
IBM Rational COBOL Runtime Guide for

zSeries

Version 6.0.1

SC31-6951-02

���

IBM Rational COBOL Runtime Guide for

zSeries

Version 6.0.1

SC31-6951-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 233.

Second Edition (March 2008)

This edition applies to Version 6.0.1 of IBM Rational COBOL Runtime for zSeries (product number 5655-R29) and to

all subsequent releases and modifications until otherwise indicated in new editions.

You can order publications through your IBM representative or the IBM branch office serving your locality.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Document vii

Who Should Use This Document vii

Terminology Used in This Document viii

Part 1. Preparing to Install 1

Chapter 1. Preparing for the Installation

of Rational COBOL Runtime 3

Chapter 2. Storage Requirements for

Rational COBOL Runtime 5

Virtual Storage Requirements 5

Rational COBOL Runtime Load Module Storage . . 5

Load Module Storage 5

COBOL Dynamic Storage 6

Rational COBOL Runtime Dynamic Storage 7

Storage Requirements for CICS 8

Disk Storage Requirements for Rational COBOL

Runtime 8

Work Database Space For Segmented Programs . . 8

Chapter 3. Installation Considerations 11

z/OS Batch Considerations 11

DL/I Considerations 11

DB2 Considerations 11

CICS Installation Considerations 11

DL/I Considerations 11

DB2 Considerations 12

Security Considerations 12

Monitoring and Tuning 12

CICS Utilities 12

Client / Server Processing Considerations . . . 12

Using the data Build Descriptor Option 13

Modifying CICS Resource Definitions 13

IMS Installation Considerations 14

IMS/ESA Exploitation 14

DB2 Considerations 14

Security Considerations 14

Monitoring and Tuning 14

IMS System Definition 15

IMS Control Region 15

Work Database 15

Chapter 4. Customizing Rational

COBOL Runtime 17

General Customization Considerations for z/OS . . 17

Customizing Rational COBOL Runtime 17

Security Considerations 17

Performance Considerations 17

Customizing Build Scripts 18

Modifying the Language Environment Runtime

Option 18

Using Generated Programs with PL/I Programs 18

Installation and Language-Dependent Options for

z/OS 18

Part 2. Administering on z/OS

Systems 25

Chapter 5. General System

Considerations for z/OS Systems . . . 27

Considerations that Affect Performance 27

Build Descriptor and Compiler Options 27

Modules in Memory 28

Files and Databases 28

Defining and Loading VSAM Program Data Files . . 28

Defining VSAM Data Sets 28

Loading Data in the Files 30

Support for DBCS terminals 31

Extended Addressing Considerations for Rational

COBOL Runtime 31

DB2 Considerations 32

Preparing Programs 32

Checking Access Authorization 32

Backing Up Data 32

Customizing Rational COBOL Runtime 32

Chapter 6. System Considerations for

CICS 33

Required File Descriptions 33

Segmented and Nonsegmented Processing 34

Using Transient Data Queues for Printing in z/OS

CICS 35

z/OS CICS terminal printing 35

Special Parameter Group for the FZETPRT

Program 36

CICS Entries for FZETPRT (DBCS only) 38

Using the New Copy Function 39

Specifying Recovery Options in the CICS Tables . . 39

Considerations that Affect Performance 40

Residency (Modules in Memory) Considerations 40

Work Database Temporary Storage Queue

Considerations 41

Terminal Printing 41

Using and Allocating Data Files in CICS 42

Defining and Loading VSAM Data Files 42

Using Remote Files 43

Defining Transient Data Queues 43

Considerations for Using DB2 in CICS 45

Associating DB2 Databases with CICS

Transactions 45

Recovery and Database Integrity Considerations 45

Considerations for Using DL/I in CICS 45

Recovery and Database Integrity Considerations 45

Setting up the National Language 46

© Copyright IBM Corp. 1994, 2006 iii

Chapter 7. System Considerations for

z/OS Batch 47

Required File Descriptions 47

Using VSAM Program Data Files in z/OS Batch . . 48

Considerations for Using DB2 in z/OS Batch . . . 48

Recovery and Database Integrity Considerations 48

Considerations for Using DL/I in z/OS Batch . . . 48

Defining the Program Specification Block (PSB) 48

Recovery and Database Integrity Considerations 49

Performance Considerations for z/OS Batch . . . 49

Runtime JCL 49

Chapter 8. System Considerations for

IMS 51

Required File Descriptions 51

Defining the Program Specification Block (PSB) . . 52

Processing Modes 53

Printing Considerations for IMS 53

Recovery and Database Integrity Considerations . . 54

Considerations that Affect Performance 54

Residency Considerations and the IMS Preload

Function 54

Database Performance 56

Limiting MFS Control Blocks 56

Monitoring and Tuning the IMS System 57

Considerations for Using DB2 in IMS 57

Recovery and Database Integrity Considerations 57

Checking Authorization 57

Considerations for Using DL/I in IMS 58

Recovery and Database Integrity Considerations 58

Maintaining the Work Database in IMS 58

Deleting Old Records from the Work Database . 58

Expanding the Work Database 60

Supporting Multiple Work Databases 63

Considerations for Message Format Services in IMS 64

Part 3. Preparing and Running

Generated Applications 69

Chapter 9. Output of Program

Generation on z/OS Systems 71

Allocating Preparation Data Sets 71

List of Program Preparation Steps after Program

Generation 73

Deploying generated code to USS 73

Output of Generation 74

Objects Generated for Programs 76

Link Edit File 77

CICS Entries 78

Objects Generated for Data Tables 78

Objects Generated for Form Groups 78

Chapter 10. z/OS Builds 81

z/OS Build Server 82

Starting a z/OS Build Server 84

Starting a USS Build Server 87

Stopping servers 87

Configuring a build server 87

Working with Build Scripts 87

Working with z/OS Build Scripts 87

Converting JCL to Pseudo-JCL 89

Chapter 11. Preparing and Running a

Generated Program in CICS 93

Modifying CICS Resource Definitions 93

Program Entries 93

Transaction Entries 94

Destination Control Table Entries (DCT) 94

File Control Table Entries (FCT) 95

Resource Control Table Entry (RCT) 95

Using Remote Programs, Transactions, or Files . 95

Modifying CICS Startup JCL 95

Making New Modules Available in the CICS

Environment 95

Making Programs Resident 96

Running Programs under CICS 96

Starting the Transaction in CICS 96

Controlling Diagnostic Information in the CICS

Environment 96

Printing Diagnostic Messages in the CICS

Environment 97

Chapter 12. Creating or Modifying

Runtime JCL on z/OS Systems 99

Tailoring JCL before Generation 99

Modifying Runtime JCL 100

Chapter 13. Preparing and Running

Generated Programs in z/OS Batch . . 103

Running Main Programs under z/OS Batch . . . 103

Examples of Runtime JCL for z/OS Batch

Programs 103

Running a Main Basic Program with No

Database Access 104

Running a Main Basic Program with DB2

Access 104

Running Main Basic Program with DL/I Access 104

Running a Main Basic Program with DB2 and

DL/I Access 105

Recovery and Restart for z/OS Batch Programs 106

Chapter 14. Preparing and Running

Generated Programs in IMS/VS and

IMS BMP 107

Modifying the IMS System Definition Parameters 107

Defining an Interactive Program 107

Defining Parameters for a Main Basic Program

as an MPP 108

Defining Parameters for a Batch-Oriented BMP

Program 109

Defining Parameters for a Transaction-Oriented

BMP Program 109

Creating MFS Control Blocks 109

Making New Modules Available in the IMS

Environment 110

Preloading Program, Print Services, and Data Table

Modules 110

Running Programs under IMS 111

iv IBM Rational COBOL Runtime Guide for zSeries

Starting a Main Program Directly 111

Starting a Main Transaction Program Using the

/FORMAT Command 111

Running Transaction Programs as IMS MPPs 111

Running Main Basic Programs as MPPs . . . 113

Running a Main Basic Program under IMS BMP 113

Examples of Runtime JCL for IMS BMP Programs 114

Running a Main Basic Program as an IMS BMP

Program 114

Running a Main Basic Program as an IMS BMP

Program with DB2 Access 115

Recovery and Restart for IMS BMP Programs . . . 116

Chapter 15. Moving Prepared

Programs to Other Systems from z/OS

Systems 117

Moving Prepared Programs To Another z/OS

System 117

Maintaining Backup Copies of Production Libraries 118

Part 4. Utilities 119

Chapter 16. Using Rational COBOL

Runtime Utilities for z/OS CICS

Systems 121

Using the CICS Utilities Menu 121

New Copy 122

Diagnostic Message Printing Utility 124

Diagnostic Control Options for z/OS CICS

Systems 125

Using the Parameter Group Utility for z/OS CICS

Systems 129

Chapter 17. Using Rational COBOL

Runtime Utilities for IMS Systems . . 135

IMS Diagnostic Message Print Utility 135

Part 5. Diagnosing Problems . . . 137

Chapter 18. Diagnosing Problems for

Rational COBOL Runtime on z/OS

Systems 139

Detecting Errors 139

Reporting Errors 139

Controlling Error Reporting 139

Error Reporting Summary 141

Using the Rational COBOL Runtime Error Panel 144

Printing Diagnostic Information for IMS 144

errorDestination Message Queue 144

IMS Log Format 145

Running the Diagnostic Print Utility 146

Printing Diagnostic Information for CICS 147

CICS Diagnostic Message Layout 147

Running the Diagnostic Print Utility 148

Analyzing Errors Detected while Running a

Program 148

Chapter 19. Finding Information in

Dumps 151

Rational COBOL Runtime ABEND Dumps . . . 151

COBOL or Subsystem ABEND Dumps 151

Information in the Rational COBOL Runtime

Control Block 152

Information in a Program, Print Services, or

DataTable Profile Block 152

How to Find the Current Position in a Program at

Time of Error 153

Chapter 20. Rational COBOL Runtime

Trace Facility 155

Enabling EGL Program Source-Level Tracing with

Build Descriptor Options 155

Activating a Trace 155

Activating a Trace Session for CICS or IMS/VS 156

Activating a Trace Session for z/OS Batch or

IMS BMP 159

Deactivating a Trace Session 161

Printing Trace Output 161

Printing the Trace Output in CICS 161

Printing the Trace Output in IMS/VS 161

Printing the Trace Output in z/OS Batch or IMS

BMP 161

Reporting Problems for Rational COBOL Runtime 161

Chapter 21. Common Messages

during Preparation for z/OS Systems . 163

Common Abend Codes during Preparation . . . 163

MFS Generation Messages 163

DB2 Precompiler and Bind Messages 164

COBOL Compilation Messages 164

Chapter 22. Common System Error

Codes for z/OS Systems 167

Common Return Codes 167

System Error Code Formats for

sysVar.errorCode 167

Common System Error Codes in

sysVar.errorCode 169

EGL Error Codes 170

Common SQL Codes 177

Common DL/I Status Codes 179

Common VSAM Status Codes 180

OPEN request type 180

CLOSE request type 180

GET/PUT/POINT/ERASE/CHECK/ENDREQ

request types 181

COBOL Status Key Values 181

Chapter 23. Rational COBOL Runtime

Return Codes, Abend Codes, and

Exception Codes 183

Return Codes 183

ABEND Codes 183

CICS Environments 183

IMS, IMS BMP, and z/OS Batch Environments 185

Exception Codes 186

Contents v

Chapter 24. Codes from Other

Products for z/OS Systems 187

Common System Abend Codes for All

Environments 187

LE Runtime Messages 188

Common COBOL Abend Codes 189

Common IMS Runtime Messages 189

Common IMS Runtime Abend Codes 190

Common CICS Runtime Messages 191

Common CICS Abend Codes 191

COBOL Abends under CICS 192

Part 6. Appendixes 193

Appendix. Rational COBOL Runtime

Messages 195

Message Format 195

ELA Messages 196

FZE messages 229

PRM messages 231

Notices 233

Trademarks 235

Index 237

vi IBM Rational COBOL Runtime Guide for zSeries

About This Document

This manual provides information about customizing and administering Rational

COBOL Runtime in the following environments:

v z/OS UNIX System Services (USS)

v z/OS Batch

v z/OS® CICS®

v IMS/VS

v IMS™ BMP

It also provides information to enable you to prepare EGL programs for running in

the z/OS environments.

For information about Java™ generation and runtimes for USS, refer to the EGL

Generation Guide.

Note: Hereafter in this book, IBM® Rational COBOL Runtime for zSeries is referred

to simply as “Rational COBOL Runtime.”

Who Should Use This Document

This manual is intended for system administrators and system programmers

responsible for installing, maintaining, and administering Rational COBOL

Runtime. It provides information to complete the following tasks:

v Manage system requirements

v Manage file utilization and conflicts

This manual is also intended for use by the programmers responsible for preparing

and running EGL-generated programs. It provides information on the following

items:

v Output of the generation process

v How to prepare generated programs for running

v Error codes

v How to use Rational COBOL Runtime utilities

v How to diagnose and report problems

Attention IBM VisualAge® Generator Users

Rational COBOL Runtime provides the required components to support

development and execution of programs generated by Enterprise Generation

Language (EGL) or VisualAge Generator Developer.

To understand how VisualAge Generator Developer is used with the Rational

COBOL Runtime, refer to your VisualAge Generator documentation for

information regarding the MVS™ environment. The VAGen MVS information

also applies to the Rational COBOL Runtime when it is used in the z/OS

environment.

© Copyright IBM Corp. 1994, 2006 vii

Attention CICS Users

Refer to the CICS documentation for the level of CICS installed on your

system for detailed information regarding CICS functions and operations.

Attention IMS Users

Refer to the IMS documentation for the level of IMS installed on your system

for detailed information regarding IMS functions and operations.

Attention: Accessing EGL help

To access EGL help in the development workbench, click Help →Help

Contents from the menu bar. When the help window appears, click EGL

documentation →Developing →Enterprise Generation Language.

Terminology Used in This Document

Unless otherwise noted in this publication, the following references apply:

v EGL refers to Enterprise Generation Language.

v CICS applies to Customer Information Control System.

v ELA.V6R0M1 represents the high-level qualifier used when Rational COBOL

Runtime is installed.

v “Region” or “CICS region” corresponds to CICS Transaction Server region.

v IMS/VS applies to Information Management System (IMS) and IMS Transaction

Manager systems.

v IMS applies to IMS and IMS Transaction Manager, and to message processing

program (MPP), IMS Fast Path (IFP), and batch message processing (BMP)

regions. IMS/VS is used to distinguish MPP and IFP regions from the IMS BMP

target environment.

v LE refers to Language Environment®.

v Workstation applies to a personal computer, not an AIX workstation.

viii IBM Rational COBOL Runtime Guide for zSeries

Part 1. Preparing to Install

Chapter 1. Preparing for the Installation of

Rational COBOL Runtime 3

Chapter 2. Storage Requirements for Rational

COBOL Runtime 5

Virtual Storage Requirements 5

Rational COBOL Runtime Load Module Storage . . 5

Load Module Storage 5

COBOL Dynamic Storage 6

Rational COBOL Runtime Dynamic Storage 7

Storage Requirements for CICS 8

Disk Storage Requirements for Rational COBOL

Runtime 8

Work Database Space For Segmented Programs . . 8

Chapter 3. Installation Considerations 11

z/OS Batch Considerations 11

DL/I Considerations 11

DB2 Considerations 11

CICS Installation Considerations 11

DL/I Considerations 11

DB2 Considerations 12

Security Considerations 12

Monitoring and Tuning 12

CICS Utilities 12

Client / Server Processing Considerations . . . 12

Using the data Build Descriptor Option 13

Modifying CICS Resource Definitions 13

Using Spool Files 13

Terminal Considerations 13

Temporary Storage 13

IMS Installation Considerations 14

IMS/ESA Exploitation 14

DB2 Considerations 14

Security Considerations 14

Monitoring and Tuning 14

IMS System Definition 15

IMS Control Region 15

Work Database 15

DL/I Work Database Considerations 15

DB2 Work Database Considerations 15

Chapter 4. Customizing Rational COBOL

Runtime 17

General Customization Considerations for z/OS . . 17

Customizing Rational COBOL Runtime 17

Security Considerations 17

Performance Considerations 17

Customizing Build Scripts 18

Modifying the Language Environment Runtime

Option 18

Using Generated Programs with PL/I Programs 18

Installation and Language-Dependent Options for

z/OS 18

© Copyright IBM Corp. 1994, 2006 1

2 IBM Rational COBOL Runtime Guide for zSeries

Chapter 1. Preparing for the Installation of Rational COBOL

Runtime

After selecting the production environments, do the following to prepare for the

installation of the Rational COBOL Runtime:

v Obtain a copy of the Program Directory for Rational COBOL Runtime for zSeries

(GI10-3377-00) (shipped with the product’s installation materials).

v Determine the hardware, software, and storage requirements for the production

environments selected.

v Install the hardware and software required by the Rational COBOL Runtime.

v Collect information before customization.

v Understand specific environment considerations before defining applications.

Before continuing with the current document, access the product Web site for

details on product updates and prerequisites:

http://www-306.ibm.com/software/awdtools/developer/business/

Copies of documents are also available from the IBM Publications Center:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

© Copyright IBM Corp. 1994, 2006 3

4 IBM Rational COBOL Runtime Guide for zSeries

Chapter 2. Storage Requirements for Rational COBOL

Runtime

The following sections give approximate estimates of Rational COBOL Runtime

storage use by type of storage.

Virtual Storage Requirements

A program requires virtual storage for the following:

v Rational COBOL Runtime load modules

v Application load modules

v COBOL dynamic area

v Rational COBOL Runtime dynamic area

CICS programs also use specialized CICS storage facilities.

Rational COBOL Runtime Load Module Storage

Most of the modules in the runtime function are not linked with the generated

programs. Only one copy of these modules needs to be available for use by all

programs generated with Enterprise Generation Language (EGL).

For z/OS, these modules can be in a library (STEPLIB or DFHRPL), or placed in

the link pack area (LPA). For CICS, you might want to make the modules resident.

For IMS, you might want to preload the modules. Refer to the Rational COBOL

Runtime program directory for a list of LPA eligible load modules.

 Table 1. Rational COBOL Runtime Reentrant Load Module Storage Estimates

Function Size RMODE

CICS base services 240 KB ANY

CICS base services, 24-bit addressing mode 8 KB 24

IMS/VS, IMS BMP, z/OS batch base services 255 KB ANY

IMS/VS, IMS BMP, z/OS batch base services, 24-bit

addressing mode

10 KB 24

Double-byte language ASCII/EBCDIC code

conversion tables

Chinese - 50 KB ANY

Load Module Storage

Load module storage is the storage required for generated COBOL programs. The

load modules are created by link-editing the generated COBOL programs produced

by EGL’s COBOL generation facility. The size of the load module can be

determined from the linkage editor module map. The size varies depending on the

functions utilized with the programs.

The load module storage includes all generated programs, data table programs,

form group format modules, and print services programs used by a batch job step

or transaction. The size of a load module also includes the small Rational COBOL

Runtime programs that are statically linked with the programs. The load modules

© Copyright IBM Corp. 1994, 2006 5

produced by link-editing the generated programs are reentrant. Each module can

be linked with RMODE(ANY) so that the load module can reside in extended

storage.

The size of the Rational COBOL Runtime modules linked with each generated

program, print services program, or data table program is shown in Table 2. These

estimates should be added to the application load module size to determine the

overall load module size.

 Table 2. Rational COBOL Runtime Statically Linked Module Storage Estimates

Environment Application

Print service

program

Data table

program

CICS 2.5 KB 1 KB 1 KB

IMS/VS 1 KB 1 KB 1 KB

z/OS batch and IMS BMP 1.3 KB 1 KB 1 KB

Note: Rational COBOL Runtime modules are not statically linked with a form group format

module.

Table 3 shows the storage estimates for external data structures.

 Table 3. Storage estimates for external data structures

Function Storage Required

Rational COBOL Runtime control block 1 KB

Environment is IMS/VS or IMS BMP 32 KB

IMS conversational processing SPA size plus 18 bytes

File type SEQ, VSAM, GSAM, SMSGQ, MMSGQ, or printer

that is SEQ or GSAM

96 bytes/file

COBOL Dynamic Storage

Application load modules acquire dynamic storage while they are running. The

COBOL runtime library requires this storage for application data structures such as

records, forms, and data tables. The storage includes both the internal and external

data structures.

The COBOL data build descriptor option determines whether to acquire storage

below the 16 MB line. The procedures shipped with the Rational COBOL Runtime

enable data build descriptor option to control the value for the COBOL DATA

compiler option. The default value of that build descriptor option is 31. Set data to

24 if an application calls another application or program that is linked as

AMODE(24). Data table program and print services programs must also use

data=24 if any program being used is linked AMODE(24).

When you generate z/OS batch or CICS programs with dynamic storage

requirements greater than 64 KB, the value data=31 is required.

The amount of storage required for internal data structures is listed in the compile

listing of the COBOL application when the MAP, OFFSET, or LIST compiler

options are used.

Applications that run outside of CICS use COBOL external data structures to share

information between applications in the same run unit. The following table shows

6 IBM Rational COBOL Runtime Guide for zSeries

the storage estimates for external data structures.

 Table 4. COBOL External Storage Utilization in Non-CICS Environments

Function Storage Required

Rational COBOL Runtime control block 1KB

Environment is IMS/VS or IMS BMP 32 KB

IMS conversational processing SPA size plus 18

bytes

File type SEQ, VSAM, GSAM, SMSGQ, MMSGQ or EZEPRINT SEQ,

GSAM

96 bytes/file

Rational COBOL Runtime Dynamic Storage

When applications are running, Rational COBOL Runtime allocates storage as

shown in Table 5. The initial program of the run unit determines where the shared

storage between Rational COBOL Runtime and the generated COBOL program is

allocated. If the initial program is generated with the data build descriptor option

set to 24 or is link-edited with AMODE(24), this storage is allocated below the 16

MB line. Otherwise, the storage is allocated with 31-bit addresses as shown in the

following table:

 Table 5. Rational COBOL Runtime Dynamic Storage Utilization

Function Storage Required

24- or 31-bit

Addressing mode

Persistent dynamic storage pool. The pool is

extended as needed in 32 KB increments.

Most transactions or jobs require only the

initial allocation. Segmented transactions in

CICS or using a DB2® work database in IMS

might require an extension.

32 KB increment 31

CICS - service program dynamic storage

stack

48 KB 31

CICS with DL/I - DL/I buffers 64 KB 31

IMS/VS, IMS BMP, z/OS batch - service

program dynamic storage stack

48 KB 24

IMS VS - DL/I buffers for path calls and

DL/I work database

64 KB based on data build

descriptor option

IMS BMP - DL/I buffers for path calls and

checkpoint input

96 KB based on data build

descriptor option

z/OS batch - DL/I buffers for path calls 64 KB based on data build

descriptor option

z/OS batch 64 KB 24

Chapter 2. Storage Requirements for Rational COBOL Runtime 7

Storage Requirements for CICS

Generated COBOL applications use the following CICS storage facilities:

 Table 6. Rational COBOL Runtime Use of CICS Storage Areas

Type of Storage Function Size

Transaction Work Area

(TWA)

Rational COBOL Runtime

Control Block. Offset in TWA

is specified in twaOffset

build descriptor option.

1 KB

COMMAREA Calls using COMMPTR 4 times the number of

parameters

COMMAREA Calls using COMMDATA Total length of all parameters

COMMAREA Remote calls Total length of all parameters,

plus 12

COMMAREA transfer to program that

passes a record

Length of record passed

COMMAREA transfer to transaction or

show statement that passes a

record

Length of record passed plus

10

Shared storage Shared data table contents,

Shared data table control block

For each table, length of data

table contents plus:

v 16 bytes for a message

table

v 8 bytes for other tables

Also, one 50-byte record per

shared data table.

Temporary storage queue

(main or auxiliary)

Save information during

converse or show statement

6 KB plus the length of all

records and forms

Disk Storage Requirements for Rational COBOL Runtime

The auxiliary disk storage space required to install files for the Rational COBOL

Runtime is approximately 2 MB. Additional disk space for user programs can vary.

Work Database Space For Segmented Programs

The space required for saving program status across a terminal I/O operation in

CICS is the sum of all data areas (maps and records) for all segmented programs

plus 6 KB per program. In CICS, disk space is used only if auxiliary temporary

storage is specified as the work database during program generation.

The space required for saving program status across a terminal I/O operation in

IMS/VS is the sum of the data areas (forms and records) for all segmented

programs plus 4 KB per program.

For example, suppose that program A has the following:

v Two 4 KB records

v Two 512-byte forms

v 1 KB of working storage

v 100 terminals running application A in segmented mode

8 IBM Rational COBOL Runtime Guide for zSeries

For CICS, the approximate required disk space is as follows:

(2 x 4 096 + 2 x 512 + 1 024 + 6 144) x 100 = 1 638 400

For IMS/VS, the approximate required disk space is

(2 x 4 096 + 2 x 512 + 1 024 + 4 096) x 100 = 1 433 600

If you are using a DL/I work database with IMS/VS, the storage required per

terminal is inserted in 56 KB increments to localize access for all segments accessed

on a single-path call. An additional 56 KB increment is required when help forms

or extended error screens are used. A good estimate for work database size is 112

KB per active terminal.

Chapter 2. Storage Requirements for Rational COBOL Runtime 9

10 IBM Rational COBOL Runtime Guide for zSeries

Chapter 3. Installation Considerations

The following sections describe installation considerations for the Rational COBOL

Runtime.

z/OS Batch Considerations

This section discusses some general considerations when installing EGL-generated

programs in the z/OS batch environment.

DL/I Considerations

If the installation has programs that use DL/I databases, follow these steps:

1. Install the correct version of IMS. For more information on the correct version

of IMS, see Program Directory for Rational COBOL Runtime for zSeries. This

publication comes with the product or can be accessed from the IBM

Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Define databases and PSBs to IMS as described in the IMS utilities reference

document.

3. Follow the optional DL/I-related steps for Rational COBOL Runtime

installation as described in the Program Directory for Rational COBOL Runtime for

zSeries.

DB2 Considerations

If the installation has programs that use relational databases, do the following:

1. Install the correct version of DB2. For more information on the correct version

of DB2, see Program Directory for Rational COBOL Runtime for zSeries. This

publication comes with the product or can be accessed from the IBM

Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the programs will access.

3. Follow the optional DB2-related steps for Rational COBOL Runtime installation

as described in the Program Directory for Rational COBOL Runtime for zSeries.

4. Define DB2 plans or packages as described in the DB2 installation and

operation guides.

CICS Installation Considerations

This section discusses some general considerations when installing EGL-generated

programs in the CICS environment.

DL/I Considerations

If the installation has programs that gain access to DL/I databases, you must do

the following:

1. Install the correct version of IMS. For more information on the correct version

of IMS, see Program Directory for Rational COBOL Runtime for zSeries. This

publication comes with the product or can be accessed from the IBM

Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

© Copyright IBM Corp. 1994, 2006 11

2. Define databases and PSBs to IMS as described in the IMS utilities reference

document.

3. Follow the optional DL/I-related steps for Rational COBOL Runtime

installation as described in the Program Directory for Rational COBOL Runtime for

zSeries.

4. Add DL/I support to CICS and define databases and PSBs to CICS as

described in the resource definition and installation and operation guides or in

the IMS database control guide.

DB2 Considerations

If the installation has programs that gain access to relational databases, do the

following:

1. Install the correct version of DB2. For more information on the correct version

of DB2, see Program Directory for Rational COBOL Runtime for zSeries. This

publication comes with the product or can be accessed from the IBM

Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the programs use.

3. Follow the optional DB2-related steps for Rational COBOL Runtime installation

as described in the Program Directory for Rational COBOL Runtime for zSeries.

4. Add DB2 support to CICS and define DB2 plans or packages to CICS as

described in the DB2 system administration guides.

Security Considerations

CICS provides access control to resources (such as data files and programs) and

transactions. This access can be controlled by the user or by the terminal.

CICS resources (such as data files, programs, destinations, journals, and temporary

storage) can be assigned a security lock value. CICS users are assigned one or

more key values. If a user is running a CICS transaction that is defined for

resource security checking, the user’s keys are checked every time a resource is

requested. If the user does not have a key that matches the lock, access is denied

by ending the transaction with an AEY7 ABEND code.

Monitoring and Tuning

Use CICS monitoring facilities to get information about CICS tasks.

Refer to the performance guide for your release of CICS for more information.

CICS Utilities

In the CICS environment, the Rational COBOL Runtime includes a set of utilities to

assist in managing the error diagnosis and control facilities of the Rational COBOL

Runtime environment. These utilities are EGL COBOL programs. See “Using the

CICS Utilities Menu” on page 121 for more information about these utilities.

Client / Server Processing Considerations

EGL programs can use the benefits of client / server processing in the CICS

environment. Client / server programs are developed like any other EGL program.

Client / server processing is built on the call, sysLib.startTransaction(), and file

I/O statements. You can define a program so that it calls a program on a remote

CICS system. In addition, if the runtime environment is CICS, you can define a

program so that it starts an asynchronous transaction on a remote CICS system or

12 IBM Rational COBOL Runtime Guide for zSeries

gains access to a file on a remote CICS system. Refer to the callLink, asynchLink,

and fileLink elements of linkage options part in the EGL Generation Guide for

additional information about remote calls, remote asynchronous transactions, and

remote file access.

Using the data Build Descriptor Option

Set the data build descriptor option to 24 on generated COBOL programs to enable

calls from the generated program to programs using 24-bit addresses, as long as

the length of the COBOL dynamic storage (as defined in the COBOL

working-storage section) required for the application is less than 64 KB. Programs

whose dynamic storage requirements are greater than 64 KB must be compiled

with the data build descriptor option set to 31. Otherwise, COBOL ends the

program with a 1009 ABEND code.

Note: The build scripts and procedures shipped with the Rational COBOL

Runtime enables the data build descriptor option to control the value for the

COBOL DATA compiler option. The data build descriptor option is set to 31

as the default for the CICS environment.

Modifying CICS Resource Definitions

CICS uses resource definitions to identify startup parameters, transactions,

programs, files, databases, transient data destinations, and system locations for

proper operation. The application developer must add or modify these definitions

to correctly identify all objects to be used in the new or changed application.

To generate model resource definition online (RDO) program and transaction

definitions, specify the cicEntiries build descriptor option with a value of RDO.

The CICS system initialization table needs to include EXEC=YES.

Add any transaction that invokes a program that uses DB2 to the resource control

table (RCT) with the appropriate plan name. You can also use a resource definition.

Using Spool Files

To use the spool files, include the SPOOL=YES parameter in the System

Initialization Table (SIT).

Terminal Considerations

Terminals used with EGL must have their alternate screen size either specified

correctly in the alternate screen parameter of the TYPETERM definition, or omitted

so the default of the primary screen size is used. An alternate screen size

specification of (0,0) is not valid.

Any terminal defined as UCTRAN=YES in the TYPETERM definition and used for

running pseudoconversational transactions might give different results than a

terminal that is defined without UCTRAN=YES.

Any terminal used in a program that is the target of a transfer to transaction

statement must have ATI=YES and TTI=YES specified in the TYPETERM

definition.

Temporary Storage

Temporary storage queues used by the Rational COBOL Runtime must be defined

as nonrecoverable. These queues start with X'EE'.

Chapter 3. Installation Considerations 13

IMS Installation Considerations

This section discusses some general considerations when installing EGL-generated

programs in the IMS environment.

IMS/ESA Exploitation

The procedures shipped with the Rational COBOL Runtime cause the generated

COBOL programs to be compiled with the data=″31″ build descriptor option and

linked in AMODE(31) and RMODE(ANY). If the program calls another program

that is linked with AMODE(24), then the data=″24″ build descriptor option is

required.

You can link the generated COBOL program to run below the 24-bit line. However,

if AMODE(24) is used to link the program, you must use the data=″24″ build

descriptor option for the following situations:

v For a program that calls another program that is linked as AMODE(24)

v For the first program in the run unit, if any generated program in the run unit is

linked as AMODE(24) or if a non-EGL program that uses DL/I is linked as

AMODE(24)

v For a table or form services program, if any program being used is linked as

AMODE(24)

DB2 Considerations

If the installation has programs that gain access to relational databases, do the

following:

1. Install the correct version of DB2. For more information on the correct version

of DB2, see Program Directory for Rational COBOL Runtime for zSeries. This

publication comes with the product or can be accessed from the IBM

Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the programs will access.

3. Follow the optional DB2-related steps for Rational COBOL Runtime installation

as described in the Program Directory for Rational COBOL Runtime for zSeries.

4. Add DB2 support to IMS and define DB2 plans or packages to IMS as

described in the DB2 system administration guide.

Security Considerations

Resource Access Control Facility (RACF®) can be used to control users authority to

each transaction.

Monitoring and Tuning

Potential performance problems can be tracked before they occur by checking

processing statistics on a regular basis. The following are some of the statistics to

monitor:

v Use the IMS monitor facilities to check transaction utilization. Consider

preloading applications or groups of applications that are frequently used.

v Use the IMS database monitor facilities to check how effectively the databases

are performing and using space.

Refer to the IMS system administration document and the database administration

guide for the release of IMS for additional information on monitoring the IMS

online system and DL/I databases.

14 IBM Rational COBOL Runtime Guide for zSeries

IMS System Definition

If you plan to use IMS, define all PSBs and transactions in the IMS system

definition. In addition, define DL/I application databases.

IMS Control Region

You might need to review the values for the following:

v PSB work area pool (PSBW parameter)

v FORMAT pool (FBP parameter)

v MFS test area (MFS parameter)

v Communications input/output area (TPDP parameter)

In addition, if a DL/I work database is used, the work database must be added to

either the control region JCL or to the dynamic allocation table.

Work Database

The work database is used to save the status of an EGL program during a

converse statement, and to pass information during certain types of

program-to-program message switches. The work database can be either a DL/I

database or a DB2 table. The application developer specifies the workDBType

build descriptor option when generating a program to determine which type of

database is to be used. A DL/I or DB2 work database is used only for Rational

COBOL transaction applications that are generated for the IMS/VS target

environment. In general, a DL/I work database performs better than a DB/2 work

database.

Multiple DL/I or DB2 work databases can be installed. Use separate databases for

each application system to improve performance or data availability.

DL/I Work Database Considerations

If you plan to use a DL/I implementation for the work database, you might need

to tailor the database description (DBD) before running the job that creates and

initializes the DL/I work database.

DB2 Work Database Considerations

If you plan to use a DB2 implementation for the work database, review the

database definition before running the job that initializes the DB2 work database. A

DB2 synonym needs to be created for each user and program gaining access to the

DB2 work database.

The DB2 work database requires a 32 KB page size. If a DB2 work database is

used, you might need to increase the allocation of the 32 KB buffers. To increase

the allocation of buffers, modify and assemble the DB2 parameter module (default

is DSNZPARM). Refer to the DB2 documents for the system for additional

information.

If you select DB2, a DB2 plan for each transaction is needed even if the EGL

program itself does not require DB2.

If you select DB2 and if the Rational COBOL Runtime needs maintenance applied

to the module that handles the DB2 work database access, bind the DB2 plans

again for all transactions that use this database.

There are also considerations with the DB2 authorization used by the IMS program

that is gaining access to the DB2 work database. For example, authorization needs

to be granted to LTERM and a synonym needs to be created.

Chapter 3. Installation Considerations 15

16 IBM Rational COBOL Runtime Guide for zSeries

Chapter 4. Customizing Rational COBOL Runtime

Before starting the customization process, determine the following:

v The target environments that application developers specify during generation

v Whether the programs use relational databases, hierarchical databases, or both.

v The IMS work database and terminal types

v The national language support requirements

General Customization Considerations for z/OS

The following sections discuss some general considerations for running

EGL-generated programs in the supported z/OS environments.

Customizing Rational COBOL Runtime

Customizing Rational COBOL Runtime consists of performing some of the same

procedures used to install the product on the system. These procedures are

described in the Program Directory for Rational COBOL Runtime for zSeries.

Security Considerations

The Rational COBOL Runtime does not provide security services. Standard system

or database manager security functions can be used with generated COBOL

programs in the same way that they are used with customer-developed COBOL

programs.

For example, if the EGL programs use DB2, define DB2 plans and give run

authority to those users that are authorized to use the programs associated with

the plan. The Resource Access Control Facility (RACF) can also be used to grant

users authority to read or update files.

Performance Considerations

Other chapters in this book provide detailed information on considerations that

affect performance. See the following chapters for information on these

performance-related topics and others:

 Performance Topic Where to Find Info

Build descriptor options v Chapter 5, “General System Considerations

for z/OS Systems,” on page 27

Placing Rational COBOL Runtime product

and generated application modules in

memory

v Chapter 5, “General System Considerations

for z/OS Systems,” on page 27

Residency and work-database considerations v Chapter 6, “System Considerations for

CICS,” on page 33

v Chapter 8, “System Considerations for

IMS,” on page 51

Monitoring and tuning tools v Chapter 6, “System Considerations for

CICS,” on page 33

v Chapter 8, “System Considerations for

IMS,” on page 51

© Copyright IBM Corp. 1994, 2006 17

Customizing Build Scripts

The Rational COBOL Runtime includes build scripts used for preparing generated

programs for running. These build scripts can be customized to meet any data set

naming conventions. Refer to the EGL Generation Guide for additional information.

Modifying the Language Environment Runtime Option

In the non-CICS environments, generated COBOL programs rely on COBOL

working storage being initialized to binary zeros to determine whether COBOL

Runtime is initialized. For Language Environment (LE), this is done by specifying

STORAGE=((00)) in the CEEDOPT CSECT.

The modified runtime options modules must be in a library allocated to the

STEPLIB or placed in the link pack area or in a library managed by the Virtual

Lookaside Facility and Library Lookaside features of z/OS for each non-CICS

z/OS environment. If those modules are in a separate library, the library must

precede the library that contains the unmodified modules.

Alternatively, these options can be set for each program by creating a CEEUOPT

load module with these options set as listed above and link-editing this modoule

with each generated COBOL program. Refer to the Language Environment

documentation for more information on creating and using a CEEUOPT module to

set runtime options.

Using Generated Programs with PL/I Programs

If PL/I programs are used with generated COBOL programs in a non-CICS

environment, you must generate the COBOL program to invoke the PL/I program

using a static COBOL call. This requires the PL/I programs to be linked with the

COBOL program in the same load module.

If PL/I programs are used with generated COBOL programs in the CICS

environment, you must generate the COBOL program to call the PL/I program

using the CICS LINK command. This is the default linkage for the CICS

environment. The calling and called programs must not be linked together for the

CICS environment.

Refer to the EGL Generation Guide for additional information.

Installation and Language-Dependent Options for z/OS

The following are the installation options required for z/OS. To change the

defaults, use the steps outlined in the Program Directory for Rational COBOL

Runtime for zSeries (GI10-3377-00) to specify new settings. This document also

provides instructions on customizing the Runtime Default Options and Language

Dependent Options.

 Table 7. Installation options for z/OS

Question Default Your Selection

Rational COBOL Runtime Default

Options

Default language code ENU _____________

Bypass date edit on EOF NO _____________

Rational COBOL Runtime trace buffer

size

64 _____________

18 IBM Rational COBOL Runtime Guide for zSeries

Table 7. Installation options for z/OS (continued)

Question Default Your Selection

CICS¹ temporary storage control

interval size

16 _____________

The next table lists the national languages that are supported for these purposes:

v To present Rational COBOL Runtime messages on zSeries

v To present program-specific user messages based on the EGL msgTablePrefix

property.

The code page for the language you specify must be loaded on your target

platform.

 Table 8. National language codes

Code Languages

CHS Simplified Chinese

CHT Traditional Chinese

DES Swiss German

DEU German

ENP Uppercase English

ENU US English

ESP Spanish

FRA French

ITA Italian

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

The following are the language-dependent options required for z/OS. One code is

needed for each national language you install. The default values vary for each

language.

 Table 9. Rational COBOL Runtime National Language Dependent options for z/OS

Question Default Your Selection

National language code (US English) ENU _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNENU _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character . _____________

Chapter 4. Customizing Rational COBOL Runtime 19

Table 9. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Simplified Chinese) CHS _____________

Long Gregorian date format YYYY-MM-DD _____________

Short Gregorian date format YY-MM-DD _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNCHS _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Traditional Chinese) CHT _____________

Long Gregorian date format YYYY-MM-DD _____________

Short Gregorian date format YY/MM/DD _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNCHT _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Swiss German) DES _____________

Long Gregorian date format DD.MM.YYYY _____________

Short Gregorian date format DD.MM.YY _____________

Long Julian date format YYYY.DDD _____________

20 IBM Rational COBOL Runtime Guide for zSeries

Table 9. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection

Short Julian date format YY.DDD _____________

Conversion table name ELACNDES _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (German) DEU _____________

Long Gregorian date format DD.MM.YYYY _____________

Short Gregorian date format DD.MM.YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNDEU _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator !

National language code (Spanish) ESP _____________

Long Gregorian date format DD/MM/YYYY _____________

Short Gregorian date format DD/MM/YY _____________

Long Julian date format DDD/YYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNESP _____________

Positive response character string SI _____________

Negative response character string NO _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

Chapter 4. Customizing Rational COBOL Runtime 21

Table 9. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection

SQL host column indicator ! _____________

National language code (French) FRA _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNFRA _____________

Positive response character string OUI _____________

Negative response character string NAN _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Italian) ITA _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNITA _____________

Positive response character string SI _____________

Negative response character string NO _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Japanese) JPN _____________

Long Gregorian date format YYY-MM-DD _____________

Short Gregorian date format YY-MM-DD _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNJPN _____________

Positive response character string YES _____________

22 IBM Rational COBOL Runtime Guide for zSeries

Table 9. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection

Negative response character string NO _____________

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Korean) KOR _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNKOR _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Brazilian Portuguese) PTB _____________

Long Gregorian date format DD/MM/YYYY _____________

Short Gregorian date format DD/MM/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNPTB _____________

Positive response character string SIM _____________

Negative response character string NAO _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

Chapter 4. Customizing Rational COBOL Runtime 23

Upper case English (ENP) is also supported. It has the same defaults as ENU,

except the conversion table name is ELACNENP.

24 IBM Rational COBOL Runtime Guide for zSeries

Part 2. Administering on z/OS Systems

Chapter 5. General System Considerations for

z/OS Systems 27

Considerations that Affect Performance 27

Build Descriptor and Compiler Options 27

Modules in Memory 28

Files and Databases 28

Defining and Loading VSAM Program Data Files . . 28

Defining VSAM Data Sets 28

Defining an Alternate Index 29

Loading Data in the Files 30

Support for DBCS terminals 31

Extended Addressing Considerations for Rational

COBOL Runtime 31

DB2 Considerations 32

Preparing Programs 32

Checking Access Authorization 32

Backing Up Data 32

Customizing Rational COBOL Runtime 32

Chapter 6. System Considerations for CICS . . 33

Required File Descriptions 33

Segmented and Nonsegmented Processing 34

Using Transient Data Queues for Printing in z/OS

CICS 35

z/OS CICS terminal printing 35

Special Parameter Group for the FZETPRT

Program 36

PRTBUF Parameter 37

PRTMPP Parameter 37

PRTTYP Parameter 38

FORMFD Parameter 38

CICS Entries for FZETPRT (DBCS only) 38

Using the New Copy Function 39

Specifying Recovery Options in the CICS Tables . . 39

Considerations that Affect Performance 40

Residency (Modules in Memory) Considerations 40

Virtual Storage Considerations and Residency 40

Work Database Temporary Storage Queue

Considerations 41

Terminal Printing 41

Using and Allocating Data Files in CICS 42

Defining and Loading VSAM Data Files 42

Adding the Job Control Statements 42

Adding the File Name to the CICS File

Control Table 42

Using Remote Files 43

Defining Transient Data Queues 43

Defining Intrapartition Transient Data . . . 44

Defining Extrapartition Transient Data . . . 44

Considerations for Using DB2 in CICS 45

Associating DB2 Databases with CICS

Transactions 45

Recovery and Database Integrity Considerations 45

Considerations for Using DL/I in CICS 45

Recovery and Database Integrity Considerations 45

Setting up the National Language 46

Chapter 7. System Considerations for z/OS

Batch 47

Required File Descriptions 47

Using VSAM Program Data Files in z/OS Batch . . 48

Considerations for Using DB2 in z/OS Batch . . . 48

Recovery and Database Integrity Considerations 48

Considerations for Using DL/I in z/OS Batch . . . 48

Defining the Program Specification Block (PSB) 48

Recovery and Database Integrity Considerations 49

Performance Considerations for z/OS Batch . . . 49

Runtime JCL 49

Chapter 8. System Considerations for IMS . . . 51

Required File Descriptions 51

Defining the Program Specification Block (PSB) . . 52

Processing Modes 53

Printing Considerations for IMS 53

Recovery and Database Integrity Considerations . . 54

Considerations that Affect Performance 54

Residency Considerations and the IMS Preload

Function 54

Preloading Rational COBOL Runtime Modules 55

Loading Rational COBOL Runtime Modules

into the Link Pack Area 55

Preloading Generated Programs 56

Database Performance 56

Limiting MFS Control Blocks 56

Monitoring and Tuning the IMS System 57

Considerations for Using DB2 in IMS 57

Recovery and Database Integrity Considerations 57

Checking Authorization 57

Considerations for Using DL/I in IMS 58

Recovery and Database Integrity Considerations 58

Maintaining the Work Database in IMS 58

Deleting Old Records from the Work Database . 58

DL/I Work Database 59

DB2 Work Database 59

Expanding the Work Database 60

DL/I Work Database 60

DB2 Work Database 61

Supporting Multiple Work Databases 63

DL/I Work Databases 63

DB2 Work Databases 63

Considerations for Message Format Services in IMS 64

© Copyright IBM Corp. 1994, 2006 25

26 IBM Rational COBOL Runtime Guide for zSeries

Chapter 5. General System Considerations for z/OS Systems

This chapter describes the system requirements and considerations for

administering the Rational COBOL Runtime in all of the supported z/OS

environments.

This chapter contains the following topics:

v Considerations that affect performance

v Defining and loading VSAM program data files

v Support for DBCS terminals

v Extended addressing considerations for Rational COBOL Runtime

v DB2 considerations

v Backing up data

v Customizing Rational COBOL Runtime

Considerations that Affect Performance

Specifying certain build descriptor and compiler options and making reentrant

programs resident in memory can affect the performance of EGL-generated

programs.

Build Descriptor and Compiler Options

Setting the following build descriptor options may improve runtime performance:

v checkNumericOverflow="NO"

v fillWithNulls="NO"

v initIORecords="NO"

v initNonIOData="NO"

v leftAlign="NO"

v math="COBOL"

v setFormItemFull="NO"

v spacesZero="NO"

v sqlErrorTrace="NO"

v sqlIOErrorTrace="NO"

v statementTrace="NO"

v validateMixedItems="NO"

v validateOnlyIfModified="YES"

Specifying the following compiler options also may improve runtime performance:

v NOFDUMP

v NOSSRANGE

v NOTEST

v OPT

Note: Refer to the Enterprise COBOL for z/OS documentation for details on these

compiler options.

Setting the following build descriptor options may improve generation

performance:

v sqlStatements="YES"

v debugTrace="NO"

© Copyright IBM Corp. 1994, 2006 27

Modules in Memory

Placing load modules in memory can improve performance by reducing the

number of I/O operations (EXCPs). Load modules can be placed in memory by

using the features of z/OS or the features of the environment in which you are

running. Refer to the appropriate performance consideration sections for more

detailed information about improving performance in a particular runtime

environment.

General z/OS* methods to place load modules in memory are listed below:

v Place modules in the link pack area (LPA). Some of the modules that are

shipped with the Rational COBOL Runtime are reentrant and can be placed in

the LPA. Refer to the Program Directory for Rational COBOL Runtime for zSeries

(GI10–3241–00) for information about modules that are reentrant and LPA

eligible.

Generated programs, online print-service programs, form group format modules,

and shared data tables are also reentrant and can be included in the LPA.

v Manage the Rational COBOL Runtime data sets and the data sets containing the

generated programs, online print services programs, form group format

modules, and shared data tables. Use the Virtual Lookaside Facility (VLF) and

the Library Lookaside (LLA) features of z/OS. Those features can place both the

load modules and the partitioned data set (PDS) directories in memory.

Note: The STEPLIB library is searched first. For the z/OS methods, the load

module (for LPA) or the data set (for VLF/LLA) cannot be contained in the

STEPLIB concatenation list.

Files and Databases

Standard tuning techniques (such as buffering) can be used with files and

databases used by generated COBOL programs.

Defining and Loading VSAM Program Data Files

This section describes how to define and load VSAM data sets for use as program

data files in the CICS, IMS BMP, or z/OS batch environment. The section contains

the following information:

v Defining VSAM data sets

v Defining an alternate index

v Loading data into the files

Defining VSAM Data Sets

VSAM data files can be serial (ESDS), relative (RRDS), or indexed (KSDS) files. Use

the IDCAMS program to define a user VSAM data file. Figure 1 on page 29 shows

example JCL that can be used to define the VSAM files.

28 IBM Rational COBOL Runtime Guide for zSeries

Defining an Alternate Index

An alternate index provides you with another way of gaining access to the records

in a given KSDS file. Using a secondary key eliminates the need for you to keep

several copies of the same information organized in different ways for different

programs.

To gain access from an alternate index to the file through its prime index (base

cluster), you must define a path to it. The path sets up an association between the

alternate index and the base cluster, allowing the records in the data set to be

available to you in different sequences. The alternate index is built after the base

cluster is defined.

//DEFVSAM JOB ...

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* THE FOLLOWING SAMPLE DEFINES A */

 /* VSAM INDEXED FILE */

 DEFINE CLUSTER (NAME(ELA1.USER.KSDS) -

 VOL(xxxxxx) -

 CYLINDERS(pp ss) -

 KEYS(l d) -

 RECORDSIZE(aaa mmm) -

 INDEXED)

 /* THE FOLLOWING SAMPLE DEFINES A VSAM */

 /* NUMBERED RELATIVE RECORD FILE */

 DEFINE CLUSTER (NAME(ELA1.USER.RRDS) -

 VOL(xxxxxx) -

 CYLINDERS(pp ss) -

 RECORDSIZE(aaa mmm) -

 NUMBERED)

 /* THE FOLLOWING SAMPLE DEFINES A VSAM */

 /* ESDS FILE */

 DEFINE CLUSTER (NAME(ELA1.USER.ESDS) -

 VOL(xxxxxx) -

 CYLINDERS(pp ss) -

 RECORDSIZE(aaa mmm) -

 NONINDEXED)

where:

xxxxxx Specifies a valid volume serial number

pp Specifies the primary number of cylinders to be allocated

ss Specifies the secondary number of cylinders to be allocated

l Specifies the length of the key

d Specifies the offset of the key

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 1. Defining VSAM Data Files

Chapter 5. General System Considerations for z/OS Systems 29

Figure 2 shows example IDCAMS definition commands for the base cluster and the

alternate index cluster for an indexed file.

Loading Data in the Files

If you are using a VSAM indexed file (KSDS) and you want to open it for input

only, initialize the file with at least one record. The file must have at least one

record because a VSAM restriction prevents a file from being opened for input if

the file is empty. While an empty file might be opened for output or both input

and output, it must contain data to be opened for input.

There are several ways that you can put data into a file. One way is to create an

EGL program that uses an add statement to add records to an empty serial file.

Once the program ends, you can use the IDCAMS REPRO command to copy the

serial file into an indexed file.

Another way is to write a program that uses an add statement to add records to an

empty indexed file. You must close the file in order to make the new records

accessible.

Another way to initialize a VSAM KSDS file is to use a utility program shipped

with the Rational COBOL Runtime product. This utility can be used to initialize

the key of a VSAM KSDS file. Figure 3 on page 31 shows how to initialize a VSAM

KSDS file by setting the key to hexadecimal zeros.

DEFINE CLUSTER (NAME(VSAM.KSDS.BASE.FILE) -

 VOLUMES(xxxxxx) -

 CYLINDERS(pp ss) -

 KEYS(l d) -

 RECORDSIZE(aaa mmm) -

 INDEXED)

DEFINE ALTERNATEINDEX (NAME(VSAM.KSDS.ALT.INDEX) -

 KEYS(l d) -

 CYLINDERS(pp ss) -

 RELATE(VSAM.KSDS.BASE.FILE) -

 VOLUMES(xxxxxx))

DEFINE PATH(NAME(VSAM.KSDS.ALT.INDEX.PATH) -

 PATHENTRY(VSAM.KSDS.ALT.INDEX))

BLDINDEX INDATASET(VSAM.KSDS.BASE.FILE) -

 OUTDATASET(VSAM.KSDS.ALT.INDEX)

where:

xxxxxx Specifies a valid volume serial number

pp Specifies the primary number of cylinders to be allocated

ss Specifies the secondary number of cylinders to be allocated

l Specifies the key length

d Specifies the key displacement

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 2. Defining the Base Cluster and the Alternate Index Cluster

30 IBM Rational COBOL Runtime Guide for zSeries

You can also use the IDCAMS utility to load initial data into an indexed file.

Figure 4 shows an example of loading data into a VSAM KSDS file. The data

contained in the USER.KSDS.INPUT file is loaded into the USER.KSDS data set.

Support for DBCS terminals

Rational COBOL Runtime provides support for the IBM Personal System/55 and

the IBM 5550 family of terminals (emulating an IBM 3270 device). In addition to

the basic hardware, this support uses character set F8 and four hardware attributes

for double-byte character set (DBCS). The extended attributes are shift-out (SO)

and shift-in (SI) enable, field outlining, color, and extended highlighting.

For the CICS environment, Rational COBOL Runtime sends hardware attributes to

the terminal only if the terminal supports them. The attributes are ignored if the

terminal does not support them.

The IMS environments use the Message Format Services (MFS) to support terminal

and printer maps. During generation, you can use the mfsDevice ,

mfsExtendedAttr, and mfsIgnore build descriptor options to specify device

characteristics for all devices that use a form group. Refer to the EGL Generation

Guide for more details. Unpredictable results can occur if attributes are used that

are not supported by the hardware. See “Considerations for Message Format

Services in IMS” on page 64 for additional information concerning the message

format services options.

Extended Addressing Considerations for Rational COBOL Runtime

Some of the code provided with Rational COBOL Runtime can run in extended

addressing mode. This section describes considerations for using the extended

addressing mode.

Most of the code shipped with Rational COBOL Runtime runs in 31-bit addressing

mode and resides above the 16MB line.

Most of the storage acquired by Rational COBOL Runtime is above the 16MB line

unless the first EGL program in the run unit is link-edited with AMODE(24) or

generated with the data build descriptor option set to 24. The AMODE(24)

program attribute specifies that the program runs in 24–bit addressing mode.

//LOAD JOB...

//JOBLIB DD DSN=ELA.VxRxM0.SELALMD,DISP=SHR

//INITK EXEC PGM=FZEZREBO,PARM=’I,KSDS’

//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,BLKSIZE=121,RECFM=FB)

//KSDS DD DSN=USER.KSDS,DISP=SHR

//SYSIN DD DUMMY

Figure 3. Initializing a VSAM KSDS File

//JOB KSDSLOAD

//LOAD EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 REPRO INDATASET(’USER.KSDS.INPUT’) OUTDATASET(’USER.KSDS’)

/*

//

Figure 4. Loading a VSAM KSDS File

Chapter 5. General System Considerations for z/OS Systems 31

DB2 Considerations

This section discusses preparing programs and checking access authorization to

database resources when using DB2 on z/OS systems.

Preparing Programs

Before running a program, the SQL* statements need to be analyzed and prepared.

If you use DB2, you also need to bind the DB2 program plan.

Note: Both of the above tasks are performed by the Rational COBOL Runtime

build process.

If your programs run in the z/OS batch or IMS BMP environments, you might also

need to tailor the runtime JCL templates. Refer to the EGL Generation Guide for

additional information on tailoring runtime JCL templates.

Checking Access Authorization

The database manager checks whether program users have the authority to access

tables or run programs. The type of checking done varies depending on your

system and the processing mode.

When accessing DB2 in generated COBOL programs, program users must be

authorized to run the corresponding DB2 program plan and package.

DB2 requires an authorization identifier to ensure that program users have the DB2

authority to perform operations on the database and tables. The type of

authorization checking done depends on whether the processing mode is static or

dynamic. The authorization identifier of the program developer performing the

BIND command is used for static SQL statements; the authorization identifier of

the program user is used for dynamic SQL statements. Generated COBOL

programs use dynamic SQL statements in either of two cases:

v The SQL statement is in an EGL prepare statement

v The EGL statement uses an SQL record, and a host variable identifies the SQL

table name associated with that record

Any other SQL statements in the program are static statements. Refer to the DB2

administration manual for more information on the various ways the authorization

identifier value is set.

Backing Up Data

You should regularly back up your data. This includes all files related to Rational

COBOL Runtime, private libraries, user-created data files, and user load libraries.

System services are provided to back up and restore user libraries.

Customizing Rational COBOL Runtime

Customizing Rational COBOL Runtime consists of performing some of the same

procedures used to install the product on the system. These procedures are

described in the Program Directory for Rational COBOL Runtime for zSeries®

(GI10-3377-00). The program directory contains information on changing system

options

32 IBM Rational COBOL Runtime Guide for zSeries

Chapter 6. System Considerations for CICS

This chapter provides additional system requirements and considerations for

administering Rational COBOL Runtime in the CICS environment.

The following information is discussed:

v Required file descriptions

v Segmented and nonsegmented processing

v Using transient data queues for printing

v z/OS CICS terminal printing

v Using the new copy function

v Specifying recovery options in th eCIC tables

v Considerations that affect performance

v Using and allocating data files

v Considerations for using DB2

v Considerations for using DL/I

v Setting up the National Language

Required File Descriptions

Rational COBOL Runtime requires the following files:

File Name

Description

ELAD This transient data queue is the default destination for Rational COBOL

Runtime error messages. Rational COBOL Runtime produces error

messages when it detects an error that prevents a program from

continuing.

 The ELAD transient data queue is defined when Rational COBOL Runtime

is installed. If you want to direct error messages for different transactions

to different queues, define the other queues with the same characteristics

as ELAD. Use the error diagnostic utility ELAC to direct error messages to

the required queue. See the description of the utility in “Diagnostic Control

Options for z/OS CICS Systems” on page 125 for more information.

ELACFIL

This is the error diagnostic control file. This file is created during

customization.

ELAT This transient data queue is the destination for Rational COBOL Runtime

trace records.

 If requested, Rational COBOL Runtime can create trace records for selected

runtime operations. The ELAT transient data queue is defined when

Rational COBOL Runtime is installed. For details, see Chapter 20, “Rational

COBOL Runtime Trace Facility,” on page 155.

ELATOUT

This file is associated with the ELAT transient data queue at installation

time. The output of the Rational COBOL Runtime trace facility is sent to

this data set. The attributes of this data set are DSORG=PS, LRECL=133,

BLKSIZE=1330, RECFM=FBA.

EZEPRINT

The file that you associate to the Rational COBOL file name PRINTER at

© Copyright IBM Corp. 1994, 2006 33

resource association will be used when printing from a program that

displays print forms. This file can be defined with a file type of SPOOL or

TRANSIENT. This file is normally associated with the transient data queue

PRIN.

 If you installed Rational COBOL Runtime as described in the Rational

COBOL Runtime program directory, PRIN is defined as an indirect

destination associated with the system printer. The maximum record length

that a generated program writes to the system printer is 650 bytes for

double-byte character set (DBCS) print forms and 133 bytes for single-byte

character set (SBCS) print forms. The first byte is an American National

Standards printer control character. The DBCS record length is longer than

the physical printer line length because the print record can contain

outlining and shift-out/shift-in (SO/SI) control characters that do not

appear on the device.

If you are using Rational COBOL Runtime to print to a file destination

other than PRIN, the characteristics of that file should be the same as

PRINTER.

EZEPRMG

This VSAM indexed file (KSDS) contains the parameter group records used

for print control options for the Rational COBOL Runtime terminal printer

utility, FZETPRT. The FZETPRT program reads this file searching for the

parameter group matching the transaction name that started FZETPRT.

 See “Special Parameter Group for the FZETPRT Program” on page 36 for a

description of the print parameters. See “Using the Parameter Group

Utility for z/OS CICS Systems” on page 129 for more information about

maintaining this special parameter group.

Segmented and Nonsegmented Processing

Generated EGL textUI programs can issue a converse statement in either

nonsegmented (CICS conversational) or segmented (CICS pseudoconversational)

mode. When a converse statement is run in segmented mode or when a show

statement is run, the current transaction ends and the program status is saved in a

temporary storage queue until the terminal input is received. The build descriptor

option workDBType specifies whether a main or auxiliary temporary storage

queue is used. The temporary storage queues are deleted at the end of the run

unit. The storage queue names have the following format:

 xyyytttt

where:

x Specifies a byte with the hex value X'EE'

yyy Specifies WRK (program working storage) or MSG (current form saved

across help or error display)

tttt Specifies the terminal ID associated with the transaction

For details on segmentation, refer to the EGL help system.

