Rational Business Developer

Tutorial: Build a JSF search page with
EGL

Version 80.12

<|ll

Rational Business Developer

Tutorial: Build a JSF search page with
EGL

Version 80.12

<|ll

Note
FBefore using this information and the product it supports, read the information in[“Notices,” on page 41

This edition applies to version 8.0.1.2 of Rational Business Developer and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Build a JSF search page with EGL .

Introduction

Lesson 1: Create a 51mple search page
Create the web page.
Create the records .
Add the records to the page .

Lesson checkpoint . .
Lesson 2: Add code for the search functlon .
Create a library for the search functions

Add a SQL search function to the library .

Use the search function in the JSF Handler .

Bind the search function to the web page
Change the CSS file.
Lesson checkpoint . .

Lesson 3: Use the OR search condltlon
Add the OR search code to the library
Add a radio button group to the page
Add the OR search code to the page .
Lesson checkpoint .

Lesson 4: Populate a combo box dynamlcally .

Add the code to the library .
Add code to the JSF handler.
Add the combo box to the page
Lesson checkpoint .

© Copyright IBM Corp. 2000, 2011

O O 00 NI NI NI i O =h

I T e e gy
AW WNDN -

. 16
.17
.18
. 20

Lesson 5: Customize the search results
Add code to the library
Add code to the page code f11e
Create the customized data table .
Lesson checkpoint .

Lesson 6: Use type-ahead to prompt the user .

Lesson checkpoint .
Summary .
Resources .

Completed Searchlerary egl flle after lesson 2
Completed customersearch.egl file after lesson 2
Completed SearchLibrary.egl file after lesson 3
Completed customersearch.egl file after lesson 3
Completed SearchLibrary.egl file after lesson 4
Completed customersearch.egl file after lesson 4
Completed SearchLibrary.egl file after lesson 5
Completed customersearch.egl file after lesson 5
Completed customersearchA]AX egl file after

lesson 6.

Appendix. Notices .

Trademarks

. 20
.21
.22
.23
.23
.24
. 30
. 30
. 30
.31

31

.32

33

. 33

34

. 35

36

. 38

.4
.43

iii

1V Rational Business Developer: Tutorial: Build a JSF search page with EGL

Build a JSF search page with EGL

This tutorial expands on the Introducing EGL tutorial by teaching you more
advanced uses of EGL and JSF. In this tutorial, you create two pages that allow a
user to search a database in different ways.

Learning objectives

In this tutorial, you learn how to do these tasks:

* Use SQL statements to filter results for a search page

* Create a customized EGL record part and display it on a page
¢ Populate a JSF combo box with dynamic data

* Apply type-ahead support to an input control

Time required

90 minutes

Introduction

This tutorial expands on the Introducing EGL tutorial by teaching you more
advanced uses of EGL and JSE. In this tutorial, you create two pages that allow a
user to search a database in different ways.

These pages accept input from the user, search the database for records that match
the input, and display the results on the same page. This is not the only way or
the best way to create a search page, but this way illustrates several important EGL
and JSF concepts.

The search pages you create in this module are very different from web search
engines or pages that search the Internet or a single web site. The search pages you
create in this module search for database records, not for web pages or information
on web pages.

Learning objectives

In this tutorial, you learn how to do these tasks:

* Use SQL statements to filter results for a search page

* Create a customized EGL record part and display it on a page
* Populate a JSF combo box with dynamic data

* Apply type-ahead support to an input control

Time required

This tutorial should take approximately 90 minutes to finish. If you explore other
concepts related to this tutorial, it could take longer to complete.

© Copyright IBM Corp. 2000, 2011 1

Prerequisites

Before you start this tutorial, you must complete the [Introducing EGL] tutorial. The
current tutorial uses the database connection and the pages you set up in that
earlier tutorial.

Tutorial application

When you are finished with the tutorial, you will have a search page that can take
input from users, compare it against the data in a database, and return results to
the user. You will learn how to create a search that uses two parameters
simultaneously (an AND search); you will also learn to change that search to one
that uses one or the other of the two parameters (an OR search) and you will place
a radio button group on the page to allow the user to choose between types. You
will also learn how to limit the user's choice of search parameters by placing a
combo box on the page; this presents a list of selections to the user instead of
allowing them to type in a string. Finally, you will learn how to customize the
search results, combining fields and determining how the output appears on the

page.
The first completed search page will look like this:

Customer Search

Lastname: |L%
State: ne
C AND & OR

Submit |

4 customer(s) found.

| Full Name | Email Address | S
Andrea Lundquist alundy@def.ibm.com M
Khaled Said k_said@ghi.ibm.com N
Ben Liebowitz benliebow@pgribm.com C
Ellen Lu ellen lu@stu.ibm.com N

The second search page you will create demonstrates some simple uses of AJAX
functionality with EGL. One common used of AJAX is to provide suggestions for
user input as type-ahead support. In this way, the page searches the database for
items similar to what the user has already typed in an input field:

2 Rational Business Developer: Tutorial: Build a JSF search page with EGL

Customer search with type-ahead

LastNamelnput: |L

Soberiit Liebowitz
Lundquist

Once the user has accepted one of the suggestions, the page will use another AJAX
request to display the database information without reloading the page:

LastNamelnput: |Ra_

Customend: 1

Firstname: Francisco
Lastname: Ramirez
Phone: (201)652-3456

Lesson 1: Create a simple search page

In this lesson, you will set up a simple search page. In the next lesson, you will
add EGL code to make the search page work.

The basic steps for building this page are essentially the same as any other
EGL-JSF web page:

1. Create the web page.

2. Create the EGL variables.

3. Bind the EGL data to JSF components.

4. Add EGL functions to manage the EGL variables.

This lesson covers the first three steps above, and the next lesson covers the fourth
step. All lessons build on the files and knowledge from the [Introducing EGI/
tutorial.

Build a JSF search page with EGL 3

Create the web page

1.

© N oA

In the Project Explorer view, right-click the WebContent folder of the EGLWeb
project, then click New > Web page.

In the File Name field, type this text as the name of the new file, including the
extension:

customersearch.jsp

Make sure that the Folder field shows the /EGLWeb/WebContent folder.
In the Template list, click My Templates.

In the Preview box, click the A_gray.htpl template.

Click Finish. The new page is created and opens in the editor.

In place of the default text, type Customer Search.

Press Enter three times to insert three blank lines.

Create the records

In these steps, you create two EGL records. The searchTerms record represents the
search input, or the terms of the search. In this case, the searchTerms record holds
the name and state of the customers being searched for. The searchResults[] array
of records represents the search results, or the records from the database that
match the search input.

1.

9.
10.
1.

12.
13.

14.

From the EGL drawer of the Palette view, drag a New Variable onto the page,
underneath the text Customer Search. The Create a New EGL Data Variable
window opens.

Under Type Selection, click Record.

Under Record Type, click Customer.

In the Enter the name of the field field, type the following text:
searchTerms

Clear the Array check box.

Clear the Add controls to display the EGL element on the web page check
box.

Click OK.

Drag another New Variable from the Palette view onto the page, underneath
Customer Search. The Create a New EGL Data Variable window opens again.

Under Type Selection, click Record.

Under Record Type, click Customer.

Under Enter the name of the field, type this name for the field:
searchResults

Select the Array check box.

Clear the Add controls to display the EGL element on the web page check
box.

Click OK.

Now these two new variables are shown in the Page Data view.

Add the records to the page

1.
2.

In the Page Data view, expand JSF Handler and Data.

From the Page Data view, drag the searchTerms - Customer record onto the
page, below the Customer Search text. The Insert Control window opens.

4 Rational Business Developer: Tutorial: Build a JSF search page with EGL

—_ -

12.

13.
14.

15.

16.

SO 0 No o

In the Insert Control window, under Create controls for, click Updating an
existing record.

Under Fields to display, click the None button under the list of fields. This
clears all the check boxes.

Select the check boxes next to the LastName and State fields.
Click the Options button.

