes the full archive name of a configuration item.

Syntax:

CM_USER_FUNC_calc_archive_name

input

bank_dir

name

ext
temp_result_file

output

ret_val
full_archive_name

delete_from_bank

Deletes an archive file from the databank.

Syntax:

CM_USER_FUNC_delete_from_bank

input

bank_dir

name

ext
full_archive_name
temp_result_file

output

ret val

48

Configuration Management

CM Script Reference

delete_revision

Deletes a specified revision of an archive file in the databank.
Syntax:

CM_USER_FUNC_delete_revision

input bank_dir

name

ext
full_archive_name
revision
temp_result_file

output ret_val

get_file
Checks out a file from the archive.

Syntax:

CM_USER_FUNC_get_Tfile

input working_dir
workfile_name
full_archive_name
revision

lock
temp_result_file

output | ret_val
revision

Rational Statemate 49

Defining Third-Party CM Tool Interfaces

Example:

#1/usr/bin/perl -w

#initialize variables

($working_dir , $workfile _name , $full_archive_name , $revision ,

$lock ,$tmp_result_file) = @ARGV;
#echo command
$func = ""get_TFfile";

$echo = "$func : $working_dir , $workFfile_name , $full_archive_name ,
$revision , $lock , $tmp_result_file\n";

print $echo;
#update result file
open(RESULT_FILE , "> $tmp_result_file™);

if ($lock == 0)
{
“cd $working_dir ; co $full_archive_name*;
}
else
{
“cd $working_dir ; co -1 $full_archive_name*“;
}
print RESULT_FILE "1\n";
$str = “cd $working_dir ; rlog $full_archive_name | grep head*;
$out_ver = substr($str,10,100);
print RESULT_FILE "$out_ver\n";

50 Configuration Management

CM Script Reference

get _locked by
Returns the name of the user who locked an archive file.

Syntax:

CM_USER_FUNC_get_locked_by

input full_archive_name
temp_result_file
output | ret val
locked_by

get_pattern
Returns a pattern that can be used to search the databank for archive files of a specific type.
Syntax:
CM_USER_FUNC_get_pattern

input ext
temp_result_file

output | ret_val pattern

Example:
Type of File Pattern
Statechart Description ~.*\\.sch\\.desc$
ClearCase Statechart Archive ~_*\\.sch$
RCS Statechart Archive A_*\\.sch,V\$

get_ver_from_bank

Gets the top revision of the file in the databank.
Syntax:

CM_USER_FUNC_get_ver_from_bank

Rational Statemate 51

Defining Third-Party CM Tool Interfaces

input

bank_dir

name

ext
full_archive_name
temp_result_file

output

get_versions

Returns a list of versions of an archive file (in CM tool format).

Syntax:

ret_val
revision

CM_USER_FUNC_get_versions

input

full_archive_name
temp_result_file

output

ret_val
[oldest_revision ...] newest_revision

52

Configuration Management

CM Script Reference

init
Initiates the CM tool.

Syntax:

CM_USER_FUNC_init

input workarea_dir
bank_dir
temp_result_file
output ret_val
Example:

#1/usr/bin/perl -w

#initialize variables

($working_dir , $bank dir , $tmp_result_file) = @QARGV;
#echo command

$func
$echo = "$func : $working_dir , $bank dir , $tmp_result_Ffile\n";

"init";

print $echo;

#perform operation

#update result file

open(RESULT_FILE , "> $tmp_result_file™);
print RESULT_FILE "1\n";

Rational Statemate 53

Defining Third-Party CM Tool Interfaces

is_file_in_bank
Checks whether or not a file exists in the databank (has been checked in before).

Syntax:

CM_USER_FUNC_is_file_in_bank

input full_archive_name
temp_result_file

output | ret_val

iIs_locked in_bank
Checks whether or not a file in the databank is locked (was checked out with lock).

Syntax:

CM_USER_FUNC _is_locked_in_bank

input full_archive_name
temp_result_file

output | ret_val

lock_file
Executes the lock command on the file in the databank.
Syntax:
CM_USER_FUNC_lock_file
input bank_dir
name ext

full_archive_name
temp_result_file

output | ret_val

modify_to_archive

Converts a file name into an archive full path name (similar to calc_archive name).

54 Configuration Management

CM Script Reference

Syntax:

CM_USER_FUNC_modify_to_archive

input ‘

file_name
temp_result_file

output

put_file

ret_val
archive_file_name

Checks in a file to the archive.

Syntax:

CM_USER_

input

FUNC_put_file

working_dir
workfile_name
tmp_file_to_ci
ext
temp_result_file

output

ret_val
revision

Rational Statemate

55

Defining Third-Party CM Tool Interfaces

unlock_file

Executes the unlock command on a file in the databank.