34 IBM Rational COBOL Runtime Guide for zSeries

Using Transient Data Queues for Printing in z/OS CICS

Printed output destined for a transient data queue is accumulated in temporary

storage. The temporary storage queue name has the following format:

 ttttnnnn

where:

tttt Is the transient data queue name

nnnn Is the EXEC Interface Block (EIB) task number

When a program ends, or a close statement is issued for a print map, or a

segmentation break occurs, Rational COBOL Runtime enqueues on a transient data

queue to prevent interspersed printing from other transactions. Rational COBOL

Runtime copies the printed output onto the transient data queue. The printed

output is in line character format with an American National Standards

printer-control character.

The default print destination for z/OS CICS is a transient data queue named PRIN.

If you installed Rational COBOL Runtime as described in the Rational COBOL

Runtime program directory, PRIN is an indirect destination associated with the

system printer. During program generation, this destination can be changed to any

4-character transient data queue name. The destination control table (DCT) entry

for the queue determines the actual destination. The destination can be the system

printer, a data set, or a terminal printer.

You can override the default destination at generation time by specifying the

alternate destination as the system resource name for the printer file. You can

change the print destination at run time by using the

converseVar.printerAssociation system variable. Refer to the EGL help system for

additional information on the converseVar.printerAssociation system variable.

EGL also provides a way of starting an asynchronous print task from a program

and controlling the print destination from the program starting the asynchronous

task. To do this, define the print task as a main basic program and generate it with

the printDestination=″TERMINALID″ build descriptor option. Use the

sysLib.startTransaction() system function to start the main basic program,

specifying the print destination in the sysLib.startTransaction() parameters. The

main basic program ignores the generated print destination and uses the

destination specified in the sysLib.startTransaction() system function. Refer to the

EGL help system for more information on the sysLib.startTransaction() system

function.

z/OS CICS terminal printing

The program called FZETPRT supports terminal printing. This program runs as a

CICS transaction that starts automatically when records are written to the transient

data queue. If Rational COBOL Runtime was installed as described in the Rational

COBOL Runtime program directory, the transaction name is EZEZ for IBM

5550-type printers and PRIN for all other printers. To send printed output to the

terminal, you must include a TYPE=INTRA for the transient data queue in the

CICS destination control table (DCT). Specify PRIN or EZEZ for the transaction ID

in the DCT entry. Unless you specify a terminal name in the DCT entry, the queue

identifier must be the same as the terminal printer identifier. The trigger level in

that entry must be set to 1 to ensure proper output. See “Printing Transient Data at

a Terminal Device” on page 44 for a sample DCT entry.

Chapter 6. System Considerations for CICS 35

When the FZETPRT program is initiated, it reads a line from the transient data

queue, converts the American National Standards printer-control character to NL

EOM format, and writes to the terminal printer specified in the DCT entry. The

FZETPRT program buffers multiple print lines into a single CICS SEND command

to improve performance.

When using terminal printing with Rational COBOL Runtime, you should be

aware of potential problems regarding form-feed orders and page alignment. When

the FZETPRT program is triggered, a form-feed order is issued to the printer to

ensure that it begins printing at the top of a page. If a second form is sent to the

queue before it is emptied by the FZETPRT program, a form-feed order is not

issued before the second form is printed. Page alignment can vary depending on

the timing with which successive forms are sent to the queue.

Another potential problem can occur when printing successive forms. If one of the

forms in the series is defined with lines equal to, or one line fewer than, the

lines-per-page setting on the printer, a blank page occurs between the printed

forms. To avoid this, define the form size as 2 lines fewer than the lines-per-page

setting on the printer. Because the FZETPRT program inserts a newline order to

ensure that printing begins in column 1, the first line of the form to be printed is

actually printed on the second line of the page. The second line must be allowed

because a newline order is added after the last line of the form, which advances

the print head to the beginning of the next line. If this happens to be the first line

of the following page, the next form-feed order causes the page to be skipped

before printing resumes.

Another thing to consider is that although Rational COBOL Runtime sometimes

causes successive, stand-alone form-feed orders (“1”), the FZETPRT program

suppresses all but one of these in converting them to NL EOM format.

If these form-feed considerations are too restrictive for your needs, consider using

the FORMFD=NO parameter.

Special Parameter Group for the FZETPRT Program

You can provide terminal printing parameters to the FZETPRT program to vary the

printed output by using a special parameter group file.

The FZETPRT program attempts to read a file named EZEPRMG for a parameter

group that has the same name as the transaction used to start the FZETPRT

program. For example, if the print transaction that starts the FZETPRT program is

named PRIN, then FZETPRT tries to find the parameter group named PRIN. If the

parameter group is not located in a file named EZEPRMG, or if EZEPRMG does

not exist, then the FZETPRT program reads the DCAPRMG file to find the

parameter group associated with this transaction.

When the transaction starts, the FZETPRT program reads the parameter group and

varies the printer output according to the contents. If you need to use the terminal

printing parameters, create a parameter group using the Rational COBOL Runtime

utility provided for this purpose. See “Using the Parameter Group Utility for z/OS

CICS Systems” on page 129 for more information about maintaining this special

parameter group

For this parameter group, you can specify the following four parameters:

v PRTBUF=xxx

v PRTMPP=nnn

36 IBM Rational COBOL Runtime Guide for zSeries

v PRTTYP=D

v FORMFD=NO

Note: Do not include blanks between keywords and their associated values.

PRTBUF Parameter

Use the PRTBUF parameter to set the size of the printer buffer. The number of

SEND commands sent to the terminal printer depends on the size of the printer

buffer. The following example shows how to specify the buffer size using the

PRTBUF parameter:

 PRTBUF=xxx

where:

xxx Is the size in bytes of the printer buffer

The FZETPRT program uses a default buffer size if any of the following conditions

occur:

v The parameter is not specified in the parameter group.

v There is no parameter group associated with the transaction.

v The parameter keyword is misspelled.

v The value specified is not valid (values greater than 8K bytes, smaller than 480

bytes, or not numeric).

v The EZEPRMG or DCAPRMG file does not exist or is not available.

The default buffer size is 2KB (where KB equals 1024 bytes) for the standard

character set printers and 480 bytes for LU type 3 printers.

For double-byte character set (DBCS) users the default buffer size and the

maximum buffer size allowed is 1918 bytes. The default value is used if your

specified value exceeds the maximum number of bytes.

When the buffer size is larger than the default, usage of the PRTBUF parameter is

optional. However, using the PRTBUF parameter is recommended to reduce the

number of SEND commands sent to the terminal. If the printer buffer size is

smaller than the default, specify the real buffer size using this parameter. Not

specifying the real buffer size can cause unpredictable results.

PRTMPP Parameter

Use the PRTMPP parameter to set the maximum number of print positions. The

following example shows how to specify the number of print positions using the

PRTMPP parameter:

 PRTMPP=nnn

where:

nnn Is the physical length (maximum print position) of the printer line

The FZETPRT program assumes a default maximum print positions of 132 if any

of the following occurs:

v The parameter is not specified in the parameter group.

v There is no parameter group associated with the transaction.

v The parameter keyword is misspelled.

v The value specified is not valid (not numeric).

v The EZEPRMG or DCAPRMG file does not exist or is not available.

Chapter 6. System Considerations for CICS 37

Use caution when coding the value of this parameter. If the value entered is a

valid numeric, the FZETPRT program uses the value without validating it. If the

value is greater than the number of print positions available on the actual printer,

possible malfunctioning can take place causing more line skips than necessary.

Note: For DBCS users, this parameter must be specified unless the printer is

configured with MPP=132.

PRTTYP Parameter

Use the PRTTYP parameter if you use a DBCS printer. The following example

shows how to specify the use of a DBCS printer using the PRTTYP parameter:

 PRTTYP=D

Note: This parameter must be used to specify that you are a DBCS user and your

output is being directed to an IBM 5550-family printer.

If you use multiple printers with different characteristics (namely different MPP,

different buffer size, or DBCS versus non-DBCS printers), you need as many

transaction IDs as there are printers, each one associated with the FZETPRT

program. For examples of table entries for two printers, see the CICS transaction

definitions provided with Rational COBOL Runtime for the PRIN (non-DBCS

printers) and EZEZ (DBCS printers) transactions.

FORMFD Parameter

Use the FORMFD parameter to control the form-feed orders that the FZETPRT

program issues. The following example shows the format of the FORMFD

parameter:

 FORMFD=NO

The FZETPRT program defaults to inserting form-feed orders into the printer data

stream if any of the following occurs:

v The parameter is not specified in the parameter group.

v There is no parameter group associated with the transaction.

v The parameter does not appear as FORMFD=NO.

v The EZEPRMG or DCAPRMG file does not exist or is not available.

If the parameter is specified correctly, the FZETPRT program does not insert

form-feed orders for any reason. This includes using the converseLib.pageEject

system function, closing the printer, or the initial form feed that is normally done.

All forms control depends on the map size specified during map definition.

CICS Entries for FZETPRT (DBCS only)

If you are using an SCS-type printer and you use DBCS, ensure that your system

programmer has coded the destination control table (DCT) and the program

control table (PCT) entries for a transaction that runs FZETPRT with the following

option:

 MSGPOPT=CCONTRL

The MSGPOPT option defines the optional facilities that a task can use. The

CCONTRL parameter indicates that the program can control the outbound

chaining of request units. Refer to the CICS manuals for more information.

38 IBM Rational COBOL Runtime Guide for zSeries

Using the New Copy Function

The new copy function (either the Rational COBOL Runtime new copy utility or

the CICS NEWCOPY command) causes a transaction to use a new copy of a

program, form group, or data table referenced in the transaction. The Rational

COBOL Runtime new copy utility is implemented as an EGL program in the CICS

environment. Active transactions continue to use the current version of a program,

form group, or data table until the transaction either completes or reaches the end

of a segment. A new copy of the program, form group, or data table is then made

available to the transaction by Rational COBOL Runtime. Use the new copy

function when programs, form groups, and data tables are modified and generated

again. This enables you to install new versions of programs, form groups, and data

tables onto your system without disrupting operation.

For programs and form groups you can use the CICS NEWCOPY command or the

Rational COBOL Runtime new copy utility to cause the new copy of the program

to be used the next time a load request is issued for the program.

The Rational COBOL Runtime new copy utility does a new copy for both the

online print services program and the form group format module when you

specify a part type of form group. If you use the CICS NEWCOPY command for a

form group, you must issue the NEWCOPY for both the online print services

program and the form group format module.

For data tables, you must use the Rational COBOL Runtime new copy utility to

cause a fresh copy of the data table to be used the next time a load request is

issued for the data table. Do not use the CICS NEWCOPY command for data

tables. The Rational COBOL Runtime new copy utility sets a flag indicating that

the new copy of the table is to be used the next time a program loads the table

contents.

For more information on the Rational COBOL Runtime new copy utility, see “New

Copy” on page 122.

Specifying Recovery Options in the CICS Tables

EGL-generated programs can make use of all the z/OS CICS recovery and data

integrity features. For a description of those features, refer to the recovery and

restart information for your release of CICS.

The system initialization table (SIT) for CICS should specify DBP=XX, where XX is

not equal to NO. If the DBP value is not equal to NO it prevents ASPE abends

when generated programs issue CICS SYNCPOINT and CICS SYNCPOINT

ROLLBACK commands.

If DTB=YES is specified on the program control table (PCT) entries for the

transactions, the value specified for DBP is significant. CICS provides two dynamic

backout programs, one for systems that require DL/I support and the other for

systems that do not require DL/I support. These programs are provided by CICS if

an entry is included in the processing program table (PPT) that specifies

TYPE=GROUP and FN=BACKOUT.

Chapter 6. System Considerations for CICS 39

Considerations that Affect Performance

This section describes factors that affect system performance and suggestions on

how to improve performance. For information beyond what is stated in this

section, refer to the performance guide for your release of CICS.

Residency (Modules in Memory) Considerations

The performance of a program is affected by the number of times that a running

program requires access to a disk. Programs require access to disks for the

following reasons:

v Locating and loading Rational COBOL Runtime load modules

v Retrieving and storing user data

v Locating and loading application programs, form group format modules and

online print services programs, and data table programs

The Rational COBOL Runtime loads objects as they are needed. For example, the

Rational COBOL Runtime loads a program, online print services program, form

group format module, or data table when another program calls or references it. If

you make an object resident, then the object remains in storage after it is loaded by

the Rational COBOL Runtime. You can use the RES parameter or the program

definition to make any of these resident: a program, online print services program,

or form group format module.

For data tables, use the shared and resident properties in the data table part

definition to control residency for all programs that use the data table. In addition,

in VisualAge Generator Compatibility mode, you can use the deleteAfterUse

property on the program’s use declaration for the data table to affect how the

program manages the data table.

Virtual Storage Considerations and Residency

It is true that if a program, online print services program, form group module, or

data table program is resident, less I/O is required for multiple loads. However,

making these objects resident requires more virtual storage because the modules

accumulate in storage as they are loaded and are not deleted after they are used.

When deciding what to make resident, consider the following:

v Storage constraints

v Frequency of program use

v Long running programs versus programs that are started more frequently

Because most systems have virtual storage constraints, it is not possible to make

everything resident. You should establish priorities for deciding which objects you

want to make resident. These residency priorities reflect a trade-off between

program usage and storage constraints. Your priorities can dictate that some

components of a program (such as the online print services program or form group

format module) should be made resident, while other components (such as data

tables) should not.

In CICS, when a program component is made resident, it remains in storage from

the time it is loaded into storage until either CICS is shut down or the new copy

function is used. To aid in deciding which programs should be made resident, you

can use CICS shutdown statistics to determine how often a generated program or

other component is loaded into the region or partition.

40 IBM Rational COBOL Runtime Guide for zSeries

Generally, objects that are loaded more than once are prime candidates for

residency. Examples of this a data table that is used by more than one program or

a program that is called more than once.

Programs that are not frequently initiated or have long running time should not be

made resident.

If you plan to run a program in segmented mode (CICS pseudoconversational),

you should consider making all components of the program resident. In

pseudoconversational mode, the program and its components are deleted and are

loaded again at each segment break if they are not made resident, and these

actions degrade performance.

Work Database Temporary Storage Queue Considerations

When running in pseudoconversational mode (using a segmented converse

statement), the data and the status associated with the program must be saved

during user think time. You use the workDBType build descriptor option to

control whether this information is saved into the CICS main temporary storage or

auxiliary storage. Using main temporary storage can result in better performance

because the data is written to memory within the CICS address space instead of

writing the data to disk space.

Note: Use of main temporary storage can degrade system performance because the

increased address space that is referenced can increase the paging activity.

Also, CICS can experience a short-on-storage condition if the program data

to be saved exceeds the available CICS storage. Therefore, if you take

advantage of main temporary storage for programs requiring better

performance, you should monitor your system to ensure that virtual storage

problems do not occur.

The amount of data written or read on each request to CICS when saving program

data and status, can also affect performance. The installation options module,

ELARPIOP, specifies the largest size record Rational COBOL Runtime writes to

main or auxiliary temporary storage. The default size is 32KB (where KB equals

1024 bytes), which is the largest value allowed by CICS. Use a large value to

ensure that the least number of write requests are required, and, if using auxiliary

storage, to ensure that the least number of I/O operations are required. See the

Program Directory for Rational COBOL Runtime for zSeries for information on how to

change the value in the installation options module.

Note: If you are using auxiliary storage queues, you should ensure the control

interval size (CISIZE) of the VSAM data set used for auxiliary temporary

storage matches the size specified in the installation options file. If the

CISIZE for the data set is smaller, CICS splits the data written or read into

smaller pieces and does multiple I/O operations for each Rational COBOL

Runtime request. Also ensure that you have an adequate number of buffers

for the auxiliary temporary storage data set in order to reduce the number

of physical I/O operations.

Terminal Printing

The performance of terminal printing can be enhanced by specifying the PRTBUF

parameter for the FZETPRT program. See “z/OS CICS terminal printing” on page

35 for more information on terminal printing and the PRTBUF parameter

Chapter 6. System Considerations for CICS 41

Using and Allocating Data Files in CICS

This section describes how to define data files for use in generated EGL-generated

programs in the CICS environment.

Defining and Loading VSAM Data Files

Before CICS programs can use VSAM data files, you must define and load them.

See “Defining and Loading VSAM Program Data Files” on page 28 for information

on defining VSAM data sets, defining an alternate index, and loading a VSAM

data set.

Adding the Job Control Statements

After the data set has been defined and loaded, add the data set name to the CICS

startup JCL to allocate user files. You can also let CICS dynamically allocate the

data set to the file using the information specified in the file control table (FCT).

Figure 5 shows example allocation statements for an indexed, relative, and serial

file, and an alternate index.

Adding the File Name to the CICS File Control Table

After the data set has been defined, loaded, and added to the CICS startup JCL,

the FCT entry must be created for the file name for a CICS program to gain access

to the data set. Creating an FCT entry can be accomplished using online (RDO) or

macro definitions.

Figure 6 on page 43 shows resource definitions that can be used to add a file name.

Rational COBOL Runtime uses the name on the FILE operand. The FILE operand

name must be the same as the DD name in the CICS startup JCL. All other

operands must be the same as when you add an indexed, relative, or serial file to

the FCT.

With CICS, make an entry to the FCT for every file used by a program. The CICS

files can be defined as remote FCT entries.

For further information, refer to the appropriate CICS resource definition guide for

your environment.

//KSDSFILE DD DSN=ELA1.USER.KSDS,DISP=SHR

//RRDSFILE DD DSN=ELA1.USER.RRDS,DISP=SHR

//ESDSFILE DD DSN=ELA1.USER.ESDS,DISP=SHR

//KSDSAIX DD DSN=VSAM.KSDS.ALT.INDEX.PATH,DISP=SHR

Figure 5. Allocating User Files

42 IBM Rational COBOL Runtime Guide for zSeries

Using Remote Files

EGL-generated programs can gain access to files that do not reside on your CICS

system.

Refer to the EGL online help for additional information on the fileLink element of

the linkage options part. Refer to the appropriate CICS manuals for information

about defining remote programs, transactions, or files.

Defining Transient Data Queues

Transient data queues are used in CICS for reading or writing data from tapes,

disks, or other sequential files. If you associated a serial file with a transient data

queue at generation, you must define a CICS destination control table (DCT) entry

for the queue.

KSDS

DEFINE FILE(KSDSFILE) GROUP(xxxxxx)

 DSNAME(Indexed.DSName)

 DISPOSITION(SHARE) ADD(YES)

 BROWSE(YES) DELETE(YES) READ(YES)

 UPDATE(NO) RECORDFORMAT(F)

 STRINGS(8) LSRPOOLID(NONE)

 RECOVERY(NONE) NSRGROUP(GROUP1)

 INDEXBUFFERS(8) DATABUFFERS(9)

Alternate Index

DEFINE FILE(KSDSAIX) GROUP(xxxxxx)

 DSNAME(AlternateIndex.DSName)

 LSRPOOLID(NONE) DISPOSITION(SHARE)

 STRINGS(5) NSRGROUP(GROUP1)

 BROWSE(YES) DELETE(NO) READ(YES)

 ADD(NO) UPDATE(NO) RECORDFORMAT(F)

 RECOVERY(NONE) INDEXBUFFERS(5)

 DATABUFFERS(6)

RSDS

DEFINE FILE(RSDSFILE) GROUP(xxxxxx)

 DSNAME(Relative.DSName)

 DISPOSITION(SHARE) ADD(YES)

 BROWSE(YES) DELETE(YES) READ(YES)

 UPDATE(NO) RECORDFORMAT(F)

 STRINGS(8) LSRPOOLID(NONE)

 RECOVERY(NONE) NSRGROUP(GROUP1)

 INDEXBUFFERS(8) DATABUFFERS(9)

ESDS

DEFINE FILE(ESDSFILE) GROUP(xxxxxx)

 DSNAME(EntrySequenced.DSName)

 DISPOSITION(SHARE) ADD(YES)

 BROWSE(YES) DELETE(YES) READ(YES)

 UPDATE(NO) RECORDFORMAT(F)

 STRINGS(8) LSRPOOLID(NONE)

 RECOVERY(NONE) NSRGROUP(GROUP1)

 INDEXBUFFERS(8) DATABUFFERS(9)

Figure 6. Adding a File Resource Definition

Chapter 6. System Considerations for CICS 43

You can define the following types of transient data queues:

v Intrapartition (temporary data)

v Extrapartition (data that other non-CICS regions can use)

Intrapartition transient data files contain data that is not usable after it is read.

Defining Intrapartition Transient Data

The following two examples show how to define intrapartition transient data files.

Passing Transient Data between CICS Transactions: This is an example of a DCT

entry that can be used to pass data from one CICS transaction to another. The file

destination specified at generation in the resource association part should be

systemName=″xxxx″.

 DFHDCT TYPE=INTRA, C

 DESTID=xxxx, C

 DESTFAC=FILE

Printing Transient Data at a Terminal Device: This is an example of a DCT entry

that can be used for terminal printing in Rational COBOL Runtime. At generation

time, the resourceAssociation part specifies how you want to handle printer. The

default is the first four characters, for example, prin. (A DCT entry is supplied for

prin that sends the printed output to the system printer.) The program supplied for

printing, FZETPRT, reads records from the transient data queue and issues SEND

commands to the terminal in order to print the records.

In this sample DCT, the PR01 terminal is to receive the printed output. PR01 is a

z/OS CICS printer terminal name. You specify the printer destination at generation

as PR01. Rational COBOL Runtime writes the printed output to the transient data

queue, PR01. The transaction PRIN starts and causes the program FZETPRT to run.

The data is read from the transient data queue and sent to the terminal, PR01. The

RDO TRANSACTION entry for PRIN and the PROGRAM entry for FZETPRT are

supplied. You must supply the destination control table and the terminal control

table entries for the transient data and terminal.

 DFHDCT TYPE=INTRA, C

 DESTID=PR01, C

 DESTFAC=TERMINAL, C

 TRANSID=PRIN, C

 TRIGLEV=1

If the terminal printer is a DBCS printer, specify EZEZ as the TRANSID.

Defining Extrapartition Transient Data

Data to be read from tape or sent to a printer is contained in extrapartition

transient data queues.

To provide these definitions as RDO entries, see the CICS resource definition

guide.

The following example shows how to use extrapartition transient data queues.

These files can be used by non-CICS devices and by CICS.

Printing Transient Data: This is an example of a DCT entry specification that can

be used to print output on a high-speed system printer. The file destination

specified at generation in the resource association part should be

systemName=″xxxx″.

The following sample entry for the DCT is for printed output.

44 IBM Rational COBOL Runtime Guide for zSeries

DFHDCT TYPE=EXTRA, C

 DESTID=ZZZZ, C

 DSCNAME=PRINTER

 DFHDCT TYPE=SDSCI, C

 DSCNAME=PRINTER, C

 RECFORM=VARBLKA, C

 RECSIZE=133, C

 BLKSIZE=1330, C

 TYPEFLE=OUTPUT C

You also need to add the appropriate DD statement to the CICS runtime JCL to

assign a printer to the file name. The extrapartition destination data queue sample

shown above requires the following DD statement:

 //PRINTER DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=1330)

Considerations for Using DB2 in CICS

This section presents considerations for programs that access DB2 databases, and

recovery and database integrity for DB2 programs running in the CICS

environment.

Associating DB2 Databases with CICS Transactions

If the programs running under a transaction access DB2 databases, then you must

define an entry in the CICS resource control table (RCT).

For information on the parameters you can specify when you define RCT entries,

refer to the chapter on connecting the CICS attachment facility in the DB2

installation manual for your version of DB2.

To provide these definitions as RDO entries, see the CICS resource definition

guide.

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features that

are provided by DB2 in the CICS environment.

Relational databases are recoverable resources. If your program makes changes to a

relational database, the changes are not committed to the database until the end of

a logical unit of work (LUW). If your program ends abnormally before the end of

an LUW, all changes that were made since the beginning of the LUW are backed

out. See “Specifying Recovery Options in the CICS Tables” on page 39 for more

information about handling recovery in CICS. For information on when an LUW

ends, refer to the EGL help topic "Logical unit of work."

Considerations for Using DL/I in CICS

This section discusses recovery and database integrity considerations for DL/I

programs running in the CICS environment.

Refer to the EGL helps for additional information.

Recovery and Database Integrity Considerations

EGL-generated programs can make use of all the recovery and data integrity

features that are provided by DL/I in the z/OS CICS environment.

Chapter 6. System Considerations for CICS 45

DL/I databases are recoverable resources. If your program makes changes to a

DL/I database, the changes are not committed to the database until the end of a

logical unit of work (LUW). If your program ends abnormally before the end of an

LUW, all changes that were made since the beginning of the LUW are backed out.

See “Specifying Recovery Options in the CICS Tables” on page 39 for more

information about handling recovery in CICS. For information on when an LUW

ends, refer to the EGL help topic "Logical unit of work."

Setting up the National Language

On CICS, the national language code used for the first program in the run unit

determines the language that is used for all messages for all programs in the run

unit.

46 IBM Rational COBOL Runtime Guide for zSeries

Chapter 7. System Considerations for z/OS Batch

This chapter presents system considerations for running EGL-generated programs

in the z/OS batch environment.

The following information is discussed:

v Required file descriptions

v Using VSAM program data files

v Considerations for using DB2

v Considerations for using DL/I

v Performance considerations

v Runtime JCL

Required File Descriptions

Rational COBOL Runtime requires the following files:

File Name Description

EZEPRINT This file is used when printing from a program that displays print

forms. EZEPRINT can be allocated to either a data set or to a

SYSOUT class. The file must have a VBA (variable-blocked ANSI)

record format.

 The maximum record length that a generated program can write to

the print data set is 654 bytes for DBCS forms and 137 bytes for

SBCS forms. The record length includes 4 bytes for the variable

length record header, 1 byte for the American National Standards

printer-control character, and the print line for the print form. The

DBCS record length is longer than the print line length because the

print line can contain outlining control characters and shift-out

(SO) and shift-in (SI) characters that are not displayed on the

device. The logical record length defined for the data set must be

greater than or equal to the length of the longest line written by

the program, including the DBCS SO/SI characters.

If you are using Rational COBOL Runtime to print to a file

destination other than EZEPRINT, the characteristics of that file

should be the same as EZEPRINT.

SYSPRINT, SYSOUT, SYSABOUT, SYSUDUMP

These z/OS system files are used by EGL-generated programs. Do

not specify DCB parameters for these files.

ELAPRINT This system output file is used by generated programs. Specify

ELAPRINT with RECFM=FBA and BLKSIZE=1330 DCB

parameters.

ELATRACE This file is the trace control file for the z/OS batch environment.

The attributes for this data set are LRECL=80, RECFM=FB, and

BLKSIZE=multiple of 80. The trace filters are specified in the

ELATRACE data set.

ELATOUT The output of the Rational COBOL Runtime trace facility is sent to

this data set in the z/OS batch environment. The attributes for this

data set are DSORG=PS, LRECL=133, BLKSIZE=1330, and

RECFM=FBA.

© Copyright IBM Corp. 1994, 2006 47

Using VSAM Program Data Files in z/OS Batch

VSAM program data files must be defined before your z/OS batch program can

use them. See “Defining and Loading VSAM Program Data Files” on page 28 for

information on defining VSAM data sets, defining alternate indexes, and for

information on loading VSAM data sets.

The DD statements for user files are generated for you and placed in the sample

runtime JCL.

Considerations for Using DB2 in z/OS Batch

This section presents system considerations for database recovery and integrity for

DB2 programs.

For information on running DB2 programs in z/OS batch, see Chapter 13,

“Preparing and Running Generated Programs in z/OS Batch,” on page 103.

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features

provided by DB2.

Relational databases are recoverable resources. If your program makes changes to a

relational database, the changes are not committed to the database until the end of

a logical unit of work (LUW). If your program ends abnormally before the end of

an LUW, all changes that were made since the beginning of the LUW are backed

out. For information on when an LUW ends, see the EGL help topic "Logical unit

of work."

Considerations for Using DL/I in z/OS Batch

This section presents the following information:

v Defining the program specification block (PSB)

v Recovery and database integrity considerations

For information on running DL/I programs in z/OS batch, see Chapter 13,

“Preparing and Running Generated Programs in z/OS Batch,” on page 103.

Defining the Program Specification Block (PSB)

The following list shows considerations for defining a PSB that is used in the z/OS

batch environment:

v DL/I PSBs used in the z/OS batch environment must have CMPAT=YES

specified in the PSBGEN statement for the PSB. This enables you to use the

CHKP and ROLB functions with the PSB.

v The PSBGEN statement must include the parameter LANG=COBOL or

LANG=ASSEM.

v DL/I PSBs used in the z/OS batch environment must be defined with a

minimum of two PCBs of any type in the PSB. This enables the generated

COBOL program to test whether it is being started from the IMS region

controller or from an OS XCTL macro in a non-EGL program passing working

storage and dliLib.psbData as parameters.

v z/OS batch programs can implement serial files as GSAM databases. These

GSAM files are treated as a special type of database and require a PCB in the

PSB. The GSAM PCBs must follow all database PCBs.

48 IBM Rational COBOL Runtime Guide for zSeries

Recovery and Database Integrity Considerations

In z/OS batch DL/I programs, a commit point causes a DL/I basic CHKP

(checkpoint) call. The contents of dliLib.psbData are used as the checkpoint

identifier. After the CHKP call, dliVar.statusCode contains the status code returned

with the CHKP call.

If the program runs under the TSO terminal monitor program for SQL access,

calling the sysLib.rollback() system function results in an SQL ROLLBACK

WORK.

If the program runs as a DL/I batch job, and DL/I or SQL requests have been

issued, calling the sysLib.rollback() system function results in a DL/I ROLB call.

The IMS batch parameter BKO=Y must be specified when the batch job is started

in order for the ROLB call to be honored. The BKO parameter is specified in the

job step that calls the IMS control program DFSRRC00. If BKO=N is specified,

DL/I returns status code AL for the ROLB call. Rational COBOL Runtime treats the

AL as a soft error, and no error message is issued.

Serial or print files associated with GSAM files and the sysLib.audit system

function result in DL/I requests and cause the DL/I ROLB call to be issued. For

information on when a commit point or rollback is issued, refer to the EGL help

topic "Logical unit of work."

Performance Considerations for z/OS Batch

See “Modules in Memory” on page 28 for information on performance

considerations and the methods used to place modules in memory. These methods

are particularly beneficial if the EGL program is being called repeatedly by a

non-EGL program.

If you are running generated programs in z/OS batch and are accessing indexed or

relative files, you do not need to use the forUpdate option on the I/O statement

prior to a delete or replace statement. Eliminating the forUpdate option allows for

better performance, as it eliminates a COBOL read. However, make sure that you

perform a get or get next before the delete or replace to ensure that the record is

available.

Runtime JCL

See Chapter 13, “Preparing and Running Generated Programs in z/OS Batch,” on

page 103 for examples of batch runtime JCL.

Chapter 7. System Considerations for z/OS Batch 49

50 IBM Rational COBOL Runtime Guide for zSeries

Chapter 8. System Considerations for IMS

This chapter provides additional administrative information that applies to the IMS

environments.

The following information is discussed:

v Required file descriptions

v Defining the program specification block

v Processing modes

v Printing considerations for IMS

v Recovery and database integrity considerations

v Considerations that affect performance

v Considerations for using DB2

v Considerations for using DL/I

v Maintaining the work database

v Consideration for Message Format Services

Required File Descriptions

Rational COBOL Runtime requires the following files:

File Name Description

ELASNAP This is an optional file that contains the snap dump listing when a

Rational COBOL Runtime error occurs and the ELASNAP DD

statement was included in the startup JCL. This file has a 125-byte

logical record length, a 882-record block size, and a VBA

(variable-blocked ANSI) record format. If this file is directed to the

SYSOUT system logical unit, define it with RECFM=VBA and

BLKSIZE=4096.

ELAPRINT This file is an optional output file for Rational COBOL Runtime

error messages. This file has a fixed block record format, a 133-byte

logical record length, and a block size of 1330. If this file is directed

to the system logical unit SYSOUT, define it with RECFM=FBA and

BLKSIZE=1330.

ELADIAG This is the default name for the optional message queue for

Rational COBOL Runtime error messages.

 This message queue is defined in the IMS system definition during

Rational COBOL Runtime installation. See “IMS Diagnostic

Message Print Utility” on page 135 for information about printing

the error messages contained in the ELADIAG message queue.

ELATRACE This is the trace control file for the IMS BMP environment. The

attributes for this data set are LRECL=80, DSORG=PS, and

BLKSIZE=multiple of 80. The trace filters are specified in the

ELATRACE data set.

ELATOUT The output of the Rational COBOL Runtime trace facility is sent to

this data set in the IMS BMP environment. The attributes for this

data set are LRECL=133, BLKSIZE=1330, and RECFM=FBA.

ELAT The output of the Rational COBOL Runtime trace facility is sent to

this output message queue in the IMS/VS environment. Use the

ELAMQJUD job to retrieve the trace.

© Copyright IBM Corp. 1994, 2006 51

EZEPRINT This is the default message queue (IMS/VS) or output file (IMS

BMP) for print output from generated programs. For IMS BMP

programs, the print records are variable length. For single-byte

languages, define EZEPRINT with LRECL=137, BLKSIZE=141, and

RECFM=VBA. For double-byte languages, define EZEPRINT with

LRECL=654, BLKSIZE=658, and RECFM=VBA. If the file is

directed to the system logical unit SYSOUT, define it with

RECFM=VBA and BLKSIZE=4096.

Defining the Program Specification Block (PSB)

You need to define both an IMS PSB and an EGL PSB record for your program.

The EGL PSB record contains a subset of the information from the IMS PSB and is

used to build default segment search arguments (SSAs) for the EGL I/O

statements.

You need to generate an IMS PSB to correspond to the EGL PSB record. For

IMS/VS, the IMS PSB must have the same name as the load module for the

associated EGL program. A program control block (ACB) generation is also

required for the IMS/VS environment. For IMS BMP and DL/I batch, the IMS PSB

name does not have to match the program load module name.

When you define the PSBs for IMS programs, consider the following criteria:

v The PSBGEN statement must include the parameters CMPAT=YES, and

LANG=COBOL or LANG=ASSEM.

v The I/O PCB (program control block) is automatically supplied and does not

appear in the IMS PSB. You must include the I/O PCB in the EGL PSB record if

you specify the callInterfaceType=CBLTDLI property in your EGL program.

v Alternate PCBs are used to route output to terminals other than the originating

terminal, or to other transactions. Alternate PCBs must appear before the

database PCBs both in the IMS PSB and in the PSB record.

v When an EGL program is generated for the IMS/VS or IMS BMP environment, a

modifiable alternate PCB and a modifiable express alternate PCB are required, in

that order, as the first two PCBs following the I/O PCB. Both of these PCBs

must have the parameters ALTRESP=NO and SAMETRM=NO. To avoid having

to edit your DL/I call modifications to adjust for the two required PCBs, include

these PCBs whenever you plan to generate a program for the IMS/VS or IMS

BMP target environments.

v IMS BMP programs can implement serial files as GSAM databases. These GSAM

files are treated as a special type of database and require a PCB in the PSB. The

GSAM PCBs must follow all database PCBs.

If a DL/I work database is used, the PCB for this database must be included in the

IMS PSB. This PCB can be created using the macro ELAPCB and concatenating

ELA.V6R0M1.ELASAMP as part of the SYSLIB in the PSBGEN procedure. Figure 7

on page 53 shows an example of the PCB expansion that occurs when ELAPCB is

used.

WORKDBD defaults to ELAWORK. The WORKDBD parameter must be used if the

DBD name is changed.

52 IBM Rational COBOL Runtime Guide for zSeries

If you specify (or default to) the

callInterfaceType=DLICallInterfaceKind.AIBTDLI property for your program, the

EGL program refers to the PCBs in the PSB by name rather than by position. The

default PCB names are as follows:

v IOPCB (required by IMS for the I/O PCB)

v ELAALT (the EGL default name for the modifiable alternate PCB)

v ELAEXP (the EGL default name for the modifiable express alternate PCB)

v ELAWORK (the EGL default name for the DL/I work database PCB).

Processing Modes

IMS requires segmented mode. Refer to the EGL help system for additional

information on segmented mode.

The spaSize="xxxx" build descriptor option determines whether a program runs as

IMS conversational (xxxx is greater than 0) or nonconversational (xxxx is 0). Refer

to the EGL Generation Guide for more information.

The work database is used for both conversational and nonconversational

processing to save information during a converse. In nonconversational mode, the

work database is also used to save information during a deferred

program-to-program message switch which results from a show statement. In

conversational mode, the scratch-pad area (SPA) is used to set the transaction

identifier and to save information during a program-to-program message switch.

Refer to the EGL help system for information on how the SPA is used for

program-to-program message switching.

Printing Considerations for IMS

From Rational COBOL Runtime, printing is initiated when a program processes a

print statement for an EGL printForm. Refer to the EGL help system for

information on defining forms for printers.

Printing is accomplished using MFS control blocks produced when the form group

is generated. The default print destination in IMS is a message queue named

EZEPRINT. The printer destination can be changed at generation time. You can

also change the print destination at run time by changing the

converseVar.printerAssociation. Refer to the EGL help system for additional

information.

ELAPCB [WORKDBD=customer-dbd-name]

 --- expands into ---

PCB TYPE=DB,DBDNAME=customer-dbd-name,PROCOPT=AP,KEYLEN=19

SENSEG NAME=ELAWCNTL,PARENT=0

SENSEG NAME=WORKLV01,PARENT=ELAWCNTL

SENSEG NAME=WORKLV02,PARENT=WORKLV01 ...
SENSEG NAME=WORKLV14,PARENT=WORKLV13

SENSEG NAME=MSGLV01,PARENT=ELAWCNTL

SENSEG NAME=MSGLV02,PARENT=MSGLV01 ...
SENSEG NAME=MSGLV14,PARENT=MSGLV13

Figure 7. Generating the DL/I Work Database PCB

Chapter 8. System Considerations for IMS 53

Recovery and Database Integrity Considerations

EGL programs can make use of all the IMS recovery and data integrity features.

If your program makes changes to a recoverable resource, the changes are not

committed until the end of a logical unit of work (LUW). If your program

abnormally ends before the end of an LUW, all changes that were made since the

beginning of the LUW are backed out. For information on when an LUW ends, see

the EGL help topic "Logical unit of work."

Considerations that Affect Performance

This section describes factors that affect system performance and suggestions on

how to improve performance.

Residency Considerations and the IMS Preload Function

The performance of a program is affected by the number of times a disk is

accessed while running the program. Programs require access to disks for the

following reasons:

v Locating and loading Rational COBOL Runtime load modules

v Retrieving and storing user data

v Locating and loading application, form group format modules, MFS print

services programs, and table load modules

Rational COBOL Runtime loads objects as they are needed. For example, Rational

COBOL Runtime loads an application, MFS print services program, form group

format module, or data table when another program calls or references it. The

overhead of locating and loading modules can be reduced by using the IMS

preload function. Preloading an object reduces the amount of I/O required for

multiple loads. However, preloading generated programs requires more virtual

storage for your system because preloaded modules remain in storage until the

message region is shut down.

It is usually not possible for everything to be preloaded. Therefore, you should

establish priorities for deciding which objects you should preload. These

preloading priorities reflect a trade-off between your program usage and your

storage constraints. Because of individual considerations such as storage

constraints, environment, and types of programs, your priorities might dictate that

some components (such as MFS print services programs) for a program be

preloaded, while other components (such as data tables) should not be preloaded.

Make the decision on what modules to preload on an individual basis, according

to how the program uses them.

When deciding what to preload, consider the following:

v Storage constraints

v Frequency of program use

v Long-running programs as compared to programs that are started more

frequently

Generally, objects that are loaded more than once are prime candidates for

preloading. Examples of this are a data table that is used by more than one

program and a program that is called more than one time. The following are some

general rules for preloading:

v When deciding what to preload, consider the following objects:

– Called programs

– MFS print services programs

54 IBM Rational COBOL Runtime Guide for zSeries

– Form group format modules

– Data tables

– Main programs
v Programs that are started or referenced frequently should be preloaded. In

addition to programs that are loaded by IMS when a transaction is scheduled,

this includes programs that are started by the EGL transfer to program or call

statements.

v Programs that are not frequently initiated should not be preloaded.

See “Preloading Generated Programs” on page 56 for additional information.

Preloading Rational COBOL Runtime Modules

For best performance, use the preload option for the following Rational COBOL

Runtime modules:

v ELARPRTR, the Rational COBOL Runtime module that handles address mode

switching

v ELARPRTM, the Rational COBOL Runtime load module

v ELARPIOP, the installation options module

v ELARIccc (where ccc is the language code), the language-dependent options

module

v ELACNccc (where ccc is the language code), the conversion table

v ELANCccc (where ccc is the language code), the module for Rational COBOL

Runtime constants and the table that converts from lower case to upper case

v ELARSCNT, the configuration table

v ELA2SSQW, the module that supports the DB2 work database

v ELARSDCB, which is used for accessing Rational COBOL Runtime sequential

files

v ELA2SSQL, its alias ELA2SSQY, and ELA2SSQX

ELA2SSQL, its alias ELA2SSQY, and ELA2SSQX are used to gain access to the

DB2 work database, and they support commit and rollback processing for DB2

program databases. Preload these modules only if you are using programs that

were generated and bound using CSP/370RS V1R1.

The modules ELARSDCB and ELANCccc are loaded below the 16MB line.

ELARSDCB is used only in reporting errors detected by Rational COBOL Runtime.

Both can be omitted from the preload list if storage space below the 16MB line is

limited.

Note: You should also monitor the usage of the LE runtime modules. Because

many are used by the generated COBOL programs, these modules might

also be candidates for preloading.

Refer to the IMS documentation for your system for information on the preload

option. An alternative to preloading is to place modules in the link pack area.

Loading Rational COBOL Runtime Modules into the Link Pack

Area

Placing modules in the link pack area causes all regions to share a single copy of

the modules and saves storage space. Refer to the Rational COBOL Runtime

program directory for information about what modules can be put into the link

pack area.

Chapter 8. System Considerations for IMS 55

Only one version of CSP/370RS V2R1, CSP/370RS V1R1, VisualAge Generator

Server V1R2, Enterprise Developer Server or IBM Rational® COBOL Runtime

modules can be placed in the link pack area. If multiple releases are installed

concurrently on the same system, override the link pack area by defining the

correct library in the STEPLIB or JOBLIB DD statements for the region.

Preloading Generated Programs

You can reduce the overhead of searching the STEPLIB, JOBLIB, link pack area,

and link list by preloading generated programs (application programs, online print

services programs, form group format modules, and data table modules) that are

frequently used. However, in this case, virtual storage is still occupied by the

modules when they are not in use.

To improve response time, you might also preload any module associated with any

transaction that might require better performance, even though the module itself is

not frequently used.

To preload generated programs, do the following:

1. Put the module in a LNKLST library.

2. Include the module name in a preload member (DFSMPLxx, where xx is a

two-character ID that you select) in the IMS procedure library.

3. Indicate in the JCL for the IMS message region that the preload member is to

be included.

Database Performance

Database performance can be improved under IMS/ESA® by defining

HIPERSPACE* buffer usage for IMS in the DFSVSMxx member. This is the same as

defining many buffers for the files, but has the advantage that the HIPERSPACE

buffers all come from 31-bit storage, not from within the IMS/ESA region. The

tuning of database buffer pools is recommended. Refer to the IMS manuals for

details on the tuning of database buffer pools.

If you have IMS/ESA installed and use a DL/I work database, make the work

database nonrecoverable to reduce the amount of logging that occurs. Making the

work database nonrecoverable might help improve performance.

Limiting MFS Control Blocks

Limiting the size and number of message format service (MFS) control blocks

might help improve performance. MFS is used for form support in the IMS

environment. MFS control blocks are generated using MFS utility control

statements.

You can reduce the size and number of MFS control blocks that are generated by

doing the following:

v In form definition, only include the screenSizes values that are used for the

application system. For additional information about the valid screenSizes

values, refer to the EGL help system.

v Include in the mfsDevice build descriptor option only the combinations of the

height, width, and devStmtParms properties that your installation or

application system uses. For additional information about specifying the

mfsDevice build descriptor option, refer to the EGL Generation Guide.

56 IBM Rational COBOL Runtime Guide for zSeries

Monitoring and Tuning the IMS System

You can track potential performance problems before they occur by checking

processing statistics on a regular basis. The following are some of the statistics to

monitor:

v Use the IMS monitor facilities to check transaction utilization. Consider

preloading programs or groups of programs which are frequently used.

v Use the IMS database monitor facilities to check how effectively the databases

are performing and using space.

You can also use the following tools to monitor IMS performance:

v IMS Performance Monitor for z/OS (program number 5655-G50). This tool

provides real-time status monitoring and alerts for IMS subsystems, as well as

access to recent historical data and detailed statistical reports.

v IMS Performance Analyzer for z/OS (program number 5655-R03). This tool

provides comprehensive performance analysis and tuning assistance for IMS,

including end-to-end transit analysis for transaction workloads and availability

of important resources such as databases and message queues.

Refer to the system administration manuals and the database administration guide

for your release of IMS for detailed information about monitoring the IMS online

system and DL/I databases.

Considerations for Using DB2 in IMS

This section discusses considerations for recovery, database integrity, and security

issues for DB2 programs.

For information on designing and generating DB2 programs for the IMS

environment, refer to the EGL help system.

For information on preparing DB2 programs for running in the IMS environment,

see Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS

BMP,” on page 107.

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features that

are provided by DB2 in the IMS environment.

Relational databases are recoverable resources. If your program makes changes to a

relational database, the changes are not committed to the database until the end of

a logical unit of work (LUW). If your program ends abnormally before the end of

an LUW, all changes that were made since the beginning of the LUW are backed

out. For more information, refer to the EGL help system.

Checking Authorization

The database manager checks whether the program users have authority to gain

access to tables or to run programs. The type of checking done varies depending

on your system and the processing mode.

When using DB2 in generated COBOL programs, the program users must be

authorized to run the corresponding DB2 plan. For transaction-oriented regions,

the authorization ID depends on the type of IMS security being used:

Chapter 8. System Considerations for IMS 57

v If sign-on security is used, IMS provides the sign-on name as the authorization

ID.

v If sign-on security is not used, IMS provides the name of the originating

terminal as the authorization ID.

The DB2 plan used with a transaction has the same name as the program

associated with the transaction.

For batch-oriented regions, the authorization ID is the contents of the ASXBUSER

field, if valid, or the PSB name. The DB2 plan name is specified as one of the batch

program parameters.

For more information on IMS security mechanisms, refer to the appropriate IMS

manual.

Considerations for Using DL/I in IMS

This section discusses considerations for DL/I programs in the IMS environment.

See “Defining the Program Specification Block (PSB)” on page 52 for information

on defining a PSB for DL/I programs.

For information on designing and generating DL/I programs for the IMS

environment, refer to the EGL help system.

For information on preparing DL/I programs for running in the IMS environment,

see Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS

BMP.”

Recovery and Database Integrity Considerations

EGL-generated programs can make use of all the recovery and data integrity

features that are provided for DL/I databases in the IMS environment.

DL/I databases are recoverable resources. If your program makes changes to a

DL/I database, the changes are not committed to the database until the end of a

logical unit of work (LUW). If your program ends abnormally before the end of an

LUW, all changes that were made since the beginning of the LUW are backed out.

For more information, refer to the EGL help system.

Maintaining the Work Database in IMS

You should monitor and tune the DL/I and DB2 work databases just as you would

any other DL/I database or DB2 table. You can use the normal database

administration utilities to monitor these databases and to determine when they

need to be reorganized to improve performance.

The activities involved in maintaining the work database are the following:

v Deleting old records from the work database

v Expanding the work database

v Supporting multiple DL/I or DB2 work databases

Deleting Old Records from the Work Database

The terminal ID is the key for the records in the work database. Each record

contains a time stamp that indicates the last time the record was updated.

58 IBM Rational COBOL Runtime Guide for zSeries

Deleting old records from the database reduces the amount of disk space required

in the work database. You probably want to delete records in the following

situations:

v Some users might run a generated program only infrequently, less than once a

day, for example. In this case, you might want to delete old records on a daily or

weekly basis.

v Sometimes terminal names are changed or users are moved to terminals with

different names. In this case, new records are created for the new terminals, but

the old records are not automatically deleted.

The utilities that delete records from the DL/I and DB2 work databases validate

the date and time to ensure that your request does not result in deletion of records

that are less than 24 hours old.

DL/I Work Database

Figure 8 shows the JCL used to remove old records from a DL/I work database.

The JCL is supplied as member ELAWKJCD in the ELA.V6R0M1.ELAJCL file.

Specify the records you want to delete by entering the date (in Julian format) and

time prior to which all records are to be deleted.

DB2 Work Database

Figure 9 on page 60 shows the JCL used to remove old records from a DB2 work

database. The JCL is supplied as member ELAWKJC2 in the ELA.V6R0M1.ELAJCL

file. Specify the records you want to delete by entering the date (in Julian format)

//**

//** ELAWKJCD - JOBSTREAM TO CLEAN UP THE DLI WORK DATABASE

//** FOR IBM RATIONAL COBOL RUNTIME.

//**

//** LICENSED MATERIALS - PROPERTY OF IBM

//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 2006

//** SEE COPYRIGHT INSTRUCTIONS

//**

//** STATUS = VERSION 6, RELEASE 0, LEVEL 1

//**

//** TO TAILOR THIS JOBSTREAM:

//** 1. COPY A JOBCARD.

//** 2. REPLACE DATE AND TIME STAMP VALUE WITH DESIRED

//** VALUE. ALL RECORDS WITH LESS THAN THAT DATE AND

//** TIME WILL BE DELETED.

//**

//** RETURN CODES

//** 0 - SUCCESSFUL COMPLETION

//** 12 - FATAL ERROR. INVALID INPUT

//** 16 - FATAL ERROR. PROCESSING TERMINATED

//**

//**

//*

//DLIWORK EXEC IMSBATCH,MBR=ELAWKPC1,

// PSB=ELAWKPB1,RGN=4096K

//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6R0M1.SELALMD,DISP=SHR

//G.ELAPRINT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//G.SYSIN DD *

YYDDDHHMMSS

Figure 8. JCL to Remove Old Records from DL/I Work Database

Chapter 8. System Considerations for IMS 59

and time prior to which all records are to be deleted.

Expanding the Work Database

At times, you need to expand the work database. For example, you need to

expand the database when you expand the usage of an existing program system to

a larger user set comprising a much larger number of terminals that gain access to

EGL-generated programs.

DL/I Work Database

To expand the DL/I work database, perform the following steps:

1. Stop the DL/I database.

2. Unload the database using the old database description (DBD).

//**

//** ELAWKJC2 - JOBSTREAM TO CLEAN UP THE DB2 WORK DATABASE

//** FOR IBM RATIONAL COBOL RUNTIME.

//**

//** LICENSED MATERIALS - PROPERTY OF IBM

//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 2006

//** SEE COPYRIGHT INSTRUCTIONS

//**

//* STATUS = VERSION 6, RELEASE 0, LEVEL 1

//**

//** TO TAILOR THIS JOBSTREAM:

//** 1. COPY A JOBCARD.

//** 2. REPLACE DATE AND TIME STAMP WITH THE DESIRED DATA.

//** ALL ROWS WITH A DATE AND TIME LESS THAN THE

//** SPECIFIED DATE/TIME WILL BE DELETED.

//**

//** RETURN CODES

//** 0 - SUCCESSFUL COMPLETION

//** 12 - FATAL ERROR. INVALID INPUT

//** 16 - FATAL ERROR. PROCESSING TERMINATED

//**

//**

//*

//DB2WORK EXEC PGM=ELAWKPC2,REGION=4096K

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6R0M1.SELALMD,DISP=SHR

//SYSOUT DD SYSOUT=*

//SYSABOUT DD SYSOUT=*

//ELAPRINT DD SYSOUT=*

//ELASNAP DD SYSOUT=*

//EZESPUFI DD DSN=&&TMP1,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK,(1,0)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)

//SYSIN DD *

YYDDDHHMMSS

//*

//DB2SPUF EXEC PGM=IKJEFT01,REGION=4096K,COND=(0,NE)

//STEPLIB DD DSN=DSN.RUNLIB.LOAD,DISP=SHR

//SYSOUT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSIN DD DSN=&&TMP1,UNIT=SYSDA,DISP=(OLD,DELETE)

 /*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA??)

 END

/*

Figure 9. JCL to Remove Old Records from DB2 Work Database

60 IBM Rational COBOL Runtime Guide for zSeries

3. Change the DBD information and perform a DBD generation.

4. If you are having application control blocks (ACBs) prebuilt rather than built

dynamically, build the ACBs again.

5. Delete the space allocated for the old database and allocate space for the new

definition.

6. Load the database using the new DBD.

7. Make an image copy of the new database for back-up purposes as soon as it is

loaded.

Refer to the database administrator’s guide and the IMS utilities manual for

additional information.

DB2 Work Database

You might need to expand the table spaces containing the DB2 work database

because of degraded performance from too many secondary extents, or because the

application users receive a DB2 message DSNP007I indicating that no more space

is available.

Ideally, when the size of a DB2 table space is increased, the primary extent should

be made large enough to accommodate all the data in the work database. In any

case, try to minimize the number of secondary extents required to store rows in the

database.

The method you use to expand the table space depends on the version of DB2 that

is installed and whether the table space is user-managed.

The procedure supplied with Rational COBOL Runtime that installs the work

database also installs the table space as user-managed table space (no associated

DB2 storage group).

Before attempting to change the size of the table space data set, you need to

estimate the space requirements for the table space. One factor in your estimate is

the amount of space currently used. If the space is currently DB2-managed

(resulting from an earlier change in space allocation), you can get this information

by first running the DB2 STOSPACE utility against the table space storage group,

and then running the following query:

SELECT SPACE

 FROM SYSIBM.SYSTABLEPART

 WHERE TSNAME=’tsname’ and DBNAME=’dbname’;

The result (SPACE) gives the number of kilobytes of storage currently allocated to

the table space.

If the space for the table space is user-managed, you can use the TSO LISTCAT

command to obtain the space information. You need to know the data set name of

the VSAM file used for table space. The data set name for the VSAM file has the

following format:

catname.DSNDBC.dbname.tsname.I0001.Annn

where:

catname Specifies the VSAM catalog name or alias

 This is the same name or alias as in the USING VCAT clause of the

CREATE TABLESPACE statement.

dbname Specifies the DB2 database name

Chapter 8. System Considerations for IMS 61

This is the same as the database name in the CREATE

TABLESPACE statement.

tsname Specifies the table space name

 This is the same as the table space name in the CREATE

TABLESPACE statement.

nnn Specifies the data set number

 For partitioned table spaces, the number is 001 for the first

partition, 002 for the second, and so forth, up to the maximum of

64 partitions. For a simple or segmented table space, the number is

001 for the first data set. If the simple or segmented table space

exceeds 2 gigabytes, the second data set is 002, and so forth.

To expand table space do the following:

1. Stop the DB2 database by using the command -STOP DB (dbname).

2. Make an image copy of the table space. You can use the image copy to restore

the data set if the procedure is not successful.

3. Create a storage group for the table space. Do this only if the table space

currently is user-managed and a storage group is not already available.

4. Change the table space definition as follows:

v If the table space data sets are user-managed, use a DB2 statement as

follows:

ALTER TABLESPACE dbname.tsname

 USING STOGROUP stogrp

 PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

stogrp Specifies the name of the storage group

pppp Specifies new primary allocation size (in

kilobytes) for the expanded table space

ssss Specifies new secondary allocation size (in

kilobytes) for the expanded table space

Note: This statement changes the table space from user-managed to

DB2-managed.

v If the table space data sets are already DB2-managed, use a DB2 statement as

follows:

ALTER TABLESPACE dbname.tsname

 PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

pppp Specifies new primary allocation size (in

kilobytes) for the expanded table space

ssss Specifies new secondary allocation size (in

kilobytes) for the expanded table space
5. Move the table space data. Simply changing the table space definition does not

put the new size into effect. You need to move the table space to the newly

allocated space. You can, for example, reorganize the table space using the DB2

REORG utility.

62 IBM Rational COBOL Runtime Guide for zSeries

6. Start the DB2 database. Enter the command -START DB (dbname).

Supporting Multiple Work Databases

You can use separate work databases for different application systems. For

example, you might want to use separate databases for payroll and shipping to

improve performance or to increase data availability. The work database is used to

pass information during certain types of program-to-program message switches

between applications. When this occurs, both the transferring application and the

transferred-to application must use the same physical work database.

DL/I Work Databases

To create an additional DL/I work database called ELAWORK2, do the following:

1. Copy the ELAWORK DBD in the ELA.V6R0M1.ELASAMP file, and name it

ELAWORK2.

2. Change the NAME parameter on the DBD statement to ELAWORK2. Also

change the DD1 parameter on the DATASET statement to ELAWORK2. Make

any other changes to the block size, number of blocks, and randomizing routine

based on the application system requirements.

3. Make copies of the ELAWKLD and ELAWKPB1 program specification blocks

(PSBs) in the ELA.V6R0M1.ELASAMP file and give them new member names.

Change the NAME parameter on the program control block (PCB) statement

from ELAWORK to ELAWORK2.

4. Modify job ELACJWKD in the ELA.V6R0M1.ELAJCL file to refer to the new

database. This job does the DBD, PSB, and ACB generations needed for the

work database, allocates the database, and then initializes it. You need to

change the DD and data set names for the work database, and name the new

DBD and PSB.

5. Add the new database to the JCL for your IMS control region, and to your IMS

stage-1 system definition.

6. When you create IMS PSBs for applications that need to use this new database,

use the ELAPCB macro to create the PCB definition for the work database.

Enter the following command:

 ELAPCB WORKDBD=ELAWORK2

7. If you specify (or default to) the

callInterfaceType=DLICallInterfaceKind.AIBTDLI property for your program,

specify the PCBName property for the ELAWORK database in your EGL PSB

record as follows:

ELAWORK DB_PCBRecord {@PCB {pcbType = PBKind.DB, PCBName = "ELAWORK2"}};

DB2 Work Databases

To create an additional DB2 work database, do the following:

1. Create an ELAWORK table using the ELACJWK2 job in the

ELA.V6R0M1.ELAJCL file. Perform™ the following steps before running the job:

a. Add an authorization ID to the CREATE TABLE command in ELAWORK2

in the ELA.V6R0M1.ELASAMP file, for example:

CREATE PAYROLL.ELAWORK

b. Change the table space name and index in ELAWORK2.

c. Change the DELETE and DEFINE CLUSTER statements to use the table

space name and index you specified in ELAWORK2.

d. Comment out the WRKDROP step to avoid dropping the existing work

database.

Chapter 8. System Considerations for IMS 63

2. Each developer or system administrator using the payroll ELAWORK table

needs to create a SYNONYM for the table. The following example shows how

to use the CREATE SYNONYM command to create a synonym:

CREATE SYNONYM ELAWORK FOR PAYROLL.ELAWORK

The default BIND commands generated by EGL bind DBRMs for Rational

COBOL Runtime modules to the program being generated. The CREATE

SYNONYM command ensures that developers referencing the ELAWORK table

use the payroll version of the table.

Considerations for Message Format Services in IMS

EGL generates message format services (MFS) source statements used for

conversing and printing forms in IMS environments. The generated MFS source

includes DEV statements, which identify the device types on which forms can be

displayed and the characteristics of those devices. The device types and

characteristics must be compatible with the device types and characteristics defined

in the TERMINAL and TYPE macros in your IMS system definition.

The information on the generated MFS DEV statements is controlled by the

mfsExtendedAttr, mfsIgnore, and mfsDevice build descriptor options. Review

your TERMINAL and TYPE definitions and then set the mfsExtendedAttr,

mfsIgnore, and mfsDevice build descriptor options to reflect your IMS system

definition.

The following build descriptor options affect the generated MFS source:

mfsExtendedAttr

Specifies whether EGL generation includes extended attributes for the MFS

DFLD statements if the information for the device size is not completely

specified in the mfsDevice build descriptor option. The following values

are valid:

NO NO specifies that extended attributes are not to be used. Specify

NO if most of your devices do not support color or extended

highlighting. NO specifies that EGL generation should omit the

EATTR parameter from the MFS DFLD statements unless

overridden by the mfsDevice build descriptor option for a specific

device.

YES YES specifies that you want the default handling for extended

attributes on the MFS DFLD statement. Specify YES if all of your

devices support extended attributes (for example, devices that

support color or extended highlighting), and you want EGL

generation to include the CD (color default) extended attribute

value when generating a form field that is defined with color =

mono (monchromatic). YES specifies that EGL generation should

include the EATTR parameter for MFS DFLD statements unless

overridden by the mfsDevice build descriptor option for a specific

device. YES is the default value.

NCD NCD specifies that EGL generation should include the EATTR

parameter, but not include the CD extended attribute value for the

MFS DFLD statements when generating a form field that is defined

with color = mono.