In the Options window, select the Submit button check box.
In the Submit button Label field, type Submit.

Clear the Delete button check box.

Click OK.

Click Finish. A form appears on the page, with fields for the customer's last
name and state. You'll type your search terms into these input fields to search
for a customer. The page looks like this:

@ *customersearch.jsp X

customersearch,jsp - &_gray * i |

¥ Customer Search,

1 |

Add a blank line below the Submit button by placing the cursor to the right
of the {Error Messages} field for the Submit button and pressing Enter.

From the Palette, open the Enhanced Faces Components drawer.

Drag two Output components from the Enhanced Faces Components drawer
onto the page, on the new line below the Submit button. These output fields
will display the number of results returned and a message, such as 5
Customer(s) found. Search again?

Add another blank line after the output fields. From the Page Data view, drag
searchResults - Customer[] onto the new blank line, below the Submit button
and the two new output fields. The Insert List Control window opens.

In the Insert List Control window, click the radio button next to Displaying
an existing record (read-only).

Build a JSF search page with EGL 5

17. Under Columns to display, click the None button under the list. This clears

the check boxes.

18. Select the check boxes next to the LastName, EmailAddress, and State fields.

The Insert List Control window looks like this:

&) Insert List Control X

Configure Data Controls
Specify the columns to display and how to display them

Data control to areate: |Multi-Column Data Table {one table row per data entry)

Create controls for:
¥ Displaying an existing record {read-only)
" Updating an existing record

" Creating a new record

[[

Columns to display:
Column Name | Label | Control Type ﬂ
EMAILADDRESS (string) Emailaddress Cutput field =
[STREET (string) Street Output field =
[APARTMENT (string) Apartment Output field = J
[crry {string) City Output field =]
STATE (string) State Output field o
1 pAsT Al CONE fetrinal Enctalrnda Dt field = j
Al | Mane Qptians. .. Configure Control Types

@ Finish

Cancel

19. Click Finish.
20. Save the page.

Now the search page has the input fields for the user to type the search terms, as
well as a data table to display the search results. The search page looks like this:

6 Rational Business Developer: Tutorial: Build a JSF search page with EGL

o
Submit |ﬁ{Err::|r Messages} «
outputText outputText

|]
Lastname Emailaddress State
W - o _ b
(LASTNAME} .| [EMAILADDRESS} | (STATE},,

Lesson checkpoint

You have now created a simple search page.

In this lesson, you have learned how to do the following;:
* Create an EGL web page

* Create EGL records

e Add the EGL records to the web page

Now you are ready to begin Lesson 2: Add code for the search function.

Lesson 2: Add code for the search function

Now that you have created the web page, you must add the EGL code that
receives the search terms from the web page, searches the database according to
those terms, and displays the search results on the page.

Create a library for the search functions

Because these search functions can get complicated, you will want to create a
library to hold them. Then, you can reuse those search functions and keep your JSF
Handlers simple.

1. Right-click the EGLSource folder of your EGLWeb project and then click New
> Library. The New EGL Library window opens.

2. In the EGL source file name field, type this name for the new library:
SearchLibrary

3. In the Package field, type Tibraries. EGL will create this new package if you
don't have one by this name.

4. Under EGL Library Type, click Basic.
5. Click Finish. The new library is created and opens in the EGL editor.

Build a JSF search page with EGL 7

6. Remove all the filler text from the new library so all that is left is the following
code:

package libraries;
library SearchLibrary type BasicLibrary

end

Now you can add functions to this library and use them in your JSF Handlers.

Add a SQL search function to the library

1. At the bottom of the SearchLibrary file but before the final End statement, insert

this code:

function NameAndStateSearch And(1name STRING in,

state CHAR(2) in, customer Customer[])
get customer;

end
This function is similar to the functions in other libraries that retrieve every
record from the database. The difference is that this function receives these
three parameters:

¢ The string variable 1name, which represents the last name of the customer
being searched for.

* The character variable state, which represents the state of the customer
being searched for.

¢ The array of customer records customer, which will hold the results of the
search.

Right now, this function will retrieve every record in the database. In the next
few steps, you edit the SQL statement generated by this function so that only
the records matching the search terms Iname and state are returned.

2. If you did not use code completion to insert this function, press Ctrl+Shift+O to
organize your imports.

3. Right-click the word customer in the line get customer and click SQL
Statement > Add from the popup menu. The explicit SQL statement is added
to the get customer line of code.

Strictly speaking, nothing has changed in your code. EGL has merely exposed
the default SQL code that it creates when it encounters the code get customer.
Now that this SQL code is explicitly shown on the page, you can edit it to
make it behave differently. In this case, you want to change the statement from
retrieving every customer record to retrieving only the customer records with a
matching last name and state.

4. Add a blank line after the line from EGL.CUSTOMER by placing the cursor at the
end of the line and pressing Enter.

5. In the new blank line below from EGL.CUSTOMER, insert this code:

where LASTNAME 1ike :1name
and "STATE" = :state

The code looks like this:

8 Rational Business Developer: Tutorial: Build a JSF search page with EGL

6.

@ semhbrary.sgl £ - =
package libraries: ,:J

import eglderbydb.data.Custoner;
= 1library Searchlibrary type BasicLibrary

= fonction NameAndStateSearch And(lname string in,
state char (2} in, customer Customer[])
get customer with
Fsgl{
select
COSTOMERID, FIRSTWNAME, LASTHAME, PASSWORD, PHO!
EMATLADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTICHS
from EGL.COSTCMER
where LASTHAME like :1lname
and "STATE"™ = :state
order by
CUSTCMERID asc

end

= ol

The code you've added is not EGL but SQL. LASTNAME is the complete name of
a field in the sample database your project is using. If you look at the Record
parts in the package eglderbydb.data, you will see that the records such as the
Customer record also refer to these fields. The code :Tname and :state are
called host variables, which in this context are EGL variables that you use in
SQL code. The STATE is enclosed in quotes to indicate that "state" is the name of
the table, not the SQL reserved word.

EGL provides different ways to create and generate SQL statements. In an
earlier EGL tutorial, you retrieved a specific database record by specifying a
particular customer ID number. This clause created a SQL where statement
similar to the where statement you just added. You could also use a
defaultSelectCondition to perform the same task.

Save the file. EGL generates the file automatically.

Here is the complete code of the library file. If you see any errors marked by red X
symbols in the editor, make sure your code matches the code in this
file{“Completed SearchLibrary.egl file after lesson 2” on page 31|

Use the search function in the JSF Handler

1.
2.

Open the customersearch.jsp page.

Right click on the content area of the page in the editor and click Edit Page
Code from the popup menu. The page code file opens.

In the JSF handler for the customersearch.jsp page, find the variables you
created to represent the search terms and search result:

searchTerms Customer;
searchResults Customer[0];

Immediately after your previously created variables, add the following code to
create two additional variables:

resultMessage CHAR(80);
numberOfResults INT;

Build a JSF search page with EGL 9

Next, you need to create a function to be called from the web page. This
function will pass the searchResults variable and the necessary fields from the
searchTerms variable to the function in the library.

5. Add the following function to the JSF Handler just before the final end
statement:

function searchFunction()
searchTerms.LastName = searchTerms.LastName::"%";
SearchLibrary.NameAndStateSearch_And(
searchTerms.LastName,
searchTerms.State, searchResults);

resultMessage = " customer(s) found.";
numberOfResults = searchResults.getSize();
end

Ignore any red Xs for now.

7. Add code to the onPreRender function to reset the page after a failed search:

function onPrerender()
if (searchResults.getSize() == 0)
resultMessage = "No customers found or no search criteria entered.";
end
end

Here is some information about the page code you just added:

¢ The record searchTerms and the array of records searchResults are both
instances of the Customer record. You can create multiple instances of a
record or Dataltem part.

e This code includes the function searchFunction, which will be bound to the
page's Submit button. This function calls the NameAndStateSearch_And
function you added to the library earlier in this lesson.