Syntax:

CM_USER_FUNC_unlock_file

input

bank_dir

name

ext
full_archive_name
temp_result_file

output

ret_val

56

Configuration Management

User Function Interface to CM Tool

User Function Interface to CM Tool

There is an API in the Rational Statemate CM DLL called STM_CM_init_item. This APl is called
by the tool on any CM item, before any other call is done on this item, and only once per
configuration item per session.

This API is optional. The tool calls it only if it is implemented in the specific DLL used.

Define the Dynamic-Library path name in the cm_tool_name.cmt file located in the directory
$$STM-ROOT/etc/cmt/. For example:

DLL-NAME /root31/bin/stm_cm user.dll

Note
The DLL path name should be all lowercase.

APl functions (see stm_cn_user,h)

#define STM_CM_success 0
#define STM_CM_message_length 1024
#define STM_CM_archive_name_length 2048
#define STM_CM_version_length 80

#define STM_CM_user_name_length 512
When the return value of a certain API is of type “int”, the following convention holds:

¢ “0” (zero) marks success
¢ Anything but “0” is regarded as error-code
Memory management is done independently between STMM and the dynamic-library:

* When STMM calls a certain API with parameters defined as “const char *”, the intention
is that those are managed by STMM and should be regarded as read-only variables.

¢ When STMM calls a certain API with parameters defined as “char [length]” (with length
being either 512 or 1024), the intention is for the API to use the parameters as error
messages and returned information.

¢+ When STMM calls a certain API with parameters defined as “char * []” (as in 2.n, 2.p), the
intention is that those are managed by the dynamic-library. STMM copies the content as
soon as the API returns. It is recommended to use static buffers in the dynamic-library
implementation for those parameters.

Rational Statemate 57

Defining Third-Party CM Tool Interfaces

For building the DLL, you can use stm_cm_user.def file:

LIBRARY

stm_cm_user

EXPORTS

The following sections describe the user functions:

*

STM_CM_

ST™M
ST™M

CM
CM

init

calc_archive_name

ST™M

CM

get_files_list

ST™M

CM

put_file

ST™M

CM

is_locked_in_bank

ST™M

CM

is_file_in_bank

ST™M

CM

unlock_file

ST™M

CM

lock_file

ST™M

CM

standalone_lock_file

ST™M

CM

get_ver_from_bank

ST™M

CM

get_versions

ST™M

CM

get locked by

ST™M

CM

delete_from_bank

ST™M

CM

delete_revision

ST™M

CM

modify_to_archive

ST™M

CM

aet_pattern

ST™M

CM

get_files_list

ST™M

CM

rollback

ST™M

CM

get_file_last modified_date

ST™M

CM

init_item

ST™M
ST™M

CM
CM

close

begin_databank_operation

ST™M

CM

end_databank_operation

begin_databank_operation

Starts the databank operation.

58

Configuration Management

User Function Interface to CM Tool

Syntax:
int
STM_CM_begin_databank_operations(
char_error_messages[STM_CM_message_length])

STM_CM calc_archive_name

Composes the full archive name of a configuration item.
Syntax:
STM_CM_calc_archive_name
input bank_dir

name
ext

output

int
STM_CM_calc_archive_name(
const char * bank dir,
const char *name,
const char *ext,
char full_archive_name[STM_CM_archive_name_length],
char error_message[STM_CM_message_length]

)
STM_CM close

Closes the databank.

Syntax:
int
STM_CM_close(
char error_message[STM_CM_message_length

)
STM_CM _delete from_bank

Deletes an archive file from the databank.
Syntax:

STM_CM_delete_from_bank

Rational Statemate

59

Defining Third-Party CM Tool Interfaces

Input bank_dir
name

Oumutl

int
STM_CM-delete_from_bank(
const char *bank_dir,
const char *name,
const char *ext,
const char *full_archive name,
char error_message[STM_CM_message_length]

);

STM_CM_delete_revision

Deletes a specified revision of an archive file in the databank.

Syntax:

STM_CM_delete_revision

Input bank_dir

name
ext
full_archive_name
revision
Output
int

STM_CM_delete_revision(
const char *bank_dir,
const char *name,
const char *ext,
const char *full_archive_name,
const char *revision,
char error_message[STM_CM_message_length]

STM_CM_end_databank_operation

Ends the databank operation.

Syntax:

int
STM_CM_end_databank_operation(
char error_message[STM_CM_message_length]

):

60

Configuration Management

User Function Interface to CM Tool

STM_CM_get file

Checks out a file from the archive.