The mfsExtendedAttr build descriptor option specifies how the DFLD

statements for a specific device are to be generated if the EATTR, NCD, or

NOEATTR parameter is not included in the mfsDevice build descriptor

64 IBM Rational COBOL Runtime Guide for zSeries

option for a particular device size. If EATTR, NCD, or NOEATTR is

specified for a particular device size in the mfsDevice build descriptor

option, the mfsExtendedAttr build descriptor option has no effect for that

device size.

mfsIgnore

Specifies the information EGL generation includes for the MFS MSG

statement for the message input descriptor (MID) and message output

descriptor (MOD). The following values are valid:

YES Specifies that you want EGL generation to include SOR= (...,

IGNORE) on the MFS MSG statement for the MID and the MOD.

Specify YES only if the mfsDevice option specifies FEAT=IGNORE

for all the devices used by the FormGroup you are generating.

NO Specifies that you do not want EGL generation to include the SOR

parameter on the MFS MSG statement for the MID and the MOD.

The default is NO.

mfsDevice

Specifies the information that EGL generation uses for the MFS DEV and

DFLD statements. This build descriptor option provides the

correspondence between the EGL device size information that a developer

specifies for a form and the device information that must be included for

the MFS DEV statements.

 To specify the mfsDevice build descriptor option, edit your build

descriptor part using the EGL Build Parts Editor. In the upper right corner

of the EGL Build Parts Editor window, click the Show MFS Devices

Properties icon. The MFS Devices Properties editor appears. You can enter

the following information:

Height

The number of lines that can be displayed on the device (for

example, 24). This attribute is required.

Width The number of columns that can be displayed on the device (for

example, 80). This attribute is required.

Device Statement Parameters

A string that contains one or more parameters you want EGL to

include when generating the MFS DEV statement. Base this

information on the TERMINAL and TYPE macros in your IMS

system definition. This attribute is required.

Extended Attributes

Indicates whether the device supports extended attributes and

whether a color default (CD) extended attribute is generated for

form fields that are displayed on monochromatic devices. Your

choice affects the EGL-generated MFS DFLD statements. If you

specify this attribute, the value of build descriptor option

mfsExtendedAttr is ignored when you generate form information

for the device. Valid values are as follows:

YES (the default)

Extended attributes are supported, and a color default

extended attribute is generated.

NCD Extended attributes are supported, but a color default

extended attribute is not generated.

NO Extended attributes are not supported.

Chapter 8. System Considerations for IMS 65

Note:

v The combination of Height and Width must match the

values for the screenSizes property that developers

specify for textForms and the values for the formSize

property that developers specify for printForms.

v You can repeat the combination of Height and Width as

many times as necessary to provide the correspondence to

all your physical devices that match that device size. For

example, if for screenSize =[24,80] for a textForm, you use

both a 3270-A2 and a 3270-A3, you should include two

entries for Height=80, Width=24, one for each device that

you use.

If you do not specify the mfsDevice build descriptor option, the default

value is shown in the following table.

 Table 10. Default values for mfsDevice build descriptor option

Height Width Device Statement Parameters

Extended

Attributes

80 24 TYPE=3270-A2,FEAT=(IGNORE) YES

80 24 TYPE=(3270-2),FEAT=(IGNORE) YES

132 255 TYPE=3270P,WIDTH=133,PAGE=(255,DEFN),FEAT=2 YES

The following table shows the relationship between the mfsIgnore and mfsDevice

build descriptor options and the FEAT parameter for the TERMINAL and TYPE

macros in the IMS system definitions.

 Table 11. Relationship between mfsIgnore, mfsDevice, and the IMS System Definition

mfsIgnore

MFS MSG

Statement for MID /

MOD

mfsDevice FEAT

Parameter

IMS System

Definition FEAT

Parameter

YES SOR=(xxxx,IGNORE) FEAT=IGNORE(1) FEAT=IGNORE or

FEAT=n

YES(2) FEAT=n(2)

SOR=xxxx FEAT=IGNORE(3) FEAT=IGNORE

SOR=xxxx FEAT=n(3) FEAT=n

Note:

1. The value for FEAT in the mfsDevice build descriptor option does not

need to match the value for FEAT in the IMS TERMINAL or TYPE

macro.

2. This combination of the mfsIgnore and mfsDevice build descriptor

options is not valid. Generation ignores any device that uses this

combination because the combination is not supported by MFS.

3. The value for FEAT in the mfsDevice build descriptor option must

exactly match the value specified for FEAT in the IMS TERMINAL or

TYPE macro.

The following table shows parameters from the TERMINAL and TYPE macros in

your IMS system definition that you can code for the Device Statement

Parameters in the mfsDevice build descriptor option. Do not code other MFS

parameters for the MFS DEV statement in the mfsDevice build descriptor option.

66 IBM Rational COBOL Runtime Guide for zSeries

Table 12.

Description Device Statement Parameters

Optional Device Statement

Parameters

3270 Display or 5550

Display

(3270,1), (3270,2), 3270-An(1) FEAT

3270 Printer 3270P FEAT, WIDTH(4), PAGE(3)

SCS1 Printer or 5550P

Printer

SCS1 FEAT, WIDTH(4), PAGE(3)

Note:

1. The n in 3270-An is any number from 1 through 15.

2. If WIDTH is coded, FEAT must be coded. WIDTH must be a value 1

greater than the width for the Width attribute for the device size because

the last column is used by MFS for carriage control. To have

compatibility for a 3270 printer, use FEAT=n (where n is a value from 1

through 10 and matches your IMS system definition), WIDTH=133,

PAGE=(255,DEFN).

3. If PAGE is coded and the second parameter is given, it must be DEFN.

DEFN is the default.

4. To have compatibility for a SCS1 printer, use the following settings:

v For a single-byte printer, use WIDTH=132, PAGE=(255,DEFN).

v For a double-byte printer (such as a 5550P), use WIDTH=158,

PAGE=(255,DEFN).

For assistance in setting the values for the mfsExtendedAttr, mfsIgnore, and

mfsDevice build descriptor options, refer to the IMS system definition reference

manual for your release of IMS for additional information on the parameters for

the TERMINAL and TYPE macros. Also refer to the stage 1 system definition

macros for your IMS system to determine the parameters actually used for your

installation. Refer to the MFS manuals for your release of IMS for additional

information about the DEV statement.

If you have IMS systems that are not generated from EGL, you might also want to

look at some MFS source from those systems to see the parameters that you

specify on the MFS DEV statement.

Once you have determined the correct values for the mfsDevice, mfsExtendedAttr,

and mfsIgnore build descriptor options, code the default build descriptor options

in all the default build descriptor files that you use when generating for the IMS or

IMS BMP target environments.

The following table lists some example values that you might want to use for the

mfsDevice build descriptor option.

 Table 13. Example values for mfsDevice build descriptor option

Height Width Device Statement Parameters

Extended

Attributes

80 24 TYPE=3270-A2,FEAT=(IGNORE) YES

80 24 TYPE=(3270-2),FEAT=(IGNORE) YES

80 24 TYPE=3270-A3,FEAT=(IGNORE) YES

80 43 TYPE=3270-A4,FEAT=(IGNORE) YES

Chapter 8. System Considerations for IMS 67

Table 13. Example values for mfsDevice build descriptor option (continued)

Height Width Device Statement Parameters

Extended

Attributes

132 27 TYPE=3270-A7,FEAT=(IGNORE) YES

132 255 TYPE=3270P,WIDTH=133,PAGE=(255,DEFN),FEAT=2 YES

132 255 TYPE=SCS1,WIDTH=132,PAGE=(255,DEFN) YES

132 255 TYPE=SCS1,WIDTH=158,PAGE=(255,DEFN) YES

68 IBM Rational COBOL Runtime Guide for zSeries

Part 3. Preparing and Running Generated Applications

Chapter 9. Output of Program Generation on

z/OS Systems 71

Allocating Preparation Data Sets 71

List of Program Preparation Steps after Program

Generation 73

Deploying generated code to USS 73

Output of Generation 74

Objects Generated for Programs 76

Application COBOL Program 76

Sample Runtime JCL 77

Bind Commands 77

Link Edit File 77

CICS Entries 78

Objects Generated for Data Tables 78

Data Table COBOL Program 78

Objects Generated for Form Groups 78

Online Print Services Program 78

Batch Print Services Program 78

Form Group Format Module 78

MFS Print Services Program 78

MFS Source 79

COBOL Copybook for MFS MID/MOD

Layout 79

Chapter 10. z/OS Builds 81

z/OS Build Server 82

Starting a z/OS Build Server 84

Starting a USS Build Server 87

Stopping servers 87

Configuring a build server 87

Working with Build Scripts 87

Working with z/OS Build Scripts 87

Writing a JCL build script 88

File Name Conversions for z/OS 89

Converting JCL to Pseudo-JCL 89

Chapter 11. Preparing and Running a Generated

Program in CICS 93

Modifying CICS Resource Definitions 93

Program Entries 93

Transaction Entries 94

Destination Control Table Entries (DCT) 94

File Control Table Entries (FCT) 95

Resource Control Table Entry (RCT) 95

Using Remote Programs, Transactions, or Files . 95

Modifying CICS Startup JCL 95

Making New Modules Available in the CICS

Environment 95

Making Programs Resident 96

Running Programs under CICS 96

Starting the Transaction in CICS 96

Controlling Diagnostic Information in the CICS

Environment 96

Printing Diagnostic Messages in the CICS

Environment 97

Chapter 12. Creating or Modifying Runtime JCL

on z/OS Systems 99

Tailoring JCL before Generation 99

Modifying Runtime JCL 100

Chapter 13. Preparing and Running Generated

Programs in z/OS Batch 103

Running Main Programs under z/OS Batch . . . 103

Examples of Runtime JCL for z/OS Batch

Programs 103

Running a Main Basic Program with No

Database Access 104

Running a Main Basic Program with DB2

Access 104

Running Main Basic Program with DL/I Access 104

Running a Main Basic Program with DB2 and

DL/I Access 105

Recovery and Restart for z/OS Batch Programs 106

Chapter 14. Preparing and Running Generated

Programs in IMS/VS and IMS BMP 107

Modifying the IMS System Definition Parameters 107

Defining an Interactive Program 107

Defining Parameters for a Main Basic Program

as an MPP 108

Defining Parameters for a Batch-Oriented BMP

Program 109

Defining Parameters for a Transaction-Oriented

BMP Program 109

Creating MFS Control Blocks 109

Making New Modules Available in the IMS

Environment 110

Preloading Program, Print Services, and Data Table

Modules 110

Running Programs under IMS 111

Starting a Main Program Directly 111

Starting a Main Transaction Program Using the

/FORMAT Command 111

Running Transaction Programs as IMS MPPs 111

IMS Commands 111

Keyboard Key Operation 112

DBCS Data on a Non-DBCS Terminal . . . 112

Error Reporting 112

Responding to IMS Error Messages 112

Running Main Basic Programs as MPPs . . . 113

Running a Main Basic Program under IMS BMP 113

Examples of Runtime JCL for IMS BMP Programs 114

Running a Main Basic Program as an IMS BMP

Program 114

Running a Main Basic Program as an IMS BMP

Program with DB2 Access 115

Recovery and Restart for IMS BMP Programs . . . 116

Chapter 15. Moving Prepared Programs to

Other Systems from z/OS Systems 117

© Copyright IBM Corp. 1994, 2006 69

Moving Prepared Programs To Another z/OS

System 117

Maintaining Backup Copies of Production Libraries 118

70 IBM Rational COBOL Runtime Guide for zSeries

Chapter 9. Output of Program Generation on z/OS Systems

This chapter provides an overview of the files produced at generation time and of

the steps needed to prepare code for use at run time.

Output files are transferred to z/OS, where preparation steps include running

translators, precompilers, and compilers; doing link-edits; and defining control

tables for the target runtime environment.

For additional information on the output of program generation, refer to the EGL

Generation Guide in the online help.

Allocating Preparation Data Sets

The EGL COBOL generation creates and runs a build plan file. The build plan file

controls the transfer of generated objects to the z/OS host and the execution of

build scripts that are used to prepare the other output of generation.

The transferred objects are stored in partitioned data sets. You allocate the required

data sets using the ELACUSER CLIST shipped in the Rational COBOL Runtime

data set that has the low-level qualifier ELACLST. This CLIST was customized at

product installation to set keyword default values to settings appropriate for your

environment.

For you to use this CLIST, your customized data set must be placed before the

Rational COBOL Runtime data set that has the low-level qualifier SELACLST in

the SYSPROC concatenation list. Make sure that every COBOL generation user has

the required data sets allocated for every environment in which the product will be

used.

The following keyword parameters within CLIST ELACUSER may either be

customized within the CLIST or overridden when executing the CLIST:

Keyword Possible Values

ZOSBATCH

v Y = allocate user data sets for this environment

v N = do not allocate user data sets for this environment

ZOSCICS

v Y = allocate user data sets for this environment

v N = do not allocate user data sets for this environment

IMSBMP

v Y = allocate user data sets for this environment

v N = do not allocate user data sets for this environment

IMSVS

v Y = allocate user data sets for this environment

v N = do not allocate user data sets for this environment

VOL vvvvvv = serial number

UNIT uuuuu = valid unit name

© Copyright IBM Corp. 1994, 2006 71

HLQ hhhhhhhh = high-level qualifier for user data sets

CLST

v FB = allocate a fixed blocked CLIST library

v VB = allocate a variable blocked CLIST library

DB2

v Y = DB2 databases will be used with this product

v N = DB2 databases will not be used with this product

CBLK cccccc = CLIST data set block size

LBLK llllll = load library data set block size

 An example of the command syntax to execute the CLIST is as follows:

ex ’myRuntime.v5r0m0.elaclst(elacuser) zoscics(y) zosbatch(y)

vol(at1235) unit(sysda) hlq(tsouid) db2(y)’

Table 14 describes the data sets that are allocated. The DD name in the table is the

DD name in the build scripts that are used by the build server. The meaning of

lower-case strings in the data set name is as follows:

chqlq The high-level qualifier specified for the hlq parameter in the ELACUSER

CLIST.

env The generation environment. One of these:

v ZOSBATCH (for z/OS batch)

v ZOSCICS (for z/OS CICS)

v IMSVS (for IMS/VS)

v IMSBMP (for IMS BMP)

 Table 14. Program Preparation User Data Set Information

DD Name Data Set Name Description DCB Information

Target En-

vironment

DBRMLIB cghlq.env.DBRMLIB Database request

module library for

DB2 programs

DSORG=PO, RECFM=FB,

BLKSIZE=6160, LRECL=80

All z/OS, if

DB2 used

EZEBIND cghlq.env.EZEBIND Bind commands DSORG=PO, RECFM=FB,

BLKSIZE=6160, LRECL=80

All z/OS, if

DB2 used

EZECOPY cghlq.env.EZECOPY Generated message

input descriptor

(MID) and message

output descriptor

(MOD) layout

copybooks.

DSORG=PO, RECFM=FB,

BLKSIZE=6160, LRECL=80

IMSVS,

IMSBMP

EZEJCLX cghlq.env.EZEJCLX Basic program

runtime job stream

DSORG=PO, RECFM=FB,

BLKSIZE=6160, LRECL=80

ZOSBATCH,

IMSBMP

EZEFOBJ chglq.env.EZEFOBJ Form group format

object modules

DSORG=PO, RECFM=FB,

BLKSIZE=3120, LRECL=80

ZOSCICS,

IMSVS,

IMSBMP

EZEMFS cghlq.env.EZEMFS Generated message

format services

control block source

DSORG=PO, RECFM=FB,

BLKSIZE=6160, LRECL=80

IMSVS,

IMSBMP

EZEOBJ cghlq.env.OBJECT Object library DSORG=PO, RECFM=U,

BLKSIZE=6144, LRECL=0

All z/OS

72 IBM Rational COBOL Runtime Guide for zSeries

Table 14. Program Preparation User Data Set Information (continued)

DD Name Data Set Name Description DCB Information

Target En-

vironment

EZESRC cghlq.env.EZESRC COBOL source library DSORG=PO, RECFM=FB,

BLKSIZE=6160, LRECL=80

All z/OS

SYSLMOD cghlq.env.LOAD Load library DSORG=PO, RECFM=U,

BLKSIZE=6144, LRECL=0

All z/OS

EZEPCT cghlq.env.EZEPCT CICS PCT entries or

RDO TRANSACTION

entries

DSORG=PO, RECFM=FB,

BLKSIZE=6160, LRECL=80

ZOSCICS

EZEPPT cghlq.env.EZEPPT CICS PPT entries or

RDO PROGRAM

entries

DSORG=PO, RECFM=FB,

BLKSIZE=6160, LRECL=80

ZOSCICS

List of Program Preparation Steps after Program Generation

Rational COBOL Runtime supports program preparation and installation in the

z/OS environments using build scripts shipped with Rational COBOL Runtime.

You must perform the steps listed in Table 15 before you can run your program in

an z/OS target environment.

 Table 15. Preparation Steps for z/OS Environments

Preparation Step Environment

Transfer from workstation to the host All

DB2 precompile DB2 use only

CICS translation CICS only

COBOL compile All

Link All

Bind DB2 use only. A bind is also required if the

first program in the run unit specifies a DB2

work database for IMS/VS

Additionally, for CICS and IMS environments, you must define your program and

transactions to the environment. For CICS, you do this using the program

properties table (PPT) and program control table (PCT) entries or the Resource

Definition Online (RDO) PROGRAM and TRANSACTION entries.

v For information on CICS entries, see Chapter 11, “Preparing and Running a

Generated Program in CICS.”

v For IMS, define your program and transactions through the IMS system

definition. For information on the IMS system definition, see Chapter 14,

“Preparing and Running Generated Programs in IMS/VS and IMS BMP,” on

page 107.

Deploying generated code to USS

The setup for deploying generated Java code in USS is the same as for Windows®.

Please see the EGL Generation Guide topic "Setting up the J2EE runtime

environment for EGL-generated code."

Chapter 9. Output of Program Generation on z/OS Systems 73

Output of Generation

After you generate a program, there are a number of objects that must be

transferred to the z/OS host system and then prepared before you can run the

program. During generation, EGL creates a build plan that controls the preparation

process through the use of build scripts. By default, the build scripts do the

following:

v Do not save the generated program source code or MFS source.

v Save the output of the preparation process (the DBRM, the object modules, and

the load modules) as members in PDS data sets on the z/OS host. You control

the high-level qualifier of the PDS data sets by setting the projectID build

descriptor option.

v Save the object modules, link edit file, and the bind control file because these

files are needed to recreate a load module without having to generate the

program again.

v Save the CICS entries because they are needed to install the program in CICS.

v Save the sample runtime JCL for z/OS Batch and IMS BMP programs.

You cannot save a load module in a workstation repository and then restore it to a

z/OS host system. However, you can save the object deck, link edit file, and bind

control file and then relink and bind the object deck in a production z/OS

environment.

If you want to save the generated source code, you must modify the fdacl, fdabcl,

fdapcl, fdatcl, fdaptcl, and fdamfs build scripts. There are instructions in the build

scripts on how to do this by removing the comment tag from certain lines and

commenting others.

The following rules apply to using objects generated for one environment in a

different environment:

v Main programs cannot be generated for one environment and used in a

different environment.

v In general, FormGroup objects cannot be generated for one environment and

used in a different environment. However, if you generate a FormGroup for IMS

BMP or z/OS Batch and specify the formServicePgmType=″ALL″ build

descriptor option, you can use the formGroup output for the IMS/VS, IMS BMP,

and z/OS Batch environments because this causes generation of all the output

required to support MFS, GSAM, and SEQ print files. However, you must

ensure that the resource association information is identical for IMS/VS and IMS

BMP when using the MFS print forms and is identical for IMS BMP and z/OS

Batch when using GSAM or SEQ print forms.

v Data tables generated and prepared in one environment (whether CICS, z/OS

Batch, or IMS) can be used in another environment on the same system.

Table 16 on page 75 provides information about the types of files produced by

generation, including:

v Type of object produced

v Low-level qualifiers of the default PDS name to which the object is written if the

build scripts are customized to save the generated files

v How the member name is derived

v Runtime environments for which the object is produced

v Whether production is controlled by a COBOL build descriptor option

v Whether the object can be modified after generation is performed

74 IBM Rational COBOL Runtime Guide for zSeries

A description of each object begins on page 76.

For additional information on generation output, refer to the EGL Generation Guide

in the help system.

You can specify an alias for a program, data table, or form group, and that alias is

used for generated output. If you do not specify an alias, the default value is the

name of the part truncated to the requirements of the target environment (8

characters, for z/OS).

The name given to the output includes the alias or the default name, as shown by

alias in the next table.

A bind control file is always generated and used in preparation for programs that

access an SQL database. You can specify your own bind control part to be used to

generate the bind control file using the bind build descriptor option, or you can

develop a bind control part with the same name as the program part. Otherwise, a

default bind control part is generated.

 Table 16. Objects Generated for Programs and Transferred to the z/OS Host by the Build Scripts

File Type

PDS

Low-level

Qualifier

PDS Member

Name

File Name on

Workstation

z/OS Runtime

Environment

Build Descriptor

Option Modifiable

COBOL

program

EZESRC alias alias.cbl All None No

Sample runtime

JCL

EZEJCLX alias alias.jcl z/OS Batch

IMS BMP

genRunFile Yes

Bind command EZEBIND alias alias.bnd All bind Yes

Link Edit File EZELINK alias alias.led All linkEdit Yes

Build Plan Not applicable

(see note 1)

Not applicable aliasBuildPlan

.xml

All prep No

CICS Entry (See

note 5)

EZEPPT alias

Part specified

when

generation was

requested

alias.ppt CICS cicsEntries Review and

possible

modification

required

CICS Entry (See

note 2)

EZEPCT Program alias alias.pct CICS cicsEntries

startTransactionID

restartTransactionID

Review and

possible

modification

required

 Table 17. Objects Generated for Data Tables and Transferred to a z/OS Host by the Build Scripts

File Type

PDS Low-level

Qualifier

PDS Member

Name

z/OS Runtime

Environment

Build Descriptor

Option Modifiable

Data table COBOL

program

EZESRC alias.cbl All genDataTables No

Chapter 9. Output of Program Generation on z/OS Systems 75

Table 18. Objects Generated for Form Groups and Transferred to a z/OS Host by the Build Scripts

File Type

PDS

Low-level

Qualifier

PDS Member

Name

File Name on

Workstation

z/OS

Runtime

Environment Build Descriptor Option Modifiable

Online print

services

program -

(See note 3)

EZESRC alias alias.cbl CICS genFormGroup,

genHelpFormGroup

No

Batch print

services

program -

(See note 3)

EZESRC aliasP1 aliasP1.cbl z/OS batch,

IMS BMP

genFormGroup,

genHelpFormGroup

formServicePgmType

No

Form group

format

module - (See

note 4)

EZEFOBJ aliasFM aliasFM.fmt z/OS CICS,

IMS/VS

genFormGroup,

genHelpFormGroup

formServicePgmType

No

MFS print

services

COBOL

program

EZESRC alias alias.cbl IMS/VS

IMS BMP

genFormGroup No

MFS control

blocks

EZEMFS alias alias.mfs IMS/VS

IMS BMP

formServicePgmType

genFormGroup

genHelpFormGroup

No

COBOL

copybook for

MFS

MID/MOD

layout

EZECOPY alias alias.cpy IMS/VS

IMS BMP

formServicePgmType

genFormGroup

genHelpFormGroup

No

Notes:

1. Build plans are not transferred to the host. They define what needs to be sent

to the host. Specifically, the build plan includes the name of a build script that

runs on the build server. The build script also contains substitution variable

values that are used for substitution in the build script.

For additional details, refer to the EGL help system.

2. If you specify the cicsEntries="RDO" build descriptor option, the PROGRAM

entries are placed in alias.ppt. The TRANSACTION entries are placed in

alais.pct.

3. This object is produced only if the form group contains print forms.

4. This object is produced only if the form group contains text forms.

5. This object is produced for programs, form groups, and data tables.

Objects Generated for Programs

Application COBOL Program

The generated program is a COBOL program that contains the following:

v Program control logic

v Logic for functions and I/O operations

v Data for both the program and program control

The program control logic performs the following functions for a program, as

needed:

v Initialization

76 IBM Rational COBOL Runtime Guide for zSeries

v Cleanup at end of program

v Error reporting

v Segmentation support, including saving data before and restoring after a

converse statement

v Transfer of control

Sample Runtime JCL

The generator produces sample runtime JCL for running programs in the z/OS

batch environments when the genRunFile build descriptor option is specified

during program generation. Each person using the JCL must provide a JOB

statement.

The JCL is produced from model JCL templates that can be modified to enforce

customer data set naming conventions. For more information about modifying the

sample templates, refer to the EGL Generation Guide.

The JCL might not be complete and should be reviewed and modified if necessary

before being used. For example, the JCL for the generated program does not

contain any DD statements for data sets used by other programs that can be

started by a call or transfer statement. Comments in the JCL indicate where DD

statements for these programs need to be added. To build the final JCL needed to

run a set of programs as a run unit, you should edit the program JCL and include

the DD statements for invoked programs with the JCL for the first main program.

You might need to add DD statements for files that are specified during run time

with the resourceAssociation record-specific variable or with the

converseVar.printerAssociation system variable.

Bind Commands

Bind commands are required for an SQL program. The bind commands either

reside in a bind control part that has the same name as the program or, you can

specify the bind control part using the bind build descriptor option.

You are not required to supply a bind control part. If one is not supplied, EGL

generates a default bind control part that may or may not meet the requirements of

the program.

The bind control part generated by default cannot be affected by users. However,

bind control parts provided by the user may contain references to symbolic

parameters which get substituted at generation time.

Link Edit File

Link edit files are required for each program, data table program, print services

program, and form group format module. For programs, the bind command either

reside in a link edit part that has the same name as the program or, you can

specify the link edit part using the linkEdit build descriptor option. For data

tables, print services programs, and form group format modules, EGL always

generates the link edit file.

You are not required to supply a link edit part for a program. If one is not

supplied, EGL generates a default link edit part that may or may not meet the

requirements of the program.

The link edit part generated by default cannot be affected by users. However, link

edit parts provided by the user may contain references to symbolic parameters

which get substituted at generation time.

Chapter 9. Output of Program Generation on z/OS Systems 77

CICS Entries

If you specify the cicsEntries build descriptor option, the PPT or RDO DEFINE

PROGRAM entries are generated for you for the following:

v Each program

v Each data table program

v The print services program and form group format module for each FormGroup

If you specify the cicsEntries build descriptor option, the PCT or RDO DEFINE

TRANSACTION commands are generated for you for main programs using the

transaction names from both the startTransactionID and restartTransactionID

build descriptor options.

Objects Generated for Data Tables

Data Table COBOL Program

The data table program is a COBOL program that contains the data table contents

defined in program working storage. This object is produced when you specify the

genDataTables build descriptor option. This allows data tables to be generated

independently of programs when the contents of a data table need to be changed.

Objects Generated for Form Groups

Online Print Services Program

The online print services program is a COBOL program that performs print I/O,

output formatting, and SET operations for a generated online CICS program that

prints output. This object is produced when you specify the genFormGroup or

genHelpFormGroup build descriptor options during program generation.

Batch Print Services Program

The batch print services program is a COBOL program that formats data for line

printers and writes the data to either the printer output file (directly to the printer

or a QSAM file) or to a generalized sequential access method (GSAM) file. This

program is used with programs that run in the z/OS batch or IMS BMP

environments. This object is produced when you specify the genFormGroup or

genHelpFormGroup build descriptor options and also specify (or default to) the

formServicePgmType=″ALL″, formServicePgmType=″SEQ″, or

formServicePgmType=″GSAM″ build descriptor option.

Form Group Format Module

The form group format module is a generated structure that describes the layout

for text forms in the form group. The generator builds the structure as a z/OS

object module for the CICS IMS/VS and IMS BMP environments. This object is

produced when you specify the genFormGroup or genHelpFormGroup build

descriptor options.

MFS Print Services Program

The MFS print service program is a COBOL program that performs print I/O,

output formatting, and SET operations for a generated IMS/VS or IMS BMP

program that prints output using MFS control blocks. This object is produced

when you generate for the IMS/VS environment and specify the genFormGroup

or genHelpFormGroup build descriptor option. It is also produced when you

generate for the IMS BMP environment, specify the genFormGroup build

descriptor option, and also specify (or default to) the formServicePgmType=″ALL″

or formServicePgmType=″MFS″ build descriptor option.

78 IBM Rational COBOL Runtime Guide for zSeries

MFS Source

In the IMS environment, an MFS source file is generated at the same time as the

form group format module. The build server automatically compiles this MFS

source to generate IMS format, input, and output messages for each device type

defined.

COBOL Copybook for MFS MID/MOD Layout

The COBOL copybook provides the equivalent COBOL definition of the MFS MID

and MOD layouts for text forms. You can use the COBOL copybook if you need to

transfer to a non-EGL program using a show statement or transfer from a non-EGL

program to an EGL program that specifies the inputForm property. If the

formGroup contains text forms, this object is produced when you generate for the

IMS/VS environment and specify the genFormGroup or genHelpFormGroup

build descriptor option. It is also produced when you generate for the IMS BMP

environment, specify the genFormGroup build descriptor option, and also specify

(or default to) the formServicePgmType=″ALL" or formServicePgmType=″MFS″

build descriptor option .

Chapter 9. Output of Program Generation on z/OS Systems 79

80 IBM Rational COBOL Runtime Guide for zSeries

Chapter 10. z/OS Builds

EGL generates the files needed to create an executable program. After creating

these files, the generation process communicates with the build server on z/OS to

transfer the files to the host and then initiate the appropriate builds (compiles,

link-edits, binds, and so on) for these programs.

To control the build process, the EGL generation process creates an XML file called

a build plan for each generated program. This build plan contains specific

information that the build server uses when building the generated program.

The type of information that the build plan contains includes:

v The name of the build script that the build server invokes to process the build

v The location on the client workstation where the server places listings and

diagnostics from the build tools (for example, the compiler or linkage editor)

v The generated program

v A list of dependent files for the build process (for example, the name of the link

edit file or the bind file) containing information used by the build process

v A list of environment variables that are used to override the default VARS

values specified in the Pseudo-JCL build script

The environment variables defined in the build plan are set using build descriptor

options and symbolic parameters specified by the user during program generation.

Using the information in the build plan, the server invokes the build script

overriding any predefined defaults in the pseudo-JCL build script with the

appropriate values specified in the build plan.

Following the steps outlined in the build script, the build server transforms one set

of files into another by invoking tools such as compilers and linkers. For example,

using a build script, the build server might transform a COBOL source file into an

object file. Another build script might perform the database bind.

After the build is finished, the build server places the listings and diagnostics from

the build process in the location specified in the build plan or build script.

Prepared output are placed into PDSs on the build server machine. The high level

and middle qualifiers of the PDS are controlled by the projectID and system build

descriptor options. The low level qualifiers are controlled by the type of output.

© Copyright IBM Corp. 1994, 2006 81

z/OS Build Server

On z/OS, you can configure the build server to perform z/OS or USS builds. If

you need both builds, then you need to start two build servers, each listening on a

unique TCP/IP port for each type.

The Remote Build server performs the following tasks:

v Receives build requests and files.

v Performs character conversions.

v Runs builds within its environment.

v Optionally collects and returns results to the client.

In z/OS, the server load module CCUBLDS receives client build requests.

CCUBLDS triggers the JCL member CCUMVS, which executes the CCUBLDW

module. CCUBLDW processes your build scripts.

Figure 10. z/OS Build Process

82 IBM Rational COBOL Runtime Guide for zSeries

For USS operations, the server load module CCUMAIN and CCUBLDS run in

z/OS. CCUBLDS triggers the JCL member CCUUSS, which starts the USS shell

script ccubldw. The ccubldw script starts the executable ccubldw, which processes

build requests.

Figure 11. Processing a z/OS Build Request

Chapter 10. z/OS Builds 83

Starting a z/OS Build Server

The z/OS build server, CCUBLDS, is an z/OS load module that you can run as a

batch program.

Figure 12. Processing a USS Build Request

84 IBM Rational COBOL Runtime Guide for zSeries

The CCUBLDS job initiates a new job for each build transaction. The sample JCL for

that job is in member CCUMVS.JCL of the installation data set whose low-level

qualifier is SELASAMP. The server is multi-threaded, so these jobs run

concurrently and are independent of each other. The number of concurrent jobs

running at any one time is limited by system resources (such as initiators).

The build server receives commands and files, performs character conversions, sets

up the environment, runs builds within this environment, collects the results and

returns the results.

See the program directory for Rational COBOL Runtime for additional information

on customizing the CCURUN, CCURUNU, CCUMVS, and CCUUSS JCL and the

ccubldw.sh script.

You start a build server by using z/OS JCL commands. The syntax for the

parameters line is as follows:

Syntax: // PARM= ’−p <portno> [−V ...] [−a {2|1|0} [−n <n>] [−q <q>] [−t] [-T <n>]’

where:

−p Specifies the port number (portno) to which the server listens to

communicate with the clients.

−V Specifies the verbosity level of the server. You may specify this parameter up

to three times (maximum verbosity).

 For example, to increase the verbosity to the maximum, you specify -V -V

-V.

//CCUBLDS JOB (ACCT#),’TEST’,REGION=0M,

// CLASS=O,MSGCLASS=T

//*--

//* PROGRAM: CCURUN

//* JCL to start CCU z/OS Build Server

//*

//* COPYRIGHT: Copyright (C) International Business

//* Corp. 2001

//*

//* DISCLAIMER OF WARRANTIES:

//* The following enclosed code is sample code created

//* by IBM Corporation. This sample code is not part

//* any standard product and is provided to you solely

//* for the purpose of assisting you in the development

//* of your applications. The code is provide "AS IS",

//* without warranty of any kind. IBM shall not be

//* liable for any damages arising out of your use

//* of the sample code

//*--

//* Some dataset names may need to be modified

//* according to your system’s customization

//*--

//RUNPGM EXEC PGM=CCUMAIN,DYNAMNBR=30,REGION=7400K,TIME=NOLIMIT,

// -p 4112 -a 2 -n 3 -q 20 -T 20

//STEPLIB DD DSN=CUST.UCCBLD.LOAD,DISP=SHR

//CCUWJCL DD DISP=SHR,DSN=CUST.UCCBLD.JCL(CCUMVS)

//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

//CCUBLOG DD SYSOUT=*

//

Figure 13. An example of the JCL needed to start the build server for z/OS

Chapter 10. z/OS Builds 85

−a Specifies the authentication mode of the CCUBLDS server. The server state is

either ’A’ (APF authorized) or ’U’ (not APF authorized).

2 Server state: A. The user submitting the build request must specify a valid

user ID and password when the user initiates a build by using the remote

build client. The server performs the build transaction under the access

and authority of this user ID. Mode 2 is the default.

1 Server state: A. The user submitting the build request can provide a valid

user ID and password. The server performs the build transaction under

the access and authority of this user. If the user does not provide a user

ID and password, the build transaction is performed under the access and

authority of the user ID assigned to the build server job.

0 Server state: A or U. If U, APF-authorized build programs will fail. If the

user submitting the build request specifies a TSO user ID and password,

the server ignores them and the build transaction is performed under the

access and authority of the user ID assigned to the build server job.

You can use modes 1 and 2 only if the server load modules are run from an

APF-authorized library.

Note: For additional information about installing code in an APF-authorized

library to allow users to run builds under the authority of their userid,

see the program directory for Rational COBOL Runtime.

−n Specifies the number of concurrent builds. The default is 1. Set n equal to the

number of concurrent builds you want to allow. Once there are n number of

concurrent builds running, the build server queues any additional requests

and submits them on a first come first served basis as builds are completed.

−q Specifies the size of the queue (q) for clients. The default is 10. Each queued

client uses a TCP/IP socket. Therefore setting this too high may require more

sockets than are available, causing unpredictable results. If the queue is full,

subsequent clients are rejected by the server. However, the build client

automatically retries the build in that case.

−t Starts tracing of this server job and writes output to STDOUT. This parameter

is normally used only for debugging.

−T Specifies the number of minutes the build server will wait for a started child

process (CCUBLDW) to complete. If the system is overloaded, increase this

value. The default is 5.

Note: See the program directory for Rational COBOL Runtime for information

about modifying the JCL necessary to start the USS and z/OS build servers

If you start the server on z/OS from an APF-authorized library (this is required in

modes 1 and 2 but is optional in mode 0), the server state is authorized (’A’) and

the build script can specify an APF authorized program as the executable.

For additional information about installing code in an APF-authorized library to

allow users to run builds under the authority of the person making a build

request, refer to the EGL program directory.

Note: In this case, the build script can also specify non-APF authorized programs.

However, in a multistep JCL script, an authorized program cannot be

executed after an unauthorized program.

86 IBM Rational COBOL Runtime Guide for zSeries

If the server is not started from an APF-authorized library, the server state is not

authorized (’U’) and the build script can specify only non-APF authorized

programs as executables.

Starting a USS Build Server

You start the USS build server the same way you start the z/OS build server,

except with a different dataset allocated by DD name CCUWJCL. This difference is

reflected in the CCURUN and CCURUNU JCL customized at installation. The

sample JCL CCURUNU needs to be modified just as CCURUN.

The CCUWJCL DD name uses the JCL member CCUUSS. As found in the

installation data set whose low-level qualifier is SELASAMP, that member acts as a

template in submitting build requests to USS using the BPXBATCH utility to

submit the USS shell script ccubldw.sh.

The build server creates temporary datasets and directories in the directory where

the program is initiated. It is important that the ID that starts the server has the

appropriate authority to create these datasets and directories otherwise the server

will not initiate properly and all transactions will fail.

Stopping servers

To stop an z/OS server, cancel the job that was used to start it.

Configuring a build server

To configure a build server, you must modify members of the installation data set

whose low-level qualifier is SELASAMP. Those members contain JCL and are

named as follows:

v CCUMVS (for z/OS builds)

v CCUUSS (for USS builds)

Note: See the program directory for Rational COBOL Runtime for information

about configuring the USS and z/OS build servers.

Working with Build Scripts

There is a fundamental difference between build scripts on z/OS and build scripts

on USS. Build scripts on z/OS must be text files and must be written in

Pseudo-JCL. On USS, you can use any executable file as a build script and the file

can be either text or binary.

Working with z/OS Build Scripts

The build script processed by the z/OS server is always a text file written in

Pseudo-JCL. It is specified in one of two ways. If the build script is not specified as

part of the build command, then the server looks for it as a member of the PDS

specified by the ddname CCUPROC for the server job. This PDS must be of

RECFM=FB, LRECL=80.

The build script is parsed by the server. From the parsed results, the server

allocates the specified DD names and data sets; it then executes the programs

dynamically.

On z/OS, the server also uses the JCL to determine where to store the files

involved in an z/OS build.

Chapter 10. z/OS Builds 87

EGL uses and Rational COBOL Runtime provides build scripts in the PDS

specified by DD name CCUPROC in the CCUMVS JCL. These build scripts are the

defaults specified in the EGL generated build plans. The member names are

FDABCL, FDABIND, FDACL, FDALINK, FDAPCL, FDAPTCL, FDATCL, and

FDAMFS.

These must be members in the PDS specified in the CCUPROC DD card in the JCL

used to invoke a build request (see the previous section). The members provide the

following functions:

FDABCL

Compile and link the generated z/OS batch and IMS BMP programs

FDABIND

Bind generated programs that contain DB2 statements

FDACL

Compile and link the generated COBOL programs, print services

programs, or data table programs that do not contain CICS or DB2

commands

FDALINK

Link the generated form group format module.

FDAMFS

Invoke the MFS utilities to prepare MFS source for execution in IMS/VS or

IMS BMP environments.

FDAPCL

DB2 precompile, compile, and link the generated z/OS batch, IMS/VS, or

IMS BMP programs that contain DB2 statements.

FDAPTCL

DB2 precompile, CICS translation, compile, and link the generated CICS

COBOL programs that contain DB2 statements.

FDATCL

CICS translation, compile, and link the generated CICS COBOL programs

that do not contain DB2 statements.

 To override the default build scripts, use the symbolic parameter

DISTBUILD_BUILD_SCRIPT. To identify the PDS from which to access build

scripts at build time, specify the PDS name in the symbolic parameter

BUILD_SCRIPT_LIBRARY.

Refer to the EGL Generation Guide in the EGL help system for more information on

how to use symbolic parameters during generation.

Writing a JCL build script

JCL build scripts must be written using Pseudo-JCL. The best starting point for a

JCL build script is an existing JCL fragment that is used for transforming inputs

into output. For example, suppose you want to create a build script that compiles a

COBOL source file into an OBJECT file using a z/OS compiler. You probably

already have JCL that can be submitted as a batch job that does this.

When you create a build script for the z/OS environment, you specify Pseudo-JCL

statements, as described in the following EGL help system topics:

v Pseudo-JCL syntax

v Pseudo-JCL substitution variables

88 IBM Rational COBOL Runtime Guide for zSeries

v Setting and including pseudo-JCL substitution variables

v Predefined pseudo-JCL substitution variables

For more information about JCL syntax, refer to the JCL User’s Guide and JCL

Reference for your version of z/OS.

File Name Conversions for z/OS

Workstation file names are converted to z/OS host PDS names and member names

by the z/OS build server according to the following rules:

v The directory path of a file name is not used. The end of a directory path of a

file name is specified by a slash or left parenthesis (″/″, ″(″, or ″\″). All

characters of a file name up to and including the rightmost slash or left

parenthesis are discarded.

v Lowercase characters are converted to uppercase characters.

v The file extension is stripped from the right, up to and including the separating

period. The extension, minus the period, is used by the z/OS server to direct the

file to particular data sets according to user-specified syntax in the JCL build

scripts.

v The remaining name is truncated from the left, to a maximum of 8 characters.

v Names must contain characters that are valid in z/OS. z/OS allows the

following characters:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$@#

However, the name must begin with an alphabetic character.

v Underscore characters (_) in a file name are converted to at signs (@).

The following are examples of how a workstation name is converted:

v A file name of src\build\fhbldobj.CBL is converted to FHBLDOBJ on z/OS.

v A file name of src/build/fhbtruncate.cbl is converted to FHBTRUNC on z/OS.

In both of these examples, the .CBL or .cbl is removed. The z/OS server uses the

resulting extension to resolve and possibly allocate the z/OS data sets needed for

the build process. The extensions are required for files that participate in an z/OS

build.

Converting JCL to Pseudo-JCL

The following is a JCL procedure for a z/OS compile and link:

//**

//* JCL Procedure - COBOL COMPILE AND LINK-EDIT

//**

//*

//ELACL PROC CGHLQ=’USER’,

// COBCOMP=’SYS1.IGY.SIGYCOMP’,

// COBLIB=’SYS1.SCEELKED’,

// ELA=’VGEN.HS.V1R2M0’,

// DATA=’31’,

// ENV=’ZOSCICS’,

// MBR=PGMA,

// RESLIB=’SYS1.RESLIB’,

// RGN=1024K,

// SOUT=’*’,

// WSPC=500 ,

//*

//* PARAMETERS:

//* CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER

//* COBCOMP = COBOL COMPILER LIBRARY

//* COBLIB = LE RUN TIME LIBRARY

Chapter 10. z/OS Builds 89

//* ELA = EGL SERVER HIGH LEVEL QUALIFIER

//* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE

//* ABOVE 16M LINE

//* ENV = COBOL GENERATION USER DATA SET ENVIRONMENT QUALIFIER

//* (SHOULD BE EQUAL TO GENERATION TARGET ENVIRONMENT)

//* MBR = SOURCE NAME

//* RESLIB = IMS RESLIB LIBRARY

//* RGN = REGION SIZE

//* SOUT = SYSOUT ASSIGNMENT

//* WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION

//*

//**

//* COMPILE THE COBOL PROGRAM

//**

//*

//C EXEC PGM=IGYCRCTL,REGION=&RGN,

// PARM=(NOSEQ,QUOTE,OFFSET,LIB,RENT,NODYNAM,DBCS,OPT,

// ’TRUNC(BIN)’,’NUMPROC(NOPFD)’,NOCMPR2,’DATA(&DATA)’)

//STEPLIB DD DISP=SHR,DSN=&COBCOMP

//SYSIN DD DISP=SHR,DSN=&CGHLQ..&ENV..EZESRC(&MBR)

//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY

//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=VIO,

// SPACE=(800,(&WSPC,&WSPC))

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT3 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT4 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT5 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT6 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT7 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//*

//**

//* LINK-EDIT THE COBOL PROGRAM

//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS

//**

//*

//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,

// PARM=’RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)’

//SYSLIB DD DISP=SHR,DSN=&COBLIB

// DD DISP=SHR,DSN=&RESLIB

//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD

//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET

// DD DDNAME=SYSIN

//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&ENV..LOAD(&MBR)

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUT1 DD SPACE=(1024,(&WSPC,&WSPC)),UNIT=VIO

The first step in converting the JCL fragment is to recognize the intent for each of

the data sets and DD names. For this COBOL compiler example, the SYSIN DD

name needs to be associated with the source file, the SYSLIN DD name needs to be

associated with the object file, and so on.

In each of these cases, the build script must tell the server where to pick up the

input files before the execution of the specified program (PGM=IGYCRCTL) and

where to put the output files after the execution of the specified program.

Assume that your source files have the extension .cbl. You allocate a data set to the

SYSIN DD name to contain a source file with a .cbl extension. You specify the

DCB, UNIT, DISP, and SPACE attributes to dynamically create this data set every

time this build script is invoked. You add CCUEXT=CBL to indicate that the file

content comes from an input file with an extension of .cbl.

90 IBM Rational COBOL Runtime Guide for zSeries

For the SYSPRINT DD statement, use the CCUEXT parameter to tell the z/OS

build server what you want to have done with the COBOL compiler listing. In the

example, CCUEXT=&CCUEXTC so that the value is set from the default

Pseudo-JCL build script parameter CCUEXTC. The value CCUOUT indicates that

you want the listing returned to the client as a file with a name based on the DD

name.

The following JCL build script is the result of converting the JCL procedure.

//**

//* BUILD SCRIPT - COBOL COMPILE AND LINK-EDIT

//**

//*

//DEFAULTS VARS CGHLQ=USER,

// COBCOMP=SYS1.IGY.V3R1M0.SIGYCOMP,

// COBLIB=SYS1.SCEELKED,

// COBLISTPARMS=OFFSET&COMMA.NOLIST&COMMA.MAP,

// ELA=ELA.V6R0M1,

// DATA=31,

// SYSTEM=ZOSCICS,

// MBR=PGMA,

// RGN=4096K

// CCUEXTC=CCUOUT,

// CCUEXTL=CCUOUT,

// SOUT=*,

// DBCS=&COMMA.DBCS

// WSPC=2500

//*

//* PARAMETERS:

//* CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER

//* COBCOMP = COBOL COMPILER LIBRARY

//* COBLIB = LE RUN TIME LIBRARY

//* COBLISTPARMS = LISTING OPTIONS FOR COBOL COMPILER

//* ELA = RATIONAL COBOL RUNTIME HIGH LEVEL QUALIFIER

//* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE

//* ABOVE 16M LINE

//* DBCS = COMPILE OPTION FOR INDICATING SOURCE CONTAINS DBCS

//* CHARACTERS

//* SYSTEM = SYSTEM GENERATING FOR. USED AS USER DATASET MIDDLE

//* QUALIFIER

//* MBR = SOURCE NAME

//* RGN = REGION SIZE

//* CCUEXTC = CCUEXT VALUE FOR COMPILE PRINTOUTS RETURNED TO

//* CLIENT.

//* CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME

//* CCUSTD=RETURN TO CLIENT AS STANDARD OUT

//* CCUERR=RETURN TO CLIENT AS STANDARD ERROR

//* CCUEXTL = CCUEXT VALUE FOR LINK PRINTOUTS RETURNED TO CLIENT

//* CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME

//* CCUSTD=RETURN TO CLIENT AS STANDARD OUT

//* CCUERR=RETURN TO CLIENT AS STANDARD ERROR

//* SOUT = SYSOUT ASSIGNMENT IF A SYSOUT FILE NOT RETURNED

//* TO CLIENT

//* WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION

//*

//**

//* COMPILE THE COBOL PROGRAM

//**

//*

//C EXEC PGM=IGYCRCTL,REGION=&RGN,

// PARM=’NOSEQ,QUOTE,LIB,RENT,NODYNAM,OPT&DBCS,

// TRUNC(BIN),NUMPROC(NOPFD),&COBLISTPARMS.,DATA(&DATA)’

//STEPLIB DD DISP=SHR,DSN=&COBCOMP

//* COBOL SOURCE CODE UPLOADED FROM CLIENT (&MBR.CBL)

//SYSIN DD CCUEXT=CBL,DISP=(NEW,DELETE),

// UNIT=SYSDA,SPACE=(TRK,(10,10)),

Chapter 10. z/OS Builds 91

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY

//SYSLIN DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..OBJECT(&MBR),ENQ=YES

//* RETURN COMPILER LISTING TO CLIENT AS FILE &PREFIX.C.SYSPRINT

//SYSPRINT DD CCUEXT=&CCUEXTC,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(CYL,(5,5)),

// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)

//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT3 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT4 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT5 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT6 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT7 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//*

//**

//* LINK-EDIT THE COBOL PROGRAM

//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS

//**

//*

//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,

// PARM=’RENT,REUS,LIST,XREF,MAP,AMODE(&DATA),RMODE(ANY)’

//SYSLIB DD DISP=SHR,DSN=&COBLIB

//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD

//OBJLIB DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..OBJECT

//* LINK EDIT CONTROL FILE UPLOADED FROM CLIENT (&MBR.LED)

//SYSLIN DD CCUEXT=LED,DISP=(NEW,DELETE),

// UNIT=SYSDA,SPACE=(TRK,(10,10)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..LOAD(&MBR),ENQ=YES

//* RETURN LINK EDIT LISTING TO CLIENT AS FILE &PREFIX.L.SYSPRINT

//SYSPRINT DD CCUEXT=&CCUEXTL,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(TRK,(30,10)),

// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)

//SYSUT1 DD SPACE=(1024,(&WSPC,&WSPC)),UNIT=VIO

//

92 IBM Rational COBOL Runtime Guide for zSeries

Chapter 11. Preparing and Running a Generated Program in

CICS

This chapter describes the unique steps required to prepare and run a generated

COBOL program in an CICS environment:

v Modifying CICS resource definitions

v Modifying CICS startup JCL

v Making new modules available

v Making programs resident

v Running programs

Modifying CICS Resource Definitions

The CICS environment uses resource definitions to identify startup parameters,

transactions, programs, files, databases, transient data destinations, and system

locations for proper operation. You must add to or modify these resource

definitions to correctly identify all objects to be used in the new or changed

program. When using CICS tables, the tables are compiled as assembler programs

and stored in a runtime library. Some tables can also be maintained through an

online facility as described in the resource definition online manual for your

version of CICS. CICS requires that the online facility be used for PROGRAM and

TRANSACTION entries.

Refer to the CICS resource definitions guide for additional information on

providing definitions.

You can either write your own RDO PROGRAM and TRANSACTION entries or

use the ones generated by EGL. You must handle DCT, FCT, and RCT entries

yourself.

Program Entries

The EGL COBOL generation process creates programs that must be defined, as a

resource definition online (RDO) PROGRAM entry or by using dynamic program

entries.

An entry is required for each EGLgenerated program. You can request that sample

PPT or RDO entries be generated for you by specifying the cicsEntries build

descriptor option at generation. However, the PPT entries are no longer supported

by CICS.

Either the batch program DFHCSDUP utility or the resource definition online

(RDO) CEDA DEFINE PROGRAM command can be used to define the server

program to CICS.

If you specify cicsEntries="RDO", CICS RDO DEFINE PROGRAM commands are

generated for you for each program that requires an RDO PROGRAM entry. The

build plan created during generation uploads the RDO command files to the z/OS

library specified at generation.

The following example shows how to define the program entries using the RDO

CEDA transaction DEFINE PROGRAM command.

 CEDA DEF PROG(progname) L(LE370) REL(NO) RES(NO) S(ENABLED) GROUP(xxxx)

© Copyright IBM Corp. 1994, 2006 93

The values shown for REL, RES, and S keywords are the default values and can be

omitted from the command. RES(YES) might provide better performance for

frequently used programs.

Transaction Entries

A CICS TRANSACTION entry contains the control information used by CICS for

identifying and initializing a transaction. This entry is required by CICS to verify

incoming requests to start transactions, and to supply information about the

transaction such as the transaction priority, the security key, and the length of the

transaction work area (TWA).

A CICS RDO TRANSACTION entry is required for each transaction code used to

start an EGL generated program. If you specify cicsEntries=″RDO″, CICS RDO

DEFINE TRANSACTION commands are generated for you for main programs

using the transaction names from both the startTransactionID and the

restartTransactionID build descriptor options. The following example shows how

to define the TRANSACTION entries using the RDO CEDA transaction DEFINE

TRANSACTION:

CEDA DEF TR(tran) PROG(progname) I(BACKOUT) DU(NO) RES(NO) TW(1024)

EGL generated programs can be started by a remote procedure call from some

remote systems. The CICS supported mirror program DFHMIRS, normally invoked

by the CPMI transaction is used during this remote procedure call. It:

1. Determines which server program should be given control

2. Builds the COMMAREA

3. Links to the defined server program via CICS LINK

CPMI is the CICS supplied default transaction code to invoke the CICS mirror

program DFHMIRS. When using CPMI to start EGL programs, you must change

the transaction definition for CPMI to specify a TWASIZE of at least 1024 bytes.

To avoid making changes to the CPMI definition in the CICS supplied group, it is

recommended that you copy the CICS supplied CPMI definitions to a new group

or create a unique transaction ID with the same characteristics as CPMI. The new

transaction or copy of CPMI should be changed and verified to ensure the

following values are set.

1. The twasize is 1024

2. The profile is DFHCICSA (CICS default would be DFHCICST (T for terminal))

3. The program invoked is DFHMIRS

Example:

DEFINE TRANSACTION(MYMI) PROGRAM(DFHMIRS) TWASIZE(1024) PROFILE(DFHCICSA)

Destination Control Table Entries (DCT)

A CICS destination control table (DCT) entry is required for each program file that

is assigned to a transient data queue. A DCT entry is also required for destinations

specified as error destination queue names using the Rational COBOL Runtime

diagnostic controller utility. The parameters for DCT entries depend on your

destination type. There are intrapartition, extrapartition, indirect, and remote

destinations. See “Using and Allocating Data Files in CICS” on page 42 for

information about defining and managing program data files and “Defining

94 IBM Rational COBOL Runtime Guide for zSeries

Transient Data Queues” on page 43 for information about defining the DCT entry

for the error destination queue. Refer to appropriate CICS manuals for more

information on DCT entries.

To provide these definitions as RDO entries, see the CICS resource definition

guide.

File Control Table Entries (FCT)

A CICS file control table (FCT) entry is required for each program file that is

specified as file type VSAM. You must identify all FCT entries that might be

referenced at run time. Files can also be defined using RDO. See “Using and

Allocating Data Files in CICS” on page 42 for more information on defining and

managing program data files in the CICS environment.

Resource Control Table Entry (RCT)

If the programs running under a transaction access DB2 databases, then you must

define an entry in the CICS resource control table (RCT) that associates the

transaction identifier with the program plan name.

The following example shows the minimum RCT entry required:

DSNCRCT TYPE=ENTRY TXID=tran PLAN=plan-name

For more information on the other parameters you can specify when you define

RCT entries, refer to the chapter on connecting the CICS attachment facility in the

DB2 installation manual for your version of DB2.

To provide these definitions as RDO entries, see the CICS resource definition

guide.

Using Remote Programs, Transactions, or Files

Refer to the appropriate CICS manuals for information about defining remote

programs, transactions, or files.

Modifying CICS Startup JCL

You must include the load library where your generated programs reside in the

DFHRPL DD concatenation. Your system administrator included the LE runtime

libraries and the Rational COBOL Runtime load library in the DFHRPL DD

concatenation when the Rational COBOL Runtime product was installed.

The CICS startup JCL might need to be modified to add or change allocations for

files used by EGL-generated programs. These include VSAM files and

extrapartition transient data destinations.

For VSAM data sets, it is not necessary to include allocations in the startup JCL if

you specify the data set name and disposition in the CICS FCT or RDO entry for

the file. CICS dynamically allocates the file at open time.

Making New Modules Available in the CICS Environment

After you generate a new version of a program, form group, or data table you

need to make the modules available to CICS.

Chapter 11. Preparing and Running a Generated Program in CICS 95

For programs and form groups, you can use the CICS NEWCOPY command or the

Rational COBOL Runtime new copy utility to cause the new copy of the program

to be used the next time a load request is issued for the program. If you use the

CICS NEWCOPY command for a form group, you must issue the NEWCOPY for

both the online print services program and the form group format module.

For data tables, you must use the Rational COBOL Runtime new copy utility to

cause a fresh copy of the table to be used the next time a load request is issued for

the table. Do not use the CICS NEWCOPY command for tables. The Rational

COBOL Runtime new copy utility sets a flag indicating that the new copy of the

table is to be used the next time a program loads the table contents.

For more information on the Rational COBOL Runtime new copy utility, see “New

Copy” on page 122.

Making Programs Resident

You can make frequently used programs or programs with high performance

requirements resident to avoid the overhead of loading the programs when they

are used. To aid in deciding which programs should be made resident, you can use

CICS shutdown statistics to determine how often a generated program is loaded in

a CICS region.

To make a program or form group resident, specify the program as resident in the

RDO entry for the program. To make a data table program resident, set the

resident property to YES when you define the data table in EGL.

Running Programs under CICS

Either a main Text UI program or a main basic program generated for the z/OS

CICS environment can be started with CICS facilities. Called programs can be

started by another EGL program, by a non-EGL program, or through the remote

CICS services.

Prior to running a generated program, the program user might be required to sign

on to the CICS environment. Refer to CICS documentation for information about

signing on.

Starting the Transaction in CICS

Any main program that is generated with a target environment of z/OS CICS can

be started by entering the transaction code associated with the main program from

a clear screen in CICS. Any main program that is started in any of the following

ways must have a unique transaction code assigned to it:

v Directly in CICS

v By a transfer to transaction statement from another program

v By a show statement from another program

v By a sysLib.startTransaction() system function

The transaction code must be defined with an RDO TRANSACTION entry and be

associated with the first program in the run unit.

Controlling Diagnostic Information in the CICS Environment

Rational COBOL Runtime provides a diagnostic controller utility for the CICS

environment. This utility allows you to control the type of dump, the name of the

96 IBM Rational COBOL Runtime Guide for zSeries

error destination queue and journal number for error messages, and whether the

transaction is disabled when a run unit error occurs. See “Diagnostic Control

Options for z/OS CICS Systems” on page 125 for more information about the

diagnostic controller utility.

Printing Diagnostic Messages in the CICS Environment

Rational COBOL Runtime provides a way to print diagnostic messages written to a

transient data queue. See “Diagnostic Message Printing Utility” on page 124 for

more information.

Chapter 11. Preparing and Running a Generated Program in CICS 97

98 IBM Rational COBOL Runtime Guide for zSeries

Chapter 12. Creating or Modifying Runtime JCL on z/OS

Systems

This chapter contains the information you need to modify the sample runtime JCL

created during program generation. You might need to modify the sample runtime

JCL for the following reasons:

v EGL does not include DD statements in the JCL to allocate data sets accessed by

programs called by or transferred to from the generated program.

v The generator does not include DD statements to allocate data sets accessed

when the EGL program moves a value to the record-specific variable

resourceAssociation or to the system variable converseVar.printerAssociation.

v The generator does not create any recovery or restart JCL.

v The sample JCL is based on the initial program in the run unit.

You need to ensure that the load libraries containing the initial program and any

dynamically invoked programs are included in the STEPLIB concatenation unless

you are using methods to put the load modules in memory. This includes program

modules that are called dynamically or that receive control by a transfer and

includes print services programs, form group format modules, and data-table

programs.

Tailoring JCL before Generation

EGL creates sample runtime JCL for basic programs being generated for the z/OS

batch or IMS BMP environments. The sample runtime JCL is based on templates

that are installed in the MVStemplates subdirectory of the following plugin:

 com.ibm.etools.egl.generators.cobol_version

version

The product version; for example, 6.0.0.

You can specify the location of site-specific templates by setting the templateDir

build descriptor option.

Some of the reasons to tailor the JCL templates are as follows:

v Implementing your installation’s data set naming conventions

v Adding DD statements to the STEPLIB concatenation

v Specifying a different DB2 subsystem

The sample JCL is shown in Chapter 13, “Preparing and Running Generated

Programs in z/OS Batch,” on page 103 and in Chapter 14, “Preparing and Running

Generated Programs in IMS/VS and IMS BMP,” on page 107.

The following table shows the relationship between the JCL templates used, the

target environments, and the types of databases being used by the program.

