
IBM Enterprise Developer Server Guide for

z/OS

Version 5.0.0

SC31-6306-03

���

IBM Enterprise Developer Server Guide for

z/OS

Version 5.0.0

SC31-6306-03

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 199.

Fourth Edition (October 2005)

This edition applies to Version 5.0.0 of IBM Enterprise Developer Server (product number 5655-I57) and to all

subsequent releases and modifications until otherwise indicated in new editions.

You can order publications through your IBM representative or the IBM branch office serving your locality.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Trademarks vii

Terminology Used in This Document vii

About This Document ix

Who Should Use This Document ix

Part 1. Preparing to Install 1

Chapter 1. Preparing for the Installation

of Enterprise Developer Server 3

Chapter 2. Storage Requirements for

Enterprise Developer Server 5

Virtual Storage Requirements 5

Enterprise Developer Server Load Module Storage . 5

Application Load Module Storage 5

COBOL Dynamic Storage 6

Enterprise Developer Server Dynamic Storage . . . 6

Storage Requirements for CICS 7

Disk Storage Requirements for Enterprise Developer

Server 7

Work Database Space For Segmented Applications 7

Chapter 3. Installation Considerations . . 9

z/OS Batch Considerations 9

DL/I Considerations 9

DB2 Considerations 9

CICS Installation Considerations 10

DL/I Considerations 10

DB2 Considerations 10

Security Considerations 10

Monitoring and Tuning 10

CICS Utilities 11

Using the data Build Descriptor Option 11

Modifying CICS Resource Tables 11

IMS Installation Considerations 11

IMS/ESA Exploitation 12

DB2 Considerations 12

Security Considerations 12

Monitoring and Tuning 12

IMS System Definition 13

IMS Control Region 13

Work Database 13

Chapter 4. Customizing Enterprise

Developer Server 15

General Customization Considerations for z/OS . . 15

Customizing Enterprise Developer Server . . . 15

Security Considerations 15

Performance Considerations 15

Customizing Build Scripts 16

Modifying the Language Environment Run-time

Option 16

Using Generated Programs with PL/I Programs 16

Installation and Language-Dependent Options for

z/OS 16

Part 2. Administering on z/OS

Systems 21

Chapter 5. General System

Considerations for z/OS Systems . . . 23

Considerations that Affect Performance 23

Build Descriptor and Compiler Options 23

Modules in Memory 23

Files and Databases 24

Defining and Loading VSAM Program Data Files . . 24

Defining VSAM Data Sets 24

Loading Data in the Files 26

Support for DBCS terminals 27

Extended Addressing Considerations for Enterprise

Developer Server 27

Database Considerations 27

Preparing Programs 28

Checking Access Authorization 28

Backing Up Data 28

Chapter 6. System Considerations for

CICS 29

Required File Descriptions 29

Segmented and Nonsegmented Processing 30

Using Transient Data Queues for Printing in z/OS

CICS 30

z/OS CICS terminal printing 31

Special Parameter Group for the FZETPRT

Program 31

PRTBUF Parameter 32

PRTMPP Parameter 33

PRTTYP Parameter 33

FORMFD Parameter 33

CICS Entries for FZETPRT (DBCS only) 34

Using the New Copy Function 34

Specifying Recovery Options in the CICS Tables . . 34

Considerations that Affect Performance 35

Residency (Modules in Memory) Considerations 35

Using and Allocating Data Files in CICS 36

Considerations for Using DB2 in CICS 40

Considerations for Using DL/I in CICS 40

Setting up the National Language 41

Chapter 7. System Considerations for

z/OS Batch 43

Required File Descriptions 43

Using VSAM Program Data Files in z/OS Batch . . 44

Considerations for Using DB2 in z/OS Batch . . . 44

Recovery and Database Integrity Considerations 44

Considerations for Using DL/I in z/OS Batch . . . 44

© Copyright IBM Corp. 1994, 2005 iii

Defining the Program Specification Block (PSB) 44

Recovery and Database Integrity Considerations 45

Performance Considerations for z/OS Batch . . 45

Runtime JCL 45

Chapter 8. System Considerations for

IMS 47

Required File Descriptions 47

Defining the Program Specification Block (PSB) . . 48

Processing Modes 49

Printing Considerations for IMS 49

Recovery and Database Integrity Considerations . . 49

Considerations that Affect Performance 50

Residency Considerations and the IMS Preload

Function 50

Database Performance 52

Limiting MFS Control Blocks 53

Monitoring and Tuning the IMS System 53

Considerations for Using DB2 in IMS 53

Recovery and Database Integrity Considerations 54

Checking Authorization 54

Considerations for Using DL/I in IMS 54

Recovery and Database Integrity Considerations 55

Maintaining the Work Database in IMS 55

Deleting Old Records from the Work Database . 55

Expanding the Work Database 57

Supporting Multiple Work Databases 60

Considerations for Message Format Services in IMS 61

Part 3. Preparing and Running

Generated Applications 63

Chapter 9. Output of Program

Generation on z/OS Systems 65

Allocating Preparation Data Sets 65

List of Program Preparation Steps after Program

Generation 67

Deploying generated code to USS 67

Outputs of Generation 67

Objects Generated for Programs 70

Objects Generated for Tables 71

Objects Generated for Form Groups 71

Chapter 10. z/OS Builds 73

z/OS Build Server 74

Starting a z/OS Build Server 76

Starting a USS Build Server 79

Stopping servers 79

Configuring a build server 79

Working with Build Scripts 79

Working with z/OS Build Scripts 79

Converting JCL to Pseudo-JCL 81

Chapter 11. Preparing and Running a

Generated Program in CICS 85

Modifying CICS Resource Tables 85

Program Entries (PPT) 85

Transaction Entries (PCT) 86

Destination Control Table Entries (DCT) 86

File Control Table Entries (FCT) 87

Resource Control Table Entry (RCT) 87

Using Remote Programs, Transactions, or Files . 87

Modifying CICS Startup JCL 87

Making New Modules Available in the CICS

Environment 87

Making Programs Resident 88

Running Programs under CICS 88

Controlling Diagnostic Information in the CICS

Environment 88

Printing Diagnostic Messages in the CICS

Environment 88

Chapter 12. Preparing and Running

Generated Programs in z/OS Batch . . 89

Running Main Programs under z/OS Batch . . . 89

Examples of Runtime JCL for z/OS Batch Programs 89

Running a Main Batch Program with No

Database Access 90

Running a Main Batch Program with DB2 Access 90

Running Main Batch Program with DL/I Access 90

Running a Main Batch Program with DB2 and

DL/I Access 91

Recovery and Restart for Batch Programs 92

Chapter 13. Creating or Modifying

Run-time JCL on z/OS Systems 93

Tailoring JCL before Generation 93

Modifying Run-time JCL 94

Chapter 14. Preparing and Running

Generated Programs in IMS/VS and

IMS BMP 97

Modifying the IMS System Definition Parameters . . 97

Defining an Interactive Program 97

Defining Parameters for a Batch Program as an

MPP 98

Defining Parameters for a Batch-Oriented BMP

Program 99

Defining Parameters for a Transaction-Oriented

BMP Program 99

Creating MFS Control Blocks 99

Making New Modules Available in the IMS

Environment 100

Preloading Program, Print Services, and Table

Modules 100

Running Programs under IMS 101

Starting a Main Program Directly 101

Starting a Main Transaction Program Using the

/FORMAT Command 101

Running Transaction Programs as IMS MPPs 101

Running Batch Programs as MPPs 103

Running a Main Program under IMS BMP . . . 103

Examples of Runtime JCL for IMS BMP Programs 104

Running a Main Batch Program as an IMS BMP

Program 104

Running a Main Batch Program as an IMS BMP

Program with DB2 Access 105

Recovery and Restart for IMS BMP Programs . . 106

iv IBM Enterprise Developer Server Guide for z/OS

Chapter 15. Moving Prepared

Programs to Other Systems from z/OS

Systems 107

Moving Prepared Programs To Another z/OS

System 107

Maintaining Backup Copies of Production Libraries 107

Part 4. Utilities 109

Chapter 16. Using Enterprise

Developer Server Utilities on z/OS

Systems 111

Using the CICS Utilities Menu 111

New Copy 112

Diagnostic Message Printing Utility 114

Chapter 17. Diagnostic Control

Options 117

Change or View Diagnostic Control Options for a

Transaction 118

Change or View Default Diagnostic Control

Options 119

Chapter 18. Using the Parameter

Group Utility 121

Chapter 19. IMS Diagnostic Message

Print Utility 125

Part 5. Diagnosing Problems . . . 127

Chapter 20. Diagnosing Problems for

Enterprise Developer Server on z/OS

Systems 129

Detecting Errors 129

File and Database Errors—Category 1 129

File and Database Errors—Category 2 130

File and Database Errors—Category 3 130

Reporting Errors 131

Controlling Error Reporting in CICS 131

Controlling Error Reporting in IMS

Environments 131

Controlling Error Reporting in z/OS Batch . . 132

Error Reporting Summary 132

Transaction Error 132

Run Unit Error 132

Catastrophic error 133

Enterprise Developer Server Error 133

Using the Enterprise Developer Server Error

Panel 133

Printing Diagnostic Information for IMS 134

ERRDEST Message Queue 134

IMS Log Format 135

Running the Diagnostic Print Utility 136

Printing Diagnostic Information for CICS 136

CICS Diagnostic Message Layout 136

Running the Diagnostic Print Utility 137

Analyzing Errors Detected while Running a

Program 138

Chapter 21. Finding Information in

Dumps 139

Enterprise Developer Server ABEND Dumps . . . 139

COBOL or Subsystem ABEND Dumps 139

Information in the Enterprise Developer Server

Control Block 140

Information in an Application 140

How to Find the Current Position in a Program at

Time of Error 141

Chapter 22. Enterprise Developer

Server Trace Facility 143

Enabling Enterprise Developer Program

Source-Level Tracing with Build Descriptor

Options 143

Activating a Trace 144

Activating a Trace Session for CICS 144

Activating a Trace Session for z/OS Batch . . . 147

Deactivating a Trace Session 149

Printing Trace Output 149

Printing the Trace Output in CICS 149

Printing the Trace Output in z/OS Batch . . . 149

Reporting Problems for Enterprise Developer

Server 149

Chapter 23. Common Messages

during Preparation for z/OS Systems . 151

Common Abend Codes during Preparation . . . 151

DB2 Precompiler and Bind Messages 151

COBOL Compilation Messages 151

Chapter 24. Common System Return

Codes for z/OS Systems 153

Common SQL Return Codes 153

Common DL/I Status Codes 155

Common VSAM Status Codes 155

OPEN request type 156

CLOSE request type 156

GET/PUT/POINT/ERASE/CHECK/ENDREQ

request types 156

COBOL Status Key Values 157

Chapter 25. Enterprise Developer

Server Return Codes and Abend

Codes for z/OS Systems 159

Return Codes 159

ABEND Codes 159

CICS Environments 159

IMS, IMS BMP, and z/OS Batch Environments 161

z/OS Batch 162

Chapter 26. Codes from Other

Products for z/OS Systems 163

Common System Abend Codes for All

Environments 163

Contents v

LE Run-time Messages 164

COBOL Run-time Messages 164

Common COBOL Abend Codes 165

Common IMS Runtime Messages 165

Common IMS Runtime Abend Codes 166

Common CICS Run-time Messages 167

Common CICS Abend Codes 167

COBOL Abends under CICS 168

Part 6. Appendixes 169

Appendix. Enterprise Developer

Server Run-time Messages 171

Notices 199

Index 203

vi IBM Enterprise Developer Server Guide for z/OS

Trademarks

The following terms are trademarks of the IBM® Corporation in the United States

or other countries or both:

 CICS®

 CICS/ESA®

 Current

 DB2®

 IBM

 IMS™

 Language Environment®

 RACF®

 VisualAge®

 WebSphere® Studio

 WebSphere

 z/OS®

The following terms are trademarks of other companies:

Microsoft® Windows®, and Windows NT® are trademarks or registered trademarks

of Microsoft Corporation.

Windows, is a registered trademark of Sun Microsystems, Inc.

Terminology Used in This Document

Unless otherwise noted in this publication, the following references apply:

v EGL refers to Enterprise Generation Language

v CICS applies to Customer Information Control System

v “Region” or “CICS region” corresponds to CICS Transaction Server for region

v Workstation applies to a personal computer, not an AIX workstation

v The make process applies to the generic process, and not to specific make

commands, such as make, nmake, pmake, polymake

© Copyright IBM Corp. 1994, 2005 vii

viii IBM Enterprise Developer Server Guide for z/OS

About This Document

This manual provides information about customizing and administering Enterprise

Developer Server in the following environments:

v z/OS UNIX System Services (USS)

v z/OS

v CICS

Note: Hereafter in this book, IBM Enterprise Developer Server for z/OS is referred

to simply as “Enterprise Developer Server.”

Who Should Use This Document

This manual is intended for system administrators and system programmers

responsible for installing, maintaining, and administering Enterprise Developer

Server. It provides information to complete the following tasks:

v Manage system requirements

v Manage file utilization and conflicts

This manual is also intended for use by the programmers responsible for preparing

and running EGL-generated programs. It provides information on the following

items:

v Outputs of the generation process

v How to prepare generated programs for running

v Error codes

v How to use Enterprise Developer Server utilities

v How to diagnose and report problems

Attention IBM VisualAge Generator Users

Enterprise Developer Server provides the required components to support

development and execution of programs generated by Enterprise Generation

Language (EGL) or VisualAge Generator Developer.

To understand how VisualAge Generator Developer is used on z/OS, please

refer to your VisualAge Generator documentation for information regarding

VisualAge Generator Server for z/OS function and use.

Attention CICS Users

Please refer to the CICS documentation for the level of CICS installed on your

system for detailed information regarding CICS functions and operations.

Attention: Accessing the EGL helps

To access the EGL helps, open the EGL client and select Help->Help Contents

from the menu bar.

© Copyright IBM Corp. 1994, 2005 ix

x IBM Enterprise Developer Server Guide for z/OS

Part 1. Preparing to Install

Chapter 1. Preparing for the Installation of

Enterprise Developer Server 3

Chapter 2. Storage Requirements for Enterprise

Developer Server 5

Virtual Storage Requirements 5

Enterprise Developer Server Load Module Storage . 5

Application Load Module Storage 5

COBOL Dynamic Storage 6

Enterprise Developer Server Dynamic Storage . . . 6

Storage Requirements for CICS 7

Disk Storage Requirements for Enterprise Developer

Server 7

Work Database Space For Segmented Applications 7

Chapter 3. Installation Considerations 9

z/OS Batch Considerations 9

DL/I Considerations 9

DB2 Considerations 9

CICS Installation Considerations 10

DL/I Considerations 10

DB2 Considerations 10

Security Considerations 10

Monitoring and Tuning 10

CICS Utilities 11

Using the data Build Descriptor Option 11

Modifying CICS Resource Tables 11

Using Spool Files 11

Temporary Storage 11

IMS Installation Considerations 11

IMS/ESA Exploitation 12

DB2 Considerations 12

Security Considerations 12

Monitoring and Tuning 12

IMS System Definition 13

IMS Control Region 13

Work Database 13

DL/I Work Database Considerations 13

DB2 Work Database Considerations 13

Chapter 4. Customizing Enterprise Developer

Server 15

General Customization Considerations for z/OS . . 15

Customizing Enterprise Developer Server . . . 15

Security Considerations 15

Performance Considerations 15

Customizing Build Scripts 16

Modifying the Language Environment Run-time

Option 16

Using Generated Programs with PL/I Programs 16

Installation and Language-Dependent Options for

z/OS 16

© Copyright IBM Corp. 1994, 2005 1

2 IBM Enterprise Developer Server Guide for z/OS

Chapter 1. Preparing for the Installation of Enterprise

Developer Server

After selecting the production environments, do the following to prepare for the

installation of the Enterprise Developer Server:

v Obtain a copy of the Program Directory for Enterprise Developer Server for z/OS

(GI10-3241-00) (shipped with the product’s installation materials).

v Determine the hardware, software, and storage requirements for the production

environments selected.

v Install the hardware and software required by the Enterprise Developer Server.

v Collect information before customization.

v Understand specific environment considerations before defining applications.

Before continuing with the current document, do as follows:

1. Access the following Web site:

 http://www.ibm.com/software/awdtools/studioenterprisedev

2. For details on product updates, click Support and search for information on

EGL

3. To see what documents are available, click Library and review the list of

publications; in particular, the entries under Product Information

The following document is of particular value because it includes prerequisite

and planning information:

 IBM WebSphere Developer for zSeries® Host Planning Guide

The document number for that guide is SC31-6599-02. Later editions of that

Guide (if any) will have a higher number in the last digit.

Copies of documents are also available from the IBM Publications Center:

 http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

© Copyright IBM Corp. 1994, 2005 3

4 IBM Enterprise Developer Server Guide for z/OS

Chapter 2. Storage Requirements for Enterprise Developer

Server

The following sections give approximate estimates of Enterprise Developer Server

storage use by type of storage.

Virtual Storage Requirements

A program requires virtual storage for the following:

v Enterprise Developer Server load modules

v Application load modules

v COBOL dynamic area

v Enterprise Developer Server dynamic area

CICS applications also use specialized CICS storage facilities.

Enterprise Developer Server Load Module Storage

Most of the modules in the run-time function are not linked with the generated

programs. Only one copy of these modules needs to be available for use by all

programs generated with Enterprise Generation Language (EGL).

For z/OS, these modules can be in a library (DFHRPL), or placed in the link pack

area (LPA). For CICS, you might want to make the modules resident. Refer to the

Enterprise Developer Server program directory for a list of LPA eligible load

modules.

 Table 1. Enterprise Developer Server Reentrant Load Module Storage Estimates

Function Size RMODE

CICS base services 240 KB ANY

CICS base services, 24-bit addressing mode 8 KB 24

Double-byte language ASCII/EBCDIC code

conversion tables

Chinese - 50 KB ANY

Application Load Module Storage

Application load module storage is the storage required for generated COBOL

applications. The load modules are created by link-editing the generated COBOL

applications produced by EGL’s COBOL generation facility. The size of the load

module can be determined from the linkage editor module map. The size varies

depending on the functions utilized with the applications.

The application load module storage includes all generated application programs,

data table programs, form group format modules, and print services programs

used by a batch job step or transaction. The size of an application load module

also includes the small Enterprise Developer Server programs that are statically

linked with the programs. The load modules produced by link-editing the

generated programs are reentrant. Each module can be linked with RMODE(ANY)

so that the load module can reside in extended storage.

© Copyright IBM Corp. 1994, 2005 5

The size of the Enterprise Developer Server modules linked with each generated

program, print services program, or data table program is shown in Table 2. These

estimates should be added to the application load module size to determine the

overall load module size.

 Table 2. Enterprise Developer Server Statically Linked Module Storage Estimates

Environment Application

Print service

program

Data table

program

CICS 2.5 KB 1 KB 1 KB

z/OS 1.3 KB 1 KB 1 KB

Note: Enterprise Developer Server modules are not statically linked with a form group

format module.

COBOL Dynamic Storage

Application load modules acquire dynamic storage while they are running. The

COBOL run-time library requires this storage for application data structures such

as records, forms, and data tables. The storage includes both the internal and

external data structures.

The COBOL data build descriptor option determines whether to acquire storage

below the 16 MB line. The procedures shipped with the Enterprise Developer

Server enable data (a build descriptor option) to control the value for the COBOL

DATA compiler option. The default value of that build descriptor option is 31. Set

data to 24 if an application calls another application or program that is linked as

AMODE(24). Data table program and print services programs must also use

data=24 if any application being used is linked AMODE(24).

When you generate z/OS batch or CICS programs with dynamic storage

requirements greater than 64 KB, the value data=31 is required.

The amount of storage required for internal data structures is listed in the compile

listing of the COBOL application when the MAP, OFFSET, or LIST compiler

options are used.

Applications that run outside of CICS use COBOL external data structures to share

information between applications in the same run unit. The storage required is

approximately 1 KB.

Enterprise Developer Server Dynamic Storage

When applications are running, Enterprise Developer Server allocates storage as

shown in Table 3 on page 7. The initial application of the run unit determines

where the shared storage between Enterprise Developer Server and the generated

COBOL application is allocated. If the initial application is generated with the

build descriptor option data set to 24 or is link-edited with AMODE(24), this

storage is allocated below the 16 MB line. Otherwise, the storage is allocated with

31-bit addresses as shown in the following table:

6 IBM Enterprise Developer Server Guide for z/OS

Table 3. Enterprise Developer Server Dynamic Storage Utilization

Function Storage Required

24- or 31-bit

Addressing mode

Persistent dynamic storage pool. The pool is

extended as needed in 32 KB increments.

Most transactions or jobs require only the

initial allocation.

32 KB increment 31

CICS - service program dynamic storage

stack

48 KB 31

z/OS batch 64 KB 24

Storage Requirements for CICS

Generated COBOL applications use the following CICS storage facilities:

 Table 4. Enterprise Developer Server Use of CICS Storage Areas

Type of Storage Function Size

Transaction Work Area

(TWA)

Enterprise Developer Server

Control Block. Offset in TWA

is specified in twaOffset build

descriptor option.

1 KB

COMMAREA Calls using COMMPTR 4 times the number of

parameters

COMMAREA Calls using COMMDATA Total length of all parameters

COMMAREA Remote calls Total length of all parameters,

plus 12

Disk Storage Requirements for Enterprise Developer Server

The auxiliary disk storage space required to install files for the Enterprise

Developer Server is approximately 2 MB. Additional disk space for user programs

can vary.

Work Database Space For Segmented Applications

The space required for saving application status across a terminal I/O operation in

CICS is the sum of all segmented applications’ data areas (maps and records) plus

6 KB per application. In CICS, disk space is used only if auxiliary temporary

storage is specified as the work database during application generation.

Chapter 2. Storage Requirements for Enterprise Developer Server 7

8 IBM Enterprise Developer Server Guide for z/OS

Chapter 3. Installation Considerations

The following sections describe installation considerations for the Enterprise

Developer Server.

z/OS Batch Considerations

If the installation has z/OS batch applications that gain access to relational

databases, do as follows:

1. Install the correct version of DB2.

2. Create the tables in the relational database that the applications will access.

3. Follow the optional DB2-related steps for Enterprise Developer Server

installation, as described in the Program Directory.

4. Define plans.

DL/I Considerations

If the installation has applications that gain access to DL/I databases, do the

following:

1. Install the correct version of IMS. For more information on the correct version

of IMS, see Prerequisites for WebSphere Developer for zSeries (SC31-6352). This

publication comes with the product or can be accessed from the IBM

Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Define databases and PSBs to IMS as described in the IMS utilities reference

document.

3. Follow the optional DL/I-related steps for Enterprise Developer Server

installation as described in the Program Directory for Enterprise Developer Server

for z/OS.

4. The data build descriptor option defaults todata=″24″ for non-CICS

environments.

DB2 Considerations

If the installation has applications that gain access to relational databases, do the

following:

1. Install the correct version of DB2. For more information on the correct version

of DB2, see Prerequisites for WebSphere Developer for zSeries (SC31-6352). This

publication comes with the product or can be accessed from the IBM

Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the applications will access.

3. Follow the optional DB2-related steps for Enterprise Developer Server

installation as described in the Program Directory for Enterprise Developer Server

for z/OS.

4. Define application plans as described in the resource definition and installation

and operation guides.

© Copyright IBM Corp. 1994, 2005 9

CICS Installation Considerations

This section discusses some general considerations when installing EGL-generated

programs in the CICS environment.

DL/I Considerations

If the installation has applications that gain access to DL/I databases, you must do

the following:

1. Install the correct version of IMS. For more information on the correct version

of IMS, see Prerequisites for WebSphere Developer for zSeries (SC31-6352). This

publication comes with the product or can be accessed from the IBM

Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi..

2. Define databases and PSBs to IMS as described in the IMS utilities reference

document.

3. Follow the optional DL/I-related steps for Enterprise Developer Server

installation as described in the Program Directory for Enterprise Developer Server

for z/OS.

4. Add DL/I support to CICS and define databases and PSBs to CICS as

described in the resource definition and installation and operation guides or in

the IMS database control guide.

DB2 Considerations

If the installation has programs that gain access to relational databases, do the

following:

1. Install the correct version of DB2.

2. Create the tables in the relational database to which the applications will gain

access.

3. Follow the optional DB2-related steps for Enterprise Developer Server

installation as described in the Program Directory for Enterprise Developer Server

for z/OS.

4. Add DB2 support to CICS and define application plans to CICS as described in

the DB2 system administration guides.

Security Considerations

CICS provides access control to resources (such as data files and programs) and

transactions. This access can be controlled by the user or by the terminal.

CICS resources (such as data files, programs, destinations, journals, and temporary

storage) can be assigned a security lock value. CICS users are assigned one or

more key values. If a user is running an CICS transaction that is defined for

resource security checking, the user’s keys are checked every time a resource is

requested. If the user does not have a key that matches the lock, access is denied

by ending the transaction with an AEY7 ABEND code.

Monitoring and Tuning

Use CICS monitoring facilities to get information about CICS tasks.

Refer to the performance guide for your release of CICS for more information.

10 IBM Enterprise Developer Server Guide for z/OS

CICS Utilities

In the CICS environment, the Enterprise Developer Server includes a set of utilities

to assist in managing the error diagnosis and control facilities of the Enterprise

Developer Server environment. These utilities are EGL COBOL applications. See

“Using the CICS Utilities Menu” on page 111 for more information about these

utilities.

Using the data Build Descriptor Option

Set the build descriptor option data to 24 on generated COBOL programs to enable

calls from the generated program to programs using 24-bit addresses, as long as

the length of the COBOL dynamic storage (as defined in the COBOL

working-storage section) required for the application is less than 64 KB. Programs

whose dynamic storage requirements are greater than 64 KB must be compiled

with the build descriptor option data set to 31. Otherwise, COBOL ends the

program with a 1009 ABEND code.

Note: The build scripts and procedures shipped with the Enterprise Developer

Server enables the data build descriptor option to control the value for the

COBOL DATA compiler option. The build descriptor option data is set to 31

as the default for the CICS environment.

Modifying CICS Resource Tables

CICS uses tables to identify startup parameters, transactions, programs, files,

databases, transient data destinations, and system locations for proper operation.

The application developer must add or modify these tables to correctly identify all

objects to be used in the new or changed application. The CICS tables are compiled

as assembler programs and stored in a run-time library. Some tables can also be

maintained through an online facility as described in the CICS resource definition

online document. CICS requires that the online facility be used instead of PPT and

PCT entries.

To generate model resource definition online (RDO) program and transaction

definitions, specify the build descriptor option cicsEntries=RDO.

The CICS system initialization table needs to include EXEC=YES.

Add any transaction that invokes an application that uses DB2 to the resource

control table (RCT) with the appropriate plan name. You can also use a resource

definition.

Using Spool Files

To use the spool files, include the SPOOL=YES parameter in the System

Initialization Table (SIT).

Temporary Storage

Temporary storage queues used by the Enterprise Developer Server must be

defined as nonrecoverable. These queues start with X'EE'.

IMS Installation Considerations

This section discusses some general considerations for running EGL COBOL

applications in the IMS environment.

Chapter 3. Installation Considerations 11

IMS/ESA Exploitation

The procedures shipped with the Enterprise Developer Server cause the generated

COBOL applications to be compiled with the data=″31″ build descriptor option

and linked in AMODE(31) and RMODE(ANY). If the application calls another

application that is linked with AMODE(24), then the data=″24″ build descriptor

option is required.

You can link the generated COBOL application to run below the 24-bit line.

However, if AMODE(24) is used to link the application, you must use data=″24″

build descriptor option for the following situations:

v For an application that calls an application or program that is linked as

AMODE(24)

v For the first application in the run unit, if any generated application in the run

unit is linked as AMODE(24) or if a non-EGL COBOL application that uses DL/I

is linked as AMODE(24)

v For a table or mapping services program, if any application being used is linked

as AMODE(24)

DB2 Considerations

If the installation has applications that gain access to relational databases, do the

following:

1. Install the correct version of DB2. For more information on the correct version

of DB2, see Prerequisites for WebSphere Developer for zSeries (SC31-6352). This

publication comes with the product or can be accessed from the IBM

Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the applications will gain access

to.

3. Follow the optional DB2-related steps for Enterprise Developer Server

installation as described in the Program Directory for Enterprise Developer Server

for z/OS.

4. Add DB2 support to IMS and define application plans to IMS as described in

the DB2 system administration guide.

Security Considerations

Resource Access Control Facility (RACF) can be used to control users authority to

each transaction.

Monitoring and Tuning

Potential performance problems can be tracked before they occur by checking

processing statistics on a regular basis. The following are some of the statistics to

monitor:

v Use the IMS DC monitor facilities to check transaction utilization. Consider

preloading applications or groups of applications that are frequently used.

v Use the IMS database monitor facilities to check how effectively the databases

are performing and using space.

Use the following tools to monitor IMS performance:

v The IMS Performance Analysis and Reporting System (IMSPARS, program

number 5798-CQP).

12 IBM Enterprise Developer Server Guide for z/OS

This tool presents information on transaction transit times, IMS resource usage,

and IMS resource availability, and detailed reports tracing individual transaction

and database change activity. These reports are based on the contents of the IMS

log data set.

v The Resource Measurement Facility (RMF™) II

This tool collects information about processor, channel, and I/O device

utilization.

v The DB Tools product (program number 5668-856)

This tool provides information to help improve access efficiency and space

utilization.

Refer to the IMS system administration document and the database administration

guide for the release of IMS for additional information on monitoring the IMS

online system and DL/I databases.

IMS System Definition

If you plan to use IMS, define all PSBs and transactions in the IMS system

definition. In addition, define DL/I application databases.

IMS Control Region

You might need to review the values for the following:

v PSB work area pool (PSBW parameter)

v FORMAT pool (FBP parameter)

v MFS test area (MFS parameter)

v Communications input/output area (TPDP parameter)

In addition, if a DL/I work database is used, the work database would need to be

added to either the control region JCL or to the dynamic allocation table.

Work Database

The work database is used to save the status of an EGL COBOL application during

a CONVERSE process option, and to pass information during certain types of

program-to-program message switches. The work database can be either a DL/I

database or a DB2 table. The application developer specifies the workDBType

build descriptor option when generating an application to determine which type of

database is to be used. A DL/I or DB2 work database is used only for Enterprise

Developer transaction applications that are generated for the IMS/VS target

environment. In general, a DL/I work database performs better than a DB/2 work

database.

Multiple DL/I or DB2 work databases can be installed. Use separate databases for

each application system to improve performance or data availability.

DL/I Work Database Considerations

If you plan to use a DL/I implementation for the work database, you might need

to tailor the database description (DBD) before running the job that creates and

initializes the DL/I work database.

DB2 Work Database Considerations

If you plan to use a DB2 implementation for the work database, review the

database definition before running the job that initializes the DB2 work database. A

DB2 synonym needs to be created for each user and application gaining access to

the DB2 work database.

Chapter 3. Installation Considerations 13

The DB2 work database requires a 32KB page size. If a DB2 work database is used,

you might need to increase the allocation of the 32KB buffers. To increase the

allocation of buffers, modify and assemble the DB2 parameter module (default is

DSNZPARM). Refer to the DB2 documents for the system for additional

information.

If you select DB2, a DB2 application plan for each transaction is needed even if the

EGL COBOL application itself does not require DB2.

If you select DB2 and if the Enterprise Developer Server needs maintenance

applied to the module that handles the DB2 work database access, bind the

application plans again for all transactions that use this database.

There are also considerations with the DB2 authorization used by the IMS program

that is gaining access to the DB2 work database. For example, authorization needs

to be granted to LTERM and a synonym needs to be created.

14 IBM Enterprise Developer Server Guide for z/OS

Chapter 4. Customizing Enterprise Developer Server

Before starting the customization process, determine the following:

v The target environments that application developers specify during generation

v Whether the applications use relational databases

v The IMS Work database and terminal types

v The national language support requirements

General Customization Considerations for z/OS

The following sections discuss some general considerations for running Enterprise

Developer-generated applications in the supported z/OS environment.

Customizing Enterprise Developer Server

Customizing Enterprise Developer Server consists of performing some of the same

procedures used to install the product on the system. These procedures are

described in the Program Directory for Enterprise Developer Server for z/OS.

Security Considerations

The Enterprise Developer Server does not provide security services. Standard

system or database manager security functions can be used with generated COBOL

applications in the same way that they are used with customer-developed COBOL

applications.

For example, if the applications use DB2, define DB2 application plans and give

run authority to those users that are authorized to use the applications associated

with the plan. The Resource Access Control Facility (RACF*) can also be used to

grant users authority to read or update files.

Performance Considerations

Other chapters in this book provide detailed information on considerations that

affect performance. See the following chapters for information on these

performance-related topics and others:

 Performance Topic Where to Find Info

Build descriptor options v Chapter 5, “General System Considerations

for z/OS Systems,” on page 23

Placing Enterprise Developer Server product

and generated application modules in

memory

v Chapter 5, “General System Considerations

for z/OS Systems,” on page 23

Residency and work-database considerations

in CICS

v Chapter 6, “System Considerations for

CICS,” on page 29

Monitoring and tuning tools v Chapter 6, “System Considerations for

CICS,” on page 29

Residency and database considerations in

IMS

v Chapter 8, “System Considerations for

IMS,” on page 47

© Copyright IBM Corp. 1994, 2005 15

Customizing Build Scripts

The Enterprise Developer Server includes build scripts used for preparing

generated applications for running. These build scripts can be customized to meet

any data set naming conventions. Refer to the EGL helps for additional

information.

Modifying the Language Environment Run-time Option

In the non-CICS environments, generated COBOL applications rely on COBOL

working storage being initialized to binary zeros to determine whether Enterprise

Developer Server is initialized. For LE, this is done by specifying STORAGE=((00))

in the CEEDOPT CSECT.

In the non-CICS environments, generated COBOL programs that access sequential

files (including print files) require the ALL31 runtime option to be set to OFF. This

is done by specifying ALL31(OFF) in the CEEDOPT CSECT.

The modified runtime options modules must be in a library allocated to the

STEPLIB placed in the link pack area or in a library managed by the Virtual

Lookaside Facility and Library Lookaside features of z/OS for each non-CICS

z/OS environment. If those modules are in a separate library, the library must

precede the library that contains the unmodified modules.

Alternatively, these options can be set for each program by creating a CEEUOPT

load module with these options set as listed above and link-editing this modoule

with each generated COBOL program. Refer to the Language Environment

documentation for more information on creating and using a CEEUOPT module to

set run-time options.

Using Generated Programs with PL/I Programs

If PL/I programs are used with generated COBOL applications in a non-CICS

environment, you must generate the COBOL application to invoke the PL/I

program using a static COBOL call. This requires the PL/I programs to be linked

with the COBOL application in the same load module.

If PL/I programs are used with generated COBOL applications in the CICS

environment, you must generate the COBOL application to call the PL/I program

using the CICS LINK command. This is the default linkage for the CICS

environment. The calling and called programs must not be linked together for the

CICS environment.

Refer to the EGL helps for additional information.

Installation and Language-Dependent Options for z/OS

The following are the language-dependent options required for z/OS. To change

the defaults use the steps outlined in the Program Directory for Enterprise

Developer Server for z/OS (GI10-3241-00) to specify the settings and for

instructions on customizing the Run-time Default Options and Language

Dependent Options.

 Table 5. Installation and Language-dependent Options for z/OS

Question Default Your Selection

Enterprise Developer Server Run-time Default

Options

16 IBM Enterprise Developer Server Guide for z/OS

Table 5. Installation and Language-dependent Options for z/OS (continued)

Question Default Your Selection

Default language code ENU _____________

Enterprise Developer Server trace buffer size 64 _____________

CICS¹ temporary storage control interval size 16 _____________

Enterprise Developer Server National Language

Dependent Options (One code is needed for each

national language you install. The default values

vary for each language.)

National language code (US English) ENU _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNENU _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Simplified Chinese) CHS _____________

Long Gregorian date format YYYY-MM-DD _____________

Short Gregorian date format YY-MM-DD _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNCHS _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Swiss German) DES _____________

Long Gregorian date format DD.MM.YYYY _____________

Short Gregorian date format DD.MM.YY _____________

Long Julian date format YYYY.DDD _____________

Short Julian date format YY.DDD _____________

Conversion table name ELACNDES _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (German) DEU _____________

Long Gregorian date format DD.MM.YYYY _____________

Short Gregorian date format DD.MM.YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNDEU _____________

Positive response character string YES _____________

Chapter 4. Customizing Enterprise Developer Server 17

Table 5. Installation and Language-dependent Options for z/OS (continued)

Question Default Your Selection

Negative response character string NO _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator !

National language code (Upper Case English) ENP _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNENP _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Spanish) ESP _____________

Long Gregorian date format DD/MM/YYYY _____________

Short Gregorian date format DD/MM/YY _____________

Long Julian date format DDD/YYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNESP _____________

Positive response character string SI _____________

Negative response character string NO _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Japanese) JPN _____________

Long Gregorian date format YYY-MM-DD _____________

Short Gregorian date format YY-MM-DD _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNJPN _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Korean) KOR _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNKOR _____________

Positive response character string YES _____________

Negative response character string NO _____________

18 IBM Enterprise Developer Server Guide for z/OS

Table 5. Installation and Language-dependent Options for z/OS (continued)

Question Default Your Selection

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Brazilian Portuguese) PTB _____________

Long Gregorian date format DD/MM/YYYY _____________

Short Gregorian date format DD/MM/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNPTB _____________

Positive response character string SIM _____________

Negative response character string NAO _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (French) FRA _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNFRA _____________

Positive response character string OUI _____________

Negative response character string NAN _____________

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Traditional Chinese) CHT _____________

Long Gregorian date format YYYY-MM-DD _____________

Short Gregorian date format YY/MM/DD _____________

Long Julian date format YYYY-DDD _____________

Short Julian date format YY-DDD _____________

Conversion table name ELACNCHT _____________

Positive response character string YES _____________

Negative response character string NO _____________

Decimal point character . _____________

Numeric separator character , _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

National language code (Italian) ITA _____________

Long Gregorian date format MM/DD/YYYY _____________

Short Gregorian date format MM/DD/YY _____________

Long Julian date format DDD/YYYY _____________

Short Julian date format DDD/YY _____________

Conversion table name ELACNITA _____________

Positive response character string SI _____________

Negative response character string NO _____________

Chapter 4. Customizing Enterprise Developer Server 19

Table 5. Installation and Language-dependent Options for z/OS (continued)

Question Default Your Selection

Decimal point character , _____________

Numeric separator character . _____________

Currency symbol $ _____________

SQL host variable indicator : _____________

SQL host column indicator ! _____________

20 IBM Enterprise Developer Server Guide for z/OS

Part 2. Administering on z/OS Systems

Chapter 5. General System Considerations for

z/OS Systems 23

Considerations that Affect Performance 23

Build Descriptor and Compiler Options 23

Modules in Memory 23

Files and Databases 24

Defining and Loading VSAM Program Data Files . . 24

Defining VSAM Data Sets 24

Defining an Alternate Index 25

Loading Data in the Files 26

Support for DBCS terminals 27

Extended Addressing Considerations for Enterprise

Developer Server 27

Database Considerations 27

Preparing Programs 28

Checking Access Authorization 28

Backing Up Data 28

Chapter 6. System Considerations for CICS . . 29

Required File Descriptions 29

Segmented and Nonsegmented Processing 30

Using Transient Data Queues for Printing in z/OS

CICS 30

z/OS CICS terminal printing 31

Special Parameter Group for the FZETPRT

Program 31

PRTBUF Parameter 32

PRTMPP Parameter 33

PRTTYP Parameter 33

FORMFD Parameter 33

CICS Entries for FZETPRT (DBCS only) 34

Using the New Copy Function 34

Specifying Recovery Options in the CICS Tables . . 34

Considerations that Affect Performance 35

Residency (Modules in Memory) Considerations 35

Virtual Storage Considerations and Residency 35

Work Database Temporary Storage Queue

Considerations 36

Using and Allocating Data Files in CICS 36

Defining and Loading VSAM Data Files . . . 37

Using Remote Files 38

Defining Transient Data Queues 38

Considerations for Using DB2 in CICS 40

Associating DB2 Databases with CICS

Transactions 40

Recovery and Database Integrity

Considerations 40

Considerations for Using DL/I in CICS 40

Recovery and Database Integrity

Considerations 40

Setting up the National Language 41

Chapter 7. System Considerations for z/OS

Batch 43

Required File Descriptions 43

Using VSAM Program Data Files in z/OS Batch . . 44

Considerations for Using DB2 in z/OS Batch . . . 44

Recovery and Database Integrity Considerations 44

Considerations for Using DL/I in z/OS Batch . . . 44

Defining the Program Specification Block (PSB) 44

Recovery and Database Integrity Considerations 45

Performance Considerations for z/OS Batch . . 45

Runtime JCL 45

Chapter 8. System Considerations for IMS . . . 47

Required File Descriptions 47

Defining the Program Specification Block (PSB) . . 48

Processing Modes 49

Printing Considerations for IMS 49

Recovery and Database Integrity Considerations . . 49

Considerations that Affect Performance 50

Residency Considerations and the IMS Preload

Function 50

Preloading Enterprise Developer Server

Modules 51

Loading Enterprise Developer Server Modules

into the Link Pack Area 52

Preloading Generated Programs 52

Database Performance 52

Limiting MFS Control Blocks 53

Monitoring and Tuning the IMS System 53

Considerations for Using DB2 in IMS 53

Recovery and Database Integrity Considerations 54

Checking Authorization 54

Considerations for Using DL/I in IMS 54

Recovery and Database Integrity Considerations 55

Maintaining the Work Database in IMS 55

Deleting Old Records from the Work Database . 55

DL/I Work Database 55

DB2 Work Database 56

Expanding the Work Database 57

DL/I Work Database 57

DB2 Work Database 58

Supporting Multiple Work Databases 60

DL/I Work Databases 60

DB2 Work Databases 60

Considerations for Message Format Services in IMS 61

© Copyright IBM Corp. 1994, 2005 21

22 IBM Enterprise Developer Server Guide for z/OS

Chapter 5. General System Considerations for z/OS Systems

This chapter describes the system requirements and considerations for

administering the Enterprise Developer Server in all of the supported z/OS

environments.