Syntax:

STM_CM_get_Tfile

Input working_dir

workfile_name
full_archive_name
user_name
revision

Output

int

STM_CM_get_file(

const char
const char
const char
const char
const char
int lock,

* working_dir,
*workfile_name,
*full_archive_name,
*user_name”’
*revision,

char out_revision[STM_CM_version_length],
char error_message[STM_CM_message_length]

Rational Statemate

61

Defining Third-Party CM Tool Interfaces

STM_CM _get files_list

This function returns the 1ist_of_files into the bank_dir. The size of the
list_of_files is then written in the number_of Files.

If there are more than the number_of_files files in the bank_dir, a fail status is returned, and
the number_of_files is changed to contain the actual number of files in the bank_dir. A
second call to the API is than performed with the actual size for the list_of_files.

Syntax:

int

STM_CM_get_files_list(
const char *bank_dir,
const char *pattern,
int *number_of_files,
char *list_of _files[],
char error_message[1024])

)
Note

Do NOT allow your code to write more than the given number_of_files into the
list_of_files parameter, or it will cause memory access violations.

STM_CM_get file_last_modified_date
Retrieve the last modification date of chart/file

Syntax:

int

STCM_CM_get_file_last_modified_date(
const char *full_archive_name,
char_last_modified_date_info[STM_CM_version_length],
long *date_num_info,
char error_meassage[STM_CM_message_length]

):

62 Configuration Management

User Function Interface to CM Tool

STM_CM_get _locked by

Returns the name of the user who locked an archive file.
Syntax:

STM_CM_get_locked_by

Input full_archive_name
revision

Oumutl

int

STM_CM_gte_locked_by(
const char *full_archive_name,
const char *revision,
char locked_by[STM_CM_user_name_length],
char error_message[STM_CM_message_length]

)
STM_CM get_pattern

Returns a pattern that can be used to search the databank for archive files of a specific type.

Syntax:

STM_CM_get_pattern

Input | ext
Oumutl

int

STM_CM_get_pattern(
const char *ext,
char pattern [STM_CM_message_length],
char error_message[STM_CM_message_length]

):

Rational Statemate 63

Defining Third-Party CM Tool Interfaces

STM_CM_get _ver _from_bank

Gets the top revision of the file in the databank.

Syntax:

STM_CM_get_ver_from_bank

Input bank_dir
name
ext
full_archive_name

Output

int
STM_CM_get_ver_from_bank(
const char * bank_dir,
const char *name,
const char *ext,
const char *full_archive name,
char revision[STM_CM_version_length],
char error_message[STM_CM_message_length]

64

Configuration Management

User Function Interface to CM Tool

STM_CM_get_versions

Returns a list of versions of an archive file (in CM tool format).
Syntax:

STM_CM_get_versions

Input full_archive_name
number_of_versions
versions

Output

int
STM_CM_get_version(
const char *full_archive_name,
const char *number_of _versions,
const char *versions[],
char error_message[STM_CM_message_length]

Note

When the API is called, the number_of_versions parameter specifies the number of
possible entries in the versions parameter. The API is expected to set this parameter to the
actual number of revisions. If this number is more than the number of possible entries in the
versions parameter, the API is called again with the appropriate number of possible
entries. If more entries are needed, the function teturns a “fail” status. You cannot specify
more than the given number_of_versions value in the versions parameter because it
causes memory access violations.

Rational Statemate 65

Defining Third-Party CM Tool Interfaces

STM_CM_init

Initiates the CM tool.

Syntax:
STM_CM_init
Input workarea_dir
bank_dir
Oumutl
int

STM_CM_init(
const char *workarea_dir,
const char * bank_dir,
char error_message[STM_CM_message_length]

)
STM_CM init_item

The CM DLL calls this API before any other call is sent to an Item. This occurs once per
configuration item per session. This API is optional in that the tool calls it only if it is
implemented in the specific DLL used.

Syntax:

int
STM_CM_init_item(
const char *bank_dir,
const char *name,
const char *ext,
char error_message[STM_CM_message_length]

66 Configuration Management

User Function Interface to CM Tool

STM_CM s _file_in_bank
Checks whether or not a file exists in the databank (has been checked in before).

Syntax:

STM_CM_is_TFfile_in_bank

Input full_archive_name
is_in_bank

Oumutl

int

STM_CM_is_Tile_in_bank(
const char *full_archive_name,
int * is_in_bank,
char error_message[STM_CM_message_length]

)
STM_CM is_locked in_bank
Checks whether or not a file in the databank is locked (was checked out with lock).