* The search function adds a wildcard character to the end of the last name
that the user enters. For example, if the user enters Sm, the search string
becomes Sm% and returns results like Smith and Smiley.

* The search function is case sensitive.
8. Organize imports (Ctrl+Shift+O) and save the file.

Here is the complete code of the customersearch.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches the code in this
file{”Completed customersearch.egl file after lesson 2” on page 31]

Bind the search function to the web page

Now that you have set up the data and function in the JSF handler, you can use
them on the page.

1. Open the customersearch.jsp page.
2. In the Page Data view, expand JSF Handler.

3. From the Data group, drag the numberOfResults variable directly onto the left
output text field that is below the Submit button.

4. From the Data group, drag the resultMessage variable directly onto the right
output text field.

5. From the Actions group, drag searchFunction() directly onto the Submit
button on the page. The appearance of the page does not change, but the
function is now bound to the button.

6. Save the page.

10 Rational Business Developer: Tutorial: Build a JSF search page with EGL

7. Test the page by running it on the server and entering search terms into it:

a. In the Project Explorer view, right-click customersearch.jsp and then click
Run > Run on Server. In previous tutorials, you should have set up a
default server for the project. If you did not do this or have changed the
settings, you may have to select which server to use again.

b. When the page opens in the web browser, enter a letter in the LastName
field and a state in the State field and then press the Submit button. Note
that this search page is case sensitive.

This search page is difficult to use because the user must know both the customer's
state and the first letter of the customer's last name. It would be better if the user
were able to choose between an AND search and an OR search. In the next lesson,
you will add this option to the page. In a later lesson, you will change the State
input field to a combo box that lists all of the valid states used in the database.

In addition, there is a problem with "customer(s) found" display; on output, the
space before "customer(s)" was lost. In the next exercise, you will change the
cascading style sheet (CSS) for the page to fix this problem.

Change the CSS file

Cascading style sheets work by associating elements in an HTML page with a set
of styles that determine how those elements are displayed. EGL provides two style
sheets for the page template you selected:

stylesheet.css
A general style sheet for all the templates

gray.css
A style sheet specific to the A_gray.htpl template.

In this exercise you will change the more general template.

1. Without closing the search results page in the browser, expand WebContent
and theme. Double-click stylesheet.css to open it in the editor.

2. In the right pane of the editor, locate the .outputText element. Add the
following line between the braces:
padding-right:5px;
This requires a browser to add 5 pixels of space to the right of any text tagged

as <h:outputText> when rendering it for display. The element now looks like
the following example; note the colors of the fonts:

= JinputHidden {
}

o counbpuEText {

padding-

H
|t
l=]

ht : pr:l

= .outputFormat {

H

3. Save and close the CSS file.

Build a JSF search page with EGL 11

4. Go back to the search results page (customersearch) in the browser window.
Click the page refresh icon next to the address:
The refreshed page now shows a space between the number and the text in the

‘|F‘.eﬁesh the current pagel

"customer(s) found" message.

Lesson checkpoint

You have created the EGL code that will power the search page you created in the
last lesson.

In this lesson, you have learned how to do the following;:

* Create an EGL library to contain functions

* Edit and add code to the EGL JSF Handler to call functions in the library
* Bind the functions in the JSF Handler to the controls on the web page

Now you are ready to begin Lesson 3: Use the OR search condition.

Lesson 3: Use the OR search condition

In this lesson, you add a radio button group to the page that allows the user to
choose between an AND search condition and an OR search condition.

When you run this improved page, it will look like this:

Customer Search

Lastname: |L%
State: [[_J_Q
© AND & OR

Submit |

4 customer(s) found.

 Full Name | Email Address |s
Andrea Lundquist alundy@def.ibm.com M
Khaled Said k_said@ghi.ibm.com N
Ben Liebowitz benliebow@pqgribm.com C
Ellen Lu ellen lu@@stuibm.com N

12 Rational Business Developer: Tutorial: Build a JSF search page with EGL

Add the OR search code to the library

In the previous lesson, you added a function that searches with the AND
condition. In the following steps, you add a function that searches with the OR
condition. In this way, the user will be able to search for records that match either
a last name or a state.
1. Open the SearchLibrary.egl library file.
2. Add the following code to the file, just before the final end statement:
function NameAndStateSearch Or(1name STRING in,
state CHAR(2) in, customer Customer[])
get customer with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,
EMAILADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS
from EGL.CUSTOMER
where LASTNAME Tike :1name
or "STATE" = :state
order by
CUSTOMERID asc

b
end
This function is identical to the NameAndStateSearch_And function you added in
the previous lesson, except that it uses OR instead of AND in the where

statement.

3. Save the file. EGL generates the library automatically.
4. Close the file.

Here is the complete code of the SearchLibrary.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches the code in this
file{”Completed SearchLibrary.egl file after lesson 3” on page 32

Add a radio button group to the page

Now that you have two different search functions, you need to add a radio button
to the page so the user can choose which type of search to use.

1. Return to the customersearch.jsp file.

2. Add a new line above the Submit button by placing the cursor to the left of
the Submit button and pressing Enter.

From the Palette, open the Enhanced Faces Components drawer.
Drag a Radio Button Group onto the new line.
Click the radio button group to select it.

ook~ w

If you do not have the Properties view open, open it by clicking Window >
Show View > Properties.

7. In the Properties view, click the Add Choice button. The Add Choice button
is on the far right of the Properties view. A new choice for the radio button
group is listed in the table to the left of the buttons.

8. In the Label field of the new choice, type this text:
AND
9. In the Value field of this choice, type this text:
AND
10. Click Add Choice again.

Build a JSF search page with EGL 13

11. Type this text for the Label and Value of the second choice:
OR The properties view looks like this when you have finished:

B Froperties X *uick Edit | Servers | Console | Problerns | EGL Generation Results |
Py
hue:scriptollector 1d: !_[@91 | .ﬁ.ddbalchalce Far Tachl radio button
Labe Walue
hiForm Yalue: | i AR AMD
F— 7
[,- ~ hiselectoneR adio OR R
+ Yalidation Style: Props: .
» Behavior -
Classes: | seleckOneRadi|| L
o F'uEEESSitIi"t':." I_I
el [—
Direction: | <default: [+]
l

12. Save the page.

The page looks like this when you finish adding the radio button group:

B *customersearch.js

cuskomersearch.jsp - &_grawy *

LastName:: flasane '
State: : fistatsr -
CAND € OR

¥
Submit |E{Error Messages) .
numberOfResults} ™ fresulthessagel™

Lasthame™ || EmailAddress™ || State™

[astMamel® | FEmailAddresst® | I State) e

ol
Design | S0urce | Previgm |

Add the OR search code to the page

Next, you must configure the JSF handler to use the input from the radio button to
decide which search function to use.

1. Right-click a blank area of the page and click Edit Page Code from the menu.
The file customersearch.egl opens in the editor.

14 Rational Business Developer: Tutorial: Build a JSF search page with EGL

2. With the variable declarations at the top of the handler, add this line of code:
andOr CHAR(3);

Later, you will bind this variable to the radio buttons. It holds the value "AND"
or "OR," depending on which radio button you select on the page.

3. Replace the function call to NameAndStateSearch_And with the following code:

if (andOr == "AND")
SearchLibrary.NameAndStateSearch And(
searchTerms.LastName,
searchTerms.State, searchResults);
else
SearchLibrary.NameAndStateSearch_Or(

searchTerms.LastName,

searchTerms.State, searchResults);
end

The entire function now looks like the following code:

function searchFunction()
searchTerms.LastName = searchTerms.LastName+"%";

if (andOr == "AND")
SearchLibrary.NameAndStateSearch And(
searchTerms.LastName,
searchTerms.State, searchResults);
else
SearchLibrary.NameAndStateSearch_Or(
searchTerms.LastName,
searchTerms.State, searchResults);
end
resultMessage = " customer(s) found.";
numberOfResults = searchResults.getSize();

end

This function now calls different functions depending on the value of the andOr
variable.