The following information is discussed:

v Considerations that affect performance

v Defining and loading VSAM program data files

v Support for DBCS terminals

v Extended addressing considerations for Enterprise Developer Server

v DB2 considerations

v Backing up data

v Customizing Enterprise Developer Server

Considerations that Affect Performance

Specifying certain build descriptor and compiler options and making reentrant

programs resident in memory can affect the performance of EGL-generated

programs.

Build Descriptor and Compiler Options

Setting build descriptor options as follows may improve run-time performance:

v checkNumericOverflow=NO

v debugTrace=NO

v fillWithNulls=NO

v initIORecords=NO

v initNonIOData=NO

v leftAlign=NO

v math=COBOL

v setFormItemFull=NO

v validateMixedItems=NO

v validateOnlyIfModified=YES

Specifying the following compiler options also may improve run-time performance:

v NOFDUMP

v NOSSRANGE

v NOTEST

v OPT

Note: Refer to the Enterprise COBOL for z/OS documentation for details on these

compiler options.

Modules in Memory

Placing load modules in memory can improve performance by reducing the

number of I/O operations (EXCPs). Load modules can be placed in memory by

using the features of z/OS or the features of the environment in which you are

running. Refer to the appropriate performance consideration sections for more

detailed information about improving performance in a particular run-time

environment.

General z/OS* methods to place load modules in memory are listed below:

© Copyright IBM Corp. 1994, 2005 23

v Place modules in the link pack area (LPA). Some of the modules that are

shipped with the Enterprise Developer Server are reentrant and can be placed in

the LPA. Refer to the Program Directory for Enterprise Developer Server for z/OS

(GI10–3241–00) for information about modules that are reentrant and LPA

eligible.

Generated programs, online print-service programs, form group format modules,

and shared data tables are also reentrant and can be included in the LPA.

v Manage the Enterprise Developer Server data sets and the data sets containing

the generated programs, online print services programs, form group format

modules, and shared data tables. Use the Virtual Lookaside Facility (VLF) and

the Library Lookaside (LLA) features of z/OS. Those features can place both the

load modules and the partitioned data set (PDS) directories in memory.

Note: The STEPLIB and ISPLLIB libraries are searched first. For the z/OS

methods, the load module (for LPA) or the data set (for VLF/LLA) cannot

be contained in the STEPLIB or ISPLLIB concatenation list.

Files and Databases

Standard tuning techniques (such as buffering) can be used with files and

databases used by generated COBOL programs.

Defining and Loading VSAM Program Data Files

This section describes how to define and load VSAM data sets for use as program

data files in the CICS or z/OS batch environment. The section contains the

following information:

v Defining VSAM data sets

v Defining an alternate index

v Loading data into the files

Defining VSAM Data Sets

VSAM data files can be serial (ESDS), relative (RRDS), or indexed (KSDS) files. Use

the IDCAMS program to define a user VSAM data file. Figure 1 on page 25 shows

example JCL that can be used to define the VSAM files.

24 IBM Enterprise Developer Server Guide for z/OS

Defining an Alternate Index

An alternate index provides you with another way of gaining access to the records

in a given KSDS file. Using a secondary key eliminates the need for you to keep

several copies of the same information organized in different ways for different

programs.

To gain access from an alternate index to the file through its prime index (base

cluster), you must define a path to it. The path sets up an association between the

alternate index and the base cluster, allowing the records in the data set to be

available to you in different sequences. The alternate index is built after the base

cluster is defined.

//DEFVSAM JOB ...

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* THE FOLLOWING SAMPLE DEFINES A */

 /* VSAM INDEXED FILE */

 DEFINE CLUSTER (NAME(ELA1.USER.KSDS) -

 VOL(xxxxxx) -

 CYLINDERS(pp ss) -

 KEYS(l d) -

 RECORDSIZE(aaa mmm) -

 INDEXED)

 /* THE FOLLOWING SAMPLE DEFINES A VSAM */

 /* NUMBERED RELATIVE RECORD FILE */

 DEFINE CLUSTER (NAME(ELA1.USER.RRDS) -

 VOL(xxxxxx) -

 CYLINDERS(pp ss) -

 RECORDSIZE(aaa mmm) -

 NUMBERED)

 /* THE FOLLOWING SAMPLE DEFINES A VSAM */

 /* ESDS FILE */

 DEFINE CLUSTER (NAME(ELA1.USER.ESDS) -

 VOL(xxxxxx) -

 CYLINDERS(pp ss) -

 RECORDSIZE(aaa mmm) -

 NONINDEXED)

where:

xxxxxx Specifies a valid volume serial number

pp Specifies the primary number of cylinders to be allocated

ss Specifies the secondary number of cylinders to be allocated

l Specifies the length of the key

d Specifies the offset of the key

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 1. Defining VSAM Data Files

Chapter 5. General System Considerations for z/OS Systems 25

Figure 2 shows example IDCAMS definition commands for the base cluster and the

alternate index cluster for an indexed file.

Loading Data in the Files

If you are using a VSAM indexed file (KSDS) and you want to open it for input

only, initialize the file with at least one record. The file must have at least one

record because a VSAM restriction prevents a file from being opened for input if

the file is empty. While an empty file might be opened for output or both input

and output, it must contain data to be opened for input.

There are several ways that you can put data into a file. One way is to create a

Enterprise Developer program that uses an ADD process option to add records to

an empty serial file. Once the program ends, you can use the IDCAMS REPRO

command to copy the serial file into an indexed file.

Another way is to write a program that uses an ADD process option to add

records to an empty indexed file. You must close the file in order to make the new

records accessible.

Another way to initialize a VSAM KSDS file is to use a utility program shipped

with the Enterprise Developer Server product. This utility can be used to initialize

the key of a VSAM KSDS file. Figure 3 on page 27 shows how to initialize a VSAM

KSDS file by setting the key to hexadecimal zeros.

DEFINE CLUSTER (NAME(VSAM.KSDS.BASE.FILE) -

 VOLUMES(xxxxxx) -

 CYLINDERS(pp ss) -

 KEYS(l d) -

 RECORDSIZE(aaa mmm) -

 INDEXED)

DEFINE ALTERNATEINDEX (NAME(VSAM.KSDS.ALT.INDEX) -

 KEYS(l d) -

 CYLINDERS(pp ss) -

 RELATE(VSAM.KSDS.BASE.FILE) -

 VOLUMES(xxxxxx))

DEFINE PATH(NAME(VSAM.KSDS.ALT.INDEX.PATH) -

 PATHENTRY(VSAM.KSDS.ALT.INDEX))

BLDINDEX INDATASET(VSAM.KSDS.BASE.FILE) -

 OUTDATASET(VSAM.KSDS.ALT.INDEX)

where:

xxxxxx Specifies a valid volume serial number

pp Specifies the primary number of cylinders to be allocated

ss Specifies the secondary number of cylinders to be allocated

l Specifies the key length

d Specifies the key displacement

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 2. Defining the Base Cluster and the Alternate Index Cluster

26 IBM Enterprise Developer Server Guide for z/OS

You can also use the IDCAMS utility to load initial data into an indexed file.

Figure 4 shows an example of loading data into a VSAM KSDS file. The data

contained in the USER.KSDS.INPUT file is loaded into the USER.KSDS data set.

Support for DBCS terminals

Enterprise Developer Server provides support for the IBM Personal System/55 and

the IBM 5550 family of terminals (emulating an IBM 3270 device). In addition to

the basic hardware, this support uses character set F8 and four hardware attributes

for double-byte character set (DBCS). The extended attributes are shift-out (SO)

and shift-in (SI) enable, field outlining, color, and extended highlighting.

Unpredictable results can occur if attributes are used that are not supported by the

hardware.

Extended Addressing Considerations for Enterprise Developer Server

Some of the code provided with Enterprise Developer Server can run in extended

addressing mode. This section describes considerations for using the extended

addressing mode.

Most of the code shipped with Enterprise Developer Server runs in 31-bit

addressing mode and resides above the 16MB line.

Most of the storage acquired by Enterprise Developer Server is above the 16MB

line unless the first Enterprise Developer-generated program in the run unit is

link-edited with AMODE(24) or generated with the build descriptor option data set

to 24. The AMODE(24) program attribute specifies that the program runs in 24–bit

addressing mode.

Database Considerations

This section discusses preparing programs and checking access authorization to

database resources when using the following:

v DB2 on z/OS systems

//LOAD JOB...

//JOBLIB DD DSN=ELA.VxRxM0.SELALMD,DISP=SHR

//INITK EXEC PGM=FZEZREBO,PARM=’I,KSDS’

//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,BLKSIZE=121,RECFM=FB)

//KSDS DD DSN=USER.KSDS,DISP=SHR

//SYSIN DD DUMMY

Figure 3. Initializing a VSAM KSDS File

//JOB KSDSLOAD

//LOAD EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 REPRO INDATASET(’USER.KSDS.INPUT’) OUTDATASET(’USER.KSDS’)

/*

//

Figure 4. Loading a VSAM KSDS File

Chapter 5. General System Considerations for z/OS Systems 27

Preparing Programs

Before running a program, the SQL* statements need to be analyzed and prepared.

If you use DB2, you also need to bind the DB2 program plan.

Note: Both of the above tasks are performed by the Enterprise Developer Server

build process.

Checking Access Authorization

The database manager checks whether program users have the authority to access

tables or run programs. The type of checking done varies depending on your

system and the processing mode.

When accessing DB2 in generated COBOL programs, program users must be

authorized to run the corresponding DB2 program plan and package.

DB2 requires an authorization identifier to ensure that program users have the DB2

authority to perform operations on the database and tables. The type of

authorization checking done depends on whether the processing mode is static or

dynamic. The authorization identifier of the program developer performing the

BIND command is used for static SQL statements; the authorization identifier of

the program user is used for dynamic SQL statements. Generated COBOL

programs use dynamic SQL statements in either of two cases:

v The SQL statement is in an EGL prepare statement

v The EGL statement uses an SQL record, and a host variable identifies the SQL

table name associated with that record

Any other SQL statements in the program are static statements. Refer to the DB2

administration manual for more information on the various ways the authorization

identifier value is set.

Backing Up Data

You should regularly back up your data. This includes all files related to Enterprise

Developer Server, private libraries, user-created data files, and user load libraries.

System services are provided to back up and restore user libraries.

28 IBM Enterprise Developer Server Guide for z/OS

Chapter 6. System Considerations for CICS

This chapter provides additional system requirements and considerations for

administering Enterprise Developer Server in the CICS environment.

The following information is discussed:

v Required file descriptions

v Segmented and nonsegmented processing

v Using transient data queues for printing

v Using the new copy function

v Recovery and database integrity considerations

v Considerations that affect performance

v Using and allocating data files

v Considerations for using DB2

v Considerations for using DL/I

v Considerations for using called remote programs

Required File Descriptions

Enterprise Developer Server requires the following files:

File Name

Description

ELAD This transient data queue is the default destination for Enterprise

Developer Server error messages. Enterprise Developer Server produces

error messages when it detects an error that prevents a program from

continuing.

 The ELAD transient data queue is defined when Enterprise Developer

Server is installed. If you want to direct error messages for different

transactions to different queues, define the other queues with the same

characteristics as ELAD. Use the error diagnostic utility ELAC to direct

error messages to the required queue. See the description of the utility in

Chapter 17, “Diagnostic Control Options,” on page 117 for more

information.

ELACFIL

This is the error diagnostic control file. This file is created during

customization.

ELAT This transient data queue is the destination for Enterprise Developer Server

trace records.

 If requested, Enterprise Developer Server can create trace records for

selected runtime operations. The ELAT transient data queue is defined

when Enterprise Developer Server is installed. For details, see Chapter 22,

“Enterprise Developer Server Trace Facility,” on page 143.

ELATOUT

This file is associated with the ELAT transient data queue at installation

time. The output of the Enterprise Developer Server trace facility is sent to

this data set. The attributes of this datase are DSORG=PS, LRECL=133,

BLKSIZE=1330, RECFM=FBA.

EZEPRINT

The file that you associate to the Enterprise Developer file name PRINTER

© Copyright IBM Corp. 1994, 2005 29

at resource association will be used when printing from a program that

displays printer maps. This file can be defined with a file type of SPOOL

or TRANSIENT. This file is normally associated with the transient data

queue PRIN.

 If you installed Enterprise Developer Server as described in the Enterprise

Developer Server program directory, PRIN is defined as an indirect

destination associated with the system printer. The maximum record length

that a generated program writes to the system printer is 650 bytes for

double-byte character set (DBCS) print maps and 133 bytes for single-byte

character set (SBCS) print maps. The first byte is an American National

Standards printer control character. The DBCS record length is longer than

the physical printer line length because the print record can contain

outlining and shift-out/shift-in (SO/SI) control characters that do not

appear on the device.

 If you are using Enterprise Developer Server to print to a file destination

other than PRIN, the characteristics of that file should be the same as

PRINTER.

EZEPRMG

This VSAM indexed file (KSDS) contains the parameter group records used

for print control options for the Enterprise Developer Server terminal

printer utility, FZETPRT. The FZETPRT program reads this file searching

for the parameter group matching the transaction name that started

FZETPRT.

Segmented and Nonsegmented Processing

Two different storage queues are used to support segmentation. The storage queue

names have the following format:

 xyyytttt

where:

x Specifies a byte with the hex value X'EE'

yyy Specifies WRK (program working storage) or MSG (current form saved

across help or error display)

tttt Specifies the terminal ID associated with the transaction

The build descriptor option workdb specifies whether a main or auxiliary storage

queue is used. The storage queues are deleted at the end of a run unit.

For details on segmentation, see the EGL help system.

Using Transient Data Queues for Printing in z/OS CICS

Printed output destined for a transient data queue is accumulated in temporary

storage. The temporary storage queue name has the following format:

 ttttnnnn

where:

tttt Is the transient data queue name

nnnn Is the EXEC Interface Block (EIB) task number

The default print destination for z/OS CICS is a transient data queue named EZEP.

If you installed Enterprise Developer Server as described in the Enterprise

Developer Server program directory, EZEP is an indirect destination associated

30 IBM Enterprise Developer Server Guide for z/OS

with the system printer. During program generation, this destination can be

changed to any 4-character transient data queue name. The destination control

table (DCT) entry for the queue determines the actual destination. The destination

can be the system printer, a data set, or a terminal printer.

z/OS CICS terminal printing

The program called FZETPRT supports terminal printing. This program runs as a

CICS transaction that starts automatically when records are written to the transient

data queue. If Enterprise Developer Server was installed as described in the

Enterprise Developer Server program directory, the transaction name is EZEZ for

IBM 5550-type printers and EZEP for all other printers. To send printed output to

the terminal, you must include a TYPE=INTRA for the transient data queue in the

CICS destination control table (DCT). Specify EZEP or EZEZ for the transaction ID

in the DCT entry. Unless you specify a terminal name in the DCT entry, the queue

identifier must be the same as the terminal printer identifier. The trigger level in

that entry must be set to 1 to ensure proper output. See “Printing Transient Data at

a Terminal Device” on page 39 for a sample DCT entry.

When the FZETPRT program is initiated, it reads a line from the transient data

queue, converts the American National Standards printer-control character to NL

EOM format, and writes to the terminal printer specified in the DCT entry. The

FZETPRT program buffers multiple print lines into a single CICS SEND command

to improve performance.

When using terminal printing with Enterprise Developer Server, you should be

aware of potential problems regarding form-feed orders and page alignment. When

the FZETPRT program is triggered, a form-feed order is issued to the printer to

ensure that it begins printing at the top of a page. If a second map is sent to the

queue before it is emptied by the FZETPRT program, a form-feed order is not

issued before the second map is printed. Page alignment can vary depending on

the timing with which successive maps are sent to the queue.

Another potential problem can occur when printing successive maps. If one of the

maps in the series is defined with lines equal to, or one line fewer than, the

lines-per-page setting on the printer, a blank page occurs between the printed

maps. To avoid this, define the map size as 2 lines fewer than the lines-per-page

setting on the printer. Because the FZETPRT program inserts a new-line order to

ensure that printing begins in column 1, the first line of the map to be printed is

actually printed on the second line of the page. The second line must be allowed

because a new-line order is added after the last line of the map, which advances

the print head to the beginning of the next line. If this happens to be the first line

of the following page, the next form-feed order causes the page to be skipped

before printing resumes.

Another thing to consider is that although Enterprise Developer Server sometimes

causes successive, stand-alone form-feed orders (“1”), the FZETPRT program

suppresses all but one of these in converting them to NL EOM format.

If these form-feed considerations are too restrictive for your needs, consider using

the FORMFD=NO parameter.

Special Parameter Group for the FZETPRT Program

You can provide terminal printing parameters to the FZETPRT program to vary the

printed output by using a special parameter group file.

Chapter 6. System Considerations for CICS 31

The FZETPRT program attempts to read a file named EZEPRMG for a parameter

group that has the same name as the transaction used to start the FZETPRT

program. For example, if the print transaction that starts the FZETPRT program is

named EZEP, then FZETPRT tries to find the parameter group named EZEP. If the

parameter group is not located in a file named EZEPRMG, or if EZEPRMG does

not exist, then the FZETPRT program reads the DCAPRMG file to find the

parameter group associated with this transaction.

When the transaction starts, the FZETPRT program reads the parameter group and

varies the printer output according to the contents. If you need to use the terminal

printing parameters, create a parameter group using the Enterprise Developer

Server utility provided for this purpose.

For this parameter group, you can specify the following four parameters:

v PRTBUF=xxx

v PRTMPP=nnn

v PRTTYP=D

v FORMFD=NO

Note: Do not include blanks between keywords and their associated values.

PRTBUF Parameter

Use the PRTBUF parameter to set the size of the printer buffer. The number of

SEND commands sent to the terminal printer depends on the size of the printer

buffer. The following example shows how to specify the buffer size using the

PRTBUF parameter:

 PRTBUF=xxx

where:

xxx Is the size in bytes of the printer buffer

The FZETPRT program uses a default buffer size if any of the following conditions

occur:

v The parameter is not specified in the parameter group.

v There is no parameter group associated with the transaction.

v The parameter keyword is misspelled.

v The value specified is not valid (values greater than 8K bytes, smaller than 480

bytes, or not numeric).

v The EZEPRMG or DCAPRMG file does not exist or is not available.

The default buffer size is 2KB (where KB equals 1024 bytes) for the standard

character set printers and 480 bytes for LU type 3 printers.

For double-byte character set (DBCS) users the default buffer size and the

maximum buffer size allowed is 1918 bytes. The default value is used if your

specified value exceeds the maximum number of bytes.

When the buffer size is larger than the default, usage of the PRTBUF parameter is

optional. However, using the PRTBUF parameter is recommended to reduce the

number of SEND commands sent to the terminal. If the printer buffer size is

smaller than the default, specify the real buffer size using this parameter. Not

specifying the real buffer size can cause unpredictable results.

32 IBM Enterprise Developer Server Guide for z/OS

PRTMPP Parameter

Use the PRTMPP parameter to set the maximum number of print positions. The

following example shows how to specify the number of print positions using the

PRTMPP parameter:

 PRTMPP=nnn

where:

nnn Is the physical length (maximum print position) of the printer line

The FZETPRT program assumes a default maximum print positions of 132 if any

of the following occurs:

v The parameter is not specified in the parameter group.

v There is no parameter group associated with the transaction.

v The parameter keyword is misspelled.

v The value specified is not valid (not numeric).

v The EZEPRMG or DCAPRMG file does not exist or is not available.

Use caution when coding the value of this parameter. If the value entered is a

valid numeric, the FZETPRT program uses the value without validating it. If the

value is greater than the number of print positions available on the actual printer,

possible malfunctioning can take place causing more line skips than necessary.

Note: For DBCS users, this parameter must be specified unless the printer is

configured with MPP=132.

PRTTYP Parameter

Use the PRTTYP parameter if you use a DBCS printer. The following example

shows how to specify the use of a DBCS printer using the PRTTYP parameter:

 PRTTYP=D

Note: This parameter must be used to specify that you are a DBCS user and your

output is being directed to an IBM 5550-family printer.

If you use multiple printers with different characteristics (namely different MPP,

different buffer size, or DBCS versus non-DBCS printers), you need as many

transaction IDs as there are printers, each one associated with the FZETPRT

program. For examples of table entries for two printers, see the CICS transaction

definitions provided with Enterprise Developer Server for the EZEP (non-DBCS

printers) and EZEZ (DBCS printers) transactions.

FORMFD Parameter

Use the FORMFD parameter to control the form-feed orders that the FZETPRT

program issues. The following example shows the format of the FORMFD

parameter:

 FORMFD=NO

The FZETPRT program defaults to inserting form-feed orders into the printer data

stream if any of the following occurs:

v The parameter is not specified in the parameter group.

v There is no parameter group associated with the transaction.

v The parameter does not appear as FORMFD=NO.

v The EZEPRMG or DCAPRMG file does not exist or is not available.

Chapter 6. System Considerations for CICS 33

If the parameter is specified correctly, the FZETPRT program does not insert

form-feed orders for any reason.

CICS Entries for FZETPRT (DBCS only)

If you are using an SCS-type printer and you use DBCS, ensure that your system

programmer has coded the destination control table (DCT) and the program

control table (PCT) entries for a transaction that runs FZETPRT with the following

option:

 MSGPOPT=CCONTRL

The MSGPOPT option defines the optional facilities that a task can use. The

CCONTRL parameter indicates that the program can control the outbound

chaining of request units. Refer to the CICS manuals for more information.

Using the New Copy Function

The new copy function (either the Enterprise Developer Server new copy utility or

the CICS NEWCOPY command) causes a transaction to use a new copy of a

program, form group, or data table referenced in the transaction. The Enterprise

Developer Server new copy utility is implemented as an EGL program in the CICS

environment. Active transactions continue to use the current version of a program,

form group, or data table until the transaction either completes or reaches the end

of a segment. A new copy of the program, form group, or data table is then made

available to the transaction by Enterprise Developer Server. Use the new copy

function when programs, form groups, and data tables are modified and generated

again. This enables you to install new versions of programs, form groups, and data

tables onto your system without disrupting operation.

For programs and form groups you can use the CICS NEWCOPY command or the

Enterprise Developer Server new copy utility to cause the new copy of the

program to be used the next time a load request is issued for the program.

The Enterprise Developer Server new copy utility does a new copy for both the

online print services program and the form group format module when you

specify a part type of form group. If you use the CICS NEWCOPY command for a

form group, you must issue the NEWCOPY for both the online print services

program and the form group format module.

For data tables, you must use the Enterprise Developer Server new copy utility to

cause a fresh copy of the data table to be used the next time a load request is

issued for the data table. Do not use the CICS NEWCOPY command for data

tables. The Enterprise Developer Server new copy utility sets a flag indicating that

the new copy of the table is to be used the next time a program loads the table

contents.

For more information on the Enterprise Developer Server new copy utility, see

“New Copy” on page 112.

Specifying Recovery Options in the CICS Tables

EGL-generated programs can make use of all the z/OS CICS recovery and data

integrity features. For a description of those features, refer to the recovery and

restart information for your release of CICS.

34 IBM Enterprise Developer Server Guide for z/OS

The system initialization table (SIT) for CICS should specify DBP=XX, where XX is

not equal to NO. If the DBP value is not equal to NO it prevents ASPE abends

when generated programs issue CICS SYNCPOINT and CICS SYNCPOINT

ROLLBACK commands.

If DTB=YES is specified on the program control table (PCT) entries for the

transactions, the value specified for DBP is significant. CICS provides two dynamic

backout programs, one for systems that require DL/I support and the other for

systems that do not require DL/I support. These programs are provided by CICS if

an entry is included in the processing program table (PPT) that specifies

TYPE=GROUP and FN=BACKOUT.

Considerations that Affect Performance

This section describes factors that affect system performance and suggestions on

how to improve performance. For information beyond what is stated in this

section, refer to the performance guide for your release of CICS.

Residency (Modules in Memory) Considerations

The performance of a program is affected by the number of times that a running

program requires access to a disk. Programs require access to disks for the

following reasons:

v Locating and loading Enterprise Developer Server load modules or phases

v Retrieving and storing user data

v Locating and loading application programs, form group format modules, and

online print services programs

The Enterprise Developer Server loads objects as they are needed. For example, the

Enterprise Developer Server loads an application program, online print services

program, form group format module, or data table when another program calls or

references it. If you make an object resident, then the object remains in storage

after it is loaded by the Enterprise Developer Server. You can use the RES

parameter program definition to make any of these resident: an application

program, online print services program, or form group format module. The

data-table developer uses options in the part declaration to specify whether a data

table is resident.

Virtual Storage Considerations and Residency

It is true that if an program is resident, less I/O is required for multiple loads.

However, making these objects resident requires more virtual storage because the

modules accumulate in storage as they are loaded and are not deleted after they

are used.

When deciding what to make resident, consider the following:

v Storage constraints

v Frequency of program use

v Long running programs versus programs that are started more frequently

Because most systems have virtual storage constraints, it is not possible to make

everything resident. You should establish priorities for deciding which objects you

want to make resident. These residency priorities reflect a trade-off between

program usage and storage constraints. Your priorities can dictate that some

components of a program (such as the online print services program or form group

format module) should be made resident, while other components (such as data

tables) should not.

Chapter 6. System Considerations for CICS 35

In CICS, when a program component is made resident, it remains in storage from

the time it is loaded into storage until either CICS is shut down or the new copy

function is used. To aid in deciding which programs should be made resident, you

can use CICS shutdown statistics to determine how often a generated program or

other component is loaded into the region or partition.

Generally, objects that are loaded more than once are prime candidates for

residency. Examples of this a data table that is used by more than one program or

a program that is called more than once.

Programs that are not frequently initiated or have long running time should not be

made resident.

If you plan to run a program in pseudoconversational mode, you should consider

making all components of the program resident. In pseudoconversational mode,

the program and its components are deleted and are loaded again at each segment

break if they are not made resident, and these actions degrade performance.

Work Database Temporary Storage Queue Considerations

When running in pseudoconversational mode (using a segmented CONVERSE

process option), the data and the status associated with the program must be saved

during user think time. You can control whether this information is saved into the

CICS main temporary storage or auxiliary storage. Using main temporary storage

can result in better performance because the data is written to memory within the

CICS address space instead of writing the data to disk space.

Note: Use of main temporary storage can degrade system performance because the

increased address space that is referenced can increase the paging activity.

Also, CICS can experience a short-on-storage condition if the program data

to be saved exceeds the available CICS storage. Therefore, if you take

advantage of main temporary storage for programs requiring better

performance, you should monitor your system to ensure that virtual storage

problems do not occur.

The amount of data written or read on each request to CICS when saving program

data and status, can also affect performance. The installation options module,

ELARPIOP, specifies the largest size record Enterprise Developer Server writes to

main or auxiliary temporary storage. The default size is 32KB (where KB equals

1024 bytes), which is the largest value allowed by CICS. Use a large value to

ensure that the least number of write requests are required, and, if using auxiliary

storage, to ensure that the least number of I/O operations are required. See the

Program Directory for Enterprise Developer Server for z/OS for information on how to

change the value in the installation options module.

Note: If you are using auxiliary storage queues, you should ensure the control

interval size (CISIZE) of the VSAM data set used for auxiliary temporary

storage matches the size specified in the installation options file. If the

CISIZE for the data set is smaller, CICS splits the data written or read into

smaller pieces and does multiple I/O operations for each Enterprise

Developer Server request. Also ensure that you have an adequate number of

buffers for the auxiliary temporary storage data set in order to reduce the

number of physical I/O operations.

Using and Allocating Data Files in CICS

This section describes how to define data files for use in generated EGL-generated

programs in the CICS.

36 IBM Enterprise Developer Server Guide for z/OS

Defining and Loading VSAM Data Files

Before CICS programs can use VSAM data files, you must define and load them.

See “Defining and Loading VSAM Program Data Files” on page 24 for information

on defining VSAM data sets, defining an alternate index, and loading a VSAM

data set.

Adding the Job Control Statements: After the data set has been defined and

loaded, add the data set name to the CICS startup JCL to allocate user files. You

can also let CICS dynamically allocate the data set to the file using the information

specified in the file control table (FCT). Figure 5 shows example allocation

statements for an indexed, relative, and serial file, and an alternate index.

Adding the File Name to the CICS File Control Table: After the data set has

been defined, loaded, and added to the CICS startup JCL, the FCT entry must be

created for the file name for a CICS program to gain access to the data set.

Creating an FCT entry can be accomplished using online (RDO) or macro

definitions.

Figure 6 on page 38 shows sample macro definition entries that can be used to add

a file name to the FCT. Enterprise Developer Server uses the name on the FILE

operand. The FILE operand name must be the same as the ddname (z/OS) in the

CICS startup JCL. All other operands must be the same as when you add an

indexed, relative, or serial file to the FCT.

With CICS, make an entry to the FCT for every file used by a program. The CICS

files can be defined as remote FCT entries.

For further information, refer to the appropriate CICS resource definition guide for

your environment.

//KSDSFILE DD DSN=ELA1.USER.KSDS,DISP=SHR

//RRDSFILE DD DSN=ELA1.USER.RRDS,DISP=SHR

//ESDSFILE DD DSN=ELA1.USER.ESDS,DISP=SHR

//KSDSAIX DD DSN=VSAM.KSDS.ALT.INDEX.PATH,DISP=SHR

Figure 5. Allocating User Files

Chapter 6. System Considerations for CICS 37

Using Remote Files

EGL-generated programs can gain access to files that do not reside on your CICS

system.

Refer to the EGL helps for additional information.

Defining Transient Data Queues

Transient data queues are used in CICS for reading or writing data from tapes,

disks, or other sequential files. If you associated a serial file with a transient data

queue at generation, you must define a CICS destination control table (DCT) entry

for the queue.

KSDS

DEFINE FILE(KSDSFILE) GROUP(xxxxxx)

 DSNAME(Indexed.DSName)

 DISPOSITION(SHARE) ADD(YES)

 BROWSE(YES) DELETE(YES) READ(YES)

 UPDATE(NO) RECORDFORMAT(F)

 STRINGS(8) LSRPOOLID(NONE)

 RECOVERY(NONE) NSRGROUP(GROUP1)

 INDEXBUFFERS(8) DATABUFFERS(9)

Alternate Index

DEFINE FILE(KSDSAIX) GROUP(xxxxxx)

 DSNAME(AlternateIndex.DSName)

 LSRPOOLID(NONE) DISPOSITION(SHARE)

 STRINGS(5) NSRGROUP(GROUP1)

 BROWSE(YES) DELETE(NO) READ(YES)

 ADD(NO) UPDATE(NO) RECORDFORMAT(F)

 RECOVERY(NONE) INDEXBUFFERS(5)

 DATABUFFERS(6)

RSDS

DEFINE FILE(RSDSFILE) GROUP(xxxxxx)

 DSNAME(Relative.DSName)

 DISPOSITION(SHARE) ADD(YES)

 BROWSE(YES) DELETE(YES) READ(YES)

 UPDATE(NO) RECORDFORMAT(F)

 STRINGS(8) LSRPOOLID(NONE)

 RECOVERY(NONE) NSRGROUP(GROUP1)

 INDEXBUFFERS(8) DATABUFFERS(9)

ESDS

DEFINE FILE(ESDSFILE) GROUP(xxxxxx)

 DSNAME(EntrySequenced.DSName)

 DISPOSITION(SHARE) ADD(YES)

 BROWSE(YES) DELETE(YES) READ(YES)

 UPDATE(NO) RECORDFORMAT(F)

 STRINGS(8) LSRPOOLID(NONE)

 RECOVERY(NONE) NSRGROUP(GROUP1)

 INDEXBUFFERS(8) DATABUFFERS(9)

******* E N D O F U S E R D A T A F I L E S *********

Figure 6. Adding a File Resource Definition

38 IBM Enterprise Developer Server Guide for z/OS

You can define the following types of transient data queues:

v Intrapartition (temporary data)

v Extrapartition (data that other non-CICS regions can use)

Intrapartition transient data files contain data that is not usable after it is read.

Defining Intrapartition Transient Data:

Passing Transient Data between CICS Transactions: This is an example of a DCT

entry that can be used to pass data from one CICS transaction to another. The file

destination specified at generation with the SYSNAME option should be xxxx.

 DFHDCT TYPE=INTRA, C

 DESTID=xxxx, C

 DESTFAC=FILE

Printing Transient Data at a Terminal Device: This is an example of a DCT entry that

can be used for terminal printing in Enterprise Developer Server. At generation

time, the resourceAssociation part specifies how you want to handle printer. The

default is the first four characters, i.e., prin. (A DCT entry is supplied for prin that

sends the printed output to the system printer.) The program supplied for printing,

FZETPRT, reads records from the transient data queue and issues SEND

commands to the terminal in order to print the records.

In this sample DCT, the PR01 terminal is to receive the printed output. PR01 is a

z/OS CICS printer terminal name. You specify the printer destination at generation

as PR01. Enterprise Developer Server writes the printed output to the transient

data queue, PR01. The transaction EZEP starts and causes the program FZETPRT

to run. The data is read from the transient data queue and sent to the terminal,

PR01. The program control table (PCT) entries for EZEP and the processing

program table (PPT) entries for FZETPRT are supplied. You must supply the

destination control table and the terminal control table entries for the transient data

and terminal.

 DFHDCT TYPE=INTRA, C

 DESTID=PR01, C

 DESTFAC=TERMINAL, C

 TRANSID=EZEP, C

 TRIGLEV=1

If the terminal printer is a DBCS printer, specify EZEZ as the TRANSID.

Defining Extrapartition Transient Data: Data to be read from tape or sent to a

printer is contained in extrapartition transient data queues.

To provide these definitions as RDO entries, see the CICS resource definition

guide.

The following two examples show how to use extrapartition transient data queues.

These files can be used by non-CICS devices and by CICS.

Printing Transient Data: This is an example of a DCT entry specification that can

be used to print output on a high-speed system printer. The file destination

specified at generation with the systemName association element should be zzzz.

You need to add the appropriate JCL to the CICS runtime JCL to assign a printer

to the file name. The following sample entry for the DCT is for printed output.

Chapter 6. System Considerations for CICS 39

DFHDCT TYPE=EXTRA, C

 DESTID=ZZZZ, C

 DSCNAME=PRINTER

 DFHDCT TYPE=SDSCI, C

 DSCNAME=PRINTER, C

 RECFORM=VARBLKA, C

 RECSIZE=133, C

 BLKSIZE=1330, C

 TYPEFLE=OUTPUT C

The JCL used in the extrapartition destination data queue sample requires the

following JCL:

 //PRINTER DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=1330)

Considerations for Using DB2 in CICS

This section presents considerations for programs that access DB2 databases, and

recovery and database integrity for DB2 programs running in the CICS

environment.

Associating DB2 Databases with CICS Transactions

If the programs running under a transaction access DB2 databases, then you must

define an entry in the CICS resource control table (RCT).

For information on the parameters you can specify when you define RCT entries,

refer to the chapter on connecting the CICS attachment facility in the DB2

installation manual for your version of DB2.

To provide these definitions as RDO entries, see the CICS resource definition

guide.

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features that

are provided by DB2 in the CICS environment.

Relational databases are recoverable resources. If your program makes changes to a

relational database, the changes are not committed to the database until the end of

a logical unit of work (LUW). If your program ends abnormally before the end of

an LUW, all changes that were made since the beginning of the LUW are backed

out.

Considerations for Using DL/I in CICS

This section discusses recovery and database integrity considerations for DL/I

programs running in the CICS environment.

Refer to the EGL helps for additional information.

Recovery and Database Integrity Considerations

EGL-generated programs can make use of all the recovery and data integrity

features that are provided by DL/I in the z/OS CICS environment.

DL/I databases are recoverable resources. If your program makes changes to a

DL/I database, the changes are not committed to the database until the end of a

logical unit of work (LUW). If your program ends abnormally before the end of an

LUW, all changes that were made since the beginning of the LUW are backed out.

40 IBM Enterprise Developer Server Guide for z/OS

Setting up the National Language

On CICS, the national language code used for the first program in the run unit

determines the language that is used for all messages for all programs in the run

unit.

The next table lists the national languages that are supported for these purposes:

v To present Enterprise Developer Server messages on z/OS

v To present program-specific VisualAge Generator messages on any platform.

The code page for the language you specify must be loaded on your target

platform.

 Code Languages

CHS Simplified Chinese

CHT Traditional Chinese

DES Swiss German

DEU German

ENP Uppercase English

ENU US English

ESP Spanish

FRA French

ITA Italian

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

Chapter 6. System Considerations for CICS 41

42 IBM Enterprise Developer Server Guide for z/OS

Chapter 7. System Considerations for z/OS Batch

This chapter presents system considerations for running EGL-generated programs

in the z/OS batch environment.

The following information is discussed:

v Required file descriptions

v Recovery considerations

v Using VSAM program data files

v Considerations for using DB2

v Runtime JCL

Required File Descriptions

Enterprise Developer Server requires the following files:

File Name Description

EZEPRINT This file is used when printing from a program that displays

printer maps. EZEPRINT can be allocated to either a data set or to

a SYSOUT class. The file must have a VBA (variable-blocked ANSI)

record format.

 The maximum record length that a generated program can write to

the print data set is 654 bytes for DBCS maps and 137 bytes for

SBCS maps. The record length includes 4 bytes for the variable

length record header, 1 byte for the American National Standards

printer-control character, and the print line for the print map. The

DBCS record length is longer than the printer line length because

the print line can contain outlining control characters and shift-out

(SO) and shift-in (SI) characters that are not displayed on the

device. The logical record length defined for the data set must be

greater than or equal to the length of the longest line written by

the program, including the DBCS SO/SI characters.

 If you are using Enterprise Developer Server to print to a file

destination other than EZEPRINT, the characteristics of that file

should be the same as EZEPRINT.

SYSPRINT, SYSOUT, SYSABOUT, SYSUDUMP

These z/OS system files are used by EGL-generated programs. Do

not specify DCB parameters for these files.

ELAPRINT This system output file is used by generated programs. Specify

ELAPRINT with RECFM=FBA and BLKSIZE=1330 DCB

parameters.

ELATRACE This file is the trace control file for the z/OS batch environment.

The attributes for this data set are LRECL=80, RECFM=FB, and

BLKSIZE=multiple of 80. The trace filters are specified in the

ELATRACE data set.

ELATOUT The output of the Enterprise Developer Server trace facility is sent

to this data set in the z/OS batch environment. The attributes for

this data set are DSORG=PS, LRECL=133, BLKSIZE=1330, and

RECFM=FBA.

© Copyright IBM Corp. 1994, 2005 43

Using VSAM Program Data Files in z/OS Batch

VSAM program data files must be defined before your z/OS batch program can

use them. See “Defining and Loading VSAM Program Data Files” on page 24 for

information on defining VSAM data sets, defining alternate indexes, and for

information on loading VSAM data sets.

The DD statements for user files are generated for you and placed in the sample

runtime JCL.

Considerations for Using DB2 in z/OS Batch

This section presents system considerations for database recovery and integrity for

DB2 programs.

For information on running DB2 programs in z/OS batch, see Chapter 12,

“Preparing and Running Generated Programs in z/OS Batch,” on page 89.

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features

provided by DB2.