 Table 19. Runtime JCL Templates Based on Environment and Databases

JCL Template Database Environment

FDA2MEBE None z/OS batch

FDA2MEBD DB2 z/OS batch

© Copyright IBM Corp. 1994, 2006 99

Table 19. Runtime JCL Templates Based on Environment and Databases (continued)

JCL Template Database Environment

FDA2MEBB DB2 and DL/I z/OS batch

FDA2MEBC DL/I z/OS batch

FDA2MEIA DB2 IMS BMP

FDA2MEIB Without DB2 IMS BMP

FDA2MEBA Any, for called program z/OS batch or IMS BMP

Table 20 shows the JCL templates that serve as models for DD statement

generation for program-dependent files and databases.

 Table 20. Model DD Statement for Program-Dependent Files and Databases

JCL Template Contents

FDA2MSDI QSAM input file

FDA2MSDO QSAM output file

FDA2MVSI VSAM input file

FDA2MVSO VSAM output file

FDA2MGSI GSAM input file

FDA2MGSO GSAM output file

FDA2MIMS GSAM IMS dataset for IMS BMP

FDA2MCAL Comment indicating where to insert DD statements for known

transferred-to and called programs

FDA2MEZA Comment indicating where to insert DD statements for programs

transferred-to using the system variable sysVar.transferName

FDA2MEZD Comment indicating where to insert DD statements for data sets

using the record-specific variable resourceAssociation or the system

variable converseVar.printerAssociation

FDA2MDLI Comment indicating where to insert DD statements for DL/I

databases on z/OS batch

Modifying Runtime JCL

The sample runtime JCL for main basic programs contains EXEC statements to run

a program or a cataloged procedure. The JCL for main basic programs does not

include a JOB statement or the DD statements for data sets accessed by called or

transferred-to programs. Before you use the JCL to run the program, you must do

the following:

v Add a JOB statement.

v Insert missing DD statements as required. Comments in the generated JCL

indicate where to insert the DD statements.

The sample runtime JCL for a called program contains only the DD statements that

are required for the called program.

After generation, add the DD statements for any files required by called or

transferred-to programs (including those named with sysVar.transferName) to the

sample JCL for the main program. In addition, you must add DD statements for

any files accessed by moving a value to the record-specific variable

100 IBM Rational COBOL Runtime Guide for zSeries

resourceAssociation or to the system variable converseVar.printerAssociation .

You do not need to add DD statements for files that you access dynamically. You

can also customize the sample runtime JCL with respect to specific data set name

assignments, DCB information, output file space allocations, additional steps, and

other relevant data.

The type of runtime JCL generated for a main basic program varies based on the

types of databases used by the main program, as shown in Table 19 on page 99.

The generated runtime JCL does not consider the types of databases accessed by

called or transferred-to programs. If the main program does not use relational

databases, but it calls or transfers to programs that use relational databases, you

must modify the runtime JCL for the main program. This situation does not occur

for DL/I because the main program must have a PSB defined even if it does not

access DL/I databases.

For example, consider the following situation:

v Program A is a main basic program that does not use relational databases.

v Program B is main basic program that accesses relational databases.

v Programs A and B are generated for the z/OS batch environment.

v Program A transfers to program B

Because program A does not use DB2, the JCL generated for program A is for a

main basic program without DB2 access (as shown in Figure 14 on page 104). This

JCL will not run correctly because program B requires DB2 to run. However, the

JCL generated for program B is for an z/OS batch job with DB2 access (as shown

in Figure 15 on page 104). The runtime JCL for program B can serve as a starting

point for creating the JCL required to run program A. The following changes are

required to the runtime JCL for program B:

v Change RUN PROG(APPLB) to RUN PROG(APPLA).

v Add any DD statements for files required by program A or other programs in

the job step.

If program B is a called program and program A calls B rather than transferring to

B, the runtime JCL for program B consists only of DD statements. In this situation,

you need to create your own program JCL. Any one of the following can serve as a

starting point for the JCL:

v The runtime JCL for another main program that accesses relational databases.

v The JCL template for the appropriate combination of DL/I and DB2.

v The examples shown in Chapter 13, “Preparing and Running Generated

Programs in z/OS Batch,” on page 103 for the appropriate combination of DL/I

and DB2.

You can avoid the modification just described if you include an I/O statement for

an SQL table in the initial main program.

If you get a JCL error for the runtime JCL, check the Generation Results view for

the programs involved for any error messages related to JCL generation. In

addition, ensure the tailoring that was done for the JCL templates is correct. Also

check any changes you made when you customized the sample runtime JCL.

Chapter 12. Creating or Modifying Runtime JCL on z/OS Systems 101

102 IBM Rational COBOL Runtime Guide for zSeries

Chapter 13. Preparing and Running Generated Programs in

z/OS Batch

This chapter describes the unique steps required to prepare a generated COBOL

program to run in a z/OS batch environment:

v Running main programs

v Examples of runtime JCL

v Recovery and restart

For general information on preparing your program for the runtime environment,

see Chapter 9, “Output of Program Generation on z/OS Systems.” For information

on modifying the JCL, see Chapter 12, “Creating or Modifying Runtime JCL on

z/OS Systems.”

Running Main Programs under z/OS Batch

A main basic program generated for the z/OS batch environment can be started by

submitting JCL. Called programs can only be started by another EGL program or

by a non-EGL program.

The EGL COBOL generation process creates sample runtime JCL for running

programs in the z/OS batch environment. The generated JCL has same name as

the program. If you set the genRunFile build descriptor option to ″YES″, sample

JCL is created specifically for the program during program generation. The build

plan uploads the sample runtime JCL to a z/OS partitioned data set (PDS).

The JCL might need to be modified to add data sets required by called or

transferred-to programs. You also need to modify the JCL to add any data sets that

are dynamically allocated with the recordName.resourceAssociation or

converseVar.printerAssociation system variables. See Chapter 12, “Creating or

Modifying Runtime JCL on z/OS Systems,” on page 99 for more information on

modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the Generation Results view for

the programs involved for any error messages related to JCL generation. In

addition, ensure the tailoring that was done for the JCL templates is correct. Also

check any changes you made when you customized the sample runtime JCL.

The following sections show JCL for different z/OS batch programs.

Examples of Runtime JCL for z/OS Batch Programs

The generated JCL in the following examples has these characteristics:

v The examples are based on the JCL templates shipped with EGL. Your actual

JCL templates might differ if your system administrator has tailored them for

your organization. Refer to the EGL Generation Guide in the EGL help system for

more information about tailoring JCL templates.

v Lowercase text appears in the examples where a generic example name has been

substituted for an actual program or data set name.

v EZEPRINT is always routed to SYSOUT=*.

© Copyright IBM Corp. 1994, 2006 103

If you route EZEPRINT to a data set, you must use the following DCB

attributes:

– LRECL=137, BLKSIZE=141, RECFM=VBA if the form group does not contain

any DBCS maps

– LRECL=654, BLKSIZE=658, RECFM=VBA if the form group contains any

DBCS maps

You cannot use form groups that do not have any DBCS forms with form

groups that do have DBCS forms in the same job step.

Running a Main Basic Program with No Database Access

Figure 14 shows the JCL used to start a main basic program.

Running a Main Basic Program with DB2 Access

Figure 15 shows the JCL used to start a main basic program that gains access to

DB2 resources. The JCL must run the z/OS TSO terminal monitor program to run

the generated program.

Running Main Basic Program with DL/I Access

If a main basic program runs as a DL/I batch program, then all DL/I requests are

handled by a private IMS region. The JCL for the step that runs the program must

//jobname JOB ,MSGCLASS=A

//stepnam EXEC PGM=appl-name, REGION=6M

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6R0M1.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//SYSABOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//* Application specific DD statements

//file-name-1 DD

//file-name-n DD

Figure 14. JCL for Main Basic Program Run as z/OS Batch without DB2 or DL/I Access

//jobname JOB USER=userid,........

//stepname EXEC PGM=IKJEFT01,DYNAMNBR=20,REGION=4M

//STEPLIB DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6R0M1.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//SYSABOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM (ssid)

 RUN PROG (appl-name) PLAN (plan-name) -

 LIB (’cghlq.env.LOAD’)

 END

/*

//SYSTSPRT DD SYSOUT=*

//* Application specific DD statements

//file-name-1 DD

//file-name-n DD

Figure 15. JCL for Main Basic Program Run as z/OS Batch with DB2 Access

104 IBM Rational COBOL Runtime Guide for zSeries

include DD statements for the IMS log if databases are opened with update intent

or if the program uses the EGL sysLib.audit() system function. Also, a DD

statement must be included for each of the data sets associated with the DL/I

databases referenced in the IMS PSB. The IMS log DD statements (IEFRDER and

IEFRDER2) are normally included in the DLIBATCH procedure.

EGL COBOL generation uses the FDA2MDLI JCL template to build the DD

statements for program databases. This template has the DD statement commented

out because EGL does not collect the high-level program database qualifiers. You

need to provide the final tailoring of these DD statements in the sample runtime

JCL. Alternatively, depending on your naming conventions, your administrator

might be able to modify the FDA2MDLI template so that you can use the

symbolicParameter build descriptor option to set high-level qualifiers for

databases. Refer to the EGL Generation Guide in the EGL help system for

information about modifying templates and using the symbolicParameter build

descriptor option.

Figure 16 shows the sample JCL used to run a generated program as a DL/I batch

program.

Running a Main Basic Program with DB2 and DL/I Access

Figure 17 on page 106 shows the JCL that enables a program to run as a

stand-alone DL/I batch processing program and to gain access to DB2 databases.

Special recovery considerations are required. Refer to the DB2 documentation for

your system for additional information.

The JCL for the step that runs the program must include DD statements for the

IMS log if databases are opened with update intent or if the program uses the EGL

sysLib.audit() system function. Also, a DD statement must be included for each of

the data sets associated with the DL/I databases referenced in the IMS PSB. The

IMS log DD statements (IEFRDER and IEFRDER2) are normally included in the

DLIBATCH procedure.

EGL COBOL generation uses the JCL template FDA2MDLI to build the DD

statements for DL/I program databases. This template has the DD statement

commented out because EGL does not collect the high-level program database

qualifiers. You need to provide the final tailoring of these DD statements in the

//jobname JOB

//stepname EXEC DLIBATCH,DBRC=Y,

// MBR=appl-name,PSB=ims-psb-name,BKO=Y,IRLM=N

//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6R0M1.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH

//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION

//G.DFSVSAMP DD DSN=ELA.V6R0M1.ELASAMP(ELAVSAMP),DISP=SHR

//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements including DL/I DB DD statements

//file-name-1 DD

//file-name-n DD

Figure 16. JCL for Main Basic Program Run as z/OS Batch with DL/I Access

Chapter 13. Preparing and Running Generated Programs in z/OS Batch 105

sample runtime JCL. Alternatively, depending on your naming conventions, your

administrator might be able to modify the FDA2MDLI template so that you can

use the symbolicParameter build descriptor option to set high-level qualifiers for

databases. Refer to the EGL Generation Guide for information about modifying

templates and using the symbolicParameter build descriptor option.

Recovery and Restart for z/OS Batch Programs

For z/OS batch programs that use DL/I, the generated sample runtime JCL

includes the parameter BKO=Y. If the program updates databases or files, specify

BKO=Y in the runtime JCL in order to have rollback (ROLB) requests honored. If

you specify BKO=N, DL/I returns status code AL for the roll-back call. Rational

COBOL Runtime treats the AL status code as a soft error. No error message is

issued, and processing continues.

You should develop recovery procedures in the event of program or system errors.

Rational COBOL does not generate JCL to perform restart or recovery procedures.

//jobname JOB

//stepname EXEC DLIBATCH,DBRC=Y,

// MBR=DSNMTV01,PSB=ims-psb-name,BKO=Y,IRLM=N

//G.STEPLIB DD

// DD

// DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6R0M1.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH

//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION

//G.DFSVSAMP DD DSN=ELA.V6R0M1.ELASAMP(ELAVSAMP),DISP=SHR

/*

//G.DDOTV02 DD DSN=&&TEMP1,

// DISP=(NEW,PASS,DELETE),

// SPACE=(CYL,(1,1),RLSE),UNIT=SYSDA,

// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)

//G.DDITV02 DD *

 ssid,SYS1,DSNMIN10,,R,-,connection name,plan-name,appl-name

/*

//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements including DL/I DB DD statements

//file-name-1 DD

//file-name-2 DD

//*

//* Attempt to print out the DDOTV02 data set created in previous step

//stepnam2 EXEC PGM=DFSERA10,COND=EVEN

//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSNAME=&&TEMP1,

// DISP=(OLD,DELETE)

//SYSIN DD *

CONTROL CNTL K=000,H=8000

OPTION PRINT

/*

Figure 17. JCL for Main Basic Program Run as z/OS Batch with DB2 and DL/I Access

106 IBM Rational COBOL Runtime Guide for zSeries

Chapter 14. Preparing and Running Generated Programs in

IMS/VS and IMS BMP

This chapter describes the steps required to prepare and run a generated COBOL

program in an IMS environment:

v Modify the IMS system definition parameters

v Create the MFS control blocks

v Precompile, compile, link, and bind the generated program

v Make the new modules and MFS control blocks available to IMS

v Create or modify runtime JCL (IMS BMP only)

For general information on preparing programs for the runtime environment, see

Chapter 9, “Output of Program Generation on z/OS Systems,” on page 71. For

information about modifying JCL, see Chapter 12, “Creating or Modifying Runtime

JCL on z/OS Systems,” on page 99.

Modifying the IMS System Definition Parameters

The following information describes the basic IMS system definition parameters

that are required to run EGL-generated programs. You should review the

performance options described in the IMS documentation for your system to

determine the most effective options.

An IMS TRANSACT macro is required for each transaction code used to start an

EGL main program in the IMS/VS environment and for each transaction-oriented

BMP program. This includes the following transactions:

v Started from a clear IMS screen

v Used as a sysVar.transactionID

v Used as the target of a transfer to transaction, show, or

sysLib.startTransaction() statement

v Transferred to by a non-EGL program

v Started as the result of an add statement that adds a transaction to a message

queue

v Started by other IMS facilities

The TRANSACT macro must follow the APPLCTN macro for the IMS PSB that is

to be used for the transaction.

Defining an Interactive Program

Each main transaction program must be defined as either an IMS message

processing program (MPP) or a fast-path program with an associated transaction

code, except when the program is started through a transfer statement of the form

transfer to a program from another program.

Figure 18 on page 108 shows the system definition parameters that are required for

defining an interactive EGL program.

© Copyright IBM Corp. 1994, 2006 107

1 The IMS PSB name and the EGL program name must match.

2 Multiple transactions can be associated with one program. If the program

changes the value of sysVar.transactionID before a converse, include a

TRANSACT macro for the original transaction code and a TRANSACT

macro for the sysVar.transactionID value.

3 INQUIRY=NO is the default for IMS. If DL/I is used for the work

database, INQUIRY=NO is required. The Rational COBOL Runtime work

database supports help forms and displays data again if an input error

occurs, as well as the converse process option. Therefore, even if the

program databases are inquiry only, INQUIRY=NO is necessary. If DB2 is

used for the work database and the program’s use of all DL/I databases is

inquiry only, then INQUIRY=YES can be used.

4 SNGLSEG is required. Either RESPONSE or NONRESPONSE can be used

with Rational COBOL Runtime, depending on whether you want the

keyboard to remain locked until the transaction completes. Even if

NONRESPONSE mode is used, multiple simultaneous transactions from a

single terminal are not supported.

5 Required for input in lowercase.

6 Include this parameter only if an IMS scratch pad area (SPA) is required.

The SPA size is the length of the IMS SPA header (14 bytes) plus the length

of the longest working storage record that might be received or sent during

a transfer to transaction or show statement. However, if you include the

spaStatusBytePosition and omit the spaADF build descriptor options, then

you must add an additional byte when calculating the size. The SPA size

must match the number specified for the spaSize build descriptor option

when the program is generated.

 You can also include the FPATH=YES parameter on the TRANSACT macro if the

program might be run in an IMS Fast Path (IFP) region. If you include

FPATH=YES, be sure to include the imsFastPath=″YES″ build descriptor option

when you generate the program. Refer to the IMS manuals for your system for

additional information about using IFP regions.

Defining Parameters for a Main Basic Program as an MPP

An EGL main basic program can also run as an asynchronous MPP. For example,

an EGL main basic program can be used to process the information inserted to the

message queue by a sysLib.startTransaction() statement or an add statement in

another program. This type of program differs from one that runs as an IMS BMP

in that the MPP cannot access any GSAM, indexed, or relative files, and cannot

include any special restart logic. Figure 19 on page 109 shows the system definition

parameters required for this case.

APPLCTN PGMTYPE=TP,PSB=ims-psb-name. 1

TRANSACT CODE=trancode, X2

 INQUIRY=NO, X3

 MODE=SNGL, X

 MSGTYPE=(SNGLSEG,RESPONSE), X4

 EDIT=ULC, X5

 SPA=(size,[DASD|CORE],[FIXED]) 6

Figure 18. IMS System Definition for an Interactive Transaction

108 IBM Rational COBOL Runtime Guide for zSeries

1 The IMS PSB name and the EGL program name must match.

2 Multiple transactions can be associated with one program.

 You can also include the FPATH=YES parameter on the TRANSACT macro if the

program might be run in an IMS Fast Path (IFP) region. If you include

FPATH=YES, be sure to include the imsFastPath=YES build descriptor option

when you generate the program. Refer to the IMS manuals for your system for

additional information about using IFP regions.

Defining Parameters for a Batch-Oriented BMP Program

If an EGL main basic program is generated to run as an IMS BMP program and it

does not process an input message queue, it is a batch-oriented BMP program.

Figure 20 shows the system definition parameters required for defining a main

basic program as a batch-oriented BMP program.

Defining Parameters for a Transaction-Oriented BMP Program

If an EGL main basic program is generated to run as an IMS BMP program and it

processes an input message queue created by MPP programs or by other BMP

programs, it is a transaction-oriented BMP program. Figure 21 shows the system

definition parameters that are required to define a main basic program as a

transaction-oriented BMP program.

1 Multiple transactions can be associated with one program.

2 Wait-for-input (WFI) is optional. If it is specified, the program remains

resident until the operator stops the transaction or shuts down the region.

Creating MFS Control Blocks

EGL generates message format services (MFS) control blocks when a formGroup is

generated for the IMS environment. The build script FDAMFS is used. FDAMFS

has functionality similar to that of the MFSUTL and the MFSTEST JCL procedures

that ship with the IMS product. When you generate the form group, you specify

the mfsUseTestLibrary build descriptor option to choose between the functionality

of MFSUTL and MFSTEST. YES indicates MFSTEST.

When you set mfsUseTestLibrary to YES, the variable MFSTEST is set to YES in

the build plan. The build script FDAMFS uses this variable to determine which of

the JCL procedures (MFSUTL or MFSTEST) to follow. Refer to the message format

APPLCTN PGMTYPE=TP,PSB=ims-psb-name 1

TRANSACT CODE=trancode, X 2

 MODE=SNGL

Figure 19. IMS System Definition for an Asynchronous MPP Program

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name

Figure 20. IMS System Definition for a Main Basic Program Running as a Batch-Oriented

BMP Program

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name

TRANSACT CODE=trancode, X 1

 MODE=SNGL, X

 WFI 2

Figure 21. IMS System Definition for a Main Basic Program Running as a

Transaction-Oriented BMP Program

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 109

services documentation for your system for additional information about the MFS

control blocks. Refer to the EGL Generation Guide for more information about the

build descriptor options that control what is included in the MFS source.

If your program contains DBCS or mixed data, note that a long mixed constant

field that results in multiple lines of MFS source might contain unpaired shift-in

and shift-out characters. This occurs when the DBCS portion of the constant is split

into more than one line. The MFS still works correctly.

Making New Modules Available in the IMS Environment

Whenever you install a new version of a program, MFS print services program,

form group format module, or data table, you need to recycle the message region.

If you generated with mfsUseTestLibrary=″YES″, then the MFS control blocks

were placed in the MFS test library (the TFORMAT library). To use the new

version of the MFS control blocks, use the /TEST MFS command after you have

signed on your IMS system and before you attempt to run a transaction that uses

the new version of the forms.

If you generated with mfsUseTestLibrary=″NO″, then the MFS control blocks were

placed in the MFS staging library (FORMAT library). To use the new version of the

MFS control blocks, you must do the following:

1. Run the IMS online change utility (OLCUTL) to copy the new MFS control

blocks into the inactive format library.

2. Use the following IMS commands:

 /MODIFY PREPARE FMTLIB

 /MODIFY COMMIT

Note: If the MFS control blocks and the form group format module do not have

the same generation date and time, Rational COBOL Runtime issues an error

message.

Preloading Program, Print Services, and Data Table Modules

Preloading programs, MFS print services programs, form group format modules,

and data table modules that are frequently used might reduce the overhead of

searching the STEPLIB, JOBLIB, link pack area, and link list. However, if modules

are preloaded, they occupy virtual storage when they are not in use.

To improve response time, you might also preload modules associated with any

transaction that might require better performance, even though the module itself is

not frequently used.

To preload a program, MFS print services program, form group format module, or

data table program, have your system administrator do the following:

1. Put the module in a LNKLST library.

2. Include the module name in a preload member (DFSMPLxx, where xx is a

two-character ID that you select) in IMSVS.PROCLIB.

3. Indicate in the JCL for the IMS message region that the preload member is to

be included.

Refer to the IMS manuals for your system to get general information on preloading

modules.

110 IBM Rational COBOL Runtime Guide for zSeries

Running Programs under IMS

Prior to starting a generated program, the program user might be required to sign

on to the IMS environment with a /SIGN command. Refer to the IMS

documentation for information about the /SIGN command.

Starting a Main Program Directly

The simplest way for a program user to start an EGL program is by entering the

IMS transaction code from an unformatted screen. The transaction code can be up

to 8 characters. It is associated with the program in the IMS system definition

TRANSACT macro. The following is an example of starting a transaction:

MYTRANS

IMS requires the transaction code to be followed by at least one blank prior to

pressing the ENTER key.

Starting a Main Transaction Program Using the /FORMAT

Command

A program user can use the IMS /FORMAT command to display a formatted

screen to start a transaction if the inputForm specified for a program is defined

with the IMS transaction code for the program as an 8-byte constant with the

protect=YES and intensity=invisible properties. The attribute byte on the form

becomes the attribute byte in the generated MFS. The 8-byte constant contains the

name of the IMS transaction that is started when the form is processed.

The /FORMAT command directs IMS to display a screen format; however, the

command does not cause the program to be run. After the program user enters

data and presses the Enter key (or a function key), the message from the terminal

is sent to the generated program for processing.

The syntax of the /FORMAT command is as follows:

/FORMAT modname [formName]

 or

/FOR modname [formName]

The modname operand is the form group name with an O suffix. The formName

operand is required if there is more than one form in the form group. It must be

the form name that was specified as the inputForm for the program.

Because the transaction code must be included in the form, and a transaction code

can only be associated with one program in the IMS system definition, only one

program using the form can be started using the /FORMAT command.

Running Transaction Programs as IMS MPPs

Running generated programs is similar to running non-EGL-generated programs in

the IMS MPP environment, with the following differences:

IMS Commands

The /HOLD command should be avoided. Rational COBOL Runtime uses the

logical terminal identifier as the key of the work database. The data in the work

database is destroyed if another generated program is run from the same terminal

prior to resuming the original conversation.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 111

Keyboard Key Operation

When the Clear key is pressed in IMS, IMS clears the screen, but does not notify

the program. No transaction is scheduled, so the form is not automatically

displayed again. If the program is conversational, the program user can enter the

IMS /HOLD command followed immediately by an IMS /RELEASE command to

display the form again.

When the EOF key is pressed in the first position of a field on a form, the data is

not blanked. To blank the data, the program user must enter at least one blank

before pressing the EOF key. Also, the program user should not use the DELETE

CHARACTER key to erase the entire field because this is equivalent to pressing

the EOF key in the first position of the field.

When typing over characters in a right-justified numeric field, any intervening

spaces between the new digits entered and the original digits in the field should be

deleted by pressing the DELETE CHARACTER key. Alternatively, the program

user can type in all the digits for the new value and then use the EOF key to erase

any remaining digits.

DBCS Data on a Non-DBCS Terminal

If a program inadvertently attempts to display a form with DBCS or mixed data on

a non-DBCS terminal or printer, the results are unpredictable. The terminal might

be logged off IMS and returned to the VTAM®* sign-on screen without displaying

any warning or error messages. If this happens, review your use of DBCS. Also,

review your values for the mfsDevice , mfsExtendedAttr, and mfsIgnore build

descriptor options, and compare them to the IMS system definition for the terminal

that had the problem.

Error Reporting

In certain error situations, Rational COBOL Runtime displays its own panel to

explain the error to the program user. This occurs in the following situations:

v A message needs to be displayed, but the msgField form property is not

specified for the form. Form ELAM01 in formGroup ELAxxx, where xxx is the

national language code, is used.

v An unexpected program error has occurred. Form ELAM02 and (if necessary)

continuation form ELAM03 are used to display the error messages. See “Using

the Rational COBOL Runtime Error Panel” on page 144 for an example of

ELAM02.

If an error occurs information might have been written to the message queue

identified by the errorDestination build descriptor option for the first program in

the run unit. See “IMS Diagnostic Message Print Utility” on page 135 for

information on printing diagnostic errors.

Responding to IMS Error Messages

If a DFS message is displayed on your screen, make a note of the message. Then,

depending on how your IMS system is set up, press either PA1 or PA2 to see if

Rational COBOL Runtime has queued an error form to the terminal with more

information. This can happen in the following situations:

v If Rational COBOL Runtime issues a ROLL call because of a run unit or

catastrophic error, IMS issues the message:

DFS555I TRAN tttttttt ABEND S000,U0778 ; MSG IN PROCESS:

tttttttt mmmmmmmmMAP ;;;;gdate gtime rdate rtime

112 IBM Rational COBOL Runtime Guide for zSeries

Where tttttttt is the IMS transaction code, mmmmmmmm is the form name, gdate

and gtime are the date and time the form group was generated, and rdate and

rtime are the date and time of the abend.

The DFS555I message is also used by IMS when other abends occur, including

the 1600, 1601, 1602, and 1606 abends from Rational COBOL Runtime.

v If Rational COBOL Runtime ends the run unit for a transaction program that

was generated with imsFastPath=″YES″ and is being run in an IMS fast-path

region, IMS issues the message:

DFS2766I PROCESS FAILED

v If Rational COBOL Runtime abnormally ends the logical unit of work (LUW) for

a transaction program that was generated with imsFastPath=″YES″, IMS might

issue the message:

DFS2082I RESPONSE MODE TRANSACTION TERMINATED WITHOUT REPLY

See Chapter 18, “Diagnosing Problems for Rational COBOL Runtime on z/OS

Systems,” on page 139 for information on diagnosing errors.

Running Main Basic Programs as MPPs

An EGL main basic program can be generated to run in the IMS MPP

environment. In this situation, IMS automatically starts the transaction whenever a

message is written to the message queue associated with the transaction.

If an error occurs information might have been written to the message queue

identified by the errorDestination build descriptor option for the first program in

the run unit. See “IMS Diagnostic Message Print Utility” on page 135 for

information on printing diagnostic errors.

Running a Main Basic Program under IMS BMP

A main basic program generated for the IMS BMP environment can be started by

submitting JCL. Called programs can only be started by another EGL program or

by a non-EGL program.

The EGL COBOL generation process creates sample runtime JCL for running

programs in the IMS BMP environment. The generated JCL has the same name as

the program. If you set the genRunFile build descriptor option to YES, sample JCL

is created specifically for the program during program generation. The build plan

uploads the sample runtime JCL to a z/OS partitioned data set (PDS).

The JCL might need to be modified to add data sets required by called or

transferred-to programs. You also need to modify the JCL to add any data sets that

are dynamically allocated with the recordName.resourceAssociation or

converseVar.printerAssociation system variables. See Chapter 12, “Creating or

Modifying Runtime JCL on z/OS Systems,” on page 99 for more information on

modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the Generation Results view for

the programs involved for any error messages related to JCL generation. In

addition, ensure the tailoring that was done for the JCL templates is correct. Also

check any changes you made when you customized the sample runtime JCL.

The following sections show JCL for different IMS BMP programs.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 113

Examples of Runtime JCL for IMS BMP Programs

The generated JCL in the following examples has these characteristics:

v The examples are based on the JCL templates shipped with EGL. Your actual

JCL templates might differ if your system administrator has tailored them for

your organization. Refer to the EGL Generation Guide for more information about

tailoring JCL templates.

v Lowercase text appears in the examples where a generic example name has been

substituted for an actual program or data set name.

v EZEPRINT is always routed to SYSOUT=*.

If you route EZEPRINT to a data set, you must use the following DCB

attributes:

– LRECL=137, BLKSIZE=141, RECFM=VBA if the form group does not contain

any DBCS forms

– LRECL=654, BLKSIZE=658, RECFM=VBA if the form group contains any

DBCS forms

You cannot use form groups that do not have any DBCS forms with form

groups that do have DBCS forms in a single job step.

The first library in the STEPLIB concatenation sequence must have the largest

block size, or BLKSIZE=32760 can be specified on the first STEPLIB DD statement

for the step.

Running a Main Basic Program as an IMS BMP Program

If a main basic program runs as an IMS BMP program, all DL/I requests are

passed to a central copy of IMS which coordinates updates to the databases across

multiple BMPs and MPPs. The DD statements for the IMS log and the program

databases are not required in the JCL for the BMP job step. These databases and

the IMS log are allocated to the IMS control region.

Figure 22 shows a sample set of JCL to run a generated program as a BMP

program.

 If you run a transaction-oriented BMP program, the trans-name must be set to the

name of the transaction for the message queue that the BMP program processes. If

not, trans-name should be a null value. The sample runtime JCL created by EGL

defaults trans-name to the program name for a transaction-oriented BMP program

//jobname JOB

//stepname EXEC IMSBATCH,

// MBR=appl-name,PSB=ims-psb-name,IN=trans-name

//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6R0M1.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements for files

//* No application specific DD statements for databases required

//file-name-1 DD

//file-name-n DD

Figure 22. JCL for Main Basic Program as an IMS BMP Program

114 IBM Rational COBOL Runtime Guide for zSeries

that uses get next to read the message queue. The sample runtime JCL created by

EGL defaults trans-name to null for batch-oriented BMP programs or for

transaction-oriented BMP programs that use VGLib.VGTDLI(), dliLib.AIBTDLI(),

or dliLib.EGLTDLI() to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in

the sample runtime JCL:

//IMS DD DSN=IMS.PSBLIB,DISP=SHR

// DD DSN=IMS.DBDLIB,DISP=SHR

These DD statements are generated from the FDA2MIMS JCL template.

Running a Main Basic Program as an IMS BMP Program with

DB2 Access

Figure 23 shows a sample set of JCL to run a generated program that accesses DB2

resources as a BMP. The DD statements for the IMS log and the DL/I program

databases are not required in the JCL for the BMP job step. The DL/I databases

and the IMS log are allocated to the IMS control region.

 If you run a transaction-oriented BMP program, the trans-name must be set to the

name of the transaction for the message queue that the BMP program processes. If

not, trans-name should be a null value. The sample runtime JCL created by EGL

defaults trans-name to the program name for a transaction-oriented BMP program

that uses get next to read the message queue. The sample runtime JCL created by

EGL defaults trans-name to null for batch-oriented BMP programs or for

transaction-oriented BMP programs that use VGLib.VGTDLI(), dliLib.AIBTDLI(),

or dliLib.EGLTDLI() to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in

the sample runtime JCL:

//IMS DD DSN=IMS.PSBLIB,DISP=SHR

// DD DSN=IMS.DBDLIB,DISP=SHR

These DD statements are generated from the FDA2MIMS JCL template.

//jobname JOB

//stepname EXEC IMSBATCH,

dliLib.// MBR=appl-name,PSB=ims-psb-name,IN=trans-name

//G.STEPLIB DD

// DD

// DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6R0M1.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//G.DFSESL DD DSN=IMS.RESLIB,DISP=SHR

// DD DSN=DSN.SDSNLOAD,DISP=SHR

//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements for files

//* No application specific DD statements for databases required

//file-name-1 DD

//file-name-n DD

Figure 23. JCL for Main Basic Program as an IMS BMP Program with DB2

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 115

Recovery and Restart for IMS BMP Programs

You should develop recovery procedures in the event of program or system error.

Rational COBOL does not generate JCL to perform restart or recovery procedures.

If your IMS BMP program ends with a run unit or catastrophic error, all updates

after the last checkpoint are rolled back and the program ends. You should include

checkpoint and restart logic in the program if it is to run as an IMS BMP. Refer to

the IMS documentation for your system for additional information about

checkpoint and restart.

116 IBM Rational COBOL Runtime Guide for zSeries

Chapter 15. Moving Prepared Programs to Other Systems

from z/OS Systems

You might need to move a prepared program from one system to another. For

example you might have the compiler on one host development machine but want

to run the program on several production machines.

If you use DB2, the DB2 BIND must be done on the production system.

The COBOL and Rational COBOL Runtime products on the production machine

must be at the same maintenance level as, or a higher level than, on the

development machine.

Moving Prepared Programs To Another z/OS System

If a program has been completely prepared on one system and you want to move

the prepared program to another system, perform the following steps:

1. Copy the program-related parts (including the form group and data table parts)

to the production system. The names of the source libraries are shown with the

default naming convention used in the build scripts, where cghlq is the user or

project-related high level qualifier and env is the runtime environment code.

 Table 21. Parts to Copy

Data Set Name Contents

cghlq.env.LOAD Application module, print services program,

form group format modules, and data table

modules.

cghlq.env.DBRMLIB DB2 database request modules (DBRMs) for

SQL programs

cghlq.env.EZEBIND BIND commands for SQL programs

cghlq.env.EZEMFS MFS source for IMS/VS and IMS BMP form

groups

cghlq.env.EZEJCLX Runtime JCL for IMS BMP and z/OS batch

programs

Note:

The cghlq variable comes from the projectID build descriptor option. The env variable comes

from the system build descriptor option.

2. Provide your own JCL to build the plans for DB2 programs using the BIND

commands from the BIND library and the DBRMs from the DBRM library. You

need to edit the EZEBIND member, and make the appropriate changes such as

DB2 subsystem name or collection IDs to match the new system where you are

moving the program.

3. Provide your own JCL to assemble the MFS control blocks for IMS/VS and IMS

BMP. It is much easier to assemble the MFS source on the production system

than to try to locate the DIF/DOF and MID/MOD in the MFS format libraries.

However, if you have procedures in place to move the DIF/DOF and

MID/MOD to a different system, you can use these procedures instead of

moving the MFS source in the EZEMFS library.

© Copyright IBM Corp. 1994, 2006 117

4. Follow the procedures identified in this manual for defining programs to

CICSor IMS.

5. Define files and databases used by the program on the new system.

Maintaining Backup Copies of Production Libraries

Follow your installation-defined guidelines and procedures for making backup

copies of production libraries. Having backup copies of production libraries

enables you to return to the prior level of a program in case of errors. The

production libraries for which copies should be made are those listed in Table 21

on page 117.

118 IBM Rational COBOL Runtime Guide for zSeries

Part 4. Utilities

Chapter 16. Using Rational COBOL Runtime

Utilities for z/OS CICS Systems 121

Using the CICS Utilities Menu 121

New Copy 122

Diagnostic Message Printing Utility 124

Diagnostic Control Options for z/OS CICS

Systems 125

Change or View Diagnostic Control Options

for a Transaction 126

Change or View Default Diagnostic Control

Options 128

Using the Parameter Group Utility for z/OS CICS

Systems 129

Chapter 17. Using Rational COBOL Runtime

Utilities for IMS Systems 135

IMS Diagnostic Message Print Utility 135

© Copyright IBM Corp. 1994, 2006 119

120 IBM Rational COBOL Runtime Guide for zSeries

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS

CICS Systems

Rational COBOL Runtime provides a set of utilities in CICS to help manage the

error diagnosis and control facilities of the Rational COBOL Runtime runtime

environment. You can access these utilities from the CICS utilities menu.

Using the CICS Utilities Menu

To access the CICS utilities do the following:

1. Log on to CICS.

2. Type ELAM on a clear screen.

3. Press Enter. When the ELAM transaction is started, a copyright panel is

displayed.

4. Press Enter. The CICS Utilities Menu (Figure 24) is displayed.

 Three functions are available from the CICS Utilities Menu panel (Figure 24):

New Copy

This function causes a new copy of a program, form group, or data table to

be used by subsequent transactions. Use the new copy function when

programs, form groups, and data tables are modified and generated again.

 For programs and form groups, you can use either the Rational COBOL

Runtime new copy utility or the CICS NEWCOPY command to cause the

new copy of the program to be used the next time a load request is issued

for the program.

The Rational COBOL Runtime new copy utility does a new copy for both

the online print services program and the form group format module when

 ELAM Rational COBOL Runtime

 CICS Utilities Menu

 Select one of the following utilities; then press Enter.

Action...._

_1. New Copy

_2. Diagnostic Message Printing

_3. Diagnostic Control Options

 ENTER F1=HELP F3=EXIT

Figure 24. CICS Utilities Menu

© Copyright IBM Corp. 1994, 2006 121

you specify a part type of form group. If you use the CICS NEWCOPY

command for a form group, you must issue the NEWCOPY for both the

online print services program and the form group format module.

For a data table, you must use the Rational COBOL Runtime new copy

utility to cause a fresh copy of the data table to be used the next time a

load request is issued for the data table. Do not use the CICS NEWCOPY

command for data tables.

Diagnostic Message Printing

This function routes the diagnostic messages in an error destination

transient data queue to a spool file for printing or subsequent processing.

Diagnostic Control Options

This function lets you view or change the diagnostic control options set for

the installation or for individual transactions. The options include dump

control, error message routing to a transient data queue or the CICS

journal, and transaction disabling when serious problems occur.

New Copy

The Rational COBOL Runtime new copy utility causes a new copy of a program,

form group, or data table to be used by subsequent transactions. Transactions that

are in progress when this function was started continue to use the copy that was

current when the transaction began. Programs must end or reach a segment break

before the new copy is used.

The Rational COBOL Runtime new copy utility must be run separately for

programs, form groups, and data tables to replace the copy already in storage.

To gain access to the Rational COBOL Runtime new copy utility, do the following:

1. Select option 1, New Copy, on the CICS Utilities Menu panel (Figure 24).

2. Press Enter.

The New Copy panel (Figure 25 on page 123) is displayed.

Note: You can also gain access to the Rational COBOL Runtime new copy utility

by doing the following:

1. Type ELAN on a clear screen.

2. Press Enter. When the ELAN transaction is started, a copyright panel is

displayed.

3. Press Enter. The New Copy panel (Figure 25 on page 123) is displayed.

122 IBM Rational COBOL Runtime Guide for zSeries

Enter the following on the New Copy panel:

Part name

Specifies the name of the program, form group, or data table to be used as

a new copy in subsequent transactions

Part type

Specifies the type of part to be replaced

Note: Rational COBOL Runtime does not validate the part type. You must

specify the correct type because different processing is required for

programs, form groups, and data tables. If you have problems in

processing after using the Rational COBOL Runtime new copy

utility, try the Rational COBOL Runtime new copy utility again to

ensure you specified the part type correctly.

The correct type can be one of the following:

Program

This type causes the utility to issue a CICS SET PROGRAM(name)

NEWCOPY command to access a new copy of the program. This

command does not cause a new copy for called programs that are

statically linked with their caller.

Form Group

This type causes the utility to issue a CICS SET PROGRAM(name)

NEWCOPY command to access a new copy of the form group

format module and the online print services program associated

with the form group.

Data Table

This type causes the utility to issue a CICS SET PROGRAM(name)

NEWCOPY command to access a new copy of the data-table

program and sets a flag for Rational COBOL Runtime, indicating

that a new copy of the data table is to be used the next time a

program loads the data-table contents.

 ELAN Rational COBOL Runtime

 New Copy

 Type choices; then press Enter.

 Part name........... _______

 Part type........... _

 1. Program

 2. Map Group or Form Group

 3. Data Table

 ENTER F1=HELP F3=EXIT

Figure 25. New Copy panel

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 123

If the data table has been generated as a shared data table,

currently running transactions continue to use the old copy of the

data table while new transactions share the new copy of the data

table.

You can also access the new copy utility in batch mode. To invoke the batch new

copy utility, link to program ELABNEW:

EXEC CICS LINK PROGRAM("ELABNEW")

COMMAREA(passed-parms)

LENGTH(174)

where the passed-parms record has the following structure:

 Field Length in

Bytes

Type of Data Description

NLS code 3 Character NLS code identifying the language

Part name 8 Character Name of program, form group, or

data table to be used as a new

copy in subsequent transactions

Part type 1 Character Type of part to be replaced:

″1″ Program

″2″ Form group

″3″ Data table

For more information, press F1 to

see the description for part type.

Return code 2 Binary Return code from new copy

Message 1 80 Character Message returned from new copy

Message 2 80 Character Message returned from new copy

The following fields must be provided by the user:

v NLS code

v Part name

v Part type

The other fields are filled in by the new copy utility.

Any nonzero return code means that the new copy operation was not successful. If

a nonzero value is returned in the return code field, check messages 1 and 2 for

details indicating what error occurred.

Note: Message 2 is not always filled in. It may be blank.

Diagnostic Message Printing Utility

Diagnostic message printing allows you to route diagnostic messages in an error

destination transient data queue to a JES spool file for printing.

To gain access to the diagnostic message print utility do the following:

1. Select option 2, Diagnostic Message Printing, from the CICS Utilities Menu

panel (Figure 24 on page 121).

2. Press Enter.

The Diagnostic Message Printing panel (Figure 26 on page 125) is displayed.

124 IBM Rational COBOL Runtime Guide for zSeries

Note: You can also access the diagnostic message print function by doing the

following:

1. Type ELAU on a clear screen.

2. Press Enter. When ELAU is started, a copyright panel is displayed.

3. Press Enter. The Diagnostic Message Printing panel (Figure 26) is

displayed.

 You can enter information in the following fields on the Diagnostic Message

Printing panel:

Error destination queue name

This field specifies the name of an existing error destination.

 Enter the 1 to 4 character DCT name of the error destination transient data

queue. The queue name is initialIf your IMS BMP program ends with a

run unit or catastrophic error, all updates after the last checkpoint are

rolled back and the program ends. You should include checkpoint and

restart logic in the program if it is to run as an IMS BMP. Refer to the IMS

documentation for your system for additional information about

checkpoint and restart.ized to the default error destination queue. The

default is ELAD. You can either leave the messages in the queue or clear

them after they have been printed.

JES Spool File Information

This field specifies the spool file where the messages are to be written. If

you do not specify anything in these fields, the system uses the default

values (shown in Figure 26) which route the report to the local spool

printer for your CICS system.

Clear destination queue

This field specifies whether to clear the error queue of all messages after

the messages are written to a spool file. The default is Y.

Diagnostic Control Options for z/OS CICS Systems

The diagnostic control options utility enables you to alter the diagnostic action

options taken for a given transaction code that is assigned to a generated CICS

 ELAU Rational COBOL Runtime

 Diagnostic Message Printing

 Fill in the appropriate fields; then press Enter.

 Error destination queue name.......ELAD

 JES Spool File Information

 Node...................... *

 Userid.................... *

 Class.....................A

 Clear destination queue............Y Y=Yes, N=No

 ENTER F1=HELP F3=EXIT

Figure 26. Diagnostic Message Printing panel

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 125

program. If multiple transaction codes are assigned to a program, each transaction

code is specified independently to the diagnostic control options utility.

You can also specify a default action to take place for transactions that are not

explicitly defined to the diagnostic control options utility.

To gain access to the diagnostic control options utility, do the following:

1. Select option 3, Diagnostic Control Options, from the CICS Utilities Menu

(Figure 24 on page 121).

2. Press Enter. The Diagnostic Control Options panel (Figure 27) is displayed.

Note: You can also gain access to the diagnostic control options utility by doing

the following:

1. Type ELAC on a clear screen.

2. Press Enter. When ELAC is started, a copyright panel is displayed.

3. Press Enter. The Diagnostic Control Options panel (Figure 27) is

displayed.

 You can gain access to the following functions from the Diagnostic Control Options

panel:

Change or View the Diagnostic Control Options for a Transaction

This option enables you to change or view the diagnostic options for a

specific transaction code.

Change or View the Default Diagnostic Control Options

This option enables you to change or view the installation default

diagnostic options.

 This affects transaction codes that are not specifically identified to the

diagnostic controller.

Change or View Diagnostic Control Options for a Transaction

This function enables you to change the Rational COBOL Runtime error diagnostic

and control options in effect for a specific CICS transaction.

 ELAC01 Rational COBOL Runtime

 Diagnostic Control Options

 Select one of the following actions; then press Enter.

 Action...............1

 1. Change or View the Diagnostic Control Options for a Transaction

 2. Change or View the Default Diagnostic Control Options

 ENTER F1=HELP F3=EXIT

Figure 27. Diagnostic Control Options panel

126 IBM Rational COBOL Runtime Guide for zSeries

To start the function do the following:

1. Select option 1, Change or View the Diagnostic Control Options for a

Transaction, from the Diagnostic Control Options panel (Figure 27 on page 126).

2. Press Enter. The Change or View Diagnostic Control Options for a Transaction

panel (Figure 28) is displayed.

 The following fields can be entered on the Change or View Diagnostic Control

Options for a Transaction panel :

Transaction ID

Specifies the 1 to 4 character identifier of the transaction you want to

change the diagnostic options for

Diagnostic Control Options

Transaction ABEND Dump

Specifies the type of dump taken on a CICS transaction ABEND

 The types of dumps are:

1. No Dump

2. Complete CICS dump

3. Task dump

Runtime Error Dump

Specifies the type of dump taken on a Rational COBOL

Runtime-detected error for which a dump is indicated in the error

message explanation

 The types of dumps are:

1. No Dump

2. Complete CICS dump

3. Task dump

Error Destination Queue Name

Specifies the 1 to 4 character name of a transient data queue to

which Rational COBOL Runtime error diagnostic messages are

written whenever a transaction ends abnormally due to an error

 ELAC02 Rational COBOL Runtime

 Change or View Diagnostic Control Options for a Transaction

 Fill in the appropriate fields; then press Enter.

 Transaction ID.................... ___

 Diagnostic Control Options

 Transaction ABEND Dump _ 1. No Dump

 2. Complete CICS dump

 3. Task dump

 Runtime Error Dump _ 1. No Dump

 2. Complete CICS dump

 3. Task dump

 Error Destination Queue Name... ___

 Journal Number................. __ blank,00-99

 Journal Record Identifier...... __

 Disable on Run Unit Failure.... _ Y=Yes, N=No

 Action............................ 3

 1. Change diagnostic control options

 2. Use default control options

 3. View diagnostic control options

 ENTER F1=HELP F3=EXIT

Figure 28. Change or View Diagnostic Control Options for a Transaction panel

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 127

If this field is blank, no messages are written to a queue.

Journal Number

Specifies the journal number of the CICS journal to which error

diagnostic messages are written whenever a transaction is not

successful due to an error

 If this field is blank, no journal messages are written.

Journal Record Identifier

Specifies the 1 to 2 character record identifier used when messages

are written to the CICS journal

 If this field is blank, the default identifier EZ is used.

Disable on Run Unit Failure

Specifies whether a transaction is disabled whenever an error is

detected that is likely to occur each time the transaction is run
Y Specifies that the transaction is disabled when these errors are

detected

N Specifies that the transaction is not be disabled

Action

Allows you to change the current options, view the current options, or

accept the default options

To change the options currently set for a transaction do the following:

1. Specify the transaction identifier and any changes.

2. Select 1, Change diagnostic control options.

3. Press Enter.

To use the installation defaults for the transaction do the following:

1. Type the transaction identifier.

2. Select 2, Use default control options.

3. Press Enter.

To view the options currently set for a transaction do the following:

1. Type the transaction identifier.

2. Select 3, View diagnostic control options.

3. Press Enter.

Change or View Default Diagnostic Control Options

This function enables you to change or view the default diagnostic options for

transactions that are not identified to the diagnostic controller. If your default

options were not modified at installation, the default diagnostic options are set as

follows:

v Transaction ABEND and runtime errors both cause a task dump.

v The error destination queue name is ELAD.

v Diagnostic messages are not written to a CICS journal data set.

v Transactions are not disabled on a run unit error.

To start this function do the following:

1. Select 2, Change or View the Default Diagnostic Control Options, from the

Diagnostic Control Options panel (Figure 27 on page 126).

2. Press Enter. The Change or View Default Diagnostic Control Options panel is

displayed:

128 IBM Rational COBOL Runtime Guide for zSeries

The options on this panel are the same as those defined for changing or viewing

the diagnostic control options for a transaction. They are all defined following

Figure 28 on page 127.

Using the Parameter Group Utility for z/OS CICS Systems

Use the parameter group utility to create and maintain the parameter groups in the

parameter group file. Each group contains parameters for controlling terminal

printer utility (FZETPRT) transactions.

See “Special Parameter Group for the FZETPRT Program” on page 36 for a

description of the startup parameters that can be included in the parameter group

used with the FZETPRT program.

You can use the parameter group utility to perform the following operations:

v Display the contents of existing parameter groups

v View a list of existing parameter group names

v Add a new parameter group

v Change a parameter group

v Delete a parameter group

 ELAC04 Rational COBOL Runtime

 Change or View Default Diagnostic Control Options

 Fill in the appropriate fields; then press Enter.

 Default Diagnostic Control Options

 Transaction ABEND Dump 3 1. No Dump

 2. Complete CICS dump

 3. Task dump

 Runtime Error Dump 3 1. No Dump

 2. Complete CICS dump

 3. Task dump

 Error Destination Queue Name... ELAD

 Journal Number................. __ blank,00-99

 Journal Record Identifier...... EZ

 Disable on Run Unit Failure.... N Y=Yes, N=No

 ENTER F1=HELP F3=EXIT

Figure 29. Change or View Default Diagnostic Control Options

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 129

Table 22 shows the steps used to define a parameter group file.

 Table 22. Defining Parameter Group Files for z/OS CICS

Procedure

1. Define the parameter group file using the IDCAMS utility.

 DEFINE CLUSTER (NAME(PARM.GROUP.FILE)-

 RECORDS(100 100) KEYS(16 0) RECORDSIZE(272 272) INDEXED)

2. Initialize the parameter group file by using the IDCAMS REPRO function to insert a

dummy record into the file.

3. Specify the FCT for the parameter group file utility to have access to a user-defined

message file for CICS.

 DFHFCT TYPE=DATASET, C

 DATASET=EZEPRMG, C

 ACCMETH=VSAM, C

 SERVREQ=(READ,UPDATE,ADD,DELETE,BROWSE), C

 FILESTAT=(ENABLED,CLOSED), C

 RECFORM=FIXED C

4. Allocate the file by adding the following statement to the z/OS CICS startup JCL:

 //EZEPRMG DD DISP=SHR,DSN=PARM.GROUP.FILE

Note: The name that designates the parameter group file (EZEPRMG) is a reserved file

name and cannot be used as a data file by an EGL-generated program.

When the file has been created and allocated, you can access the parameter group

utility by doing the following:

1. Log on to CICS.

2. Type ELAP on a clear screen.

3. Press Enter.

The parameter group utility does not give message-specific tutorial help after a

message is displayed and PF1 is pressed.

After the parameter group utility has been started, the Parameter Group

Specification panel (Figure 30) is displayed. You can specify the parameter group

name on this panel.

130 IBM Rational COBOL Runtime Guide for zSeries

The parameter group name can be from 1 to 4 alphanumeric characters and must

be the name of the transaction that was used to start the FZETPRT program. (The

utility does not verify this.)

You can enter a group name that already exists if you want to modify a parameter

group, or you can enter one that does not exist if you want to define a new

parameter group.

Entering a question mark (?) as the group name on the Parameter Group

Specification panel displays a list of previously-defined group names on the next

panel, the Parameter Group List Display panel (Figure 31). Entering some

characters followed by an asterisk (*) displays a list of parameter group names that

begin with the characters that you entered. Entering a specific parameter group

name displays the Parameter Group Definition panel (Figure 32 on page 132).

 PRGM00 PARAMETER GROUP UTILITY

 ENTER = Continue PF1 = Help PF3 = Exit

 PARAMETER GROUP SPECIFICATION

 Specify Parameter Group Name =>

Figure 30. Parameter Group Specification panel

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 131

From the Parameter Group List Display panel, you can select a group name to edit

by typing an S in the selection field to the left of the group name. You can delete a

group by typing a D in the selection field to the left of the group name.

If the specified parameter group already exists, its contents are displayed on the

Parameter Group Definition panel. The parameter group can be altered. If the

specified parameter group does not exist, the Parameter Group Definition panel is

displayed without any data. You can define the new contents; up to 256 characters

of data can be entered for a parameter group.

 PRGM01 PARAMETER GROUP UTILITY

 ENTER = Continue PF3 = Exit PF4 = Refresh PF1 = Help

 PF7 = Back PF8 = Forward

 PARAMETER GROUP LIST DISPLAY

 ____ PRIN ____ USRQ

Figure 31. Parameter Group List Display panel

 PRGM02 PARAMETER GROUP UTILITY

 PA2 = Cancel PF1 = Help PF3 = File and Exit

 Parameter Group = CCCCCCCC

PARAMETER GROUP DEFINITION..........................

 Parameter Group:

 =>PRTBUF=2048 PRTMPP=132 PRTTYP=D FORMFD=NO

Figure 32. Parameter Group Definition panel

132 IBM Rational COBOL Runtime Guide for zSeries

The parameter group utility does not validate or format the parameters that are

specified on the Parameter Group Definition panel. Any parameters that are not

valid are ignored when the FZETPRT program is started. For more information

about setting the parameters for terminal printing, see “Special Parameter Group

for the FZETPRT Program” on page 36.

If you press PF3 on the Parameter Group Definition panel without entering any

parameters, a parameter group is stored without any associated parameters. You

can store an empty parameter group to reserve parameter group names.

Empty parameter groups do not affect the initialization of the FZETPRT program.

The parameter group utility left-justifies the parameter group name and pads it to

the right with blanks (X'40'). The parameter group utility uses this name as a key

to index the parameter group file.

If you selected a parameter group from the Parameter Group List Display panel

(Figure 31 on page 132), after the Parameter Group Definition panel is processed,

the Parameter Group List Display panel is displayed again with the original

request replaced by an asterisk beside the group name that was processed. An

asterisk (*) is ignored as input on the Parameter Group Definition panel if more

processing is done.

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 133

134 IBM Rational COBOL Runtime Guide for zSeries

Chapter 17. Using Rational COBOL Runtime Utilities for IMS

Systems

Rational COBOL Runtime provides a utility in IMS to print diagnostic information.

IMS Diagnostic Message Print Utility

When a generated program ends abnormally due to an error condition in IMS

environments, diagnostic error messages are written to the message queue

identified by the errorDestination build descriptor option for the first program in

the run unit.

An IMS BMP program is provided to print the messages in the message queue.

The JCL needed to print the diagnostic information is supplied as member

ELAMQJUD of ELA.V6R0M1.ELAJCL (see Figure 33).

The message queue identified by the IN parameter is the name of the queue that

was specified for errorDestination when the program was generated. The default

name is ELADIAG.

//**00000100

//** ELAMQJUD - JCL TO DRAIN AND PRINT THE ELADIAG MESSAGE QUEUE 00000200

//** FOR IBM RATIONAL COBOL RUNTIME. 00000300

//** THIS PROGRAM RUNS AS A BMP. 00000400

//** 00000500

//** LICENSED MATERIALS - PROPERTY OF IBM 00000600

//** 5648-B02 (C) COPYRIGHT IBM CORP. 2000, 2006 00000700

//** SEE COPYRIGHT INSTRUCTIONS 00000800

//** 00000900

//** STATUS = VERSION 6, RELEASE 0, LEVEL 1 00001000

//** 00001100

//** TO TAILOR THIS JOBSTREAM: 00001200

//** 1. COPY A JOBCARD. 00001300

//** 2. CHANGE IN= TO THE NAME OF YOUR ERROR DIAGNOSTIC 00001400

//** QUEUE. 00001500

//** 3. MAKE SURE THAT THE TRANSACTION SPECIFIED BY IN= 00001600

//** AND THE ELAMPUTL PROGRAM ARE STARTED BY IMS. 00001700

//** 00001800

//** RETURN CODES 00001900

//** 0 - SUCCESSFUL COMPLETION 00002000

//** 4 - NO MESSAGES ON QUEUE TO DRAIN. 00002100

//** 16 - FATAL ERROR. PROCESSING TERMINATED 00002200

//** 20 - OPEN FAILED ON ELAPRINT 00002300

//** 00002400

//**00002500

//DRAINMQ EXEC IMSBATCH,MBR=ELAEPUTL, 00002600

// PSB=ELAMPUTL,IN=ELADIAG,RGN=4096K 00002700

//G.STEPLIB DD 00002800

// DD 00002900

// DD DSN=CEE.SCEERUN,DISP=SHR 00003000

// DD DSN=ELA.V6R0M1.SELALMD,DISP=SHR 00003100

//G.ELAPRINT DD SYSOUT=* 00003200

//G.SYSOUT DD SYSOUT=* 00003300

//G.SYSPRINT DD SYSOUT=* 00003400

/* 00003500

Figure 33. ELAMQJUD

© Copyright IBM Corp. 1994, 2006 135

136 IBM Rational COBOL Runtime Guide for zSeries

Part 5. Diagnosing Problems

Chapter 18. Diagnosing Problems for Rational

COBOL Runtime on z/OS Systems 139

Detecting Errors 139

Reporting Errors 139

Controlling Error Reporting 139

Controlling Error Reporting in CICS 140

Controlling Error Reporting in IMS

Environments 140

Controlling Error Reporting in z/OS Batch 141

Error Reporting Summary 141

Transaction Error 141

Run Unit Error 142

Catastrophic error 143

Rational COBOL Runtime Error 143

Using the Rational COBOL Runtime Error Panel 144

Printing Diagnostic Information for IMS 144

errorDestination Message Queue 144

IMS Log Format 145

Running the Diagnostic Print Utility 146

Printing Diagnostic Information for CICS 147

CICS Diagnostic Message Layout 147

Running the Diagnostic Print Utility 148

Analyzing Errors Detected while Running a

Program 148

Chapter 19. Finding Information in Dumps . . . 151

Rational COBOL Runtime ABEND Dumps . . . 151

COBOL or Subsystem ABEND Dumps 151

Information in the Rational COBOL Runtime

Control Block 152

Information in a Program, Print Services, or

DataTable Profile Block 152

How to Find the Current Position in a Program at

Time of Error 153

Chapter 20. Rational COBOL Runtime Trace

Facility 155

Enabling EGL Program Source-Level Tracing with

Build Descriptor Options 155

Activating a Trace 155

Activating a Trace Session for CICS or IMS/VS 156

Activating a Trace Session for z/OS Batch or

IMS BMP 159

Deactivating a Trace Session 161

Printing Trace Output 161

Printing the Trace Output in CICS 161

Printing the Trace Output in IMS/VS 161

Printing the Trace Output in z/OS Batch or IMS

BMP 161

Reporting Problems for Rational COBOL Runtime 161

Chapter 21. Common Messages during

Preparation for z/OS Systems 163

Common Abend Codes during Preparation . . . 163

MFS Generation Messages 163

DB2 Precompiler and Bind Messages 164

COBOL Compilation Messages 164

Chapter 22. Common System Error Codes for

z/OS Systems 167

Common Return Codes 167

System Error Code Formats for

sysVar.errorCode 167

Common System Error Codes in

sysVar.errorCode 169

EGL Error Codes 170

Common SQL Codes 177

Common DL/I Status Codes 179

Common VSAM Status Codes 180

OPEN request type 180

CLOSE request type 180

GET/PUT/POINT/ERASE/CHECK/ENDREQ

request types 181

COBOL Status Key Values 181

Chapter 23. Rational COBOL Runtime Return

Codes, Abend Codes, and Exception Codes . . 183

Return Codes 183

ABEND Codes 183

CICS Environments 183

IMS, IMS BMP, and z/OS Batch Environments 185

Exception Codes 186

Chapter 24. Codes from Other Products for

z/OS Systems 187

Common System Abend Codes for All

Environments 187

LE Runtime Messages 188

Common COBOL Abend Codes 189

Common IMS Runtime Messages 189

Common IMS Runtime Abend Codes 190

Common CICS Runtime Messages 191

Common CICS Abend Codes 191

COBOL Abends under CICS 192

© Copyright IBM Corp. 1994, 2006 137

138 IBM Rational COBOL Runtime Guide for zSeries

Chapter 18. Diagnosing Problems for Rational COBOL

Runtime on z/OS Systems

The chapter contains diagnosis, modification, or tuning information. Use this

information to determine the source of the problem you encountered. Some

common program definition, database, and system errors that might cause

problems are described. This chapter also explains how to obtain error listings and

diagnose runtime errors.