4. Save and close the file.

i

Return to the customersearch.jsp page.

6. From the Page Data view, bind the andOr - char(3) variable to the radio
button group by dragging it onto the radio button group on the page.

7. Bind the searchFunction() function to the Submit button on the page.

8. Save the page.

9. Test the page.

When you test the page, try using the new radio button functions. You must select
one of the radio buttons for the search page to work properly.

This search page is still difficult to use because there are not many records in the
sample database and many states to guess from. In the next lesson, you will
change the State input field to a combo box that lists all of the states used in the
database.

Here is the complete code of the customersearch.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches the code in this
file{“Completed customersearch.egl file after lesson 3” on page 33

Build a JSF search page with EGL 15

Lesson checkpoint

You now have a search page that can search based on two parameters
simultaneously, or can find results that match one, but not the other.

In this lesson, you have learned how to do the following:

* Add an OR search to the search function in your EGL library
* Add a radio button group to your search page

* Add the OR search code to the JSF Handler

* Bind the new search function to the radio button group

Now you are ready to begin Lesson 4: Populate a combo box dynamically.

Lesson 4: Populate a combo box dynamically

In this lesson, you enhance the search page by listing the possible choices for the
customer's state in a combo box.

To make searching as easy as possible for the users, you should prevent user error
and simplify the decisions the user must make wherever possible. In this lesson,
you learn how to make the search page easier to use by replacing the State input
field with a combo box. This combo box lists only the states that are represented
by at least one customer record in the database, preventing the user from having to
guess which state to use.

Add the code to the library

First, you need to add a function to your library that retrieves every state
represented in the database. This function is simpler than the other functions in the
library because you need to retrieve only one column from the database and there
are no input parameters for the search, only an output array holding the list of
states. You could use an array of customer records for the state information, but an
array of strings is simpler to work with because you don't need the rest of the
fields in the record.

1. Open SearchLibrary.egl.
2. Add the following function to the library:

function getAl1CustomerStates(1istOfStates STRING[])
customers Customer[0];
counter INT;

get customers with
#sq1{
select "STATE"
from EGL.CUSTOMER
order by "STATE" asc
b

listOfStates.removeAll();

for (counter from 1 to customers.getSize() by 1)
listOfStates.appendElement (customers[counter].State);

end

end
3. Save the file.
4. Generate the library.

16 Rational Business Developer: Tutorial: Build a JSF search page with EGL

Here are some technical notes about the getAl1CustomerStates function you just
added:

* This function accesses the customer records from the database in the same way
as the getAl1Customers() function. The major difference is that the
getAl1CustomerStates() function selects only the STATE fields instead of every
field in the Customer table.

* The "group by" SQL command groups the results by state so each state is listed
only once in the results.

* The "order by" SQL command puts the results in alphabetical order; the asc
keyword indicates ascending order.

* The for loop moves only the state field from the records into an array of strings.

Here is the complete code of the SearchLibrary.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches the code in this
file:|“Completed SearchLibrary.egl file after lesson 4” on page 33)

Add code to the JSF handler

1. Return to the customersearch.jsp page.

2. Right-click on the customersearch.jsp page and click Edit Page Code from the
popup menu.

3. After the line of code andOr CHAR(3);, add this line of code:
customerStates STRING[O];

This variable holds the list of states returned by the function in the library.

4. Add a blank line after function onPreRender(). Then, add this line of code on
the blank line:

SearchLibrary.getAl1CustomerStates (customerStates);
5. Save the file.

The customersearch.egl file looks like this when you are done (some functions are
compressed, indicated by a plus sign in the left margin of the page):

Build a JSF search page with EGL 17

L2 customersearch.egl 23

backage j=fhandlers;
@ import com.ibm.egl.jsf.UIViewRoot:[]

“handler customersearch type JS5FHandler
{onConstructionFunction = onConstruction,
onPrerenderFunction = onPrerender,
view = "customersearch.jsp",
viewRootVar = wviewRoot}

viewRoot UIViewRoot;
searchTerms Customer;
zearchResults Customer[0]:
resultMessage char (80) ;
numberOfRe=sults int;

andCr char(3);
customerStates stringl[0]:

/ Function Declarations

* function onConstruction()[]

= function onPrerender ()
SearchLibrary.getAllCustomerStates (customerStates)
if (searchResults.getSize() == 0)
resultMessage = "No customers found or no search criteria entered.”;
end
end

Here are some technical notes on the code you just added:

* The customerStates array holds the list of states represented by at least one
customer in the database.

* The line you added to the onPreRender function sends the customerStates array
to the getAT1CustomerStates function in the library, populating the array with
the list of states.

Here is the complete code of the customersearch.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches the code in this
file{“Completed customersearch.egl file after lesson 4” on page 34

Add the combo box to the page

Adding a combo box that is populated dynamically is more complicated than
adding a JSF control that has predefined values, such as the radio button group
you added in the previous lesson. This combo box must be bound to two pieces of
EGL data:

e The customerStates array, which provides the list of options for the combo box.

e The searchTerms.State variable, which holds the user's selection from the
combo box.

1. Return to the customersearch.jsp page.

2. Click the STATE input field to select it and press Delete. The input field is
removed from the page.

3. From the Palette, open the Enhanced Faces Components drawer.

4. Drag a Combo Box item to the page, and place it where the STATE input field
was.

5. In the Page Data view, expand JSF Handler > Data > searchTerms -
Customer.

18 Rational Business Developer: Tutorial: Build a JSF search page with EGL

6. Under searchTerms - Customer in the Page Data view, drag State - State onto
the combo box.

Drop here to bind "STATE" to
the control "menul”

]
Submit |E{Err:]r Messages} «

(numberOfResults}, {resultMessage]

7. Click the combo box to select it.

8. Open the Properties view. In the Properties view, note that the Value field is
set to #{customersearch.searchTerms.State}, indicating that the value of the
selection in the combo box is placed into the State field of the searchTerms
record.

9. In the Properties view, click Add Set of Choices, which is at the far right of
the view, near the table of choices. A new item is added to the list of choices
with the label <selectitems> and a default value. The <selectitems> label is a
JSF tag that represents multiple options, rather than a single static label. In
other words, the combo box will use the values you specify in the Value
column for both the labels in the combo box and the values the labels
represent.

10. Next to the <selectitems> label, click the Select Page Data Object button in
the Value field. The Select Page Data Object window opens.

11. In the Select Page Data Object window, expand Data and click customerStates
- stringf[].
The Select Page Data Object window looks like this:

Build a JSF search page with EGL 19

#9 Select Page Data Object

Data Object |E}r|:|ressinn I String Resource I

Data Objects:

E; applicationScope
q:p requestsScope
; sessionScope
EI[E? Data

----- ﬁ.:. andQr - char(3)

i ﬁu customerStates - string[]
Hi i}._:'ﬂ numberOfResul t

o *E?.;, resultMessage - char{80)
---"-*"%r".;. searchResults - Customer(]
---'-*"Er'.;. searchTerms - Customer

12. Click OK. Now the choices in the combo box come from the customerStates
variable, while the selected state in the combo box is put into the searchTerms
variable.

13. Save the page.
14. Test the page.

Lesson checkpoint

You have created a combo box on your web page that creates a list of search
parameters.

In this lesson, you have learned how to do the following things:

* Add the code for a limited search to the library.

* Add code to the JSF Handler to call the revised search function.
* Add a combo box to the web page.

* Bind the revised search function to the combo box.

Now you are ready to begin Lesson 5: Customize the search results.

Lesson 5: Customize the search results

In this lesson, you learn to make a more complex data table to display your search
results.

20 Rational Business Developer: Tutorial: Build a JSF search page with EGL

Until now, each JSF component you have added to Web pages has been bound to
data from a single database table. If you are using a complex relational database,
you may want to work with data from more than one table at a time.