Relational databases are recoverable resources. If your program makes changes to a

relational database, the changes are not committed to the database until the end of

a logical unit of work (LUW). If your program ends abnormally before the end of

an LUW, all changes that were made since the beginning of the LUW are backed

out. For information on when an LUW ends, see the EGL help topic called Logical

unit of work.

Considerations for Using DL/I in z/OS Batch

This section presents the following information:

v Defining the program specification block (PSB)

v Recovery and database integrity considerations

Refer to the EGL helps for additional information.

Defining the Program Specification Block (PSB)

The following list shows considerations for defining a PSB that is used in the z/OS

batch environment:

v DL/I PSBs used in the z/OS batch environment must have CMPAT=YES

specified in the PSBGEN statement for the PSB. This enables you to use the

CHKP and ROLB functions with the PSB.

v The PSBGEN statement must include the parameter LANG=COBOL or

LANG=ASSEM.

v DL/I PSBs used in the z/OS batch environment must be defined with a

minimum of two PCBs of any type in the PSB. This enables the generated

COBOL program to test whether it is being started from the IMS region

controller or from an OS XCTL macro in a non-Enterprise Developer program

passing working storage and dliLib.psbData as parameters.

v z/OS batch programs can implement serial files as GSAM databases. These

GSAM files are treated as a special type of database and require a PCB in the

PSB. The GSAM PCBs must follow all database PCBs.

44 IBM Enterprise Developer Server Guide for z/OS

Recovery and Database Integrity Considerations

In z/OS batch DL/I programs, a commit point causes a DL/I basic CHKP

(checkpoint) call. The contents of dliLib.psbData are used as the checkpoint

identifier. After the CHKP call, dliVar.statusCode contains the status code returned

with the CHKP call.

If the program runs under the z/OS terminal monitor program for SQL access,

calling sysLib.rollback() results in an SQL ROLLBACK WORK.

If the program runs as a DL/I batch job, and DL/I or SQL requests have been

issued, calling sysLib.rollback() results in a DL/I ROLB call. The IMS batch

parameter BKO=Y must be specified when the batch job is started in order for the

ROLB call to be honored. The BKO parameter is specified in the job step that calls

the IMS control program DFSRRC00. If BKO=N is specified, DL/I returns status

code AL for the ROLB call. Enterprise Developer Server treats the AL as a soft

error, and no error message is issued.

Serial or print files associated with GSAM files and AUDIT service routine calls

result in DL/I requests and cause the DL/I ROLB call to be issued.

Performance Considerations for z/OS Batch

See “Modules in Memory” on page 23 for information on performance

considerations and the methods used to place modules in memory. These methods

are particularly beneficial if the Enterprise Developer program is being called

repeatedly by a non-Enterprise Developer program.

If you are running generated programs in z/OS batch, you no longer need to use

the forUpdate option on the I/O statement prior to a delete or replace statement.

Eliminating the forUpdate option allows for better performance, as it eliminates a

COBOL read. However, make sure that you perform a get or get next before the

delete or replace to ensure that the record is available.

Runtime JCL

See Chapter 12, “Preparing and Running Generated Programs in z/OS Batch,” on

page 89 for examples of batch runtime JCL.

Chapter 7. System Considerations for z/OS Batch 45

46 IBM Enterprise Developer Server Guide for z/OS

Chapter 8. System Considerations for IMS

This chapter provides additional administrative information that applies to the IMS

environments.

The following information is discussed:

v Required file descriptions

v Defining the program specification block

v Processing modes

v Printing considerations for IMS

v Recovery and database integrity considerations

v Considerations that affect performance

v Considerations for using DB2

v Considerations for using DL/I

v Maintaining the work database

Required File Descriptions

Enterprise Developer Server requires the following files:

File Name Description

ELASNAP This is an optional file that contains the snap dump listing when a

Enterprise Developer Server error occurs and the ELASNAP DD

statement was included in the startup JCL. This file has a 125-byte

logical record length, a 882-record block size, and a VBA

(variable-blocked ANSI) record format. If this file is directed to the

system logical unit SYSOUT define it with RECFM=VBA and

BLKSIZE=4096.

ELAPRINT This file is an optional output file for Enterprise Developer Server

error messages. This file has a fixed block record format, a 133-byte

logical record length, and a block size of 1330. If this file is directed

to the system logical unit SYSOUT, define it with RECFM=FBA

BLKSIZE=1330.

ELADIAG This is the default name for the optional message queue for

Enterprise Developer Server error messages.

 This message queue is defined in the IMS system definition during

Enterprise Developer Server installation. Refer to Chapter 19, “IMS

Diagnostic Message Print Utility,” on page 125 for information

about printing the error messages contained in the ELADIAG

message queue.

ELATRACE This is the trace control file for the IMS BMP environment. The

attributes for this data set are LRECL=80, DSORG=PS, and

BLKSIZE=multiple of 80. The trace filters are specified in the

ELATRACE data set.

ELATOUT The output of the Enterprise Developer Server trace facility is sent

to this data set in the IMS BMP environment. The attributes for this

data set are LRECL=133, BLKSIZE=1330, and RECFM=FBA.

ELAT The output of the Enterprise Developer Server trace facility is sent

to this output message queue in the IMS/VS environment. Use the

ELAMQJUD job to retrieve the trace.

© Copyright IBM Corp. 1994, 2005 47

EZEPRINT This is the default message queue (IMS/VS) or output file (IMS

BMP) for print output from generated programs. For IMS BMP

programs, the print records are variable length. For single-byte

languages, define EZEPRINT with LRECL=137, BLKSIZE=141, and

RECFM=VBA. For double-byte languages, define EZEPRINT with

LRECL=654, BLKSIZE=658, and RECFM=VBA. If the file is

directed to the system logical unit SYSOUT, define it with

RECFM=VBA, BLKSIZE=4096.

Defining the Program Specification Block (PSB)

You need to define both an IMS PSB and a Enterprise Developer PSB for your

program. The Enterprise Developer PSB contains a subset of the information from

the IMS PSB and is used to build default segment search arguments (SSAs) for the

Enterprise Developer process options.

You need to generate an IMS PSB to correspond to the Enterprise Developer PSB.

For IMS/VS, the IMS PSB must have the same name as the load module for the

associated COBOL program. A program control block (ACB) generation is also

required for the IMS/VS environment. For BMP and DL/I batch, the IMS PSB

name does not have to match the program load module name.

When you define the PSBs for IMS programs, consider the following criteria:

v The I/O PCB (program control block) is automatically supplied and does not

appear in the IMS or Enterprise Developer PSB source.

v Alternate PCBs are used to route output to terminals other than the originating

terminal, or to other transactions. Alternate PCBs must appear before the

database PCBs both in the IMS and the Enterprise Developer PSB source.

v When an Enterprise Developer program is generated for the IMS/VS or IMS

BMP environment, a modifiable alternate PCB and a modifiable express alternate

PCB are required, in that order, as the first two PCBs following the I/O PCB.

Both of these PCBs must have the parameters ALTRESP=NO and

SAMETRM=NO. To avoid having to edit your DL/I call modifications to adjust

for the two required PCBs, include these PCBs whenever you plan to generate a

program for the IMS/VS or IMS BMP target environments.

v The PSBGEN statement must include the parameters CMPAT=YES, and

LANG=COBOL or LANG=ASSEM.

v IMS BMP programs can implement serial files as GSAM databases. These GSAM

files are treated as a special type of database and require a PCB in the PSB. The

GSAM PCBs must follow all database PCBs.

If a DL/I work database is used, the PCB for this database must be included in the

IMS PSB. This PCB can be created using the macro ELAPCB and concatenating

ELA.V1R2M0.ELASAMP as part of the SYSLIB in the PSBGEN procedure. Figure 7

on page 49 shows an example of the PCB expansion that occurs when ELAPCB is

used.

WORKDBD defaults to ELAWORK. The WORKDBD parameter must be used if the

DBD name is changed.

48 IBM Enterprise Developer Server Guide for z/OS

Processing Modes

IMS requires segmented or single-segment mode. Refer to the EGL help for

additional information on segmented and single-segment modes.

The spaSize=xxxx build descriptor option determines whether a program runs as

IMS conversational (xxxx is greater than 0) or nonconversational (xxxx is 0). Refer

to the EGL help for more information.

The work database is used for both conversational and nonconversational

processing to save information during a converse. In conversational mode, the

scratch-pad area (SPA) is used to set the transaction identifier and to save

information during a program-to-program message switch. Refer to the EGL help

for information on how the SPA is used for program-to-program message

switching.

Printing Considerations for IMS

From Enterprise Developer Server, printing is initiated when a program processes a

print statement for an Enterprise Developer-defined printForm. Refer to the online

helps for information on defining forms for printers.

Printing is accomplished using MFS control blocks produced when the form group

is generated. The default print destination in IMS is a message queue named

EZEPRINT. The printer destination can be changed at generation time. You can

also change the print destination at run time by changing the

converseVar.printerAssociation. Refer to the Enterprise Developer help facility for

additional information.

Recovery and Database Integrity Considerations

EGL-generated programs can make use of all the IMS recovery and data integrity

features.

If your program makes changes to a recoverable resource, the changes are not

committed until the end of a logical unit of work (LUW). If your program

abnormally ends before the end of an LUW, all changes that were made since the

beginning of the LUW are backed out.

ELAPCB [WORKDBD=customer-dbd-name]

 --- expands into ---

PCB TYPE=DB,DBDNAME=customer-dbd-name,PROCOPT=AP,KEYLEN=19

SENSEG NAME=ELAWCNTL,PARENT=0

SENSEG NAME=WORKLV01,PARENT=ELAWCNTL

SENSEG NAME=WORKLV02,PARENT=WORKLV01 ...
SENSEG NAME=WORKLV14,PARENT=WORKLV13

SENSEG NAME=MSGLV01,PARENT=ELAWCNTL

SENSEG NAME=MSGLV02,PARENT=MSGLV01 ...
SENSEG NAME=MSGLV14,PARENT=MSGLV13

Figure 7. Generating the DL/I Work Database PCB

Chapter 8. System Considerations for IMS 49

An LUW for an IMS transaction ends whenever a commit point or a rollback

occurs. A commit point occurs in IMS when one of the following occurs:

v The top-level program in a run unit ends successfully.

For IMS BMPs, a run unit consists of all EGL-generated programs and

non-EGL-generated programs that transfer control among themselves using a

transfer statement of the form transfer to a transaction or transfer to a program, or

call statement. For non-EGL-generated programs, this also includes transfers

using an OS XCTL macro or CALL statement.

For IMS/VS, a run unit is equivalent to a single transaction and consists of all

EGL-generated programs and non-EGL-generated programs that transfer control

among themselves using a transfer statement of the form transfer to a program or

a call statement. For non-EGL-generated programs, this also includes transfers

using a CALL statement.

v A program uses a converse statement.

The best time for a commit point to occur is after terminal output and before the

next terminal input. A commit point at terminal I/O synchronizes updates to the

database and confirmation messages to the program user.

v A batch-oriented IMS BMP program (one that does not scan a serial file

associated with the I/O PCB) calls sysLib.commit().

v A batch-oriented IMS BMP program issues a transfer statement of the form

transfer to a transaction and the synchOnTrxTransfer build descriptor option is

set to ″YES″ for the transferred-from program.

v A program does a successful get unique to the I/O PCB.

A rollback occurs when one the following occurs:

v A program calls sysLib.rollback().

v A program ends because of an error condition.

When a rollback occurs, all database changes that were made since the start of the

LUW are backed out.

Considerations that Affect Performance

This section describes factors that affect system performance and suggestions on

how to improve performance.

Residency Considerations and the IMS Preload Function

The performance of a program is affected by the number of times a disk is

accessed while running the program. Programs require access to disks for the

following reasons:

v Locating and loading Enterprise Developer Server load modules

v Retrieving and storing user data

v Locating and loading application, form group format modules, MFS print

services programs, and table load modules

Enterprise Developer Server loads objects as they are needed. For example,

Enterprise Developer Server loads an application, MFS print services program,

form group format module, or table when another program calls or references it.

The overhead of locating and loading modules can be reduced by using the IMS

preload function. Preloading an object reduces the amount of I/O required for

multiple loads. However, preloading generated programs requires more virtual

storage for your system because preloaded modules remain in storage until the

message region is shut down.

50 IBM Enterprise Developer Server Guide for z/OS

It is usually not possible for everything to be preloaded. Therefore, you should

establish priorities for deciding which objects you should preload. These

preloading priorities reflect a trade-off between your program usage and your

storage constraints. Because of individual considerations such as storage

constraints, environment, and types of programs, your priorities might dictate that

some components (such as MFS print services programs) for a program be

preloaded, while other components (such as tables) should not be preloaded. Make

the decision on what modules to preload on an individual basis, according to how

the program uses them.

When deciding what to preload, consider the following:

v Storage constraints

v Frequency of program use

v Long-running programs as compared to programs that are started more

frequently

Generally, objects that are loaded more than once are prime candidates for

preloading. Examples of this are a table that is used by more than one program

and a program that is called more than one time. The following are some general

rules for preloading:

v When deciding what to preload, consider the following objects:

– Called programs

– MFS print services programs

– Form group format modules

– Tables

– Main programs
v Programs that are started or referenced frequently should be preloaded. In

addition to programs that are loaded by IMS when a transaction is scheduled,

this includes programs that are started by the Enterprise Developer transfer

statements of the form transfer to a program or call statements.

v Programs that are not frequently initiated should not be preloaded.

See “Preloading Generated Programs” on page 52 for additional information.

Preloading Enterprise Developer Server Modules

For best performance, use the preload option for the following Enterprise

Developer Server modules:

v ELARPRTR, the Enterprise Developer Server module that handles address mode

switching

v ELARPRTM, the Enterprise Developer Server load module

v ELARPIOP, the installation options module

v ELARIccc (where ccc is the language code), the language-dependent options

module

v ELACNccc (where ccc is the language code), the conversion table

v ELANCccc (where ccc is the language code), the module for Enterprise

Developer Server constants and the fold table

v ELARSCNT, the configuration table

v ELA2SSQW, the module that supports the DB2 work database

v ELARSDCB, which is used for accessing Enterprise Developer Server sequential

files

v ELA2SSQL, its alias ELA2SSQY, and ELA2SSQX

ELA2SSQL, its alias ELA2SSQY, and ELA2SSQX are used to gain access to the

DB2 work database, and they support commit and rollback processing for DB2

Chapter 8. System Considerations for IMS 51

program databases. Preload these modules only if you are using programs that

were generated and bound using CSP/370RS V1R1.

The modules ELARSDCB and ELANCccc are loaded below the 16MB line.

ELARSDCB is used only in reporting errors detected by Enterprise Developer

Server. Both can be omitted from the preload list if storage space below the 16MB

line is limited.

Note: You should also monitor the usage of the LE runtime modules. Because

many are used by the generated COBOL programs, these modules might

also be candidates for preloading.

Refer to the IMS documentation for your system for information on the preload

option. An alternative to preloading is to place modules in the link pack area.

Loading Enterprise Developer Server Modules into the Link Pack

Area

Placing modules in the link pack area causes all regions to share a single copy of

the modules and saves storage space. Refer to the on-line helps for information

about what modules can be put into the link pack area.

Only one version of CSP/370RS V2R1, CSP/370RS V1R1, VisualAge Generator

Server V1R2, or IBM Enterprise Developer Server modules can be placed in the

link pack area. If multiple releases are installed concurrently on the same system,

override the link pack area by defining the correct library in the STEPLIB or

JOBLIB DD statements for the region.

Preloading Generated Programs

You can reduce the overhead of searching the STEPLIB, JOBLIB, link pack area,

and link list by preloading generated programs (application programs, online print

services programs, map group format modules, and table modules) that are

frequently used. However, in this case, virtual storage is still occupied by the

modules when they are not in use.

To improve response time, you might also preload any module associated with any

transaction that might require better performance, even though the module itself is

not frequently used.

To preload generated programs, do the following:

1. Put the module in a LNKLST library.

2. Include the module name in a preload member (DFSMPLxx, where xx is a

two-character ID that you select) in the IMS procedure library.

3. Indicate in the JCL for the IMS message region that the preload member is to

be included.

Database Performance

Database performance can be improved under IMS/ESA® by defining

HIPERSPACE* buffer usage for IMS in the DFSVSMxx member. This is the same as

defining many buffers for the files, but has the advantage that the HIPERSPACE

buffers all come from 31-bit storage, not from within the IMS/ESA region. The

tuning of database buffer pools is recommended. Refer to the IMS manuals for

details on the tuning of database buffer pools.

52 IBM Enterprise Developer Server Guide for z/OS

If you have IMS/ESA installed and use a DL/I work database, make the work

database nonrecoverable to reduce the amount of logging that occurs. Making the

work database nonrecoverable might help improve performance.

Limiting MFS Control Blocks

Limiting the size and number of message format service (MFS) control blocks

might help improve performance. MFS is used for mapping support in the IMS

environment. MFS control blocks are generated using MFS utility control

statements.

You can reduce the size and number of MFS control blocks that are generated by

doing the following:

v In device selection of map definition, select only those Enterprise Developer

devices that are used for the application system. For additional information

about valid device types that can be specified, refer to the Devices list on the

Map Definition Profile - Device Selection window within Enterprise Developer.

v Include in the mfsDevice build descriptor option only device types that your

installation or application system uses. For additional information about

specifying the mfsDevice build descriptor option, see the online helps.

Monitoring and Tuning the IMS System

You can track potential performance problems before they occur by checking

processing statistics on a regular basis. The following are some of the statistics to

monitor:

v Use the IMS DC monitor facilities to check transaction utilization. Consider

preloading programs or groups of programs which are frequently used.

v Use the IMS database monitor facilities to check how effectively the databases

are performing and using space.

You can also use the following tools to monitor IMS performance:

v The IMS Performance Analysis and Reporting System (IMSPARS, Program No.

5798-CQP). This tool presents information on transaction transit times, IMS

resource usage, and IMS resource availability, as well as detailed reports tracing

individual transaction and database change activity. These reports are based on

the contents of the IMS log data set.

v The Resource Measurement Facility* (RMF*) II . This tool collects information

about processor, channel, and I/O device utilization.

v The DB Tools product (Program No. 5685-093). This tool provides information to

help improve database efficiency and space utilization.

Refer to the system administration manuals and the database administration guide

for your release of IMS for detailed information about monitoring the IMS online

system and DL/I databases.

Considerations for Using DB2 in IMS

This section discusses considerations for recovery, database integrity, and security

issues for DB2 programs.

For information on designing and generating DB2 programs for the IMS

environment, refer to the online helps.

Chapter 8. System Considerations for IMS 53

For information on preparing DB2 programs for running in the IMS environment,

see Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS

BMP,” on page 97.

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features that

are provided by DB2 in the IMS environment.

Relational databases are recoverable resources. If your program makes changes to a

relational database, the changes are not committed to the database until the end of

a logical unit of work (LUW). If your program ends abnormally before the end of

an LUW, all changes that were made since the beginning of the LUW are backed

out. See “Recovery and Database Integrity Considerations” on page 49 for

additional information on when an LUW ends.

Checking Authorization

The database manager checks whether the program users have authority to gain

access to tables or to run programs. The type of checking done varies depending

on your system and the processing mode.

When using DB2 in generated COBOL programs, the program users must be

authorized to run the corresponding DB2 program plan. For transaction-oriented

regions, the authorization ID depends on the type of IMS security being used:

v If sign-on security is used, IMS provides the sign-on name as the authorization

ID.

v If sign-on security is not used, IMS provides the name of the originating

terminal as the authorization ID.

The plan used with a transaction has the same name as the program associated

with the transaction.

For batch-oriented regions, the authorization ID is the contents of the ASXBUSER

field, if valid, or the PSB name. The plan name is specified as one of the batch

program parameters.

For more information on IMS security mechanisms, refer to the appropriate IMS

manual.

Considerations for Using DL/I in IMS

This section discusses considerations for DL/I programs in the IMS environment.

See “Defining the Program Specification Block (PSB)” on page 48 for information

on defining a PSB for DL/I programs.

For information on designing and generating DL/I programs for the IMS

environment, refer to the EGL helps.

For information on preparing DL/I programs for running in the IMS environment,

see Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS

BMP.”

54 IBM Enterprise Developer Server Guide for z/OS

Recovery and Database Integrity Considerations

EGL-generated programs can make use of all the recovery and data integrity

features that are provided for DL/I databases in the IMS environment.

DL/I databases are recoverable resources. If your program makes changes to a

DL/I database, the changes are not committed to the database until the end of a

logical unit of work (LUW). If your program ends abnormally before the end of an

LUW, all changes that were made since the beginning of the LUW are backed out.

See “Recovery and Database Integrity Considerations” on page 49 for additional

information on when an LUW ends.

Maintaining the Work Database in IMS

You should monitor and tune the DL/I and DB2 work databases just as you would

any other DL/I database or DB2 table. You can use the normal database

administration utilities to monitor these databases and to determine when they

need to be reorganized to improve performance.

The activities involved in maintaining the work database are the following:

v Deleting old records from the work database

v Expanding the work database

v Supporting multiple DL/I or DB2 work databases

Deleting Old Records from the Work Database

The terminal ID is the key for the records in the work database. Each record

contains a time stamp that indicates the last time the record was updated.

Deleting old records from the database reduces the amount of disk space required

in the work database. You probably want to delete records in the following

situations:

v Some users might run a generated program only infrequently, less than once a

day, for example. In this case, you might want to delete old records on a daily or

weekly basis.

v Sometimes terminal names are changed or users are moved to terminals with

different names. In this case, new records are created for the new terminals, but

the old records are not automatically deleted.

The utilities that delete records from the DL/I and DB2 work databases validate

the date and time to ensure that your request does not result in deletion of records

that are less than 24 hours old.

DL/I Work Database

Figure 8 on page 56 shows the JCL used to remove old records from a DL/I work

database. The JCL is supplied as member ELAWKJCD in the ELA.V1R2M0.ELAJCL

file. Specify the records you want to delete by entering the date (in Julian format)

and time prior to which all records are to be deleted.

Chapter 8. System Considerations for IMS 55

DB2 Work Database

Figure 9 on page 57 shows the JCL used to remove old records from a DB2 work

database. The JCL is supplied as member ELAWKJC2 in the ELA.V1R2M0.ELAJCL

file. Specify the records you want to delete by entering the date (in Julian format)

and time prior to which all records are to be deleted.

//**

//** ELAWKJCD - JOBSTREAM TO CLEAN UP THE DLI WORK DATABASE

//** FOR VISUALAGE GENERATOR SERVER.

//**

//** LICENSED MATERIALS - PROPERTY OF IBM

//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 1998

//** SEE COPYRIGHT INSTRUCTIONS

//**

//** STATUS = VERSION 1, RELEASE 2, LEVEL 0

//**

//** TO TAILOR THIS JOBSTREAM:

//** 1. COPY A JOBCARD.

//** 2. REPLACE DATE AND TIME STAMP VALUE WITH DESIRED

//** VALUE. ALL RECORDS WITH LESS THAN THAT DATE AND

//** TIME WILL BE DELETED.

//**

//** RETURN CODES

//** 0 - SUCCESSFUL COMPLETION

//** 12 - FATAL ERROR. INVALID INPUT

//** 16 - FATAL ERROR. PROCESSING TERMINATED

//**

//**

//*

//DLIWORK EXEC IMSBATCH,MBR=ELAWKPC1,

// PSB=ELAWKPB1,RGN=4096K

//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2M0.SELALMD,DISP=SHR

//G.ELAPRINT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//G.SYSIN DD *

YYDDDHHMMSS

Figure 8. JCL to Remove Old Records from DL/I Work Database

56 IBM Enterprise Developer Server Guide for z/OS

Expanding the Work Database

At times, you need to expand the work database. For example, you need to

expand the database when you expand the usage of an existing program system to

a larger user set comprising a much larger number of terminals that gain access to

EGL-generated programs.

DL/I Work Database

To expand the DL/I work database, perform the following steps:

1. Stop the DL/I database.

//**

//** ELAWKJC2 - JOBSTREAM TO CLEAN UP THE DB2 WORK DATABASE

//** FOR VISUALAGE GENERATOR SERVER.

//**

//** LICENSED MATERIALS - PROPERTY OF IBM

//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 1998

//** SEE COPYRIGHT INSTRUCTIONS

//**

//* STATUS = VERSION 1, RELEASE 2, LEVEL 0

//**

//** TO TAILOR THIS JOBSTREAM:

//** 1. COPY A JOBCARD.

//** 2. REPLACE DATE AND TIME STAMP WITH THE DESIRED DATA.

//** ALL ROWS WITH A DATE AND TIME LESS THAN THE

//** SPECIFIED DATE/TIME WILL BE DELETED.

//**

//** RETURN CODES

//** 0 - SUCCESSFUL COMPLETION

//** 12 - FATAL ERROR. INVALID INPUT

//** 16 - FATAL ERROR. PROCESSING TERMINATED

//**

//**

//*

//DB2WORK EXEC PGM=ELAWKPC2,REGION=4096K

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2M0.SELALMD,DISP=SHR

//SYSOUT DD SYSOUT=*

//SYSABOUT DD SYSOUT=*

//ELAPRINT DD SYSOUT=*

//ELASNAP DD SYSOUT=*

//EZESPUFI DD DSN=&&TMP1,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK,(1,0)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)

//SYSIN DD *

YYDDDHHMMSS

//*

//DB2SPUF EXEC PGM=IKJEFT01,REGION=4096K,COND=(0,NE)

//STEPLIB DD DSN=DSN.RUNLIB.LOAD,DISP=SHR

//SYSOUT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSIN DD DSN=&&TMP1,UNIT=SYSDA,DISP=(OLD,DELETE)

/*

//SYSTSIN DD *

 DSN SYSTEM(DSN)

 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA??)

 END

/*

Figure 9. JCL to Remove Old Records from DB2 Work Database

Chapter 8. System Considerations for IMS 57

2. Unload the database using the old database description (DBD).

3. Change the DBD information and perform a DBD generation.

4. If you are having application control blocks (ACBs) prebuilt rather than built

dynamically, build the ACBs again.

5. Delete the space allocated for the old database and allocate space for the new

definition.

6. Load the database using the new DBD.

7. Make an image copy of the new database for back-up purposes as soon as it is

loaded.

Refer to the database administrator’s guide and the IMS utilities manual for

additional information.

DB2 Work Database

You might need to expand the table spaces containing the DB2 work database

because of degraded performance from too many secondary extents, or because the

application users receive a DB2 message DSNP007I indicating that no more space

is available.

Ideally, when the size of a DB2 table space is increased, the primary extent should

be made large enough to accommodate all the data in the work database. In any

case, try to minimize the number of secondary extents required to store rows in the

database.

The method you use to expand the table space depends on the version of DB2 that

is installed and whether the table space is user-managed.

The procedure supplied with Enterprise Developer Server that installs the work

database also installs the table space as user-managed table space (no associated

DB2 storage group).

Before attempting to change the size of the table space data set, you need to

estimate the space requirements for the table space. One factor in your estimate is

the amount of space currently used. If the space is currently DB2-managed

(resulting from an earlier change in space allocation), you can get this information

by first running the DB2 STOSPACE utility against the table space storage group,

and then running the following query:

SELECT SPACE

 FROM SYSIBM.SYSTABLEPART

 WHERE TSNAME=’tsname’ and DBNAME=’dbname’;

The result (SPACE) gives the number of kilobytes of storage currently allocated to

the table space.

If the space for the table space is user-managed, you can use the TSO LISTCAT

command to obtain the space information. You need to know the data set name of

the VSAM file used for table space. The data set name for the VSAM file has the

following format:

catname.DSNDBC.dbname.tsname.I0001.Annn

where:

catname Specifies the VSAM catalog name or alias

 This is the same name or alias as in the USING VCAT clause of the

CREATE TABLESPACE statement.

58 IBM Enterprise Developer Server Guide for z/OS

dbname Specifies the DB2 database name

 This is the same as the database name in the CREATE

TABLESPACE statement.

tsname Specifies the table space name

 This is the same as the table space name in the CREATE

TABLESPACE statement.

nnn Specifies the data set number

 For partitioned table spaces, the number is 001 for the first

partition, 002 for the second, and so forth, up to the maximum of

64 partitions. For a simple or segmented table space, the number is

001 for the first data set. If the simple or segmented table space

exceeds 2 gigabytes, the second data set is 002, and so forth.

To expand table space do the following:

1. Stop the DB2 database by using the command -STOP DB (dbname).

2. Make an image copy of the table space. You can use the image copy to restore

the data set if the procedure is not successful.

3. Create a storage group for the table space. Do this only if the table space

currently is user-managed and a storage group is not already available.

4. Change the table space definition as follows:

v If the table space data sets are user-managed, use a DB2 statement as

follows:

ALTER TABLESPACE dbname.tsname

 USING STOGROUP stogrp

 PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

stogrp Specifies the name of the storage group

pppp Specifies new primary allocation size (in

kilobytes) for the expanded table space

ssss Specifies new secondary allocation size (in

kilobytes) for the expanded table space

Note: This statement changes the table space from user-managed to

DB2-managed.

v If the table space data sets are already DB2-managed, use a DB2 statement as

follows:

ALTER TABLESPACE dbname.tsname

 PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

pppp Specifies new primary allocation size (in

kilobytes) for the expanded table space

ssss Specifies new secondary allocation size (in

kilobytes) for the expanded table space

Chapter 8. System Considerations for IMS 59

5. Move the table space data. Simply changing the table space definition does not

put the new size into effect. You need to move the table space to the newly

allocated space. You can, for example, reorganize the table space using the DB2

REORG utility.

6. Start the DB2 database. Enter the command -START DB (dbname).

Supporting Multiple Work Databases

You can use separate work databases for different application systems. For

example, you might want to use separate databases for payroll and shipping to

improve performance or to increase data availability. The work database is used to

pass information during certain types of program-to-program message switches

between applications. When this occurs, both the transferring application and the

transferred-to application must use the same physical work database.

DL/I Work Databases

To create an additional DL/I work database called ELAWORK2, do the following:

1. Copy the ELAWORK DBD in the ELA.V1R2M0.ELASAMP file, and name it

ELAWORK2.

2. Change the NAME parameter on the DBD statement to ELAWORK2. Also

change the DD1 parameter on the DATASET statement to ELAWORK2. Make

any other changes to the block size, number of blocks, and randomizing routine

based on the application system requirements.

3. Make copies of the ELAWKLD and ELAWKPB1 program specification blocks

(PSBs) in the ELA.V1R2M0.ELASAMP file and give them new member names.

Change the NAME parameter on the program control block (PCB) statement

from ELAWORK to ELAWORK2.

4. Modify job ELACJWKD in the ELA.V1R2M0.ELAJCL file to refer to the new

database. This job does the DBD, PSB, and ACB generations needed for the

work database, allocates the database, and then initializes it. You need to

change the DD and data set names for the work database, and name the new

DBD and PSB.

5. Add the new database to the JCL for your IMS control region, and to your IMS

stage-1 system definition.

6. When you create IMS PSBs for applications that need to use this new database,

use the ELAPCB macro to create the PCB definition for the work database.

Enter the following command:

 ELAPCB WORKDBD=ELAWORK2

DB2 Work Databases

To create an additional DB2 work database, do the following:

1. Create an ELAWORK table using the ELACJWK2 job in the

ELA.V1R2M0.ELAJCL file. Perform the following steps before running the job:

a. Add an authorization ID to the CREATE TABLE command in ELAWORK2

in the ELA.V1R2M0.ELASAMP file, for example:

CREATE PAYROLL.ELAWORK

b. Change the table space name and index in ELAWORK2.

c. Change the DELETE and DEFINE CLUSTER statements to use the table

space name and index you specified in ELAWORK2.

d. Comment out the WRKDROP step to avoid dropping the existing work

database.

60 IBM Enterprise Developer Server Guide for z/OS

2. Each developer or system administrator using the payroll ELAWORK table

needs to create a SYNONYM for the table. The following example shows how

to use the CREATE SYNONYM command to create a synonym:

CREATE SYNONYM ELAWORK FOR PAYROLL.ELAWORK

The BIND command generated from the default BIND templates FDA2MBDB,

FDA2MBDD, and FDA2MBDC bind DBRMs for Enterprise Developer Server

modules to the application being generated. The CREATE SYNONYM

command ensures that developers referencing the ELAWORK table use the

payroll version of the table.

Considerations for Message Format Services in IMS

Enterprise Developer generates message format services (MFS) source statements

used for conversing and displaying maps in IMS environments. The generated

MFS source includes DEV statements, which identify the device types on which

maps can be displayed and the characteristics of those devices. The device types

and characteristics must be compatible with the device types and characteristics

defined in the TERMINAL and TYPE macros in your IMS system definition.

The information on the generated DEV statements is controlled by the mfsDevice,

mfsExtendedAttr, and mfsIgnore build descriptor options. Review the default

specifications for the TERMINAL and TYPE and change them to be compatible

with your system definition. You can delete the mfsDevice entries for any terminal

types not supported at your installation and change the DEV statement parameters

for any types for which the default parameters are not correct.

Refer to the IMS system definition reference manual for your release of IMS for

additional information on the parameters for the TERMINAL and TYPE macros.

Also refer to the stage-1 system definition macros for your IMS system to

determine the parameters actually used for your installation. Refer to the MFS

manuals for your release of IMS for additional information about the DEV

statement.

You might also want to look at your non-Enterprise Developer MFS source to see

the parameters that you currently specify on the DEV statement.

Once you have determined the correct values for the mfsDevice, mfsExtendedAttr,

and mfsIgnore build descriptor options, code the default build descriptor options

in all the default build descriptor files that you use when generating for the IMS or

IMS BMP target environments.

Chapter 8. System Considerations for IMS 61

62 IBM Enterprise Developer Server Guide for z/OS

Part 3. Preparing and Running Generated Applications

Chapter 9. Output of Program Generation on

z/OS Systems 65

Allocating Preparation Data Sets 65

List of Program Preparation Steps after Program

Generation 67

Deploying generated code to USS 67

Outputs of Generation 67

Objects Generated for Programs 70

Application COBOL Program 70

Sample Run-time JCL 70

Bind Commands 70

Objects Generated for Tables 71

Table COBOL Program 71

Objects Generated for Form Groups 71

Online Print Services Program 71

Batch Print Services Program 71

Form Group Format Module 71

MFS Source 71

Chapter 10. z/OS Builds 73

z/OS Build Server 74

Starting a z/OS Build Server 76

Starting a USS Build Server 79

Stopping servers 79

Configuring a build server 79

Working with Build Scripts 79

Working with z/OS Build Scripts 79

Writing a JCL build script 80

File Name Conversions for z/OS 81

Converting JCL to Pseudo-JCL 81

Chapter 11. Preparing and Running a Generated

Program in CICS 85

Modifying CICS Resource Tables 85

Program Entries (PPT) 85

Transaction Entries (PCT) 86

Destination Control Table Entries (DCT) 86

File Control Table Entries (FCT) 87

Resource Control Table Entry (RCT) 87

Using Remote Programs, Transactions, or Files . 87

Modifying CICS Startup JCL 87

Making New Modules Available in the CICS

Environment 87

Making Programs Resident 88

Running Programs under CICS 88

Controlling Diagnostic Information in the CICS

Environment 88

Printing Diagnostic Messages in the CICS

Environment 88

Chapter 12. Preparing and Running Generated

Programs in z/OS Batch 89

Running Main Programs under z/OS Batch . . . 89

Examples of Runtime JCL for z/OS Batch Programs 89

Running a Main Batch Program with No

Database Access 90

Running a Main Batch Program with DB2 Access 90

Running Main Batch Program with DL/I Access 90

Running a Main Batch Program with DB2 and

DL/I Access 91

Recovery and Restart for Batch Programs 92

Chapter 13. Creating or Modifying Run-time JCL

on z/OS Systems 93

Tailoring JCL before Generation 93

Modifying Run-time JCL 94

Chapter 14. Preparing and Running Generated

Programs in IMS/VS and IMS BMP 97

Modifying the IMS System Definition Parameters . . 97

Defining an Interactive Program 97

Defining Parameters for a Batch Program as an

MPP 98

Defining Parameters for a Batch-Oriented BMP

Program 99

Defining Parameters for a Transaction-Oriented

BMP Program 99

Creating MFS Control Blocks 99

Making New Modules Available in the IMS

Environment 100

Preloading Program, Print Services, and Table

Modules 100

Running Programs under IMS 101

Starting a Main Program Directly 101

Starting a Main Transaction Program Using the

/FORMAT Command 101

Running Transaction Programs as IMS MPPs 101

IMS Commands 101

Keyboard Key Operation 102

DBCS Data on a Non-DBCS Terminal . . . 102

Error Reporting 102

Responding to IMS Error Messages 102

Running Batch Programs as MPPs 103

Running a Main Program under IMS BMP . . . 103

Examples of Runtime JCL for IMS BMP Programs 104

Running a Main Batch Program as an IMS BMP

Program 104

Running a Main Batch Program as an IMS BMP

Program with DB2 Access 105

Recovery and Restart for IMS BMP Programs . . 106

Chapter 15. Moving Prepared Programs to

Other Systems from z/OS Systems 107

Moving Prepared Programs To Another z/OS

System 107

Maintaining Backup Copies of Production Libraries 107

© Copyright IBM Corp. 1994, 2005 63

64 IBM Enterprise Developer Server Guide for z/OS

Chapter 9. Output of Program Generation on z/OS Systems

This chapter provides an overview of the files produced at generation time and of

the steps needed to prepare code for use at run time.

Output files are transferred to z/OS, where preparation steps include running

translators, precompilers, and compilers; doing link-edits; and defining control

tables for the target run-time environment.

For additional information on the outputs of program generation, please refer to

the EGL helps.

Allocating Preparation Data Sets

The EGL COBOL generator builds and runs a preparation command file to transfer

generated objects to z/OS and to submit a preparation job (one of the generated

objects) to the internal reader to complete the preparation process.

The transferred objects are stored in partitioned data sets. You allocate the required

data sets using the ELACUSER CLIST shipped in the data set that has the

low-level qualifier ELACLST. This CLIST was customized at product installation to

set keyword default values to settings appropriate for your environment.

For you to use this CLIST, your customized data set must be placed before the

installation data set that has the low-level qualifier SELACLST in the SYSPROC

concatenation list. Make sure that every COBOL generation user has the required

data sets allocated for every environment in which the product will be used.

The following keyword parameters within CLIST ELACUSER may either be

customized within the CLIST or overridden when executing the CLIST:

Keyword Possible Values

IMSVS

v Y = allocate user data sets for this environment

v N = do not allocate user data sets for this environment

ZOSBATCH

v Y = allocate user data sets for this environment

v N = do not allocate user data sets for this environment

ZOSCICS

v Y = allocate user data sets for this environment

v N = do not allocate user data sets for this environment

IMSBMP

v Y = allocate user data sets for this environment

v N = do not allocate user data sets for this environment

VOL vvvvvv = serial number

UNIT uuuuu = valid unit name

HLQ hhhhhhhh = high-level qualifier for user data sets

© Copyright IBM Corp. 1994, 2005 65

CLST

v FB = allocate a fixed blocked CLIST library

v VB = allocate a variable blocked CLIST library

DB2

v Y = DB2 databases will be used with this product

v N = DB2 databases will not be used with this product

LBLK llllll = load library data set block size

 An example of the command syntax to execute the CLIST is as follows:

ex ’myServer.v5r0m0.elaclst(elacuser) zoscics(y) zosbatch(y)

vol(at1235) unit(sysda) hlq(tsouid) db2(y)’

Table 6 describes the data sets that are allocated. The DD name in the table is the

DD name in the build scripts that are used by the build server. The meaning of

lower-case strings in the data set name is as follows:

chqlq The high-level qualifier in use at your installation.

env The generation environment. One of these:

v ZOSBATCH (for z/OS batch)

v ZOSCICS (for z/OS CICS)

v IMSVS (for IMS/VS)

v IMSBMP (for IMS BMP)

 Table 6. Program Preparation User Data Set Information

DD Name Data Set Name Description DCB Information

Target En-

vironment

DBRMLIB cghlq.env.DBRMLIB Database request

module library

for DB2

programs

DSORG=PO,

RECFM=FB,

BLKSIZE=6160,

LRECL=80

All z/OS,

if DB2

used

EZEBIND cghlq.env.EZEBIND Bind commands DSORG=PO,

RECFM=FB,

BLKSIZE=6160,

LRECL=80

All z/OS,

if DB2

used

EZEJCLX cghlq.env.EZEJCLX Batch program

runtime job

stream

DSORG=PO,

RECFM=FB,

BLKSIZE=6160,

LRECL=80

ZOSBATCH

EZEOBJ cghlq.env.OBJECT Object library DSORG=PO,

RECFM=U,

BLKSIZE=6144,

LRECL=0

All z/OS

EZESRC cghlq.env.EZESRC COBOL source

library

DSORG=PO,

RECFM=FB,

BLKSIZE=6160,

LRECL=80

All z/OS

SYSLMOD cghlq.env.LOAD Load library DSORG=PO,

RECFM=U,

BLKSIZE=6144,

LRECL=0

All z/OS

66 IBM Enterprise Developer Server Guide for z/OS

Table 6. Program Preparation User Data Set Information (continued)

DD Name Data Set Name Description DCB Information

Target En-

vironment

EZEPCT cghlq.env.EZEPCT CICS PCT entries

or RDO

TRANSACTION

entries

DSORG=PO,

RECFM=FB,

BLKSIZE=6160,

LRECL=80

ZOSCICS

EZEPPT cghlq.env.EZEPPT CICS PPT entries

or RDO

PROGRAM

entries

DSORG=PO,

RECFM=FB,

BLKSIZE=6160,

LRECL=80

ZOSCICS

List of Program Preparation Steps after Program Generation

Enterprise Developer Server supports program preparation and installation in the

z/OS environments using build scripts with Enterprise Developer Server. You must

perform the steps listed in Table 7 before you can run your program in an z/OS

target environment.