Detecting Errors

You can find most logic errors by using the EGL debugger before you generate

your program.

During generation, a validation step checks your program for any remaining

syntax errors. In addition, validation also checks that your use of language

elements is consistent with both the runtime environment and the resource

association information you select for each file. For example, the sysLib.purge()

system function is only valid in a CICS environment.

When you run your generated program, different types of errors are detected by

Rational COBOL Runtime, COBOL, the subsystem (IMS or CICS), or z/OS. The

error handling varies depending on which product detects the error, the type of

error, and the runtime environment.

For diagnostic information of interest at development time, refer to the EGL online

help system. For information about how to control the error reporting at runtime,

see “Controlling Error Reporting.” For information about how the various types of

errors are reported in the runtime environments, see “Error Reporting Summary”

on page 141.

For those errors detected by Rational COBOL Runtime that result in a Run Unit

Error, error messages are written to the transient data queue specified through the

diagnostic control options. You can print those messages by using the diagnostic

printing utility (see “Diagnostic Message Printing Utility” on page 124) or by using

CICS utilities (for example, CEBR).

For more information, see “Diagnostic Control Options for z/OS CICS Systems” on

page 125.

Reporting Errors

Rational COBOL Runtime provides functions that help you determine the cause of

a runtime problem. All runtime errors that Rational COBOL Runtime traps are

accompanied by error messages and supporting information to help diagnose the

problem. Table 23 on page 141 through Table 26 on page 144 show the error

diagnostic actions that can be taken based on the severity of the error and the

runtime environment.

Controlling Error Reporting

Controlling error reporting requires different actions in CICS, IMS, and z/OS

environments.

© Copyright IBM Corp. 1994, 2006 139

Controlling Error Reporting in CICS

In the CICS environment, error actions are controlled through the online diagnostic

controller utility installed as transaction ELAC.

The utility allows you to specify what type of dump is requested, the name of the

transient data queue to which Rational COBOL Runtime diagnostic messages are

written, the CICS journal number and identifier for error messages, and whether or

not a transaction is disabled when a run unit error is detected. The utility lets you

reset the default options for all transactions and override the default options for

individual transactions.

See “Diagnostic Control Options for z/OS CICS Systems” on page 125 for more

details about the diagnostic controller utility.

Controlling Error Reporting in IMS Environments

The following error responses are controlled by build descriptor options for the

IMS/VS and IMS BMP environments:

v Write error messages to the error destination message queue. The destination is

determined by the errorDestination build descriptor option.

v Write error messages to the system log. The log ID is determined by the

imsLogID build descriptor option. If the imsLogID option does not appear in

the build descriptor file, error messages will not be written to the system log.

v Put the message that caused the problem for transaction-oriented IMS BMP

programs back on the message queue. restoreCurrentMsgOnError=YES

indicates that the message being processed when the error occurred should be

placed back on the message queue before the program ends.

restoreCurrentMsgOnError=NO indicates that the message being processed

should be deleted and not placed back on the message queue. This option is

applicable only to a run unit error when Rational COBOL Runtime detects the

error. It does not apply to transaction-oriented BMPs that use VGLib.VGTDLI(),

dliLib.AIBTDLI(), or dliLib.EGLTDLI() to read the message queue.

v Issue ROLL call or abend for a run unit error. imsFastPath=NO results in a

ROLL call. imsFastPath=YES results in a 1602 abend.

The actions controlled by the runtime JCL are as follows:

v Print message. This is done only if there is an ELAPRINT DD statement in the

runtime JCL.

v Snap dump. If the message indicates a snap dump is taken, the snap dump is

produced only if there is an ELASNAP DD statement in the runtime JCL.

v Abend 1602 or 1600. This creates a dump only if the runtime JCL contains a

SYSUDUMP or SYSABEND DD statement.

Abend code 1602 is the user code issued by Rational COBOL Runtime when it

ends the run unit for an imsFastPath=″YES″ program because of an error.

Abend code 1600 is the user code issued by Rational COBOL Runtime in all

other situations when it ends program processing because of an unrecoverable

error.

IMS takes the following actions, based on the way Rational COBOL Runtime ends

the program:

v If a rollback (ROLB) call is issued, the database changes are backed out, the

logical unit of work ends, the next message is read from the message queue, and

processing continues.

140 IBM Rational COBOL Runtime Guide for zSeries

v If a ROLL call is issued, the database changes are backed out, the logical unit of

work ends, and IMS stops the program with a user 778 abend. The transaction

and PSB are not stopped and can be scheduled again without operator

intervention.

v If either a 1600 or a 1602 abend is issued, the database changes are backed out,

the logical unit of work ends, and IMS stops the program. The transaction and

PSB are also stopped, and they require operator intervention to start them again.

Use ELASNAP so that sufficient data is captured the first time an error occurs.

Controlling Error Reporting in z/OS Batch

The actions controlled by the runtime JCL are as follows:

v Print message. This is done only if there is an ELAPRINT DD statement in the

runtime JCL.

v Snap dump. If the message indicates a snap dump is taken, the snap dump is

produced only if there is an ELASNAP DD statement in the runtime JCL.

v Abend 1600. This creates a dump only if the runtime JCL contains a SYSUDUMP

or SYSABEND DD statement.

Error Reporting Summary

The following tables summarize the error processing actions for Rational COBOL

Runtime.

Transaction Error

This error affects only the current CICS task or current IMS/VS transaction. In

CICS, the transaction is still available to other end users. In IMS/VS, processing

continues with the next message.

 Table 23. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

CICS v Write error messages to error destination (diagnostic controller option)

v Write error messages to CICS journal data set (diagnostic controller

option)

v CICS dump, dump code ELAD, as determined by message. The type of

dump issued for a particular transaction is a diagnostic control option.

v Issue a rollback request

v Display error messages on terminal, if possible

v Set return code to 693

IMS BMP See run unit error

IMS/VS

(Initial

generated

program is a

main or called

basic program)

See run unit error

IMS/VS

(Initial

generated

program is a

main Text UI

program)

v Write error messages to error destination (errorDestination build

descriptor option)

v Write error messages to system log (imsLogID build descriptor option)

v Print messages (ELAPRINT DD statement)

v Snap dump determined by the message (ELASNAP DD statement)

v Display error messages on current LTERM

v Issue a rollback (ROLB) request

v Read next message from the queue

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 141

Table 23. Error Processing Actions For Rational COBOL Runtime Detected

Errors (continued)

Environment Action

z/OS Batch See run unit error

Run Unit Error

The error is likely to occur for every user. In CICS, the transaction might be

disabled. In IMS/VS, a new copy of the program is used if there are additional

messages on the queue.

 Table 24. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

CICS v Write error messages to error destination (diagnostic control option), if

possible

v Write error messages to CICS journal data set (diagnostic control option),

if possible

v Disable transaction (diagnostic control option)

v CICS dump, dump code ELAD, as determined by message. The type of

dump issued for a particular transaction is a diagnostic control option.

v Issue a rollback request

v Display error messages on terminal, if possible

v Set return code to 693

v Return

IMS BMP v Write error messages to error destination (errorDestination build

descriptor option)

v Write error messages to system log (imsLogID build descriptor option)

v Print messages (ELAPRINT DD statement)

v Snap dump determined by the message (ELASNAP DD statement)

v Issue a rollback (ROLB) request

v Insert message segment or segments into the queue again

(restoreCurrentMsgOnError build descriptor option set to YES)

v Set return code to 693

v Return

IMS/VS

(Initial

generated

program is a

main or called

basic program)

v Write error messages to error destination (errorDestination build

descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if

possible

v Print messages (ELAPRINT DD statement), if possible

v Snap dump determined by the message (ELASNAP DD statement)

v Issue ROLL request if generated with build descriptor imsFastPath=NO

v Abend 1602 if generated with build descriptor imsFastPath=YES

IMS/VS

(Initial

generated

program is a

main Text UI

program)

v Write error messages to error destination (errorDestination build

descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if

possible

v Print messages (ELAPRINT DD statement), if possible

v Snap dump determined by the message (ELASNAP DD statement)

v Display error messages on current LTERM

v Issue ROLL request if generated with build descriptor imsFastPath=NO

v Abend 1602 if generated with build descriptor imsFastPath=YES

142 IBM Rational COBOL Runtime Guide for zSeries

Table 24. Error Processing Actions For Rational COBOL Runtime Detected

Errors (continued)

Environment Action

z/OS Batch v Print message (ELAPRINT DD statement)

v Snap dump determined by the message (ELASNAP DD statement)

v Issue a rollback request if DL/I or DB2 databases were used

v Set return code to 693

v Return

Catastrophic error

This error indicates storage is corrupted or standard error reporting processing

ends abnormally.

 Table 25. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

CICS v Write error messages to error destination (diagnostic control option), if

possible

v Write error messages to CICS journal data set (diagnostic control option),

if possible

v Disable transaction (diagnostic control option)

v Display error messages on terminal, if possible

v ABEND ELAE. The type of dump issued for a particular transaction is a

diagnostic control option.

IMS BMP v Write error messages to error destination (errorDestination build

descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if

possible

v Print messages (ELAPRINT DD statement), if possible

v Issue a rollback (ROLB) request

v Abend 1600 (SYSUDUMP or SYSABEND DD statement)

IMS/VS

(Initial

generated

program is a

main or called

basic program)

v Write error messages to error destination (errorDestination build

descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if

possible

v Print messages (ELAPRINT DD statement), if possible

v Abend 1600 (SYSUDUMP or SYSABEND DD statement)

IMS/VS

(Initial

generated

program is a

main Text UI

program)

v Write error messages to error destination (errorDestination build

descriptor option), if possible

v Write error messages to system log (imsLogID build descriptor option), if

possible

v Print messages (ELAPRINT DD statement), if possible

v Display error messages on current LTERM, if possible

v Abend 1600 (SYSUDUMP or SYSABEND DD statement)

z/OS Batch v Print messages (ELAPRINT DD statement), if possible

v Abend 1600 (SYSUDUMP or SYSABEND, DD statement)

Rational COBOL Runtime Error

A Rational COBOL Runtime error occurs at a point where the standard error

reporting process is not active.

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 143

Table 26. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

All

environments

v Abend, ABEND code indicates the reason for the error

See Table 30 on page 151 for information concerning the contents of the registers

when either a 1600, 1602, or an ELAE abend occurs.

Using the Rational COBOL Runtime Error Panel

When an error occurs, Rational COBOL Runtime attempts to display error

messages on the current terminal. The panels used in displaying error messages

are defined as form group ELAxxx where xxx is the language code.

The following figure shows the error panel (form ELAM02 in the form group) as it

is shipped with the product. The panel shows the same diagnostic information that

is written to the error destination queue, system log or journal, or ELAPRINT file.

If there are more error messages than can fit on a single panel, the last line on the

panel prompts the user to press a key to display additional error messages.

Printing Diagnostic Information for IMS

Diagnostic messages are sent either to a print file for batch jobs or to a message

queue for IMS BMPs or online transactions. A diagnostic utility is provided to

print messages written to a message queue. Optionally, based on the imsLogID

build descriptor option, the diagnostic information can be written to the IMS log.

errorDestination Message Queue

Table 27 on page 145 shows the format of the information in the IMS message

queue when the errorDestination build descriptor option is used. the default

queue name is ELADIAG.

 Unexpected Program Failure

 An unexpected input/output or program error occurred in the

 program you were running. Please make a note of the program

 name, date, time, and initial error messages and report them to your

 system administrator.

 Program name ... ART22

 Date 08/21/90

 Time 13:04:23

 Error Messages:

 ELA00093I An error occurred in program ART22, function ART229

 ELA00131P MSGQ error, file = UNKNOWN, function = CHG, status code = A1

 ELA00066I DL/I I/O area = UNKNOWN

 EDDDDED4

 45256650

Figure 34. Panel ELAM02 (example).

144 IBM Rational COBOL Runtime Guide for zSeries

Table 27. errorDestination IMS Message Queue

Field Length in Bytes Type of Data Description

Record length 2 Binary The length of the record.

Reserved 2 Binary A reserved field that must

contain binary zeros.

IMS transaction code 8 Character The name used to identify

the IMS message queue

that was specified with

the errorDestination build

descriptor option.

Date 8 Character Date of the transaction

from the I/O PCB

(MM/DD/YY).

Time 8 Character Time of the transaction

from the I/O PCB

(HH:MM:SS).

NLS 3 Character The value specified for the

targetNLS build

descriptor option

Message number 9 Character The message number:

Bytes 1-3

Message File

Identifier (ELA)

Byte 4 Application

Identifier (0)

Bytes 5-8

Message Number

Byte 9 Message Type. A

message type of

’C’ indicates this

record is a

continuation of

the specified

message from a

previous record

in the queue.

Message number

separator (reserved

position)

1 Character

Byte 10 Blank

Message Text Variable Character The text from the message

file with specified message

inserts.

IMS Log Format

Table 28 shows the format of the information in the IMS log.

 Table 28. IMS Log Record

Field Length in Bytes Type of Data Description

Record length 2 Binary The length of the record.

Reserved 2 Binary A reserved field that must

contain binary zeros.

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 145

Table 28. IMS Log Record (continued)

Field Length in Bytes Type of Data Description

Log ID 1 Character The value specified with

the imsLogID build

descriptor option.

Date 8 Character Date of the transaction

from the I/O PCB

(MM/DD/YY).

Time 8 Character Time of the transaction

from the I/O PCB

(HH:MM:SS).

NLS 3 Character The value specified for the

targetNLS build

descriptor option

Message number 9 Character The message number:

Bytes 1-3

Message File

Identifier (ELA)

Byte 4 Application

Identifier (0)

Bytes 5-8

Message Number

Byte 9 Message Type. A

message type of

’C’ indicates this

record is a

continuation of

the specified

message from a

previous record

in the log.

Message number

separator (reserved

position)

1 Character

Byte 10 Blank

Message Text Variable Character The text from the message

file with specified message

inserts.

Running the Diagnostic Print Utility

An IMS BMP program is provided to print diagnostic information that is written to

the message queue specified by the errorDestination build descriptor option. The

JCL needed to print the diagnostic information is supplied as member ELAMQJUD

of ELA.V6R0M1.ELAJCL.

The message queue identified by the IN parameter is the name of the queue that

was specified in the errorDestination option when the application was generated.

See “Diagnostic Message Printing Utility” on page 124 for more information.

146 IBM Rational COBOL Runtime Guide for zSeries

Printing Diagnostic Information for CICS

Diagnostic messages are sent to a transient data queue for CICS transactions. A

diagnostic print utility is provided to print messages written to a transient data

queue. Optionally, as specified by the diagnostic controller utility, the diagnostic

information can also be written to an CICS journal data set.

CICS Diagnostic Message Layout

Table 29 shows the format of the information in each error message record written

to a transient data queue or CICS journal.

 Table 29. Diagnostic Message Layout

Field Length in Bytes Type of Data Description

SYSID name 4 Character The name of the CICS

system that the error

message was created on.

TRANID name 4 Character The name of the CICS

transaction code that

started the logical

unit-of-work.

Task identifier 8 Character The task identifier

assigned by CICS to each

transaction instance that is

processed. This number is

reset to 0 when CICS is

cold-started. This is taken

from EIB field EIBTASKN.

ERRDEST name 4 Character The name of the CICS

transient data queue. This

field is blank if the record

is written to the CICS

journal.

Date 8 Character Date of the transaction

(MM/DD/YY)

Time 8 Character Time of the transaction

(HH:MM:SS)

NLS 3 Character The value specified for the

targetNLS build

descriptor option

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 147

Table 29. Diagnostic Message Layout (continued)

Field Length in Bytes Type of Data Description

Message number 9 Character The message number:

Bytes 1-3

Message File

Identifier (ELA)

Byte 4 Application

Identifier (0)

Bytes 5-8

Message Number

Byte 9 Message Type. A

message type of

’C’ indicates this

record is a

continuation of

the specified

message from a

previous record

in the queue.

Message number

separator (reserved

position)

1 Character

Byte 10 Blank

Message text 110 Character The text from the message

file with specified message

inserts

Running the Diagnostic Print Utility

Use the ELAU transaction to print the messages routed to a transient data queue.

See “IMS Diagnostic Message Print Utility” on page 135 for more information

about running the CICS diagnostic print utility.

Analyzing Errors Detected while Running a Program

Use the error messages and diagnostic messages to determine the cause of the

problem. If the error is detected by another product (for example, COBOL), check

the information in Chapter 22, “Common System Error Codes for z/OS Systems”

and Chapter 24, “Codes from Other Products for z/OS Systems” and the

documentation for the other product.

If you cannot determine the cause of the problem using this information and if the

problem can be created again in the test environment, use the EGL debugger to

isolate and debug the error before generating the program again.

For debugging in the runtime environment, you can use the runtime diagnostic

facility (EDF) for CICS programs or the batch terminal simulator (BTS II) for IMS

programs. In addition, if you use the TEST COBOL compile option, you can use

the COBOL debugging facilities.

Refer to the CICS, IMS, and COBOL manuals for your versions of these products

for additional information on their debugging facilities.

If you get a JCL error for the runtime JCL, check the generation output for the

programs involved for any error messages related to JCL generation. In addition,

148 IBM Rational COBOL Runtime Guide for zSeries

ensure the tailoring that was done on the runtime JCL templates is correct. Also

check any changes made to customize the sample runtime JCL.

When abends occur, the problem determination might require assistance from the

IBM Support Center. In this case, be prepared to provide IBM with the following

information:

v COBOL source file created using the commentLevel=1 build descriptor option.

v Formatted dump

v Rational COBOL Runtime diagnostic information written to either the error

diagnostic queue or listed in the printout for ELAPRINT

v CICS journal or IMS log, as appropriate

IBM requests a COBOL debugger trace listing only if the information is needed for

problem determination. IBM will give you the information on how to specify the

trace options if the information is necessary.

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 149

150 IBM Rational COBOL Runtime Guide for zSeries

Chapter 19. Finding Information in Dumps

Information about the problem program can be determined by finding the address

of the Rational COBOL Runtime control block in a dump.

Rational COBOL Runtime ABEND Dumps

If the dump code is 1600, 1602, or ELAE, the dump was initiated because Rational

COBOL Runtime detected an error. Register 2 at ABEND points to the Rational

COBOL Runtime control block. Register 4 points to a linked list of messages

formatted as shown in Figure 35.

 Table 30. Registers when a SNAP dump is taken or a Rational COBOL Runtime ABEND

occurs.

Reg. Value

2 Points to Rational COBOL Runtime control block. At offset 272 (hexadecimal

offset 110) from the start of the Rational COBOL Runtime control block is the

address of the initial program profile block, which provides information about

the first EGL-generated program that was started. At offset 276 (hexadecimal

offset 114) from the start of the Rational COBOL Runtime control block is the

address of the current program profile block, which provides information about

the EGL-generated program that was running at the time of the abend.

4 Points to the message buffer that contains all messages.

The following diagram shows the format of the message buffer that contains all the

messages in the dump.

COBOL or Subsystem ABEND Dumps

If the dump is not a Rational COBOL Runtime abend, you can use the following

method to locate the Rational COBOL Runtime control block:

Figure 35. Message Buffer Format

© Copyright IBM Corp. 1994, 2006 151

v On CICS systems, locate the CICS Task Work Area (TWA) in the dump. Locate

the string *EZERTS-CONTROL* in the TWA. This string is the identifier at the

start of the Rational COBOL Runtime control block. The * and - characters might

be converted to periods in a formatted dump.

v On other systems, locate the string ELARHAPP followed immediately by a

program name. ELARHAPP is the identifier at the start of a program profile

block. The four-byte address at hex offset 20 in the program profile block is the

Rational COBOL Runtime control block address. If 0, the program might not yet

be activated. Do a search for another ELARHAPP control block followed by a

program name.

For information in the program profile control Block, see Table 32.

Information in the Rational COBOL Runtime Control Block

The following information is in the Rational COBOL Runtime control block:

 Table 31. Information in the Rational COBOL Runtime Control Block

Offset in hex Length in bytes Contents

0 16 Control block identifier -

EZERTS-CONTROL

104 4 CICS EIB Pointer

110 4 Program profile address for current program

114 4 Program profile address for initial program

118 8 Terminal identifier

120 8 User identifier

128 8 Transaction identifier

150 12 DLILib.psbData

1CC 18 Current function

Information in a Program, Print Services, or DataTable Profile Block

Each generated COBOL program contains a profile control block in COBOL

working storage initialized with information about the program. The first eight

bytes contain an eye-catcher constant identifying whether the program was

generated from a program, form group or data table part. The second eight bytes

contain the program name. Other information in the profile block is shown in the

following table:

 Table 32. Locator Format for Generated COBOL Program Dumps

Offset in hex Length in hex Contents

00 08 Program type identifier:

 ELARHAPP — program

 ELAAHMGC — print services program

 ELARMTPP — data table program

08 08 Program name

10 08 Program generation date (MM/DD/YY)

18 08 Program generation time (HH:MM:SS)

20 04 Rational COBOL Runtime control block

address

24 02 Generator version

152 IBM Rational COBOL Runtime Guide for zSeries

Table 32. Locator Format for Generated COBOL Program Dumps (continued)

Offset in hex Length in hex Contents

26 02 Generator release

28 02 Generator modification level

2A 10 Reserved

34 08 Target runtime system

How to Find the Current Position in a Program at Time of Error

The Rational COBOL Runtime control block identifies the currently running

program and function at the time of the error (Table 31 on page 152). Associated

error messages identify the EGL statement number for errors detected by Rational

COBOL Runtime that need statement identification to resolve the problem. For

performance reasons, the generated COBOL program does not keep track of the

EGL statement number for each generated statement. If a program exception

occurs in a generated program, you can determine the EGL statement number by

finding the COBOL statement that was not successful in a COBOL program listing

that contains the EGL statements generated as comments.

Chapter 19. Finding Information in Dumps 153

154 IBM Rational COBOL Runtime Guide for zSeries

Chapter 20. Rational COBOL Runtime Trace Facility

The Rational COBOL Runtime trace facility can be used by the IBM Support

Center to aid in problem determination, or by the program user to trace program

activity.

There are two levels of tracing available:

v EGL program source-level tracing

v Rational COBOL Runtime runtime level tracing

With source-level tracing, you can request traces of EGL statements, traces of the

data, and error codes after every SQL call in a program, except SQL calls made

with the SQLEXEC process option. Source-level tracing is enabled with the use of

the sqlIOTrace, sqlErrorTrace, and statementTrace build descriptor options.

Source-level tracing is activated in the runtime environment by specifying trace

filter criteria. See “Activating a Trace” for more information on activating traces.

With runtime-level tracing, you can request a data stream trace, a Rational COBOL

Runtime internal dump trace, or a service routine trace. Runtime-level tracing does

not require the use of a build descriptor option. Runtime-level tracing is activated

in runtime environment by specifying trace filter criteria. See “Activating a Trace”

for more information on activating traces.

Use these functions only with the assistance of the IBM Support Center. If you use

these functions without assistance, large amounts of trace output might be

produced based on trace option selection.

Enabling EGL Program Source-Level Tracing with Build Descriptor

Options

You must specify the sqlIOTrace, sqlErrorTrace, and statementTrace build

descriptor options in order to get source-level trace output. EGL generation creates

the necessary COBOL code to accomplish the type of tracing that you request.

The trace build descriptor options are ssqlIOTrace, sqlErrorTrace, and

statementTrace. When using these options, you must specify a value of YES or

NO. Each of these build descriptor options tells the COBOL generator whether or

not to generate code to allow runtime tracing of a particular aspect of execution -

SQL I/O, SQL Errors, and EGL statement execution path.

Note: These options are intended for the use of support personnel and should

only be used when a trace is requested as part of a support effort. Normal

application debugging should be done through the use of the EGL

Debugger.

Activating a Trace

Tracing is activated during run time either by using the ELAZ transaction in the

CICS or IMS/VS environments, or by specifying the ELATRACE DD name in the

runtime JCL for the z/OS batch or IMS BMP environments.

© Copyright IBM Corp. 1994, 2006 155

Activating a Trace Session for CICS or IMS/VS

A utility is supplied to activate tracing in the CICS or IMS/VS environments. To

start the utility, enter the utility transaction code, ELAZ. The utility transaction

must start prior to running the transaction to be traced.

The ELAZ transaction must run in the same region as the transactions to be traced.

In IMS, a message processing region can be altered to handle a unique class and

the ELAZ transaction and the transactions to be traced set to this class, in order to

ensure that the transactions run in the same region. In CICS, enter the ELAZ

transaction and the transaction to be traced from terminals attached to the same

CICS region.

Figure 36 shows the initial panel for the ELAZ transaction that enables you to

specify which transactions are to be traced. You use a secondary panel to specify

filter criteria for a specific transaction that control what information is traced for

that transaction.

Note: For IMS/VS, specify the name of the initial program instead of the initial

transaction.

 Rational COBOL Runtime then presents the panel shown in Figure 37 on page 157

for trace filter selection:.

ELAZ01 Rational COBOL Runtime

 Trace Transaction Selection

Specify the transaction you want to trace; then press Enter.

To select specific programs and services for tracing, place the cursor

on a transaction name and press F4.

 Transaction codes or initial program names

 ________ ________ ________ ________

 ________ ________ ________ ________

 ________ ________ ________ ________

 ________ ________ ________ ________

ENTER F1=HELP F3=EXIT F4=FILTER F9=REFRESH F10=STOP TRACE

Figure 36. Rational COBOL Runtime Trace Transaction Selection Panel

156 IBM Rational COBOL Runtime Guide for zSeries

The filter criteria include the following:

3270 Data Stream (Y or N)

Specifies whether to trace 3270 data streams

 If yes (Y), the 3270 data streams built or received by EGL are traced. The

default is no (N). For IMS/VS environments, 3270 Data Stream Trace

option is not allowed.

Terminal ID

Specifies a terminal identifier

 If specified, only transactions initiated from that terminal are traced. If not

specified, service requests from any terminal are traced.

Trace to File (Y or N)

Specifies whether the trace output goes to a file

 If yes (Y), the trace output of Rational COBOL Runtime is sent to the ELAT

transient data queue in CICS and to an IMS/VS message queue for

transaction ELATOUT in IMS/VS. This trace is also written to an

in-storage wrap-around trace buffer.

If no (N), the trace output goes to an in-storage wrap-around trace buffer.

The size of this trace buffer is defined during customization of Rational

COBOL Runtime.

Y must be specified if you specify Y (yes) for the SQL/IO Trace or

SQL/ERR Trace options. All trace output for SQL/IO and error tracing is

sent to a file, not to the in-storage wrap-around trace buffer.

Note: For IMS/VS, you cannot trace to file if the tracing transaction uses

the modifiable express PCB (ELAEXP) because Rational COBOL

Runtime uses this PCB to write to the message queue. Unpredictable

results can occur.

IDUMP Trace (Y or N)

Specifies whether to dump Rational COBOL Runtime internal storage areas

 ELAZ02 Rational COBOL Runtime

 Trace Filter Selection

 Transaction code or Initial Program ________

 Fill in the appropriate fields, then press Enter.

 3270 Data Stream.......N APP Statement Trace.....N

 Terminal ID............_________ SQL/IO Trace............N

 Trace to File..........N SQL/ERR Trace...........N

 IDUMP Trace............N

 FILENAME ELATOUT NODE * USERID EZEUSRID CLASS A FORM *

 Programs

 ________ ________ ________ ________ ________ ________ ________

 ________ ________ ________ ________ ________ ________ ________

 Services

 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

 ENTER F1=HELP F3=RETURN F9=REFRESH

Figure 37. Rational COBOL Runtime Trace Filter Selection Panel

Chapter 20. Rational COBOL Runtime Trace Facility 157

If yes (Y), the trace facility provides dumps of certain Rational COBOL

Runtime internal storage areas. The default is no (N), no internal storage

dumps.

APP Statement Trace (Y or N)

Specifies whether to trace EGL statements in a program

 If yes (Y), the trace facility provides the function name and the statement

for each EGL statement that the program processes. Specify the

statementTrace=YES build descriptor option to enable this type of tracing.

The default is no (N).

SQL/IO Trace (Y or N)

Specifies whether to trace SQL/IO

 If yes (Y), the trace facility provides traces of the data and error codes on

the return from the SQL call. The EGL function name, the I/O statement,

the I/O object, the SQL function name, and the EGL data item name,

length, type, and contents are given. Specify the sqlIOTrace=YES build

descriptor option to enable this type of tracing. The default is no (N).

SQL/ERR Trace (Y or N)

Specifies whether to trace SQL error information

 If yes (Y), the trace facility provides traces of the error information that

comes back from SQL on every database call. The SQLCODE, SQLERRP,

SQLSTATE, SQLWARN, SQLERRD, SQLEXT, and SQLERRMC codes are

given. Specify sqlErrorTrace="YES" to enable this type of tracing. The

default is no (N).

FILENAME

The system resource name for the trace output. The default is ELATOUT.

NODE

1 to 8 characters that specify the system node ID. The default is the current

system node ID.

USERID

1 to 8 characters that specify the user ID. The default is the value of the

EZEUSRID sysVar.userID system variable special function word.

CLASS

A single character that specifies the print class. The default is A.

FORM

1 to 4 characters that specify the form number for print output. The default

is your location’s standard form.

Programs

Specifies whether to limit the trace to certain programs or print services

programs

 If specified, only the requested programs are traced.

Services

Specifies whether to limit the trace to certain Rational COBOL Runtime

services

 If specified, only the requested services are traced. Otherwise all service

numbers are traced if the other criteria are met.

158 IBM Rational COBOL Runtime Guide for zSeries

Note: The entry to ELARSINI (initialization service) and the exit from

ELARSTRM (cleanup service) are not traced. ELARSINI initializes

the trace facility. ELARSTRM ends the trace facility.

If you are running a trace to aid in problem determination, enter the filter criteria

as directed by the IBM support center.

Activating a Trace Session for z/OS Batch or IMS BMP

Tracing is activated by providing trace filters in a preallocated data set with the

DD name ELATRACE before starting the program or job to be traced. ELATRACE

contains control statements which control the programs and events to be traced.

The attributes for the data set are LRECL=80, DSORG=PS, and RECFM=FB. If the

ELATRACE data set is empty or allocated as DD DUMMY, all services are traced,

data streams are not traced, and SQL I/O, SQL errors, and program statements are

not traced even if enabled through sqlIOTrace, sqlErrorTrace, or statementTrace

build descriptor options. Figure 38 shows the correct syntax for the trace control

statements.

Notes:

1. Only one program name or service number can be entered on each line.

2. The :FILTER and :EFILTER tags are required if any other tags are included in

the ELATRACE data set.

3. More than one filter can be specified on a line. The filters must be separated by

0 or more blanks. The example below shows sample :FILTER statements that

are valid and equivalent:

 :FILTER APPSTMT=Y

 :FILTER SQLERR=Y

 :FILTER APPSTMT=YSQLERR=Y

 :FILTER APPSTMT=Y SQLERR=Y

 :FILTER APPSTMT=Y SQLERR=Y

The filters cannot be continued on the next line. The statement shown below is

not valid:

 :FILTER DATASTREAM=Y|N

 :FILTER TRACETOFILE=Y|N

 :FILTER APPSTMT=Y|N

 :FILTER SQLIO=Y|N

 :FILTER SQLERR=Y|N

 :FILTER IDUMP=Y|N

 :APPLS

 ...
 [name]

 ...
 :EAPPLS

 :SERVICES

 ...
 [service number]

 ...
 :ESERVICES

 :EFILTER

Figure 38. ELATRACE Data Set Entries

Chapter 20. Rational COBOL Runtime Trace Facility 159

:FILTER APPSTMT=Y SQLERR=

 Y

The control card tags and attributes that control filtering have the following

meaning:

:FILTER Options controlling what information is traced and where trace

data is written

 The following attributes can be used with the :FILTER statement:

v DATASTREAM=Y|N

If DATASTREAM=Y is specified, the 3270 data streams built or

received by Rational COBOL Runtime are traced. The default

value is N, no data stream tracing.

v TRACETOFILE=Y|N

If TRACETOFILE=Y is specified, the trace output is directed to

the preallocated data set named ELATOUT in addition to being

directed to an in-storage wrap-around trace buffer.

If TRACETOFILE=N is specified, the trace output goes to an

in-storage wrap-around trace buffer. The size of this trace buffer

is defined during customization of Rational COBOL Runtime.

The default for the TRACETOFILE option is N.

TRACETOFILE=Y must be specified if SQLIO=Y or SQLERR=Y

are specified. All trace output for SQL I/O and SQL errors is

directed to the ELATOUT data set, not to the in-storage

wrap-around trace buffer.

v APPSTMT=Y|N

If APPSTMT=Y is specified, the trace facility provides the

function name and the statement for each Rational COBOL

statement that the program processes. You must use the

statementTrace=″YES″ build descriptor option to enable this type

of tracing. The default for the APPSTMT option is N.

v SQLIO=Y|N

If SQLIO=Y is specified, the trace facility provides traces of the

data and error codes on the return from the SQL call. The EGL

function name, the I/O statement, the I/O object, the SQL

function name, and the EGL data item name, length, type, and

contents are given. You must use the sqlIOTrace=″YES″ build

descriptor option to enable this type of tracing. The default for

the SQLIO option is N.

v SQLERR=Y|N

If SQLERR=Y is specified, the trace facility provides traces of the

error information that comes back from SQL on every database

call. The SQLCODE, SQLERRP, SQLSTATE, SQLWARN,

SQLERRD, SQLEXT, and SQLERRMC codes are given. You must

use the sqlErrorTrace=″YES″ or the sqlIOTrace=″YES″ build

descriptor option to enable this type of tracing. The default for

the SQLERR option is N.

v IDUMP=Y|N

If IDUMP=Y is specified, the trace facility provides dumps of

certain Rational COBOL Runtime internal storage areas. The

default for the IDUMP option is N, no internal storage dumps.

:APPLS Program names or print service program names

160 IBM Rational COBOL Runtime Guide for zSeries

If program names are specified, only the specified programs are

traced. Otherwise service requests from each generated program

are traced. Up to 16 program names can be specified.

:SERVICES Service numbers

 If service numbers are specified, only those specific services are

traced. To trace all service numbers, 999 must be specified.

Otherwise, up to 32 service numbers can be specified.

Note: The entry to ELARSINI (initialization service) and the exit

from ELARSTRM (cleanup service) are not traced.

ELARSINI initializes the trace facility. ELARSTRM ends the

trace facility.

Deactivating a Trace Session

To stop all trace activity for CICS or IMS/VS, use the ELAZ transaction to delete

the transaction codes from the list of transactions to be traced by using the F10

function key. When a transaction ends and is subsequently restarted, tracing does

not start if the transaction code no longer appears in the transaction list.

To stop tracing in z/OS batch or IMS BMP, cancel the program and remove the

ELATRACE and ELATOUT DD cards from the runtime JCL.

Printing Trace Output

If the trace output is not directed to a file for the CICS or IMS/VS environments,

or the ELATOUT DD statement is not allocated for the z/OS batch or IMS BMP

jobs, the trace output is written to a wrap-around trace buffer in memory. The trace

output can be seen in dumps taken when programs end abnormally.

Printing the Trace Output in CICS

Trace output for CICS is routed to an extrapartition transient data queue which is

directed to a data set named ELATOUT if you direct the trace output to a file by

specifying yes (Y) on the ELAZ02 panel. The ELATOUT data set has the attributes

of LRECL=133, RECFM=FBA. The file can be printed as directed on the DD

statement for ELATOUT in the CICS startup JCL.

Printing the Trace Output in IMS/VS

The trace entries are written to an IMS message queue and can be printed with the

ELAEPUTL utility. The sample job stream shipped with Rational COBOL Runtime

is run in order to drain and print the trace output. The job stream must be tailored

to use the IN=ELATOUT parameter on the EXEC IMSBATCH statement.

Printing the Trace Output in z/OS Batch or IMS BMP

Trace output is directed to the ELATOUT DD statement and is printed as directed

on the DD statement.

Reporting Problems for Rational COBOL Runtime

For instructions on reporting problems, visit the following Web site, click Support,

and click Submit and track problems:

 http://www.ibm.com/software/awdtools/studioenterprisedev

Chapter 20. Rational COBOL Runtime Trace Facility 161

162 IBM Rational COBOL Runtime Guide for zSeries

Chapter 21. Common Messages during Preparation for z/OS

Systems

This chapter contains some error messages from other products. It is not a

complete list. For a complete explanation of product messages, refer to the

documentation provided with that product.

Common Abend Codes during Preparation

Only the most frequently occurring preparation abend codes are listed in this

section. If you receive any other abend code or need a more complete explanation

of one of the abend codes, refer to the documentation for that product.

System B37

The temporary work space is filling up. The WSPC parameter that is used

in the build scripts to prepare generation output specifies the amount of

temporary space allocated.

 To resolve the abend, use a symbolic descriptor option named WSPC and

set it to a larger value.

System 213, or System 230

Two program developers tried to update the directory of a PDS at the

same time. Submit the job again.

 This problem can also be prevented by specifying ENQ=YES for the DD

statement for the PDS for which the 213 occurred. However, this serializes

preparation of servers when their preparation output is placed in the same

PDS’s.

IMS 3022

The form group that was generated into MFS source resulted in one or

more MFS control blocks that exceeds the 32,748-byte limit. The form

group cannot be processed by MFS in its current form. Change the form

group definition to split the form group into two or more separate form

groups and then change your program as necessary.

MFS Generation Messages

Only the most frequently occurring MFS generation messages are listed in this

section. If you receive other error messages that start with DFS or if you need a

more complete explanation of one of the messages, refer to the IMS documentation

for your release of IMS.

DFS1141I name FMT DOES NOT DEFINE

DEVICE INPUT DESCRIPTION FOR

INPUT MESSAGE DESCRIPTION,

FMT NOT PROCESSED

Explanation: This message can occur when a form

group was originally defined and generated with both

text and print forms. Then the form group was

changed to have only print forms and generated again.

This results in a member in the IMS REFERRAL library

for the text forms and causes the MFS assemblies to

end with errors.

User response: Run the MFSRVC procedure that is

supplied with IMS and specify the SCRATCH function

to remove this member from the IMS REFERRAL

library. Refer to the MFS utilities documentation for

your release of IMS for additional information.

DFS1162I xxxxxxxx WARNING: ATTR=nn

SPECIFIED FOR DFLDNAME WHICH

HAD NO EATTR= SPECIFICATION.

Explanation: You specified the mfsExtendedAttr=NO

build descriptor option or included the

© Copyright IBM Corp. 1994, 2006 163

extendedAttributes=NO parameter for one or more

devices in the mfsDevice build descriptor option.

User response: None, provided you wanted to specify

devices that do not support extended attributes.

DFS1428I SC=08 LTH=NN,NN EXCEEDS 4

SIGNIFICANT DIGITS. LAST 4

DIGITS USED.

Explanation: This message occurs if a form contains a

variable field longer than 8000 bytes for a print form or

longer than 1 less than the display size for a text form.

User response: Use form definition to split the

variable field into smaller fields. Change your program

to use the smaller fields and then generate the form

group and program again.

DFS1587I SC=04 EGCS FIELD SPECIFIED ON AN

EVEN COLUMN

Explanation: You defined a DBCS constant or variable

field that starts on an even column (in other words, the

data starts in an even column).

User response: If the device you are using is an IBM

Personal System/55* or is in the IBM 5550 family, you

can ignore this message. Otherwise, use form definition

to change the definition of the form.

DB2 Precompiler and Bind Messages

Only the most frequently occurring DB2 precompiler and bind messages are listed

in this section. If you receive other messages that start with DSN or if you need a

more complete explanation of one of the messages, refer to the documentation for

your release of DB2.

DSNX039I S PRECOMPILER INTERNAL LIMIT

EXCEEDED

Explanation: A limit for the DB2 precompiler has been

exceeded. This can occur in programs that contain a

large number of SQL I/O functions

User response: Make one or more of the following

changes to the program:

v If some of the columns in your SQL tables are

defined as NOT NULL, remove the isNullable=yes

property from the corresponding field in the EGL

SQL record definitions. This reduces the number of

unique host variables which in turn reduces the

number of characters and lines for an SQL statement

and the total number of lines for the program. This

technique has the biggest impact for the least amount

of work and also has the potential of improving

performance.

v Review the use of default SQL statements. If the

default statements are retrieving more columns than

you actually need, modify the statements to specify

only the required columns.

v Shorten the name of the SQL record variable.

v Split the SQL statements into multiple statements.

For example, change one get statement into multiple

get statements and retrieve a subset of the columns

in each statement.

v Split the program into multiple programs

DSNX100I BIND SQL WARNING

Explanation: One or more DB2 tables have not been

created. The tables that do not exist will be identified in

an explanation associated with the message by:

 xxxxxxx IS NOT DEFINED

 where xxxxxxx is the table name.

User response: Create the necessary DB2 tables and

synonyms.

COBOL Compilation Messages

Only the most frequently occurring COBOL compilation messages are listed in this

section. If you receive other compilation messages that start with IGY or if you

need a more complete explanation of one of the messages, refer to the

documentation for your release of COBOL.

IGYPS2015I The paragraph or section prior to

paragraph or section

EZEMAIN-PROCESS did not contain

any statements.

IGYPS2023I Paragraphs prior to section

EZEMAIN-PROCESS were not

contained in a section

Explanation: These two messages occur if your

program has been processed by the DB2 precompiler.

User response: They are normal messages that you

can ignore.

IGYOP3091W Code from ″?″ to ″?″ can never be

executed, and was therefore discarded.

164 IBM Rational COBOL Runtime Guide for zSeries

IGYOP3093W The ″PERFORM″ statement at ″?″

cannot reach its exit.

IGYOP3094W There may be a loop from the

″PERFORM″ statement at ″?″ to itself.

″PERFORM″ statement optimization was

not attempted.

Explanation: These messages occur if your program

has been processed using the OPTIMIZE compiler

option.

User response: These are normal messages that you

can ignore.

IGYPA3013W Data item ″?″ and ″?″ had overlapping

storage. An overlapping move will occur

at execution time.

Explanation: This message occurs if your program

attempts to assign the value of a data item to the same

data item.

User response: You might want to check that you

really intended to do this.

IGYPG3113W Truncation of high-order digit

positions may occur due to precision of

intermediate results exceeding 30.

Explanation: This message might occur if your

program was generated with the math="COBOL" build

descriptor option.

User response: You might want to change the

arithmetic expression identified in the message. For

example, you could split the expression into several

smaller ones.

 If you do not change the expression, ensure that the

intermediate values will fall within the precision that

COBOL supports. Refer to the programming guide for

your release of COBOL for more information about the

precision of intermediate results.

IGYSC2025W ″EZEPCB-?″ or one of its subordinates

was referenced, but ″EZEPCB-?″ was a

″LINKAGE SECTION″ item that did not

have addressability. This reference will

not be resolved successfully at

execution.

Explanation: This warning message occurs when PCBs

or any data structure is generated in the linkage

section, but is not used in a statement.

User response: Ignore the messages and the program

will work correctly.

Chapter 21. Common Messages during Preparation for z/OS Systems 165

166 IBM Rational COBOL Runtime Guide for zSeries

Chapter 22. Common System Error Codes for z/OS Systems

The information within this chapter is diagnosis, modification, or tuning

information.

Rational COBOL Runtime messages might include error codes from databases or

operating systems that are being used. This could include DB2, DL/I, z/OS VSAM,

or CICS EXEC Interface Block (EIB) codes.

This chapter contains only the most common errors that occur during file input

and output operations.

The error codes included in this chapter are for the following databases and

operating systems:

v CICS

v DB2

v DL/I

v VSAM

v COBOL

Common Return Codes

The system variable sysVar.errorCode contains an error code indicating a reason

that a file I/O statement or a system function invocation is not successful. Codes

specific to the system or the access method are returned when the sysCodes build

descriptor option is set to YES.

If the sysCodes build descriptor option set to NO, the system error codes are

converted to EGL error codes. This allows applications developed previously under

Cross System Product or VisualAge Generator to receive the same error codes as

before.

System Error Code Formats for sysVar.errorCode

The following table shows the formats of sysVar.errorCode by specific

environment:

 System Compatibility Considerations

CICS If sysVar.errorCode is in the form RSnnnnnn, look under nnnnnn in

“Common System Error Codes in sysVar.errorCode” on page 169.

Otherwise, the first 2 characters of sysVar.errorCode contain the first

byte of the EIBFN from the CICS EXEC interface block (EIB). The

remaining 6 characters contain bytes 0-2 of the EIBRCODE, also from the

CICS EXEC interface block.

If all of the following are true, then the first 2 characters of

sysVar.errorCode contain the first byte of the EIBFN and the remaining

6 characters contain bytes 0-2 of the EIBRCODE:

v The program is running in VisualAge Generator compatibility mode

v VGVar.handleSysLibErrors is set to 1

v A call statement is implemented with the CICS LINK

Refer to the CICS application programmers’ guide for an explanation of

the EIB codes.

© Copyright IBM Corp. 1994, 2006 167

System Compatibility Considerations

z/OS Batch If sysVar.errorCode is in the form RSnnnnnn, look under nnnnnn in

“Common System Error Codes in sysVar.errorCode” on page 169.

GSAM: sysVar.errorCode contains the DL/I status code after an I/O

statement. The last 6 characters of sysVar.errorCode are blanks.

SEQ: sysVar.errorCodee contains the COBOL status key value or values

in the first 2 characters. The remaining 6 characters are zeros.

SEQRS: The contents of sysVar.errorCode depend on the operation that

was not successful:

v If a dynamic allocation is not successful, the first 3 bytes of

sysVar.errorCode contain the value S99 (for SVC 99, dynamic

allocation), byte 4 is the SVC 99 return code in hexadecimal, and bytes

5-8 contain the error reason code in hexadecimal.

v If an OPEN is not successful, sysVar.errorCodee contains return code

8 (‘00000008’).

v If a READ end-of-file condition occurs, sysVar.errorCode contains

return code 4 (‘00000004’).

v If a READ, WRITE, or CLOSE is not successful, sysVar.errorCode

contains return code 12 (‘00000012’).

VSAM: sysVar.errorCode contains the COBOL status key value or

values in the first 2 characters followed by 2 characters for the COBOL

VSAM return code (VSAM feedback code), 1 character for the COBOL

VSAM function code (VSAM component code), and 3 characters for the

COBOL VSAM feedback code (VSAM reason code).

VSAMRS: The operation that is not successful determines the contents

of sysVar.errorCode:

v If a dynamic allocation is not successful the first 3 bytes of

sysVar.errorCode contain the value S99 (for SVC 99, dynamic

allocation), byte 4 is the SVC 99 return code in hexadecimal, and bytes

5-8 contain the error reason code in hexadecimal.

v If an OPEN or CLOSE is not successful, the first 2 bytes of

sysVar.errorCode contain the error code from the VSAM application

control block (ACB) in hexadecimal. The remaining 6 characters are

zeros.

v If an operation other than OPEN or CLOSE is not successful, the first

2 characters are zeros followed by 2 characters for the COBOL VSAM

return code (VSAM feedback code), 1 character for the COBOL VSAM

function code (VSAM component code), and 3 characters for the

COBOL VSAM feedback code (VSAM reason code).

For VSAM codes, refer to z/OS V1R7 DFSMS™ Macro Instructions for Data

Sets (SC26-7408). For SVC 99 codes, refer to z/OS V1R7.0 MVS System

Codes (SA22-7626).

IMS/VS The only files that can be used in this environment are serial files

associated with IMS message queues. sysVar.errorCode contains the

DL/I status code after an I/O statement to one of these files. The last 6

characters of sysVar.errorCode are blanks.

IMS BMP IMS message queue: sysVar.errorCode contains the DL/I status code

after an I/O statement. The last 6 characters of sysVar.errorCode are

blanks.

Otherwise, same as z/OS Batch in this table.

168 IBM Rational COBOL Runtime Guide for zSeries

Common System Error Codes in sysVar.errorCode

The following table gives an explanation of the most common values that you

receive in sysVar.errorCode when the sysCodes build descriptor option is set to

YES. If your error code is not listed here, or you would like more information,

refer to the table in “System Error Code Formats for sysVar.errorCode” on page

167 and then the appropriate manuals for your environment.

 Table 33. sysVar.errorCode error codes.

System Return code Meaning

z/OS Batch A0000000 VSAM open error - empty

indexed file

z/OS Batch BC000000 VSAM open error - file is not

in VSAM format

z/OS Batch S9940210 File not available

z/OS Batch S9940440 File not found

z/OS Batch S99417** File not found

z/OS Batch 00000004 on non-VSAM file End of file

z/OS Batch 00000008 on non-VSAM file Error opening file

z/OS Batch 00000012 on non-VSAM file Error on I/O or closing a file

z/OS Batch 0008*004 for nonrelative End of file

z/OS Batch 0008*004 for relative No record found

z/OS Batch 0008*008 for an add statement Duplicate record

z/OS Batch 0008*016 if get next for an indexed

record

End of file

z/OS Batch 0008*016 if not using get next for an

indexed record

No record found

z/OS Batch 0008*028 File full

z/OS Batch 0008*116 No record found

z/OS Batch ******74 No record found

Note: * represents any character.

Note: z/OS Batch in this table includes IMS BMP

CICS ffrrrrrr Remote call or

sysLib.startTransaction()

Other CICS errors:

v ff = Hexadecimal

representation of EIBFN

byte 0

v rrrrrr = Hexadecimal

representation of

EIBRCODE bytes 0-2

CICS 0A010000 get next for a temporary

storage queue

End of file

CICS 0A010000 on direct I/O to a

temporary storage queue

No record found

CICS 0A080000 on temporary storage

queue

File is full

CICS 060F0000 on VSAM file End of file

CICS 00000000 Remote call or

sysLib.startTransaction()

Successful

CICS 00000203 Remote

sysLib.startTransaction()

Transaction identifier that is

not valid

CICS 00000204 Remote call Program name that is not

valid

CICS 00000207 Remote call or

sysLib.startTransaction()

System identifier that is not

valid

CICS 00000208 Remote call Link out of service or is not

valid

Chapter 22. Common System Error Codes for z/OS Systems 169

Table 33. sysVar.errorCode error codes. (continued)

System Return code Meaning

CICS 06810000 on VSAM file No record found

CICS 06820000 on VSAM file Duplicate record

CICS 06830000 on VSAM file File is full

CICS 08E10000 on transient data Format error

CICS 08010000 on a transient data queue End of file

CICS 08020000 on a transient data queue File not found

CICS 08080000 on transient data Transient data queue not

open

CICS 12320000 Queue is already in use

EGL Error Codes

The error codes list is sequenced by error code, with the alphabetic error codes (A

to Z) occurring before the numeric error codes (0 to 9). If you specified the

sysCodes=NO build descriptor option, sysVar.errorCode will contain error codes

that are compatible with the Cross System Product codes.

 Table 34. Rational COBOL Runtime Error Codes

Error code Component Probable Cause

Cnn File control/request These error codes do not have an EGL

equivalent I/O error value. Either CICS

returned an IOERR error or VSAM

returned a return code of 12 on file

input/output. The nn is replaced by the

VSAM reason code from the feedback

field. For more information, refer to the

z/OS V1R7 DFSMS Macro Instructions for

Data Sets (SC26-7408) manual.

Fnn File control/request These error codes are CICS EIBRCODES,

other than ILLOGIC, IOERR, and those

that have EGL equivalent I/O error

values. The nn is replaced by the

EIBRCODE (byte 0). For more

information, refer to the application

programming reference for your release of

CICS.

Note: All error codes, other than the ones

that have EGL equivalent I/O error

values, cause the program to end. An

error message is issued to inform you that

the program ended because of a

send/receive error. The error message

includes the error code.

FE1 File Control/request Transient data queue - Queue length and

EGL record length do not match. The

invalidFormat EGL I/O error value is set.

F02 File Control/request Transient data queue - File not found. The

fileNotFound EGL I/O error value is set.

F08 File control/request An attempt was made to gain access to an

extrapartition transient data queue, but

the queue has not been opened yet. Exit

and use CEMT to open the queue.

170 IBM Rational COBOL Runtime Guide for zSeries

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

52 Terminal support You attempted to run an EGL program

from an unsupported device (such as a

3278-52 terminal). This device is not

supported by EGL.

101 Message processing The message was truncated.

102 Contents control The module specified on a LOAD macro

is already in storage.

 File control/request The end of file was reached. The

endOfFile EGL I/O error value is set.

Note: endOfFile is set when a get next is

performed on an empty file.

 Service request An ITEMERR condition was received

from CICS because the maximum number

of records allowed in a temporary storage

queue (32767) was exceeded.

103 File control/request You performed an operation on a record

that has a duplicate key, or a key in the

record for an alternate index is

duplicated. The I/O operation completed,

and the duplicate EGL I/O error value is

set.

104 File control/request The end of file was reached. The

endOfFile EGL I/O error value is set.

115 Service request An EXEC CICS ENQ was not successful.

116 Service request An EXEC CICS DEQ was not successful.

20B Storage allocation Operands that are not valid were

specified on either a GETMAIN or

FREEMAIN macro.

20C Defined data set The data set name specified on an issued

DEFDS command already exists in the

external work file.

 Storage allocation An error occurred while processing a

FREEMAIN macro.

200 Service request An service request was issued that is not

valid. This is a system error. Contact the

IBM Support Center.

201 File open/connect The connection already exists. The

possible cause is a file with the same

name is already in use. The

fileNotAvailable EGL I/O error value is

set.

 Message processing Variables were passed to be built into the

message, but the message contained no

variable fields; or, the message contained

variable fields, and no variables were

passed for them.

201- 206 Service request Service request errors occurred while

processing a DEFDS command. This is a

system error. Contact the IBM Support

Center.

Chapter 22. Common System Error Codes for z/OS Systems 171

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

202 File control/request Record not found. The noRecordFound

EGL I/O error value is set.

 Storage allocation The ORIGIN specified on a FREEMAIN

macro does not match storage already in

use.

203 File control/request The record was not found. The EGL I/O

error value noRecordFound is set.

 Storage allocation Either the ORIGIN specified on a

FREEMAIN macro does not begin on a

doubleword boundary, or 0 LENGTH was

specified on a GETMAIN.

204 Storage allocation An attempt has been made to free storage

that has not been allocated or that has

already been freed.

205 File control/request The record was not found. The

noRecordFound EGL I/O error value is

set.

Note: The noRecordFound EGL I/O error

value is set when a get next or get

previous is preceded by a set record

position on an empty indexed file.

 Storage allocation The LENGTH specified on a FREEMAIN

macro is 0.

206 File control/request You attempted to store a record with a

duplicate key while using an index that

does not allow duplicate keys. The

duplicate EGL I/O error value is set.

207 File control/request The record was not found. The

noRecordFound EGL I/O error value is

set.

208 File control/request An error occurred when you attempted to

connect or write to the log file on CICS. A

possible reason for the error is that no

TDQUEUE entry was found for the log

file.

 Service request The NDSNAME in an ALTDS request is

not valid. This is a system error. Contact

the IBM Support Center.

 Storage allocation The storage specified on a FREEMAIN

macro is already free.

209 Service request The name specified by the NDSNAME on

an ALTDS command already exists in the

external work file. This is a system error.

Contact the IBM Support Center.

210- 211 Service request Miscellaneous errors occurred on an

ALTDS request. This is a system error.

Contact the IBM Support Center.

212 Service request An I/O error occurred while copying data

from the work file to the external work

file during an ALTDS service request.

172 IBM Rational COBOL Runtime Guide for zSeries

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

213 Service request The COPIES operand on a

SUBMIT.PRINT service request is not

valid. This is a system error. Contact the

IBM Support Center.

214 Service request The data set on a SUBMIT.PRINT service

request cannot be found. This is a system

error. Contact the IBM Support Center.

215 File control/request You attempted to store a record with a

duplicate key while using an index that

does not allow duplicate keys. The

duplicate EGL I/O error value is set.

216 File open/connect A connection was attempted to an ESDS

file or transient data queue in direct

mode. The invalidFormat EGL I/O error

value is set.

 Service request The data set specified on a DEFDS

request matches a CONNECT already in

use. This is a system error. Contact the

IBM Support Center.

217 File open/connect An attempt was made to subconnect to a

serial file. Check to see if a called

program is attempting to reference the

same serial file that has been referenced

by the calling program.

 Service request A PRINT error has occurred for one of the

following reasons:

v An error occurred while writing to the

transient data queue on CICS. The most

common errors are QIDERR, IOERR,

LENGERR, and NOSPACE.

v An error occurred while writing to the

EZEPRINT data definition name (DD

name) in z/OS Batch or IMS BMP. A

possible cause is that the printer file

(for example, EZEPRINT) has been

allocated incorrectly or has not been

allocated at all. For example, the data

set allocated for the print output has

the wrong record format (anything

other than VBA) or the wrong record

length (shorter than the print output

line length).

218 Service request The file is not available. The

fileNotAvailable EGL I/O error value is

set.

22A File control/request The available storage space has been

exhausted. Try the operation again. If the

problem persists, contact your system

programmer.

Chapter 22. Common System Error Codes for z/OS Systems 173

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

220 File open/connect A format error occurred. Either the

characteristics of a file are not supported

by EGL, or they are incompatible with the

EGL record definition. The invalidFormat

EGL I/O error value is set. For example, a

serial file is trying to access a member of

a PDS data set, but the JCL for z/OS

Batch or IMS BMP does not specify a

member name

 File control/request The record length for a file is larger than

the maximum record length defined in

the system.

221 Service request An ENQ was not successful while writing

to the transient data queue on CICS. This

is a system error. Contact the IBM

Support Center.

223 Service request The attach of the print subtask was not

successful, or the print subtask abended.

This is a system error. Contact the IBM

Support Center.

225 Service request The print subtask abended. This is a

system error. Contact the IBM Support

Center.

226 File control/request An IO error occurred while reading or

writing from temporary storage on CICS.

This is a system error. Contact the IBM

Support Center.

25A File control/request The data set cannot be extended because

VSAM cannot allocate additional

direct-access storage space. Either not

enough space is left to make the

secondary allocation request, or you

attempted to increase the size of a data

set while processing with SHROPT=4 and

DISP=SHR. The full EGL I/O error value

is set.

251 File open/connect For CICS environments, the file control

table (FCT) entry was not found,

indicating a real file or transient data

queue was not properly defined or

generated. For z/OS batch or IMS BMP

environments, either the DD name has

not been allocated, or the data set for the

dynamic allocation does not exist.

280 File control/request The data set that you are trying to

connect to is already in use. A probable

cause is that your program has a data set

associated with one record variable and

you are trying to use another record

variable with the same data set. You need

to issue a CLOSE on the first record

variable to free the data set before trying

to use it with another record variable.

174 IBM Rational COBOL Runtime Guide for zSeries

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

291- 294 Service request A mapping error occurred.

 Terminal support A mapping error occurred.

380 File control/request A deadlock occurred. One transaction is

attempting to update a record that is

currently locked by another transaction.

The deadlock EGL I/O error value is set.

381 File control/request The control interval for a record is already

held in exclusive control by another

requester. The deadlock EGL I/O error

value is set. For CICS, the returned code

is INVREQ. This is assumed to have

occurred due to one transaction’s attempt

to do two get forUpdate statements to the

same file. If this is not the case, see the

description of INVREQ in the application

programming reference for your release of

CICS.

389 File control/request The resource control block could not be

found to process the request against. This

is a system error. Contact the IBM

Support Center.

399 File control/request You attempted to store a record to a

temporary storage queue with a key that

exceeds 32767. The key is too large for

temporary storage queues, which cannot

have more than 32767 records.

4nn File open/connect For z/OS batch or IMS BMP

environments only, the VSAM GENCB for

an ACB was not successful. The value of

nn is determined from VSAM return

codes. If register 15 contains 4, nn is

replaced by the contents of register 0. If

register 15 does not contain 4 (or 0), v is

replaced by 50 plus the contents of

register 15.

5nn File open/connect For z/OS batch or IMS BMP

environments, an OPEN request is not

successful. For VSAM files in z/OS batch

or IMS BMP environments, a SHOWCB

for the ERROR field is done after the

problem with the OPEN request. The

value of the ERROR field replaces nn. For

non-VSAM sequential files in z/OS Batch

or IMS BMP environments (QSAM), nn is

replaced with a value of 0. For spool files

in a CICS environment, nn is also

replaced with 0.

5A0 File open/connect An attempt was made to open a VSAM

data set for input, but the data set was

empty.

Chapter 22. Common System Error Codes for z/OS Systems 175

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

6nn File open/connect The VSAM GENCB for an RPL was not

successful. For z/OS Batch and IMS BMP

environments, the value of nn is

determined from VSAM return codes. If

register 15 contains 4, nn is replaced by

the contents of register 0. If register 15

does not contain 4 (or 0), nn is replaced

by 50 plus the contents of register 15.

701 File open/connect On CICS Version 2.1 or later, the file

cannot be opened or connected. The error

is not defined in the FCT flags.