In this lesson, you customize the results by displaying data from both the
Customer table and the State table. In this way, the results show both the
customer's name (from the Customer table) and the full name of the customer's
state instead of the two-letter abbreviation (from the State table). You also
manipulate the results by combining the customer's first name and last name into a
full name field. The resulting data table looks like this:

4 customer(s) found.

[Full Name | Email Address | State |
Andrea Lundquist alundy@def ibm.com MICHIGAN

Khaled Said k_said@ghi.ibm.com NORTH CAROCLINA
Ben Liebowitz benliebow@pgr.ibm.com CONNECTICUT
Ellen Lu ellen lu@stu.ibm.com NEW YORK

The easiest way to create a customized data table like this is to create a customized

EGL record that represents a single record in this data table. Then, you create an

array of these records that is bound to the data table. The customized EGL record

you create in this lesson has the following three fields:

* The email field, which holds the customer's email address from the Customer
table.

e The fullName field, which holds the customer's combined first and last name
from the Customer table.

* The State field, which holds the full name of the customer's state. To get the full
name, the search function cross-references the customer's state abbreviation from

the Customer table with the list of abbreviations and state names in the State
table.

Add code to the library

1. Open SearchLibrary.egl.
2. Add the following function to the library:

function getOneState(state Statetable)
get state;
end

The stateTable record is defined in the Statetable.egl file, so if you did not use
code completion to enter that function, you must organize your imports
(Ctrl+Shift+0O).
3. Add the following code to the file, just after the final end statement in the

library:
Record customizedResult type basicRecord

fullName STRING {displayName = "Full Name"};

email STRING {displayName = "Email Address"};

stateName STRING {displayName = "State"};
end

Note: Because the library itself can not contain record definitions, you must
add the customizedResult record definition after the end statement that
closes the library.

4. Save the file.
5. Generate the file.

Build a JSF search page with EGL 21

Here is the complete code of the SearchLibrary.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches the code in this
file:|[“Completed SearchLibrary.egl file after lesson 5” on page 35

Add code to the page code file

1.
2.

7.

Return to the customersearch.jsp page.

Right-click on the customersearch.jsp page and click Edit Page Code from the
popup menu.

Add the following variable definition to the JSF Handler, after the
customerStates STRING[O]; line:

allRecords customizedResult[0];

This variable represents the new search results, based on the customized record
you just created.

If you did not use code completion to insert this line of code, be sure to
organize imports.

Add the following function to the JSF Handler:

function generateCustomResults(passedResults Customer[])
allRecords.removeAll();

oneRecord customizedResult;

counter INT = 1;

state Statetable;

//1oop once for each search result returned

while (counter <= (passedResults.getSize()))
oneRecord.fullName = passedResults[counter].FirstName ::

" " :: passedResults[counter].LastName;

oneRecord.email = passedResults[counter].EmailAddress;
state.STATE_ABBREV = passedResults[counter].state;
SearchLibrary.getOneState(state);
oneRecord.stateName = state.STATE_NAME;
allRecords.appendElement (oneRecord) ;
counter = counter + 1;

end

end

This function assembles the customized search results. You must call this
function at the end of the searchFunction() function.

Add this line of code immediately before the end statement that closes the
searchFunction() function in the JSF Handler:

generateCustomResults (searchResults);
Save the file.

The new function you added to the JSF handler assembles the customized search
results by following these general steps:

1.

A A

Assemble the customer's full name from the first and last name.

Get the customer's email address.

Get the abbreviation of the customer's state.

Look up the state name that matches the abbreviation.

Add the full name, email address, and state name to the al1Records array.

Here is the complete code of the customersearch.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches the code in this
file: [“Completed customersearch.egl file after lesson 5” on page 36/

22 Rational Business Developer: Tutorial: Build a JSF search page with EGL

Create the customized data table

1. Return to the customersearch.jsp page.

2. If you want to remove the old search results, you can delete the old data table.
These steps are optional:

a. Click anywhere in the old search results table to set the cursor focus there.
b. Press the Down arrow key. The entire data table is now selected.
C. Press Delete. The data table is removed from the page.

3. From the Page Data view, drag allRecords - customizedResult[] onto the page,
just below the old data table location. The Insert List Control window opens.

Click the radio button next to Displaying an existing record (read-only).
Click Finish. The new data table is created on the page.
Save the page.

N o~

Test the page.

Now when you search for a customer, you see the customer's full name, email
address, and full state name in the data table. The page looks like this:

Customer Search

Lastname: |L%
State: MC
T AND < OR

Submit |

4 customer(s) found.

Full Name Email Address S
Andrea Lundquist alundy@def.ibm.com M
Khaled Said k_said@ghi.ibm.com N
Ben Liebowitz benliebow@pgr.ibm.com C
Ellen Lu ellen.lu@stu.ibm.com N

Lesson checkpoint

You have customized your search results by combining the first name and last
name fields into a full name field, and by translating the two character code from
the state field into the full name of the state.

In this lesson, you have learned how to do the following;:
* Add a function to the library that customizes results
* Add a record to the library file, outside the library itself

Build a JSF search page with EGL 23

* Add the new customized results function to the JSF Handler
* Place a new results table on the Web page
* Bind the new results function to the table

Lesson 6: Use type-ahead to prompt the user

Controls with the type-ahead feature try to anticipate what the user might be typing
into an input field, speeding up the process of entering information. In this lesson,
you learn to create a separate search page that uses type-ahead functionality to
search in a different way than in the previous page.

Type-ahead functionality uses AJAX, or Asynchronous Javascript and XML, which
is a web technology that allows web applications to change portions of a web page
without reloading the entire page. In this case, the AJAX functionality allows your
EGL JSF Handler to add and remove suggestions to the input control without
resubmitting the page. The EGL type-ahead functionality provides a shortcut to
this common use of AJAX functionality, preventing you from having to put
together an AJAX request by yourself. In the next lesson, you will learn to create
custom AJAX requests.

By convention, input controls with type-ahead provide options based on the first
few characters the user types into a field:

Customer search with type-ahead

LastNamelnput: |L

Submit

Liebowitz
Lundquist

Depending on how you write the EGL code for the type-ahead, you can provide
suggestions based on the first few characters of input or from an arbitrary function
that determines the suggestions dynamically.

To provide suggestions for type-ahead based on the first few characters of input,
you must specify those suggestions at design time, either in the validValues
property or in a Data Table part. This example uses the validValues approach:
state STRING {typeahead = YES,
validvalues = ["AK","AL","AR","AZ",
"NC", "NY", "NH", "NJ",
"NM",NE", "NV", "ND"] } 5

In this variable, the valid values are the abbreviations of U.S. states beginning with
the letters "A" and "N." When the user types the letter "A" into the input control,
type-ahead will provide the abbreviations beginning with "A", and likewise with
the letter "N" and the abbreviations beginning with "N."

24 Rational Business Developer: Tutorial: Build a JSF search page with EGL

In this lesson, you use type-ahead functionality to suggest the last names of
customers in the database for the user to search on. In this case, you must
determine the type-ahead suggestions at run time, because the suggestions will
depend on the values in the database. Therefore, you will create a function in a
new JSF Handler that compares what the user has typed into an input field with
the last names of customers in the database. The function then provides the
matching names as type-ahead suggestions.

1.

Create a new web page in the EGLWeb project named
customersearchAJAX. jsp:

a. In the Project Explorer view, right-click the WebContent folder of the
EGLWeb project and then click New > Web page.

b. In the File Name field, type this text as the name of the new file, including
the extension:

customersearchAJAX.jsp

Make sure that the Folder field shows the /EGLWeb/WebContent folder.
In the Template list, click My Templates.

In the Preview box, click the A_gray.htpl template.

Click Finish. The new page is created and opens in the editor.

@ mo oo

Remove the default text from the page and replace it with the following
text:

Customer search with type-ahead
h. Press Enter three times to create blank space below the page title.

Open the JSF Handler for the page by right-clicking on the content area of the
page and then clicking Edit Page Code.