 Table 7. Preparation Steps for z/OS Environments

Preparation Step Environment

Transfer from workstation to the host All

DB2 precompile DB2 use only

CICS translation CICS only

COBOL compile All

Link All

Bind DB2 use only. an Enterprise Developer Server

program.

Additionally, for CICS, you must define your program and transactions to the

environment. For CICS, you do this using the program properties table (PPT) and

program control table (PCT) entries or the Resource Definition Online (RDO)

PROGRAM and TRANSACTION entries. For information on CICS entries, see

Chapter 11, “Preparing and Running a Generated Program in CICS.”

Deploying generated code to USS

The setup for deploying generated Java™ code in USS is the same as for Windows.

Please see the EGL help topic Setting up the J2EE run-time environment for

EGL-generated code.

To access the help system in the development Workbench, select Help->Help

Contents from the menu bar. When the help interface appears, select Enterprise

Developer Documentation, then Developing, then Enterprise Generation Language.

Outputs of Generation

After you have generated a program, you have a number of objects that need to be

transferred to the host system. To place these outputs in a PDS, you must first

customize the EGL build scripts. On the z/OS system, these members need to be

prepared before the program can be run.

Chapter 9. Output of Program Generation on z/OS Systems 67

Outputs of preparation are placed in a PDS automatically. You control the high

level qualifier of the PDS using the build descriptor option projectID.

By default the build scripts do not save the generated program source code.

The build scripts save the link edit file, the bind control file and the CICS entries.

The CICS entries are saved because they are needed to install the program in CICS.

The link edit and bind control files are saved because they are needed to reproduce

a load module from the prepared object module if you want to save the prepared

outputs in an SCM repository.

You can not save the load module in the repository and restore it to an

environment, but you can save the object deck and relink it in a production

environment. If an enterprise wants to save the source code, it is necessary to

modify the fdacl, fdabcl, fdapcl, fdatcl, fdaptcl, and fdamfs build scripts. There are

instructions in the build scripts on how to do this by uncommenting certain lines

and commenting others.

All program and form-group objects are generated for one environment and cannot

be used in another. Data tables generated and prepared in a particular

environment (whether CICS or z/OS batch) can be used in another environment

on the same system.

Table 8 provides information about the types of files produced by generation,

including:

v Type of object produced

v Low-level qualifiers of the default PDS name to which the object is written if the

build scripts are customized to save the generated files

v Whether production is controlled by a COBOL build descriptor option

v Whether the object can be modified after generation is performed

A description of each object begins on page 70.

For additional information on generation outputs, see the EGL help topics.

You can specify an alias for a program, data table, or form group, and that alias is

used for generated outputs. If you do not specify an alias, the default value is the

name of the part truncated to the requirements of the target environment (8

characters, for z/OS).

The name given to the outputs includes the alias or the default name, as shown by

alias in the next table.

A bind control file is always generated and used in preparation for programs that

access an SQL database. You can specify your own bind control part to be used to

generate the bind control file using the bind option, or you can develop a bind

control part with the same name as the program part. Otherwise, a default bind

control part is generated.

 Table 8. Objects Generated for Programs for a z/OS Host by the Enterprise Developer build process

File Type

PDS

Low-level

Qualifier

PDS Member

Name

File Name on

Workstation

z/OS Run-time

Environment

Build

Descriptor

Option Modifiable

COBOL

program

EZESRC alias alias.CBL All None No

68 IBM Enterprise Developer Server Guide for z/OS

Table 8. Objects Generated for Programs for a z/OS Host by the Enterprise Developer build process (continued)

File Type

PDS

Low-level

Qualifier

PDS Member

Name

File Name on

Workstation

z/OS Run-time

Environment

Build

Descriptor

Option Modifiable

Sample

run-time JCL

EZEJCLX alias alias.JCL z/OS Batch IMS

BMP

genRunFile Yes

Bind command EZEBIND alias alias.BND All bind Yes

Link Edit File EZELINK alias alias.LED All linkEdit Yes

Build Plan Not applicable

(see note 1)

Not applicable aliasBuildPlan

.xml

All prep No

CICS Entry (See

note 2)

EZEPPT Part specified

when generation

was requested

(alias.PPT)

alias CICS cicsEntries Review and

possible

modification

required

 Table 9. Objects Generated for Tables and Transferred to a z/OS Host by the Enterprise Developer Preparation Utility

File Type

PDS Low-level

Qualifier

PDS Member

Name

z/OS Run-time

Environment

Build Descriptor

Option Modifiable

Table COBOL

program

EZESRC alias.CBL All genDataTables No

 Table 10. Objects Generated for Form Groups and Transferred to a z/OS Host by the Enterprise Developer

Preparation Utility

File Type

PDS

Low-level

Qualifier

PDS Member

Name

File Name on

Workstation

z/OS

Run-time

Environment

Build Descriptor

Option Modifiable

Online print

services

program - (See

note 3)

EZESRC alias alias.CBL All genFormGroup,

genHelpFormGroup

No

Batch print

services

program - (See

note 3)

EZESRC aliasP1 aliasP1.CBL z/OS batch,

IMS BMP

genFormGroup,

genHelpFormGroup

No

Form group

format

module - (See

note 4)

EZEFOBJ aliasFM aliasFM.FMT z/OS CICS,

IMS/VS

genFormGroup,

genHelpFormGroup

No

MFS print

services

COBOL

program

EZESRC alias alias.CBL IMS/VS

IMS BMP

genFormGroup No

MFS control

blocks

EZEMFS alias alias.MFS IMS/VS

IMS BMP

formServicePgmType,

genFormGroup,

genHelpFormGroup

No

COBOL

copybook for

MFS

MID/MOD

layout

EZECOPY alias alias.CPY IMS/VS

IMS BMP

formServicePgmType,

genFormGroup,

genHelpFormGroup

No

Chapter 9. Output of Program Generation on z/OS Systems 69

Notes:

1. Build plans are not transferred to the host. They define what needs to be sent

to the host. Specifically, the build plan includes the name of a build script that

runs on the build server. The build script also contains substitution variable

values that are used for substitution in the build script.

For additional details, see the EGL help topics.

2. If you specify the cicsEntries=RDO build descriptor option, the PROGRAM

entries are placed in alias.PPT

3. This object is produced only if the form group contains print forms.

4. This object is produced only if the form group contains text forms.

Objects Generated for Programs

Application COBOL Program

The generated program is a COBOL program that contains the following:

v Program control logic

v Logic for functions and I/O operations

v Data for both the program and program control

The program control logic performs the following functions for a program, as

needed:

v Initialization

v Cleanup at end of program

v Error reporting

v Transfer of control

Sample Run-time JCL

The generator produces sample JCL for running programs in the z/OS batch

environments when the build descriptor option genRunFile is specified during

program generation. Each person using the JCL must provide a JOB statement.

The JCL is produced from model JCL templates that can be modified to enforce

customer data set naming conventions.

The JCL might not be complete and should be reviewed and modified if necessary

before being used. For example, the JCL for the generated program does not

contain any DD statements for data sets used by other programs that can be

started by CALL or TRANSFER statement. Comments in the JCL indicate where

DD statements for these programs need to be added. To build the final JCL needed

to run a set of programs as a run unit, you should edit the program JCL and

include the DD statements for invoked programs with the JCL for the first main

program. You might need to add DD statements for files that are specified during

run time with the record-specific variable resourceAssociation or with the system

variable sysVar.printerAssociation.

Bind Commands

Bind commands are required for an SQL program. The bind commands either

reside in a bind control part that has the same name as the program or, you can

specify the bind control part using the bind build descriptor option.

You are not required to supply a bind control part. If one is not supplied, EGL

generates a default bind control part that may or may not meet the requirements of

the program.

70 IBM Enterprise Developer Server Guide for z/OS

The bind control part generated by default cannot be affected by users. However,

bind control parts provided by the user may contain references to symbolic

parameters which get substituted at generation time.

Objects Generated for Tables

Table COBOL Program

The table program is a COBOL program that contains the table contents defined in

program working storage. This object is produced when you specify the build

descriptor option genDataTables. This allows tables to be generated independently

of programs when the contents of a table need to be changed.

Objects Generated for Form Groups

Online Print Services Program

The online print services program is a COBOL program that performs print I/O,

output formatting, and SET operations for a generated online CICS program that

prints output. This object is produced when you specify the build descriptor option

genFormGroup during program generation.

Batch Print Services Program

The batch print services program is a COBOL program that formats data for line

printers and writes the data to either the printer output file (directly to the printer

or a QSAM file) or to a generalized sequential access method (GSAM) file. This

program is used with programs that run in the z/OS batch environment. This

object is produced when you specify the build descriptor option genFormGroup or

genHelpFormGroup.

Form Group Format Module

The form group format module is a generated structure that describes the layout

for text forms in the form group. The generator builds the structure as a z/OS

object module for the CICS environment. This object is produced when you specify

the build descriptor option genFormGroup or genHelpFormGroup.

MFS Source

In the IMS environment, an MFS source file is generated at the same time as the

form group format module. The build server automatically compiles this MFS

source to generate IMS format, input, and output messages for each device type

defined.

Chapter 9. Output of Program Generation on z/OS Systems 71

72 IBM Enterprise Developer Server Guide for z/OS

Chapter 10. z/OS Builds

The EGL process generates the files needed to create an executable program. After

creating these files, the generation process communicates with the build server on

z/OS to transfer the files to the host and then initiate the appropriate builds

(compiles, link-edits, binds, etc.) for these programs.

To control the build process, the EGL generation process creates an XML file called

a build plan for each generated program. This build plan contains specific

information that the build server uses when building the generated program.

The type of information that the build plan contains includes:

v The name of the build script that the build server invokes to process the build

v The location on the client workstation where the server places listings and

diagnostics from the build tools (for example, the compiler or linkage editor)

v The generated program

v A list of dependent files for the build process (for example, the name of the link

edit file or the bind file) containing information used by the build process

v A list of environment variables that are used to override the default VARS

values specified in the Pseudo-JCL build script

The environment variables defined in the build plan are set using build descriptor

options and symbolic parameters specified by the user during program generation.

Using the information in the build plan, the server invokes the build script

overriding any pre-defined defaults in the JCL with the appropriate values

specified in the build plan.

Following the steps outlined in the build script, the build server transforms one set

of files into another by invoking tools such as compilers and linkers. For example,

using a build script, the build server might transform a COBOL source file into an

object file. Another build script might perform the database bind.

Once the build has finished, the server places the listings and diagnostics from the

build process in the location specified in the build plan or build script.

Prepared outputs are placed into PDSs on the build server machine. The high level

and middle qualifiers of the PDS are controlled by the projectID and system build

descriptor options. The low level qualifiers are controlled by the type of output.

© Copyright IBM Corp. 1994, 2005 73

z/OS Build Server

On z/OS, you can configure the build server to perform z/OS or USS builds. If

you need both builds, then you need to start two servers, each listening on a

unique TCP/IP port for each type.

The Remote Build server performs the following tasks:

v Receives build requests and files.

v Performs character conversions.

v Runs builds within its environment.

v Optionally collects and returns results to the client.

In z/OS, the server load module CCUBLDS receives client build requests.

CCUBLDS triggers the JCL member CCUMVS, which executes the CCUBLDW

module. CCUBLDW processes your build scripts.

Figure 10. z/OS Build Process

74 IBM Enterprise Developer Server Guide for z/OS

For USS operations, the server load module CCUMAIN and CCUBLDS run in

z/OS. CCUBLDS triggers the JCL member CCUUSS, which starts the USS shell

script ccubldw. The ccubldw script starts the executable ccubldw, which processes

build requests.

Figure 11. Processing a z/OS Build Request

Chapter 10. z/OS Builds 75

Starting a z/OS Build Server

The z/OS build server, CCUBLDS, is an z/OS load module that you can run as a

batch program.

Figure 12. Processing a USS Build Request

76 IBM Enterprise Developer Server Guide for z/OS

The CCUBLDS job initiates a new job for each build transaction. The sample JCL for

that job is in member CCUMVS.JCL of the installation data set whose low-level

qualifier is SCCUSAMP. The server is multi-threaded, so these jobs run

concurrently and are independent of each other. The number of concurrent jobs

running at any one time is limited by system resources (such as initiators).

The server receives commands and files, performs character conversions, sets up

the environment, runs builds within this environment, collects the results and

returns the results.

See the program directory for Enterprise Developer Server for additional

information on customizing the CCURUN, CCURUNU, CCUMVS, and CCUUSS

JCL and the ccubldw.sh script.

If you start the server on z/OS from an APF-authorized library (this is required in

modes 1 and 2 but is optional in mode 0), the server state is authorized (’A’) and

the build script can specify an APF authorized program as the executable.

For additional information about installing code in an APF-authorized library to

allow users to run builds under the authority of the person making a build

request, refer to the EGL program directory.

Note: In this case, the build script can also specify non-APF authorized programs.

However, in a multistep JCL script, an authorized program cannot be

executed after an unauthorized program.

//CCUBLDS JOB (ACCT#),’TEST’,REGION=0M,

// CLASS=O,MSGCLASS=T

//*--

//* PROGRAM: CCURUN

//* JCL to start CCU z/OS Build Server

//*

//* COPYRIGHT: Copyright (C) International Business

//* Corp. 2001

//*

//* DISCLAIMER OF WARRANTIES:

//* The following enclosed code is sample code created

//* by IBM Corporation. This sample code is not part

//* any standard product and is provided to you solely

//* for the purpose of assisting you in the development

//* of your applications. The code is provide "AS IS",

//* without warranty of any kind. IBM shall not be

//* liable for any damages arising out of your use

//* of the sample code

//*--

//* Some dataset names may need to be modified

//* according to your system’s customization

//*--

//RUNPGM EXEC PGM=CCUMAIN,DYNAMNBR=30,REGION=7400K,TIME=NOLIMIT,

// -p 4112 -a 2 -n 3 -q 20 -T 20

//STEPLIB DD DSN=CUST.UCCBLD.LOAD,DISP=SHR

//CCUWJCL DD DISP=SHR,DSN=CUST.UCCBLD.JCL(CCUMVS)

//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

//CCUBLOG DD SYSOUT=*

//

Figure 13. An example of the JCL needed to start the build server for z/OS

Chapter 10. z/OS Builds 77

If the server is not started from an APF-authorized library, the server state is not

authorized (’U’) and the build script can specify only non-APF authorized

programs as executables.

You start a build server by using z/OS JCL commands. The syntax for the

parameters line is as follows:

Syntax: // PARM= ’−p <portno> [−V ...] [−a {2|1|0} [−n <n>] [−q <q>] [−t] [-T <n>]’

where:

−p Specifies the port number (portno) to which the server listens to

communicate with the clients.

−V Specifies the verbosity level of the server. You may specify this parameter up

to three times (maximum verbosity).

 For example, to increase the verbosity to the maximum, you specify -V -V

-V.

−a Specifies the authentication mode of the CCUBLDS server. The server state is

either ’A’ (APF authorized) or ’U’ (not APF authorized).

2 Server state: A. The user submitting the build request must specify a valid

user ID and password when the user initiates a build by using the remote

build client. The server performs the build transaction under the access

and authority of this user ID. Mode 2 is the default.

1 Server state: A. The user submitting the build request can provide a valid

user ID and password. The server performs the build transaction under

the access and authority of this user. If the user does not provide a user

ID and password, the build transaction is performed under the access and

authority of the user ID assigned to the build server job.

0 Server state: A or U. If U, APF-authorized build programs will fail. If the

user submitting the build request specifies a TSO user ID and password,

the server ignores them and the build transaction is performed under the

access and authority of the user ID assigned to the build server job.

You can use modes 1 and 2 only if the server load modules are run from an

APF-authorized library.

Note: For additional information about installing code in an APF-authorized

library to allow users to run builds under the authority of their userid,

see the program directory for Enterprise Developer Server.

−n Specifies the number of concurrent builds. The default is 1. Set n equal to the

number of concurrent builds you want to allow. Once there are n number of

concurrent builds running, the build server queues any additional requests

and submits them on a first come first served basis as builds are completed.

−q Specifies the size of the queue (q) for clients. The default is 10. Each queued

client uses a TCP/IP socket. Therefore setting this too high may require more

sockets than are available, causing unpredictable results. If the queue is full,

subsequent clients are rejected by the server. However, the build client

automatically retries the build in that case.

−t Starts tracing of this server job and writes output to STDOUT. This parameter

is normally used only for debugging.

−T Specifies the number of minutes the build server will wait for a started child

process (CCUBLDW) to complete. If the system is overloaded, increase this

value. The default is 5.

78 IBM Enterprise Developer Server Guide for z/OS

Note: See the program directory for Enterprise Developer Server for information

about modifying the JCL necessary to start the USS and z/OS build servers

Starting a USS Build Server

You start the USS build server the same way you start the z/OS build server,

except with a different dataset allocated by DD name CCUWJCL. This difference is

reflected in the CCURUN and CCURUNU JCL customized at installation. The

sample JCL CCURUNU needs to be modified just as CCURUN.

The CCUWJCL DD name uses the JCL member CCUUSS. As found in the

installation data set whose low-level qualifier is SCCUSAMP, that member acts as a

template in submitting build requests to USS using the BPXBATCH utility to

submit the USS shell script ccubldw.sh.

The build server creates temporary datasets and directories in the directory where

the program is initiated. It is important that the ID that starts the server has the

appropriate authority to create these datasets and directories otherwise the server

will not initiate properly and all transactions will fail.

Stopping servers

To stop an z/OS server, cancel the job that was used to start it.

Configuring a build server

To configure a build server, you must modify members of the installation data set

whose low-level qualifier is SCCUSAMP. Those members contain JCL and are

named as follows:

v CCUMVS (for z/OS builds)

v CCUUSS (for USS builds)

Note: See the program directory for Enterprise Developer Server for information

about configuring the USS and z/OS build servers.

Working with Build Scripts

There is a fundamental difference between build scripts on z/OS and build scripts

on USS. Build scripts on z/OS must be text files and must be written in

Pseudo-JCL. On USS, you can use any executable file as a build script and the file

can be either text or binary.

Working with z/OS Build Scripts

The build script processed by the z/OS server is always a text file written in

Pseudo-JCL. It is specified in one of two ways. If the build script is not specified as

part of the build command, then the server looks for it as a member of the PDS

specified by the ddname CCUPROC for the server job. This PDS must be of

RECFM=FB, LRECL=80.

The build script is parsed by the server. From the parsed results, the server

allocates the specified ddnames and data sets; it then executes the programs

dynamically.

On z/OS, the server also uses the JCL to determine where to store the files

involved in an z/OS build.

Chapter 10. z/OS Builds 79

EGL uses and Enterprise Developer Server provides build scripts in the PDS

specified by DD name CCUPROC in the CCUMVS JCL. These build scripts are the

defaults specified in the EGL generated build plans. The member names are

FDABCL, FDABIND, FDACL, FDALINK, FDAPCL, FDAPTCL, FDATCL, and

FDAMFS.

These must be members in the PDS specified in the CCUPROC DD card in the JCL

used to invoke a build request (see the previous section). The members provide the

following functions:

FDABCL

Compile and link EGL-generated z/OS batch programs

FDABIND

Bind generated programs that contain DB2 statements

FDACL

Compile and link of generated COBOL programs that do not contain CICS

commands

FDALINK

Link of generated format module.

FDAMFS

Invocation of MFS utilities to prepare MFS source for execution in IMS/VS.

FDAPCL

DB2 precompile, compile, and link of generated z/OS batch programs that

contain DB2 statements.

FDAPTCL

DB2 precompile, CICS translation, compile, and link of generated CICS

COBOL programs that contain DB2 statements.

FDATCL

CICS translation, compile, and link of generated CICS COBOL programs

that do not contain DB2 statements.

 To override the default build scripts, use the symbolic parameter

DISTBUILD_BUILD_SCRIPT. To identify the PDS from which to access build

scripts at build time, specify the PDS name in the symbolic parameter

BUILD_SCRIPT_LIBRARY.

See the EGL helps for more information on how to use symbolic parameters

during generation.

Writing a JCL build script

JCL build scripts must be written using Pseudo-JCL. The best starting point for a

JCL build script is an existing JCL fragment that is used for transforming inputs

into outputs. For example, suppose you want to create a build script that compiles

a Cobol source file into an OBJECT file using a z/OS compiler. You probably

already have JCL that can be submitted as a batch job that does this.

When you create a build script for the z/OS environment, you specify Pseudo-JCL

statements, as described in these EGL help topics:

v Pseudo-JCL syntax

v Pseudo-JCL substitution variables

v Setting and including pseudo-JCL substitution variables

v Predefined pseudo-JCL substitution variables

80 IBM Enterprise Developer Server Guide for z/OS

For more information about JCL syntax, refer to the JCL User’s Guide and JCL

Reference for your version of z/OS.

File Name Conversions for z/OS

Workstation file names are modified by the z/OS server according to the following

rules:

v The directory path of a file name is not used. The end of a directory path of a

file name is specified by a slash or left parenthesis (″/″, ″(″, or ″\″). All

characters of a file name up to and including the rightmost slash or left

parenthesis are discarded.

v Lowercase characters are converted to uppercase characters.

v The file extension is stripped from the right, up to and including the separating

period. The extension, minus the period, is used by the z/OS server to direct the

file to particular data sets according to user-specified syntax in the JCL build

scripts.

v The remaining name is truncated from the left, to a maximum of 8 characters.

v Names must contain characters that are valid in z/OS. z/OS allows the

following characters:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$@#

However, the name must begin with an alphabetic character.

v Underscore characters (_) in a file name are converted to at signs (@).

The following are examples of how a workstation name is converted:

v A file name of src\build\fhbldobj.CBL is converted to FHBLDOBJ on z/OS.

v A file name of src/build/fhbtruncate.cbl is converted to FHBTRUNC on z/OS.

In both of these examples, the .CBL or .cbl is split away. The z/OS server uses the

resulting extension to resolve and possibly allocate the z/OS data sets needed for

the build process. The extensions are required for files that participate in an z/OS

build.

Converting JCL to Pseudo-JCL

The following is a JCL procedure for an z/OS compile and link:

//**

//* JCL Procedure - COBOL COMPILE AND LINK-EDIT

//**

//*

//ELACL PROC CGHLQ=’USER’,

// COBCOMP=’SYS1.IGY.SIGYCOMP’,

// COBLIB=’SYS1.SCEELKED’,

// ELA=’VGEN.HS.V1R2M0’,

// DATA=’31’,

// ENV=’ZOSCICS’,

// MBR=PGMA,

// RESLIB=’SYS1.RESLIB’,

// RGN=1024K,

// SOUT=’*’,

// WSPC=500 ,

//*

//* PARAMETERS:

//* CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER

//* COBCOMP = COBOL COMPILER LIBRARY

//* COBLIB = LE RUN TIME LIBRARY

//* ELA = EGL HIGH LEVEL QUALIFIER

//* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE

//* ABOVE 16M LINE

//* ENV = COBOL GENERATION USER DATA SET ENVIRONMENT QUALIFIER

Chapter 10. z/OS Builds 81

//* (SHOULD BE EQUAL TO GENERATION TARGET ENVIRONMENT)

//* MBR = SOURCE NAME

//* RESLIB = IMS RESLIB LIBRARY

//* RGN = REGION SIZE

//* SOUT = SYSOUT ASSIGNMENT

//* WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION

//*

//**

//* COMPILE THE COBOL PROGRAM

//**

//*

//C EXEC PGM=IGYCRCTL,REGION=&RGN,

// PARM=(NOSEQ,QUOTE,OFFSET,LIB,RENT,NODYNAM,DBCS,OPT,

// ’TRUNC(BIN)’,’NUMPROC(NOPFD)’,NOCMPR2,’DATA(&DATA)’)

//STEPLIB DD DISP=SHR,DSN=&COBCOMP

//SYSIN DD DISP=SHR,DSN=&CGHLQ..&ENV..EZESRC(&MBR)

//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY

//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=VIO,

// SPACE=(800,(&WSPC,&WSPC))

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT3 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT4 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT5 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT6 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT7 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//*

//**

//* LINK-EDIT THE COBOL PROGRAM

//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS

//**

//*

//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,

// PARM=’RENT,REUS,LIST,XREF,MAP,AMODE(31),RMODE(ANY)’

//SYSLIB DD DISP=SHR,DSN=&COBLIB

// DD DISP=SHR,DSN=&RESLIB

//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD

//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET

// DD DDNAME=SYSIN

//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&ENV..LOAD(&MBR)

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUT1 DD SPACE=(1024,(&WSPC,&WSPC)),UNIT=VIO

The first step in converting the JCL fragment is to recognize the intent for each of

the data sets and ddnames. For this Cobol compiler example, the SYSIN ddname

needs to be associated with the source file, the SYSLIN ddname needs to be

associated with the object file, and so on.

In each of these cases, the build script must tell the server where to pick up the

input files before the execution of the specified program (PGM=IGYCRCTL) and

where to put the output files after the execution of the specified program.

Assume that your source files have the extension cbl. You allocate a data set to the

SYSIN ddname to contain a source file with a .cbl extension. You specify the DCB,

UNIT, DISP, and SPACE attributes to dynamically create this data set every time

this build script is invoked. You add CCUEXECBL to indicate that the file content

comes from an input file with an extension of .cbl.

82 IBM Enterprise Developer Server Guide for z/OS

You specify the output messages that will be returned by using the CCUOUT

attribute. This attribute tells the z/OS server to return the information in the data

set associated with the CCUEXT=CCUOUT attribute.

The following JCL build script is the result of converting the JCL procedure.

//**

//* BUILD SCRIPT - COBOL COMPILE AND LINK-EDIT

//**

//*

//DEFAULTS VARS CGHLQ=USER,

// COBCOMP=SYS1.IGY.V3R1M0.SIGYCOMP,

// COBLIB=SYS1.SCEELKED,

// COBLISTPARMS=OFFSET&COMMA.NOLIST&COMMA.MAP,

// ELA=EDS.V5R2M0,

// DATA=31,

// SYSTEM=ZOSCICS,

// MBR=PGMA,

// RGN=4096K

// CCUEXTC=CCUOUT,

// CCUEXTL=CCUOUT,

// SOUT=*,

// DBCS=&COMMA.DBCS

// WSPC=2500

//*

//* PARAMETERS:

//* CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER

//* COBCOMP = COBOL COMPILER LIBRARY

//* COBLIB = LE RUN TIME LIBRARY

//* COBLISTPARMS = LISTING OPTIONS FOR COBOL COMPILER

//* ELA = VISUALAGE GENERATOR SERVER HIGH LEVEL QUALIFIER

//* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE

//* ABOVE 16M LINE

//* DBCS = COMPILE OPTION FOR INDICATING SOURCE CONTAINS DBCS

//* CHARACTERS

//* SYSTEM = SYSTEM GENERATING FOR. USED AS USER DATASET MIDDLE

//* QUALIFIER

//* MBR = SOURCE NAME

//* RGN = REGION SIZE

//* CCUEXTC = CCUEXT VALUE FOR COMPILE PRINTOUTS RETURNED TO

//* CLIENT.

//* CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME

//* CCUSTD=RETURN TO CLIENT AS STANDARD OUT

//* CCUERR=RETURN TO CLIENT AS STANDARD ERROR

//* CCUEXTL = CCUEXT VALUE FOR LINK PRINTOUTS RETURNED TO CLIENT

//* CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME

//* CCUSTD=RETURN TO CLIENT AS STANDARD OUT

//* CCUERR=RETURN TO CLIENT AS STANDARD ERROR

//* SOUT = SYSOUT ASSIGNMENT IF A SYSOUT FILE NOT RETURNED

//* TO CLIENT

//* WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION

//*

//**

//* COMPILE THE COBOL PROGRAM

//**

//*

//C EXEC PGM=IGYCRCTL,REGION=&RGN,

// PARM=’NOSEQ,QUOTE,LIB,RENT,NODYNAM,OPT&DBCS,

// TRUNC(BIN),NUMPROC(NOPFD),&COBLISTPARMS.,DATA(&DATA)’

//STEPLIB DD DISP=SHR,DSN=&COBCOMP

//* COBOL SOURCE CODE UPLOADED FROM CLIENT (&MBR.CBL)

//SYSIN DD CCUEXT=CBL,DISP=(NEW,DELETE),

// UNIT=SYSDA,SPACE=(TRK,(10,10)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY

//SYSLIN DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..OBJECT(&MBR),ENQ=YES

//* RETURN COMPILER LISTING TO CLIENT AS FILE &PREFIX.C.SYSPRINT

Chapter 10. z/OS Builds 83

//SYSPRINT DD CCUEXT=&CCUEXTC,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(CYL,(5,5)),

// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)

//* UNIT=VIO,SPACE=(TRK,(30,10)),

//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT3 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT4 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT5 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT6 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//SYSUT7 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=VIO

//*

//**

//* LINK-EDIT THE COBOL PROGRAM

//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS

//**

//*

//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,

// PARM=’RENT,REUS,LIST,XREF,MAP,AMODE(&DATA),RMODE(ANY)’

//SYSLIB DD DISP=SHR,DSN=&COBLIB

//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD

//OBJLIB DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..OBJECT

//* LINK EDIT CONTROL FILE UPLOADED FROM CLIENT (&MBR.LED)

//SYSLIN DD CCUEXT=LED,DISP=(NEW,DELETE),

// UNIT=SYSDA,SPACE=(TRK,(10,10)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..LOAD(&MBR),ENQ=YES

//* RETURN LINK EDIT LISTING TO CLIENT AS FILE &PREFIX.L.SYSPRINT

//SYSPRINT DD CCUEXT=&CCUEXTL,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(TRK,(30,10)),

// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)

//SYSUT1 DD SPACE=(1024,(&WSPC,&WSPC)),UNIT=VIO

//

84 IBM Enterprise Developer Server Guide for z/OS

Chapter 11. Preparing and Running a Generated Program in

CICS

This chapter describes the unique steps required to prepare and run a generated

COBOL program in an CICS environment:

v Modifying CICS startup JCL

v Making new modules available

v Making programs resident

v Running programs

Modifying CICS Resource Tables

The CICS environment uses resource definitions to identify startup parameters,

transactions, programs, files, databases, transient data destinations, and system

locations for proper operation. You must add to or modify these resource

definitions to correctly identify all objects to be used in the new or changed

program. When using CICS tables, the tables are compiled as assembler programs

and stored in a run-time library. Some tables can also be maintained through an

online facility as described in the resource definition online manual for your

version of CICS. CICS requires that the online facility be used in place of

processing program table (PPT) and program control table (PCT) entries.

Refer to the CICS resource definitions guide for additional information on

providing definitions.

You can either write your own PPT, PCT, or RDO program and transaction entries

or use the ones generated by Enterprise Developer. You must handle DCT, FCT,

and RCT entries yourself.

Program Entries (PPT)

The entries in the PPT define programs to CICS. The EGL COBOL generation

process creates programs that must be defined, as a resource definition online

(RDO) PROGRAM entry or by using dynamic program entries.

An entry is required for each Enterprise Developer generated program. You can

request that sample PPT or RDO entries be generated for you by specifying the

cicsEntries build descriptor option at generation.

Either the batch program DFHCSDUP utility or the resource definition online

(RDO) CEDA DEFINE PROGRAM command can be used to define the server

program to CICS.

If you specify cicsEntries=RDO, CICS RDO DEFINE PROGRAM commands are

generated for you for each program that requires an RDO PROGRAM entry. The

preparation command created during generation copies the RDO command files to

the z/OS library specified at generation.

The following examples show how to define the same entries using the RDO

CEDA transaction DEFINE PROGRAM command.

 CEDA DEF PROG(progname) L(LE370) REL(NO) RES(NO) S(ENABLED) GROUP(xxxx)

© Copyright IBM Corp. 1994, 2005 85

The values shown for REL, RES, and S keywords are the default values and can be

omitted from the command. RES(YES) might provide better performance for

frequently used programs.

Transaction Entries (PCT)

A CICS transaction entry contains the control information used by CICS for

identifying and initializing a transaction. This entry is required by CICS to verify

incoming requests to start transactions, and to supply information about the

transaction such as the transaction priority, the security key, and the length of the

transaction work area (TWA).

A CICS RDO TRANSACTION entry is required for each transaction code used to

start a Enterprise Developer generated program.

EGL generated programs can be started by a remote procedure call from some

remote system. The CICS support mirror program DFHMIRS, normally invoked by

the CPMI transaction is used during this remote procedure call. It:

1. Determines which server program should be given control

2. Builds the COMMAREA

3. Links to the defined server program via CICS LINK

CPMI is the CICS supplied default transaction code to invoke the CICS mirror

program DFHMIRS. When using CPMI to start EGL programs, you must change

the transaction definition for CPMI to specify a TWASIZE of at least 1024 bytes.

To avoid making changes to the CPMI definition in the CICS supplied group, it is

recommended that you copy the CICS supplied CPMI definitions to a new group

or create a unique transaction ID with the same characteristics as CPMI. The new

transaction or copy of CPMI should be changed and verified to ensure the

following values are set.

1. The twasize is 1024

2. The profile is DFHCICSA (CICS default would be DFHCICST (T for terminal))

3. The program invoked is DFHMIRS

Example:

DEFINE TRANSACTION(MYMI) PROGRAM(DFHMIRS) TWASIZE(1024) PROFILE(DFHCICSA)

Destination Control Table Entries (DCT)

A CICS destination control table (DCT) entry is required for each program file that

is assigned to a transient data queue. A DCT entry is also required for destinations

specified as error destination queue names using the Enterprise Developer Server

diagnostic controller utility. The parameters for DCT entries depend on your

destination type. There are intrapartition, extrapartition, indirect, and remote

destinations. See “Using and Allocating Data Files in CICS” on page 36 for

information about defining and managing program data files and “Defining

Transient Data Queues” on page 38 for information about defining the DCT entry

for the error destination queue. Refer to appropriate CICS manuals for more

information on DCT entries.

To provide these definitions as RDO entries, see the CICS resource definition

guide.

86 IBM Enterprise Developer Server Guide for z/OS

File Control Table Entries (FCT)

A CICS file control table (FCT) entry is required for each program file that is

specified as file type VSAM. You must identify all FCT entries that might be

referenced at run time. Files can also be defined using RDO. See “Using and

Allocating Data Files in CICS” on page 36 for more information on defining and

managing program data files in the CICS environment.

Resource Control Table Entry (RCT)

If the programs running under a transaction access DB2 databases, then you must

define an entry in the CICS resource control table (RCT) that associates the

transaction identifier with the program plan name.

The following example shows the minimum RCT entry required: Index text:

sample JCL, RCT entry

DSNCRCT TYPE=ENTRY TXID=tran PLAN=plan-name

For more information on the other parameters you can specify when you define

RCT entries, refer to the chapter on connecting the CICS attachment facility in the

DB2 installation manual for your version of DB2.

To provide these definitions as RDO entries, see the CICS resource definition

guide.

Using Remote Programs, Transactions, or Files

Refer to the appropriate CICS manuals for information about defining remote

programs, transactions, or files.

Modifying CICS Startup JCL

You must include the load library where your generated programs reside in the

DFHRPL DD concatenation. Your system administrator included the LE run-time

libraries and the Enterprise Developer Server load library in the DFHRPL DD

concatenation when the Enterprise Developer Server product was installed.

The CICS startup JCL might need to be modified to add or change allocations for

files used by EGL-generated programs. These include VSAM files and

extrapartition transient data destinations.

For VSAM data sets, it is not necessary to include allocations in the startup JCL if

you specify the data set name and disposition in the CICS FCT or RDO entry for

the file. CICS dynamically allocates the file at open time.

Making New Modules Available in the CICS Environment

After you generate a new version of a program, you need to make the modules

available to CICS.

For programs, you can use the CICS NEWCOPY command or the Enterprise

Developer Server new copy utility to cause the new copy of the program to be

used the next time a load request is issued for the program.

For more information on the Enterprise Developer Server new copy utility, see

“New Copy” on page 112.

Chapter 11. Preparing and Running a Generated Program in CICS 87

Making Programs Resident

You can make frequently used programs or programs with high performance

requirements resident to avoid the overhead of loading the programs when they

are used. To aid in deciding which programs should be made resident, you can use

CICS shutdown statistics to determine how often a generated program is loaded in

a CICS region.

To make a program resident, specify the program as resident in the RDO entry for

the program.

Running Programs under CICS

Called programs can be started by another Enterprise Developer program, by a

non-Enterprise Developer program, or through the remote CICS services.

Prior to running a generated program, the program user might be required to sign

on to the CICS environment. Refer to CICS documentation for information about

signing on.

Controlling Diagnostic Information in the CICS Environment

Enterprise Developer Server provides a diagnostic controller utility for the CICS

environment. This utility allows you to control the type of dump, the name of the

error destination queue and journal number for error messages, and whether the

transaction is disabled when a run unit error occurs. See Chapter 17, “Diagnostic

Control Options,” on page 117 for more information about the diagnostic controller

utility.

Printing Diagnostic Messages in the CICS Environment

Enterprise Developer Server provides a way to print diagnostic messages written

to a transient data queue. See “Diagnostic Message Printing Utility” on page 114

for more information.

88 IBM Enterprise Developer Server Guide for z/OS

Chapter 12. Preparing and Running Generated Programs in

z/OS Batch

This chapter describes the unique steps required to prepare a generated COBOL

program to run in a z/OS batch environment:

v Running main programs

v Examples of runtime JCL

v Recovery and restart

For general information on preparing your program for the runtime environment,

see Chapter 9, “Output of Program Generation on z/OS Systems.” For information

on modifying the JCL, see Chapter 13, “Creating or Modifying Run-time JCL on

z/OS Systems.”

Running Main Programs under z/OS Batch

A main batch program generated for the z/OS batch environment can be started

by submitting JCL. Called programs can only be started by another Enterprise

Developer program or by a non-Enterprise Developer program.

The EGL COBOL generation process creates sample runtime JCL for running

programs in the z/OS batch environment. The generated JCL has same name as

the program. If you set the genRunFile build descriptor option to ″YES″, a sample

JCL is created specifically for the program during program generation. The runtime

JCL is transferred to a z/OS partitioned data set (PDS) by the Enterprise Developer

prepare function.

The JCL might need to be modified to add data sets required by called or

transferred-to programs. You also need to modify the JCL to add any data sets that

are dynamically allocated with the EZEDEST or EZEDESTP special function words.

See Chapter 13, “Creating or Modifying Run-time JCL on z/OS Systems,” on page

93 for more information on modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the generation listing for the

programs involved for any error messages related to JCL generation. In addition,

ensure the tailoring that was done for the JCL templates is correct. Also check any

changes you made when you customized the sample runtime JCL.

The following sections show JCL for different z/OS batch programs.

Examples of Runtime JCL for z/OS Batch Programs

The generated JCL in the following examples has these characteristics:

v The examples are based on the JCL templates shipped with Enterprise

Developer. Your actual JCL templates might differ if your system administrator

has tailored them for your organization. Refer to the online helps for more

information about tailoring JCL templates.

v Lowercase text appears in the examples where a generic example name has been

substituted for an actual program or data set name.

v EZEPRINT is always routed to SYSOUT=*.

© Copyright IBM Corp. 1994, 2005 89

If you route EZEPRINT to a data set, you must use the following DCB

attributes:

– LRECL=137, BLKSIZE=141, RECFM=VBA if the map group does not contain

any DBCS maps

– LRECL=654, BLKSIZE=658, RECFM=VBA if the map group contains any

DBCS maps

You cannot use map groups that do not have any DBCS maps with map groups

that do have DBCS maps in a same job step.

Running a Main Batch Program with No Database Access

Figure 14 shows the JCL used to start a main batch program.