Syntax:

STM_CM_is_locked_in_bank

Input full_archive_name
revision
is_locked

int
STM_CM_is_locked_in_bank(
const char *full_archive name,
const char *revision,
int *is_locked
char error_message[STM_CM_message_length]

Rational Statemate 67

Defining Third-Party CM Tool Interfaces

STM_CM lock file
Executes the lock command on the file in the databank

Syntax:

STM_CM_lock_file

Input bank_dir
name

ext
full_archive
user_name
version

int
STM_CM_lock_file(
const char *bank_dir,
const char *name,
const char *ext,
const char *full_archive_name,
const char *user_name,
const char *version
int in_load_op,
char error_message[STMCM_message_length]

STM_CM_modify to_archive

Converts a file name into an archive full path name (similar to calc_archive_name)
Syntax:

STM_CM_modify_to_archive

Input |fi|e_name
Output |

int

STM-CM_modify_to_archive(
const char *file_name,
char out_file_name[STM_CM_archive_name_length],
char error_message[STM_CM_message_length]

):

68 Configuration Management

User Function Interface to CM Tool

STM_CM_put_file

Checks in a file to the archive.

Syntax:

STM_CM_put_Tfile

Input

bank_dir
workfile_name
temp_file_to_ci

ext

user_name
comment_str
keep_lock

Output

int

STM_CM_put_Ffile(

const
const
const
const
const
const

char
char
char
char
char
char

*bank_dir,
*workfile_name,
*temp_file_to_ci,
*ext,

*user_name,
*comment_str,

int keep_lock,
char revision[STM_CM_version_length],
char error_message[STM_CM_message_length]

Rational Statemate

69

Defining Third-Party CM Tool Interfaces

STM_CM rollback

This APl is an alternative to STM_CM_unlock_file. It executes the unlock command on a file
in the databank. The API is called only if the CM DLL does not include implementation for
STM_CM_unlock_File. In case that the STM_CM_unlock_fi le is not implemented, the
“Unlock” menu entry in the Rational Statemate Configuration menus are visible to the user.

This API is optional and may not be implemented in the DLL.

Syntax:

STM_CM_rollback

Input bank_dir

name
text
full_archive_name
user_name
version
Output
int

STM_CM_rollback(
const char *bank_dir,
const char *name,
const char *ext,
const char *full_archive_name,
const char *user_name,
const char [STM_CM_version_Jlength],
char error_message[STM_CM_message_length]

70

Configuration Management

User Function Interface to CM Tool

STM_CM_standalone_lock_file

Syntax:

int
STM_CM_standalone_lock_file(
const char *bank_dir,
const char *name,
const char *ext,
const char *full_archive name;
const char *user_name,
const char *version,
int in_load_op,
char error_message[STM_CM_message_length]

STM_CM unlock_file

Executes the unlock command on a file in the databank.
Syntax:

STM_CM_unlock_file

Input bank_dir

name

text
full_archive_name
user_name
version

int
STM_CM_unlock_Tfile(
const char *bank_dir,
const char *name,
const char *text,
const char *full_archive name,
const char *user_name,
const char *version,
char error_message[STM_CM_message_length]

Rational Statemate 71

Defining Third-Party CM Tool Interfaces

72

Configuration Management

Information Specific to PVCS

This provides restrictions and branching information specific to the PVCS interface module.

Restrictions

The following restrictions apply when using the PVCS interface module:
+ PVCS does not control the workarea into which a file is placed when it is locked.

+ PVCS “group” information has no meaning in the context of Statemate; therefore the

access and permission fields in the Databank form also have no meaning when PVCS is
used.

Branching

After checking out a configuration item with locking, the next check in puts the new revision as the

next revision after the locked revision, rather than after the highest numbered revision. For
example, take an item with three revisions:

Checking out revision 1.1 and then checking it in creates revision 1.1.1.0, a branch.

Rational Statemate 73

Information Specific to PVCS

Checking out 1.1.1.0 and checking it in creates revision 1.1.1.1., then 1.1.1.2 and so forth.

Checking out 1.1.1.0 again and checking in creates another new branch 1.1.2.0.

To return to the main branch, complete the following steps:
1. Release the lock.
2. Relock the item.