Add these three variables to the JSF Handler:

TastNameInput STRING {TypeaheadFunction = suggestlLastNames};

allLastNames Customer[0];

customerToDisplay Customer;

The first variable will be bound to an input control on the page. The
TypeaheadFunction property indicates that this variable will have a function
that provides type-ahead suggestions. You will create this function later in this
lesson.

The second variable will hold the list of last names in the database. The
function providing suggestions will need this list.

The third variable is a single record that will show the results of the search.

Remove the onConstructionFunction property from the JSF Handler, but leave
the onPreRenderFunction:

handler customersearchAJAX type JSFHandler
{onPreRenderFunction = onPreRender,

view = "customersearchAJAX.jsp",
viewRootVar = viewRoot}

Remove the stub onConstruction() function.
Complete the stub onPreRender() function:

function onPreRender()
get alllLastNames with
#sq1{
select
LASTNAME
from EGL.CUSTOMER
group by
EGL.CUSTOMER. LASTNAME
1

end

Build a JSF search page with EGL 25

This function will run each time the page is refreshed, in order to retrieve a
list of customer last names from the database to compare with the user's
input.
7. Add the following function to the JSF Handler:
function suggestlLastNames (typedCharacters STRING in) returns (STRING[])
matchingLastNames STRING[O];

oneCustomer Customer;
oneCustomerName STRING;

//This variable represents the characters the user has typed.
typedCharacters = StrLib.upperCase(typedCharacters);

//Compare the user input to the values in the database.
for (counter INT from 1 to allLastNames.getSize())
oneCustomer = alllLastNames[counter];

oneCustomerName = StrLib.upperCase(oneCustomer.LastName);

if (StrLib.index0f(oneCustomerName, typedCharacters) == 1)
//This value starts with the same characters.
//Add this value to the type-ahead suggestions.
matchinglLastNames.appendElement (oneCustomer.LastName);
end

end

return (matchinglLastNames);

end

This function is the function referred to in the TypeaheadFunction property of
the variable you created earlier. As its name implies, this function provides the
suggestions for type-ahead. This function must receive a single parameter: a
STRING representing the characters that the user has typed into the input
control. Also, it must return an array of STRINGsS, representing the
suggestions. With this function, you can determine the type-ahead suggestions
with any arbitrary EGL logic.

In this case, the function follows the convention that the suggestions should
start with the same characters as the user has typed into the input control.
The function compares the characters that the user has typed in to each
customer's last name, in each case, setting both values to upper case to
eliminate any differences in capitalization. Each time the function finds a
match, it adds the customer's last name to the array of results representing the
type-ahead suggestions.

8. Add the following function to the JSF Handler:

function displayCustomer()
get customerToDisplay with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,
EMAILADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS
from EGL.CUSTOMER
where
LASTNAME = :lastNamelnput
1s

end

This function will be bound to a button on the page. When the type-ahead
control has helped the user find the name of a unique customer, the user will
click the button and run this function to retrieve the customer's details.

9. Optimize imports and save the JSF Handler file.
10.

26 Rational Business Developer: Tutorial: Build a JSF search page with EGL

1.

12.

13.

14.

15.
16.

17.

18.
19.

Expand JSF Handler and Data in the Page Data view. Drag the TastNameInput
variable onto the customersearchAJAX jsp page. The Insert Record window
opens.

Click Updating an existing record and make sure that the Control type for
the input control is set to Input Field. You can use type-ahead only on JSF
input controls.

Click Options.

In the Options window, clear the Delete button check box and select the
Submit button check box. Leave the default label of Submit for the button.

Click OK.

Click Finish. The input control and a button are created on the page. Because
of the TypeaheadFunction property on the variable, the new input control is
automatically configured for type-ahead. You can view the options for the
type-ahead functionality, such as the length of the delay before offering
suggestions, by clicking the type-ahead icon to the right of the input control
and opening the Properties view:

F Ry
*rustomersearchaJax, jsp EE-\EE{ cuskomersearchalix egl

customersearch& AR, jsp - &_gray * % - | Fx:inputHelper Typeat
£

?ul:umit | #{Error Messages} I
4

Design | Source | Preview |

= ronerie: x G

P

TEODY rype: & Suggestion O AutoComplete

kr Match width of the suggestion area with the input Field
td Height of the suggestion area: [{lires
hiinputText

Mayimum number of suggestions displayed: |
fxiinputHelper Typeahead |—

* Styles while suggestions are being retrisved: | <default> B
K5

Drag the CustomerToDisplay variable from the Page Data view onto the
bottom of the page. The Insert Control window opens.

In the Insert Control window, click Displaying an existing record (read-only).

Under Fields to display, select the check boxes next to the fields in the
customer record that you want to display in your search results. For example,
you might select the Customerld, FirstName, LastName, and Phone fields:

Build a JSF search page with EGL 27

=1l |

Configure Data Controls —
Specify the columns to display and how to display them %_',_} — |

Create controls for:

g Displaying an existing record {read-only);
i~ Updating an existing record

" Creating a new record

Fields to display:

| Field Name | Label | Control Type -
CUSTOMERID (int) Customerid: CQutput field Ea

FIRSTHAME (string) Firstname: Output field =]

LASTMAME {string) Lastname: Output field k2 £
[PasswoORD (string) Password: Output field =] el
PHOME {string) Phone: Output field =] i
] EMAILADDRESS {string) Emailaddress: Output field =L | s
] STREET (string) Street: Output field =l

[0 APARTMENT (string) Apartment: Output field =]

O cITY {string) City: Output field =l -]

Al | None Options... | configure Control Types

@ Einish I Cancel

20. Click Finish. The controls representing the search results are added to the

page.

21. Bind the displayCustomer() function to the Submit button on the page by

dragging the function from the Page Data view onto the button.

You now have configured the page to use type-ahead. The page looks like this:

28 Rational Business Developer: Tutorial: Build a JSF search page with EGL

ﬁ n:u::tn:nrru;er::Eear'n_:hF'._'_IF'.!:-:!.j::|:_| : cuskomersearchia .

customersearchaIAK, jsp - A_gray

Fhone: - IPhone) e

You can test the page by running it on the server and typing the first character or
two of a customer's name into the input field:

Customer search with type-ahead

LastNamelnput: |LE

Liebowitz

Lundquist

When you choose a customer's name, you can then click Submit and see the
customer's information:

LastNamelnput: |L
Submit
Customerid: 7
Firstname: Ellen

Lastname: Lu
Phone: (670)250-5689

Build a JSF search page with EGL 29

Here is the complete code of the customersearchAJAX.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches the code in this
file{”Completed customersearchAJAX.egl file after lesson 6” on page 38

Lesson checkpoint

In this lesson, you learned to apply type-ahead support to an input field.
Type-ahead can help the user enter valid information, but you must beware of the
strain on the system providing the suggestions. Each time the value of the input
control changes, the function associated with the type-ahead control runs. This
function should be a simple as possible to prevent the system from becoming
overloaded.

For more information on type-ahead, see [Providing type-ahead support for input|

This concludes the tutorial.

Summary
This is the end of the Build a JSF search page with EGL tutorial.

Lessons learned

By completing this tutorial, you learned how to do the following tasks:
* Create a simple search page

* Create an EGL library containing functions called by the search page
* Create a customized EGL record part and display it on a page

* Use SQL statements in EGL code to filter results for a search page

* Create Enhanced Java Server Faces components on the web page and bind
functions and variables to them

* Modify your search functions to provide users with a choice of search types
* Customize your search results
* Use type-ahead support on an input control

You may want to continue learning by working with the tutorial application. Try

adding this functionality on your own:

* Add a link from the search page to the updatecustomer.jsp page, which you
created in a previous tutorial. You will need to make the link pass a parameter
as you did on the allcustomers.jsp page.

* Try customizing the search results to include data other than the name, email
address, and state of the customer.

* Try applying type-ahead support or AJAX requests to other pages in the project.