Running a Main Batch Program with DB2 Access

Figure 15 shows the JCL used to start a main batch program that gains access to

DB2 resources. The JCL must run the z/OS TSO terminal monitor program to run

the generated program.

Running Main Batch Program with DL/I Access

If a main batch program runs as a DL/I batch program, then all DL/I requests are

handled by a private IMS region. The JCL for the step that runs the batch program

//jobname JOB ,MSGCLASS=A

//stepnam EXEC PGM=appl-name

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2M0.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//SYSABOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//* Application specific DD statements

//file-name-1 DD

//file-name-n DD

Figure 14. JCL for Main Batch Program Run as z/OS Batch without DB2 or DL/I Access

//jobname JOB USER=userid,........

//stepname EXEC PGM=IKJEFT01,DYNAMNBR=20,REGION=4M

//STEPLIB DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2M0.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//SYSABOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM (ssid)

 RUN PROG (appl-name) PLAN (plan-name) -

 LIB (’cghlq.env.LOAD’)

 END

/*

//SYSTSPRT DD SYSOUT=*

//* Application specific DD statements

//file-name-1 DD

//file-name-n DD

Figure 15. JCL for Main Batch Program Run as z/OS Batch with DB2 Access

90 IBM Enterprise Developer Server Guide for z/OS

must include DD statements for the IMS log if databases are opened with update

intent or if the program uses the Enterprise Developer CALL AUDIT service

routine. Also, a DD statement must be included for each of the data sets associated

with the DL/I databases referenced in the IMS PSB. The IMS log DD statements

(IEFRDER and IEFRDER2) are normally included in the DLIBATCH procedure.

Enterprise Developer uses the JCL template FDA2MDLI to build the DD

statements for program databases. This template has the DD statement commented

out because the high-level program database qualifiers are not collected by

Enterprise Developer. You need to provide the final tailoring of these DD

statements in the sample runtime JCL. Alternatively, depending on your naming

conventions, your administrator might be able to modify the FDA2MDLI template

so that you can use the symbolicParameter build descriptor option to set

high-level qualifiers for databases. Refer to the online helps for information about

modifying templates and using the symbolicParameter build descriptor option.

Figure 16 shows the sample JCL used to run a generated program as a DL/I batch

program.

Running a Main Batch Program with DB2 and DL/I Access

Figure 17 on page 92 shows the JCL that enables a program to run as a stand-alone

DL/I batch processing program and to gain access to DB2 databases. Special

recovery considerations are required. Refer to the DB2 documentation for your

system for additional information.

The JCL for the step that runs the batch program must include DD statements for

the IMS log if databases are opened with update intent or if the program uses the

Enterprise Developer CALL AUDIT service routine. Also, a DD statement must be

included for each of the data sets associated with the DL/I databases referenced in

the IMS PSB. The IMS log DD statements (IEFRDER and IEFRDER2) are normally

included in the DLIBATCH procedure.

Enterprise Developer uses the JCL template FDA2MDLI to build the DD

statements for DL/I program databases. This template has the DD statement

commented out because the high-level program database qualifiers are not

collected by Enterprise Developer. You need to provide the final tailoring of these

DD statements in the sample runtime JCL. Alternatively, depending on your

//jobname JOB

//stepname EXEC DLIBATCH,DBRC=Y,

// MBR=appl-name,PSB=ims-psb-name,BKO=Y,IRLM=N

//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2M0.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH

//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION

//G.DFSVSAMP DD DSN=ELA.V1R2M0.ELASAMP(ELAVSAMP),DISP=SHR

//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements including DL/I DB DD statements

//file-name-1 DD

//file-name-n DD

Figure 16. JCL for Main Batch Program Run as z/OS Batch with DL/I Access

Chapter 12. Preparing and Running Generated Programs in z/OS Batch 91

naming conventions, your administrator might be able to modify the FDA2MDLI

template so that you can use the symbolicParameter build descriptor option to set

high-level qualifiers for databases. Refer to the online helps for information about

modifying templates and using the symbolicParameter build descriptor option.

Recovery and Restart for Batch Programs

For z/OS batch programs that use DL/I, the generated runtime JCL includes the

parameter BKO=Y. If the program updates databases or files, specify BKO=Y in the

runtime JCL in order to have rollback (ROLB) requests honored. If you specify

BKO=N, DL/I returns status code AL for the roll-back call. Enterprise Developer

Server treats the AL status code as a soft error. No error message is issued, and

processing continues.

You should develop recovery procedures in the event of program or system errors.

Enterprise Developer does not generate JCL to perform restart or recovery

procedures.

//jobname JOB

//stepname EXEC DLIBATCH,DBRC=Y,

// MBR=DSNMTV01,PSB=ims-psb-name,BKO=Y,IRLM=N

//G.STEPLIB DD

// DD

// DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2M0.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH

//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION

//G.DFSVSAMP DD DSN=ELA.V1R2M0.ELASAMP(ELAVSAMP),DISP=SHR

/*

//G.DDOTV02 DD DSN=&&TEMP1,

// DISP=(NEW,PASS,DELETE),

// SPACE=(CYL,(1,1),RLSE),UNIT=SYSDA,

// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)

//G.DDITV02 DD *

 ssid,SYS1,DSNMIN10,,R,-,connection name,plan-name,appl-name

/*

//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements including DL/I DB DD statements

//file-name-1 DD

//file-name-2 DD

//*

//* Attempt to print out the DDOTV02 data set created in previous step

//stepnam2 EXEC PGM=DFSERA10,COND=EVEN

//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSNAME=&&TEMP1,

// DISP=(OLD,DELETE)

//SYSIN DD *

CONTROL CNTL K=000,H=8000

OPTION PRINT

/*

Figure 17. JCL for Main Batch Program Run as z/OS Batch with DB2 and DL/I Access

92 IBM Enterprise Developer Server Guide for z/OS

Chapter 13. Creating or Modifying Run-time JCL on z/OS

Systems

This chapter contains the information you need to modify the sample run-time JCL

created during program generation. You might need to modify the run-time JCL

for the following reasons:

v EGL does not include DD statements in the JCL to allocate data sets accessed by

programs called by or transferred to from the generated program.

v The generator does not include DD statements to allocate data sets accessed

when the EGL program moves a value to the record-specific variable

resourceAssociation or to the system variable sysVar.printerAssociation.

v The generator does not create any recovery or restart JCL.

v The sample JCL is based on the initial program in the run unit.

You need to ensure that the load libraries containing the initial program and any

dynamically invoked programs are included in the STEPLIB concatenation unless

you are using methods to put the load modules in memory. This includes program

modules that are called dynamically or that receive control by a transfer and

includes print services programs, form group format modules, and data-table

programs.

Tailoring JCL before Generation

EGL creates sample run-time JCL for batch programs. The sample run-time JCL is

based on templates that are installed in the MVSTEMPLATES subdirectory of the

following plugin:

 com.ibm.etools.egl.generators.cobol_version

version

The product version; for example, 6.0.0.

You can specify the location of site-specific templates by setting the build

descriptor option templateDir.

Some of the reasons to tailor the JCL templates are as follows:

v Implementing your installation’s data set naming conventions

v Adding DD statements to the STEPLIB concatenation

v Specifying a different DB2 subsystem

The sample JCL is shown in Chapter 12, “Preparing and Running Generated

Programs in z/OS Batch,” on page 89.

 Table 11. Run-time JCL Templates Based on Environment and Databases

JCL Template Database Environment

FDA2MEBE None z/OS batch

FDA2MEBD DB2 z/OS batch

FDA2MEBA Any, for called program z/OS batch

FDA2MEBB DB2 and DL/I z/OS batch

FDA2MEBC DL/I z/OS batch

© Copyright IBM Corp. 1994, 2005 93

Table 11. Run-time JCL Templates Based on Environment and Databases (continued)

JCL Template Database Environment

FDA2MEIA DB2 IMS BMP

FDA2MEIB None IMS BMP

Table 12 shows the JCL templates that serve as models for DD statement

generation for program-dependent files and databases.

 Table 12. Model DD Statement for Program-Dependent Files and Databases

JCL Template Contents

FDA2MSDI QSAM input file

FDA2MSDO QSAM output file

FDA2MVSI VSAM input file

FDA2MVSO VSAM output file

FDA2MGSI GSAM input file

FDA2MGSO GSAM output file

FDA2MIMS GSAM IMS dataset for IMS BMP

FDA2MCAL Comment indicating where to insert DD statements for known

transferred-to and called programs

FDA2MEZA Comment indicating where to insert DD statements for programs

transferred-to using the system variable sysVar.transferName

FDA2MEZD Comment indicating where to insert DD statements for data sets

using the record-specific variable resourceAssociation or the system

variable sysVar.printerAssociation

FDA2MDLI Comment indicating where to insert DD statements for DL/I

databases on z/OS batch

Modifying Run-time JCL

The sample run-time JCL for main batch programs contains EXEC statements to

run a program or a cataloged procedure. The JCL for main batch programs does

not include a JOB statement or the DD statements for data sets accessed by called

or transferred-to programs. Before you use the JCL to run the program, you must

do the following:

v Add a JOB statement.

v Insert missing DD statements as required. Comments in the generated JCL

indicate where to insert the DD statements.

The sample run-time JCL for a called program contains only the DD statements

that are required for the called program.

After generation, add the DD statements for any files required by called or

transferred-to programs (including those named with sysVar.transferName) to the

sample JCL for the main program. In addition, you must add DD statements for

any files accessed by moving a value to the record-specific variable

resourceAssociation or to the system variable sysVar.printerAssociation. You do not

need to add DD statements for files that you access dynamically.

94 IBM Enterprise Developer Server Guide for z/OS

The type of run-time JCL generated for a main batch program varies based on the

types of databases used by the main program. The generated run-time JCL does

not consider the types of databases accessed by called or transferred-to programs.

If the main program does not use relational databases, but it calls or transfers to

programs that use relational databases, you must modify the run-time JCL for the

main program.

For example, consider the following situation:

v Program A is a main batch program that does not use relational databases.

v Program B is main program that accesses relational databases.

v Programs A and B are generated for the z/OS batch environment.

v Program A transfers to program B

Because program A does not use DB2, the JCL generated for program A is for a

main batch program without DB2 access (as shown in Figure 14 on page 90). This

JCL will not run correctly because program B requires DB2 to run. However, the

JCL generated for program B is for an z/OS batch job with DB2 access (as shown

in Figure 15 on page 90). The run-time JCL for program B can serve as a starting

point for creating the JCL required to run program A. The following changes are

required to the run-time JCL for program B:

v Change RUN PROG(APPLB) to RUN PROG(APPLA).

v Add any DD statements for files required by program A or other programs in

the job step.

If program B is a called program and program A calls B rather than transferring to

B, the run-time JCL for program B consists only of DD statements. In this situation,

you need to create your own program JCL. Any one of the following can serve as a

starting point for the JCL:

v The run-time JCL for another main program that accesses relational databases.

You can avoid the modification just described if you include an SQL process option

in the initial main program.

If you get a JCL error for the run-time JCL, check the generation listing for the

programs involved for any error messages related to JCL generation. In addition,

ensure the tailoring that was done for the JCL templates is correct. Also check any

changes you made when you customized the sample run-time JCL.

Chapter 13. Creating or Modifying Run-time JCL on z/OS Systems 95

96 IBM Enterprise Developer Server Guide for z/OS

Chapter 14. Preparing and Running Generated Programs in

IMS/VS and IMS BMP

This chapter describes the steps required to prepare and run a generated COBOL

program in an IMS environment:

v Modify the IMS system definition parameters

v Create the MFS control blocks

v Precompile, compile, link, and bind the generated program

v Make the new modules and MFS control blocks available to IMS

v Create or modify runtime JCL (IMS BMP only)

For general information on preparing programs for the runtime environment, see

Chapter 9, “Output of Program Generation on z/OS Systems,” on page 65. For

information about modifying JCL, see Chapter 13, “Creating or Modifying

Run-time JCL on z/OS Systems,” on page 93.

Modifying the IMS System Definition Parameters

The following information describes the basic IMS system definition parameters

that are required to prepare EGL-generated programs. You should review the

performance options described in the IMS documentation for your system to

determine the most effective options.

An IMS TRANSACT macro is required for each transaction code used to start a

Enterprise Developer generated main program in the IMS/VS environment and for

each transaction-oriented BMP program. This includes the following transactions:

v Started from a clear IMS screen

v Used as a sysVar.transactionID

v Used as the target of a transfer statement of the form transfer to a transaction or

sysLib.startTransaction() statement

v Transferred to by a non-Enterprise Developer program

v Started as the result of an add statement that adds a transaction to a message

queue

v Started by other IMS facilities

The TRANSACT macro must follow the APPLCTN macro for the IMS PSB that is

to be used for the transaction.

Defining an Interactive Program

Each main transaction program must be defined as either an IMS message

processing program (MPP) or a fast-path program with an associated transaction

code, except when the program is started through a transfer statement of the form

transfer to a program from another program.

Figure 18 on page 98 shows the system definition parameters that are required for

defining an interactive Enterprise Developer program.

© Copyright IBM Corp. 1994, 2005 97

1 The IMS PSB name and the Enterprise Developer program name must

match.

2 Multiple transactions can be associated with one program. If the program

changes the value of sysVar.transactionID before a CONVERSE, include a

TRANSACT macro for the original transaction code and a TRANSACT

macro for the EZESEGTR value.

3 INQUIRY=NO is the default for IMS. If DL/I is used for the work

database, INQUIRY=NO is required. The Enterprise Developer Server work

database supports help maps and displays data again if an input error

occurs, as well as the CONVERSE process option. Therefore, even if the

program databases are inquiry only, INQUIRY=NO is necessary. If DB2 is

used for the work database and the program’s use of all DL/I databases is

inquiry only, then INQUIRY=YES can be used.

4 SNGLSEG is required. Either RESPONSE or NONRESPONSE can be used

with Enterprise Developer Server, depending on whether you want the

keyboard to remain locked until the transaction completes. Even if

NONRESPONSE mode is used, multiple simultaneous transactions from a

single terminal are not supported.

5 Required for input in lowercase.

6 Include this parameter only if an IMS scratch pad area (SPA) is required.

The SPA size is the length of the IMS SPA header (14 bytes) plus the length

of the longest working storage record that might be received or sent during

a transfer statement of the form transfer to a transaction. However, if you

include the spaStatusBytePosition and omit the spaADF build descriptor

options, then you must add an additional byte when calculating the size.

The SPA size must match the number specified for the spaSize build

descriptor option when the program is generated.

 You can also include the FPATH=YES parameter on the TRANSACT macro if the

program might be run in an IMS Fast Path (IFP) region. If you include

FPATH=YES, be sure to include the imsFastPath=″YES″ build descriptor option

when you generate the program. Refer to the IMS manuals for your system for

additional information about using IFP regions.

Defining Parameters for a Batch Program as an MPP

A Enterprise Developer batch program can also run as an asynchronous MPP. For

example, a Enterprise Developer batch program can be used to process the

information inserted to the message queue by a sysLib.startTransaction() statement

or an add statement in another program. This type of program differs from one

that runs as a BMP in that the MPP cannot access any GSAM, indexed, or relative

files, and cannot include any special restart logic. Figure 19 on page 99 shows the

system definition parameters required for this case.

APPLCTN PGMTYPE=TP,PSB=ims-psb-name. 1

TRANSACT CODE=trancode, X2

 INQUIRY=NO, X3

 MODE=SNGL, X

 MSGTYPE=(SNGLSEG,RESPONSE), X4

 EDIT=ULC, X5

 SPA=(size,[DASD|CORE],[FIXED]) 6

Figure 18. IMS System Definition for an Interactive Transaction

98 IBM Enterprise Developer Server Guide for z/OS

1 The IMS PSB name and the Enterprise Developer program name must

match.

2 Multiple transactions can be associated with one program.

 You can also include the FPATH=YES parameter on the TRANSACT macro if the

program might be run in an IMS Fast Path (IFP) region. If you include

FPATH=YES, be sure to include theimsFastPath=″YES″ build descriptor option

when you generate the program. Refer to the IMS manuals for your system for

additional information about using IFP regions.

Defining Parameters for a Batch-Oriented BMP Program

If a Enterprise Developer batch program is generated to run as an IMS BMP

program and it does not process an input message queue, it is a batch-oriented

BMP program. Figure 20 shows the system definition parameters required for

defining a main batch program as a batch-oriented BMP program.

Defining Parameters for a Transaction-Oriented BMP Program

If a Enterprise Developer batch program is generated to run as an IMS BMP

program and it processes an input message queue created by MPP programs or by

other BMP programs, it is a transaction-oriented BMP program. Figure 21 shows

the system definition parameters that are required to define a main batch program

as a transaction-oriented BMP program.

1 Multiple transactions can be associated with one program.

2 Wait-for-input (WFI) is optional. If it is specified, the program remains

resident until the operator stops the transaction or shuts down the region.

Creating MFS Control Blocks

The message format services (MFS) control blocks are generated when the

formGroup is generated for the IMS environment. The build script FDAMFS is

used. FDAMFS has functionality similar to that of the MFSUTL and the MFSTEST

JCL procedures that ship with the IMS product. When you generate the program,

you specify the mfsUseTestLibrary build descriptor option to choose between the

functionality of MFSUTL and MFSTEST. YES indicates MFSTEST.

When you set mfsUseTestLibrary to YES, the variable MFSTEST is set to YES in

the build plan. The build script FDAMFS uses this variable to determine which of

APPLCTN PGMTYPE=TP,PSB=ims-psb-name 1

TRANSACT CODE=trancode, X 2

 MODE=SNGL

Figure 19. IMS System Definition for an Asynchronous MPP Program

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name

Figure 20. IMS System Definition for a Main Batch Program Running as a Batch-Oriented

BMP Program

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name

TRANSACT CODE=trancode, X 1

 MODE=SNGL, X

 WFI 2

Figure 21. IMS System Definition for a Main Batch Program Running as a

Transaction-Oriented BMP Program

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 99

the JCL procedures (MFSUTL or MFSTEST) to follow. Refer to the message format

services documentation for your system for additional information about the MFS

control blocks. Refer to the online helps for more information about the build

descriptor options that control what is included in the MFS source.

If your program contains DBCS or mixed data, note that a long mixed constant

field that results in multiple lines of MFS source might contain unpaired shift-in

and shift-out characters. This occurs when the DBCS portion of the constant is split

into more than one line. The MFS still works correctly.

Making New Modules Available in the IMS Environment

Whenever you install a new version of a program, MFS print services program,

map group format module, or table, you need to recycle the message region.

If you generated with mfsUseTestLibrary=″YES″, then the MFS control blocks

were placed in the MFS test library (the TFORMAT library). To use the new

version of the MFS control blocks, use the /TEST MFS command after you have

signed on your IMS system and before you attempt to run a transaction that uses

the new version of the maps.

If you generated with mfsUseTestLibrary=″NO″, then the MFS control blocks were

placed in the MFS staging library (FORMAT library). To use the new version of the

MFS control blocks, you must do the following:

1. Run the IMS online change utility (OLCUTL) to copy the new MFS control

blocks into the inactive format library.

2. Use the following IMS commands:

 /MODIFY PREPARE FMTLIB

 /MODIFY COMMIT

Note: If the MFS control blocks and the map group format module do not have

the same generation date and time, Enterprise Developer Server issues an

error message.

Preloading Program, Print Services, and Table Modules

Preloading programs, MFS print services programs, map group format modules,

and table modules that are frequently used might reduce the overhead of searching

the STEPLIB, JOBLIB, link pack area, and link list. However, if modules are

preloaded, they occupy virtual storage when they are not in use.

To improve response time, you might also preload modules associated with any

transaction that might require better performance, even though the module itself is

not frequently used.

To preload a program, MFS print services program, map group format module, or

table program, have your system administrator do the following:

1. Put the module in a LNKLST library.

2. Include the module name in a preload member (DFSMPLxx, where xx is a

two-character ID that you select) in IMSVS.PROCLIB.

3. Indicate in the JCL for the IMS message region that the preload member is to

be included.

Refer to the IMS manuals for your system to get general information on preloading

modules.

100 IBM Enterprise Developer Server Guide for z/OS

Running Programs under IMS

Prior to starting a generated program, the program user might be required to sign

on to the IMS environment with a /SIGN command. Refer to the IMS

documentation for information about the /SIGN command.

Starting a Main Program Directly

The simplest way for a program user to start a Enterprise Developer program is by

entering the IMS transaction code from an unformatted screen. The transaction

code can be up to 8 characters. It is associated with the program in the IMS system

definition TRANSACT macro. The following is an example of starting a

transaction:

MYTRANS

IMS requires the transaction code to be followed by at least one blank prior to

pressing the ENTER key.

Starting a Main Transaction Program Using the /FORMAT

Command

A program user can use the IMS /FORMAT command to display a formatted

screen to start a transaction if the First Map for a program is defined with the IMS

transaction code for the program as an 8-byte constant with the protect and dark

attributes. The attribute byte on the map becomes the attribute byte in the

generated MFS. The 8-byte constant contains the name of the IMS transaction that

is started when the map is processed.

The /FORMAT command directs IMS to display a screen format; however, the

command does not cause the program to be run. After the program user enters

data and presses the Enter key (or a function key), the message from the terminal

is sent to the generated program for processing.

The syntax of the /FORMAT command is as follows:

/FORMAT modname [mapname]

 or

/FOR modname [mapname]

The modname operand is the map group name with an O suffix. The mapname

operand is required if there is more than one map in the map group. It must be

the map name that was specified as the First Map for the program.

Because the transaction code must be included in the map, and a transaction code

can only be associated with one program in the IMS system definition, only one

program using the map can be started using the /FORMAT command.

Running Transaction Programs as IMS MPPs

Running generated programs is similar to running non-EGL-generated programs in

the IMS MPP environment, with the following differences:

IMS Commands

The /HOLD command should be avoided. Enterprise Developer Server uses the

logical terminal identifier as the key of the work database. The data in the work

database is destroyed if another generated program is run from the same terminal

prior to resuming the original conversation.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 101

Keyboard Key Operation

When the Clear key is pressed in IMS, IMS clears the screen, but does not notify

the program. No transaction is scheduled, so the map is not automatically

displayed again. If the program is conversational, the program user can enter the

IMS /HOLD command followed immediately by an IMS /RELEASE command to

display the map again.

When the EOF key is pressed in the first position of a field on a map, the data is

not blanked. To blank the data, the program user must enter at least one blank

before pressing the EOF key. Also, the program user should not use the DELETE

CHARACTER key to erase the entire field because this is equivalent to pressing

the EOF key in the first position of the field.

When typing over characters in a right-justified numeric field, any intervening

spaces between the new digits entered and the original digits in the field should be

deleted by pressing the DELETE CHARACTER key. Alternatively, the program

user can type in all digits for the new value and use the EOF key to erase any

remaining digits.

DBCS Data on a Non-DBCS Terminal

If a program inadvertently attempts to display a map with DBCS or mixed data on

a non-DBCS terminal or printer, the results are unpredictable. The terminal might

be logged off IMS and returned to the VTAM®* sign-on screen without displaying

any warning or error messages. If this happens, review your use of DBCS. Also,

review your values for the mfsDevice , mfsExtendedAttr, and mfsIgnore

generation options, and compare them to the IMS system definition for the

terminal that had the problem.

Error Reporting

In certain error situations, Enterprise Developer Server displays its own panel to

explain the error to the program user. This occurs in the following situations:

v A message needs to be displayed, but the form field named in the form property

msgField does not exist. Form ELAM01 in formGroup ELAxxx, where xxx is the

national language code, is used.

v An unexpected program error has occurred. Form ELAM02 and (if necessary)

continuation form ELAM03 are used to display the error messages. See “Using

the Enterprise Developer Server Error Panel” on page 133 for an example of

ELAM02.

If an error occurs information might have been written to the message queue

identified by the errorDestination build descriptor option for the first program in

the run unit. See Chapter 19, “IMS Diagnostic Message Print Utility,” on page 125

for information on printing diagnostic errors.

Responding to IMS Error Messages

If a DFS™ message is displayed on your screen, make a note of the message. Then,

depending on how your IMS system is set up, press either PA1 or PA2 to see if

Enterprise Developer Server has queued an error map to the terminal with more

information. This can happen in the following situations:

v If Enterprise Developer Server issues a ROLL call because of a run unit or

catastrophic error, IMS issues the message:

DFS555I TRAN tttttttt ABEND S000,U0778 ; MSG IN PROCESS:

tttttttt mmmmmmmmMAP ;;;;gdate gtime rdate rtime

102 IBM Enterprise Developer Server Guide for z/OS

Where tttttttt is the IMS transaction code, mmmmmmmm is the map name, gdate

and gtime are the date and time the map group was generated, and rdate and

rtime are the date and time of the abend.

The DFS555I message is also used by IMS when other abends occur, including

the 1600, 1601, 1602, and 1606 abends from Enterprise Developer Server.

v If Enterprise Developer Server ends the run unit for a transaction program that

was generated with imsFastPath=″YES″ and is being run in an IMS fast-path

region, IMS issues the message:

DFS2766I PROCESS FAILED

v If Enterprise Developer Server abnormally ends the logical unit of work (LUW)

for a transaction program that was generated with imsFastPath=″YES″, IMS

might issue the message:

DFS2082I RESPONSE MODE TRANSACTION TERMINATED WITHOUT REPLY

See Chapter 20, “Diagnosing Problems for Enterprise Developer Server on z/OS

Systems,” on page 129 for information on diagnosing errors.

Running Batch Programs as MPPs

A Enterprise Developer main batch program can be generated to run in the IMS

MPP environment. In this situation, IMS automatically starts the transaction

whenever a message is written to the message queue associated with the

transaction.

If an error occurs information might have been written to the message queue

identified by the errorDestination build descriptor option for the first program in

the run unit. See Chapter 19, “IMS Diagnostic Message Print Utility,” on page 125

for information on printing diagnostic errors.

Running a Main Program under IMS BMP

A main batch program generated for the IMS BMP environment can be started by

submitting JCL. Called programs can only be started by another Enterprise

Developer program or by a non-Enterprise Developer program.

The EGL COBOL generation process creates sample runtime JCL for running

programs in the IMS BMP environment. The generated JCL has the same name as

the program. If you set the genRunFile build descriptor option to ″YES″, a sample

JCL is created specifically for the program during program generation. The runtime

JCL is transferred to a z/OS partitioned data set (PDS) by the Enterprise Developer

prepare function.

The JCL might need to be modified to add data sets required by called or

transferred-to programs, or for data sets used by setting

sysVar.resourceAssociation or converseVar.printerAssociation. You also need to

modify the JCL to add any data sets that are dynamically allocated with the

EZEDEST or EZEDESTP special function words. See Chapter 13, “Creating or

Modifying Run-time JCL on z/OS Systems,” on page 93 for more information on

modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the generation listing for the

programs involved for any error messages related to JCL generation. In addition,

ensure the tailoring that was done for the JCL templates is correct. Also check any

changes you made when you customized the sample runtime JCL.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 103

The following sections show JCL for different IMS BMP programs.

Examples of Runtime JCL for IMS BMP Programs

The generated JCL in the following examples has these characteristics:

v The examples are based on the JCL templates shipped with Enterprise

Developer. Your actual JCL templates might differ if your system administrator

has tailored them for your organization. Refer to the online helps for more

information about tailoring JCL templates.

v Lowercase text appears in the examples where a generic example name has been

substituted for an actual program or data set name.

v EZEPRINT is always routed to SYSOUT=*.

If you route EZEPRINT to a data set, you must use the following DCB

attributes:

– LRECL=137, BLKSIZE=141, RECFM=VBA if the map group does not contain

any DBCS maps

– LRECL=654, BLKSIZE=658, RECFM=VBA if the map group contains any

DBCS maps

You cannot use form groups that do not have any DBCS forms with form

groups that do have DBCS forms in a single job step.

The first library in the STEPLIB concatenation sequence must have the largest

block size, or BLKSIZE=32760 can be specified on the first STEPLIB DD statement

for the step.

Running a Main Batch Program as an IMS BMP Program

If a main batch program runs as a BMP program, all DL/I requests are passed to a

central copy of IMS which coordinates updates to the databases across multiple

BMPs and MPPs. The DD statements for the IMS log and the program databases

are not required in the JCL for the BMP job step. These databases and the IMS log

are allocated to the IMS control region.

Figure 22 shows a sample set of JCL to run a generated program as a BMP

program.

 If you run a transaction-oriented BMP program, the trans-name must be set to the

name of the transaction for the message queue that the BMP program processes. If

//jobname JOB

//stepname EXEC IMSBATCH,

// MBR=appl-name,PSB=ims-psb-name,IN=trans-name

//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2M0.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements for files

//* No application specific DD statements for databases required

//file-name-1 DD

//file-name-n DD

Figure 22. JCL for Main Batch Program as an IMS BMP Program

104 IBM Enterprise Developer Server Guide for z/OS

not, trans-name should be a null value. The sample runtime JCL created by

Enterprise Developer defaults trans-name to the program name for a

transaction-oriented BMP program that uses SCAN to read the message queue. The

sample runtime JCL created by Enterprise Developer defaults trans-name to null for

batch-oriented BMP programs or for transaction-oriented BMP programs that use

VGLib.VGTDLI(), AIBTDLI(), or EGLTDLI() to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in

the sample runtime JCL:

//IMS DD DSN=IMS.PSBLIB,DISP=SHR

// DD DSN=IMS.DBDLIB,DISP=SHR

These DD statements are generated from the FDA2MIMS JCL template.

Running a Main Batch Program as an IMS BMP Program with

DB2 Access

Figure 23 shows a sample set of JCL to run a generated program that accesses DB2

resources as a BMP. The DD statements for the IMS log and the DL/I program

databases are not required in the JCL for the BMP job step. The DL/I databases

and the IMS log are allocated to the IMS control region.

 If you run a transaction-oriented BMP program, the trans-name must be set to the

name of the transaction for the message queue that the BMP program processes. If

not, trans-name should be a null value. The sample runtime JCL created by

Enterprise Developer defaults trans-name to the program name for a

transaction-oriented BMP program that uses SCAN to read the message queue. The

sample runtime JCL created by Enterprise Developer defaults trans-name to null for

batch-oriented BMP programs or for transaction-oriented BMP programs that use

CSPTDLI to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in

the sample runtime JCL:

//IMS DD DSN=IMS.PSBLIB,DISP=SHR

// DD DSN=IMS.DBDLIB,DISP=SHR

These DD statements are generated from the FDA2MIMS JCL template.

//jobname JOB

//stepname EXEC IMSBATCH,

// MBR=appl-name,PSB=ims-psb-name,IN=trans-name

//G.STEPLIB DD

// DD

// DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2M0.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//G.DFSESL DD DSN=IMS.RESLIB,DISP=SHR

// DD DSN=DSN.SDSNLOAD,DISP=SHR

//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)

//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements for files

//* No application specific DD statements for databases required

//file-name-1 DD

//file-name-n DD

Figure 23. JCL for Main Batch Program as an IMS BMP Program with DB2

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 105

Recovery and Restart for IMS BMP Programs

You should develop recovery procedures in the event of program or system error.

Enterprise Developer does not generate JCL to perform restart or recovery

procedures.

106 IBM Enterprise Developer Server Guide for z/OS

Chapter 15. Moving Prepared Programs to Other Systems

from z/OS Systems

You might need to move a prepared program from one system to another. For

example you might have the compiler on one host development machine but want

to run the program on several production machines.

If you use DB2, the DB2 BIND must be done on the production system.

The COBOL and Enterprise Developer Server products on the production machine

must be at the same maintenance level as, or a higher level than, on the

development machine.

Moving Prepared Programs To Another z/OS System

If a program has been completely prepared on one system and you want to move

the prepared program to another system, perform the following steps:

1. Copy the program-related parts (including the form group and table parts) to

the production system. The names of the source libraries are shown with the

default naming convention used in the build scripts, where cghlq is the user or

project-related high level qualifier and env is the run-time environment code.

 Table 13. Parts to Copy

Data Set Name Contents

cghlq.env.LOAD Application module, print services program,

form group format modules, and data table

modules.

cghlq.env.DBRMLIB DB2 database request modules (DBRMs) for

SQL programs

cghlq.env.EZEBIND BIND commands for SQL programs

Note:

The cghlq variable comes from the projectID build descriptor option. The env variable comes

from the system build descriptor option.

2. Provide your own JCL to build the plans for DB2 programs using the BIND

commands from the BIND library and the DBRMs from the DBRM library. You

need to edit the EZEBIND member, and make the appropriate changes such as

DB2 subsystem name or collection IDs to match the new system where you are

moving the program.

3. Follow the procedures identified in this manual for defining programs to CICS.

4. Define files and databases used by the program on the new system.

Maintaining Backup Copies of Production Libraries

Follow your installation-defined guidelines and procedures for making backup

copies of production libraries. Having backup copies of production libraries

enables you to return to the prior level of a program in case of errors. The

production libraries for which copies should be made are those listed in Table 13.

© Copyright IBM Corp. 1994, 2005 107

108 IBM Enterprise Developer Server Guide for z/OS

Part 4. Utilities

Chapter 16. Using Enterprise Developer Server

Utilities on z/OS Systems 111

Using the CICS Utilities Menu 111

New Copy 112

Diagnostic Message Printing Utility 114

Chapter 17. Diagnostic Control Options 117

Change or View Diagnostic Control Options for a

Transaction 118

Change or View Default Diagnostic Control

Options 119

Chapter 18. Using the Parameter Group Utility 121

Chapter 19. IMS Diagnostic Message Print

Utility 125

© Copyright IBM Corp. 1994, 2005 109

110 IBM Enterprise Developer Server Guide for z/OS

Chapter 16. Using Enterprise Developer Server Utilities on

z/OS Systems

Enterprise Developer Server provides a set of utilities in CICS to help manage the

error diagnosis and control facilities of the Enterprise Developer Server run-time

environment. You can access these utilities from the CICS utilities menu.

Using the CICS Utilities Menu

To access the CICS utilities do the following:

1. Log on to CICS.

2. Type ELAM on a clear screen.

3. Press Enter. When the ELAM transaction is started, a copyright panel is

displayed.

4. Press Enter. The CICS Utilities Menu (Figure 24) is displayed.

 Three functions are available from the CICS Utilities Menu panel (Figure 24):

New Copy

This function causes a new copy of a program, form group, or data table to

be used by subsequent transactions. Use the new copy function when

programs, form groups, and data tables are modified and generated again.

 For programs and form groups, you can also use the Enterprise Developer

Server new copy utility or the CICS NEWCOPY command to cause the

new copy of the program to be used the next time a load request is issued

for the program.

 The Enterprise Developer Server new copy utility does a new copy for

both the online print services program and the form group format module

 ELAM Enterprise Developer Server

 CICS Utilities Menu

 Select one of the following utilities; then press Enter.

Action...._

_1. New Copy

_2. Diagnostic Message Printing

_3. Diagnostic Control Options

 ENTER F1=HELP F3=EXIT

Figure 24. CICS Utilities Menu

© Copyright IBM Corp. 1994, 2005 111

when you specify a part type of form group. If you use the CICS

NEWCOPY command for a form group, you must issue the NEWCOPY for

both the online print services program and the form group format module.

 For data table, you must use the Enterprise Developer Server new copy

utility to cause a fresh copy of the data table to be used the next time a

load request is issued for the data table. Do not use the CICS NEWCOPY

command for data tables.

Diagnostic Message Printing

This function routes the diagnostic messages in an error destination

transient data queue to a spool file for printing or subsequent processing.

Diagnostic Control Options

This function lets you view or change the diagnostic control options set for

the installation or for individual transactions. The options include dump

control, error message routing to a transient data queue or the CICS

journal, and transaction disabling when serious problems occur.

New Copy

The Enterprise Developer Server new copy utility causes a new copy of a program,

form group, or data table to be used by subsequent transactions. Transactions that

are in progress when this function was started continue to use the copy that was

current when the transaction began. Programs must end before the new copy is

used.

Programs must end or reach the end of a segment before the new copy is used.

The Enterprise Developer Server new copy utility must be run separately for

programs, form groups, and data tables to replace the copy already in storage.

To gain access to the Enterprise Developer Server new copy utility, do the

following:

1. Select option 1, New Copy, on the CICS Utilities Menu panel (Figure 24).

2. Press Enter.

The New Copy panel (Figure 25 on page 113) is displayed.

Note: You can also gain access to the Enterprise Developer Server new copy utility

by doing the following:

1. Type ELAN on a clear screen.

2. Press Enter. When the ELAN transaction is started, a copyright panel is

displayed.

3. Press Enter. The New Copy panel (Figure 25 on page 113) is displayed.

112 IBM Enterprise Developer Server Guide for z/OS

Enter the following on the New Copy panel:

Part name

Specifies the name of the program, form group, or data table to be used as

a new copy in subsequent transactions

Part type

Specifies the type of part to be replaced

Note: Enterprise Developer Server does not validate the part type. You

must specify the correct type because different processing is required

for programs, form groups, and data tables. If you have problems in

processing after using the Enterprise Developer Server new copy

utility, try the Enterprise Developer Server new copy utility again to

ensure you specified the part type correctly.

The correct type can be one of the following:

Program

This type causes the utility to issue a CICS SET PROGRAM(name)

NEWCOPY command to access a new copy of the program. This

command does not cause a new copy for called programs that are

statically linked with their caller.

Form Group

This type causes the utility to issue a CICS SET PROGRAM(name)

NEWCOPY command to access a new copy of the form group

format module and the online print services program associated

with the form group.

Data Table

This type causes the utility to issue a CICS SET PROGRAM(name)

NEWCOPY command to access a new copy of the data-table

program and sets a flag for Enterprise Developer Server, indicating

that a new copy of the data table is to be used the next time a

program loads the data-table contents.

 ELAN Enterprise Developer Server

 New Copy

 Type choices; then press Enter.

 Part name........... _______

 Part type........... _

 1. Program

 2. Map Group

 3. Table

 ENTER F1=HELP F3=EXIT

Figure 25. New Copy panel

Chapter 16. Using Enterprise Developer Server Utilities on z/OS Systems 113

If the data table has been generated as a shared data table,

currently running transactions continue to use the old copy of the

data table while new transactions share the new copy of the data

table.

You can also access the new copy utility in batch mode. To invoke the batch new

copy utility, link to program ELABNEW:

EXEC CICS LINK PROGRAM("ELABNEW")

COMMAREA(passed-parms)

LENGTH(174)

where the passed-parms record has the following structure:

 Field Length in

Bytes

Type of Data Description

NLS code 3 Character NLS code identifying language

Part name 8 Character Name of program, form group, or

data table to be used as a new

copy in subsequent transactions

Part type 1 Character Type of part to be replaced:

″1″ Program

″2″ Form group

″3″ Data table

For more information, see the

description for part type in the

online help discussion of the new

copy utility.

Return code 2 Binary Return code from new copy

Message 1 80 Character Message returned from new copy

Message 2 80 Character Message returned from new copy

The following fields must be provided by the user:

v NLS code

v Part name

v Part type

The other fields are filled in by the new copy utility.

Any nonzero return code means that the new copy operation was not successful. If

a nonzero value is returned in the return code field, check messages 1 and 2 for

details indicating what error occurred.

Note: Message 2 is not always filled in. It may be blank.

Diagnostic Message Printing Utility

Diagnostic message printing allows you to route diagnostic messages in an error

destination transient data queue to a JES spool file for printing.

To gain access to the diagnostic message print utility do the following:

1. Select option 2, Diagnostic Message Printing, from the CICS Utilities Menu

panel (Figure 24 on page 111).

114 IBM Enterprise Developer Server Guide for z/OS

2. Press Enter.

The Diagnostic Message Printing panel (Figure 26) is displayed.

Note: You can also access the diagnostic message print function by doing the

following:

1. Type ELAU on a clear screen.

2. Press Enter. When ELAU is started, a copyright panel is displayed.

3. Press Enter. The Diagnostic Message Printing panel (Figure 26) is

displayed.

 You can enter information in the following fields on the Diagnostic Message

Printing panel:

Error destination queue name

This field specifies the name of an existing error destination.

 Enter the 1 to 4 character DCT name of the ERRDEST error destination

transient data queue. The queue name is initialized to the default error

destination queue. The default is ELAD. You can either leave the messages

in the queue or clear them after they have been printed.

JES Spool File Information

This field specifies the spool file where the messages are to be written. If

you do not specify anything in these fields, the system uses the default

values and sends the report to the local spool printer where your local

CICS is running.

Clear destination queue

This field specifies whether to clear the error queue of all messages after

the messages are written to a spool file. The default is Y.

 ELAU Enterprise Developer Server

 Diagnostic Message Printing

 Fill in the appropriate fields; then press Enter.