702 File open/connect The VSAM SHOWCB or MODCB macro

was not successful. This usually means

that the file is not open.

703 File open/connect The VSAM TESTCB macro was not

successful.

705 File open/connect For CICS only, a connection was

attempted to transient data or a

temporary storage queue, but a VSAM

file has the same name.

706 File open/connect On CICS Version 2.1 or later, the file is

UNENABLED and cannot be opened or

connected.

707 File open/connect On CICS Version 2.1 or later, the file is

DISABLED or DISABLING and cannot be

opened or connected.

708 File open/connect On CICS Version 2.1 or later, the user is

not authorized to have access to the file.

709 File open/connect On CICS Version 2.1 or later, an I/O error

occurred on the SET data set Open

command.

768 File open/connect The OPEN or connection was not

successful due to a GETMAIN error when

requesting storage for control blocks

associated with sequential files.

8nn File control/request These return codes do not have an EGL

equivalent I/O error value. Either CICS

returned an ILLOGIC error, or VSAM

returned a return code of 8 on file

input/output. The nn is replaced with the

VSAM error code. For more information,

see the z/OS V1R7 DFSMS Macro

Instructions for Data Sets (SC26-7408)

manual.

 File open/connect A storage allocation was not successful.

80C Storage allocation There is insufficient storage to satisfy a

GETMAIN request.

802 File open/connect The resource is not associated.

 Storage allocation There is insufficient storage for allocation.

803 Contents control The module specified on a LOAD macro

could not be located.

176 IBM Rational COBOL Runtime Guide for zSeries

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code Component Probable Cause

804 File control/request This return code is received from CICS

and indicates that a QIDERR or ITEMERR

occurred while trying to gain access to a

temporary storage queue.

805 Contents control The module specified on a LOAD macro

is damaged.

 Message processing An unsupported option was specified on

an INFORM macro.

806 Contents control For z/OS Batch or IMS BMP, the module

specified on a LOAD macro could not be

located.

807 Contents control Insufficient storage is available to load the

specified module.

81C File control/request A temporary storage queue is full. The

full EGL I/O error value is set.

987 File control/request For z/OS Batch and IMS BMP, a branch

was made to the SYNAD routine as the

result of a GET to a non-VSAM serial file.

A possible reason is that the file is empty

or the blocking factor is wrong.

988 File control/request For z/OS Batch and IMS BMP, a branch

was made to the SYNAD routine as the

result of a PUT to a non-VSAM serial file.

A possible reason is that the file is empty

or the blocking factor is wrong. For CICS,

a WRITE request to a spool file was not

successful.

989 File control/request An error occurred while trying to close a

file.

999 File control/request An unsupported request was made for a

serial file. A probable cause is that the

EGL record associated with this file was

not defined as a serial record.

Common SQL Codes

After an SQL I/O statement, the SQL code is stored in the sysVar.sqlCode system

variable Only the most frequently occurring SQL codes are listed in this section. If

you receive other SQL codes or if you need a more complete explanation of one of

the SQL codes, refer to the documentation for your release of DB2.

100 No rows were found by SQL that meet the search criteria specified in the

WHERE clause of the SQL statement, or if processing a get next statement

in conjunction with an open or open forUpdate statement, the end of the

selected rows has been reached. The possible causes are the following:

v The key value(s) were not moved correctly to the host variable(s) used

in the WHERE clause.

v No rows meet the search criteria specified in the WHERE clause.

v Rational COBOL stripped trailing blanks for the character host variables

used in a LIKE predicate in the WHERE clause. You can use the

sqlIOTrace=YES build descriptor option to enable tracing of the data

Chapter 22. Common System Error Codes for z/OS Systems 177

sent to SQL and the data coming back from SQL. See Chapter 20,

“Rational COBOL Runtime Trace Facility,” on page 155 for more

information about using theRational COBOL Runtime trace facility.

-301, -302, -303, -304

The EGL data item definition does not match the definition of the same

column in the DB2 table. This can be caused by defining a column as

variable length, but not defining the data item in EGL with a

variable-length SQL code. This can also be caused by specifying a different

length to EGL than what you defined in the DB2 table.

 Make the necessary changes in the EGL data item definition to match the

DB2 table and generate the program again.

-302 For the IMS/VS environment, you might have allocated the DB2 work

database with a 4KB page size instead of the required 32KB page size.

Refer to the Rational COBOL Runtime program directory for information

about installing a DB2 work database.

-805 The DBRM for the current program was not bound as part of the current

DB2 plan. Possible causes are:

v The BIND process was never run for the program.

v An incorrect plan name was specified at startup.

v The plan name specified in the RCT on CICS did not match the plan

name used in the BIND process.

v All programs that run together under a single transaction or job step

must be bound into the same DB2 plan.

Look at the message inserts to see what DB2 returned as the program

name and plan name. If these are what you expect, review the steps used

for preparing the program.

-818 The DB2 precompiler-generated time stamp in the load module is different

from the database request module (DBRM) used on the most recent BIND

for the PLAN being used. The load module and the DBRM from the

precompiler must match and one of them is not from the most recently-run

precompile. This typically happens when the precompile, link-edit, and

bind process is run more than once and either the DBRM library or the

load library used for the load module is changed. This creates the

opportunity to pick up the old load module at run time if the old load

library is first in the search sequence at run time. Alternatively, the BIND

process might be using an old DBRM library that contains an old copy of

that member.

 Ensure that you are running with the most recent copy of the load module

and that you are using the same DBRM library on the precompile and

BIND steps. On CICS ensure that the latest copy of the load module has

been picked up by issuing an CICS NEWCOPY command or by using the

Rational COBOL Runtime new copy utility. On IMS/VS ensure that the

latest copy of the load module has been picked up by recycling the

message region.

-911,-913

A deadlock condition occurred. Possible causes are:

v The isolation level was set for repeatable read.

v There were long periods of time between commit points.

v In EGL, the program issued a get forUpdate statement, but failed to

issue a related replace statement. In VisualAge Generator, the program

issued an UPDATE without a REPLACE.

178 IBM Rational COBOL Runtime Guide for zSeries

Note: The program should be coded to handle these conditions.

-922 Connection authorization was not successful. The type of error is indicated

in the SQL error message. Some typical causes are not granting authority

for the DB2 plan or not creating a synonym for one or more of the DB2

tables.

 Make the necessary changes to provide authorization to the DB2 plan and

then run the program again. You might also want to refer to the

documentation for your release of DB2 for additional causes of the

authorization error.

Common DL/I Status Codes

After a DL/I I/O statement, the DL/I status code is stored in the

dliVar.statusCode system variable. Only the most frequently occurring DL/I status

codes are listed in this section. If you receive other DL/I status codes or if you

need a more complete explanation of one of the DL/I status codes, refer to the IMS

Messages and Codes Volume 1 manual for your release of IMS.

 AD The function parameter on the call is not valid. If the function code is

correct, the status code can be from an I/O or alternate PCB for a database

call. You might have a mismatch between the EGL PSB record definition

and the IMS PSB definition.

AI A data management open error occurred. Either no DD statements were

supplied for logically related databases, or the DD name is not the same as

the name specified on the DATASET statement of the DBD. The segment

name area in the DB PCB has the DD name of the data set that could not

be opened.

AJ The format of one of your SSAs is not valid. Either the SSA contains a

command code for the call that is not valid, or the SSA uses an R, S, W, or

M command code for a segment for which there are no subset pointers

defined in the DBD.

AK An SSA contains either a field name that is not valid or a name that is not

defined in the DBD, or the EGL dliFieldName property for the field in the

DL/I segment record does not match the name defined to DL/I.

AM The call function is not compatible with the processing option in the PCB,

the segment sensitivity, the transaction-code definition, or the program

type.

GA In trying to satisfy an unqualified GN or GNP call, DL/I crossed a

hierarchic boundary into a higher level.

GB In trying to satisfy a GN, DL/I reached the end of the database.

GD The program issued an ISRT that was not qualified for all levels above the

level of the segment being inserted. The segment might have been deleted

by a DLET using a different DB PCB.

GE DL/I is unable to find a segment that satisfies the segment described in a

get call.

GK DL/I has returned a different segment type at the same hierarchic level for

an unqualified GN or GNP.

GP The program issued a GNP when parentage is not established, or the

segment level specified in the GNP is not lower than the level of the

established parent.

Chapter 22. Common System Error Codes for z/OS Systems 179

II The program issued an ISRT that tried to insert a segment that already

exists in the database.

Common VSAM Status Codes

Only the most frequently occurring VSAM codes are listed in this section. If you

receive other VSAM codes or if you need a more complete explanation of one of

these values, refer to the z/OS V1R7 DFSMS Macro Instructions for Data Sets

(SC26-7408) manual.

OPEN request type

Code Meaning

64 Warning message: OPEN encountered an empty alternate index that is part

of an upgrade set.

74 This is a warning message indicating the data set was not properly closed.

Either the implicit verify for the OPEN was unsuccessful, or the user

specified that the implicit verify should not be attempted for the OPEN. A

previous VSAM program might have ended abnormally. The VERIFY

command of Access Method Services can be used to properly close the

data set.

80 The DD statement for this access method control block is either missing or

not valid.

94 Either no record for the data set to be opened was found in the available

catalog or catalogs, or an unidentified error occurred while VSAM was

searching the catalog.

98 Security verification was not successful; the password specified in the

access method control block for a specified level of access does not match

the password in the catalog for that level of access.

A0 The operands specified in the ACB or GENCB macro are inconsistent either

with each other or with the information in the catalog record. You might

have attempted to open an empty data set for input only (get next

statement).

A8 The data set was not available for the type of processing you specified, or

an attempt was made to open a reusable data set with the reset option

while another user had the data set open.

BC The data set indicated by the access method control block is not a valid

type of data set for specification by an access method control block. You

might have used a sequential data set as the physical file, but specified

VSAM or VSAMRS as the file type for resource association when you

generated the program.

C0 An unusable data set was opened for output.

C4 Access to data was requested using an empty path.

CLOSE request type

Code Meaning

04 The data set indicated by the access method control block is already closed.

88 Not enough virtual storage was available in the address space of your

program for the work area required by CLOSE.

180 IBM Rational COBOL Runtime Guide for zSeries

94 An unidentified error occurred while VSAM was searching the catalog.

GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

Note: The following occur when register 15=8(8).

Code Meaning

08 An attempt is made to store a record with a duplicate key, or there

is a duplicate record for an alternate index with the unique key

option.

6C The RECLEN specified was one of the following:

v Larger than the maximum allowed

v Equal to 0

v Smaller than the sum of the length and the displacement of the

key field

v Not equal to the record(slot) size specified for a relative record

data set

70 The KEYLEN specified was too large or equal to 0.

C0 A relative record number that is not valid was encountered.

COBOL Status Key Values

This shows the most frequently occurring COBOL status key values. If you receive

other status key values or if you need a more complete explanation for one of

these values, refer to the application programming language reference for your

release of COBOL.

Status Key Explanation

10 The end of a file was reached.

22 An attempt was made to write a record with a key that duplicated

one that was already in the file.

23 Record not found. This can also be caused by an optional file not

being allocated.

35 No DD statement was included in the JCL. This can occur if the

program calls another program or transfers to another program

using a transfer to program statement, but the DD statements for

the second program have not been added to the sample runtime

JCL for the main program.

39 The physical file that you specified during resource association

does not match the file characteristics that you specified during

record definition. The file characteristics include file organization

(sequential, relative or indexed), the prime record key, the alternate

record keys, and the maximum record size.

44 A variable-length record was written that is not valid. This can

occur if the value in the numElementsItem field for the record is

larger than the maximum value, or the value in the lengthItem

field for the record is larger than the maximum length of the

record.

96 No DD statement was included in the JCL for a VSAM file. This

can occur if the program calls another program or transfers to

another program using a transfer to program statement, but the

Chapter 22. Common System Error Codes for z/OS Systems 181

DD statements for the second program have not been added to the

sample runtime JCL for the main program.

182 IBM Rational COBOL Runtime Guide for zSeries

Chapter 23. Rational COBOL Runtime Return Codes, Abend

Codes, and Exception Codes

The information within this chapter is diagnosis, modification, or tuning

information.

Only the most frequently occurring abend codes are listed in this section. If you

receive other abend codes or if you need a more complete explanation of one of

the codes, refer to the z/OS messages and codes manual for your release of z/OS.

Return Codes

This section contains a listing of codes set by Rational COBOL Runtime and

returned in the COBOL return code of a program.

If a generated program completes normally, the COBOL return code is set to the

value in the sysVar.returnCode. This code must be less than or equal to 512.

Return codes greater than 512 are reserved for Rational COBOL Runtime. The

return codes set by Rational COBOL Runtime are:

693 The program ended due to an error detected by Rational COBOL Runtime.

The error description is reported as described in Chapter 18, “Diagnosing

Problems for Rational COBOL Runtime on z/OS Systems.”

4093 A program generated using EGL ended due to an error detected

byRational COBOL Runtime.

If LE detects an error and returns to the operating system, the LE return code

modifier (2000 - error, 3000 - severe error, or 4000 - critical error) is added to the

user or Rational COBOL Runtime return code.

ABEND Codes

Rational COBOL Runtime reports errors by error messages whenever possible.

Abend codes are issued only in situations where initialization has not progressed

to the point where messages can be issued or when the error messages cannot be

written to their normal destination.

CICS Environments

For CICS, you can control whether or not a core dump is taken by using the

diagnostic controller utility. If a core dump is taken, the dump code is ELAD. See

“Controlling Error Reporting in CICS” on page 140 for information on the

diagnostic controller utility.

ELA1 This abend code should never be received. However, if register 1 in a

dump contains ″ELA1″, then a database manager or subsystem interface

module, such as ASMTDLI for DL/I access, was not linked with a Rational

COBOL Runtime program at product installation. Registers 3 and 4 in the

dump usually contain the name of the stub program. The load module

where the abend occurred is the module that was not linked correctly.

 Refer to the Program Directory for Rational COBOL Runtime for zSeries for

information on correctly linking the abending load module.

© Copyright IBM Corp. 1994, 2006 183

ELA2 The Task Work Area (TWA) does not exist or is not long enough to be used

by Rational COBOL Runtime. The TWA length must be greater than or

equal to the sum of 1024 plus the twaOffset (TWA offset) build descriptor

option specified when the initial program in the transaction was generated.

 Use the TWASIZE parameter in the transaction definition to define a TWA

with an adequate length for the transaction.

ELA3 Load for module ELARSCNT was not successful. Rational COBOL

Runtime has not been installed correctly.

 Ensure the CICS region can gain access to the Rational COBOL Runtime

library and that module ELARSCNT is defined in the program definition.

ELA4 Load for module ELARPRTX was not successful. Rational COBOL Runtime

has not been installed correctly.

 Ensure the CICS region can gain access to the Rational COBOL Runtime

library and that module ELARPRTRX is defined in the program definition.

ELA5 Load for module ELARPRTC was not successful. Rational COBOL Runtime

has not been installed correctly.

 Ensure the CICS region can gain access to the Rational COBOL Runtime

library and that module ELARPRTC is defined in the program definition.

ELA6 The dynamic storage stack used for working storage for Rational COBOL

Runtime modules was exhausted and Rational COBOL Runtime could not

continue.

 This problem should not occur. Report the problem to the IBM support

center.

ELA7 A GETMAIN was not successful. There was not enough storage for the

program to complete.

 Try the program again when the region is less busy or try it again in a

larger region.

ELA9 Load or link for a Rational COBOL Runtime module was not successful.

Rational COBOL Runtime has not been installed correctly. Use CEDF to

determine the module name. Look for a PGMIDERR on a CICS LOAD or

CICS LINK command.

 Ensure that the CICS region can gain access to the Rational COBOL

Runtime library and the module name being loaded is defined in the

program definitions.

ELAB A call was made to a main program, which is not allowed or a non-EGL

program was transferred to with a transfer to program statement and the

externallyDefined option was not specified either on the transfer to

program statement or as the linktype option in the transfer to program

entry in the linkage table part.

ELAC Rational COBOL Runtime has detected a FREEMAIN request that is not

valid. Collect the dump and contact the IBM Support Center for assistance.

ELAE A generated program has ended because of a serious error. This occurs for

one of the following reasons:

v Storage has been corrupted so that a dump is necessary to debug the

abend.

v Error handling was unable to write messages to the error destination

queue or to the user at the terminal. The dump is necessary to make the

184 IBM Rational COBOL Runtime Guide for zSeries

diagnostic information available. The situation can occur if the error

destination queue specified for the transaction using the diagnostic

controller utility is not defined to CICS. In CICS, if the error destination

queue is defined as an intrapartition queue, this situation occurs when

there is no more space on the intrapartition queue and the error

messages cannot be written.

v A severe error has occurred. Refer to the error destination queue for the

corresponding error messages. The default name is ELAD. The queue

name can be changed using the diagnostic controller utility.

See “Rational COBOL Runtime ABEND Dumps” on page 151 for

information on how to find error messages in the dump on an ELAE

abend.

ELAF ELATSRST has detected one of the following errors:

v ELATSRST was not initiated with a CICS XCTL command (for example,

the restart transaction ID was associated directly to ELATSRST).

v The COMMAREA length on entry was not 0 or 10.

v The Rational COBOL Runtime portion of the TWA had been initialized,

indicating that a converse was not in process or the non-EGL program

uses the TWA and the EGL program was not generated with the proper

TWA offset.

v Information in the COMMAREA was not valid, indicating that a

converse statement was not in process.

v Information in the COMMAREA indicates that ELATSRST was started

with a show statement or during the inputForm processing for the

program.

ELAW A program and its associated form groups or a form group and its

associated tables were generated using incompatible versions of COBOL

generators. For example, the form group might have been generated by

Cross System Product and the program generated by EGL.

ELAX An exception has been detected, or thrown by the user, in part of the CICS

EGL application or by a subsequently called application, that has not been

handled by an EGL languagetry ... onException block. As this unhandled

exception has made its way back to the main EGL program without being

handled, a CICS abend of ELAX is issued. To determine the cause of this

unhandled exception, the easiest way is to look in the ELAD queue under

CICS by using these two commands: CEBR, and then as a reponse to the

CEBR transaction, enter: GET ELAD. This will display the messages in the

ELAD queue. These messages are ordered chronologically, so look near or

at the bottom of the queue. There will be error messages about the type of

exception, the program it was in, and the line number where it occurred.

Alternatively, if the EGL statementTrace build descriptor option is set to

YES, then the statement trace spool file will also show where the exception

was thrown.

IMS, IMS BMP, and z/OS Batch Environments

1600 A generated program has ended because of a serious error. This occurs for

one of the following reasons:

v Storage has been corrupted so that a dump is necessary to debug the

abend.

v Error handling was unable to write messages to the error destination

queue or to the user at the terminal. The dump is necessary to make the

Chapter 23. Rational COBOL Runtime Return Codes, Abend Codes, and Exception Codes 185

diagnostic information available. In IMS, the situation can occur if the

error destination queue specified using the errorDestination build

descriptor option is not defined to IMS.

v A severe error has occurred. In IMS, refer to the error destination queue

specified using the errorDestination build descriptor option for the

corresponding error messages. In z/OS Batch, refer to the data set

ELAPRINT for the messages.

See “Rational COBOL Runtime ABEND Dumps” on page 151 for

information on how to find error messages in the dump on a 1600 abend.

1601 A database manager or subsystem interface module (for example,

ASMTDLI for DL/I access) was not linked with a Rational COBOL

Runtime program at product installation. Registers 3 and 4 in the dump

contain the name of the stub program. The abending load module is the

module that was not linked correctly.

 Refer to the Program Directory for Rational COBOL Runtime for zSeries for

information on correctly linking the abending load module.

1602 A program generated with the imsFastPath=YES build descriptor option

ended because of a run unit error. The abend is issued to prevent any

further scheduling of the program in error.

 See “Rational COBOL Runtime ABEND Dumps” on page 151 for

information on how to find error messages in the dump on a 1602 abend.

Depending on the build descriptor options specified for the program, the

message might also have been written to an error diagnostic message

queue, to the IMS log, or to an ELAPRINT file. See Chapter 18,

“Diagnosing Problems for Rational COBOL Runtime on z/OS Systems” for

more information on Rational COBOL Runtime error reporting.

1606 The dynamic storage stack used for working storage for Rational COBOL

Runtime modules was exhausted and Rational COBOL Runtime could not

continue.

 This problem should not occur. Report the problem to the IBM Support

Center.

1608 Rational COBOL Runtime has detected a FREEMAIN request that is not

valid. Collect the dump and contact the IBM Support Center for assistance.

Exception Codes

The following exception codes are issued by the Rational COBOL Runtime:

9990 File I/O exception

9992 SQL exception

9993 Service invocation exception

9994 Service binding exception

9996 Invocation exception

9997 Null value exception

9998 Index out of bounds exception

9999 Type cast exception

186 IBM Rational COBOL Runtime Guide for zSeries

Chapter 24. Codes from Other Products for z/OS Systems

The chapter contains lists of common system abend codes, COBOL runtime

messages, LE abend codes, and common runtime messages and abend codes from

IMS and CICS

Common System Abend Codes for All Environments

Only the most frequently occurring abend codes are listed in this section. If you

receive another abend code or if you need a more complete explanation of one of

the abend codes, refer to the System Codes manual for your release of z/OS.

System 0C4 This code can occur on a transfer to program statement if there is

a print services or table program with the same name as the

transferred-to program. This code can also occur when a print

services or table program is called but there is a different program

(for example, a non-EGL program or an EGL program) with the

same name. Using naming conventions can eliminate this problem.

 This code can also occur if you add the validatorDataTable

property to a form in a form group that is shared by multiple

programs and do not generate all the programs again.

System 0C7 Data exception. The abend occurs when fields defined as NUM,

NUMC. DECIMAL, or PACF are retrieved from a database or file

and are found to contain data of a different format.

 The abend can also occur if fields that are not initialized are used

in calculations or comparisons. This happens if the program

attempts to read a record from a database and the record is not

found, but the program uses fields in the record anyway. To ensure

that records are initialized, use a set record empty statement in the

program or specify initAdditionalWS and initIORecords as build

descriptor options. Refer to the EGL online help system for

additional information on how to initialize records.

The abend can also occur when set record empty is used or when

initAdditionalWS and initIORecords are used if one of the

following is true:

v There are redefined records with different data types or variable

field boundary alignments from the original record.

v The primary working storage record receives a transferred

record that contains different data types or variable-field

boundary alignments from the original record.

For initialization problems with NUM and NUMC fields, you

might be able to use the spacesZero=″YES″ build descriptor option

to help minimize the problem. However, be sure to consider the

performance implications first.

System 806 Module not found in a library. This can occur if a new version of a

module is put into a load library and is placed in secondary

extents. To avoid this when you allocate load libraries, specify a

large primary allocation and 0 for the secondary allocation. This

insures that if there is enough space for the load module it will be

placed in the primary extent. If there is not enough space, there

© Copyright IBM Corp. 1994, 2006 187

will be an abend (for example, a B37 abend for insufficient space)

when you link the module into the load library. Using this

technique detects the space problem during the preparation step

rather than at run time.

 In IMS, this can occur if a program transfers to another program

using a transfer to transaction statement and the transaction named

on the statement is defined in the IMS system definition, but the

load module for the program is not in a library available to the

IMS message region.

In other environments, this can occur if the module is not in a

library defined in your link list, JOBLIB, or STEPLIB concatenation

sequence.

If the missing module name is ELACxxx, the NLS language code

identified by the last 3 characters of the module name is not

installed on the system. This language code was specified with the

targetNLS build descriptor option when the program was

generated.

If you try to run an EGL-generated program under Rational

COBOL Runtime and cannot load the module ELARSCNT, the

system abends with an 806.

LE Runtime Messages

Only the most frequently occurring LE runtime messages are listed in this section.

If you receive other runtime messages that start with IGZ or if you need a more

complete explanation of one of the messages, refer to the debugging manual for

your release of LE.

IGZ0033S An attempt was made to pass a

parameter address above 16 megabytes

to AMODE(24) program program-name.

Explanation: An attempt was made to pass a

parameter located above the 16-megabyte storage line

to a program in AMODE(24). The called program will

not be able to address the parameter.

Programmer response: If the calling program is

compiled with the RENT option, the DATA(24) option

may be used in the calling program to make sure that

its data is located in storage accessible to an

AMODE(24) program. If the calling program is

compiled with the NORENT option, the RMODE(24)

option may be used in the calling program to make

sure that its data is located in storage accessible to an

AMODE(24) program. Verify that no linkedit, binder or

genmod overrides are responsible for this error.

System action: The program was terminated

IGZ0064S A recursive call to active program

program-name in compilation unit

compilation-unit was attempted.

Explanation: COBOL does not allow reinvocation of

an internal program which has begun execution, but

has not yet terminated. For example, if internal

programs A and B are siblings of a containing program,

and A calls B and B calls A, this message will be

issued.

Programmer response: Examine your program to

eliminate calls to active internal programs.

System action: The program was terminated.

IGZ0066S The length of external data record

data-record in program program-name

did not match the existing length of the

record.

Explanation: While processing External data records

during program initialization, it was determined that

an External data record was previously defined in

another program in the run unit, and the length of the

record as specified in the current program was not the

same as the previously defined length.

Programmer response: Examine the current file and

ensure the External data records are specified correctly.

System action: The program was terminated.

188 IBM Rational COBOL Runtime Guide for zSeries

IGZ0075S Inconsistencies were found in

EXTERNAL file file-name in program

program-name. The following file

attributes did not match those of the

established external file: attribute-1

attribute-2 attribute-3 attribute-4

attribute-5 attribute-6 attribute-7

Explanation: One or more attributes of an external file

did not match between two programs that defined it.

Programmer response: Correct the external file. For a

summary of file attributes which must match between

definitions of the same external file, see IBM COBOL

Language Reference.

System action: The program was terminated.

Common COBOL Abend Codes

Only the most frequently occurring abend codes are listed in this section. If you

receive another abend code or if you need a more complete explanation of one of

the messages, refer to the debugging manual for your release of LE.

User 4087 This is an LE abend code. If reason code is 7, the error could be

due to the region size not being large enough to run the COBOL

program.

Common IMS Runtime Messages

Only the most frequently occurring IMS runtime messages are listed in this section.

If you receive another runtime message that starts with DFS or if you need a more

complete explanation of one of the messages, refer to the IMS messages and codes

manual for your release of IMS.

DFS057I REQUESTED BLOCK NOT

AVAILABLE: blockname RC = reason

code

Explanation: The blockname is either the MOD or the

DOF name. If it is the DOF name, the first 2 bytes of

the name are the device type and features printed in

hexadecimal. Refer to the message format services

manual for your release of IMS for an interpretation of

these 2 bytes. If it is a MOD name, it will be the name

of a form group.

User response: If a DOF name was specified, review

the values you specified for the mfsDevice,

mfsExtendedAttr, and mfsIgnore build descriptor

options, and compare them to the IMS system

definition for the terminal that had the problem.

 If a MOD name was specified, ensure that you installed

the MFS control blocks into the correct library. If you

specified the mfsUseTestLibrary=YES build descriptor

option, ensure that you used the /TEST MFS

command. If you specified mfsUseTestLibrary=NO,

ensure that your system administrator has run the IMS

online change utility to copy in the new format

definitions.

DFS064 NO SUCH TRANSACTION CODE

Explanation: This message is sent to a terminal when

the transaction code requested by the user is not

defined to IMS. An example of a situation that results

in this message is when a program does ashow

statement to transfer to a transaction that is not defined

to IMS. The form specified in the show statement is

written to the terminal, but when the user enters data,

the transferred-to transaction cannot be scheduled

because it is not defined to IMS.

User response: Either ensure the transaction code is

defined to IMS or change the show statement in the

transferring program to reference the correct IMS

transaction code.

DFS182 INVALID OR MISSING PARAMETER

Explanation: An IMS reserved word (for example,

LTERM) was used as a form name in a /FORMAT

command.

User response: If you need to use the /FORMAT

command to display this form, you need to change the

form name and generate the form group and any

programs that use this form again.

DFS555I TRAN tttttttt ABEND S000,Uaaaa; MSG

IN PROCESS: (up to 78 bytes of data)

time stamp

Explanation: This message indicates that the

transaction running in IMS has ended abnormally.

Typical abend codes are shown below:

0778 IMS user abend, indicating that a ROLL

request was issued.

1602 Rational COBOL Runtime abend because a

rununit error occurred in a program that was

generated with the imsFastPath=YES build

descriptor option .

Chapter 24. Codes from Other Products for z/OS Systems 189

1600 Rational COBOL Runtime abend because an

unrecoverable error occurred in situations

other than rununit errors for programs

generated with imsFastPath=YES.

User response: Press the PA1 or PA2 key to display

the error form that contains the error diagnostics that

describe the error.

DFS2082 RESPONSE MODE TRAN

TERMINATED WITHOUT REPLY

Explanation: Rational COBOL Runtime has ended the

logical unit of work for a program that was generated

with the imsFastPath=″YES″ build descriptor option.

User response: Press the PA1 key to display the error

form that contains the error diagnostics that describe

the error.

DFS2766I PROCESS FAILED

Explanation: IMS issues this message if Rational

COBOL Runtime ends the run unit for a transaction

program that was generated with imsFastPath=″YES″

and run in an IMS fast-path region.

User response: Press the PA1 or PA2 key to display

the error form that contains error diagnostics that

describe the error. See Chapter 18, “Diagnosing

Problems for Rational COBOL Runtime on z/OS

Systems” for additional information.

(none) Logged off IMS and returned to the

VTAM sign-on screen without any

warning or error message being

displayed.

Explanation: One of the following might have

occurred:

v The program attempted to display a form with DBCS

or mixed data on a non-DBCS terminal or printer.

v The values specified for the mfsDevice,

mfsExtendedAttr, and mfsIgnore build descriptor

options do not match the IMS system definition for

the terminal that had the problem.

User response: Correct the program or build

descriptor options, generate the program and form

group again, and then run the program again.

Common IMS Runtime Abend Codes

Only the most frequently occurring IMS abend codes are listed in this section. If

you receive another abend code or if you need a more complete explanation of one

of the abend codes, refer to the messages and codes manual for your release of

IMS.

IMS 259 A program has been compiled with the DATA(31) compile option

and is being run in a non-IMS/ESA environment. The program

should be recompiled with the DATA(24) compile option.

IMS 462 A program was scheduled in a message region, but the program

ended without successfully issuing a get unique for an input

message. This can occur if Rational COBOL Runtime detects an

error that would prevent the program from processing properly.

Examples of these errors are:

v The IMS PSB does not match the EGL PSB record definition.

v The print services program is missing.

IMS 778 A ROLL call has been issued by Rational COBOL Runtime because

of a run unit error or a catastrophic error in the IMS/VS

environment. The ROLL is issued to prevent further scheduling of

the program in error. IMS displays message DFS555I indicating

that abend 778 has occurred. The Rational COBOL Runtime error

message panel can be displayed by pressing PA1.

 Based on your build descriptor options and the JCL for your

message region, additional diagnostic information might be

provided on an error diagnostic message queue, in the IMS log, or

in ELAPRINT. See “Controlling Error Reporting in IMS

Environments” on page 140 for additional information.

Note: Press PA2 if PA1 does not cause the Rational COBOL

Runtime error form to display.

190 IBM Rational COBOL Runtime Guide for zSeries

IMS 1008 A program that was running as a BMP and that obtained access to

fast-path databases did not issue a SYNC or CHKP call at the end

of the job step. You can force the CHKP call to occur by:

v Using the sysLib.commit() system function in a batch-oriented

BMP

v Ensuring that the transaction-oriented BMP ends with an

endOfFile (QC status) for the file being used for input from the

IMS message queue

IMS 3042 Access to DB2 cannot be obtained. Possible causes of this are:

v The terminal ID is not defined to DB2.

v The DB2 plan is not valid or access to the DB2 plan cannot be

obtained.

If the program was being run as a BMP, see Figure 23 on page 115

for sample JCL.

Common CICS Runtime Messages

Only the most frequently occurring CICS runtime messages are listed in this

section. If you receive another CICS runtime message that starts with DFH or if

you need a more complete explanation of one of the messages, refer to the CICS

messages and codes manual for your release of CICS.

DFHAC2016 date time applied Transaction tranid

cannot run because program

program-name is not available.

Explanation: The transaction tranid cannot be run

because the initial program for the transaction is not

available. This could occur because the transaction is

defined, but the program is not defined or is not in a

library in the DFHRPL concatenation.

User response: Have your system administrator check

the RDO PROGRAM entries. Be sure the program is in

a library in the DFHRPL concatenation.

DFHAC2206 time applied Transaction tranid has

failed with abend abcode. Resource

backout was successful.

Explanation: The transaction tranid has ended

abnormally with abend code abcode. abcode is either

an CICS transaction abend code or a user abend code.

User response: If the user abend code starts with

ELA, see “CICS Environments” on page 183. If it is an

CICS abend code, see “Common CICS Abend Codes”

to see if it is included there. If not, refer to the CICS

messages and codes manual for your release of CICS.

Common CICS Abend Codes

Only the most frequently occurring CICS abend codes are listed in this section. If

you receive another CICS abend or if you need a more complete explanation of

one of the abend codes, refer to the CICS messages and codes manual for your

release of CICS.

Depending on your diagnostic control options, information might be available on

an error destination queue or in an CICS journal. For more information, see

“Controlling Error Reporting in CICS” on page 140.

ADCA An error occurred while processing a DL/I request. In addition to

looking for the information provided by CICS, look for messages

or abends from DL/I.

ADLD A program isolation deadlock occurred and a transaction was

selected for an abend. For information on using the

dliVar.cicsRestart system variable for information on designing

restartable transactions, refer to the EGL Language Reference.

AEY9 Access to DB2 cannot be obtained. This occurs if DB2 is not

running.

Chapter 24. Codes from Other Products for z/OS Systems 191

AFCY A transaction was purged when a deadlock occurred because a file

is defined with LSRPOOLID not equal to NONE in the FCT, and

one function within a program has performed a get next against a

file and another function requested an update or add to the same

file (or its alternate index) without ending the get next. Change the

LSRPOOLID to NONE, or change the program design to end the

get next before the update or add is requested.

APCT A requested module cannot be located in the program definitions

or in the program library.

ASRA A program check occurred. Some of the reasons this can occur for

an EGL program are as follows:

v Incorrectly linked Rational COBOL Runtime modules.

If register 1 contains ELA1, see the information for ELA1 in

“CICS Environments” on page 183.

v Data not initialized or data initialized to incorrect values.

If the error occurred as a result of a data exception, see the

explanation for ″System 0C7″ in “Common System Abend Codes

for All Environments” on page 187.

ATDD The program attempted to process a transient data queue that is

disabled. This can occur for a program file associated with a

transient data queue or for the transient data queue used for error

diagnostic information.

AXFQ The most common cause is the result of INBFMH not being

specified equal to ALL in the profile associated with the CICS

mirror program (CPMI).

Note: CICS users that receive abend codes ADLD, ADCP, AKCT, or D106 might

see four question marks in place of the CICS abend code for the resulting

Rational COBOL Runtime message. The CSMT console log contains the true

CICS abend code that was issued.

COBOL Abends under CICS

1009 A program has a dynamic storage requirement greater than 64KB, but was

compiled with the DATA(24) compiler option. Compile the module again

with the DATA(31) compiler option.

1029 Either a PPT entry for a program attached through a COBOL dynamic call

is not found or the module being invoked cannot be found in the CICS

region program library search string. Additional information can be

retrieved by entering transaction CEBR on the terminal where the error

occurred.

192 IBM Rational COBOL Runtime Guide for zSeries

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2006 193

194 IBM Rational COBOL Runtime Guide for zSeries

Appendix. Rational COBOL Runtime Messages

This section describes a series of messages that are given by Rational COBOL

Runtime.

Message Format

Each message consists of a message identifier (for example, ELA00023P) and

message text. The text is a short phrase or sentence describing the error condition.

The message identifier consists of three fields: prefix, message number, and type

code. The format of the message identifier is xxxnnnnnt, where:

xxx Message prefix, as follows:

ELA These runtime messages can occur when your program stops, ends

with an error, or requires special attention.

FZE These runtime messages can occur when using the installation and

print utilities FZEZREBO and FZETPRT that are provided with

Rational COBOL Runtime

PRM These messages can occur when you are using the parameter

group utility.

nnnn Message number associated with the error condition that caused the

message to be displayed.

t Type code, as follows:

I Information

Indicates a minor error, such as a move from a field that is not

initialized, or provides you with general information about the

process you are working on. Processing continues

A Action

Indicates that you must take some specific action before the

process can continue (for example, a YES or NO response might be

required). Processing continues after you complete the required

action.

P Problem Determination

Indicates that a problem condition exists that requires diagnosis.

Processing ends when this type of message is issued. If the

problem determination message text includes a return code, see

Chapter 22, “Common System Error Codes for z/OS Systems,” on

page 167 for an explanation of the return code:

S System Action

Indicates that a system error occurred requiring you to take some

action. These messages appear in English.

The message text might contain one or more inserts. When the message is

displayed an insert is used to fill in names, constants, return codes, and so forth.

The format of the message insert is %xxyzz, where:

xx Number of the insert

y C, D, or X. These letters represent the following:

© Copyright IBM Corp. 1994, 2006 195

C Characters (usually a name)

D Decimal numbers (usually a length, record count, or error count)

X Hexadecimal numbers (usually a return code)

zz Length of the insert

In this manual you see messages listed like this:

ELA00023P Call to data-table program %01C07 was not successful

If you receive this message on your system, the insert is automatically converted.

For example, if there is a problem with table program TABLNAM, the error is

displayed on your system like this:

ELA00023P Call to data-table program TABLNAM was not successful

TABLNAM is the first insert of the message (%01) and is in character format (C)

and is seven characters long (7).

ELA Messages

ELA00002P IBM Rational COBOL Runtime is

required for program %01C08

Explanation: The generated COBOL program is not

compatible with the installed version of Rational

COBOL Runtime.

 Rational COBOL Runtime ends the program with a

user abend.

User response: Contact the system administrator.

Rational COBOL Runtime should be installed.

ELA00003P PCB %01D03 DL/I error, function =

%02C04, status code = %03C02

Explanation: The program control logic attempted a

DL/I call to a teleprocessing PCB and received an error

status code from IMS on the call. The message specifies

the PCB that was used on the call (0 is the I/O PCB, 1

is the modifiable alternate PCB, and 2 is the express

modifiable alternate PCB). The message also specifies

the function code and the status code. For ISRT calls,

the message is accompanied by message ELA00066I,

which displays the first 255 bytes of the DL/I I/O area.

 The run unit ends. If the ELASNAP data set is

allocated, Rational COBOL Runtime issues a SNAP

dump for all status codes other than AI.

User response: Look up the status code in the IMS

messages and codes documentation for your system.

ELA00005A Date entered is not valid for defined

date format %01C10

Explanation: Data entered into a form field defined

with a dateFormat property either does not meet the

requirements of the format specification, or the month

or day of the month is not valid.

It is not necessary to enter the separator characters

shown in the message, but if they are omitted, enter

leading zeros. For example, if the date format is

MM/DD/YY, you can enter 070491.

User response: Enter the date in the format shown in

the message.

ELA00007P File OPEN error on file %01C08, file

status = %02C08

Explanation: The specified file did not open

successfully.

 The format of the file status depends on the file type.

 For SEQ files, the file status is the 2-character COBOL

status code followed by six zeros.

 For VSAM files, the file status is composed of the

2-character COBOL status code followed by the VSAM

return code (two characters), VSAM function code (one

character), and the VSAM feedback code (three

characters). The VSAM codes could be blank if the file

OPEN was not completed.

 For VSAMRS files, the file status is composed of the

2-character ACB (access control block) return code in

hexadecimal format followed by six zeros.

 The run unit ends.

User response: First see the tables of common COBOL

and VSAM status codes in the Chapter 22, “Common

System Error Codes for z/OS Systems,” on page 167. If

the codes in the message are not listed in the tables,

refer to the COBOL programming language reference

and VSAM administration guide for your system for a

definition of other file status and VSAM codes. Also

look for system error messages pertaining to the

specified DD name or DLBL name. Correct the error

and run the program again.

196 IBM Rational COBOL Runtime Guide for zSeries

ELA00008P File CLOSE error on file %01C08, file

status = %02C08

Explanation: The specified file did not close

successfully, and the run unit ends.

 The format of the file status depends on the file type.

 For SEQ files, the file status is the 2-character COBOL

status code followed by six zeros.

 For VSAM files, the file status is composed of the

2-character COBOL status code followed by the VSAM

return code (two characters), VSAM function code (one

character), and the VSAM feedback code (three

characters).

 For VSAMRS files, the file status is composed of the

2-character ACB (access control block) return code in

hexadecimal format followed by six zeros.

 The run unit ends.

User response: First see the table of common COBOL

and VSAM status codes in the Chapter 22, “Common

System Error Codes for z/OS Systems,” on page 167. If

the codes in the message are not listed in the table,

refer to the COBOL programming language reference

and VSAM administration guide for your system for a

definition of other file status and VSAM codes. Also

look for system error messages pertaining to the DD

name. Correct the error and run the program again.

ELA00009P Overflow occurred because the target

item is too short

Explanation: The target of a move or arithmetic

assignment statement is not large enough to hold the

result without truncating significant digits. If the

program logic does not handle the overflow exception

that occurred, then the program ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, the Rational COBOL

Runtime issues a SNAP dump if the ELASNAP data set

is allocated.

User response: Have the application developer do one

of the following:

v Increase the number of significant digits in the target

data item

v If the program specifies the property

V60ExceptionCompatibility=YES, define the

program logic to handle the overflow condition by

using sysVar.handleOverflow and

sysVar.overflowIndicator.

v If the program specifies (or defaults to) the property

V60ExceptionCompatibility=NO, define the program

logic to include a try ... onException block that can

catch overflow exceptions.

ELA00014P A replace was attempted without a

preceding get for update on %01C18

Explanation: A replace was attempted for a record

that has not been successfully read by a get forUpdate

or an open forUpdate statement. The read for update

might have been lost as the result of a commit or

rollback or as the result of a converse statement in a

segmented program.

 The run unit ends.

User response: Ensure that the replace statement and

the corresponding get forUpdate or open forUpdate

correctly use the same record variable name or

resultSetID.

 Also make sure that the sequence of statements is

appropriate. To step through the program, you can use

the EGL debugger or (for CICS-based programs) CEDF.

ELA00015P READ/WRITE error for file %01C08, file

status = %02C08

Explanation: An I/O operation was not successful for

the specified file. Program processing ends on any

nonzero status code if the I/O statement is not in a try

block; and ends on a hard error if the I/O statement is

in a try block when vgVar.handleHardIOErrors is set

to 0.

 The format of the file status depends on the file type.

 For SEQ files, the file status is the 2-character COBOL

status code followed by six zeros.

 For VSAM files, the file status is composed of the

2-character COBOL status code followed by the VSAM

return code (two characters), VSAM function code (one

character), and the VSAM feedback code (three

characters).

 The run unit ends.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: First see the tables of common COBOL

and VSAM status codes in the Chapter 22, “Common

System Error Codes for z/OS Systems,” on page 167. If

the codes in the message are not listed in the table,

refer to the COBOL programming language reference

and VSAM administration guide for your system for a

definition of the other file status and VSAM codes. Also

look for system error messages pertaining to the

specified DD name. Correct the error and run the

program again.

ELA00016P %01C08 error for file %02C08, %03C44,

file status = %04C08

Explanation: An I/O operation was not successful for

the specified file. Program processing ends on any

nonzero status code if the I/O statement is not in a try

Appendix. Rational COBOL Runtime Messages 197

block; and ends on a hard error if the I/O statement is

in a try block when vgVar.handleHardIOErrors is set

to 0.

 The message identifies the VSAM operation that was

not successful, the EGL file name associated with the

record, the system resource name, and the file status.

The file status is composed of two zeros followed by

the VSAM return code (two characters), VSAM function

code (one character), and the VSAM feedback code

(three characters).

 The run unit ends.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: First see the tables of common VSAM

status codes in the Chapter 22, “Common System Error

Codes for z/OS Systems,” on page 167. If the codes in

the messages are not listed in the tables, refer to the

VSAM administration guide for your system for a

definition of other VSAM codes. Also look for system

error messages pertaining to the specified system

resource. Correct the error and run the program again.

ELA00021I An error occurred in program %01C08

on statement number %02D06

Explanation: An error occurred in the specified

program on the specified statement. The actual error

that occurred is identified in the messages following

this message.

User response: Refer to a listing of the program,

correct the statement, and generate the program again.

ELA00022P Form group format module %01C08

could not be loaded

Explanation: The specified form group format module

could not be loaded. The module is a generated object

module linked as a program that contains tables that

describe the format and constant fields for text forms in

a form group. The module name is the form group

alias (or a variation to conform with length and

character restrictions) followed by the characters FM.

 If the format module name uses the format ELAxxxFM,

where xxx is the language code, the definitions for the

Rational COBOL Runtime error forms could not be

loaded.

 The run unit ends.

User response: Make sure that the specified program

was generated, compiled, and linked into a library

defined in the library search order.

 For z/OS CICS, the search order includes the DFHRPL

data sets, and you should verify that the program has

been defined to the system.

 For IMS/VS environments, the search order includes

the STEPLIB and JOBLIB data sets

ELA00023P Call to data-table program %01C08 was

not successful

Explanation: A dynamic COBOL call to the specified

data-table program was not successful. The run unit

ends.

User response: Make sure that the specified program

was generated, compiled, and linked into a library

defined in the library search order.

 For z/OS CICS, the search order includes the DFHRPL

data sets. Verify that the program has been defined to

the system. Also ensure that the program was

generated with the data=″31″ build descriptor option.

 For IMS/VS, IMS BMP, or z/OS batch, the search order

includes the STEPLIB and JOBLIB data sets.

 If the program named in the messages is ELACxxx or

ELAYYNx (wherexxx and x are the NLS identifiers),

verify that the customization JCL in job ELACJ xxx has

been run. Also verify that the appropriate language

(indicated by xxx or x) has been installed.

ELA00024P Conversion table %01C08 could not be

loaded

Explanation: Either the specified conversion table

program could not be loaded or the program that was

loaded is not a Rational COBOL Runtime conversion

table.

 The run unit ends.

User response: Verify that the correct conversion table

name was specified in the generation-time linkage

options part; that a correct conversion table has been

moved into the system variable

sysVar.callConversionTable at run time; or that a

correct conversion table has been specified when using

the sysLib.convert() system function. For more

information, see "callConversionTable" in the EGL

online help system.

 If the conversion table was properly specified in the

program, make sure that the table program was

generated, compiled, and linked into a library defined

in the library search order.

 For z/OS CICS, the search order includes the DFHRPL

data sets. Verify that the program has been defined to

the system. Also ensure that the program was

generated with the data=″31″ build descriptor option.

 For IMS/VS, IMS BMP, or z/OS batch, the search order

includes the STEPLIB and JOBLIB data sets.

 If the conversion table program is defined in the load

library, verify that the program is using either a

conversion table shipped with Rational COBOL

Runtime or a table created using the conversion table

format.

198 IBM Rational COBOL Runtime Guide for zSeries

ELA00026P A calculation caused a maximum-value

overflow

Explanation: The maximum value is based on the

definition of the target variable, which can be up to

either 18 or 31 significant digits based on the value of

the maxNumericDigits build descriptor option.

Maximum value overflow also occurs when division by

zero occurs. This error can only occur when you set the

checkNumericOverflow build descriptor option to YES.

If the program logic does not handle the overflow

exception that occurred, then the program ends.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Correct the program logic in one of the

following ways:

v Increase the number of significant digits in the target

data item

v If the program sets the V60ExceptionCompatibility

property to yes, define the program logic to handle

the overflow condition by using

VGVar.handleOverflow and

sysVar.overflowIndicator.

v If the program sets (or defaults) the

V60ExceptionCompatibility property to NO, define

the program logic to include a try ... onException

block that can catch overflow exceptions.

ELA00027P The data on a character-to-numeric move

is not valid

Explanation: The statement in error involves a move

from a character to a numeric data item. The character

data item contains nonnumeric data.

 The run unit ends.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Change the program to ensure that the

source operand contains valid numeric data.

ELA00029P Transfer to %01C08 was not successful

Explanation: The transfer to another program was not

successful. Usually, the program being transferred to

could not be found.

 The run unit ends.

User response: Make sure that the program was

generated, compiled, and linked into a library defined

in the library search order.

For z/OS CICS, the search order includes the DFHRPL

data sets. Verify that the program has been defined to

the system. Also ensure that the program was

generated with the data=″31″ build descriptor option.

 For IMS/VS, IMS BMP, or z/OS batch, the search order

includes the STEPLIB and JOBLIB data sets.

ELA00031P Call to %01C08 was not successful

Explanation: A dynamic call to the specified program

failed, ending the run unit.

User response: Make sure that the program was

generated, compiled, and linked into a library defined

in the library search order.

 For z/OS CICS, the search order includes the DFHRPL

data sets. Verify that the program has been defined to

the system. Also ensure that the program was

generated with the data=″31″ build descriptor option.

 For IMS/VS, IMS BMP, or z/OS batch, the search order

includes the STEPLIB and JOBLIB data sets.

ELA00032P Called program %01C08 received a

parameter list that is not valid

Explanation: A call to the specified program was not

successful for one of the following reasons:

v The calling program passed too many or too few

parameters.

v Different values are in the linkage-options part,

callLink element, parmform property for the called

and calling programs.

v The parmform value COMMDATA was specified for

the call, and the COMMAREA passed has a different

length than the length expected by the called

program.

If the called program is a remote program, a CICS

abend occurs. Because the COMMAREA is too small,

the called program cannot notify the calling program of

the error.

 In all other cases, the run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Verify that the argument list in the call

statement matches the parameter list for the program

being called, and then generate the called and calling

program with the same parmform value for the

callLink element of the linkage options part.

Appendix. Rational COBOL Runtime Messages 199

ELA00033P Call to program %01C08 returned

exception code %02D05.

Explanation: An exception code was returned on a

call to the specified program, indicating that one of the

arguments passed to the program was not valid. The

run unit ended because the call was not in a try block.

User response: Place the call statement in a try block

and make sure that all the passed arguments are valid.

ELA00034P Program %01C08 was declared as a main

program and cannot be called

Explanation: The specified program was not declared

as a called program.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Declare the program as a called

program.

ELA00035A Data type error in input - enter again

Explanation: The data in the first highlighted field is

not valid numeric data. The field was defined as

numeric.

User response: Enter only numeric data in this field,

or press a validation bypass key to bypass the

validation check. In either situation, the program

continues.

ELA00036A Input minimum length error - enter

again

Explanation: The data in the first highlighted field

does not contain enough characters to meet the

required minimum length.

User response: Enter enough characters to meet the

required minimum length, or press a validation bypass

key to bypass the validation check. In either situation,

the program continues.

ELA00037A Input not within defined range - enter

again

Explanation: The data in the first highlighted field is

not within the range of valid data defined for this item.

User response: Enter data that conforms to the

required range, or press a validation bypass key to

bypass the validation check. In either situation, the

program continues.

ELA00038A Table edit validity error - enter again

Explanation: The data in the first highlighted field

does not meet the validator data table requirement

defined for the variable field.

User response: Enter data that conforms to the

validator data table requirement requirement, or press a

validation bypass key to bypass the validation check. In

either situation, the program continues.

ELA00039A Modulus check error on input - enter

again

Explanation: The data in the first highlighted field

does not meet the modulus check defined for the

variable field.

User response: Enter data that conforms to the

modulus check requirements, or press a validation

bypass key to bypass the validation check. In either

situation, the program continues.

ELA00040A No input received for required field -

enter again

Explanation: No data was typed in the field

designated by the cursor. The field is required.

User response: Enter data in this field, or press a

validation bypass key to bypass the validation check.

Blanks or nulls will not satisfy the data input

requirement for any type of field. In addition, zeros

will not satisfy the data input requirement for numeric

fields. The program continues.

ELA00041P Property msgTablePrefix was not

specified for a program: Message

%01C04, NLS code %02C03

Explanation: The program tried to display a message

from the message table using the

converseLib.validationFailed() system function.

However, the program does not specify a value for the

msgTablePrefix property.

 The run unit ends.

User response: Do any of the following:

v Assign a valid value to the msgTablePrefix property

and generate the program again.

v Change the program to avoid using the

converseLib.validationFailed() system function and

then generate the program again.

v Remove the user message number from the form

field message properties and generate the program

and form group again.

200 IBM Rational COBOL Runtime Guide for zSeries

ELA00042P The expected number of inserts for

message %01C08, NLS code %02C03 was

not received

Explanation: The expected number of variable inserts

for an Rational COBOL Runtime message did not

match the number received. The message text is in the

language-dependent message data table program,

ELACxxx, where xxx is the language code.

 The program is generated from a DataTable part that

might have been modified and generated specifically

for your installation.

 The inserts show the original error message number

that occurred and the language code being used.

Message ELA00163P shows the original error message

number that occurred and the message inserts that

would have been displayed for that message.

 The run unit ends.

User response: Correct the problem identified by the

original message.

 If the language-dependent message data table was

modified, correct the modified message so that the

inserts are the same as the inserts defined in the default

message data table that was shipped with Rational

COBOL Runtime.

ELA00043P %01C08, %02C03

Explanation: The Rational COBOL Runtime message

data table program ELACxxx (where xxx is the

language code) did not contain a runtime message.

 The program is generated from a data-table part that

might have been modified and generated specifically

for your installation.

 The inserts show the original error message number

that occurred and the language code being used.

Message ELA00163P shows the original error message

number that occurred and the message inserts that

would have been displayed for that message.

 The run unit ends.

User response: Correct the problem identified by the

original message.

 If the language-dependent message data table was

modified, verify that the message numbers in the

modified data table match the message numbers in the

message data table as shipped in the product. Also,

verify that the program loaded is at the same

maintenance and release level as the default message

data table shipped with Rational COBOL Runtime.

ELA00044P Message %01C08, NLS code %02C03, not

found

Explanation: The Rational COBOL Runtime message

data table program ELANCxxx (where xxx is the NLS

code) did not contain a runtime message.

 The program is generated from a data-table part that

might have been modified and generated specifically

for your installation.

 The inserts show the original error message number

that occurred and the NLS language code that was

being used. The message is accompanied by message

ELA00163P, which shows the original error message

number that occurred and the message inserts that

would have been displayed for that message.

 The original error message that occurred determines if

(and how) the program ends and if a SNAP dump is

issued.

User response: Correct the error identified by the first

message insert.

 If the message data table was modified, check that the

message numbers in the modified data table match the

message numbers in the default message data table

shipped with Rational COBOL Runtime. Also, check

that the program loaded is at the same maintenance

and release level as the default message data table

shipped with Rational COBOL Runtime.

ELA00045P Error reading message %01C08, NLS

code %02C03, status %03C08

Explanation: The user message file or database did

not contain a user-defined message for the language

associated with the language code. Message files and

databases are used only in COBOL programs generated

using CSP/370 Runtime Services Version 1 Release 1.

 The format of the message ID is as follows:

v Positions 1-3 = User message file

v Positions 4-8 = Message number

The status code varies depending on the type of user

message file or database being used:

v For VSAM, status is eight characters. The first two

bytes of code are either 08 (to specify a relative

message within a record is not used) or 12 (to specify

a record was not found in the VSAM file). The

remaining six bytes of the status code are the VSAM

return code (two characters), function (one character),

and feedback code (three characters), all in decimal

format. Refer to the VSAM administration guide for

your system for a definition of the VSAM codes.

v For DB2, status is the 4-character SQL code. Refer to

the DB2 manuals for your system for a description of

the SQL code.

v For DL/I, status is the 2-character DL/I status code.

Refer to the IMS messages and codes manual for

your system for a description of the specified status

code.

User response: Make sure that the message is defined

in the program message file in one of two ways:

Appendix. Rational COBOL Runtime Messages 201

v Convert the message file to an EGL message data

table. Generate the program and the message data

table again using EGL COBOL generation.

v If a message database is being used, add or replace

the message in the message database using the Cross

System Product/370 Runtime Services Version 1

Release 1 message database utility.

ELA00046P Call to print services program %01C08

was not successful

Explanation: A dynamic COBOL call to the specified

print services program was not successful.

 The run unit ends.

User response: Make sure that the program was

generated, compiled, and linked into a library defined

in the library search order.

 For z/OS CICS, the search order includes the DFHRPL

data sets. Verify that the program has been defined to

the system. Also ensure that the program was

generated with the data=″31″ build descriptor option.

In addition, verify that the customization job,

ELACJCIC has been run.

 For IMS/VS, IMS BMP, or z/OS batch, the search order

includes the STEPLIB and JOBLIB data sets.

ELA00047P Message %01D04 was not found in

message table program %02C07

Explanation: A user message could not be found in

the program message data table.

 In all z/OS environments, the Rational COBOL

Runtime issues a SNAP dump if the ELASNAP data set

is allocated.

 The run unit ends.

User response: Either add the message to the data

table or modify the program to use a message that is

defined in the message data table.

ELA00050A Significant digits for field exceeded -

enter again

Explanation: The user entered data into a numeric

field that was defined with decimal places, a sign,

currency symbol, or numeric separator edits. The

number of significant digits that can be displayed

within the formatting criteria was exceeded by the

input data; the number entered is too large. The

number of significant digits cannot exceed the field

length, minus the number of decimal places, minus the

places required for formatting characters.

User response: Enter a number with fewer significant

digits.

ELA00051P Form %01C08 was not found in form

group %02C06

Explanation: The specified form name is not in the

form group.

 The run unit ends.

User response: Generate the form group and the

program again.

ELA00057P Delete attempted without preceding

update on record %01C18

Explanation: This error occurs in these cases:

v A delete statement was issued against a record that

was not successfully read for update

v A delete statement is associated with a specific get

statement, but a different get statement was used to

select the record.

The read for update might have been cancelled as the

result of a converse statement in a segmented program.

 The run unit ends.

User response: Make sure that in the get and delete

statements, the program correctly used record names or

a resultSetID.

 Also make sure that the sequence of statements is

appropriate. To step through the program, you can use

the EGL debugger or (for CICS-based programs) CEDF.

ELA00061P DL/I error, function = %01C04, status

code = %02C02

Explanation: DL/I returned an error status code in

response to the DL/I call for the current I/O statement

and either of the following occurred:

v There was no error routine specified for the I/O

statement.

v Both VGVar.handleHardIOErrors and

dliVar.handleHardDLIErrors were set to 0 (this

indicates that the program should end on abnormal

DL/I conditions), and the status code specified either

an abnormal condition, or a condition that was not

expected.

The status code in the message comes from the DL/I

PCB used for the DL/I call.

 The run unit ends.

 In CICS environments Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 This is either a program error or a database definition

error.

User response: Do the following:

202 IBM Rational COBOL Runtime Guide for zSeries

1. Locate the specified error code. Refer to the IMS

messages and codes manual for a description of the

specified status code.

2. Correct the error.

3. Generate the program again.

ELA00062P DL/I call overlaid storage area, record

%01C18

Explanation: A DL/I call read a block of data that was

larger than the record defined to hold the data. The

storage area immediately following the record buffer

was overlaid.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, the Rational COBOL

Runtime issues a SNAP dump if the ELASNAP data set

is allocated.

User response: This is a program error. Define the

record so that its length matches the length of the

segment it represents and generate the program again.

ELA00063I PCB DB %01C08, segment %02C08, level

%03D02, options %04C04

Explanation: This message provides additional

diagnostic information for a database I/O error. The

PCB passed in the DL/I call contained the specified

information.

 For unsuccessful DL/I I/O call, the segment name field

contains the last segment along with the path to the

requested segment that satisfied the call. When a

program is initially scheduled, the name of the

database might be put in the segment name field if no

segment is satisfied.

User response: Refer to message ELA00061P.

ELA00064I PCB key feedback area length %01D04

Explanation: This message provides additional

diagnostic information for a database I/O error. The

PCB passed in the DL/I call contained the specified

key feedback length. This is the length of the

concatenated key of the hierarchical database path.

User response: Refer to message ELA00061P.

ELA00065I PCB key feedback area = %01C255

Explanation: This message provides additional

diagnostic information for a database I/O error. The

PCB passed in the DL/I call contained the specified

key feedback area.

 The first 255 bytes are displayed. If necessary, because

of the line and data lengths, the message wraps around

to display all 255 bytes. The data is displayed as

character data in the message. The message is followed

by two lines that give the hexadecimal value under

each character.

User response: Refer to message ELA00061P.

ELA00066I DL/I I/O area = %01C255

Explanation: This message provides additional

diagnostic information for a hard DL/I I/O error. The

message displays the contents of the DL/I I/O area.

 The first 255 bytes are displayed. If necessary, because

of the line and data lengths, the message wraps around

to display all 255 bytes. The data is displayed as

character data in the message. The message is followed

by two lines that give the hexadecimal value under

each character.