Resources

This tutorial used the following resources:
¢ [“Completed SearchLibrary.egl file after lesson 2” on page 31|
» |“Completed customersearch.egl file after lesson 2” on page 31|

* [“Completed SearchLibrary.egl file after lesson 3” on page 32

* |“Completed customersearch.egl file after lesson 3” on page 3§|

* |“Completed SearchLibrary.egl file after lesson 4” on pageﬁl

30 Rational Business Developer: Tutorial: Build a JSF search page with EGL

[“Completed customersearch.egl file after lesson 4” on page 34|

[“Completed SearchLibrary.egl file after lesson 5” on page 35|

[“Completed customersearch.egl file after lesson 5” on page 36]|

“Completed customersearchAJAX.egl file after lesson 6” on page 3
p g pag

Following are some links to the help system on topics covered in this tutorial:
» |Providing type-ahead support for input controls|
» |[Updating portions of a web page with AJAX requests|

Completed SearchLibrary.eqgl file after lesson 2

This code is the version of the SearchLibrary.egl file completed after lesson 2. If

you see any errors marked by red X symbols in the file, make sure your code
matches this code:

package libraries;
import eglderbydb.data.Customer;

library SearchLibrary type BasiclLibrary

function NameAndStateSearch And(1name STRING in,
state CHAR(2) in, customer Customer[])
get customer with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,
EMAILADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS
from EGL.CUSTOMER
where LASTNAME 1ike :1name
and "STATE" = :state
order by
CUSTOMERID asc
1
end
end

Return to[“Lesson 2: Add code for the search function” on page 7.|

Completed customersearch.egl file after lesson 2

This code is the version of the customersearch.egl file completed after lesson 2. If

you see any errors marked by red X symbols in the file, make sure your code
matches this code:

package jsfhandlers;

import com.ibm.egl.jsf.UIViewRoot;
import eglderbydb.data.=*;
import libraries.SearchLibrary;

handler customersearch type JSFHandler
{onConstructionFunction = onConstruction,
onPrerenderFunction = onPrerender,
view = "updatecustomer.jsp",
viewRootVar = viewRoot}

viewRoot UIViewRoot;
searchTerms Customer;
searchResults Customer[0];
resultMessage CHAR(80);
numberOfResults INT;

Build a JSF search page with EGL 31

// Function Declarations
function onConstruction()
end

function onPrerender()

if (searchResults.getSize() == 0)

resultMessage = "No customers found or no search criteria entered.";
end
end

function searchFunction()
searchTerms.LastName = searchTerms.LastName::"%";
SearchLibrary.NameAndStateSearch_And(
searchTerms.LastName,
searchTerms.State, searchResults);

resultMessage = " customer(s) found.";
numberOfResults = searchResults.getSize();
end
end

Return to[“Lesson 2: Add code for the search function” on page 7.|

Completed SearchLibrary.egl file after lesson 3

This code is the version of the SearchLibrary.egl file completed after lesson 3. If
you see any errors marked by red X symbols in the file, make sure your code
matches this code:

package libraries;
import eglderbydb.data.Customer;

library SearchLibrary type BasicLibrary

function NameAndStateSearch_And(1name STRING in,
state CHAR(2) in, customer Customer[])
get customer with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,
EMAILADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS
from EGL.CUSTOMER
where LASTNAME 1ike :1name
and "STATE" = :state
order by
CUSTOMERID asc
}s

end

function NameAndStateSearch_Or(Tname STRING in,
state CHAR(2) in, customer Customer[])
get customer with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,
EMATLADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS
from EGL.CUSTOMER
where LASTNAME 1ike :1name
or "STATE" = :state
order by
CUSTOMERID asc
}s
end
end

32 Rational Business Developer: Tutorial: Build a JSF search page with EGL

Return to[“Lesson 3: Use the OR search condition” on page 12|

Completed customersearch.eqgl file after lesson 3

This code is the version of the customersearch.egl file completed after lesson 3. If
you see any errors marked by red X symbols in the file, make sure your code
matches this code:

package jsfhandlers;

import com.ibm.egl.jsf.UIViewRoot;
import eglderbydb.data.*;
import Tibraries.SearchlLibrary;

handler customersearch type JSFHandler
{onConstructionFunction = onConstruction,
onPrerenderFunction = onPrerender,
view = "updatecustomer.jsp",
viewRootVar = viewRoot}

viewRoot UIViewRoot;
searchTerms Customer;
searchResults Customer[0];
resultMessage CHAR(80);
numberOfResults INT;

andOr CHAR(3);

// Function Declarations
function onConstruction()
end

function onPrerender()
if (searchResults.getSize() == 0)
resultMessage = "No customers found or no search criteria entered.";
end
end

function searchFunction()
searchTerms.LastName = searchTerms.LastName + "%";

if (andOr == "AND")
SearchLibrary.NameAndStateSearch_And(
searchTerms.LastName,
searchTerms.State, searchResults);

else
SearchLibrary.NameAndStateSearch_Or(
searchTerms.LastName,
searchTerms.State, searchResults);

end
resultMessage = " customer(s) found.";
numberOfResults = searchResults.getSize();
end
end

Return to [“Lesson 3: Use the OR search condition” on page 12|

Completed SearchLibrary.egl file after lesson 4

This code is the version of the SearchLibrary.egl file completed after lesson 4. If
you see any errors marked by red X symbols in the file, make sure your code
matches this code:

package libraries;
import eglderbydb.data.Customer;

Build a JSF search page with EGL 33

library SearchLibrary type BasiclLibrary

function NameAndStateSearch And(1name STRING in,
state CHAR(2) in, customer Customer[])
get customer with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,
EMAILADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS
from EGL.CUSTOMER
where LASTNAME like :Iname
and "STATE" = :state
order by
CUSTOMERID asc
1

end

function NameAndStateSearch_Or(1name STRING in,
state CHAR(2) in, customer Customer[])
get customer with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,
EMATLADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS
from EGL.CUSTOMER
where LASTNAME 1ike :1name
or "STATE" = :state
order by
CUSTOMERID asc
1

end

function getAll1CustomerStates(1istOfStates STRING[])
customers Customer[0];
counter INT;

get customers with
#sq1{
select "STATE"
from EGL.CUSTOMER
order by "STATE" asc
1

listOfStates.removeAll();
for (counter from 1 to customers.getSize() by 1)

1istOfStates.appendElement (customers[counter].State);
end

end
end

Return to|“Lesson 4: Populate a combo box dynamically” on page 16/

Completed customersearch.egl file after lesson 4

This code is the version of the customersearch.egl file completed after lesson 4. If
you see any errors marked by red X symbols in the file, make sure your code
matches this code:

package jsfhandlers;
import com.ibm.egl.jsf.UIViewRoot;

import eglderbydb.data.*;
import libraries.SearchLibrary;

34 Rational Business Developer: Tutorial: Build a JSF search page with EGL

handler customersearch type JSFHandler
{onConstructionFunction = onConstruction,
onPrerenderFunction = onPrerender,
view = "updatecustomer.jsp",
viewRootVar = viewRoot}

viewRoot UIViewRoot;
searchTerms Customer;
searchResults Customer([0];
resultMessage CHAR(80);
numberOfResults INT;

andOr CHAR(3);
customerStates STRING[O];

// Function Declarations
function onConstruction()
end

function onPrerender()
SearchLibrary.getAl1CustomerStates(customerStates);
if (searchResults.getSize() == 0)
resultMessage = "No customers found or no search criteria entered.";
end
end

function searchFunction()
searchTerms.LastName = searchTerms.LastName + "%";

if (andOr == "AND")
SearchLibrary.NameAndStateSearch And(
searchTerms.LastName,
searchTerms.State, searchResults);
else
SearchLibrary.NameAndStateSearch_Or(
searchTerms.LastName,
searchTerms.State, searchResults);

end
resultMessage = " customer(s) found.";
numberOfResults = searchResults.getSize();
end
end