 Error destination queue name.......ELAD

 JES Spool File Information

 Node...................... *

 Userid.................... *

 Class.....................A

 Clear destination queue............Y Y=Yes, N=No

 ENTER F1=HELP F3=EXIT

Figure 26. Diagnostic Message Printing panel

Chapter 16. Using Enterprise Developer Server Utilities on z/OS Systems 115

116 IBM Enterprise Developer Server Guide for z/OS

Chapter 17. Diagnostic Control Options

The diagnostic control options utility enables you to alter the diagnostic action

options taken for a given transaction code that is assigned to a generated CICS

program. If multiple transaction codes are assigned to a program, each transaction

code is specified independently to the diagnostic control options utility.

You can also specify a default action to take place for transactions that are not

explicitly defined to the diagnostic control options utility.

To gain access to the diagnostic control options utility, do the following:

1. Select option 3, Diagnostic Control Options, from the CICS Utilities Menu

(Figure 24 on page 111).

2. Press Enter. The Diagnostic Control Options panel (Figure 27) is displayed.

Note: You can also gain access to the diagnostic control options utility by doing

the following:

1. Type ELAC on a clear screen.

2. Press Enter. When ELAC is started, a copyright panel is displayed.

3. Press Enter. The Diagnostic Control Options panel (Figure 27) is

displayed.

 You can gain access to the following functions from the Diagnostic Control Options

panel:

Change or View the Diagnostic Control Options for a Transaction

This option enables you to change or view the diagnostic options for a

specific transaction code.

Change or View the Default Diagnostic Control Options

This option enables you to change or view the installation default

diagnostic options.

 ELAC01 Enterprise Developer Server

 Diagnostic Control Options

 Select one of the following actions; then press Enter.

 Action...............1

 1. Change or View the Diagnostic Control Options for a Transaction

 2. Change or View the Default Diagnostic Control Options

 ENTER F1=HELP F3=EXIT

Figure 27. Diagnostic Control Options panel

© Copyright IBM Corp. 1994, 2005 117

This affects transaction codes that are not specifically identified to the

diagnostic controller.

Change or View Diagnostic Control Options for a Transaction

This function enables you to change the Enterprise Developer Server error

diagnostic and control options in effect for a specific CICS transaction.

To start the function do the following:

1. Select option 1, Change or View the Diagnostic Control Options for a

Transaction, from the Diagnostic Control Options panel (Figure 27 on page 117).

2. Press Enter. The Change or View Diagnostic Control Options for a Transaction

panel (Figure 28) is displayed.

 The following fields can be entered on the Change or View Diagnostic Control

Options for a Transaction panel :

Transaction ID

Specifies the 1 to 4 character identifier of the transaction you want to

change the diagnostic options for

Diagnostic Control Options

Transaction ABEND Dump

Specifies the type of dump taken on a CICS transaction ABEND

 The types of dumps are:

1. No Dump

2. Complete CICS dump

3. Task dump

Runtime Error Dump

Specifies the type of dump taken on a Enterprise Developer

Server-detected error for which a dump is indicated in the error

message explanation

 The types of dumps are:

 ELAC02 Enterprise Developer Server

 Change or View Diagnostic Control Options for a Transaction

 Fill in the appropriate fields; then press Enter.

 Transaction ID.................... ___

 Diagnostic Control Options

 Transaction ABEND Dump _ 1. No Dump

 2. Complete CICS dump

 3. Task dump

 Runtime Error Dump _ 1. No Dump

 2. Complete CICS dump

 3. Task dump

 Error Destination Queue Name... ___

 Journal Number................. __ blank,00-99

 Journal Record Identifier...... __

 Disable on Run Unit Failure.... _ Y=Yes, N=No

 Action............................ 3

 1. Change diagnostic control options

 2. Use default control options

 3. View diagnostic control options

 ENTER F1=HELP F3=EXIT

Figure 28. Change or View Diagnostic Control Options for a Transaction panel

118 IBM Enterprise Developer Server Guide for z/OS

1. No Dump

2. Complete CICS dump

3. Task dump

Error Destination Queue Name

Specifies the 1 to 4 character name of a transient data queue to

which Enterprise Developer Server error diagnostic messages are

written whenever a transaction ends abnormally due to an error

 If this field is blank, no messages are written to a queue.

Journal Number

Specifies the journal number of the CICS journal to which error

diagnostic messages are written whenever a transaction is not

successful due to an error

 If this field is blank, no journal messages are written.

Journal Record Identifier

Specifies the 1 to 2 character record identifier used when messages

are written to the CICS journal

 If this field is blank, the default identifier EZ is used.

Disable on Run Unit Failure

Specifies whether a transaction is disabled whenever an error is

detected that is likely to occur each time the transaction is run
Y Specifies that the transaction is disabled when these errors are

detected

N Specifies that the transaction is not be disabled

Action

Allows you to change the current options, view the current options, or

accept the default options

To change the options currently set for a transaction do the following:

1. Specify the transaction identifier and any changes.

2. Select 1, Change diagnostic control options.

3. Press Enter.

To use the installation defaults for the transaction do the following:

1. Type the transaction identifier.

2. Select 2, Use default control options.

3. Press Enter.

To view the options currently set for a transaction do the following:

1. Type the transaction identifier.

2. Select 3, View diagnostic control options.

3. Press Enter.

Change or View Default Diagnostic Control Options

This function enables you to change or view the default diagnostic options for

transactions that are not identified to the diagnostic controller. If your default

options were not modified at installation, the default diagnostic options are set as

follows:

v Transaction ABEND and run-time errors both cause a task dump.

v The error destination queue name is ELAD.

v Diagnostic messages are not written to a CICS journal data set.

v Transactions are not disabled on a run unit error.

Chapter 17. Diagnostic Control Options 119

To start this function do the following:

1. Select 2, Change or View the Default Diagnostic Control Options, from the

Diagnostic Control Options panel (Figure 27 on page 117).

2. Press Enter. The Change or View Default Diagnostic Control Options panel is

displayed:

 The options on this panel are the same as those defined for changing or viewing

the diagnostic control options for a transaction. They are all defined following

Figure 28 on page 118.

 ELAC04 Enterprise Developer Server

 Change or View Default Diagnostic Control Options

 Fill in the appropriate fields; then press Enter.

 Default Diagnostic Control Options

 Transaction ABEND Dump 3 1. No Dump

 2. Complete CICS dump

 3. Task dump

 Runtime Error Dump 3 1. No Dump

 2. Complete CICS dump

 3. Task dump

 Error Destination Queue Name... ELAD

 Journal Number................. __ blank,00-99

 Journal Record Identifier...... EZ

 Disable on Run Unit Failure.... N Y=Yes, N=No

 ENTER F1=HELP F3=EXIT

Figure 29. Change or View Default Diagnostic Control Options

120 IBM Enterprise Developer Server Guide for z/OS

Chapter 18. Using the Parameter Group Utility

Use the parameter group utility to create and maintain the parameter groups in the

parameter group file. Each group contains parameters for controlling terminal

printer utility (FZETPRT) transactions.

See “Special Parameter Group for the FZETPRT Program” on page 31 for a

description of the startup parameters that can be included in the parameter group

used with the FZETPRT program.

You can use the parameter group utility to perform the following operations:

v Display the contents of existing parameter groups

v View a list of existing parameter group names

v Add a new parameter group

v Change a parameter group

v Delete a parameter group

Table 14 shows the steps used to define a parameter group file.

 Table 14. Defining Parameter Group Files for z/OS CICS

Procedure

1. Define the parameter group file using the IDCAMS utility.

 DEFINE CLUSTER (NAME(PARM.GROUP.FILE)-

 RECORDS(100 100) KEYS(16 0) RECORDSIZE(272 272) INDEXED)

2. Initialize the parameter group file by using the IDCAMS REPRO function to insert a

dummy record into the file.

3. Specify the FCT for the parameter group file utility to have access to a user-defined

message file for CICS.

 DFHFCT TYPE=DATASET, C

 DATASET=EZEPRMG, C

 ACCMETH=VSAM, C

 SERVREQ=(READ,UPDATE,ADD,DELETE,BROWSE), C

 FILESTAT=(ENABLED,CLOSED), C

 RECFORM=FIXED C

4. Allocate the file by adding the following statement to the z/OS CICS startup JCL:

 //EZEPRMG DD DISP=SHR,DSN=PARM.GROUP.FILE

Note: The name that designates the parameter group file (EZEPRMG) is a reserved file

name and cannot be used as a data file by an EGL-generated program.

When the file has been created and allocated, you can gain access the parameter

group utility by doing the following:

1. Log on to CICS.

2. Type ELAP on a clear screen.

3. Press Enter.

The parameter group utility does not give message-specific tutorial help after a

message is displayed and PF1 is pressed.

© Copyright IBM Corp. 1994, 2005 121

Once the parameter group utility has been started, the Parameter Group

Specification panel (Figure 30) is displayed. You can specify the parameter group

name on this panel.

 The parameter group name can be from 1 to 4 alphanumeric characters and must

be the name of the transaction that was used to start the FZETPRT program. (The

utility does not verify this.)

You can enter a group name that already exists if you want to modify a parameter

group, or you can enter one that does not exist if you want to define a new

parameter group.

Entering a question mark (?) as the group name on the Parameter Group

Specification panel displays a list of previously-defined group names on the next

panel, the Parameter Group List Display panel (Figure 31). Entering some

characters followed by an asterisk (*) displays a list of parameter group names that

begin with the characters that you entered. Entering a specific parameter group

name displays the Parameter Group Definition panel (Figure 32 on page 123).

 PRGM00 PARAMETER GROUP UTILITY

 ENTER = Continue PF1 = Help PF3 = Exit

 PARAMETER GROUP SPECIFICATION

 Specify Parameter Group Name =>

Figure 30. Parameter Group Specification panel

122 IBM Enterprise Developer Server Guide for z/OS

From the Parameter Group List Display panel, you can select a group name to edit

by typing an S in the selection field to the left of the group name. You can delete a

group by typing a D in the selection field to the left of the group name.

If the specified parameter group already exists, its contents are displayed on the

Parameter Group Definition panel. The parameter group can be altered. If the

specified parameter group does not exist, the Parameter Group Definition panel is

displayed without any data. You can define the new contents; up to 256 characters

of data can be entered for a parameter group.

 PRGM01 PARAMETER GROUP UTILITY

 ENTER = Continue PF3 = Exit PF4 = Refresh PF1 = Help

 PF7 = Back PF8 = Forward

 PARAMETER GROUP LIST DISPLAY

 ____ EZEP ____ USRQ

Figure 31. Parameter Group List Display panel

 PRGM02 PARAMETER GROUP UTILITY

 PA2 = Cancel PF1 = Help PF3 = File and Exit

 Parameter Group = CCCCCCCC

PARAMETER GROUP DEFINITION..........................

 Parameter Group:

 =>PRTBUF=2048 PRTMPP=132 PRTTYP=D FORMFD=NO

Figure 32. Parameter Group Definition panel

Chapter 18. Using the Parameter Group Utility 123

The parameter group utility does not validate or format the parameters that are

specified on the Parameter Group Definition panel. Any parameters that are not

valid are ignored when the FZETPRT program is started.

If you press PF3 on the Parameter Group Definition panel without entering any

parameters, a parameter group is stored without any associated parameters. You

can store an empty parameter group to reserve parameter group names.

Empty parameter groups do not affect the initialization of the FZETPRT program.

The parameter group utility left-justifies the parameter group name and pads it to

the right with blanks (X'40'). The parameter group utility uses this name as a key

to index the parameter group file.

If you selected a parameter group from the Parameter Group List Display panel

(Figure 31 on page 123), after the Parameter Group Definition panel is processed,

the Parameter Group List Display panel is displayed again with the original

request replaced by an asterisk beside the group name that was processed. An

asterisk (*) is ignored as input on the Parameter Group Definition panel if more

processing is done.

124 IBM Enterprise Developer Server Guide for z/OS

Chapter 19. IMS Diagnostic Message Print Utility

When a generated program ends abnormally due to an error condition in IMS

environments, diagnostic error messages are written to the message queue

identified by the errorDestination build descriptor option for the first program in

the run unit.

A BMP is provided to print the messages in the message queue. The JCL needed to

print the diagnostic information is supplied as member ELAMQJUD of

ELA.V1R2M0.ELAJCL (see Figure 33).

The msg-queue identified by the IN parameter is the name of the queue that was

specified for errorDestination when the program was generated.

//**00000100

//** ELAMQJUD - JCL TO DRAIN AND PRINT THE ELADIAG MESSAGE QUEUE 00000200

//** FOR VISUALAGE GENERATOR SERVER. 00000300

//** THIS PROGRAM RUNS AS A BMP. 00000400

//** 00000500

//** LICENSED MATERIALS - PROPERTY OF IBM 00000600

//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 1998 00000700

//** SEE COPYRIGHT INSTRUCTIONS 00000800

//** 00000900

//** STATUS = VERSION 1, RELEASE 2, LEVEL 0 00001000

//** 00001100

//** TO TAILOR THIS JOBSTREAM: 00001200

//** 1. COPY A JOBCARD. 00001300

//** 2. CHANGE IN= TO THE NAME OF YOUR ERROR DIAGNOSTIC 00001400

//** QUEUE. 00001500

//** 3. MAKE SURE THAT THE TRANSACTION SPECIFIED BY IN= 00001600

//** AND THE ELAMPUTL PROGRAM ARE STARTED BY IMS. 00001700

//** 00001800

//** RETURN CODES 00001900

//** 0 - SUCCESSFUL COMPLETION 00002000

//** 4 - NO MESSAGES ON QUEUE TO DRAIN. 00002100

//** 16 - FATAL ERROR. PROCESSING TERMINATED 00002200

//** 20 - OPEN FAILED ON ELAPRINT 00002300

//** 00002400

//**00002500

//DRAINMQ EXEC IMSBATCH,MBR=ELAEPUTL, 00002600

// PSB=ELAMPUTL,IN=ELADIAG,RGN=4096K 00002700

//G.STEPLIB DD 00002800

// DD 00002900

// DD DSN=CEE.SCEERUN,DISP=SHR 00003000

// DD DSN=ELA.V1R2M0.SELALMD,DISP=SHR 00003100

//G.ELAPRINT DD SYSOUT=* 00003200

//G.SYSOUT DD SYSOUT=* 00003300

//G.SYSPRINT DD SYSOUT=* 00003400

/* 00003500

Figure 33. ELAMQJUD

© Copyright IBM Corp. 1994, 2005 125

126 IBM Enterprise Developer Server Guide for z/OS

Part 5. Diagnosing Problems

Chapter 20. Diagnosing Problems for Enterprise

Developer Server on z/OS Systems 129

Detecting Errors 129

File and Database Errors—Category 1 129

File and Database Errors—Category 2 130

File and Database Errors—Category 3 130

Reporting Errors 131

Controlling Error Reporting in CICS 131

Controlling Error Reporting in IMS

Environments 131

Controlling Error Reporting in z/OS Batch . . 132

Error Reporting Summary 132

Transaction Error 132

Run Unit Error 132

Catastrophic error 133

Enterprise Developer Server Error 133

Using the Enterprise Developer Server Error

Panel 133

Printing Diagnostic Information for IMS 134

ERRDEST Message Queue 134

IMS Log Format 135

Running the Diagnostic Print Utility 136

Printing Diagnostic Information for CICS 136

CICS Diagnostic Message Layout 136

Running the Diagnostic Print Utility 137

Analyzing Errors Detected while Running a

Program 138

Chapter 21. Finding Information in Dumps . . . 139

Enterprise Developer Server ABEND Dumps . . . 139

COBOL or Subsystem ABEND Dumps 139

Information in the Enterprise Developer Server

Control Block 140

Information in an Application 140

How to Find the Current Position in a Program at

Time of Error 141

Chapter 22. Enterprise Developer Server Trace

Facility 143

Enabling Enterprise Developer Program

Source-Level Tracing with Build Descriptor

Options 143

Activating a Trace 144

Activating a Trace Session for CICS 144

Activating a Trace Session for z/OS Batch . . . 147

Deactivating a Trace Session 149

Printing Trace Output 149

Printing the Trace Output in CICS 149

Printing the Trace Output in z/OS Batch . . . 149

Reporting Problems for Enterprise Developer

Server 149

Chapter 23. Common Messages during

Preparation for z/OS Systems 151

Common Abend Codes during Preparation . . . 151

DB2 Precompiler and Bind Messages 151

COBOL Compilation Messages 151

Chapter 24. Common System Return Codes for

z/OS Systems 153

Common SQL Return Codes 153

Common DL/I Status Codes 155

Common VSAM Status Codes 155

OPEN request type 156

CLOSE request type 156

GET/PUT/POINT/ERASE/CHECK/ENDREQ

request types 156

COBOL Status Key Values 157

Chapter 25. Enterprise Developer Server Return

Codes and Abend Codes for z/OS Systems . . 159

Return Codes 159

ABEND Codes 159

CICS Environments 159

IMS, IMS BMP, and z/OS Batch Environments 161

z/OS Batch 162

Chapter 26. Codes from Other Products for

z/OS Systems 163

Common System Abend Codes for All

Environments 163

LE Run-time Messages 164

COBOL Run-time Messages 164

Common COBOL Abend Codes 165

Common IMS Runtime Messages 165

Common IMS Runtime Abend Codes 166

Common CICS Run-time Messages 167

Common CICS Abend Codes 167

COBOL Abends under CICS 168

© Copyright IBM Corp. 1994, 2005 127

128 IBM Enterprise Developer Server Guide for z/OS

Chapter 20. Diagnosing Problems for Enterprise Developer

Server on z/OS Systems

The chapter contains diagnosis, modification, or tuning information. Use this

information to determine the source of the problem you encountered. Some

common program definition, database, and system errors that might cause

problems are described. This chapter also explains how to obtain error listings and

diagnose run-time errors.

Detecting Errors

You can find most logic errors by using the EGL debugger before you generate

your program.

During generation, a validation step checks your program for any remaining

syntax errors. In addition, Enterprise Developer also checks that your use of

language elements is consistent with the resource association information you

select for each file.

When you run your generated program, different types of errors are detected by

Enterprise Developer Server, COBOL, CICS, or z/OS. The error handling varies

depending on which product detects the error.

For diagnostic information of interest at development time, see the EGL help

system.

For those errors detected by Enterprise Developer Server that result in a Run Unit

Error, error messages are written to the transient data queue specified through the

diagnostic control options. You can print those messages by using the diagnostic

printing utility (see “Diagnostic Message Printing Utility” on page 114) or by using

CICS utilities (for example, CEBR).

For more information, see Chapter 17, “Diagnostic Control Options,” on page 117.

File and Database Errors—Category 1

A hard error occurred in a file or database I/O operation. For example:

v I/O error on the file or database

v File not found

© Copyright IBM Corp. 1994, 2005 129

Table 15. Types of Errors

EGL COBOL Set Controls Error Detected By Error Handling

Use

VGVar.handleHardIOErrors

to indicate whether the

program provides logic to

override normal database and

file error processing for hard

errors. Hard errors are

defined in the online helps

within Enterprise Developer

Access method or database

manager. The access method

or database manager return

an error code to the

generated logic or Enterprise

Developer Server.

If

VGVar.handleHardIOErrors

is set to 0 and a hard error

occurs, the program ends

with a transaction error, as

described in Table 18 on page

132. For SQL errors, the DB2

messages describing the SQL

error code are obtained from

DB2. Refer to the DB2

messages manual for your

system for explanations of

the error codes.

If

VGVar.handleHardIOErrors

is set to 1 and a hard error

occurs, the program is

responsible for controlling the

error handling.

File and Database Errors—Category 2

A file or database error occurs due to incorrect program logic. For example,

deleting or replacing a record without first doing an UPDATE process option is an

example of this error type.

 Table 16. Types of Errors

EGL COBOL Set Controls Error Detected By Error Handling

Follow the file management

rules in the Enterprise

Developer help facility.

Enterprise Developer Server. The program ends with a run

unit error, as described in

Table 18 on page 132.

File and Database Errors—Category 3

Two generated programs which are being used together are defined in an

inconsistent manner. For example, two programs have been generated with

different file definitions.

 Table 17. Types of Errors

EGL COBOL Set Controls Error Detected By Error Handling

Follow the rules in the EGL

help facility.

COBOL or Enterprise

Developer Server.

If detected by Enterprise

Developer Server, the

program ends with a run unit

error, as described in Table 18

on page 132.

If detected by COBOL, a

formatted dump is generated.

130 IBM Enterprise Developer Server Guide for z/OS

Reporting Errors

Enterprise Developer Server provides functions that help you determine the cause

of a run-time problem. All run-time errors that Enterprise Developer Server traps

are accompanied by error messages and supporting information to help diagnose

the problem. Table 18 on page 132 shows the error diagnostic actions that can be

taken based on the severity of the error and type of system being used.

Controlling Error Reporting in CICS

In the CICS environment, error actions are controlled through the online diagnostic

controller utility installed as transaction ELAC.

The utility allows you to specify what type of dump is requested, the name of the

transient data queue to which Enterprise Developer Server diagnostic messages are

written, the CICS journal number and identifier for error messages, and whether or

not a transaction is disabled when a run unit error is detected. The utility lets you

reset the default options for all transactions and override the default options for

individual transactions.

See Chapter 17, “Diagnostic Control Options,” on page 117 for more details about

the diagnostic controller utility.

Controlling Error Reporting in IMS Environments

The following error responses are controlled by build descriptor options for the

IMS/VS and IMS BMP environments:

v Write error messages to the error destination. The destination is determined by

the errorDestination build descriptor option.

v Write error messages to the system log. The log ID is determined by the

imsLogID build descriptor option. If the imsLogID option does not appear in

the build descriptor file, error messages will not be written to the system log.

v Put the message that caused the problem for transaction-oriented IMS BMP

programs back on the message queue. restoreCurrentMsgOnError=″YES″

indicates that the message being processed when the error occurred should be

placed back on the message queue before the program ends.

restoreCurrentMsgOnError=″NO″ indicates that the message being processed

should be deleted and not placed back on the message queue. This option is

applicable only to a run unit error when Enterprise Developer Server detects the

error. It does not apply to transaction-oriented BMPs that use VGLib.VGTDLI()

to read the message queue.

v Issue ROLL call or abend for a run unit error. imsFastPath=″NO″ results in a

ROLL call. imsFastPath=″YES″ results in a 1602 abend.

The actions controlled by the runtime JCL are as follows:

v Print message. This is done only if there is an ELAPRINT DD statement in the

runtime JCL.

v Snap dump. If the message indicates a snap dump is taken, the snap dump is

produced only if there is an ELASNAP DD statement in the runtime JCL.

v Abend 1602 or 1600. This creates a dump only if the runtime JCL contains a

SYSUDUMP or SYSABEND DD statement.

Abend code 1602 is the user code issued by Enterprise Developer Server when it

ends the run unit for an imsFastPath=″YES″ program because of an error.

Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems 131

Abend code 1600 is the user code issued by Enterprise Developer Server in all

other situations when it ends program processing because of an unrecoverable

error.

IMS takes the following actions, based on the way Enterprise Developer Server

ends the program:

v If a rollback (ROLB) call is issued, the database changes are backed out, the

logical unit of work ends, the next message is read from the message queue, and

processing continues.

v If a ROLL call is issued, the database changes are backed out, the logical unit of

work ends, and IMS stops the program with a user 778 abend. The transaction

and PSB are not stopped and can be scheduled again without operator

intervention.

v If either a 1600 or a 1602 abend is issued, the database changes are backed out,

the logical unit of work ends, and IMS stops the program. The transaction and

PSB are also stopped, and they require operator intervention to start them again.

Use ELASNAP so that sufficient data is captured the first time an error occurs.

Controlling Error Reporting in z/OS Batch

The actions controlled by the run-time JCL are as follows:

v Print message. This is done only if there is an ELAPRINT DD statement in the

runtime JCL.

v Snap dump. If the message indicates a snap dump is taken, the snap dump is

produced only if there is an ELASNAP DD statement in the runtime JCL.

v Abend 1600. This creates a dump only if the run-time JCL contains a

SYSUDUMP or SYSABEND DD statement.

Error Reporting Summary

The following tables summarize the error processing actions for Enterprise

Developer Server.

Transaction Error

This error affects only the current CICS task. The transaction is still available to

other end users.

 Table 18. Error Processing Actions For Enterprise Developer Server Detected Errors

Environment Action

CICS v Write error messages to error destination (diagnostic controller option)

v Write error messages to CICS journal data set (diagnostic controller

option)

v CICS dump, dump code ELAD, as determined by message. The type of

dump issued for a particular transaction is a diagnostic control option.

v Issue a rollback request

v Display error messages on terminal, if possible

v Set return code to 693

z/OS Batch See run unit error

Run Unit Error

The error is likely to occur for every user. In CICS, the transaction might be

disabled.

132 IBM Enterprise Developer Server Guide for z/OS

Table 19. Error Processing Actions For Enterprise Developer Server Detected Errors

Environment Action

CICS v Write error messages to error destination (diagnostic control option), if

possible

v Write error messages to CICS journal data set (diagnostic control option),

if possible

v Disable transaction (diagnostic control option)

v CICS dump, dump code ELAD, as determined by message. The type of

dump issued for a particular transaction is a diagnostic control option.

v Issue a rollback request

v Display error messages on terminal, if possible

v Set return code to 693

v Return

z/OS Batch v Print message (ELAPRINT DD statement)

v Snap dump determined by the message (ELASNAP DD statement)

v Issue a rollback request if DB2 databases were used

v Set return code to 693

v Return

Catastrophic error

This error indicates storage is corrupted or standard error reporting processing

ends abnormally.

 Table 20. Error Processing Actions For Enterprise Developer Server Detected Errors

Environment Action

CICS v Write error messages to error destination (diagnostic control option), if

possible

v Write error messages to CICS journal data set (diagnostic control option),

if possible

v Disable transaction (diagnostic control option)

v Display error messages on terminal, if possible

v ABEND ELAE. The type of dump issued for a particular transaction is a

diagnostic control option.

z/OS Batch v Print message (ELAPRINT DD statement), if possible

v Abend 1600 (SYSUDUMP or SYSABEND, DD statement)

Enterprise Developer Server Error

A Enterprise Developer Server error at a point where standard error reporting

process is not active.

 Table 21. Error Processing Actions For Enterprise Developer Server Detected Errors

Environment Action

All

environments

v Abend, ABEND code indicates the reason for the error

See Table 25 on page 139 for information concerning the contents of the registers

when either a 1600, 1602, or an ELAE abend occurs.

Using the Enterprise Developer Server Error Panel

When an error occurs, Enterprise Developer Server attempts to display error

messages on the current terminal. The panels used in displaying error messages

are defined as map group ELAxxx where xxx is the language code.

Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems 133

The following figure shows the error panel (map ELAM02 in the map group) as it

is shipped with the product. The panel shows the same diagnostic information that

is written to the error destination queue, system log or journal, or ELAPRINT file.

If there are more error messages than can fit on a single panel, the last line on the

panel prompts the user to press a key to display additional error messages.

Printing Diagnostic Information for IMS

Diagnostic messages are sent either to a print file for batch jobs or to a message

queue for BMPs or online transactions. A diagnostic utility is provided to print

messages written to a message queue. Optionally, based on the imsLogID build

descriptor option, the diagnostic information can be written to the IMS log.

ERRDEST Message Queue

Table 22 shows the format of the information in the IMS message queue when

ERRDEST is used.

 Table 22. ERRDEST IMS Message Queue

Field Length in Bytes Type of Data Description

Record length 2 Binary The length of the record.

Reserved 2 Binary A reserved field that must

contain binary zeros.

IMS transaction code 8 Character The name used to identify

the IMS message queue

that was specified with

the errorDestination build

descriptor option.

Date 8 Character Date of the transaction

from the I/O PCB

(MM/DD/YY).

Time 8 Character Time of the transaction

from the I/O PCB

(HH:MM:SS).

 Unexpected Program Failure

 An unexpected input/output or program error occurred in the

 program you were running. Please make a note of the program

 name, date, time, and initial error messages and report them to your

 system administrator.

 Program name ... ART22

 Date 08/21/90

 Time 13:04:23

 Error Messages:

 ELA00093I Error occurred in application ART22, process or group ART229

 ELA00131P MSGQ error, file = UNKNOWN, function = CHG, status code = A1

 ELA00066I DL/I I/O area = UNKNOWN

 EDDDDED4

 45256650

Figure 34. Panel ELAM02 (example).

134 IBM Enterprise Developer Server Guide for z/OS

Table 22. ERRDEST IMS Message Queue (continued)

Field Length in Bytes Type of Data Description

NLS 3 The value specified for the

targetNLS build

descriptor option

Message number 9 The message number:

Bytes 1-3

Message File

Identifier (ELA)

Byte 4 Application

Identifier (0)

Bytes 5-8

Message Number

Byte 9 Message Type. A

message type of

’C’ indicates this

record is a

continuation of

the specified

message from a

previous record

in the queue.

Message number

separator (reserved

position)

Byte 10 Blank

Message Text Variable Character The text from the message

file with specified message

inserts.

IMS Log Format

Table 23 shows the format of the information in the IMS log.

 Table 23. IMS Log Record

Field Length in Bytes Type of Data Description

Record length 2 Binary The length of the record.

Reserved 2 Binary A reserved field that must

contain binary zeros.

Log ID 1 Character The value specified with

the imsLogID build

descriptor option.

Date 8 Character Date of the transaction

from the I/O PCB

(MM/DD/YY).

Time 8 Character Time of the transaction

from the I/O PCB

(HH:MM:SS).

NLS 3 The value specified for the

targetNLS build

descriptor option

Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems 135

Table 23. IMS Log Record (continued)

Field Length in Bytes Type of Data Description

Message number 9 The message number:

Bytes 1-3

Message File

Identifier (ELA)

Byte 4 Application

Identifier (0)

Bytes 5-8

Message Number

Byte 9 Message Type. A

message type of

’C’ indicates this

record is a

continuation of

the specified

message from a

previous record

in the queue.

Message number

separator (reserved

position)

Byte 10 Blank

Message Text Variable Character The text from the message

file with specified message

inserts.

Running the Diagnostic Print Utility

A BMP is provided to print diagnostic information that is written to the message

queue specified by the errorDestination build descriptor option. The JCL needed

to print the diagnostic information is supplied as member ELAMQJUD of

’ELA.V1R2M0.ELAJCL.

The msg-queue identified by the IN parameter is the name of the queue that was

specified in the errorDestination option when the application was generated. See

“Diagnostic Message Printing Utility” on page 114 for more information.

Printing Diagnostic Information for CICS

Diagnostic messages are sent to a transient data queue for CICS transactions. A

diagnostic print utility is provided to print messages written to a transient data

queue. Optionally, as specified by the diagnostic controller utility, the diagnostic

information can also be written to an CICS journal data set.

CICS Diagnostic Message Layout

Table 24 shows the format of the information in each error message record written

to a transient data queue or CICS journal.

 Table 24. Diagnostic Message Layout

Field Length in Bytes Type of Data Description

SYSID name 4 Character The name of the CICS

system that the error

message was created on.

136 IBM Enterprise Developer Server Guide for z/OS

Table 24. Diagnostic Message Layout (continued)

Field Length in Bytes Type of Data Description

TRANID name 4 Character The name of the CICS

transaction code that

started the logical

unit-of-work.

Task identifier 8 Character The task identifier

assigned by CICS to each

transaction instance that is

processed. This number is

reset to 0 when CICS is

cold-started. This is taken

from EIB field EIBTASKN.

ERRDEST name 4 Character The name of the CICS

transient data queue. This

field is blank if the record

is written to the CICS

journal.

Date 8 Character Date of the transaction

(MM/DD/YY)

Time 8 Character Time of the transaction

(HH:MM:SS)

NLS 3 Character The value specified for the

targetNLS build

descriptor option

Message number 9 Character The message number:

Bytes 1-3

Message File

Identifier (ELA)

Byte 4 Application

Identifier (0)

Bytes 5-8

Message Number

Byte 9 Message Type. A

message type of

’C’ indicates this

record is a

continuation of

the specified

message from a

previous record

in the queue.

Message number

separator (reserved

position)

Byte 10 Blank

Message text 110 Character The text from the message

file with specified message

inserts

Running the Diagnostic Print Utility

Use the ELAU transaction to print the messages routed to a transient data queue.

You enter the following information on the ELAU panel:

Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems 137

Error destination queue name

The name of the queue containing the messages. The default name is

ELAD.

JES spool file information

The node, user ID, and class to which the messages on the queue are

spooled. The default class is A and the default node and user ID are *

which routes the printed messages to the local spool printer.

Clear queue

Y specifies the queue is deleted after its contents are printed. N specifies

the messages are left in the queue after they are printed. Y is the default

value.

See “Diagnostic Message Printing Utility” on page 114 for more information about

running the diagnostic print utility.

Analyzing Errors Detected while Running a Program

Use the error messages and diagnostic messages to determine the cause of the

problem. If the error is detected by another product (for example, COBOL), check

the information in Chapter 24, “Common System Return Codes for z/OS Systems”

and Chapter 26, “Codes from Other Products for z/OS Systems” and the

documentation for the other product. the cause

For environmental debugging, you can use the run-time diagnostic facility (EDF)

for CICS programs. In addition, if you use the TEST COBOL compile option, you

can use the COBOL debugging facilities.

Refer to the CICS and COBOL manuals for your versions of these products for

additional information on their debugging facilities.

If you get a JCL error for the run-time JCL, check the generation output for any

programs involved for any error messages related to JCL generation. In addition,

ensure the tailoring that was done on the JCL templates and EGL build scripts is

correct. Also check any changes made to customize the sample runtime JCL.

When abends occur, the problem determination might require assistance from the

IBM Support Center. In this case, be prepared to provide IBM with the following

information:

v Enterprise Developer print of the problem program

v COBOL source file created using the commentLevel=1 build descriptor option.

v Formatted dump

v Enterprise Developer Server diagnostic information written to either the error

diagnostic queue or listed in the printout

v CICS journal

IBM requests a COBOL debugger trace listing only if the information is needed for

problem determination. IBM will give you the information on how to specify the

trace options if the information is necessary.

138 IBM Enterprise Developer Server Guide for z/OS

Chapter 21. Finding Information in Dumps

Information about the problem program can be determined by finding the address

of the Enterprise Developer Server control block in a dump.

Enterprise Developer Server ABEND Dumps

If the dump code is 1600, 1602, or ELAE, the dump was initiated because

Enterprise Developer Server detected an error. Register 2 at ABEND points to the

Enterprise Developer Server control block. Register 4 points to a linked list of

messages formatted as shown in Figure 35.

 Table 25. Registers when a SNAP dump is taken or a Enterprise Developer Server ABEND

occurs.

Reg. Value

2 Points to Enterprise Developer Server control block. At offset 272 (hexadecimal

offset 110) from the start of the Enterprise Developer Server control block is the

address of the initial program profile block, which provides information about

the first generated program that was started. At offset 276 (hexadecimal offset

114) from the start of the Enterprise Developer Server control block is the

address of the current program profile block, which provides information about

the Enterprise Developer program that was running at the time of the abend.

4 Points to the message buffer that contains all messages.

The following diagram shows the format of the message buffer that contains all the

messages in the dump.

COBOL or Subsystem ABEND Dumps

If the dump is not a Enterprise Developer Server abend, you can use the following

method to locate the Enterprise Developer Server control block:

Figure 35. Message Buffer Format

© Copyright IBM Corp. 1994, 2005 139

v On CICS systems, locate the CICS Task Work Area (TWA) in the dump. Locate

the string *EZERTS-CONTROL* in the TWA. This string is the identifier at the

start of the Enterprise Developer Server control block. The * and - characters

might be converted to periods in a formatted dump.

v On other systems, locate the string ELARHAPP followed immediately by a

program name. ELARHAPP is the identifier at the start of a program profile

block. The four-byte address at hex offset 20 in the program profile is the

Enterprise Developer Server control block address. If 0, the program might not

yet be activated. Do a search for another ELARHAPP control block followed by

a program name.

For information in the program profile control Block, see Table 27.

Information in the Enterprise Developer Server Control Block

The following information is in the Enterprise Developer Server control block:

 Table 26. Information in the Enterprise Developer Server Control Block

Offset in hex Length in bytes Contents

0 16 Control block identifier -

EZERTS-CONTROL

104 4 CICS EIB Pointer

110 4 Program profile address for current program

114 4 Program profile address for initial program

118 8 Terminal identifier

120 8 User identifier

128 8 Transaction identifier

150 12 DLILib.psbData

1CC 18 Current process or group

Information in an Application

Each generated COBOL program contains a profile control block in COBOL

working storage initialized with information about the program. The first eight

bytes contain an eye-catcher constant identifying whether the program is an

application. The second eight bytes contain the program name. Other information

in the profile block is shown in the following table:

 Table 27. Locator Format for Generated COBOL Program Dumps

Offset in hex Length in hex Contents

00 08 Program type identifier:

 ELARHAPP — Application program

08 08 Program name

10 08 Program generation date (MM/DD/YY)

18 08 Program generation time (HH:MM:SS)

20 04 Enterprise Developer Server control block

address

24 02 Generator version

26 02 Generator release

28 02 Generator modification level

140 IBM Enterprise Developer Server Guide for z/OS

Table 27. Locator Format for Generated COBOL Program Dumps (continued)

Offset in hex Length in hex Contents

2A 10 Reserved

34 08 Target run-time system

How to Find the Current Position in a Program at Time of Error

The Enterprise Developer Server control block identifies the currently running

program and function at the time of the error (Table 26 on page 140). Associated

error messages identify the Enterprise Developer statement number for errors

detected by Enterprise Developer Server that need statement identification to

resolve the problem. For performance reasons, the generated COBOL program does

not keep track of the Enterprise Developer statement number for each generated

statement. If a program exception occurs in a generated program, you can

determine the Enterprise Developer statement number by finding the COBOL

statement that was not successful in a COBOL program listing that contains the

Enterprise Developer statements generated as comments.

Chapter 21. Finding Information in Dumps 141

142 IBM Enterprise Developer Server Guide for z/OS

Chapter 22. Enterprise Developer Server Trace Facility

The Enterprise Developer Server trace facility can be used by the IBM Support

Center to aid in problem determination, or by the program user to trace program

activity.

There are two levels of tracing available:

v Enterprise Developer program source-level tracing

v Enterprise Developer Server run-time level tracing

With source-level tracing, you can request traces of Enterprise Developer

statements, traces of the data, and error codes after every SQL call in a program,

except SQL calls made with the SQLEXEC process option. Source-level tracing is

enabled with the use of the sqlIOTrace, sqlErrorTrace, and statementTrace build

descriptor options. Source-level tracing is activated in the run-time environment by

specifying trace filter criteria. See “Activating a Trace” on page 144 for more

information on activating traces.

With run-time level tracing, you can request a data stream trace, a Enterprise

Developer Server internal dump trace, or a service routine trace. Run-time level

tracing does not require the use of a build descriptor option. Run-time level tracing

is activated in run-time environment by specifying trace filter criteria. See

“Activating a Trace” on page 144 for more information on activating traces.

Use these functions only with the assistance of the IBM Support Center. If you use

these functions without assistance, large amounts of trace output might be

produced based on trace option selection.

Enabling Enterprise Developer Program Source-Level Tracing with

Build Descriptor Options

You must specify the sqlIOTrace, sqlErrorTrace, and statementTrace build

descriptor options in order to get source-level trace output.

The Enterprise Developer preprocessor validates the build descriptor option and its

parameters. Enterprise Developer creates the necessary COBOL code to accomplish

the type of tracing that you request.

The trace build descriptor options are sqlIOTrace, sqlErrorTrace, and

statementTrace. When using these options, you must specify a value of YES or NO.

Each of these build descriptor options tells the COBOL generator whether or not to

generate code to allow execution time tracing of a particular aspect of execution -

SQL I/O, SQL Errors, and EGL statement execution path.

Note: These options are intended for the use of support personnel and should

only be used when a trace is requested as part of a support effort. Normal

application debugging should be done through the use of the EGL

Debugger.

© Copyright IBM Corp. 1994, 2005 143

Activating a Trace

Tracing is activated during run time either by using the ELAZ transaction in the

CICS environment.

Activating a Trace Session for CICS

A utility is supplied to activate tracing in the CICS environment. To start the

utility, enter the utility transaction code, ELAZ. The utility transaction must start

prior to running the transaction to be traced.

The ELAZ transaction must run in the same region as the transactions to be traced.

In CICS, enter the ELAZ transaction and the transaction to be traced from

terminals attached to the same CICS region.

Figure 36 shows the initial panel for the ELAZ transaction that enables you to

specify which transactions are to be traced. You use a secondary panel to specify

filter criteria for a specific transaction that control what information is traced for

that transaction.

 Enterprise Developer Server then presents the panel shown in Figure 37 on page

145 for trace filter selection:.

ELAZ01 Enterprise Developer Server

 Trace Transaction Selection

Specify the transaction you want to trace; then press Enter.