User response: This message is always accompanied

by another message (for example, ELA00003P or

ELA00061P) that specifies the error. See the explanation

and user response of the accompanying message.

ELA00067I DL/I SSA %01D02: %02C255

Explanation: This message provides additional

diagnostic information for a DL/I I/O error. The

message displays the contents of a segment search

argument (SSA) for the DL/I call. The first message

insert gives the number of the SSA. The second insert

gives the first 255 bytes of the SSA.

 If necessary, because of the line and data lengths, the

message wraps around to display all 255 bytes. The

data is displayed as character data in the message. The

message is followed by two lines that give the

hexadecimal value under each character.

 This message is repeated once for each SSA used in the

DL/I call.

User response: Refer to message ELA00061P.

ELA00068P DL/I variable segment length is not

valid, segment %01C08

Explanation: A DL/I segment I/O area is shorter than

the segment returned in a DL/I retrieval, or the

computed segment length on an add or replace

statement is not valid.

 In the case of a get, get forUpdate, or get next

statement, the BYTES parameter in the DBD is greater

than the length of the record defined to EGL.

 In the case of an add or replace statement, the program

has erroneously set the length of the segment. If this

error occurs for a path call, the DL/I I/O area shown

in message ELA00061I contains only segments before

the segment with the error. Because the length is in

error, the segment with the error cannot be moved to

the DL/I I/O area.

Appendix. Rational COBOL Runtime Messages 203

The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, the Rational COBOL

Runtime issues a SNAP dump if the ELASNAP data set

is allocated.

User response: If the error occurred in a retrieval,

have the database administrator correct either the DBD

or the EGL record definition, and generate the program

again.

 If the error occurred on an update, correct the logic

associated with calculating the length of the segment.

Generate the program again.

ELA00069P The value of an input variable is too

large for the target SQL column

Explanation: When running in VisualAge Generator

compatibility mode, a DECIMAL or PACF field in an

SQL record is defined as requiring an even-numbered

length for SQL purposes, but has a value that is too

large to be contained within the even-numbered length.

 In the IMS/VS environment, the transaction (logical

unit of work) ends and processing continues with the

next message.

 In all other environments, the run unit ends

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, the Rational COBOL

Runtime issues a SNAP dump if the ELASNAP data set

is allocated.

User response: Modify the program to ensure that

values that overflow the even-numbered length of the

field are detected and rectified before executing any

I/O statement that uses the SQL record, and that uses

the field as an input host variable in its SQL statement.

 This condition is not detected in programs that have

the checkNumericOverflow=YES build descriptor

option; instead the high-order digit of the value of the

field is truncated before being used in the SQL

statement.

ELA00070P %01C04 error, status code %02C02

Explanation: DL/I returned a status code other than

QC or AL in response to a CHKP (checkpoint) or ROLB

(rollback) DL/I call.

 CHKP and ROLB calls are issued for the following

reasons:

v The program invokes the sysLib.commit() or

sysLib.rollback() system functions.

v The program ends abnormally and a PSB is active.

v The program causes a commit to be taken at a

converse statement, when reading an inputForm, or

because of the synchOnTrxTransfer=YES build

descriptor option.

The status code in the message is taken from the I/O

PCB used with the DL/I call.

 The run unit ends.

 In all z/OS environments, the Rational COBOL

Runtime issues a SNAP dump if the ELASNAP data set

is allocated.

User response: Make a note of the message and notify

the system programmer. On z/OS systems, refer to the

IMS messages and codes manual for a description of

the status code.

ELA00072P %01C18, set record position not

supported

Explanation: The set position indicator was on for a

DL/I segment record when a get next statement with a

user-modified SSA list was used with that record. The

set position indicator is not supported for DL/I calls

with modified SSA lists.

 The run unit ends.

User response: Modify the program logic so that it

does not set the set position indicator for a segment

with a modified DL/I call.

ELA00073P SQL error, command = %01C08, SQL

code = %02D04

Explanation: The SQL database manager returned an

error code for an SQL I/O statement. Program

processing ends following an SQL request whenever

the SQLCODE in the SQL communications area

(SQLCA) is not 0, and either of the following is true:

v The I/O statement is not in a try block.

v The SQLCODE indicated a hard error and the system

variable vgVar.handleHardIOErrors was set to 0.

The message is followed by message ELA00074I which

displays the substitution variables associated with the

SQLCODE. (Those substitution variables are also

available to the program by way of the system variable

vgVar.sqlerrmc .)

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

204 IBM Rational COBOL Runtime Guide for zSeries

User response: Determine the cause of the problem

from the SQL code and the SQL error information.

 Either correct the program or the database definition.

Refer to the appropriate database manager messages

and codes manual for information on the SQL code and

SQL error information.

ELA00074I SQL error message: %01C70

Explanation: This message accompanies message

ELA00073P when an SQL error occurs. It displays the

relational database manager error information returned

in the SQLCA field SQLERRM and is repeated as many

times as necessary to display the complete description.

User response: Use the information from this message

and ELA00073P to correct the error.

ELA00076P Invalid data is used in a

character-to-hexadecimal assignment or

comparison

Explanation: The current statement involves either a

move from a character data item to a hexadecimal data

item, or a comparison between a character data item

and a hexadecimal data item. The characters in the

character data item all must occur in the following set

for the move or compare to complete successfully:

a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

One or more of the characters in the character data

item is not in this set. This condition causes a program

error.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Change the program to ensure that the

character data item contains valid data when the

character-to-hexadecimal move or compare operation

occurs. In text-form fields, you can use the isHexDigit

validation property to ensure that user input contains

only valid characters.

ELA00080A Hexadecimal data is not valid

Explanation: The data in the variable field identified

by the cursor must be in hexadecimal format. One or

more of the characters you entered does not occur in

the following set:

a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

User response: Enter only hexadecimal characters in

the variable field. The characters are left-justified and

padded with the character zero. Embedded blanks are

not allowed.

ELA00086P %01C18 - No active open or get for

update is in effect

Explanation: One of these cases applies:

v A get next statement cannot run because a related

open statement did not run previously in the same

program; or

v A replace or delete statement cannot run because a

related open, get for update, or get next for update

did not run previously in the same program.

All rows selected for retrieval or update are released

when a called program returns to the calling program.

 The run unit ends.

User response: Make sure that in the second

statement (get next, replace, or delete), the program

correctly used record names or resultSetID to match the

first statement (open or get).

 Also make sure that the sequence of statements is

appropriate. To step through the program, you can use

the EGL debugger or (for CICS-based programs) CEDF.

ELA00093I An error occurred in program %01C08,

function %02C18

Explanation: An error occurred in the specified

function for the specified program. Other information

about the error is given in the messages that follow this

message.

 If a function is not active, the second insert contains the

name of a section in the generated initialization or

ending logic of the program.

User response: Refer to the error messages following

this message to determine the cause of the error.

ELA00096P A data operand of type MBCHAR is not

valid

Explanation: An operand in a move or assignment

statement contains mixed double-byte and single-byte

data that is not valid.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Verify that the data in MBCHAR

variables is valid before using the variable in a move or

assignment statement.

Appendix. Rational COBOL Runtime Messages 205

ELA00105I Error occurred at terminal %01C08, date

%02C08, time %03C08, user %04C08

Explanation: An error occurred at the specified logical

terminal on the specified date and time. This message

precedes any error diagnostic information routed to an

alternate error destination.

 For a program running in z/OS batch environment, the

first insert is ********, which indicates that the terminal

identifier is not known.

 For a batch program running in the IMS BMP or

IMS/VS environments, the first variable insert is

******** if the input message queue has not yet been

accessed, indicating that the terminal identifier is not

known.

 For the IMS BMP or z/OS batch environments, the last

insert (user) is the job name from the JOB statement in

the JCL used to run the program.

 For z/OS CICS and IMS/VS environments, the last

insert is only provided if sign-on security is active on

or provided in the system.

User response: Examine all error messages that follow

this message and precede the next occurrence of this

message. Use the information from these messages to

diagnose and correct the error.

ELA00106P Program %01C08 PSB does not match

Enterprise Generation Language PSB

definition

Explanation: The PCBs passed to the program at

program initialization time did not match the EGL PSB

defined for the program. The number of PCBs passed

was less than the number of PCBs defined in the EGL

PSB definition.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, the Rational COBOL

Runtime issues a SNAP dump if the ELASNAP data set

is allocated.

User response: Either correct the EGL PSB definition

and generate the program again, or correct the IMS PSB

and generate it again.

ELA00109P Input form must be form %01C08 rather

than form %02C08, for program %03C08

Explanation: The form received by the program is not

the form specified as the value of the inputForm

program property . This error occurs when the program

starts.

 For the CICS environment, when another program

transfers to this program using the show statement, the

transferring program must specify the correct form

name on the show statement.

 For the IMS/VS environment, the initial message

processed for the program must be the message input

descriptor (MID) for the first identified form. Instead,

the second identified form was received. Either another

program transferred to this program with the wrong

form, or the user did not use the /FORMAT command

to start the program.

 The run unit ends.

User response: If the error occurred when the

program was started in the IMS environment, start the

program using the /FORMAT command. Otherwise,

ensure that the transferring program specifies the

correct form name on the show statement and that the

receiving program specifies the correct value for the

inputForm property.

ELA00110P Shared data table %01C07 cannot be

updated

Explanation: The program modifies a data table that

was generated as a shared table. Shared data tables

cannot be updated.

 The run unit ends.

User response: Either generate the data table as

non-shared or change the program to avoid modifying

the data table.

ELA00111P Length of input form %01C08 is not

valid

Explanation: The length of an input form received by

a program is not the length defined for the form in the

program.

 The run unit ends.

User response: Use the same form definition when

generating both the program that receives the input

form and the program that issues the show statement.

ELA00114P A transfer to called program %01C08 is

not allowed

Explanation: A program cannot transfer to a called

program.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Replace the transfer to program

statement with a call statement.

206 IBM Rational COBOL Runtime Guide for zSeries

ELA00115P Use of a transfer statement is invalid

because the receiving program (%01C08)

has an input form

Explanation: Only a show statement can transfer to a

program that requires an input form.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Do either of these actions:

v Use a show statement to invoke the receiving

program indirectly

v Remove the value in the inputForm property of the

receiving program. The program can converse the

form after receiving control.

ELA00118P Missing PSB for program %01C08

Explanation: An EGL PSB was specified for the

named program during definition. However, the

program ran as a z/OS batch job without specifying

the PSB parameter. This can happen if you do not use

the sample JCL created by EGL COBOL generation.

 The run unit ends.

User response: If the program contains DL/I I/O or

other DL/I functions, change the runtime JCL to run

DL/I programs. If the program does not use DL/I,

remove the PSB name from the program definition.

ELA00119P Programs %01C07 and %02C07 are not

compatible

Explanation: A program started by a transfer to

program or call statement is not compatible with the

initial program in the transaction or job for one of the

following reasons:

v The program was generated for a different

environment.

v The program is a main Text UI program with a

different processing mode than the initial program

(IMS/VS only).

v The program is a main Text UI program, and the

initial program is a main basic program (IMS/VS

only).

v The programs are both main Text UI programs, but

the spaSize, spaADF, or spaStatusBytePosition

build descriptor options specified at generation are

different (IMS/VS only).

The run unit ends.

User response: Change one or both programs to

conform to the restrictions for a transfer to program or

call statement.

ELA00120P sysLib.startTransaction not successful,

logical LTERM = %01C08, status code =

%02C02

Explanation: Common IMS status codes are as

follows:

QH Unknown output destination

A1 Unknown output destination

 Both status codes indicate that the 8-character logical

terminal ID was not defined to the IMS system as

either a terminal or transaction.

 The run unit ends.

User response: Do as follows:

1. Ensure that the transaction code field of the record

specified in sysLib.startTransaction() is defined to

the IMS system.

2. Review the program logic ensure that the

transaction code field is set correctly.

3. Refer to the IMS messages and codes manual for

your system for an explanation of status codes other

than the ones listed above.

ELA00121P sysLib.audit was not successful, logical

LTERM = %01C08, status code=%02C04

Explanation: The status code is the 2-character status

from the I/O PCB.

 The run unit ends.

User response: Refer to the IMS messages and codes

manual for your system.

ELA00122P PCB for dliLib.AIBTDLI,

dliLib.EGLTDLI, or VGLib.VGTDLI call

not available

Explanation: The meaning varies depending on the

system function as follows:

v If the system function is dliLib.AIBTDLI(), the EGL

PCB name is not associated with any PCB in the PSB

being used by the program.

v If the system function is dliLib.EGLTDLI(), the EGL

PCB name is associated with a PCB number that

either exceeds the number of PCBs in the PSB being

used by the program or references a PCB that was

not passed to the program in the called parameter

list.

v If the system function is VGLib.VGTDLI(), the EGL

PCB number either exceeds the number of PCBs in

the PSB being used by the program or references a

PCB that was not passed to the program in the called

parameter list.

Appendix. Rational COBOL Runtime Messages 207

The error can also occur in the CICS environment if the

EGL PCB refers to the I/O PCB, a TP PCB, or a GSAM

PCB, none of which are available in CICS.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Either modify the system function to

reference a valid PCB, or modify the PSB or called

parameter list definition to include the referenced PCB

ELA00123P Basic checkpoint used in

transaction-oriented BMP

Explanation: A program invoked the sysLib.commit()

system function while processing as a

transaction-oriented IMS BMP. The sysLib.commit()

system function is implemented as a basic checkpoint

(CHKP) function. In the transaction-oriented IMS BMP,

this resulted in a read of the message queue that

overlaid program storage. The updates to the database

have been committed.

 This error can only occur if the program uses the

dliLib.AIBTDLI(), dliLib.EGLTDLI(), or

VGLib.VGTDLI() system functions to read the

message queue. The sysLib.commit() system function is

ignored if the program uses the get next statement to

read the message queue.

 The run unit ends.

 Rational COBOL Runtime issues a SNAP dump if the

ELASNAP data set is allocated.

User response: Do not run the program as a

transaction-oriented IMS BMP. Alternatively, either

remove the use of the sysLib.commit() system function

or change the dliLib.AIBTDLI(), dliLib.EGLTDLI(), or

VGLib.VGTDLI() system function that reads the

message queue to a get next statement for a serial

record and use the resource association to associate the

serial record with the message queue.

ELA00125P Error number %01D04 is not valid

Explanation: The error handler was called with an

error number that it did not recognize. This is a

product error.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Ensure that the generated COBOL

program has not been modified by generating the

program again. Afterwards, run the program again. If

the problem persists, do as follows:

1. Record the message number

2. Obtain the dump

3. Record the scenario under which this message

occurs

4. Obtain the COBOL source for the problem program

5. Use your electronic link with IBM Service if one is

available, or contact the IBM Support Center

ELA00127P A requested function is not supported

for form %01C08, form group %02C06

Explanation: A program requested a form function

that is not supported for the specified form and form

group. The form group was modified between the time

the form group was generated and the time the

program was generated. Some functions that were

included for the form or form group when the program

was generated were not specified for the form group

when the form group was generated. For example, a

helpForm or msgField might have been specified for

the form at the time the program was generated, but

were not present when the form group was generated.

 The run unit ends.

User response: Check the form properties and the

program, then generate the program again with the

genFormGroup build descriptor option set to YES.

ELA00128P Incompatible attributes for file =

%01C08

Explanation: A program is attempting to use a GSAM

file that is already opened for another program. The file

characteristics (record organization, record length, fixed

or variable length records, or key specification) are

defined differently for the two programs and the

definitions are not compatible.

 The run unit ends.

User response: Define the file characteristics to be the

same in both programs or use a different file name for

one of the programs.

ELA00129I Form %01C08 was received

Explanation: Related messages give further details.

User response: Refer to the related error messages.

ELA00130P GSAM error, file = %01C08, function =

%02C04, status code = %03C02

Explanation: An I/O error occurred on an add, get

next, or close statement for a file associated with a

208 IBM Rational COBOL Runtime Guide for zSeries

GSAM database. Program processing ends on a hard

status code if vgVar.handleHardIOErrors is set to 0, or

on any error status code if there is no try block

surrounding the I/O statement.

 This message can also occur on an implicit OPEN or

CLSE call to the GSAM database. An implicit OPEN or

CLSE call occurs as a result of an EGL add or get next

statement. Program processing ends on a hard status

code if vgVar.handleHardIOErrors is set to 0, or on any

error status code if there is no try block for the add or

get next statement that caused the implicit OPEN or

CLSE call.

 An AI status code for an implicit OPEN might be

caused by specifying a file name during EGL resource

association that is different from the DD name specified

in the GSAM DBD.

 For an add, message ELA00066I accompanies this

message and provides the DL/I I/O area that was used

for the call.

 The run unit ends. If ELASNAP is allocated, the

Rational COBOL Runtime issues a SNAP dump.

User response: Determine the cause of the I/O error

from the DL/I status code and either correct the

program or the database definition. Refer to the IMS

messages and codes manual for your system for an

explanation of the DL/I status code.

ELA00131P MSGQ error, file = %01C08, function =

%02C04, status code = %03C02

Explanation: An error occurred on a get next or add

statement for a file or a print statement for a print form

when the file or printer is associated with an IMS

message queue (I/O or TP PCB). Program processing

ends on a hard status code if

VGVar.handleHardIOErrors is set to 0, or on any error

status code if there is no try block surrounding the I/O

statement.

 Common status codes are:

QH Unknown output destination (add, print, or

converse)

A1 Unknown output destination (add, print, or

converse)

A6 Output segment limit exceeded (add, print, or

converse)

FD Deadlock occurred (get next).

 For an add, print, or converse, the listed status codes

specify that the 8-character system resource name

associated with the file or printer at generation or in

record.resourceAssociation or

converseVar.printerAssociation was not defined to the

IMS system as either a terminal or a transaction.

For an add, print, or converse statement, message

ELA00066I accompanies this message and shows the

DL/I I/O area that was used for the call.

 The run unit ends. If ELASNAP is allocated, the

Rational COBOL Runtime issues a SNAP dump.

User response: If the output destination is not valid,

ensure that it is defined to the IMS system. Also review

the program logic to ensure that

record.resourceAssociation or

converseVar.printerAssociation, if used, are set

correctly. For an explanation of status codes other than

the ones listed above, refer to the IMS messages and

codes manual for your system.

ELA00132P Variable length %01D02 is not valid for

record %02C18

Explanation: The variable length record being written

to a GSAM file or a message queue has a length that is

greater than the maximum length defined for the

record structure. Either the record length item contains

a value greater than the maximum record length or the

number of elements item contains a value that is

greater than the maximum number of occurrences

specified.

 The first message insert provides the length field that

was being used. The length is the total length being

written as follows:

v For a GSAM file, the length includes the 2-byte

length field itself,

v For a message queue, the length includes the 12-byte

header (length, ZZ field, transaction code) itself.

The second message insert provides the name of a

serial record being routed to a GSAM file or a message

queue.

 The run unit ends.

 Rational COBOL Runtime issues a SNAP dump if the

ELASNAP data set is allocated.

User response: Modify the program to move a valid

value to the record length item or to the number of

elements item.

ELA00134P I/O PCB conflict between programs

%01C08 and %02C08

Explanation: A program invoked using the call or

transfer to program statement accesses the I/O PCB as

a serial file. The initial program in the transaction is a

main Text UI program and the current program

accesses the I/O PCB. The control logic for a main Text

UI program cannot operate correctly when a program

that it invokes using the call or transfer to program

statements also accesses the I/O PCB.

 The run unit ends.

Appendix. Rational COBOL Runtime Messages 209

User response: Modify the called or transferred-to

program so it does not access the I/O PCB.

Alternatively, call or transfer to the program from a

main basic program.

ELA00135P The program is not expecting an input

form

Explanation: Another program issued a show

statement that specified a form, but the receiving

program does not specify the inputForm property.

 The run unit ends.

User response: Either change the invoking program to

avoid sending a form or change the receiving program

to specify an input form.

ELA00136P DL/I error occurred in work database

operation

Explanation: An error occurred during use of the

work database when it was implemented using DL/I.

This message is accompanied by additional DL/I

diagnostic messages, including ELA00061P, that provide

additional information about the error. Message

ELA00061P includes the DL/I function and status code.

Refer to the IMS messages and codes manual for your

system for a description of the status code.

 The run unit ends.

 If ELASNAP is allocated, the Rational COBOL Runtime

issues a SNAP dump.

User response: This is a database definition error or

an error in the definition of the work database PCB in

your IMS PSB. Record this information and any other

diagnostic messages, and notify the system

administrator.

ELA00137P SQL error occurred in work database

operation

Explanation: An error occurred during use of the

work database when it was implemented using SQL.

This message is accompanied by additional SQL

diagnostic messages, including ELA00073P, that provide

additional information about the error.

 The run unit ends.

 If ELASNAP is allocated, the Rational COBOL Runtime

issues a SNAP dump.

User response: Determine the cause of the problem

from the SQL code and the SQL error information in

related message ELA00074I, and correct the database

definition.

ELA00138P %01C08 was replaced in the middle of a

conversation

Explanation: The program was running in segmented

mode and ran a converse statement. However, the

program was replaced in the load library during user

think time (the time between writing the form to the

terminal and receiving the user’s input).

 The program conversation with the user started with

the original version of the program and cannot be

resumed.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

User response: Run the program again.

ELA00139P MFS map program %01C06 and MFS

map %02C08 have different versions

Explanation: An MFS form services program

attempted to process a message input descriptor for an

MFS form that was generated at a different time than

the MFS form services program. Both the MFS form

services program and the form it works with must be

built in the same generation step.

 This is probably a problem with the installation of

either the program or the MFS form after generation of

a form group. One of the following might have

occurred:

v The MFS form services program might have been

compiled and linked without installing the MFS

forms, or vice versa.

v The MFS form might have been installed in an MFS

test library, but you did not enter an IMS /TEST

MFS command prior to starting the transaction.

v The MFS form might have been installed in the MFS

production library, and you entered a /TEST MFS

command prior to starting the transaction.

v The MFS form might have been used in a show

statement to transfer from another program. The

transfer-from program used a different form group,

but the form name on the show statement is the

same as the inputForm name for the transfer-to

program.

In the IMS/VS environment, the transaction (logical

unit of work) ends and processing continues with the

next message. In all other environments, the run unit

ends.

User response: Ensure that the same version of the

MFS form services program and the MFS control blocks

are installed in the correct libraries. If the show

statement and inputForm property are involved, ensure

that the transfer-from and transfer-to programs use the

same form group.

210 IBM Rational COBOL Runtime Guide for zSeries

ELA00140P Segmentation storage size discrepancy

for %01C08

Explanation: The size of the segmentation storage

record is not valid for the specified program.

 Possible causes for the error include:

v The program is replaced in the load library in the

middle of a program conversation with the user

v The program issues a show statement, but the

receiving program expects an input form that has

different characteristics

v The program is segmented and issues a converse

statement when sysVar.transactionID contains a

transaction code, but that transaction code is

associated with a program that has no relationship to

the issuing program. If the sysVar.transactionID is

used to switch transaction codes, the new transaction

must start either the same program that was started

by the old transaction or the program that issued the

converse statement.

The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Try the transaction again. If the

program works correctly, the error was caused by a

re-link in the middle of the conversation. If the error

still occurs, determine why there is a mismatch and

correct the situation that caused the error.

ELA00141P Data table %01C08 cannot be modified.

Delete %02D06 bytes.

Explanation: The program’s attempt to modify a

shared data table would cause an increase in data-table

size beyond the CICS limit, which is 65535 bytes.

 The run unit ends.

User response: Either change the logic of the program

so that the data table is not modified or decrease the

size of the data-table content by the specified number

of bytes.

ELA00142P Form %01C08 in group %02C06 not

supported on this device

Explanation: A form has been sent to a device using

IMS Message Format Services, but the device type does

not correspond to the list of screenSizes specified for

the form part or the combination of the mfsDevice,

mfsExtendedAttr, and mfsIgnore build descriptor

options that match the specified screen sizes

v A printer map was sent to a destination that is

defined as a terminal in the IMS System Generation.

The destination is the system resource name

specified for EZEPRINT at generation or an override

value loaded into the EZEDESTP special function

word at run time. The message appears at the

terminal where the printer map was directed, not at

the terminal that originated the transaction. Program

processing continues.

v A text form is defined in a form group that contains

multiple forms with different values for the

screenSizes property. The screen size to which the

form was directed was not included in the list of

screenSizes or the combination of the mfsDevice,

mfsExtendedAttr, and mfsIgnore build descriptor

options that match the specified screen sizes. The

message appears at the terminal that originated the

transaction as the result of a converse or show

statement. The program conversation with the user

at this terminal ends because there is no way for the

user to enter data. The program continues processing

with the next message on the message queue.

MFS does not notify the program that a problem has

occurred. Therefore, message ELA00142P is built into

the MFS source to provide a method of notifying you

when an error occurs. A SNAP dump is not issued.

User response: If the error occurred for a print form,

review the resource association information specified

during generation, the program logic used to set the

value of the converseVar.printerAssociation system

variable and the MFS build descriptor options

(mfsDevice, mfsExtendedAttr, and mfsIgnore) to

determine the appropriate corrections to make.

Depending on the corrections required, generate either

the program or form group again. In addition, if the

print form was sent to a terminal device, it might be

necessary for the system administrator to purge the

messages pending for the terminal using the IMS

/DEQ command.

 If the error occurred for a text form, review the

screenSizes property specified for this form and the

MFS build descriptor options (mfsDevice,

mfsExtendedAttr, and mfsIgnore) to determine the

appropriate corrections to make. Generate the map

group again.

 If the program using the text form is a

nonconversational program (spaSize=″0″ build

descriptor option), the user only needs to clear the

screen and type another transaction code to resume

work.

 If the program that used the terminal map is a

conversational program (spaSize build descriptor

option greater than 0), the user must clear the screen,

type /EXIT to end the conversation and then type

another transaction code to resume work.

Appendix. Rational COBOL Runtime Messages 211

ELA00143P Data table %01C07 is not a message

table

Explanation: A message data table was specified for

the program. The data table specified is not a message

table.

 The run unit ends.

User response: Either define the data table as a

message table and generate the data table again, or

correct the message data table name specified for the

program and generate the program again.

ELA00144P Segmentation storage error

Explanation: Segmentation storage has an internal

error mapping memory.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: This is an internal system error.

Contact the system administrator for assistance.

ELA00145A Form name required - enter /FOR

%01C06O form-name

Explanation: The form group has more than one form,

but a valid form name was not entered when the IMS

/FOR command was used to display the form.

User response: Enter the /FOR command again, using

the following format:

 /FOR formGroupO formname

ELA00146P Segmentation status error

Explanation: The status byte for segmentation storage

management is lost and the program has no way to

recover.

 This error occurs when a PA key is pressed prior to

pressing the ENTER key or a PF key for an IMS

conversational transaction.

 If the program was generated with a spaSize build

descriptor option value greater than 0 and without

specifying the spaStatusBytePosition build descriptor

option, then there was no recovery feature generated

into the program.

 If the program was generated with a spaSize build

descriptor option greater than 0 and also specified the

spaStatusBytePosition build descriptor option, then the

recovery feature was generated into the program, but

was bypassed. A bypass of the recovery feature occurs

when a deferred message switch comes from a

non-EGL program or an EGL program that was not

generated with the same values for the spaSize,

spaADF, and spaStatusBytePosition build descriptor

options.

 In the IMS/VS environment, the transaction (logical

unit of work) ends and processing continues with the

next message.

User response: Restart the transaction sequence and

avoid using PA keys while on an EGL generated screen.

 Consider generating the EGL programs with a

combination of spaSize, spaADF, and

spaStatusBytePosition build descriptor options that

will allow recovery from pressing a PA key.

ELA00147A Key sequence is not valid. Last screen

will display - enter the data again

Explanation: A PA key was pressed prior to pressing

the ENTER key or a PF key. IMS has reserved the use

of the PA keys. All modifications on the previous screen

are lost.

User response: Enter the data again and avoid use of

PA keys while on an EGL generated screen.

ELA00149I %01C07 command ignored during

message database load

Explanation: The PSB for the message database

specifies that the database is being initially loaded.

Only ADD commands are supported during initial load

of a DL/I message database.

User response: Run the message utility again,

specifying the PSB for the database.

ELA00151P %01C07 of message record to/from

message database failed

Explanation: The message utility program

encountered an error inserting or deleting a message in

the message database. This message is accompanied by

either the DL/I or SQL diagnostic messages describing

the error.

 If an ELASNAP DD statement is specified in the JCL,

Rational COBOL Runtime issues a snap dump. The run

unit ends.

User response: Review the diagnostic messages. Verify

that the database has been successfully defined by

checking either the DL/I or the DB2 message database

create job (ELAMSJL2) messages. Correct the problem

and run the job again.

ELA00152I Message file %01C03 has been added

Explanation: The indicated user message file has been

successfully added to the message database.

212 IBM Rational COBOL Runtime Guide for zSeries

User response: Test the programs that use this user

message file.

ELA00153P %01C08 failed on file %02C08

Explanation: While running the message utility, an

attempt was made to access (open, close, read, or write)

the indicated file. The access failed and the message

utility ended. The first message insert indicates the type

of access that failed. The most common errors are a

missing DD statement for the file or DCB parameters

that are not correct.

User response: Refer to the job listing for system error

messages pertaining to the indicated DD name. Correct

the error and run the job again, starting with the

command that caused the error.

ELA00154I Message file %01C03 has been replaced

Explanation: The indicated user message file has been

successfully replaced in the message database.

User response: Test the programs that use this user

message file.

ELA00155I Message file %01C03 has been deleted

Explanation: The indicated user message file has been

successfully deleted from the message database.

User response: Change the program using this user

message file to use another message file and generate

the program again.

ELA00156I Replace on non-existent message file

%01C03, file was added

Explanation: A REPLACE command was issued for

the indicated message file, but the file did not exist in

the message database. The file was added instead.

User response: None, provided the file was added to

the correct message database.

ELA00157P %01C08 failed on file %02C08, file

status = %03C06

Explanation: While running of the message utility, an

attempt was made to access (open, close, read, or write)

the indicated VSAM file. The file identifies the DD

name. The file status consists of the VSAM return code

(2 characters), function (1 character), and feedback code

(3 characters). The access failed and the message utility

terminated. The first message insert indicates that type

of access that failed.

User response: Refer to the VSAM administration

guide for your system for a definition of the status

codes. Also look at the job listing for system error

messages pertaining to the indicated DD name. Correct

the error and run the job again, starting with the

command that caused the error.

ELA00158P Syntax error on command

Explanation: A command being processed by the

message utility did not follow the correct syntax. The

message utility ends.

User response: Correct the command and run the job

again, starting with the command that had the incorrect

syntax.

ELA00159P Message file %01C03 already exists in

the message database

Explanation: An attempt to add a user message file

failed because the message file already existed in the

message database for the language specified in the

current message utility command. The return code is

set to 08.

User response: Use the REPLACE command to

update the message file in the message database.

ELA00160P Message file %01C03 does not exist in

the message database

Explanation: An attempt to remove or list a user

message file failed because the message file does not

exist in the message database for the language specified

in the current message utility command. The return

code is set to 08. If the insert is an asterisk, you

attempted to list all messages in an empty message

database.

User response: Correct the message file ID in the

command and run the job again.

ELA00162P Message I/O error, type %01C04, file

%02C08, code %03C08

Explanation: An error occurred when a program

generated using Cross System Product/370 Runtime

Services Version 1 Release 1 attempted to open or close

a user message file. The type variable insert specifies

VSAM as the message file type. The file insert specifies

the DD name. The first two bytes of the code insert are

either 08 (to specify an OPEN) or 16 (to specify a

CLOSE). The next two bytes are the ACB (Access

control block) return code in hexadecimal format. The

remaining bytes in the code insert are zero.

 The run unit ends.

User response: Have the administrator do one of the

following:

v Determine the cause of the problem from the VSAM

error code. First, see Chapter 22, “Common System

Error Codes for z/OS Systems,” on page 167 for the

table of common VSAM codes. If the codes are not

listed in the table, refer to the VSAM administration

guide for your system for a definition of other

VSAM codes. Also verify that the user message file is

allocated correctly.

Appendix. Rational COBOL Runtime Messages 213

v Convert the message file to a message table and

generate the program again under EGL, VisualAge

Generator, or CSP/370AD Version 4 Release 1.

ELA00163P %01C08, %02C60

Explanation: This message is used when a Rational

COBOL Runtime message cannot be found in the

language-dependent message data table program

ELACxxx, where xxx is the language code.

 The first variable insert in this message is the error

message number for the error that actually occurred.

The second insert in this message contains one of the

message inserts that is used by the error that actually

occurred. This message is repeated as many times as

necessary to report all inserts. The inserts are reported

in order by their number: %01, %02, and so on.

User response: See the message with the

corresponding message number in this manual. Take

the action appropriate for that message. Also, contact

the system administrator to determine why the

message could not be found in the Rational COBOL

Runtime language-dependent message data table

program.

ELA00164P %01C08, %02C04, %03C02, %04X08

Explanation: The error handler was not successful in

using a DL/I call to write diagnostic information about

another error to normal destinations for error

information. The variable inserts contain the following

information:

v Destination from the terminal identifier field of the

PCB used in the call.

 The destination can be the error destination specified

at program generation, the user terminal ID, or the

IMS log.

v DL/I function

v DL/I status code

v PCB Address

Rational COBOL Runtime ends the program with a

user abend.

User response: For information about locating the

diagnostic messages in the dump, see Chapter 19,

“Finding Information in Dumps,” on page 151. These

messages relate to the original error that ended the

program. Also verify that the errorDestination value

specified in your build descriptor options is included in

the IMS system generation.

ELA00166P The recursion stack exceeds the

maximum size allowed

Explanation: The stack that contains information to

support recursion or segmentation has become too

large.

 The run unit ends.

In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Check for an infinite loop that is

causing a large number of recursions. Either limit the

number of recursions, or reduce the number of

functions in the program.

ELA00167I The diagnostic message queue is empty

Explanation: The diagnostic print utility for IMS

ended without printing any diagnostic messages

because the queue was empty.

User response: None required.

ELA00168P %01C03

Explanation: The NLS language code in the file

allocated to ELAMSG as shown in the insert is not

valid. The Rational COBOL Runtime utility ends

because the language code for messages and report

headings cannot be determined.

User response: Correct the JCL so that the ELAMSG

DD statement references a sequential file or in-stream

data that contains a valid NLS code in columns 1

through 3 of the first record. See “Installation and

Language-Dependent Options for z/OS” on page 18 for

a list of the valid NLS codes.

ELA00169I Work database purged of %01D08

records older than day %02C06, time

%03C06

Explanation: The utility that purges obsolete records

from the work database has completed normally.

User response: None required.

ELA00170P Input is not valid

Explanation: Either the date or the time provided to

the utility that purges obsolete records from the work

database was nonnumeric or was not valid.

 The run unit ends.

User response: Ensure that the date is in Julian format

(YYDDD - two positions for the year and three

positions for the day of the year). Ensure that the time

is in HHMMSS format (two positions for the hour, two

positions for the minutes, and two positions for the

seconds). The date and time specified must be at least

24 hours before the time that the purge program is run.

214 IBM Rational COBOL Runtime Guide for zSeries

ELA00172I CICS error, system identifier %01C08

Explanation: An error occurred on a CICS function to

be performed on a remote system. The message

displays the CICS identifier for the remote system.

 This message is always issued along with other

messages that identify the function being performed

and the CICS error return information.

User response: None required.

ELA00173P An error occurred in remote program

%01C08, date %02C08, time %03C08

Explanation: An error occurred in a remote program

that caused the remote program to stop running.

Diagnostic messages might have been logged at the

remote location giving information about the error. The

date and time stamp on this message can be used to

associate the messages logged at the remote system

with this error message.

 The run unit ends.

User response: Report the error to the system

administrator.

ELA00174P %01C08 cannot be used in called

programs on a remote system

Explanation: ThesysLib.commit() and

sysLib.rollback() system functions cannot be used in a

remote called basic program or in a program called by

a remote called basic program.

 The run unit ends.

User response: Move the sysLib.commit() and

sysLib.rollback() system functions to the program that

called the remote program.

ELA00179P An error occurred starting transaction

%01C08

Explanation: IMS or CICS indicates that an error

occurred when a program attempted to start the

specified transaction. A message following this message

gives the IMS or CICS error codes.

 The run unit ends.

User response: Determine the cause of the error from

the following message and correct the error.

ELA00180P Error recovery PCBs not passed to

program

Explanation: The program specifies callInterface =

DLICallInterfaceKind.CBLTDLI and was called by a

non-EGL program. Two required PCBs (the I/O PCB

and the alternate express PCB) were not passed to the

program. The PCBs are required for issuing rollback

and commit functions, and reporting error conditions.

The error results in an abend with a dump because the

PCBs for reporting and recovering from the error are

not available.

 The run unit ends.

User response: Modify the program to pass the I/O

PCB and the alternate express PCB to the program

using one of the following techniques:

v Specify the PCB name as a program parameter and

set the pcbParms program property.

v Specify psbData as a program parameter and set the

psbParm program property.

ELA00181P I/O PCB not passed to program %01C08

Explanation: The program specifies callInterface =

DLICallInterfaceKind.CBLTDLI and was called by a

non-EGL program. The I/O PCB was not passed to the

program. This PCB is required for issuing rollback and

commit functions and for reporting error conditions

 The run unit ends.

User response: Modify the calling program to pass the

I/O PCB to the EGL program. Modify the EGL

program to expect the I/O PCB in the parameter list

using one of the following techniques:

v Specify the PCB name as a program parameter and

set the pcbParms program property.

v Specify psbData as a program parameter and set the

psbParm program property.

ELA00183P SYNCPOINT not allowed with PCB

parameters

Explanation: The program invoked the

sysLib.commit() or sysLib.rollback() system functions.

Each of these functions results in an EXEC CICS

SYNCPOINT command, which ends the currently

scheduled PSB. Either this program or a program that

called this program included a PCB in the called

parameter list. The PCB address passed in the

parameter list is no longer valid because the PSB is not

active.

 The run unit ends.

User response: Either modify the program so it does

not invoke the sysLib.commit() or sysLib.rollback()

system functions, or modify the program to receive the

PSB as a parameter rather than the individual PCBs.

ELA00184P Program %01C08 and form services

program %02C08 are not compatible

Explanation: The specified program and form services

program are generated for different systems.

 The run unit ends.

User response: Generate the form services program

for the same environment as the program.

Appendix. Rational COBOL Runtime Messages 215

ELA00185P Length of %01D02 for record %02C18 is

not valid and conversion ended

Explanation: Conversion of a variable length record

between the workstation format and host format cannot

be performed because of one of the following

conditions:

v The record length for the current record indicates

that the record ends in one of the following:

– The middle of a numeric field

– The middle of a DBCHAR character

– The middle of an SO/SI string.
v The record is longer than the maximum length

defined for the record.

The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Modify the program to set the record

length so that it ends on a valid field boundary.

ELA00186P An operand of type MBCHAR in a

conversion operation is not valid

Explanation: Conversion of an MBCHAR field from

EBCDIC to ASCII or from ASCII to EBCDIC cannot be

performed because a double-byte data value is not

valid.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Modify the program to ensure that any

MBCHAR fields are valid in the records to be

converted.

ELA00187P Conversion table %01C08 does not

support double-byte character

conversion

Explanation: Conversion of an MBCHAR or DBCHAR

field from ASCII to EBCDIC or from EBCDIC to ASCII

cannot be performed because the specified conversion

table does not include conversion tables for double-byte

characters.

 The run unit ends.

 In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Modify the program to specify a

conversion table that contains the double-byte

conversion tables that are valid for DBCHAR and

MBCHAR data. For background information, refer to

the EGL help topic on data conversion.

ELA00188P Conversion Error. Function: %01C25,

Return Code: %02C05, Table: %03C08

Explanation: A system function was called to perform

code page conversion for data used in a client/server

program. The function failed.

 Possible causes for the failure are:

v The code pages identified in the conversion table are

not supported by the conversion functions on your

system.

v For double-byte character conversion where the

source data is in ASCII format, the source data was

created under a different DBCS code page than the

code page that is currently in effect on the system.

User response: For background information, refer to

the EGL help topic on data conversion.

ELA00191I Program %01C08, generation date

%02C08, time %03C08

Explanation: An error in the specified program has

occurred. The error is identified in other messages

preceding this message. The error might be caused by

changes to individually generated components of the

program.

User response: Verify the generation date and time of

the program with that of other generated components.

ELA00192I Print services program %01C08,

generation date %02C08, time %03C08

Explanation: An error in the specified print services

program has occurred. The error is identified in other

messages preceding this message. The error might be

caused by changes to individually generated

components of the controlling program.

User response: Verify the generation date and time of

the print services program with that of other generated

components in the program.

ELA00195I Form group format module %01C08,

generation date %02C08, time %03C08

Explanation: An error in the specified form group

format module has occurred. The error is identified in

other messages preceding this message. The error

216 IBM Rational COBOL Runtime Guide for zSeries

might be caused by changes to individually generated

components of the controlling program.

User response: Verify the generation date and time of

the form group format module with that of other

generated components in the program.

ELA00201P z/OS %01C08 error in service %02C08,

RC = %03D04

Explanation: Rational COBOL Runtime received an

error return from a z/OS macro. The inserts identify

the macro name, the Rational COBOL Runtime

program name, and the return code.

 The run unit ends.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Contact the system administrator.

ELA00202P The file name %01C65 is not valid in

the record-specific variable

resourceAssociation or in

converseVar.printerAssociation

Explanation: The value in either the

recordName.resourceAssociation or

converseVar.printerAssociation is not in a valid format.

This message can occur when a spool file name has a

format that is not valid.

User response: Refer to the EGL help system to

determine the valid syntax. Correct and generate the

program again.

ELA00203P CICS I/O error on file %01C08, resource

%02C08

Explanation: The current program has attempted to

gain access to a CICS file, and CICS returned a status

code that indicated an I/O error occurred. The file is

the logical file name specified in the record part

declaration. The resource is the CICS file control table

(FCT) or the TDQUEUE resource definition entry.

 Possible causes of the error are the following:

v The file does not exist on disk.

v The file is not defined in the CICS FCT or the

TDQUEUE resource definition entry.

v The file was specified to be opened when first

referenced.

v On z/OS CICS, the file was closed using the CSMT

or CEMT transactions.

v For z/OS CICS, the DD statement for the file in the

CICS startup JCL is missing, does not match the FCT

name, or is in error.

v The file has been changed or otherwise corrupted.

Message ELA00204I is also displayed with the

information from the EXEC interface block (EIB).

The run unit ends.

 Rational COBOL Runtime issues a dump based on

information supplied for the transaction with the

diagnostic controller utility.

User response: Have the system administrator use the

CICS diagnostic information in this message and in

message ELA00204I to determine the cause of the error.

Correct the error and run the program again.

ELA00204I CICS EIBFN %01X04, RCODE %02X12,

RESP %03D04, RESP2 %04D04

Explanation: The current program has received an

error code for a CICS command.

 The run unit ends.

User response: Refer to the CICS application

programmers’ guide for an explanation of the EXEC

interface block (EIB) codes. Correct the error and run

the program again.

ELA00205P A CICS %01C22 error occurred in

service %02C08

Explanation: Rational COBOL Runtime received an

error status code for a CICS command. This message

identifies the command and the service program that

issued the command. This message is accompanied by

message ELA00204I, which contains the response codes

from the EXEC interface block (EIB).

 The run unit ends.

 Rational COBOL Runtime issues a dump based on

information supplied for the transaction with the

diagnostic controller utility.

User response: Have the CICS administrator use the

CICS diagnostic information in this message and in

message ELA00204I to determine the cause of the error.

Correct the error and run the program again.

ELA00206P Format of file %01C08 is not valid,

reason code %02C01, resource %03C56

Explanation: The attributes of the system resource

associated with the specified file name are not

compatible with the properties defined for the record in

the program. The reason code identifies the problematic

attribute, as follows:

1 Key offset

2 Key length

3 Access method

4 Record format

5 Record length

 An access method mismatch occurs when the type of

data set allocated does not match what the program

Appendix. Rational COBOL Runtime Messages 217

expects. For example, a VSAM file is allocated as a

system sequential file or a partitioned data set is

allocated as a sequential file without specifying a

member name.

 The run unit ends.

User response: Change the record part declaration, the

resource association part, or both, so that the record

properties match the system resource attributes.

Generate and test the affected programs again.

ELA00207P The attributes for file %01C08 are not

compatible, reason code %02C01

Explanation: A program has attempted to use a file

having file attributes that differ from another program

in the run unit. All programs in a run unit must use

the same attributes for a file. The reason code identifies

the problematic attribute, as follows:

1 Key offset

2 Key length

3 Access method

4 Record format

5 Record length

6 Using the sysVar.remoteSystemID system

variable to identify the location of a remote

file

 The run unit ends.

User response: Change the Record part declarations,

the resource association part, or both, so that all

programs in the run unit have identical attributes for

the file. Generate and test the affected programs again.

ELA00208P Print services program %01C06 and form

group format module %02C08 were

generated separately

Explanation: The specified print services program

attempted to process a form that was generated at a

time different from the form group format module.

Both the print services program and the form group

format module must be generated at the same time.

 The run unit ends.

User response: Make sure that the print services

program and the form group format module were

generated at the same time and are installed in the

correct libraries.

ELA00210P Service number %01D04 is not valid

Explanation: An attempt was made to start a Rational

COBOL Runtime routine that does not exist or that is

not valid.

 The run unit ends.

In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic

controller utility.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Generate and test the program again.

If the problem persists, do as follows:

1. Record the message number

2. Obtain the dump

3. Record the scenario under which this message

occurs

4. Obtain the COBOL source for the problem program

5. Use your electronic link with IBM Service if one is

available, or contact the IBM Support Center

ELA00212P Error encountered gaining access to file

%01C08, spool resource %02C65

Explanation: An error was received when attempting

to gain access to a spool file. The message is

accompanied by message ELA00204I, which contains

response codes from the CICS EXEC interface block

(EIB).

 If the function was a write spool request (EIBFN 5602)

and the spool resource name was specified as node ID

without being qualified by user ID, an error will occur

if the user did not log on using the CICS logon

procedure.

 The run unit ends.

 Rational COBOL Runtime issues a dump based on

information supplied for the transaction with the

diagnostic controller utility.

User response: If the spool resource name specifies

node ID without specifying user ID, log on using the

CICS logon procedure before running the program

again. Otherwise, refer to the CICS customization

documentation for an explanation of the codes that are

returned by the spool interface; then, correct the

problem specified in the response codes.

 Refer to the EGL help system for additional

information on the format of the system resource name.

ELA00215P PSB does not match Enterprise

Generation Language PSB definition

Explanation: The number of PCBs passed to the

program at program initialization time was less than

the number of PCBs in the EGL PSB record definition.

This message is accompanied by ELA00217I.

 The run unit ends.

 Rational COBOL Runtime issues a dump based on

information supplied for the transaction with the

diagnostic controller utility.

User response: Do as follows:

218 IBM Rational COBOL Runtime Guide for zSeries

v Correct the DL/I PSB; or

v Correct the EGL PSB record definition and generate

the program again

ELA00216P CICS DL/I error, function %01C04,

UIBFCTR %02X02, UIBDLTR %03X02

Explanation: CICS detected an error in a DL/I call.

The message variable inserts specify the function being

requested and the return codes from the CICS user

interface block (UIB). If the function code is PCB, the

program was attempting to schedule the program PSB.

The message is accompanied by message ELA00217I.

 Common return codes are as follows:

 UIBFCTR UIBDLTR Description

08 00 Argument on DL/I call

not valid. This error can

occur if the IMSESA

installation option in

module ELARPIOP is

specified as YES, but the

IMS environment is not

IMS/ESA.

08 01 PSB not found. The PSB

must be defined to CICS.

08 03 The calling program has

already successfully issued

a scheduling (PCB) call

that has not been followed

by a TERM call.

08 05 PSB initialization was not

successful.

08 06 The PSB in the scheduling

call is not defined in the

program control table

(DLZACT).

08 07 A TERM call was issued

when the task had already

been terminated.

08 09 An MPS batch program

attempted to issue a PCB

call for a read-only PSB or

for a nonexclusive PSB if

program isolation was

active.

08 FF DL/I not active

0C 02 Intent scheduling conflict

 The run unit ends.

User response: If the DL/I call is not valid, check the

definition of the call to the dliLib.AIBTDLI(),

dliLib.EGLTDLI(), or VGLib.VGTDLI() system

function. Otherwise, correct the problem specified by

the error code. For additional codes, refer to the CICS

application programmers’ guide for your system to

determine the meaning of the error codes.

ELA00217I Program %01C08, PSB name %02C08

Explanation: An error was detected in the specified

DL/I program. The message is accompanied by

messages ELA00215P or ELA00216P, which identify the

problem.

 The run unit ends.

User response: Refer to the accompanying messages

for the problem cause.

ELA00218P Invocation of sysLib.audit not

successful, journal id = %01D05, journal

type = %02C02

Explanation: This message is accompanied by

ELA00204I, which displays the contents of EIBRESP.

 Common EIBRESP codes for CICS are as follows:

22 LENGERR

 The computed length for the journal record

exceeds the total buffer space allocated for the

journal data set as specified in the journal

control table (JCT) entry for the data set

43 JIDERR

 Occurs if the specified journal identifier does

not exist in the JCT

 The run unit ends.

User response: Refer to the CICS resource definition

guide to define journal data sets, or contact the system

administrator.

ELA00219P %01C22 error for %02C06 file %03C08,

%04C56

Explanation: An I/O operation was not successful for

the specified file.

 Program processing ends on any nonzero status code if

the I/O statement is not in a try block; and ends on a

hard error if the I/O statement is in a try block when

vgVar.handleHardIOErrors is set to 0.

 The message identifies the I/O statement, the file type,

the file name as specified in the record part, and the

system resource name associated with the file.

 The run unit ends.

 In all z/OS environments, Rational COBOL Runtime

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Check that the correct data set has

been allocated for this file.

Appendix. Rational COBOL Runtime Messages 219

ELA00220P Dynamic allocation was not successful,

file %01C08, return %02D04, error

reason code %03X04.

Explanation: Rational COBOL Runtime was not

successful on an attempt to perform dynamic allocation

for the specified file. The other inserts are the return

code in register 15 and the error reason code returned

by the SVC 99 instruction.

 The most common cause is that the file was not

available. If you want your program to receive control

after getting the status fileNotAvailable, place the I/O

statement in a try block and set

vgVar.handleHardIOErrors to 1. If either condition is

not met, Rational COBOL Runtime ends the program.

 The run unit ends.

User response: Contact the system administrator.

Refer to the MVS System Programming: System Macros

and Facilities manual for an explanation of the codes.

ELA00221P File %01C08, system resource name

%02C56, not found

Explanation: Rational COBOL Runtime attempted to

dynamically allocate the file with the system resource

name shown in the message. The file could not be

found.

 If the system resource name is a 1- to 8-character DD

name, then there is no DD card for the file in the job

JCL. If the system resource name is a data set name,

then the data set either does not exist or is not

cataloged.

 The run unit ends.

User response: If the name is a DD name, allocate a

file to the DD name in the JCL. If the name is a data

set name, ensure that the file exists and is cataloged.

ELA00222P Transaction %01C04 ended abnormally

with CICS abend code %02C04

Explanation: The specified CICS transaction ended

abnormally with the specified code.

 On z/OS CICS systems, the following additional

information is provided:

v On CICS Version 2 systems, if the ABEND code is

ASRA or ASRB, this message is accompanied by the

message ELA00223P and the ABEND exit can

determine the module within which the error

occurred.

v On later CICS systems, if the abend code is ASRA or

ASRB, CICS message DFHAP0001 identifies the

offset in the module at which the error occurred. The

diagnostic control option specified for transaction

abends using the Rational COBOL Runtime

diagnostic control utility determines whether a dump

occurs.

The Rational COBOL Runtime abend handler ends the

program by issuing another ABEND command using

the same code.

User response: See Chapter 23, “Rational COBOL

Runtime Return Codes, Abend Codes, and Exception

Codes,” on page 183 for a description of abend codes

using the format ELAx. See “Common CICS Abend

Codes” on page 191 for CICS or user program

documentation for an explanation of other abend codes.

ELA00223P Program %01C08 abended at offset

%02X08

Explanation: The specified program has abended with

an ASRA or ASRB abend code. This indicates that a

program check has occurred at the specified

hexadecimal offset.

 Rational COBOL Runtime ends the program with a

user abend.

User response: If the program is a generated COBOL

program, use the compile listing to find the COBOL

verb that was running when the program ended

abnormally. The COBOL comments identify the EGL

statements associated with the COBOL verb. Determine

from the dump whether the problem was caused by

bad data passed to the program. If the generated

COBOL program is in error, use your electronic link

with IBM Service or contact the IBM Support Center.

ELA00225P Temporary storage queue name %01C08

is not valid

Explanation: The record-specific variable

recordName.resourceAssociation is set to a temporary

storage queue name that is not valid. The name

conflicts with a queue name that is reserved for

Rational COBOL Runtime. Names cannot begin with

EZE.

 The run unit ends.

User response: Specify a valid temporary storage

queue name in the program.

ELA00228P The program attempted to use the

resource %01C65 with file %02C07 and

file %03C07

Explanation: The program attempted to associate the

same system resource with two different files. The

resource cannot be associated with two different files at

the same time.

 The run unit ends.

User response: Examine the program and correct the

logic. Generate and test the affected programs again.

220 IBM Rational COBOL Runtime Guide for zSeries

ELA00229P Invocation of sysVar.startTransaction

failed, transID = %01C04, terminal ID =

%02C08

Explanation: This message is accompanied by the

message ELA00204I, which displays the contents of

EIBRESP.

 Common codes are as follows:

11 TERMID error

 The specified terminal ID is not known to

CICS.

28 TRANSID error

 The specified transaction ID is not known to

CICS.

 The run unit ends.

User response: Have the system administrator define

the terminal or transaction to CICS.

ELA00230P An error was encountered accessing

CICS queue %01C08

Explanation: An error was received when attempting

to access a CICS queue. The queue can be a transient

data queue or temporary storage queue. This message

is accompanied by message ELA00204I, which contains

response codes from the CICS EXEC interface block

(EIB).

 The run unit ends.

 Rational COBOL Runtime issues a dump based on

information supplied for the transaction with the

diagnostic controller utility.

User response: Refer to the CICS application

programmers’ guide for an explanation of the response

codes.

ELA00231P Error encountered retrieving data passed

to program %01C08

Explanation: An error was received when attempting

to retrieve data being passed to this program by a

transfer to transaction or show statement or by a

sysVar.startTransaction() system function. This message

is accompanied by message ELA00204I, which contains

response codes from the CICS EXEC interface block

(EIB).

 The run unit ends.

 Rational COBOL Runtime issues a dump based on

information supplied for the transaction with the

diagnostic controller utility.

User response: Refer to the CICS application

programmers’ guide for an explanation of the codes

that are returned.

ELA00232P Form %01C08 in form group %02C06 is

not declared or is not supported

Explanation: The specified form does not exist or is

not defined for the type of device being used.

 The run unit ends.

User response: Specify the correct screenSizes

property for the form. Generate the form group again.

 If you are running on a CICS system, have the system

administrator check that the alternate screen size for

your device type is specified in the PCT entry for your

transaction.

 If the form group name uses the format ELAxxx,

wherexxx is the language code, the form group might

have been modified incorrectly. The ELAxxx form

group contains the Rational COBOL Runtime error

forms.

ELA00237P CICS TS Queue %01X16 error occurred

in work database operation for program

%02C08

Explanation: An error was received when attempting

to access a CICS temporary storage queue. This

message is accompanied by message ELA00204I, which

contains response codes from the CICS EXEC interface

block (EIB).

 If the error is an INVREQ (EIBRESP=16), the problem

might be caused by Rational COBOL Runtime

attempting to write a record that is longer than the

control interval size for the VSAM data sets used for

the auxiliary storage queue. The maximum

segmentation record size written by Rational COBOL

Runtime is set by the TSQUE option in the installation

options module ELARPIOP. TSQUE specifies the

maximum size as the number of kilobytes; the default

value is 16 KB.

 The run unit ends.

User response: Refer to the CICS application

programmers’ guide for an explanation of the codes.

 If the control interval size is the problem, have the

system administrator assemble the installation module

again after setting the TSQUE value to a value less than

the control interval size.

 Refer to the Rational COBOL Runtime program

directory for your system for more information.

ELA00239P Print services program %01C08 cannot

support print request from program

%02C08

Explanation: A program and a print services program

were generated with different values for the

formServicePgmType build descriptor option. The

print services program does not contain the type of

print support (GSAM or SEQ) required by the program.

Appendix. Rational COBOL Runtime Messages 221

The run unit ends.

User response: Generate the form group again with

the formServicePgmType build descriptor option

required by the program. Be sure to include all the

types of printing that are required for any program that

uses the form group.

ELA00249P Mapping services program %01C08

compiled with DATA(31) cannot be used

by program

Explanation: A form services program compiled with

the DATA(31) compiler option has been loaded for a

program link-edited as AMODE(24).

User response: Compile the form services program

again with the COBOL DATA(24) option; and make

sure that the data build descriptor option is set to 24

whenever the form group is generated.

ELA00250P Program cannot process data with 31-bit

addresses

Explanation: The initial program in the run unit was

compiled with DATA(31). The current program was

link-edited as AMODE(24). This is not compatible.

User response: Do one of the following:

v Compile the initial program in the run unit as

DATA(24).

v Link-edit the current program as AMODE(31).

ELA00251P Data table %01C08 compiled with

DATA(31) cannot be used by program

Explanation: A data table compiled with the

DATA(31) compiler option has been loaded for a

program link-edited as AMODE(24).

User response: Compile the data table program again

with the COBOL DATA(24) option. Also ensure the

data=24 build descriptor option is specified whenever

the data table is generated.

ELA00252P Error on file %01C08, queue name

%02C08, RC = %03C08

Explanation: An I/O logic error was detected by

Rational COBOL Runtime during processing of an I/O

statement for a CICS temporary storage queue.

 Program processing ends on any nonzero status code if

the I/O statement is not in a try block; and ends on a

hard error if the I/O statement is in a try block when

vgVar.handleHardIOErrors is set to 0.

 Because the error was detected by Rational COBOL

Runtime instead of the access method, the return code

value consists of the characters RS (for runtime

services) followed by a Rational COBOL return code

number.

The run unit ends.

 Rational COBOL Runtime issues a dump based on

information supplied for the transaction with the

diagnostic controller utility.

User response: See Chapter 22, “Common System

Error Codes for z/OS Systems,” on page 167 to

determine the meaning of the Rational COBOL return

code, and take the appropriate action.

ELA00253P Program %01C08 was not generated to

receive form %02C08

Explanation: The specified program received a form

as an input form, but the program does not contain

processing logic for handling segmented programs.

Either the wrong transaction name was specified when

the program was started, or the wrong program was

specified in the transaction definition.

 The transaction ID contained in sysVar.transactionID

system variable before a segmented converse.

 The program was started as a result of one of the

following:

v Specifying a new value for the sysVar.transactionID

system variable before issuing a converse statement

in a segmented Text UI program instead of using the

original transaction code. After the user entered

input data, processing returned to the wrong

program because the new transaction code is not

associated with the program that issued the converse

statement.

v In IMS/VS, using the /FORMAT command for a

form that specifies the transaction code for the

program.

The program must specify either an inputForm

property or specify the segmented=YES property and

issue a converse statement for the form being received.

 The run unit ends.

User response: Make sure that the following are

specified correctly:

v The transaction ID specified on the show statement

v The form name in the inputForm program property

v The transaction ID contained in sysVar.transactionID

system variable before a segmented converse

Generate the modified program again.

ELA00254P Invalid values for sysLib.audit, journal

ID = %01D05, type = %02C02, length =

%03D05

Explanation: A parameter in sysLib.audit() is not

valid:

v The journal ID must be between 1 and 99

222 IBM Rational COBOL Runtime Guide for zSeries

v The third byte in the record must be in the range

X’A0’ to X’FF’

v The record length must be between 28 and 32763

The run unit ends.

 Rational COBOL Runtime issues a dump based on

information supplied for the transaction with the

diagnostic controller utility.

User response: Correct the error and generate the

program again.

ELA00255P Invalid values for sysLib.audit, type =

%01C02, length = %02D05

Explanation: A parameter in sysLib.audit() is not

valid:

v The third byte in the record must be in the range

X’A0’ to X’FF’

v The record length must be between 28 and 32767

The run unit ends.

User response: Correct the error and generate the

program again.

ELA00260E %01D08 bytes of VGUI record do not fit

in %02D08 byte buffer

Explanation: The program issued a converse or show

statement for a VGUI record. There was not enough

room in the communications buffer for the record. The

buffer needs space for the record plus any message

information written using the sysLib.setError() system

function.

User response: Modify the program to reduce the size

of the VGUI record or write fewer or smaller error

messages.