3. This locks the last revision on the main branch so the next check in is on the main branch.

74 Configuration Management

Index

B

bank_dir 18
Branching, PVCS 45

C

ClearCase 1
CM operations
mapping to scripts 16

CM tool
adding to list 15
availability 15

defining new interface 16

script-based interface 13

selecting default 11
CM_USER_FUNC_calc_archive_name 16
CM_USER_FUNC _delete_from_bank 16
CM_USER_FUNC_delete_revision 16
CM_USER_FUNC_get _file 16
CM_USER_FUNC get_locked by 16
CM_USER_FUNC _get_pattern 16
CM_USER_FUNC_get_ver_from_bank 16
CM_USER _FUNC_get_versions 16
CM_USER_FUNC _init 16
CM_USER_FUNC is_file_in_bank 16
CM_USER_FUNC _is_locked_in_bank 16
CM_USER_FUNC lock_file 16
CM_USER_FUNC_modify to archive 16
CM_USER_FUNC put_file 16
CM_USER_FUNC unlock_file 16
Configuration item Tist 6
Configuration items, definition 3
Configuration management 10

operations 8
Configuration management operations

Configuration menu 8
Configuration menu operations 8
Continuus 1
Creating scripts 17

D

Databank 2,5
main window 5
starting 5
delete_from_bank 19
delete_revision 20
Dynamic-library 28

E

Existing version list 7
ext 18

F

full_archive_name 18

G

get_file 20
get_locked_by 22
get_pattern 22
get_ver_from_bank 23
get_versions 23

I

init 24

Interface, defining new 16
Intersolv 1
is_file_in_bank 25
is_locked_in_bank 25
Item properties 6

L

lock 18
lock_file 25
Locking 3

Rational Statemate

75

Index

M STM_CM_end_databank_operation 32
. . STM_CM_get_file 33
Main branch, returning to 46 STM_CM_get _file_last_modified_date 34
Mapping CM operations to scripts 16 STM_CM_get_files_list 34
Mapping file, definition 16 STM_CM _get_locked_by 35
STM_CM_get_ver_from_bank 36
N STM_CM _get_versions 37
STM_CM _init 38
name 18 STM_CM _init_item 28, 38
STM_CM_is_file_in bank 39
P STM_CM _is_locked_in_bank 39
STM_CM_lock_file 40
Paramter types 18 STM_CM_modify_to_archive 41
Projects STM_CM put_file 42
databank 2 STM_CM _roliback 43
selecting CM tool 10 STM_CM _unlock_file 44
Protection groups 4
Protection levels 4 T
put_file 26
PVCS 1 temp_result_file 18
branching 45 tmp_file_to_ci 18

interface module 45
restrictions 45

U

unlock_file 27
R
Rational Software, ClearCase 1
ret_val 18 \
revision 18 \ersion numbers 4
S W
Scripts, creating 17 Workarea 7
STM_CM_begin_databank_operation 30 Workarea, definition 3
STM_CM_calc_archive_name 30 workarea dir 18
STM_CM_close 30 workfile_name 18
STM_CM_delete_from_bank 31 working_dir 18

STM_CM_delete_revision 32

76 Configuration Management

	Configuration Management Tool
	Rational Statemate CM Interface
	The Project Databank
	Configuration Items
	Locking
	Version Numbers
	Protection Levels and Groups
	Chart-File Format

	The Databank
	Starting and Using the Databank
	Databank Main Window
	Configuration Item List
	Item Properties
	Existing Version List

	The Workarea
	Configuration Management Operations
	Using Configuration Management
	Selecting a CM Tool for a Rational Statemate Project

	Defining Third-Party CM Tool Interfaces
	Script-Based Interface to CM Tools
	How Rational Statemate Determines Available CM Tools
	Mapping Individual CM Operations to Scripts
	Creating CM Operation Scripts
	Parameter Types

	CM Script Reference
	calc_archive_name
	delete_from_bank
	delete_revision
	get_file
	get_locked_by
	get_pattern
	get_ver_from_bank
	get_versions
	init
	is_file_in_bank
	is_locked_in_bank
	lock_file
	modify_to_archive
	put_file
	unlock_file

	User Function Interface to CM Tool
	STM_CM_begin_databank_operation
	STM_CM_calc_archive_name
	STM_CM_close
	STM_CM_delete_from_bank
	STM_CM_delete_revision
	STM_CM_end_databank_operation
	STM_CM_get_file
	STM_CM_get_files_list
	STM_CM_get_file_last_modified_date
	STM_CM_get_locked_by
	STM_CM_get_pattern
	STM_CM_get_ver_from_bank
	STM_CM_get_versions
	STM_CM_init
	STM_CM_init_item
	STM_CM_is_file_in_bank
	STM_CM_is_locked_in_bank
	STM_CM_lock_file
	STM_CM_modify_to_archive
	STM_CM_put_file
	STM_CM_rollback
	STM_CM_standalone_lock_file
	STM_CM_unlock_file

	Information Specific to PVCS
	Restrictions
	Branching

	Index