To select specific programs and services for tracing, place the cursor

on a transaction name and press F4.

 Transaction codes or initial program names

 ________ ________ ________ ________

 ________ ________ ________ ________

 ________ ________ ________ ________

 ________ ________ ________ ________

ENTER F1=HELP F3=EXIT F4=FILTER F9=REFRESH F10=STOP TRACE

Figure 36. Enterprise Developer Server Trace Transaction Selection Panel

144 IBM Enterprise Developer Server Guide for z/OS

The filter criteria include the following:

3270 Data Stream (Y or N)

Specifies whether to trace 3270 data streams

 If yes (Y), the 3270 data streams built or received by Enterprise Developer

Server are traced. The default is no (N).

Terminal ID

Specifies a terminal identifier

 If specified, only transactions initiated from that terminal are traced. If not

specified, service requests from any terminal are traced.

Trace to File (Y or N)

Specifies whether the trace output goes to a file

 If yes (Y), the trace output of Enterprise Developer Server is sent to the

ELAT transient data queue in CICS. This trace is also written to an

in-storage wrap-around trace buffer.

 If no (N) the trace output goes to an in-storage wrap-around trace buffer.

The size of this trace buffer is defined during customization of Enterprise

Developer Server.

 Y must be specified if you specify Y (yes) for the SQL/IO Trace or

SQL/ERR Trace options. All trace output for SQL/IO and error tracing is

sent to a file, not to the in-storage wrap-around trace buffer.

EDS IDUMP Trace (Y or N)

Specifies whether to dump Enterprise Developer Server internal storage

areas

 If yes (Y), the trace facility provides dumps of certain Enterprise Developer

Server internal storage areas. The default is no (N), no internal storage

dumps.

APP Statement Trace (Y or N)

Specifies whether to trace Enterprise Developer statements in a program

 ELAZ02 Enterprise Developer Server

 Trace Filter Selection

 Transaction code or Initial Program ________

 Fill in the appropriate fields, then press Enter.

 3270 Data Stream.......N APP Statement Trace.....N

 Terminal ID............_________ SQL/IO Trace............N

 Trace to File..........N SQL/ERR Trace...........N

 EDS IDUMP Trace........N

 FILENAME ELATOUT NODE * USERID EZEUSRID CLASS A FORM *

 Programs

 ________ ________ ________ ________ ________ ________ ________

 ________ ________ ________ ________ ________ ________ ________

 Services

 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

 ENTER F1=HELP F3=RETURN F9=REFRESH

Figure 37. Enterprise Developer Server Trace Filter Selection Panel

Chapter 22. Enterprise Developer Server Trace Facility 145

If yes (Y), the trace facility provides the process name and the statement

for each Enterprise Developer statement that the program processes.

Specify statementTrace=YES to enable this type of tracing. The default is no

(N).

SQL/IO Trace (Y or N)

Specifies whether to trace SQL/IO

 If yes (Y), the trace facility provides traces of the data and error codes on

the return from the SQL call. The Enterprise Developer SQL process name,

the process option, the process object, the SQL function name, and the

Enterprise Developer data item name, length, type, and contents are given.

Specify statementTrace=YES to enable this type of tracing. The default is no

(N).

SQL/ERR Trace (Y or N)

Specifies whether to trace SQL error information

 If yes (Y), the trace facility provides traces of the error information that

comes back from SQL on every database call. The SQLCODE, SQLERRP,

SQLSTATE, SQLWARN, SQLERRD, SQLEXT, and SQLERRMC codes are

given. Specify statementTrace=YES to enable this type of tracing. The

default is no (N).

FILENAME

The system resource name for the trace output. The default is ELATOUT.

NODE

1 to 8 characters that specify the system node ID. The default is the current

system node ID.

USERID

1 to 8 characters that specify the user ID. The default is the value of the

EZEUSRID special function word.

CLASS

A single character that specifies the print class. The default is A.

FORM

1 to 4 characters that specify the form number for print output. The default

is your location’s standard form.

Applications

Specifies whether to limit the trace to certain application programs or print

services programs

 If specified, only the requested programs are traced.

Services

Specifies whether to limit the trace to certain services

 If specified, only the requested services are traced. Otherwise all service

numbers are traced if the other criteria are met.

Note: The entry to ELARSINI (initialization service) and the exit from

ELARSTRM (cleanup service) are not traced. ELARSINI initializes

the trace facility. ELARSTRM ends the trace facility.

If you are running a trace to aid in problem determination, enter the filter criteria

as directed by the IBM support center.

146 IBM Enterprise Developer Server Guide for z/OS

Activating a Trace Session for z/OS Batch

Tracing is activated by providing trace filters in a preallocated data set with the

DD name ELATRACE before starting the program or job to be traced. ELATRACE

contains control statements which control the programs and events to be traced.

The attributes for the data set are LRECL=80, DSORG=PS, and RECFM=FB. If the

ELATRACE data set is empty or allocated as DD DUMMY, all services are traced,

data streams are not traced, and SQL I/O, SQL errors, and program statement are

not traced even if enabled through sqlIOTrace, sqlErrorTrace, or statementTrace

build descriptor options. Figure 38 shows the correct syntax for the trace control

statements.

Notes:

1. Only one program name or service number can be entered on each line.

2. The :FILTER and :EFILTER tags are required if any other tags are included in

the ELATRACE data set.

3. More than one filter can be specified on a line. The filters must be separated by

0 or more blanks. The example below shows sample :FILTER statements that

are valid and equivalent:

 :FILTER APPSTMT=Y

 :FILTER SQLERR=Y

 :FILTER APPSTMT=YSQLERR=Y

 :FILTER APPSTMT=Y SQLERR=Y

 :FILTER APPSTMT=Y SQLERR=Y

The filters cannot be continued on the next line. The statement shown below is

not valid:

 :FILTER APPSTMT=Y SQLERR=

 Y

The control card tags and attributes that control filtering have the following

meaning:

 :FILTER DATASTREAM=Y|N

 :FILTER TRACETOFILE=Y|N

 :FILTER APPSTMT=Y|N

 :FILTER SQLIO=Y|N

 :FILTER SQLERR=Y|N

 :FILTER IDUMP=Y|N

 :APPLS

 ...
 [name]

 ...
 :EAPPLS

 :SERVICES

 ...
 [service number]

 ...
 :ESERVICES

 :EFILTER

Figure 38. ELATRACE Data Set Entries

Chapter 22. Enterprise Developer Server Trace Facility 147

:FILTER Options controlling what information is traced and where trace

data is written

 The following attributes can be used with the :FILTER statement:

v DATASTREAM=Y|N

If DATASTREAM=Y is specified, the 3270 data streams built or

received by Enterprise Developer Server are traced. The default

value is N, no data stream tracing.

v TRACETOFILE=Y|N

If TRACETOFILE=Y is specified, the trace output is directed to

the preallocated data set named ELATOUT in addition to being

directed to an in-storage wrap-around trace buffer.

If TRACETOFILE=N is specified, the trace output goes to an

in-storage wrap-around trace buffer. The size of this trace buffer

is defined during customization of Enterprise Developer Server.

The default for the TRACETOFILE option is N.

TRACETOFILE=Y must be specified if SQLIO=Y or SQLERR=Y

are specified. All trace output for SQL I/O and SQL errors is

directed to the ELATOUT data set, not to the in-storage

wrap-around trace buffer.

v APPSTMT=Y|N

If APPSTMT=Y is specified, the trace facility provides the

process name and the statement for each Enterprise Developer

statement that the program processes. You must use the

statementTrace=″YES″ build descriptor option to enable this

type of tracing. The default for the APPSTMT option is N.

v SQLIO=Y|N

If SQLIO=Y is specified, the trace facility provides traces of the

data and error codes on the return from the SQL call. The

Enterprise Developer SQL process name, the process option, the

process object, the SQL function name, and the Enterprise

Developer data item name, length, type, and contents are given.

You must use thesqlIOTrace=″YES″ build descriptor option to

enable this type of tracing. The default for the SQLIO option is

N.

v SQLERR=Y|N

If SQLERR=Y is specified, the trace facility provides traces of the

error information that comes back from SQL on every database

call. The SQLCODE, SQLERRP, SQLSTATE, SQLWARN,

SQLERRD, SQLEXT, and SQLERRMC codes are given. You must

use the sqlErrorTrace=″YES″ or the sqlIOTrace=″YES″ build

descriptor option to enable this type of tracing. The default for

the SQLERR option is N.

v IDUMP=Y|N

If IDUMP=Y is specified, the trace facility provides dumps of

certain Enterprise Developer Server internal storage areas. The

default for the IDUMP option is N, no internal storage dumps.

:APPLS Application program names or print service program names

 If program names are specified, only the specified programs are

traced. Otherwise service requests from each generated program

are traced. Up to 16 program names can be specified.

148 IBM Enterprise Developer Server Guide for z/OS

:SERVICES Service numbers

 If service numbers are specified, only those specific services are

traced. To trace all service numbers, 999 must be specified.

Otherwise, up to 32 service numbers can be specified.

Note: The entry to ELARSINI (initialization service) and the exit

from ELARSTRM (cleanup service) are not traced.

ELARSINI initializes the trace facility. ELARSTRM ends the

trace facility.

Deactivating a Trace Session

To stop all trace activity for CICS, use the ELAZ transaction to delete the

transaction codes from the list of transactions to be traced by using the F10

function key. When a transaction ends and is subsequently restarted, tracing does

not start if the transaction code no longer appears in the transaction list.

To stop tracing in z/OS batch, cancel the program and remove the ELATRACE and

ELATOUT DD cards from the run-time JCL.

Printing Trace Output

If the trace output is not directed to a file for the CICS environment, trace output

is written to a wrap-around trace buffer in memory. The trace output can be seen

in dumps taken when programs end abnormally.

Printing the Trace Output in CICS

Trace output for CICS is routed to an extrapartition transient data queue which is

directed to a data set named ELATOUT if you direct the trace output to a file by

specifying yes (Y) on the ELAZ02 panel. The ELATOUT data set has the attributes

of LRECL=133, RECFM=FBA. The file can be printed as directed on the DD

statement for ELATOUT in the CICS startup JCL.

Printing the Trace Output in z/OS Batch

Trace output is directed to the ELATOUT DD statement and is printed as directed

on the DD statement.

Reporting Problems for Enterprise Developer Server

For instructions on reporting problems, visit the following Web site, click Support,

and click Submit and track problems:

 http://www.ibm.com/software/awdtools/studioenterprisedev

Chapter 22. Enterprise Developer Server Trace Facility 149

150 IBM Enterprise Developer Server Guide for z/OS

Chapter 23. Common Messages during Preparation for z/OS

Systems

This chapter contains some error messages from other products. It is not a

complete list. For a complete explanation of product messages, refer to the

documentation provided with that product.

Common Abend Codes during Preparation

Only the most frequently occurring preparation abend codes are listed in this

section. If you receive any other abend code or need a more complete explanation

of one of the abend codes, refer to the documentation for that product.

System B37

The temporary work space is filling up. The WSPC parameter is used in

the build scripts to prepare generation outputs specifies the amount of

temporary space allocated. The build script names used by default are

fdacl, fdatcl, and fdaptcl, depending on whether you are preparing a CICS

server with no SQL access, or a CICS server with SQL access.

 To solve the abend, use a symbolic descriptor option named WSPC and set

it to a larger value.

System 213, or System 230

Two program developers tried to update the directory of a PDS at the

same time. Submit the job again.

 This problem can also be prevented by specifying ENQ=YES for the DD

statement for the PDS for which the 213 occurred. However, this serializes

preparation of servers when their preparation outputs are placed in the

same PDS’s.

DB2 Precompiler and Bind Messages

Only the most frequently occurring DB2 precompiler and bind messages are listed

in this section. If you receive other messages that start with DSN or if you need a

more complete explanation of one of the messages, refer to the documentation for

your release of DB2.

DSNX100I BIND SQL WARNING

Explanation: One or more DB2 tables have not been

created. The tables that do not exist will be identified in

an explanation associated with the message by:

 xxxxxxx IS NOT DEFINED

 where xxxxxxx is the table name.

User response: Create the necessary DB2 tables and

synonyms.

COBOL Compilation Messages

Only the most frequently occurring COBOL compilation messages are listed in this

section. If you receive other compilation messages that start with IGY or if you

need a more complete explanation of one of the messages, refer to the

documentation for your release of COBOL.

© Copyright IBM Corp. 1994, 2005 151

IGYPS2015I The paragraph or section prior to

paragraph or section

EZEMAIN-PROCESS did not contain

any statements.

IGYPS2023I Paragraphs prior to section

EZEMAIN-PROCESS were not

contained in a section

Explanation: These two messages occur if your

program has been processed by the DB2 precompiler.

User response: They are normal messages that you

can ignore.

IGYOP3091W Code from ″?″ to ″?″ can never be

executed, and was therefore discarded.

IGYOP3093W The ″PERFORM″ statement at ″?″

cannot reach its exit.

IGYOP3094W There may be a loop from the

″PERFORM″ statement at ″?″ to itself.

″PERFORM″ statement optimization was

not attempted.

Explanation: These messages occur if your program

has been processed using the OPTIMIZE compiler

option.

User response: These are normal messages that you

can ignore.

IGYPA3013W Data item ″?″ and ″?″ had overlapping

storage. An overlapping move will occur

at execution time.

Explanation: This message occurs if your program

attempts to assign the value of a data item to the same

data item.

User response: You might want to check that you

really intended to do this.

IGYPG3113W Truncation of high-order digit

positions may occur due to precision of

intermediate results exceeding 30.

Explanation: This message might occur if your

program was generated with the math=COBOL build

descriptor option.

User response: You might want to change the

arithmetic expression identified in the message. For

example, you could split the expression into several

smaller ones.

 If you do not change the expression, ensure that the

intermediate values will fall within the precision that

COBOL supports. Refer to the programming guide for

your release of COBOL for more information about the

precision of intermediate results.

IGYSC2025W ″EZEPCB-?″ or one of its subordinates

was referenced, but ″EZEPCB-?″ was a

″LINKAGE SECTION″ item that did not

have addressability. This reference will

not be resolved successfully at

execution.

Explanation: This warning message occurs when PCBs

or any data structure is generated in the linkage

section, but is not used in a statement.

User response: Ignore the messages and the program

will work correctly.

152 IBM Enterprise Developer Server Guide for z/OS

Chapter 24. Common System Return Codes for z/OS Systems

The information within this chapter is diagnosis, modification, or tuning

information.

Enterprise Developer Server messages might include return codes from databases

or operating systems that are being used. This could include DB2, z/OS VSAM, or

CICS EXEC Interface Block (EIB) codes.

This chapter contains only the most common errors that occur during file input

and output operations.

The return codes included in this chapter are for the following databases and

operating systems:

v CICS

v DB2

v VSAM

v COBOL

For details on values returned to the program, see the EGL help topic for the

system variable sysVar.returnCode.

Common SQL Return Codes

Only the most frequently occurring SQL codes are listed in this section. If you

receive other SQL codes or if you need a more complete explanation of one of the

SQL codes, refer to the documentation for your release of DB2.

RC Meaning

100 No rows were found by SQL that meet the search criteria specified in the

WHERE clause of the SQL statement, or if processing in conjunction with a

setting or setupd statement, the end of the selected rows has been reached.

The possible causes are the following:

v The key value(s) were not moved correctly to the host variable(s) used

in the WHERE clause.

v No rows meet the search criteria specified in the WHERE clause.

v Enterprise Developer stripped trailing blanks for the character host

variables used in a LIKE predicate in the WHERE clause. You can use

the sqlIOTrace=YES build descriptor option to enable tracing of the data

sent to SQL and the data coming back from SQL. See Chapter 22,

“Enterprise Developer Server Trace Facility,” on page 143 for more

information about using the Enterprise Developer Server trace facility.

-301, -302, -303, -304

The Enterprise Developer data item definition does not match the

definition of the same column in the DB2 table. This can be caused by

defining a column as variable length, but not defining the data item in

Enterprise Developer with a variable-length SQL code. This can also be

caused by specifying a different length to Enterprise Developer from what

was defined in the DB2 table.

 Make the necessary changes in the Enterprise Developer data item

definition to match the DB2 table and generate the program again.

© Copyright IBM Corp. 1994, 2005 153

-302 Refer to the program directory in the appendix of this manual for

information about installing a DB2 work database.

-805 The DBRM for the current program was not bound as part of the current

DB2 plan. Possible causes are:

v The BIND process was never run for the program.

v An incorrect plan name was specified at startup.

v The plan name specified in the RCT on CICS did not match the plan

name used in the BIND process.

v All programs that run together under a single transaction or job step

must be bound into the same DB2 plan.

Look at the message inserts to see what DB2 returned as the program

name and plan name. If these are what you expect, review the steps used

for preparing the program.

-818 The DB2 precompiler-generated time stamp in the load module is different

from the database request module (DBRM) used on the most recent BIND

for the PLAN being used. Both of these precompiler outputs must match

and one of them is not from the most recently-run precompile. This

typically happens when the precompile, link-edit, and bind process is run

more than once and either the DBRM library or the load library used for

the load module is changed. This creates the opportunity to pick up the

old load module at run time if the old load library is first in the search

sequence at run time. Alternatively, the BIND process might be using an

old DBRM library that contains an old copy of that member.

 Ensure that you are running with the most recent copy of the load module

and that you are using the same DBRM library on the precompile and

BIND steps. On CICS ensure that the latest copy of the load module has

been picked up by issuing an CICS NEWCOPY command or by using the

Enterprise Developer Server new copy utility.

-911,-913

A deadlock condition occurred. Possible causes are:

v The isolation level was set for repeatable read.

v There were long periods of time between commit points.

v In EGL, the program issued a get statement with the hold option, but

failed to issue a related replace statement. In VisualAge Generator, the

program issued an update without a replace.

Note: The program should be coded to handle these conditions.

-922 Connection authorization was not successful. The type of error is indicated

in the SQL error message. Some typical causes are not granting authority

for the DB2 plan or not creating a synonym for one or more of the DB2

tables.

 Make the necessary changes to provide authorization to the DB2 plan and

then run the program again. You might also want to refer to the

documentation for your release of DB2 for additional causes of the

authorization error.

154 IBM Enterprise Developer Server Guide for z/OS

Common DL/I Status Codes

Only the most frequently occurring DL/I status codes are listed in this section. If

you receive other DL/I status codes or if you need a more complete explanation of

one of the DL/I status codes, refer to the application programming manual for

your release of IMS.

Code Meaning

AD The function parameter on the call is not valid. If the function code is

correct, the status code can be from an I/O or alternate PCB for a database

call. You might have a mismatch between the PSB you defined in

Enterprise Developer and the IMS PSB definition.

AI A data management open error occurred. Either no DD statements were

supplied for logically related databases, or the DD name is not the same as

the name specified on the DATASET statement of the DBD. The segment

name area in the DB PCB has the DD name of the data set that could not

be opened.

AJ The format of one of your SSAs is not valid. Either the SSA contains a

command code for that call that is not valid, or the SSA uses an R, S, W, or

M command code for a segment for which there are no subset pointers

defined in the DBD.

AK An SSA contains either a field name that is not valid or a name that is not

defined in the DBD, or the Enterprise Developer data item for DL/I

segment does not match the name defined to DL/I.

AM The call function is not compatible with the processing option in the PCB,

the segment sensitivity, the transaction-code definition, or the program

type.

GA In trying to satisfy an unqualified GN or GNP call, DL/I crossed a

hierarchic boundary into a higher level.

GB In trying to satisfy a GN, DL/I reached the end of the database.

GD The program issued an ISRT that was not qualified for all levels above the

level of the segment being inserted. The segment might have been deleted

by a DLET using a different DB PCB.

GE DL/I is unable to find a segment that satisfies the segment described in a

get call.

GK DL/I has returned a different segment type at the same hierarchic level for

an unqualified GN or GNP.

GP The program issued a GNP when parentage is not established, or the

segment level specified in the GNP is not lower than the level of the

established parent.

II The program issued an ISRT that tried to insert a segment that already

exists in the database.

Common VSAM Status Codes

Only the most frequently occurring VSAM codes are listed in this section. If you

receive other VSAM codes or if you need a more complete explanation of one of

these values, refer to the z/OS VSAM Administration: Macro Instruction Reference

manual.

Chapter 24. Common System Return Codes for z/OS Systems 155

OPEN request type

Code Meaning

64 Warning message: OPEN encountered an empty alternate index that is part

of an upgrade set.

74 This is a warning message indicating the data set was not properly closed.

Either the implicit verify for the OPEN was unsuccessful, or the user

specified that the implicit verify should not be attempted for the OPEN. A

previous VSAM program might have ended abnormally. The VERIFY

command of Access Method Services can be used to properly close the

data set.

80 The DD statement for this access method control block is either missing or

not valid.

94 Either no record for the data set to be opened was found in the available

catalog or catalogs, or an unidentified error occurred while VSAM was

searching the catalog.

98 Security verification was not successful; the password specified in the

access method control block for a specified level of access does not match

the password in the catalog for that level of access.

A0 The operands specified in the ACB or GENCB macro are inconsistent either

with each other or with the information in the catalog record. You might

have attempted to open an empty data set for input only (SCAN).

A8 The data set was not available for the type of processing you specified, or

an attempt was made to open a reusable data set with the reset option

while another user had the data set open.

BC The data set indicated by the access method control block is not a valid

type of data set for specification by an access method control block. You

might have used a sequential data set as the physical file, but specified

VSAM or VSAMRS as the file type for resource association when you

generated the program.

C0 An unusable data set was opened for output.

C4 Access to data was requested using an empty path.

CLOSE request type

Code Meaning

04 The data set indicated by the access method control block is already closed.

88 Not enough virtual storage was available in the address space of your

program for the work area required by CLOSE.

94 An unidentified error occurred while VSAM was searching the catalog.

GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

Note: The following occur when register 15=8(8).

Code Meaning

08 An attempt is made to store a record with a duplicate key, or there

is a duplicate record for an alternate index with the unique key

option.

156 IBM Enterprise Developer Server Guide for z/OS

6C The RECLEN specified was one of the following:

v Larger than the maximum allowed

v Equal to 0

v Smaller than the sum of the length and the displacement of the

key field

v Not equal to the record(slot) size specified for a relative record

data set

70 The KEYLEN specified was too large or equal to 0.

C0 A relative record number that is not valid was encountered.

COBOL Status Key Values

This shows the most frequently occurring COBOL status key values. If you receive

other status key values or if you need a more complete explanation for one of

these values, refer to the application programming language reference for your

release of COBOL.

Status Key Explanation

10 The end of a file was reached.

22 An attempt was made to write a record with a key that duplicated

one that was already in the file.

23 Record not found. This can also be caused by an optional file not

being allocated.

35 No DD statement was included in the JCL. This can occur if the

program calls another program or transfers to another program

using a DXFR statement, but the DD statements for the second

program have not been added to the sample runtime JCL for the

main program.

39 The physical file that you specified during resource association

does not match the file characteristics that you specified during

record definition. The file characteristics include file organization

(sequential, relative or indexed), the prime record key, the alternate

record keys, and the maximum record size.

44 A variable-length record was written that is not valid. This can

occur if the value in the number of occurrences field is larger than

the maximum value, or the value in the record length item field is

larger than the maximum length of the record.

96 No DD statement was included in the JCL for a VSAM file.

Chapter 24. Common System Return Codes for z/OS Systems 157

158 IBM Enterprise Developer Server Guide for z/OS

Chapter 25. Enterprise Developer Server Return Codes and

Abend Codes for z/OS Systems

The information within this chapter is diagnosis, modification, or tuning

information.

Only the most frequently occurring system abend codes are listed in this section. If

you receive other abend codes or if you need a more complete explanation of one

of the codes, refer to the z/OS messages and codes manual for your release of

z/OS.

Return Codes

This section contains a listing of codes set by Enterprise Developer Server and

returned in the COBOL return code of a program.

If a generated program completes normally, the COBOL return code is set to the

value in the sysVar.returnCode. This code must be less than or equal to 512.

Return codes greater than 512 are reserved for Enterprise Developer Server. The

return codes set by Enterprise Developer Server are:

693 The program ended due to an error detected by Enterprise Developer

Server. The error description is reported as described in Chapter 20,

“Diagnosing Problems for Enterprise Developer Server on z/OS Systems.”

4093 A program generated using Enterprise Developer Server Version 1.2 ended

due to an error detected by Enterprise Developer Server.

If LE detects an error and returns to the operating system, the LE return code

modifier (2000 - error, 3000 - severe error, or 4000 - critical error) is added to the

user or Enterprise Developer Server return code.

ABEND Codes

Enterprise Developer Server reports errors by error messages whenever possible.

ABENDs are issued only in situations where initialization has not progressed to

the point where messages can be issued or when the error messages cannot be

written to their normal destination.

CICS Environments

For CICS, you can control whether or not a core dump is taken by using the

diagnostic controller utility. If a core dump is taken, the dump code is ELAD. See

“Controlling Error Reporting in CICS” on page 131 for information on the

diagnostic controller utility.

ELA1 This abend code should never be received. However, if register 1 in a

dump contains ″ELA1″, then a database manager or subsystem interface

module was not linked with a Enterprise Developer Server program at

product installation. Registers 3 and 4 in the dump usually contain the

name of the stub program. The abending load module is the module that

was not linked correctly.

ELA2 The Task Work Area (TWA) does not exist or is not long enough to be used

by Enterprise Developer Server. The TWA length must be greater than or

© Copyright IBM Corp. 1994, 2005 159

equal to the sum of 1024 plus the twaOffset (TWA offset) build descriptor

option specified when the initial program in the transaction was generated.

 Use the TWASIZE parameter in the transaction definition to define a TWA

with an adequate length for the transaction.

 When this is a client/server program set, ensure that the CICS mirror

transactions on the server CICS have a TWA size at least equal to the TWA

size specified for the Enterprise Developer transaction on the client system.

ELA3 Load for module ELARSCNT was not successful. Enterprise Developer

Server has not been installed correctly.

 Ensure the CICS region can gain access to the Enterprise Developer Server

run-time library and that module ELARSCNT is defined in the program

definition.

 When this is a client/server program set, ensure that the security

level-checking parameters (RSL and RSLC) for the CICS mirror transactions

on the server CICS are the same as those specified for the Enterprise

Developer transaction on the client system.

ELA4 Load for module ELARPRTX was not successful. Enterprise Developer

Server has not been installed correctly.

 Ensure the CICS region can gain access to the Enterprise Developer Server

run-time library and that module ELARPRTRX is defined in the program

definition.

ELA5 Load for module ELARPRTC was not successful. Enterprise Developer

Server has not been installed correctly.

 Ensure the CICS region can gain access to the Enterprise Developer Server

run-time library and that module ELARPRTC is defined in the program

definition.

ELA6 The dynamic storage stack used for working storage for Enterprise

Developer Server modules was exhausted and Enterprise Developer Server

could not continue.

 This problem should not occur. Report the problem to the IBM support

center.

ELA7 A GETMAIN was not successful. There was not enough storage for the

program to complete.

 Try the program again when the region is less busy or try it again in a

larger region.

ELA9 Load or link for a Enterprise Developer Server module was not successful.

Enterprise Developer Server has not been installed correctly. Use CEDF to

determine the module name. Look for a PGMIDERR on a CICS LOAD or

CICS LINK command.

 Ensure that the CICS region can gain access to the Enterprise Developer

Server run-time library and the module name being loaded is defined in

the PPT.

ELAB A call was made to a main program, which is not allowed.

ELAC Enterprise Developer Server has detected a FREEMAIN request that is not

valid. Collect the dump and contact the IBM Support Center for assistance.

ELAE A generated program has ended because of a serious error. This occurs for

one of the following reasons:

160 IBM Enterprise Developer Server Guide for z/OS

v Storage has been corrupted so that a dump is necessary to debug the

abend.

v Error handling was unable to write messages to the error destination

queue or to the user at the terminal. The dump is necessary to make the

diagnostic information available. The situation can occur if the error

destination queue specified for the transaction using the diagnostic

controller utility is not defined to CICS. In CICS, if the error destination

queue is defined as an intrapartition queue, this situation occurs when

there is no more space on the intrapartition queue and the error

messages cannot be written.

v A severe error has occurred. Refer to the error destination queue for the

corresponding error messages. The default name is ELAD. The queue

name can be changed using the diagnostic controller utility.

See “Enterprise Developer Server ABEND Dumps” on page 139 for

information on how to find error messages in the dump on an ELAE

abend.

ELAF ELATSRST has detected one of the following errors:

v ELATSRST was not initiated with a CICS XCTL command (for example,

the restart transaction ID was associated directly to ELATSRST).

v The COMMAREA length on entry was not 0 or 10.

v The Enterprise Developer Server portion of the TWA had been

initialized, indicating that a converse was not in process or the

non-Enterprise Developer program uses the TWA and the program was

not generated with the proper TWA offset.

ELAW A program was generated using incompatible versions of COBOL

generators.

IMS, IMS BMP, and z/OS Batch Environments

1600 A generated program has ended because of a serious error. This occurs for

one of the following reasons:

v Storage has been corrupted so that a dump is necessary to debug the

abend.

v Error handling was unable to write messages to the error destination

queue or to the user at the terminal. The dump is necessary to make the

diagnostic information available. In IMS, the situation can occur if the

error destination queue specified using the errorDestination build

descriptor option is not defined to IMS.

v A severe error has occurred. In IMS, refer to the error destination queue

specified using the errorDestination build descriptor option for the

corresponding error messages. In z/OS Batch, refer to the data set

ELAPRINT for the messages.

See “Enterprise Developer Server ABEND Dumps” on page 139 for

information on how to find error messages in the dump on a 1600 abend.

1601 A database manager or subsystem interface module (for example,

ASMTDLI for DL/I access) was not linked with a Enterprise Developer

Server program at product installation. Registers 3 and 4 in the dump

contain the name of the stub program. The abending load module is the

module that was not linked correctly.

 Refer to the Program Directory for Enterprise Developer Server for z/OS for

information on correctly linking the abending load module.

Chapter 25. Enterprise Developer Server Return Codes and Abend Codes for z/OS Systems 161

1602 A program generated with theimsFastPath=″YES″ build descriptor option

ended because of a run unit error. The abend is issued to prevent any

further scheduling of the program in error.

 See “Enterprise Developer Server ABEND Dumps” on page 139 for

information on how to find error messages in the dump on a 1602 abend.

Depending on the generation options specified for the program, the

message might also have been written to an error diagnostic message

queue, on the IMS log, or to an ELAPRINT file. See Chapter 20,

“Diagnosing Problems for Enterprise Developer Server on z/OS Systems”

for more information on Enterprise Developer Server error reporting.

1606 The dynamic storage stack used for working storage for Enterprise

Developer Server modules was exhausted and Enterprise Developer Server

could not continue.

 This problem should not occur. Report the problem to the IBM Support

Center.

1608 Enterprise Developer Server has detected a FREEMAIN request that is not

valid. Collect the dump and contact the IBM Support Center for assistance.

z/OS Batch

1600 A generated program has ended because of a serious error. This occurs for

one of the following reasons:

v Storage has been corrupted so that a dump is necessary to debug the

abend.

v Error handling was unable to write messages to the error destination

queue or to the user at the terminal. The dump is necessary to make the

diagnostic information available.

v A severe error has occurred. Refer to the data set ELAPRINT for the

messages.

See “Enterprise Developer Server ABEND Dumps” on page 139 for

information on how to find error messages in the dump on a 1600 abend.

1601 A database manager or subsystem interface module was not linked with a

Enterprise Developer Server program at product installation. Registers 3

and 4 in the dump contain the name of the stub program. The abending

load module is the module that was not linked correctly.

 Refer to the Program Directory for Enterprise Developer Server for z/OS for

information on correctly linking the abending load module.

1606 The dynamic storage stack used for working storage for Enterprise

Developer Server modules was exhausted and Enterprise Developer Server

could not continue.

 This problem should not occur. Report the problem to the IBM Support

Center.

1608 Enterprise Developer Server has detected a FREEMAIN request that is not

valid. Collect the dump and contact the IBM Support Center for assistance.

162 IBM Enterprise Developer Server Guide for z/OS

Chapter 26. Codes from Other Products for z/OS Systems

The chapter contains lists of common system abend codes, COBOL run-time

messages, LE abend codes, and common run-time messages from CICS.

Common System Abend Codes for All Environments

Only the most frequently occurring abend codes are listed in this section. If you

receive another abend code or if you need a more complete explanation of one of

the abend codes, refer to the System Codes manual for your release of z/OS.

System 0C7 Data exception. The abend occurs when fields defined as decimal

or packed decimal are retrieved from a database and are found to

contain data of a different format.

 The abend can also occur if fields that are not initialized are used

in calculations or comparisons. This happens if the program

attempts to read a record from a database and the record is not

found, but the program uses fields in the record anyway. To ensure

that records are initialized, use a SET record EMPTY statement in

the program or specify initAdditionalWS and initIORecords as

build descriptor options. Refer to the Enterprise Developer online

help system for additional information on how to initialize records

using a SET record EMPTY statement in the program. Scan the

helps using the phrase SET record EMPTY.

 The abend can also occur when SET record EMPTY is used or

when initAdditionalWS and initIORecords are used if one of the

following is true:

v There are redefined records with different data types or variable

field boundary alignments from the original record.

v The primary working storage record receives a transferred

record that contains different data types or variable-field

boundary alignments from the original record.

System 806 Module not found in a library. This can occur if a new version of a

module is put into a load library and is placed in secondary

extents. To avoid this when you allocate load libraries, specify a

large primary allocation and 0 for the secondary allocation. This

insures that if there is enough space for the load module it will be

placed in the primary extent. If there is not enough space, there

will be an abend (for example, a B37 abend for insufficient space)

when you link the module into the load library. Using this

technique detects the space problem during the preparation step

rather than at run time.

 In other environments, this can occur if the module is not in a

library defined in your link list, JOBLIB, or STEPLIB concatenation

sequence.

 If the missing module name is ELACxxx, the NLS language code

identified by the last 3 characters of the module name is not

installed on the system. This language code was specified with the

targetNLS build descriptor option when the program was

generated.

© Copyright IBM Corp. 1994, 2005 163

If you try to run an EGL-generated program under Enterprise

Developer Server and cannot load the module ELARSCNT, the

system abends with an 806.

LE Run-time Messages

Only the most frequently occurring LE run-time messages are listed in this section.

If you receive other run-time messages that start with IGZ or if you need a more

complete explanation of one of the messages, refer to the debugging manual for

your release of LE.

IGZ0033S An attempt was made to pass a

parameter address above 16 megabytes

to AMODE(24) program program-name.

Explanation: An attempt was made to pass a

parameter located above the 16-megabyte storage line

to a program in AMODE(24). The called program will

not be able to address the parameter.

Programmer response: If the calling program is

compiled with the RENT option, the DATA(24) option

may be used in the calling program to make sure that

its data is located in storage accessible to an

AMODE(24) program. If the calling program is

compiled with the NORENT option, the RMODE(24)

option may be used in the calling program to make

sure that its data is located in storage accessible to an

AMODE(24) program. Verify that no linkedit, binder or

genmod overrides are responsible for this error.

System action: The application was terminated

IGZ0064S A recursive call to active program

program-name in compilation unit

compilation-unit was attempted.

Explanation: COBOL does not allow reinvocation of

an internal program which has begun execution, but

has not yet terminated. For example, if internal

programs A and B are siblings of a containing program,

and A calls B and B calls A, this message will be

issued.

Programmer response: Examine your program to

eliminate calls to active internal programs.

System action: The application was terminated.

IGZ0066S The length of external data record

data-record in program program-name

did not match the existing length of the

record.

Explanation: While processing External data records

during program initialization, it was determined that

an External data record was previously defined in

another program in the run unit, and the length of the

record as specified in the current program was not the

same as the previously defined length.

Programmer response: Examine the current file and

ensure the External data records are specified correctly.

System action: The application was terminated.

IGZ0075S Inconsistencies were found in

EXTERNAL file file-name in program

program-name. The following file

attributes did not match those of the

established external file: attribute-1

attribute-2 attribute-3 attribute-4

attribute-5 attribute-6 attribute-7

Explanation: One or more attributes of an external file

did not match between two programs that defined it.

Programmer response: Correct the external file. For a

summary of file attributes which must match between

definitions of the same external file, see IBM COBOL

Language Reference.

System action: The application was terminated.

COBOL Run-time Messages

Only the most frequently occurring COBOL run-time messages are listed in this

section. If you receive other run-time messages that start with IGZ or if you need a

more complete explanation of one of the messages, refer to the Debugging and

Run-time Messages Guide for your release of LE.

IGZ033S An attempt was made to pass a

parameter address above 16 megabytes to

AMODE(24) program program-name.

Explanation: An attempt was made to pass a

parameter above the 16-megabyte storage line to a

program in AMODE(24). The called program will not

be able to address the parameter.

IGZ064S A recursive call to active program

program-name in compilation unit

164 IBM Enterprise Developer Server Guide for z/OS

compilation-unit was attempted.

Explanation: COBOL does not allow an internal

program that has started to run, but has not completed,

to be invoked again. For example, if internal programs

A and B are siblings of a containing program, and A

calls B and B calls A, this message will be issued.

IGZ066S The length of external data record

data-record in program program-name did

not match the existing length of the

record.

Explanation: While processing external data records

during program initialization, it was determined that

an external data record was previously defined in

another program in the run unit, and the length of the

record as specified in the current program was not the

same as the previously defined length.

IGZ075S Inconsistencies were found in

EXTERNAL file file-name in program

program-name. The following file

attributes did not match those of the

established external file: attribute-1

attribute-2 attribute-3 attribute-4 attribute-5

attribute-6 attribute-7

Explanation: One or more attributes of an external file

did not match between two programs that defined it.

Common COBOL Abend Codes

Only the most frequently occurring abend codes are listed in this section. If you

receive another abend code or if you need a more complete explanation of one of

the messages, refer to the debugging manual for your release of LE.

User 4087 This is an LE abend code. If reason code is 7, the error could be

due to the region size not being large enough to run the COBOL

program.

Common IMS Runtime Messages

Only the most frequently occurring IMS runtime messages are listed in this section.

If you receive another runtime message that starts with DFS or if you need a more

complete explanation of one of the messages, refer to the IMS messages and codes

manual for your release of IMS.

DFS057I REQUESTED BLOCK NOT

AVAILABLE: blockname RC = reason

code

Explanation: The blockname is either the MOD or the

DOF name. If it is the DOF name, the first 2 bytes of

the name are the device type and features printed in

hexadecimal. Refer to the message format services

manual for your release of IMS for an interpretation of

these 2 bytes. If it is a MOD name, it will be the name

of a map group.

User response: If a DOF name was specified, review

the values you specified for the mfsDevice,

mfsExtendedAttr, and mfsIgnore build descriptor

options, and compare them to the IMS system

definition for the terminal that had the problem.

 If a MOD name was specified, ensure that you installed

the MFS control blocks into the correct library. If you

specified the mfsUseTestLibrary=″YES″ build

descriptor option, ensure that you used the /TEST MFS

command. If you specified mfsUseTestLibrary=″NO″,

ensure that your system administrator has run the IMS

online change utility to copy in the new format

definitions.

DFS064 NO SUCH TRANSACTION CODE

Explanation: This message is sent to a terminal when

the transaction code requested by the user is not

defined to IMS. An example of a situation that results

in this message is when a program does an XFER with

a map to a transaction that is not defined to IMS. The

map is written to the terminal, but when the user

enters data, the transferred-to transaction cannot be

scheduled because it is not defined to IMS.

User response: Either ensure the transaction code is

defined to IMS or change the XFER statement in the

transferring program to reference the correct IMS

transaction code.

DFS182 INVALID OR MISSING PARAMETER

Explanation: An IMS reserved word (for example,

LTERM) was used as a map name in a /FORMAT

command.

User response: If you need to use the /FORMAT

command to display this map, you need to change the

map name and generate the map group and any

programs that use this map again.

Chapter 26. Codes from Other Products for z/OS Systems 165

DFS555I TRAN tttttttt ABEND S000,Uaaaa; MSG

IN PROCESS: (up to 78 bytes of data)

time stamp

Explanation: This message indicates that the

transaction running in IMS has ended abnormally.

Typical abend codes are shown below:

0778 IMS user abend, indicating that a ROLL

request was issued

1602 Enterprise Developer Server abend because a

rununit error occurred in a program that was

generated with the imsFastPath=″YES″ build

descriptor option

1600 Enterprise Developer Server abend because an

unrecoverable error occurred in situations

other than rununit errors for programs

generated with imsFastPath=″YES″

User response: Press the PA1 or PA2 key to display

the error map that contains the error diagnostics that

describe the error.

DFS2082 RESPONSE MODE TRAN

TERMINATED WITHOUT REPLY

Explanation: Enterprise Developer Server has ended

the logical unit of work for a program that was

generated with the imsFastPath=″YES″ build descriptor

option.