ELA00261E sysLib.setError message information and

inserts do not fit in %01D08 byte buffer

Explanation: The program invoked the

sysLib.setError() system function one or more times to

write messages associated with a VGUI record. The

information associated with the last message written

does not fit into the buffer used by the program for

communicating with the user.

User response: Modify the program to write fewer or

smaller error messages.

ELA00262E VGWebTransaction program and VGUI

record bean %01C18 are incompatible

Explanation: A VGWebTransaction program was

started with information from a VGUI record bean that

is not known to the VGWebTransaction program or

whose definition is not compatible with the VGUI

record definition with which the program was

generated.

User response: Ensure that the specified VGUI record

is specified in the inputUIRecord property for the

program. Generate the program and the Java beans

using the same VGUI record definition.

ELA00263E Number of elements value %01C10 is

out of range for structured field array at

offset %02X08

Explanation: A VGWebTransaction program could not

write a VGUI record because the value in the number

of elements item for a structured field array in the

record was less than 0 or greater than the maximum

size defined for the array.

User response: Correct the program logic so that it

sets the value of the number of elements item to a

value within the allowed range.

ELA00264E Input data entered by the user does not

fit in the VGUI record

Explanation: A VGWebTransaction program received

input data from the Web server that does not fit in the

VGUI record. The VGWebTransaction program and the

Java bean associated with the VGUI record might have

been generated at different times with incompatible

VGUI record declarations.

User response: Generate the program and the Java

beans using the same VGUI record definition. Contact

IBM support if this does not correct the problem.

ELA00265E Segmented converse is not supported

when local variables or function

parameters are in the run-time stack

Explanation: The message indicates that a converse

statement is not valid because the EGL run time cannot

restore the values of function parameters or local

variables after the converse runs.

 For more information, refer to the EGL help topic on

segmentation.

 The runtime stack is a list of functions; specifically, the

current function plus the series of functions whose

running made possible the running of the current

function.

User response: Modify the program in one of two

ways:

v Ensure that the functions on the runtime stack have

neither parameters nor local variables

v Ensure that the converse is not segmented.

Appendix. Rational COBOL Runtime Messages 223

ELA00266E MQ function %01C08, Completion Code

%02C02, Reason Code %03C08.

Explanation: The MQ function did not complete

successfully, as indicated by the following completion

codes:

1 MQCC_WARNING

2 MQCC_FAILED

 The reason for the completion code is set in the reason

code field by MQSeries®. Some common reason codes

are:

2009 Connection broken

2042 Object already open with conflicting options

2045 Options not valid for object type

2046) Options not valid or not consistent

2058 Queue manager name not valid or not known

) 2059 Queue manager not available for connection

2085 Unknown object name

2086 Unknown object queue manager

2087 Unknown remote queue manager

2152 Object name not valid

2153 Object queue-manager name not valid

2161 Queue manager quiescing

2162 Queue manager shutting down

2201 Not authorized for access

2203 Connection shutting down

 The run unit ends.

User response: Refer to the MQSeries Application

Programming Reference for further information on

MQSeries completion and reason codes.

ELA00267E Queue Manager Name %01C48.

Explanation: This is the name of the queue manager

associated with the failing MQ function call listed in

message ELA00266. If the failing MQ function was

MQOPEN, MQCLOSE, MQGET, or MQPUT, the name

identifies the queue manager specified with the object

name when the queue was opened. Otherwise, the

name is the name of the queue manager to which the

program is connected (or trying to connect). If the

queue manager name is blank, the queue manager is

the default queue manager for your system.

 The run unit ends.

User response: Refer to the MQSeries Application

Programming Reference for further information on the

MQSeries completion and reason codes that are listed

in message ELA00266.

ELA00268E Queue Name %01C48.

Explanation: This is the name of the queue object

associated with the failing MQ function call listed in

message ELA00266.

 The run unit ends.

User response: Refer to the MQSeries Application

Programming Reference for further information on

MQSeries completion and reason codes that are listed

in message ELA00266.

ELA00269E Array index value %01D07 out of range

for array %02C18 with size of %03D07

Explanation: The index specified for the dynamic

array is out of bounds.

User response: Specify an index between 1 and the

current number of elements in the array.

ELA00270E An attempt was made to exceed the

maximum size of array %01C18

Explanation: An attempt was made to add an element

to a dynamic array that already contains the maximum

allowed number of elements.

User response: Modify the program in either of two

ways:

v Increase the value of the dynamic array property

maxSize

v Change the logic so that the number of elements is

always less than or equal to the value of maxSize.

ELA00300I A new copy was requested for part

%01C08

Explanation: A new copy was requested for the

programs associated with the specified part. Newly

started transactions use the new copy of the program.

User response: None required.

ELA00301I The diagnostic control options were

changed

Explanation: The diagnostic control options were

changed after a user request from the Rational COBOL

Runtime Diagnostic Control utility.

User response: None required.

ELA00302I Error message queue sent to print

destination

Explanation: The contents of the transient data queue

containing the error messages were sent to the spooling

system after a user request from the Rational COBOL

Runtime Diagnostic Print utility.

User response: None required.

224 IBM Rational COBOL Runtime Guide for zSeries

ELA00303I Error message queue sent to print

destination and deleted

Explanation: The contents of the transient data queue

containing the error messages were sent to the spooling

system after a user request from the Rational COBOL

Runtime Diagnostic Print utility. The contents of the

transient data queue were then deleted.

User response: None required.

ELA00304A Type a valid selection number, then

press Enter

Explanation: The selection number entered for a field

on one of the Rational COBOL Runtime utility panels is

not valid. The cursor is positioned at the field in error.

User response: Type a valid selection and press Enter.

ELA00305A Type a name, then press Enter

Explanation: A required field was left blank on one of

the Rational COBOL Runtime utility panels. The cursor

is positioned at the empty field.

User response: Type a valid name and press Enter.

ELA00306P CICS new copy was not successful for

program %01C08. Press F2.

Explanation: The CICS SET NEWCOPY command

was not successful for the specified part. The specified

part was requested on the Rational COBOL Runtime

New Copy panel.

User response: Press F2 to view message ELA00204I,

which contains the CICS response information from the

EXEC interface block (EIB). Verify that the part name is

correct. Refer to the CICS application programmers’

guide for an explanation of the EXEC interface block

(EIB) codes.

ELA00308P I/O error on error message queue. Press

F2.

Explanation: A CICS error occurred when attempting

to gain access to the error destination queue identified

on the Rational COBOL Runtime Diagnostic Print

panel.

User response: Press F2 to view message ELA00204I,

which contains the CICS response information from the

EXEC interface block (EIB). Verify that the error

destination name is correct. Refer to the CICS

application programmers’ guide for an explanation of

the EXEC interface block (EIB) codes.

ELA00309A Error message queue was not found

Explanation: The error destination queue identified on

the Rational COBOL Runtime Diagnostic Print panel

was not found.

User response: Specify the correct error destination

queue name on the panel.

ELA00310A Type a valid response, then press Enter.

Explanation: A value that was not recognized was

specified in the field where the cursor is positioned.

Valid values are shown following the field on the form.

User response: Type a valid value in the field and

press Enter.

ELA00313I Default options are in effect for this

transaction

Explanation: You made a request to view the

diagnostic control options in effect for a specific

transaction. The options currently in effect for the

transaction are the default options.

User response: To exit, press F3. To change the

options for this transaction do as follows:

1. Type the new options

2. Select action 1

3. Press Enter

ELA00314I Error message queue was empty

Explanation: A request was made to print an error

message queue that does not contain any messages.

User response: None required.

ELA00315I Trace transaction list was updated

successfully

Explanation: The list of transactions you specified to

be traced has been processed successfully.

User response: None required.

ELA00316I Trace filter criteria updated successfully

Explanation: The list of trace filter criteria you

specified has been processed successfully.

User response: None required.

ELA00317P Service number is not valid

Explanation: The trace filter criteria contains a service

number that is not valid. For z/OS Batch or IMS BMP,

if this error is detected during ELATRACE data set

parsing, the run unit ends.

User response: Do one of the following:

Appendix. Rational COBOL Runtime Messages 225

v For z/OS Batch or IMS BMP, correct the service

number specification in the ELATRACE data set and

run the program again.

v For CICS or IMS/VS programs, correct the service

number.

ELA00318P Tag in %01C08 is not valid

Explanation: The filter criteria contains a tag that is

not valid. Valid tags are FILTER, EFILTER, APPLS,

EAPPLS, SERVICES, and ESERVICES.

 The run unit ends.

User response: Correct the tag specification and run

the program again.

ELA00319P Missing or misplaced tag in %01C08

Explanation: The filter criteria contains a missing or

misplaced tag. The run unit ends.

User response: Correct the filter criteria and run the

program again.

ELA00320P Too many programs in %01C08

Explanation: The filter criteria contains too many

programs. The maximum number is 16. The run unit

ends.

User response: Reduce the number of programs or

remove all program filter criteria, then run the program

again.

ELA00321P Too many services in %01C08

Explanation: The filter criteria contains too many

services. The maximum number is 32. The run unit

ends.

User response: Reduce the number of services or

remove all service filter criteria, then run the program

again.

ELA00322P One or more filters has a invalid value

Explanation: One or more codes entered for the

DATASTREAM, TRACETOFILE, APPSTMT, SQLIO,

SQLERR or IDUMP filters is not valid. The valid code

that is entered must be either Y (yes) or N (no).

 For z/OS batch or IMS BMP, the run unit ends.

 If you are defining filters online on z/OS CICS or

IMS/VS, the filter containing the value that is not

correct is highlighted.

User response: Do one of the following:

v For z/OS batch or IMS BMP, specify either Y or N

for these filters and run the program again.

v For CICS or IMS/VS, type one of the valid values for

the highlighted filter as shown on the form, then

press Enter.

ELA00323P I/O error on storage queue %01C08.

Press F2.

Explanation: An error was received when attempting

to access a temporary storage queue in the diagnostic

message print utility. Press F2 to view message

ELA00204I, which contains response codes from the

CICS EXEC interface block (EIB).

User response: Refer to the CICS application

programmers’ guide for an explanation of the codes.

ELA00324P Error reading trace control record. Press

F2.

Explanation: An error was encountered when

attempting to read or write to the trace control record

in CICS. Press F2 to view more information.

 For z/OS CICS, message ELA00204I is displayed,

which contains response codes from the CICS EXEC

interface block (EIB).

User response: Review the accompanying error

messages.

ELA00325P Error opening %01C08

Explanation: An error was encountered when

attempting to open the specified data set.

User response: Make sure that the data set has the

correct attributes.

ELA00326P Error reading %01C08

Explanation: An error was encountered when

attempting to read the specified data set.

User response: Make sure that the data set has the

correct attributes.

ELA00342A The maximum number of copies already

exists for the data table

Explanation: The maximum number of copies of a

data table that can be used in a CICS region at one

time is 5. The request for a new copy of the data table

was rejected.

User response: Old copies of a data table that are in

use are freed when all the transactions that are using

the data table end. Retry the new copy request later.

226 IBM Rational COBOL Runtime Guide for zSeries

ELA00363P An incompatible terminal configuration

change has been detected

Explanation: Rational COBOL Runtime detected a

change to a terminal that is different from the previous

terminal on which the program was running. Changing

terminal configurations while a program is running is

not supported.

 The run unit ends.

User response: Restart the program.

ELA00364I Snap dump is in progress

Explanation: This is an informational message which

is displayed on the screen to inform you that a problem

has occurred and that a snap dump is being taken.

User response: The snap dump could take a while.

When the snap dump is complete, a Rational COBOL

Runtime error panel is generally displayed with

messages indicating what went wrong.

ELA03001I F3=EXIT F8=CONTINUE

Explanation: None.

User response: None required.

ELA03002I F3=EXIT

Explanation: None.

User response: None required.

ELA03003I CLEAR=EXIT

Explanation: None.

User response: None required.

ELA03004I PF3=EXIT PF8=FORWARD

Explanation: None.

User response: None required.

ELA03005I PF3=EXIT

Explanation: None.

User response: None required.

ELA03006I PA1=CONTINUE

Explanation: None.

User response: None required.

ELA03007I IBM Rational COBOL Runtime

Explanation: None.

User response: None required.

ELA09937E Function name %01C48

Explanation: This message provides the name of the

function in which a problem occurred. Other related

messages provide the information about the actual

cause of the error.

User response: None required.

ELA09942I Service property name %01C48

Explanation: This message provides the service

property name in which a problem occurred. Other

related messages provide the information about the

actual cause of the error.

User response: None required.

ELA09943E Required service property does not exist

in service module %01C08

Explanation: The required service property does not

exist in the service module. Message ELA09942I

provides the name of the service property that was

required.

User response: Make sure you are using the correct

service property name.

ELA09944I Entry point name %01C48

Explanation: This message provides the name of the

entry point in a service in which a problem occurred.

Other related messages provide the information about

the actual cause of the error.

User response: None required.

ELA09945E Cannot find entry point in service

module %01C08

Explanation: The requested entry point does not exist

in the service module Message ELA09944I provides the

name of the entry point that was requested.

User response: Make sure you are using the correct

entry point name.

ELA09946E Reference target cannot be resolved in

service module %01C08

Explanation: The reference target does not exist in the

service module Message ELA09948I provides the name

of the reference target that was requested.

User response: Make sure you are using the correct

reference target name.

Appendix. Rational COBOL Runtime Messages 227

ELA09947E Component reference missing target in

service module %01C08

Explanation: The component reference does not exist

in the service module Message ELA09949I provides the

name of the component reference that was requested.

User response: Make sure you are using the correct

component reference name.

ELA09948I Reference name %01C48

Explanation: This message provides the reference

name in a service in which a problem occurred. Other

related messages provide the information about the

actual cause of the error.

User response: None required.

ELA09949I Component name %01C48

Explanation: This message provides the component

name in a service in which a problem occurred. Other

related messages provide the information about the

actual cause of the error.

User response: None required.

ELA09951I Service target name %01C48

Explanation: This message provides the service target

name in a service in which a problem occurred. Other

related messages provide the information about the

actual cause of the error.

User response: None required.

ELA09952E Cannot find service target in service

module %01C08

Explanation: The service target does not exist in the

service module Message ELA09951I provides the name

of the service target that was requested.

User response: Make sure you are using the correct

service target name.

ELA09954E Type cast exception

Explanation: A type cast exception occurred in the

program. This message provides the exception text.

Other related messages provide the program name, the

function name, the EGL line number, and the exception

code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09955E Index out of bounds exception

Explanation: An index out of bounds exception

occurred in the program. This message provides the

exception text. Other related messages provide the

program name, the function name, the EGL line

number, and the exception code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09956E Invocation exception

Explanation: A invocation exception occurred in the

program. This message provides the exception text.

Other related messages provide the program name, the

function name, the EGL line number, and the exception

code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09958E Service binding exception

Explanation: A service binding exception occurred in

the program. This message provides the exception text.

Other related messages provide the program name, the

function name, the EGL line number, and the exception

code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09959E Service invocation exception

Explanation: A service invocation exception occurred

in the program. This message provides the exception

text. Other related messages provide the program

name, the function name, the EGL line number, and the

exception code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09960E SQL exception

Explanation: An SQL exception occurred in the

program. This message provides the exception text.

Other related messages provide the program name, the

function name, the EGL line number, and the exception

code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

228 IBM Rational COBOL Runtime Guide for zSeries

ELA09961E MQ I/O exception

Explanation: An MQ I/O exception occurred in the

program. This message provides the exception text.

Other related messages provide the program name, the

function name, the EGL line number, and the exception

code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09962E File I/O exception

Explanation: A file I/O exception occurred in the

program. This message provides the exception text.

Other related messages provide the program name, the

function name, the EGL line number, and the exception

code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09963E DL/I exception

Explanation: A DL/I exception occurred in the

program. This message provides the exception text.

Other related messages provide the program name, the

function name, the EGL line number, and the exception

code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09964E User thrown exception

Explanation: A user thrown exception occurred in the

program. This message provides the exception text.

Other related messages provide the program name, the

function name, the EGL line number, and the exception

code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09972E Null value exception

Explanation: A null value exception occurred in the

program. This message provides the exception text.

Other related messages provide the program name, the

function name, the EGL line number, and the exception

code.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

ELA09973I Condition code %01C04

Explanation: An exception occurred in the program.

This message provides the exception code. Other

messages provide the program name, the function

name, the EGL line number, and the exception text.

User response: None required.

ELA09974E Unhandled exception occurred. EGL

line: %01C06

Explanation: An exception occurred in the program.

This message provides the EGL line number within the

generated COBOL program. Other messages provide

the program name, the function name, the exception

code, and the exception text.

User response: Modify the program to prevent the

exception from occurring or to handle the exception.

Generate the program again.

FZE messages

Appendix. Rational COBOL Runtime Messages 229

FZE10014I ABEND %01C04 HAS OCCURRED,

TRAN= %02C04 %03C08 %04D05

Explanation: CICS has detected an abend in the

specified transaction. The time and date the abend was

detected is listed. This message appears in the CSMT

queue. If the abend is an ATNI, then the following

information will also appear:

 DATASTREAM FROM LAST TD QUEUE RECORD READ:

data in hex format... *data in character format*

 DATASTREAM SENT TO THE DEVICE:

data in hex format... *data in character format*

 The above information shows the last transient data

queue record read, as well as the data sent to the

device which caused the ATNI abend. The data appears

in both hex and character format, much like the data

would appear in a CICS transaction dump.

User response: The Rational COBOL Runtime print

transaction continues to run. Determine the cause of the

CICS abend and run the transaction again if desired.

FZE10040I PRINT TRANSACTION NOT

STARTED FROM TRANSIENT DATA

Explanation: The Rational COBOL Runtime print

transaction (program FZETPRT) received control for

other than a transient data queue trigger level. Probable

cause: XSPP entered at a terminal.

User response: Contact your system administrator.

FZE10060P PARAMETER ERROR

Explanation: One or more of the input parameters

was specified incorrectly.

User response: If you were initializing a file, check the

parameter list you specified. Correct it and try the

procedure again. This message should not occur during

the installation procedure. If this error occurs during

installation, contact the IBM Support Center for

assistance.

FZE10061P ERROR OPENING %01C08 REG

15=%02X03, ERR=%03X03

Explanation: An error occurred while attempting to

open the named VSAM file.

User response: Look up the return code in register 15

and the feedback (or reason) code in the appropriate

VSAM manual for your operating environment. Correct

the problem and try this procedure again.

FZE10062P ERROR WRITING %01C08 REG

15=%02X03, ERR=%03X03

Explanation: An error occurred while attempting to

write to the specified VSAM file.

User response: Look up the return code in register 15

and the feedback (or reason) code in the appropriate

VSAM manual for your operating environment. Correct

the problem and try this procedure again.

FZE10064I SUCCESSFUL COMPLETION

Explanation: This step in the installation procedure

FZEZVCPO finished correctly.

User response: None required.

FZE10065I RECORDS READ: %01D08

Explanation: This shows the number of records read

from the source statement library or from the system

logical unit SYSIPT.

User response: None required

FZE10066I RECORDS WRITTEN: %01D08

Explanation: The indicated number of records were

written to the VSAM output file.

User response: None required.

FZE10067I FILE %01C08 ALREADY LOADED

Explanation: The specified output file has already

been loaded or initialized. This message occurs when a

file is being initialized or conditionally loaded.

User response: None required.

FZE10068P SOURCE LIB I/O ERROR FOR FILE

%01C08

Explanation: There was an error reading from the

specified input file.

User response: Check the listings for the return codes

from the previous steps of the installation procedure to

determine if the source statement library installed

correctly. If the return code was not zero, correct the

problem and run the previous step again. Then run this

step again.

FZE10069P MISSING SOURCE MEMBER %01C08

Explanation: The specified source library member

necessary for input to this step in the installation

procedure is missing.

User response: Check the listings for the return codes

from the previous steps of the installation procedure to

determine if the source statement library installed

correctly. If the return code was not zero, correct the

230 IBM Rational COBOL Runtime Guide for zSeries

problem and run the previous step again. Then run this

step again.

PRM messages

PRM00001P Invalid parameter group name %01C08

Explanation: The parameter group name specified is

not valid. Parameter group names may be 1 through 8

alphanumeric characters.

User response: Correct the parameter group name and

retry the request.

PRM00002I New parameter group being defined

Explanation: You have entered a parameter group

name which has not been previously defined. You may

enter the parameters for the new parameter group to

complete this definition. If you do not enter any

parameters and you press Enter to save the group, then

an empty group will be created.

User response: None required.

PRM00003P Invalid selection character

Explanation: You are have entered a selection code

which is not valid. Valid selection codes are:

’S’ Select a parameter group for update.

’D’ Delete an existing parameter group.

User response: Correct the selection character and

retry the request.

PRM00004P Already at top or bottom of list

Explanation: You attempted to do one of two things:

v Scroll forward on the last screen of the list

v Scroll backward on the first screen of the list.

No scrolling occurred.

User response: Do not attempt to scroll beyond the

start or the end of the list.

PRM00005I Function key not supported

Explanation: You have used a function key that is not

supported by the facility. The keys which are available

are described in the top portion of the form.

User response: Check the description of what

functions are available, and use a different function key.

PRM00006I Specified parameter group(s) not found

Explanation: You have requested to view a list of

parameter groups, and no parameter group exists for

the search conditions you have specified.

 If you entered a question mark (’?’) to view a list of all

parameter groups, then your parameter group file is

empty.

User response: If you have made an error, then correct

the problem and retry the request.

PRM00007P Unexpected I/O error occurred, RC =

%01C08

Explanation: You have attempted an operation against

the parameter group file and an I/O error has

occurred. The operation was not completed.

 This error indicates some damage has occurred to the

parameter group file. This error should be corrected

before any further maintenance to your parameter

groups is attempted.

User response: Contact your Systems Programmer.

PRM00008P File is full, parameter group cannot be

added

Explanation: You have attempted to add a parameter

group to your parameter group file, which is full. The

parameter group has not been added.

User response: Review your existing parameter

groups to determine if any of them can be deleted.

Deleting existing parameter groups will make room for

new groups that you want to add. If you are not able

to delete any existing parameter groups, then the

parameter group file must be redefined to allow more

entries.

PRM00009I Operation(s) successfully completed

Explanation: You have successfully completed the

operation requested. The possible operations are:

v Addition of a new parameter group.

v Modification of an existing parameter group.

v Deletion of an existing parameter group.

User response: None required.

PRM00010P Parameter group file EZEPRMG not

found

Explanation: Either the name was specified incorrectly

or the file is not properly defined to the system.

User response: Ensure the parameter group file is

defined and associated with EZEPRMG as the FCT

entry name on CICS systems.

PRM00011P Unable to connect to parameter group

file EZEPRMG

Appendix. Rational COBOL Runtime Messages 231

Explanation: The Parameter Group Utility was unable

to connect to the parameter group file. The file must be

associated and defined to the system.

User response: Verify the file name specified has been

defined and associated with EZEPRMG as the FCT

entry name on CICS systems.

232 IBM Rational COBOL Runtime Guide for zSeries

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you. This

information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated

in new editions of the publication. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this publication at any time

without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1994, 2006 233

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

P.O. Box 12195, Dept. TL3B/B503/B313

3039 Cornwallis Rd.

Research Triangle Park, NC 27709-2195

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in

source language, which illustrates programming techniques on various operating

platforms. You may copy, modify, and distribute these sample programs in any

form without payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any

form without payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application programming

interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows: 9999 (your company name) (year). Portions

234 IBM Rational COBOL Runtime Guide for zSeries

of this code are derived from IBM Corp. Sample Programs. 9999 Copyright IBM

Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 CICS

 CICS/ESA®

 DB2

 IBM

 IMS

 Language Environment

 RACF

 VisualAge

 WebSphere® Studio

 WebSphere

 z/OS

The following terms are trademarks of other companies:

Microsoft®, Windows, and Windows NT® are trademarks or registered trademarks

of Microsoft Corporation.

Notices 235

236 IBM Rational COBOL Runtime Guide for zSeries

Index

Special characters
/FORMAT command 111

/HOLD command 111

/MODIFY command 110

/WORKDBType build descriptor option
IMS 15

A
abend

ASPE
CICS 39

codes
CICS 183, 191

COBOL 189

IMS runtime 190

non-CICS environments 185

preparation 163

system 187

dumps
COBOL 151

Rational COBOL Runtime 151

recovery considerations
z/OS 45, 48, 49, 57, 58

activating trace sessions
CICS 156

adding
file name to the CICS file control table

z/OS 42

job control statements
z/OS 42

addressing, extended 31

alternate index, defining 28

alternate PCB, using 52

American National Standards printer

control character
z/OS 33, 35

AMODE 6, 7

analyzing
detected errors 148

application
load module storage for Rational

COBOL Runtime 5

plan for DB2 15

applying maintenance to
Rational COBOL Runtime 3

ASA (see also American National

Standards printer control character) 35

ASPE abend, preventing 39

attributes for DBCS, hardware 31

B
backing up data 32

backup, maintaining copies of production

libraries 118

batch
print services program 78

BIND
command

data set 72

default 77

defining 77

DB2 programs 32

precompile messages 164

buffer size, printing
CICS 37

build descriptor
and compiler options that affect

performance 27

options
commentLevel 149

errorDestination 140, 145, 146

imsFastPath 140, 189, 190

imsLogID 140, 146

initAdditionalWS 187

initIORecords 187

language code 145, 146, 147

mfsDevice 189, 190

mfsExtendedAttr 189, 190

mfsIgnore 189, 190

mfsUseTestLibrary 189

performance considerations 27

restoreCurrentMsgOnError 140

spaSize 53, 108

targetNLS 188

trace 155

output files 74

C
catastrophic error 143

cautions
empty KSDS data set, VSAM

restriction 30

PRTMPP parameter, line skip

malfunction 37

CEDA transaction, RDO 93

change or view
defaults - ELAC04 128

options - ELAC02 127

checking
access authorization

z/OS 32

database authorization
CICS 32

IMS 57

CICS
abend codes 191

activating trace sessions 156

database
recovery considerations 45

DB2 considerations 12, 45

destination control table (DCT)
printing, DBCS 38

sample entry 44

transient data queue name 35

diagnostic control options 126

DL/I considerations 11, 45

CICS (continued)
ELAC transaction 126

ELAM transaction 121

ELAN transaction 122

ELAU transaction 124

EZEZ transaction 35

file descriptions 33

installation considerations 11

mode, pseudoconversational,

residency consideration 41

monitoring and tuning 12

new modules 95

parameter group
print file 33

parameter group, creating and

maintaining 129

PCT (program control table), printing,

DBCS 38

performance
considerations 40

preparation 93

PRIN transaction 35

print destination, specifying in

DCT 44

printing
buffer size 37

DBCS (double-byte character

set) 35, 38

DCT (destination control table) 35

destination control table

(DCT) 35, 44

double-byte character set

(DBCS) 35

EZEZ transaction 35

file description 33

form-feed 35

FORMFD=NO parameter 35

FZETPRT program 36, 44

parameter, PRTTYP 38

PCT (program control table),

FZETPRT program 38

PRIN transaction 35

printer destination 44

program control table (PCT) 38,

44

PRTBUF parameter 36

PRTMPP parameter 36

PRTTYP parameter 36

SEND command 37

terminal control table (TCT),

entry 44

transient data queue 44

processing mode
types 34

program control table (PCT)
DTB=YES and DBP value 44

printing, DBCS 38

pseudoconversational
processing mode 41

programs and residency 41

© Copyright IBM Corp. 1994, 2006 237

CICS (continued)
residency

considerations 40, 41

general rules 40

resource tables 93

security considerations 12

spool files 13

startup JCL 95

storage facilities used by Rational

COBOL Runtime 8

system considerations 33

temporary storage queues for Rational

COBOL Runtime 13

terminal control table (TCT),

entry 44

terminal printing 35

transaction
EZEZ 35

PR01 transient data queue 44

PRIN 35

transactions, passing transient data

between 44

transient data queue 35

utilities
(see also CICS, utilities) 121

diagnostic control facility,

ELAM 121

diagnostic control options,

ELAC 126

diagnostic message printing,

ELAU 124

menu 12

new copy utility, ELAN 122

CICS, PRGM transaction 131

CICS, utilities, change diagnostic control

options 126

CICS, utilities, default diagnostic control

options 128

CICS, utilities, parameter group utility,

PRGM 131

CICS, utilities, PRGM, parameter group

utility 131

CICS, utilities, view diagnostic control

options 126

CICS/ESA
monitoring and tuning 12

clearing records from databases 59

client/server 95

CLIST
modifying 99

templates 99

CMPAT parameter, IMS 52

COBOL
abend codes 189

abend dumps 151

abends under CICS 192

DATA compiler option 6, 7, 13

status key values 181

WSCLEAR option 18

COBOL dynamic storage
for Rational COBOL Runtime 6

codes
abend, IMS 190

return
Rational COBOL Runtime 170

SQL 177

sysVar.errorCode 167, 169

common system return codes 167

compatibility considerations,

sysVar.returnCode 167

compiler options that affect

performance 27

considerations
batch

DB2 48

DL/I 48

program runtime support 48

system 47

customization 17

database integrity
DB2, CICS 45

DB2, IMS 57

IMS 54

database recovery
IMS 54

DB2
CICS 45

DB2 database recovery
CICS 45

IMS 57

DL/I
CICS 45

IMS 58

z/OS batch 48

DL/I database integrity and recovery
CICS 45

IMS 58

z/OS batch 49

message format services 64

performance
CICS 40

compiler options 27

IMS 54, 56

link pack area 55

printing
IMS 53

recovery
IMS 54

residency
CICS 40

system
backing up data 32

CICS 33

DBCS 31

extended addressing 31

IMS 51

tuning IMS 57

z/OS/XA 31

control block 152

control character, American National

Standards, printer 33

control region in IMS 15

controlling error reporting
CICS 140

IMS 140

conversational processing mode,

CICS 34

creating
MFS control blocks 109

customizing
JCL procedures 18

Rational COBOL Runtime 17

D
DATA compiler option 6, 7, 13, 14

data file
backing up 32

defining 42

program, defining 28

data queue
extrapartition 44

intrapartition 44

transient 43

data set
bind command 72

CICS
PCT entries 73

PPT entries 73

DB2 database request module 72

DBRMLIB 72

EZEBIND 72

EZEJCLX 72, 117

EZEPCT 73

EZEPPT 73

EZEPRINT 47, 103, 114

EZESRC 73

load library 73

loading KSDS files 30

object library 72

SYSLIN 72

SYSLMOD 73

user 72

database
expanding 60

multiple
work 63

request module, DB2 72

work
clearing records 58

expanding 60

maintaining 58

database authorization
checking

IMS 57

z/OS 32

database integrity and recovery

considerations
DB2

CICS 45

IMS 57

DL/I
CICS 45

IMS 58

z/OS batch 49

IMS 54

DB Tools product 57

DB2
checking authorization

IMS 57

z/OS 32

considerations
CICS 12, 45

IMS 14

z/OS Batch 11

database
request module data set 72

table space 61, 62

database integrity and recovery

considerations
CICS 45

238 IBM Rational COBOL Runtime Guide for zSeries

DB2 (continued)
database integrity and recovery

considerations (continued)
IMS 57

precompile
messages 164

program plan 15

programs
bind 32

work database
clearing records 59

expanding the table space 61

IMS 15

multiple 63

DBCS (double-byte character set)
data on a non-DBCS terminal 112

hardware attributes 31

printing
CICS 35, 38, 44

DBRMLIB 72

DCAPRMG file, parameter group for

FZETPRT 36

DCT (destination control table)
entries 94

printing, DBCS 38

sample entry 44

transient data queue 35

trigger level 35

DD statements by file type 100

deactivating a trace session 161

default
print destination, IMS 53

defining
alternate index 28

data files 42

ESDS (serial) data set 28

KSDS (indexed) data set 28

program data files 42

program specification block (PSB)
IMS 52

RRDS (relative) data set 28

transient data
extrapartition 44

intrapartition 44

transient data files
extrapartition 44

intrapartition 44

transient data queues
extrapartition 43, 44

intrapartition 43, 44

VSAM data files 28

deleting old records from the work

database 58

descriptions
CICS files 33

IMS files 51

destination control table (DCT)
entries 94

printing, DBCS 38

sample entry 44

transient data queue 35

trigger level 35

destination, default print, IMS 53

detecting errors 139

determining position in program 153

DFHAC2016 messages 191

DFHAC2206 messages 191

DFS057I error message 189

DFS064 error message 189

DFS182 error message 189

DFS2082 error message 113, 190

DFS2766I error message 113, 190

DFS555I error message 112, 189

diagnosing problems 139

diagnostic control
facility

CICS utilities 121

options
change or view defaults 128

change or view options 127

ELAC transaction 126

diagnostic message print utility,

ELAU 124

disk storage requirements
for Rational COBOL Runtime 8

DL/I
considerations

CICS 11, 45

IMS 58

z/OS batch 48

z/OS Batch 11

integrity and recovery considerations
CICS 45

IMS 58

z/OS batch 49

status codes 179

work database
clearing records 59

expanding the database 60

in IMS 15

multiple 63

double-byte character set (DBCS)
hardware attributes 31

printer 44

DSNX100I messages 164

dumps
snap, listing file on IMS 51

dynamic
interface plan 32

storage utilization in Rational COBOL

Runtime 7

E
ELA2SSQL module 55

ELA2SSQX module 55

ELA2SSQY module 55

ELAC, diagnostic control options 126

ELAC02 panel, change or view

options 127

ELAC04 panel, change or view

defaults 128

ELACJWKD member 63

ELADIAG file 51

ELAM, CICS utilities menu 121

ELAN, new copy utility 122

ELANCccc module 55

ELAPCB macro 52

ELAPRINT system output file 47, 51

ELARPRTM load module 55

ELARPRTR load module 55

ELARSDCB load module 55

ELASNAP file 51

ELAU, diagnostic message printing

utility 124

ELAWKJC2 member 59

ELAWKJCD member 59

ELAWORK work database PCB 52

ELAWORK2 DL/I work database 63

emulating IBM 3270 devices 31

error
detection 139

message
file 51

panel 144

reporting 139

IMS 140

in IMS 112

summary 141

errorDestination message queue 144

ESDS (serial) define cluster 28

expanding
the table space (DB2) 61

work database 60

express alternate PCB 52

extended addressing considerations
z/OS 31

external work file, backing up 32

extrapartition transient data, defining 44

EZEBIND data set 72

EZEDESTP special function word 47

EZEJCLX data set 72

EZEPCT data set 73

EZEPPT data set 73

EZEPRINT data set
IMS 53

specify as PRO1 44

EZEPRMG file
CICS 33

parameter group for FZETPRT 36

EZESRC data set 73

EZETRACE data set 47

EZEZ transaction 35, 44

F
FCT (file control table)

entries 95

user data file 42

file
control table (FCT)

described 95

default message queue, IMS 51

description
CICS 33

IMS 51

descriptions 33

error message 51

from generation 74

parameter group 33

snap dump listing, IMS 51

system output 47

trace 47

file control table (FCT)
entries 95

user data file 42

form feed
order (see American National

Standards printer control

character) 35

Index 239

form feed (continued)
printing 35

form group
format module 78

FORMFD parameter
option=NO, forms alignment 35

parameter group for PRIN or

EZEZ 38

used with FZETPRT program 36

function
new copy 39

preload, IMS 54

FZETPRT program 38

DBCS considerations 38

PRIN or EZEZ transaction 44

special parameter group 36

terminal printing support in CICS 35

FZEZREBO utility, initializing indexed

files 30

G
generated applications

with PL/I programs 18

generating
application control block 52

H
hardware attributes for DBCS 31

I
IBM 3270 device, emulating 31

IBM 5550 family of terminals 31

IDCAMS program
BLDINDEX command 28

DEFINE PATH command 28

loading indexed files 31

REPRO command 28, 30

IGYOP3091W error message 164

IGYOP3093W error message 165

IGYOP3094W error message 165

IGYPA3013W error message 165

IGYPG3113W error message 165

IGYPS2015I error message 164

IGYPS2023I error message 164

IGYSC2025W error message 165

improving
performance 56

library lookaside (LLA) 28

link pack area (LPA) 28

virtual lookaside facility (VLF) 28

response time 56

IMS
control region 15

database
authorization checking 57

integrity considerations 54

recovery considerations, DB2 57

recovery considerations, DL/I 54

DB2 considerations 14

default
message queue file 51

print destination 53

DL/I considerations 58

IMS (continued)
ELAPCB macro 52

error
controlling, generation

options 140

messages 112

reporting 112

file descriptions 51

HIPERSPACE buffer usage 56

installation considerations 14

integrity considerations, DB2 57

log format 145

logical unit of work 58

monitoring and tuning 14, 57

new modules 110

performance considerations 56

preload function 54

preloading
program modules 56

Rational COBOL Runtime

modules 55

preparation 107

processing modes 53

program specification block,

defining 52

residency considerations 54

runtime
abend codes 190

messages 189

security considerations 14

segmented mode 53

snap dump listing file 51

system considerations 51

system definition
batch program as an MPP 108

batch-oriented BMP program 109

general 15

interactive program 107

parameters 107

transaction-oriented BMP 109

system printing considerations 53

work database considerations
DB2 15

DL/I 15

IMS DC monitor facilities 14

IMS/ESA exploitation 14

IMS/VS, message format service (MFS)

Control Blocks 56

IMSPARS 57

indexed (KSDS) data set
define cluster 28

loading 30

installation considerations
preparing to install 3

integrity considerations, database
DB2

CICS 45

IMS 57

DL/I
CICS 45

IMS 58

z/OS batch 49

IMS 54

intrapartition transient data
defining 44

J
JCL

by environment 99

examples of runtime 104, 105, 106,

114, 115

modifying 99, 100

modifying runtime 100

tailoring before generation 99

templates 99

job stream data set
runtime 72

K
KSDS (indexed) define cluster 28

L
LE

runtime messages 188

library
backup 32

production copies, maintaining

backup 118

link pack area
loading 55

performance considerations 55

listing file
IMS, snap dump 51

load library data set 73

load module
preloading 55

storage for Rational COBOL

Runtime 5

storage for Rational COBOL Runtime

application 5

loading
modules into link pack area 55

logical unit of work (LUW)
IMS 57, 58

M
macro, ELAPCB 52

maintaining
backup copies of production

libraries 118

work database 58

maintenance, applying to
Rational COBOL Runtime 3

message
format services

considerations 64

description 31, 64

queue file, default, IMS 51

message format service (MFS) control

blocks in IMS 56

messages
DFHAC2016 191

DFHAC2206 191

DFS057I 189

DFS064 189

DFS182 189

DFS2082 113, 190

DFS2766I 113, 190

240 IBM Rational COBOL Runtime Guide for zSeries

messages (continued)
DFS555I 112, 189

DSNX100I 164

IGYOP3091W 164

IGYOP3093W 165

IGYOP3094W 165

IGYPA3013W 165

IGYPG3113W 165

IGYPS2015I 164

IGYPS2023I 164

IGYSC2025W 165

IMS runtime 189

preparation 163

runtime
IMS 189

z/OS 191

z/OS runtime 191

MFS
control blocks 109

mode
CICS execution, performance

considerations 41

processing
CICS 34

IMS 53

models
JCL 99

modifying
IMS system definition

parameters 107

JCL or CLISTs 99

runtime
JCL 100

modules
CICS 95

IMS 110

in memory 28

loading into link pack area 55

preloading 56

monitoring and tuning
CICS 12

IMS system 14, 57

performance 57

moving prepared programs
z/OS 117

multiple work databases 63

N
new copy

function 39

new copy utility 122

new copy utility, ELAN 122

new modules
CICS 95

IMS 110

nonsegmented processing mode,

CICS 34

O
object library data set 72

objects generated
application COBOL program 76

batch print services program 78

BIND command 77

objects generated (continued)
form group format module 78

from generation 74

online print services program 78

runtime
JCL 77

table program 78

online print services program 78

option
preloading

program modules, IMS 56

Rational COBOL Runtime

modules, IMS 55

recovery 39

SPA 53

output of program generation 74

P
panels

Parameter Group Definition

(PRGM02) 132

Parameter Group Specification

(PRGM00) 131

panels, Parameter Group List Display

(PRGM01) 132

parameter
group associated with FZETPRT

program
DCAPRMG file 36

EZEPRMG file 36

resident 40

WORK in ELAPCB 52

Parameter Group Definition panel

(PRGM02) 132

parameter group file, EZEPRMG data set,

CICS 33

Parameter Group List Display panel

(PRGM01) 132

Parameter Group Specification panel

(PRGM00) 131

passing transient data between CICS

transactions 44

PCT (program control table)
entries 94

FZETPRT program 38

performance
considerations 27

CICS 40

general 17, 28

IMS 54, 56

IMS/ESA 56

z/OS batch 49

generation and compiler options 27

HIPERSPACE buffers for IMS 56

library lookaside (LLA) 28

limiting MFS control blocks 56

link pack area 28

monitoring and tuning
IMS 14, 57

preload modules 110

RES(YES) parameter, RDO DEFINE

PROGRAM command 94

tuning IMS 57

virtual lookaside facility (VLF) 28

Performance Analysis and Reporting

System (PARS) 57

PL/I programs 18

plan, DB2 32

PPT (processing program table)
defining programs to CICS 73

entries 93

PR01 transient data queue 44

precompile messages
BIND 164

DB2 164

preloading
objects, IMS 54

print services
description 110

module 55

program 56

program 110

program modules 55, 56

Rational COBOL Runtime modules,

IMS 55

service module 55

table modules 55, 110

preparation
abend codes 163

messages 163

preparing
and running programs

CICS 93

IMS 107

z/OS batch 103

to install Rational COBOL Runtime 3

PRGM00 (Parameter Group List Display

panel) 132

PRGM00 (Parameter Group Specification

panel) 131

PRGM02 (Parameter Group Definition

panel) 132

PRIN transaction 33, 35, 44

print destination
CICS, specifying in DCT 44

default
IMS 53

print file, utilities 33

print services program
object of generation 78

preloading 56

printing
buffer size 37

CICS
considerations 33

file descriptions 33

CICS, destination control table

(DCT) 35

considerations
IMS 53

DBCS (double-byte character set),

printer 44

DCT (destination control table)
transient data queue name 35

trigger level 35

default, print destination 35

destination control table (DCT)
transient data queue name 35

trigger level 35

destination, using

sysLib.startTransaction() system

function 35

Index 241

printing (continued)
diagnostic information

CICS 147

IMS 144

EZEZ transaction 35

file descriptions, CICS 33

form-feed 35

FORMFD=NO parameter 35, 38

FZETPRT program 36

parameter
FORMFD 36, 38

group associated with FZETPRT

program 36

PRTBUF 36

PRTMPP 36, 37

PRTTYP 36, 38

PCT (program control table),

FZETPRT program 38

PR01 transient data queue 44

PRIN transaction 35

print destination, default 35

printer destination 44

program control table (PCT),

FZETPRT program 38

SEND command 37

sysLib.startTransaction() system

function for print destination 35

transient data
at a terminal device 44

transient data queue 35, 44

problem
diagnosis 139

processing
batch 47

processing mode
CICS

types 34

IMS 53

processing program table (PPT)
entries 93

production libraries, maintaining copies

for backup 118

profile block
program 152

program
bind DB2 32

data files, defining 28

entries 93

module, preloading 55

preloading 56

profile block 152

return codes 183

program communication block (PCB)
alternate 52

ELAPCB macro 52

program control table (PCT)
DTB=YES and DBP value 44

entries 94

FZETPRT program 38

program specification block (PSB)
defining 52

generation 52

PRTBUF parameter
specifying print buffer size 36

using with the FZETPRT program 36

PRTMPP parameter
specifying maximum print

positions 37

using with FZETPRT program 37

PRTTYP parameter
DBCS printing 38

using with the FZETPRT program 36

pseudoconversational
processing mode

CICS 34, 41

R
Rational COBOL Runtime

abend dumps 151

application load module storage 5

applying maintenance 3

COBOL dynamic storage 6

COBOL external storage for non-CICS

environments 7

control block 152

control options by transaction 127

customizing JCL procedures 18

DB2 considerations
CICS 12

IMS 14

IMS work database 15

z/OS Batch 11

default control options 128

diagnostic control options 126

disk storage requirements 8

DL/I considerations
CICS 11

IMS work database 15

z/OS Batch 11

dynamic storage 7

error 143

extended addressing 31

generated programs
using with PL/I programs 18

IMS/ESA exploitation 14

installation considerations
CICS 11

IMS 14

preparing to install 3

load module
reentrant 5

storage 5

storage estimates, statically

linked 6

new copy 122

performance considerations 17

security considerations
all systems 17

CICS 12

IMS 14

storage facilities for CICS, using 8

storage requirements 5

temporary storage queues 13

utilities
diagnostic control facility

(ELAM) 121

diagnostic control options

(ELAC) 126

diagnostic message printing utility

(ELAU) 124

for CICS 12

Rational COBOL Runtime (continued)
utilities (continued)

new copy (ELAN) 122

virtual storage requirements 5

work database space for segmented

applications 8

WSCLEAR option for COBOL,

specifying 18

Rational COBOL Runtime, utilities,

parameter group utility, PRGM 131

Rational COBOL Runtime, utilities,

PRGM, parameter group utility 131

RCT 95

RDO (resource definition online),

generation output 75

RDO CEDA transaction 93

reading transient data from tape 44

recovery
options

specifying 39

recovery considerations
DB2

CICS 45

IMS 57

DL/I
CICS 45

IMS 58

z/OS batch 49

IMS 54

reentrant code 28

reentrant load module storage estimates

for Rational COBOL Runtime 5

relative (RRDS) define cluster 28

reporting
errors 139

problems 161

request module, DB2 72

residency
considerations

CICS 40

IMS 54

general rules, CICS 40

resident
parameter 40

programs 96

resource
control table 95

tables for CICS 93

Resource Measurement Facility II 57

response time, improving 56

return codes
Rational COBOL Runtime 170

SQL 177

system 167

sysVar.errorCode 167, 169

RMF 57

RRDS, data set definition 28

running
main programs under z/OS

batch 103

programs under IMS 111

running under
CICS 96

IMS
BMP with DB2 115

main batch as BMP 114

main program under BMP 113

242 IBM Rational COBOL Runtime Guide for zSeries

running under (continued)
z/OS batch

main batch with DL/I 104

main batch with no database 104

main batch with no DB2 104

runtime
JCL 77, 100

job stream data set 72

messages
IMS 189

z/OS 191

messages, LE 188

S
sample JCL

BMP with DB2 115

IMS BMP program 114

RCT entry 95

z/OS Batch with DB2 Access 104

z/OS Batch with DB2 and DL/I 106

z/OS batch with DL/I Access 105

z/OS batch without DB2 104

saving storage space 55

security considerations
CICS 12

general 17

IMS 14

segmented processing mode
CICS 34

IMS 53

SEND command, printing 37

serial (ESDS) define cluster 28

service module, preloading 55

services, message format 31

sharing modules 55

snap dump listing file, IMS 51

spaSize build descriptor option 53, 108

spool files, CICS 13

SQL
considerations 32

return codes 177

starting
IMS programs

/FORMAT command

(transaction) 111

directly (main) 111

MPPs (transactions) 111

startup JCL for CICS 95

statistics, performance 57

status 15

codes
DL/I 179

key values, COBOL 181

storage requirements
for Rational COBOL Runtime COBOL

dynamic storage 6

subsystem ABEND dumps 151

support for DBCS terminals 31

sysLib.startTransaction() system function,

print destination 35

SYSLIN 72

SYSLMOD 73

SYSOUT system output file 47

SYSPRINT system output file 47

system
abend codes 187

system (continued)
considerations

CICS 33

general 27

IMS 51

definition, IMS 15

output file 47

return codes 167

SYSUDUMP system output file 47

sysVar.errorCode 167

compatibility considerations 167

return codes 169

T
table

modules, preloading 55

preloading 56

program 78

space
expanding 61, 62

requirements 61

TCT (terminal control table) 44

templates
CLIST 99

JCL 99

temporary storage queues 13

terminal control table (TCT) 44

terminal printing
CICS 35

trace facility 155

trace file 47

tracing
activating 155

deactivating 161

transaction
entries 94

transient data
defining extrapartition 44

printing 44

queue
defining 43

printing, CICS 35

TYPE=INTRA entry in DCT 35

reading from tape 44

tuning
IMS 14, 57

U
unit of work, logical

IMS 57, 58

user data set 72

using
data build descriptor option 13

generated applications with PL/I

programs 18

multiple work databases 63

remote files, CICS 43

using spool files 13

utilities
diagnostic control options

(ELAC) 121, 126

diagnostic message printing

(ELAU) 124

utilities (continued)
for CICS with Rational COBOL

Runtime 12

IMS diagnostic message print 135

new copy (ELAN) 122

utilities, diagnostic, message print utility,

CICS 124

utilities, parameter group utility,

PRGM 131

V
virtual storage

considerations and residency 40

requirements
Rational COBOL Runtime 5

VSAM
data set definition 28

defining an alternate index 28

file loading 30

indexed (KSDS) data set 28

relative (RRDS) data set 28

serial (ESDS) data set 28

status codes 180

W
warnings

empty KSDS data set, VSAM

restriction 30

PRTMPP parameter, line skip

malfunction 37

work database
clearing records 58

deleting old records 58

ELAPCB macro 52

expanding 60

IMS 15

maintaining 58

multiple 63

space for segmented applications 8

WORK parameter in ELAPCB 52

WSCLEAR option for COBOL 18

Z
z/OS

DB2 considerations for Rational

COBOL Runtime 11

DL/I considerations 11

DL/I considerations for Rational

COBOL Runtime 11

installation considerations 3

preparation 103

runtime messages 191

z/OS batch
DL/I considerations 48

z/OS/XA considerations 31

Index 243

244 IBM Rational COBOL Runtime Guide for zSeries

����

Program Number: 5655-R29

Printed in USA

SC31-6951-02

	Contents
	About This Document
	Who Should Use This Document
	Terminology Used in This Document

	Part 1. Preparing to Install
	Chapter 1. Preparing for the Installation of Rational COBOL Runtime
	Chapter 2. Storage Requirements for Rational COBOL Runtime
	Virtual Storage Requirements
	Rational COBOL Runtime Load Module Storage
	Load Module Storage
	COBOL Dynamic Storage
	Rational COBOL Runtime Dynamic Storage
	Storage Requirements for CICS
	Disk Storage Requirements for Rational COBOL Runtime
	Work Database Space For Segmented Programs

	Chapter 3. Installation Considerations
	z/OS Batch Considerations
	DL/I Considerations
	DB2 Considerations

	CICS Installation Considerations
	DL/I Considerations
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	CICS Utilities
	Client / Server Processing Considerations
	Using the data Build Descriptor Option
	Modifying CICS Resource Definitions
	Using Spool Files
	Terminal Considerations
	Temporary Storage

	IMS Installation Considerations
	IMS/ESA Exploitation
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	IMS System Definition
	IMS Control Region
	Work Database
	DL/I Work Database Considerations
	DB2 Work Database Considerations

	Chapter 4. Customizing Rational COBOL Runtime
	General Customization Considerations for z/OS
	Customizing Rational COBOL Runtime
	Security Considerations
	Performance Considerations
	Customizing Build Scripts
	Modifying the Language Environment Runtime Option
	Using Generated Programs with PL/I Programs
	Installation and Language-Dependent Options for z/OS

	Part 2. Administering on z/OS Systems
	Chapter 5. General System Considerations for z/OS Systems
	Considerations that Affect Performance
	Build Descriptor and Compiler Options
	Modules in Memory
	Files and Databases

	Defining and Loading VSAM Program Data Files
	Defining VSAM Data Sets
	Defining an Alternate Index

	Loading Data in the Files

	Support for DBCS terminals
	Extended Addressing Considerations for Rational COBOL Runtime
	DB2 Considerations
	Preparing Programs
	Checking Access Authorization

	Backing Up Data
	Customizing Rational COBOL Runtime

	Chapter 6. System Considerations for CICS
	Required File Descriptions
	Segmented and Nonsegmented Processing
	Using Transient Data Queues for Printing in z/OS CICS
	z/OS CICS terminal printing
	Special Parameter Group for the FZETPRT Program
	PRTBUF Parameter
	PRTMPP Parameter
	PRTTYP Parameter
	FORMFD Parameter

	CICS Entries for FZETPRT (DBCS only)

	Using the New Copy Function
	Specifying Recovery Options in the CICS Tables
	Considerations that Affect Performance
	Residency (Modules in Memory) Considerations
	Virtual Storage Considerations and Residency

	Work Database Temporary Storage Queue Considerations
	Terminal Printing

	Using and Allocating Data Files in CICS
	Defining and Loading VSAM Data Files
	Adding the Job Control Statements
	Adding the File Name to the CICS File Control Table

	Using Remote Files
	Defining Transient Data Queues
	Defining Intrapartition Transient Data
	Defining Extrapartition Transient Data

	Considerations for Using DB2 in CICS
	Associating DB2 Databases with CICS Transactions
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in CICS
	Recovery and Database Integrity Considerations

	Setting up the National Language

	Chapter 7. System Considerations for z/OS Batch
	Required File Descriptions
	Using VSAM Program Data Files in z/OS Batch
	Considerations for Using DB2 in z/OS Batch
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in z/OS Batch
	Defining the Program Specification Block (PSB)
	Recovery and Database Integrity Considerations

	Performance Considerations for z/OS Batch
	Runtime JCL

	Chapter 8. System Considerations for IMS
	Required File Descriptions
	Defining the Program Specification Block (PSB)
	Processing Modes
	Printing Considerations for IMS
	Recovery and Database Integrity Considerations
	Considerations that Affect Performance
	Residency Considerations and the IMS Preload Function
	Preloading Rational COBOL Runtime Modules
	Loading Rational COBOL Runtime Modules into the Link Pack Area
	Preloading Generated Programs

	Database Performance
	Limiting MFS Control Blocks
	Monitoring and Tuning the IMS System

	Considerations for Using DB2 in IMS
	Recovery and Database Integrity Considerations
	Checking Authorization

	Considerations for Using DL/I in IMS
	Recovery and Database Integrity Considerations

	Maintaining the Work Database in IMS
	Deleting Old Records from the Work Database
	DL/I Work Database
	DB2 Work Database

	Expanding the Work Database
	DL/I Work Database
	DB2 Work Database

	Supporting Multiple Work Databases
	DL/I Work Databases
	DB2 Work Databases

	Considerations for Message Format Services in IMS

	Part 3. Preparing and Running Generated Applications
	Chapter 9. Output of Program Generation on z/OS Systems
	Allocating Preparation Data Sets
	List of Program Preparation Steps after Program Generation
	Deploying generated code to USS

	Output of Generation
	Objects Generated for Programs
	Application COBOL Program
	Sample Runtime JCL
	Bind Commands

	Link Edit File
	CICS Entries
	Objects Generated for Data Tables
	Data Table COBOL Program

	Objects Generated for Form Groups
	Online Print Services Program
	Batch Print Services Program
	Form Group Format Module
	MFS Print Services Program
	MFS Source
	COBOL Copybook for MFS MID/MOD Layout

	Chapter 10. z/OS Builds
	z/OS Build Server
	Starting a z/OS Build Server
	Starting a USS Build Server
	Stopping servers
	Configuring a build server

	Working with Build Scripts
	Working with z/OS Build Scripts
	Writing a JCL build script
	File Name Conversions for z/OS

	Converting JCL to Pseudo-JCL

	Chapter 11. Preparing and Running a Generated Program in CICS
	Modifying CICS Resource Definitions
	Program Entries
	Transaction Entries
	Destination Control Table Entries (DCT)
	File Control Table Entries (FCT)
	Resource Control Table Entry (RCT)
	Using Remote Programs, Transactions, or Files

	Modifying CICS Startup JCL
	Making New Modules Available in the CICS Environment
	Making Programs Resident
	Running Programs under CICS
	Starting the Transaction in CICS
	Controlling Diagnostic Information in the CICS Environment
	Printing Diagnostic Messages in the CICS Environment

	Chapter 12. Creating or Modifying Runtime JCL on z/OS Systems
	Tailoring JCL before Generation
	Modifying Runtime JCL

	Chapter 13. Preparing and Running Generated Programs in z/OS Batch
	Running Main Programs under z/OS Batch
	Examples of Runtime JCL for z/OS Batch Programs
	Running a Main Basic Program with No Database Access
	Running a Main Basic Program with DB2 Access
	Running Main Basic Program with DL/I Access
	Running a Main Basic Program with DB2 and DL/I Access

	Recovery and Restart for z/OS Batch Programs

	Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP
	Modifying the IMS System Definition Parameters
	Defining an Interactive Program
	Defining Parameters for a Main Basic Program as an MPP
	Defining Parameters for a Batch-Oriented BMP Program
	Defining Parameters for a Transaction-Oriented BMP Program

	Creating MFS Control Blocks
	Making New Modules Available in the IMS Environment
	Preloading Program, Print Services, and Data Table Modules
	Running Programs under IMS
	Starting a Main Program Directly
	Starting a Main Transaction Program Using the /FORMAT Command
	Running Transaction Programs as IMS MPPs
	IMS Commands
	Keyboard Key Operation
	DBCS Data on a Non-DBCS Terminal
	Error Reporting
	Responding to IMS Error Messages

	Running Main Basic Programs as MPPs

	Running a Main Basic Program under IMS BMP
	Examples of Runtime JCL for IMS BMP Programs
	Running a Main Basic Program as an IMS BMP Program
	Running a Main Basic Program as an IMS BMP Program with DB2 Access

	Recovery and Restart for IMS BMP Programs

	Chapter 15. Moving Prepared Programs to Other Systems from z/OS Systems
	Moving Prepared Programs To Another z/OS System
	Maintaining Backup Copies of Production Libraries

	Part 4. Utilities
	Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems
	Using the CICS Utilities Menu
	New Copy
	Diagnostic Message Printing Utility
	Diagnostic Control Options for z/OS CICS Systems
	Change or View Diagnostic Control Options for a Transaction
	Change or View Default Diagnostic Control Options

	Using the Parameter Group Utility for z/OS CICS Systems

	Chapter 17. Using Rational COBOL Runtime Utilities for IMS Systems
	IMS Diagnostic Message Print Utility

	Part 5. Diagnosing Problems
	Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems
	Detecting Errors
	Reporting Errors
	Controlling Error Reporting
	Controlling Error Reporting in CICS
	Controlling Error Reporting in IMS Environments
	Controlling Error Reporting in z/OS Batch

	Error Reporting Summary
	Transaction Error
	Run Unit Error
	Catastrophic error
	Rational COBOL Runtime Error

	Using the Rational COBOL Runtime Error Panel

	Printing Diagnostic Information for IMS
	errorDestination Message Queue
	IMS Log Format
	Running the Diagnostic Print Utility

	Printing Diagnostic Information for CICS
	CICS Diagnostic Message Layout
	Running the Diagnostic Print Utility

	Analyzing Errors Detected while Running a Program

	Chapter 19. Finding Information in Dumps
	Rational COBOL Runtime ABEND Dumps
	COBOL or Subsystem ABEND Dumps
	Information in the Rational COBOL Runtime Control Block
	Information in a Program, Print Services, or DataTable Profile Block
	How to Find the Current Position in a Program at Time of Error

	Chapter 20. Rational COBOL Runtime Trace Facility
	Enabling EGL Program Source-Level Tracing with Build Descriptor Options
	Activating a Trace
	Activating a Trace Session for CICS or IMS/VS
	Activating a Trace Session for z/OS Batch or IMS BMP

	Deactivating a Trace Session
	Printing Trace Output
	Printing the Trace Output in CICS
	Printing the Trace Output in IMS/VS
	Printing the Trace Output in z/OS Batch or IMS BMP

	Reporting Problems for Rational COBOL Runtime

	Chapter 21. Common Messages during Preparation for z/OS Systems
	Common Abend Codes during Preparation
	MFS Generation Messages
	DB2 Precompiler and Bind Messages
	COBOL Compilation Messages

	Chapter 22. Common System Error Codes for z/OS Systems
	Common Return Codes
	System Error Code Formats for sysVar.errorCode
	Common System Error Codes in sysVar.errorCode
	EGL Error Codes

	Common SQL Codes
	Common DL/I Status Codes
	Common VSAM Status Codes
	OPEN request type
	CLOSE request type
	GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

	COBOL Status Key Values

	Chapter 23. Rational COBOL Runtime Return Codes, Abend Codes, and Exception Codes
	Return Codes
	ABEND Codes
	CICS Environments
	IMS, IMS BMP, and z/OS Batch Environments
	Exception Codes

	Chapter 24. Codes from Other Products for z/OS Systems
	Common System Abend Codes for All Environments
	LE Runtime Messages
	Common COBOL Abend Codes
	Common IMS Runtime Messages
	Common IMS Runtime Abend Codes
	Common CICS Runtime Messages
	Common CICS Abend Codes
	COBOL Abends under CICS

	Part 6. Appendixes
	Appendix. Rational COBOL Runtime Messages
	Message Format
	ELA Messages
	FZE messages
	PRM messages

	Notices
	Trademarks

	Index