Return to[“Lesson 4: Populate a combo box dynamically” on page 16)

Completed SearchLibrary.egl file after lesson 5

This code is the version of the SearchLibrary.egl file completed after lesson 5. If
you see any errors marked by red X symbols in the file, make sure your code
matches this code:

package libraries;
import eglderbydb.data.Customer;

library SearchLibrary type BasiclLibrary

function NameAndStateSearch And(1name STRING in,
state CHAR(2) in, customer Customer[])
get customer with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,
EMAILADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS
from EGL.CUSTOMER
where LASTNAME 1ike :1name

Build a JSF search page with EGL 35

and "STATE" = :state
order by

CUSTOMERID asc
1s

end

function NameAndStateSearch Or(1name STRING in,
state CHAR(2) in, customer Customer[])
get customer with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,
EMAILADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS
from EGL.CUSTOMER
where LASTNAME 1ike :1name
or "STATE" = :state
order by
CUSTOMERID asc
}s

end

function getAl1CustomerStates(1istOfStates STRING[])
customers Customer[0];
counter INT;

get customers with
#sq1{
select "STATE"
from EGL.CUSTOMER
order by "STATE" asc
1

listOfStates.removeAll();

for (counter from 1 to customers.getSize() by 1)
1istOfStates.appendElement (customers[counter].State);

end

end

function getOneState(state Statetable)
get state;

end

end

record customizedResult type basicRecord
fullName STRING {displayName = "Full Name"};
email STRING {displayName = "Email Address"};
stateName STRING {displayName = "State"};

end

Return to[“Lesson 5: Customize the search results” on page 20|

Completed customersearch.egl file after lesson 5

This code is the version of the customersearch.egl file completed after lesson 5. If
you see any errors marked by red X symbols in the file, make sure your code
matches this code:

package jsfhandlers;

import com.ibm.egl.jsf.UIViewRoot;

import eglderbydb.data.Customer;

import eglderbydb.data.Statetable;

import eglderbydb.primitivetypes.data.STATE;
import Tibraries.SearchLibrary;

import Tibraries.customizedResult;

36 Rational Business Developer: Tutorial: Build a JSF search page with EGL

handler customersearch type JSFHandler
{onConstructionFunction = onConstruction,
onPrerenderFunction = onPrerender,
view = "customersearch.jsp",
viewRootVar = viewRoot}

viewRoot UIViewRoot;
searchTerms Customer;
searchResults Customer([0];
resultMessage CHAR(80);
numberOfResults INT;

andOr CHAR(3);

customerStates STRING[O];
allRecords customizedResult[0];

// Function Declarations
function onConstruction()
end

function onPrerender()
SearchLibrary.getAl1CustomerStates (customerStates);
if (searchResults.getSize() == 0)
resultMessage = "No customers found or no search criteria entered.";
end
end

function searchFunction()
searchTerms.LastName = searchTerms.LastName::"%";

if (andOr == "AND")
SearchLibrary.NameAndStateSearch_And(
searchTerms.LastName,
searchTerms.State, searchResults);
else
SearchLibrary.NameAndStateSearch Or(

searchTerms.LastName,

searchTerms.State, searchResults);
end

resultMessage = " customer(s) found.";
numberOfResults = searchResults.getSize();
if(numberOfResults == NULL)
numberOfResults = 0;

end

generateCustomResults (searchResults);
end

function generateCustomResults(passedResults Customer[])
allRecords.removeAll();

oneRecord customizedResult;

counter INT = 1;

state Statetable;

//1oop once for each search result returned
while (counter <= (passedResults.getSize()))
oneRecord. fulTName = passedResults[counter].FirstName ::
" " :: passedResults[counter].LastName;
oneRecord.email = passedResults[counter].EmailAddress;
state.STATE_ABBREV = passedResults[counter].state;
SearchLibrary.getOneState(state);
oneRecord.stateName = state.STATE_NAME;
allRecords.appendElement (oneRecord);

Build a JSF search page with EGL

37

counter = counter + 1;
end

end

end

Return tol”Lesson 5: Customize the search results” on page 20.|

Completed customersearchAJAX.egl file after lesson 6

This code is the version of the customersearchAJAX.egl file completed after lesson
6. If you see any errors marked by red X symbols in the file, make sure your code
matches this code:

package jsfhandlers;
import eglderbydb.data.Customer;

handler customersearch type JSFHandler
{onConstructionFunction = onConstruction,
onPrerenderFunction = onPrerender,
view = "customersearch.jsp",
viewRootVar = viewRoot}

viewRoot UIViewRoot;

TastNameInput STRING {TypeaheadFunction = suggestlLastNames};
allLastNames Customer[0];

customerToDisplay Customer;

function onPreRender()
get alllLastNames with
#sq1{
select
LASTNAME
from EGL.CUSTOMER
group by
LASTNAME
b

end

function suggestlLastNames(typedCharacters STRING in) returns (STRING[])
matchingLastNames STRING[O];

oneCustomer Customer;

oneCustomerName STRING;

//This variable represents the characters the user has typed.
typedCharacters = StrLib.upperCase(typedCharacters);

//Compare the user input to the values in the database.
for (counter INT from 1 to allLastNames.getSize())
oneCustomer = alllLastNames[counter];

oneCustomerName = StrLib.upperCase(oneCustomer.LastName);

if (StrLib.index0f(oneCustomerName, typedCharacters) == 1)
//This value starts with the same characters.
//Add this value to the type-ahead suggestions.

matchinglLastNames.appendElement (oneCustomer.LastName);
end

end
return (matchinglLastNames);
end

function displayCustomer()
get customerToDisplay with
#sq1{
select
CUSTOMERID, FIRSTNAME, LASTNAME, PASSWORD, PHONE,

38 Rational Business Developer: Tutorial: Build a JSF search page with EGL

EMAILADDRESS, STREET, APARTMENT, CITY, "STATE",
POSTALCODE, DIRECTIONS

from EGL.CUSTOMER

where
LASTNAME = :lastNameInput

1s

end

end

Return to [“Lesson 6: Use type-ahead to prompt the user” on page 24

Build a JSF search page with EGL 39

40 Rational Business Developer: Tutorial: Build a JSF search page with EGL

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2000, 2011 41

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

3600 Steeles Avenue East

Markham, ON Canada L3R 977

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

42 Rational Business Developer: Tutorial: Build a JSF search page with EGL

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at http://www.ibm.com/
legal /copytrade.html.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices 43

44 Rational Business Developer: Tutorial: Build a JSF search page with EGL

Printed in USA

	Contents
	Build a JSF search page with EGL
	Introduction
	Lesson 1: Create a simple search page
	Create the web page
	Create the records
	Add the records to the page
	Lesson checkpoint

	Lesson 2: Add code for the search function
	Create a library for the search functions
	Add a SQL search function to the library
	Use the search function in the JSF Handler
	Bind the search function to the web page
	Change the CSS file
	Lesson checkpoint

	Lesson 3: Use the OR search condition
	Add the OR search code to the library
	Add a radio button group to the page
	Add the OR search code to the page
	Lesson checkpoint

	Lesson 4: Populate a combo box dynamically
	Add the code to the library
	Add code to the JSF handler
	Add the combo box to the page
	Lesson checkpoint

	Lesson 5: Customize the search results
	Add code to the library
	Add code to the page code file
	Create the customized data table
	Lesson checkpoint

	Lesson 6: Use type-ahead to prompt the user
	Lesson checkpoint

	Summary
	Resources
	Completed SearchLibrary.egl file after lesson 2
	Completed customersearch.egl file after lesson 2
	Completed SearchLibrary.egl file after lesson 3
	Completed customersearch.egl file after lesson 3
	Completed SearchLibrary.egl file after lesson 4
	Completed customersearch.egl file after lesson 4
	Completed SearchLibrary.egl file after lesson 5
	Completed customersearch.egl file after lesson 5
	Completed customersearchAJAX.egl file after lesson 6

	Appendix. Notices
	Trademarks