User response: Press the PA1 key to display the error

map that contains the error diagnostics that describe

the error.

DFS2766I PROCESS FAILED

Explanation: IMS issues this message if Enterprise

Developer Server ends the run unit for a transaction

program that was generated with imsFastPath=″YES″

and run in an IMS fast-path region.

User response: Press the PA1 or PA2 key to display

the error map that contains error diagnostics that

describe the error. See Chapter 20, “Diagnosing

Problems for Enterprise Developer Server on z/OS

Systems” for additional information.

(none) Logged off IMS and returned to the

VTAM sign-on screen without any

warning or error message being

displayed.

Explanation: One of the following might have

occurred:

v The program attempted to display a map with DBCS

or mixed data on a non-DBCS terminal or printer.

v The values specified for the mfsDevice,

mfsExtendedAttr, and mfsIgnore build descriptor

options do not match the IMS system definition for

the terminal that had the problem.

User response: Correct the program or generation

options, generate the program and map group again,

and then run the program again.

Common IMS Runtime Abend Codes

Only the most frequently occurring IMS abend codes are listed in this section. If

you receive another abend code or if you need a more complete explanation of one

of the abend codes, refer to the messages and codes manual for your release of

IMS.

IMS 259 A program has been compiled with the DATA(31) compile option

and is being run in a non-IMS/ESA environment. The program

should be recompiled with the DATA(24) compile option.

IMS 462 A program was scheduled in a message region, but the program

ended without successfully issuing a get unique for an input

message. This can occur if Enterprise Developer Server detects an

error that would prevent the program from processing properly.

Examples of these errors are:

v The IMS PSB does not match the PSB defined in Enterprise

Developer.

v The print services program is missing.

IMS 778 A ROLL call has been issued Enterprise Developer Server because

of a rununit error or a catastrophic error in the IMS/VS

environment. The ROLL is issued to prevent further scheduling of

the program in error. IMS displays message DFS555I indicating

that abend 778 has occurred. The Enterprise Developer Server error

message panel can be displayed by pressing PA1.

166 IBM Enterprise Developer Server Guide for z/OS

Based on your generation options and the JCL for your message

region, additional diagnostic information might be provided on an

error diagnostic message queue, on the IMS log, or in ELAPRINT.

See “Controlling Error Reporting in IMS Environments” on page

131 for additional information.

Note: Press PA2 if PA1 does not cause the Enterprise Developer

Server error map to display.

IMS 1008 A program that was running as a BMP and that obtained access to

fast-path databases did not issue a SYNC or CHKP call at the end

of the job step. You can force the CHKP call to occur by:

v Using the EZECOMIT special function word in a batch-oriented

BMP

v Ensuring that the transaction-oriented BMP ends with an EOF

(QC status) for the file being used for input from the IMS

message queue

IMS 3042 Access to DB2 cannot be obtained. Possible causes of this are:

v The terminal ID is not defined to DB2.

v The DB2 program plan is not valid or access to the DB2 program

plan cannot be obtained.

If the program was being run as a BMP, see Figure 23 on page 105

for sample JCL.

Common CICS Run-time Messages

Only the most frequently occurring CICS run-time messages are listed in this

section. If you receive another CICS run-time message that starts with DFH or if

you need a more complete explanation of one of the messages, refer to the CICS

messages and codes manual for your release of CICS.

DFHAC2016 date time applied Transaction tranid

cannot run because program

program-name is not available.

Explanation: The transaction tranid cannot be run

because the initial program for the transaction is not

available. This could occur because the transaction is

defined in the PCT, but the program is not defined in

the PPT or is not in a library in the DFHRPL

concatenation.

User response: Have your system administrator check

the PPT entries. Be sure the program is in a library in

the DFHRPL concatenation.

DFHAC2206 time applied Transaction tranid has

failed with abend abcode. Resource

backout was successful.

Explanation: The transaction tranid has ended

abnormally with abend code abcode. abcode is either

an CICS transaction abend code or a user abend code.

User response: If the user abend code starts with

ELA, see “CICS Environments” on page 159. If it is an

CICS abend code, see “Common CICS Abend Codes”

to see if it is included there. If not, refer to the CICS

messages and codes manual for your release of CICS.

Common CICS Abend Codes

Only the most frequently occurring CICS abend codes are listed in this section. If

you receive another CICS abend or if you need a more complete explanation of

one of the abend codes, refer to the CICS messages and codes manual for your

release of CICS.

Depending on your diagnostic options, information might be available on an error

destination queue or in an CICS journal. See “Controlling Error Reporting in CICS”

on page 131 and the appropriate ELA messages in Chapter 2.

ADLD A program isolation deadlock occurred and a transaction was

Chapter 26. Codes from Other Products for z/OS Systems 167

selected for an abend. Refer to the VisualAge Generator Design Guide

for information on using the EZEDLRST special function word and

for information on designing restartable transactions.

AEY9 Access to DB2 cannot be obtained. This occurs if DB2 is not

running.

AFCY A transaction was purged when a deadlock occurred because a file

is defined with LSRPOOLID not equal to NONE in the FCT, and

one process within a program has performed a SCAN against a file

and another process requested an update or add to the same file

(or its alternate index) without ending the SCAN. Change the

LSRPOOLID to NONE, or change the program design to end the

SCAN before the update or add is requested.

APCT A requested module cannot be located in the program definitions

or in the program library.

ASRA A program check occurred. Some of the reasons this can occur for

a Enterprise Developer program are as follows:

v Incorrectly linked Enterprise Developer Server modules.

If register 1 contains ELA1, see the information for ELA1 in

“CICS Environments” on page 159.

v Data not initialized or data initialized to incorrect values.

If the error occurred as a result of a data exception, see the

explanation for ″System 0C7″ in “Common System Abend Codes

for All Environments” on page 163.

ATDD The program attempted to process a transient data queue that is

disabled. This can occur for a program file associated with a

transient data queue or for the transient data queue used for error

diagnostic information.

AXFQ The most common cause is the result of INBFMH not being

specified equal to ALL in the profile associated with the CICS

mirror program (CPMI).

Note: CICS users that receive abend codes ADLD, ADCP, AKCT, or D106 might

see four question marks in place of the CICS abend code for the resulting

Enterprise Developer Server message. The CSMT console log contains the

true CICS abend code that was issued.

COBOL Abends under CICS

1009 A program has a dynamic storage requirement greater than 64KB, but was

compiled with the DATA(24) compiler option. Compile the module again

with the DATA(31) compiler option.

1029 Either a PPT entry for a program attached through a COBOL dynamic call

is not found or the module being invoked cannot be found in the CICS

region program library search string. Additional information can be

retrieved by entering transaction CEBR on the terminal where the error

occurred.

168 IBM Enterprise Developer Server Guide for z/OS

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2005 169

170 IBM Enterprise Developer Server Guide for z/OS

Appendix. Enterprise Developer Server Run-time Messages

This section describes a series of messages that are given by Enterprise Developer

Server.

ELA00002P Enterprise Developer Server is required

for program %01C08

Explanation: The generated COBOL program is not

compatible with the installed version of Enterprise

Developer Server.

 Enterprise Developer Server ends the program with a

user abend.

User response: Contact the system administrator.

Enterprise Developer Server should be installed.

ELA00003P PCB %01D03 DL/I error, function =

%02C04, status code = %03C02

Explanation: The program control logic attempted a

DL/I call to a teleprocessing PCB and received an error

status code from IMS on the call. The message specifies

the PCB that was used on the call (0 is the I/O PCB, 1

is the modifiable alternate PCB, and 2 is the express

modifiable alternate PCB). The message also specifies

the function code and the status code. For ISRT calls,

the message is accompanied by message ELA00066I,

which displays the first 255 bytes of the DL/I I/O area.

 The run unit ends. If the ELASNAP data set is

allocated, Enterprise Developer Server issues a SNAP

dump for all status codes other than AI.

User response: Look up the status code in the IMS

messages and codes documentation for your system.

ELA00005A Date entered is not valid for defined

date format %01C10

Explanation: Data entered into a form field defined

with a date edit either does not meet the requirements

of the format specification, or the month or day of the

month is not valid.

 It is not necessary to enter the separator characters

shown in the message, but if they are omitted, enter

leading zeros. For example, if the date format is

MM/DD/YY, you can enter 070491.

User response: Enter the date in the format shown in

the message.

ELA00007P File OPEN error on file %01C08, file

status = %02C08

Explanation: The specified file did not open

successfully.

The format of the file status depends on the file type.

 For SEQ files, the file status is the 2-character COBOL

status code followed by six zeros.

 For VSAM files, the file status is composed of the

2-character COBOL status code followed by the VSAM

return code (two characters), VSAM function code (one

character), and the VSAM feedback code (three

characters). The VSAM codes could be blank if the file

OPEN was not completed.

 For VSAMRS files, the file status is composed of the

2-character ACB (access control block) return code in

hexadecimal format followed by six zeros.

 The run unit ends.

User response: First see the table of common COBOL

and VSAM status codes in the IBM Enterprise Developer

Server Guide for z/OS. If the codes in the message are

not listed in the table, refer to the COBOL

programming language reference and VSAM

administration guide for your system for a definition of

other file status and VSAM codes. Also look for system

error messages pertaining to the specified DD name or

DLBL name. Correct the error and run the program

again.

ELA00008P File CLOSE error on file %01C08, file

status = %02C08

Explanation: The specified file did not close

successfully, and the run unit ends.

 The format of the file status depends on the file type.

 For SEQ files, the file status is the 2-character COBOL

status code followed by six zeros.

 For VSAM files, the file status is composed of the

2-character COBOL status code followed by the VSAM

return code (two characters), VSAM function code (one

character), and the VSAM feedback code (three

characters).

 For VSAMRS files, the file status is composed of the

2-character ACB (access control block) return code in

hexadecimal format followed by six zeros.

User response: First see the table of common COBOL

and VSAM status codes in the IBM Enterprise Developer

Server Guide for z/OS. If the codes in the message are

not listed in the table, refer to the COBOL

programming language reference and VSAM

administration guide for your system for a definition of

other file status and VSAM codes. Also look for system

© Copyright IBM Corp. 1994, 2005 171

error messages pertaining to the DD name. Correct the

error and run the program again.

ELA00009P Overflow occurred because the target

item is too short

Explanation: The target of a move or assignment

statement is not large enough to hold the result without

truncating significant digits. The value of

sysVar.handleOverflow is 1, and the run unit ends if

the overflow condition occurs.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, the Enterprise Developer

Server issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Do as follows:

v Increase the number of significant digits in the target

data item; or

v Define the program logic to handle the overflow

condition by using sysVar.handleOverflow and

sysVar.overflowIndicator.

ELA00014P A replace was attempted without a

preceding get for update on %01C18

Explanation: This error occurs in these cases:

v A replace statement was issued against a record that

was not successfully read for update; or

v A replace statement is associated with a specific get

statement, but a different get statement was used to

select the record.

The read for update might have been cancelled as the

result of a converse statement in a segmented program.

 The run unit ends.

User response: Make sure that in the get and replace

statements, the program correctly used record names or

resultSetID.

 Also make sure that the sequence of statements is

appropriate. To step through the program, you can use

the EGL debugger or (for CICS-based programs) CEDF.

ELA00015P READ/WRITE error for file %01C08, file

status = %02C08

Explanation: An I/O operation was not successful for

the specified file. Program processing ends on any

nonzero status code if the I/O statement is not in a try

block; and ends on a hard error if the I/O statement is

in a try block when sysVar.handleHardIOErrors is set to

0.

 The format of the file status depends on the file type.

 For SEQ files, the file status is the 2-character COBOL

status code followed by six zeros.

 For VSAM files, the file status is composed of the

2-character COBOL status code followed by the VSAM

return code (two characters), VSAM function code (one

character), and the VSAM feedback code (three

characters).

 The run unit ends.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: First see the table of common COBOL

and VSAM status codes in the IBM Enterprise Developer

Server Guide for z/OS. If the codes in the message are

not listed in the table, refer to the COBOL

programming language reference and VSAM

administration guide for your system for a definition of

the other file status and VSAM codes. Also look for

system error messages pertaining to the specified DD

name. Correct the error and run the program again.

ELA00016P %01C08 error for file %02C08, %03C44,

file status = %04C08

Explanation: An I/O operation was not successful for

the specified file. Program processing ends on any

nonzero status code if the I/O statement is not in a try

block; and ends on a hard error if the I/O statement is

in a try block when sysVar.handleHardIOErrors is set to

0.

 The message identifies the VSAM operation that was

not successful, the Enterprise Developer file name

associated with the record, the system resource name,

and the file status. The file status is composed of two

zeros followed by the VSAM return code (two

characters), VSAM function code (one character), and

the VSAM feedback code (three characters).

 The run unit ends.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: First see the table of common VSAM

status codes in the IBM Enterprise Developer Server Guide

for z/OS. If the codes in the messages are not listed in

the table, refer to the VSAM administration guide for

your system for a definition of other VSAM codes. Also

look for system error messages pertaining to the

specified system resource. Correct the error and run the

program again.

ELA00021I An error occurred in program %01C08

on statement number %02D06

Explanation: An error occurred in the specified

program on the specified statement. The actual error

that occurred is identified in the messages following

this message.

172 IBM Enterprise Developer Server Guide for z/OS

User response: Refer to a listing of the program,

correct the statement, and generate the program again.

ELA00022P Form group format module %01C08

could not be loaded

Explanation: The specified form group format module

could not be loaded. The module is a generated object

module linked as a program that contains data tables

that describe the format and constant fields for text

forms in a form group. The module name is the form

group alias (or a variation to conform with length and

character restrictions) followed by the characters FM.

 If the format module name uses the format ELAxxxFM,

where xxx is the language code, the definitions for the

Enterprise Developer Server error forms could not be

loaded.

 The run unit ends.

User response: Have the system administrator verify

that the specified program has been generated,

compiled, and linked into a library defined in the

library search order.

 For z/OS CICS, the search order includes the DFHRPL

data sets, and you should verify that the program has

been defined to the system.

ELA00023P Call to data-table program %01C07 was

not successful

Explanation: A dynamic COBOL call to the specified

data-table program was not successful. The run unit

ends.

User response: Make sure that the specified program

was generated, compiled, and linked into a library

defined in the library search order. For z/OS CICS, the

search order includes the DFHRPL data sets.

 Also for z/OS CICS, make sure that the program was

generated with data (a build descriptor option) set to

31 and that the program is defined to the CICS region.

ELA00024P Conversion table %01C08 could not be

loaded

Explanation: Either the specified table program could

not be loaded or the program that was loaded is not a

Enterprise Developer Server conversion table.

 The run unit ends.

User response: Verify that the correct conversion table

name was specified in the generation-time linkage

options part; that a correct conversion table has been

moved into the system variable

sysVar.callConversionTable at run time; or that a correct

conversion table has been specified on any call to the

system function sysLib.convert. For details, see the EGL

help topic on data conversion.

 If the conversion table was properly specified in the

program, make sure that the table program was

generated, compiled, and linked into a library defined

in the library search order. For z/OS CICS, the search

order includes the DFHRPL data sets.

 Also for z/OS CICS, make sure that the table program

was generated with data (a build descriptor option) set

to 31 and that the table program is defined to the CICS

region.

ELA00026P A calculation caused a maximum-value

overflow

Explanation: During a calculation in an arithmetic

statement, an intermediate result exceeded the

maximum value (18 significant digits). This condition

also occurs when division by zero occurs. If

sysVar.handleOverflow is set to 0 or 1, the program

ends.

 This error can only occur when you specify the build

descriptor option checkNumericOverflow.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Correct the program logic either to

avoid the error or to use sysVar.handleOverflow and

sysVar.overflowIndicator to handle the error.

ELA00027P The data on a character-to-numeric move

is not valid

Explanation: The statement in error involves a move

from a character to a numeric data item. The character

data item contains nonnumeric data.

 The run unit ends.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Change the program to ensure that the

source operand contains valid numeric data.

ELA00029P Transfer to %01C08 was not successful

Explanation: The transfer to another program was not

successful. Usually, the program being transferred to

could not be found.

 The run unit ends.

User response: Make sure that the program was

generated, compiled, and linked into a library defined

in the library search order. For z/OS CICS, the search

order includes the DFHRPL data sets.

Appendix. Enterprise Developer Server Run-time Messages 173

Also for z/OS CICS, make sure that the program was

generated with data (a build descriptor option) set to

31 and that the table program is defined to the CICS

region.

ELA00031P Call to %01C08 was not successful

Explanation: A dynamic call to the specified program

failed, ending the run unit.

User response: Make sure that the program was

generated, compiled, and linked into a library defined

in the library search order. For z/OS CICS, the search

order includes the DFHRPL data sets.

 Also for z/OS CICS, make sure that the program was

generated with data (a build descriptor option) set to

31 and that the program is defined to the CICS region.

ELA00032P Called program %01C07 received a

parameter list that is not valid

Explanation: A call to the specified program was not

successful for one of the following reasons:

v The calling program passed too many or too few

parameters.

v Different values are in the linkage-options part,

callLink element, parmform property for the called

and calling programs.

v The parmform value COMMDATA was specified for

the call, and the COMMAREA passed has a different

length than the length expected by the called

program.

If the called program is a remote program, a CICS

abend occurs. Because the COMMAREA is too small,

the called program cannot notify the calling program of

the error.

 In all other cases, the run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Verify that the argument list in the call

statement matches the parameter list for the program

being called, and then generate the called and calling

program with the same parmform value in the linkage

options part, callLink element.

ELA00033P Call to program %01C08 returned

exception code %02D05.

Explanation: An exception code was returned on a

call to the specified program, indicating that one of the

arguments passed to the program was not valid. The

run unit ended because the call was not in a try block.

User response: Place the call statement in a try block

and make sure that all the passed arguments are valid.

ELA00034P Program %01C07 was declared as a main

program and cannot be called

Explanation: The specified program was not declared

as a called program.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Declare the program as a called

program.

ELA00035A Data type error in input - enter again

Explanation: The data in the first highlighted field is

not valid numeric data. The field was defined as

numeric.

User response: Enter only numeric data in this field,

or press a bypass edit key to bypass the edit check. In

either situation, the program continues.

ELA00036A Input minimum length error - enter

again

Explanation: The data in the first highlighted field

does not contain enough characters to meet the

required minimum length.

User response: Enter enough characters to meet the

required minimum length, or press a bypass edit key to

bypass the edit check. In either situation, the program

continues.

ELA00037A Input not within defined range - enter

again

Explanation: The data in the first highlighted field is

not within the range of valid data defined for this item.

User response: Enter data that conforms to the

required range, or press a bypass edit key to bypass the

edit check. In either situation, the program continues.

ELA00038A Table edit validity error - enter again

Explanation: The data in the first highlighted field

does not meet the table edit requirement defined for

the variable field.

User response: Enter data that conforms to the table

edit requirement, or press the bypass edit key to bypass

the edit check. In either situation, the program

continues.

174 IBM Enterprise Developer Server Guide for z/OS

ELA00039A Modulus check error on input - enter

again

Explanation: The data in the first highlighted field

does not meet the modulus check defined for the

variable field.

User response: Enter data that conforms to the

modulus check requirements, or press a bypass edit key

to bypass the edit check. In either situation, the

program continues.

ELA00040A No input received for required field -

enter again

Explanation: No data was typed in the field

designated by the cursor. The field is required.

User response: Enter data in this field, or press a

bypass edit key to bypass the edit check. Blanks or

nulls will not satisfy the data input requirement for any

type of field. In addition, zeros will not satisfy the data

input requirement for numeric fields. The program

continues.

ELA00041P Property msgTablePrefix was not

specified for a program: Message

%01C04, NLS code %02C03

Explanation: The program tried to display a message

from a message table but lacks a value for the property

msgTablePrefix.

 The run unit ends.

User response: Do any of the following:

v Assign a valid value in the message table property

and generate the program again.

v Change the program to avoid requesting the user

message, then generate the program again.

v Remove the user message number from the

validation property validatorTableMsgKey and

generate the program or form group again.

ELA00042P The expected number of inserts for

message %01C08, NLS code %02C03 was

not received

Explanation: The expected number of variable inserts

for an Enterprise Developer Server message did not

match the number received. The message text is in the

language-dependent message table program, ELACxxx,

where xxx is the language code.

 The program is generated from a data-table part that

might have been modified and generated specifically

for your installation.

 The inserts show the original error message number

that occurred and the language code being used.

Message ELA00163P shows the original error message

number that occurred and the message inserts that

would have been displayed for that message.

The run unit ends.

User response: Correct the problem identified by the

original message.

 If the language-dependent message table was modified,

correct the modified message so that the inserts are the

same as the inserts defined in the default data table

that was shipped with Enterprise Developer Server.

ELA00043P %01C08, %02C03

Explanation: The Enterprise Developer Server

message table program ELACxxx (where xxx is the

language code) did not contain a runtime message.

 The program is generated from a data-table part that

might have been modified and generated specifically

for your installation.

 The inserts show the original error message number

that occurred and the language code being used.

Message ELA00163P shows the original error message

number that occurred and the message inserts that

would have been displayed for that message.

 The run unit ends.

User response: Correct the problem identified by the

original message.

 If the language-dependent message table was modified,

verify that the message numbers in the modified table

match the message numbers in the message table as

shipped in the product. Also, verify that the program

loaded is at the same maintenance and release level as

the message table shipped in the product.

ELA00044P Message %01C08, NLS code %02C03, not

found

Explanation: The Enterprise Developer Server

message table program ELANCxxx (where xxx is the

NLS code) did not contain a runtime message.

 The program is generated from a data-table part that

might have been modified and generated specifically

for your installation.

 The inserts show the original error message number

that occurred and the NLS language code that was

being used. The message is accompanied by message

ELA00163P, which shows the original error message

number that occurred and the message inserts that

would have been displayed for that message.

 The original error message that occurred determines if

(and how) the program ends and if a SNAP dump is

issued.

User response: Correct the error identified by the first

message insert.

 If the message table was modified, check that the

message numbers in the modified table match the

message numbers in the message table as shipped in

Appendix. Enterprise Developer Server Run-time Messages 175

the product. Also, check that the program loaded by

the program is at the same maintenance and release

level as the message table shipped in the product.

ELA00045P Error reading message %01C08, NLS

code %02C03, status %03C08

Explanation: The user message file or database did

not contain a user-defined message for the language

associated with the language code. Message files and

databases are used only in COBOL programs generated

using CSP/370 Runtime Services Version 1 Release 1.

 The format of the message ID is as follows:

v Positions 1-3 = User message file

v Positions 4-8 = Message number

The status code varies depending on the type of user

message file or database being used:

v For VSAM, status is eight characters. The first two

bytes of code are either 08 (to specify a relative

message within a record is not used) or 12 (to specify

a record was not found in the VSAM file). The

remaining six bytes of code are the VSAM return

code (two characters), function (one character), and

feedback code (three characters), all in decimal

format. Refer to the VSAM administration guide for

your system for a definition of the VSAM codes.

v For DB2, status is the 4-character SQL code. Refer to

the DB2 manuals for your system for a description of

the SQL code.

User response: Make sure that the message is defined

in the program message file in one of two ways:

v Convert the message file to an EGL message table.

Generate the program and the message table again

using Enterprise Developer.

v If a message database is being used, add or replace

the message in the message database using the Cross

System Product/370 Runtime Services Version 1

Release 1 message database utility.

ELA00046P Call to print services program %01C08

was not successful

Explanation: A dynamic COBOL call to the specified

print services program was not successful.

 The run unit ends.

User response: Make sure that the program was

generated, compiled, and linked into a library defined

in the library search order. For z/OS CICS, the search

order includes the DFHRPL data sets.

 Also for z/OS CICS, make sure that the program was

generated with data (a build descriptor option) set to

31 and that the program is defined to the CICS region.

ELA00047P Message %01D04 was not found in

message table program %02C07

Explanation: A user message could not be found in

the program message table.

 In all z/OS environments, the Enterprise Developer

Server issues a SNAP dump if the ELASNAP data set is

allocated.

 The run unit ends.

User response: Either add the message to the table or

modify the program to use a message that is defined in

the table.

ELA00050A Number of allowable significant digits

exceeded - enter again

Explanation: The user entered data into a numeric

field that was defined with decimal places, a sign,

currency symbol, or numeric separator edits. The

number of significant digits that can be displayed

within the editing criteria was exceeded by the input

data; the number entered is too large. The number of

significant digits cannot exceed the field length, minus

the number of decimal places, minus the places

required for editing characters.

User response: Enter a number with fewer significant

digits.

ELA00051P Form %01C08 was not found in form

group %02C06

Explanation: The specified form name is not in the

form group.

 The run unit ends.

User response: Re-generate the form group and the

program.

ELA00057P Delete attempted without preceding

update on record %01C18

Explanation: This error occurs in these cases:

v A delete statement was issued against a record that

was not successfully read for update; or

v A delete statement is associated with a specific get

statement, but a different get statement was used to

select the record.

The read for update might have been cancelled as the

result of a converse statement in a segmented program.

 The run unit ends.

User response: Make sure that in the get and delete

statements, the program correctly used record names or

resultSetID.

 Also make sure that the sequence of statements is

appropriate. To step through the program, you can use

176 IBM Enterprise Developer Server Guide for z/OS

the EGL debugger or (for CICS-based programs) CEDF.

ELA00061P DL/I error, function = %01C04, status

code = %02C02

Explanation: DL/I returned an error status code in

response to the DL/I call for the current function and

either of the following occurred:

v There was no error routine specified for the function.

v Both special function words EZEFEC and

EZEDLERR were set to 0 (this indicates that the

program should end on abnormal DL/I conditions),

and the status code specified either an abnormal

condition, or a condition that was not expected.

The status code in the message comes from the DL/I

PCB used for the DL/I call.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 This is either a program error or a database definition

error.

User response: Do the following:

1. Locate the specified error code. Refer to the IMS

messages and codes or the IMS application

programming manuals for a description of the

specified status code.

2. Correct the error.

3. Generate the program again.

ELA00062P DL/I call overlaid storage area, record

%01C18

Explanation: A DL/I call read a block of data that was

larger than the record defined to hold the data. The

storage area immediately following the record buffer

was overlaid.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, the Enterprise Developer

Server issues a SNAP dump if the ELASNAP data set is

allocated.

User response: This is a program error. Define the

record so that its length matches the length of the

segment it represents and generate the program again.

ELA00063I PCB DB %01C08, segment %02C08, level

%03D02, options %04C04

Explanation: This message provides additional

diagnostic information for a database I/O error. The

PCB passed in the DL/I call contained the specified

information.

 For unsuccessful DL/I I/O call, the segment name field

contains the last segment along with the path to the

requested segment that satisfied the call. When a

program is initially scheduled, the name of the

database might be put in the segment name field if no

segment is satisfied.

User response: Refer to message ELA00061P.

ELA00064I PCB key feedback area length %01D04

Explanation: This message provides additional

diagnostic information for a database I/O error. The

PCB passed in the DL/I call contained the specified

key feedback length. This is the length of the

concatenated key of the hierarchical database path.

User response: Refer to message ELA00061P.

ELA00065I PCB key feedback area = %01C255

Explanation: This message provides additional

diagnostic information for a database I/O error. The

PCB passed in the DL/I call contained the specified

key feedback area.

 The first 255 bytes are displayed. If necessary, because

of the line and data lengths, the message wraps around

to display all 255 bytes. The data is displayed as

character data in the message. The message is followed

by two lines that give the hexadecimal value under

each character.

User response: Refer to message ELA00061P.

ELA00066I DL/I I/O area = %01C255

Explanation: This message provides additional

diagnostic information for a hard DL/I I/O error. The

message displays the contents of the DL/I I/O area.

 The first 255 bytes are displayed. If necessary, because

of the line and data lengths, the message wraps around

to display all 255 bytes. The data is displayed as

character data in the message. The message is followed

by two lines that give the hexadecimal value under

each character.

User response: This message is always accompanied

by another message (for example, ELA00003P or

ELA00061P) that specifies the error. See the explanation

and user response of the accompanying message.

ELA00067I DL/I SSA %01D02: %02C255

Explanation: This message provides additional

diagnostic information for a DL/I I/O error. The

message displays the contents of a segment search

argument (SSA) for the DL/I call. The first message

insert gives the number of the SSA. The second insert

gives the first 255 bytes of the SSA.

Appendix. Enterprise Developer Server Run-time Messages 177

If necessary, because of the line and data lengths, the

message wraps around to display all 255 bytes. The

data is displayed as character data in the message. The

message is followed by two lines that give the

hexadecimal value under each character.

 This message is repeated once for each SSA used in the

DL/I call.

User response: Refer to message ELA00061P.

ELA00068P DL/I variable segment length is not

valid, segment %01C08

Explanation: A DL/I segment I/O area is shorter than

the segment returned in a DL/I retrieval, or the

computed segment length on an ADD or REPLACE

I/O option is not valid.

 If the I/O option was an INQUIRY, UPDATE, or

SCAN, the BYTES parameter in the DBD is greater than

the length of the record defined to Enterprise

Developer.

 If the I/O option was an ADD or REPLACE, the

program has erroneously set the length of the segment.

If this error occurs for a path call, the DL/I I/O area

shown in message ELA00061I contains only segments

before the segment with the error. Because the length is

in error, the segment with the error cannot be moved to

the DL/I I/O area.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, the Enterprise Developer

Server issues a SNAP dump if the ELASNAP data set is

allocated.

User response: If the error occurred in a retrieval,

have the database administrator correct either the DBD

or VisualAge Generator record definition, and generate

the program again.

 If the error occurred on an update, correct the logic

associated with calculating the length of the segment.

Generate the program again.

ELA00069P The value of an input variable is too

large for the target SQL column

Explanation: The run unit ends.

 In CICS environments, Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, the Enterprise Developer

Server issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Modify the program to ensure that

values that overflow the even-numbered length of the

record item are detected and rectified before executing

any function that has an SQL row record as its object,

and that uses the record item as an input host variable

in its SQL statement.

 This condition is not detected in programs that have

the build descriptor option checkNumericOverflow;

instead the high-order digit of the record item’s value

is truncated before being used in the SQL statement.

ELA00070P %01C04 error, status code %02C02

Explanation: DL/I returned an error status code other

than QC or AL in non-VSE environments or HX or XR

on VSE environments in response to a CHKP

(checkpoint) or ROLB (rollback) DL/I call.

 CHKP and ROLB calls are issued for the following

reasons:

v The program calls the commit or rollback functions.

v The program ends abnormally and a PSB is active.

v The program causes a commit to be taken at a

CONVERSE I/O option, a First Map, or because of

the /SYNCXFER generation option.

The status code in the message is taken from the I/O

PCB used with the DL/I call.

 The run unit ends.

 In the VSE batch environment, the Enterprise

Developer Server issues a SNAP dump that is directed

either to the system logical unit SYSLST or the dump

data set of the partition.

 In all z/OS and VSE environments, the Enterprise

Developer Server issues a SNAP dump if the

ELASNAP data set is allocated.

User response: Make a note of the message and notify

the system programmer. On z/OS systems, refer to the

application programming manual or the IMS messages

and codes manual for a description of the status code.

On VSE systems, refer to the DOS DL/I messages and

codes manual for a description of the status code.

ELA00072P %01C18, set record position is not

supported

Explanation: The SET SCAN indicator was on for a

DL/I segment record when a SCAN function with a

user-modified SSA list was used with that record. The

SET SCAN indicator is not supported for DL/I calls

with modified SSA lists.

 The run unit ends.

User response: Modify the program logic so that it

does not set the SET SCAN indicator for a segment

with a modified DL/I call.

178 IBM Enterprise Developer Server Guide for z/OS

ELA00073P SQL error, command = %01C08, SQL

code = %02D04

Explanation: The SQL database manager returned an

error code for an SQL statement. Program processing

ends following an SQL request whenever the sqlcode in

the SQL communications area (SQLCA) is not 0, and

either of the following is true:

v The I/O statement is not in a try block; or

v The sqlcode indicated a hard error and the system

variable sysVar.handleHardIOErrors was set to 0.

The message is followed by message ELA00074I which

displays the substitution variables associated with the

sqlcode. (Those substitution variables are also available

to the program by way of the system variable

sysVar.sqlerrmc.)

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Determine the cause of the problem

from the SQL code and the SQL error information.

 Either correct the program or the database definition.

Refer to the appropriate database manager messages

and codes manual for information on the SQL code and

SQL error information.

ELA00074I SQL error message: %01C70

Explanation: This message accompanies message

ELA00073P when an SQL error occurs. It displays the

relational database manager error information returned

in the SQLCA field SQLERRM and is repeated as many

times as necessary to display the complete description.

User response: Use the information from this message

and ELA00073P to correct the error.

ELA00076P Invalid data is used in a

character-to-hexadecimal assignment or

comparison

Explanation: The current statement involves either a

move from a character data item to a hexadecimal data

item, or a comparison between a character data item

and a hexadecimal data item. The characters in the

character data item all must occur in the following set

for the move or compare to complete successfully:

a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

One or more of the characters in the character data

item is not in this set. This condition causes a program

error.

The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Change the program to ensure that the

character data item contains valid data when the

character-to-hexadecimal move or compare operation

occurs. In text-form fields, you can use the isHexDigit

validation property to ensure that user input contains

only valid characters.

ELA00080A Hexadecimal data is not valid

Explanation: The data in the variable field identified

by the cursor must be in hexadecimal format. One or

more of the characters you entered does not occur in

the following set:

a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

User response: Enter only hexadecimal characters in

the variable field. The characters are left-justified and

padded with the character zero. Embedded blanks are

not allowed.

ELA00086P %01C18 - No active open or get for

update is in effect

Explanation: One of these case applies:

v A get next statement cannot run because a related

open did not run previously in the same program; or

v A replace or delete statement cannot run because a

related open or get for update did not run previously

in the same program.

All rows selected for update are released when a called

program returns to the calling program.

 The run unit ends.

User response: Make sure that in the second

statement (get next, replace, or update), the program

correctly used record names or resultSetID to match the

first statement (open or get).

 Also make sure that the sequence of statements is

appropriate. To step through the program, you can use

the EGL debugger or (for CICS-based programs) CEDF.

ELA00093I An error occurred in program %01C08,

function %02C18

Explanation: An error occurred in the specified

function for the specified program. Other information

about the error is given in the messages that follow this

message.

Appendix. Enterprise Developer Server Run-time Messages 179

If a function is not active, the second insert contains the

name of a section in the generated initialization or

ending logic of the program.

User response: Refer to the error messages following

this message to determine the cause of the error.

ELA00096P A data operand of type MBCHAR is not

valid

Explanation: An operand in a move or assignment

statement contains mixed double-byte and single-byte

data that is not valid.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Verify that the data is valid in

variables that are of type MBCHAR and are in a move

or assignment statement.

ELA00105I Error occurred at terminal %01C08, date

%02C08, time %03C08, user %04C08

Explanation: An error occurred at the specified logical

terminal on the specified date and time. This message

precedes any error diagnostic information routed to an

alternate error destination.

 For a program running in z/OS batch, the first insert is

********, which indicates that the terminal identifier is

not known.

 For z/OS CICS, the last insert is only provided if

sign-on security is active on or provided in the system.

User response: Examine all error messages that follow

this message and precede the next occurrence of this

message. Use the information from these messages to

diagnose and correct the error.

ELA00106P Program %01C08 PSB does not match

the generated PSB definition

Explanation: The PCBs passed to the program at

program initialization time did not match the PSB

defined for the program. The number of PCBs passed

was less than the number of PCBs defined in the

Enterprise Developer definition.

 The run unit ends. In CICS environments Enterprise

Developer Server issues a dump based on options

selected using the diagnostic controller utility.

 In all z/OS environments, the Enterprise Developer

Server issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Either correct the program definition

of the PSB and generate the program again, or correct

the IMS PSB and generate it again.

ELA00109P Input form must be form %01C08 rather

than form %02C08, for program %03C07

Explanation: The form received by the program is not

the form specified as the value of program property

inputForm. This error occurs when the program starts.

 The run unit ends.

User response: Make sure that the transferring

program specifies the correct form on the show

statement and that the receiving program has the

correct value in property inputForm.

ELA00110P Shared data table %01C07 cannot be

updated

Explanation: The program modifies a data table that

was generated as a shared table. Shared data tables

cannot be updated.

 The run unit ends.

User response: Either generate the data table as

non-shared or change the program to avoid modifying

the data table.

ELA00111P Length of input form %01C08 is not

valid

Explanation: The length of an input form received by

a program is not the length defined for the form in the

program.

 The run unit ends.

User response: Use the same form declaration when

generating both the program that receives the input

form and the program that issues the show statement.

ELA00114P A transfer to called program %01C07 is

not allowed

Explanation: A program cannot transfer to a called

program.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Replace the transfer statement with a

call statement.

180 IBM Enterprise Developer Server Guide for z/OS

ELA00115P Use of a transfer statement is invalid

because the receiving program (%01C07)

has an input form

Explanation: Only a show statement can transfer to a

program that requires an input form.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 The Enterprise Developer Server issues a SNAP dump

if the ELASNAP data set is allocated.

User response:

 Do either of these actions:

v Use a show statement to invoke the receiving

program indirectly; or

v Remove the value in the inputForm property of the

receiving program. The program can show the form

after receiving control.

ELA00118P Missing PSB for program %01C07

Explanation: A PSB was specified for the named

program during definition. However, the program ran

as a z/OS batch job. This can happen if you do not use

the sample JCL or CLIST created by the generation

function.

 The run unit ends.

User response: If the program contains DL/I I/O or

other DL/I functions, change the runtime JCL or CLIST

to run DL/I programs. If the program does not use

DL/I, remove the PSB name from the program

definition.

ELA00119P Programs %01C07 and %02C07 are not

compatible

Explanation: A program started by a transfer or call

statement is not compatible with the starting program

because the programs were generated for different

target systems.

 The run unit ends.

User response: Re-generate the program for which the

target system was wrong.

ELA00120P sysLib.startTransaction failed, logical

terminal ID = %01C08, status code =

%02C02

Explanation: Common status codes are as follows:

QH Unknown output destination

A1 Unknown output destination

 Both status codes indicate that the 8-character logical

terminal ID was not defined to the IMS system as

either a terminal or transaction.

 The run unit ends.

User response: Do as follows:

1. Ensure that the transaction code field of the record

specified on sysLib.startTransaction is defined to the

IMS system.

2. Review the program logic ensure that the

transaction code file is set correctly.

3. Refer to the IMS application programming manual

or the IMS messages and codes manual for your

system for an explanation of status codes other than

the ones listed above.

ELA00121P sysLib.audit was not successful, logical

terminal ID = %01C08, status

code=%02C04

Explanation: The status code is the 2-character status

from the I/O PCB.

 The run unit ends.

User response: Refer to the IMS application

programming manual or the IMS messages and codes

manual for your system.

ELA00125P Error number %01D04 is not valid

Explanation: The error handler was called with an

error number that it did not recognize. This is a

product error.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Ensure that the generated COBOL

code has not been modified by generating the program

again. Afterwards, run the program again. If the

problem persists, do as follows:

1. Record the message number

2. Obtain the dump

3. Record the scenario under which this message

occurs

4. Obtain the COBOL source for the problem program

5. Use your electronic link with IBM Service if one is

available, or contact the IBM Support Center

ELA00127P A requested function is not supported

for form %01C08, form group %02C06

Explanation: A form field referenced a validation

function, but the program does not include that

function.

Appendix. Enterprise Developer Server Run-time Messages 181

The run unit ends.

User response: Check the field properties and the

program, then re-generate the program with build

descriptor option genFormGroup set to YES.

ELA00129I Form %01C08 was received

Explanation: Related messages give further details.

User response: Refer to the related error messages.

ELA00130P GSAM error, file = %01C08, function =

%02C04, status code = %03C02

Explanation: An I/O error occurred on an ADD,

SCAN, or CLOSE I/O option for a file associated with

a GSAM database. Program processing ends on a hard

status code if EZEFEC is set to 0, or on any error status

code if there is no process error routine.

 This message can also occur on an implicit OPEN or

CLSE call to the GSAM database. An implicit OPEN or

CLSE call occurs as a result of an ADD or SCAN

process. Program processing ends on a hard status code

if EZEFEC is set to 0, or on any error status code if

there is no process error routine for the ADD or SCAN

that caused the implicit OPEN or CLSE call.

 An AI status code for an implicit OPEN might be

caused by specifying a file name during Enterprise

Developer resource association or with the ASSOCIATE

command that is different from the DD name specified

in the GSAM DBD.

 For an ADD, message ELA00066I accompanies this

message and provides the DL/I I/O area that was used

for the call.

 The run unit ends. If ELASNAP is allocated, the

Enterprise Developer Server issues a SNAP dump.

User response: Determine the cause of the I/O error

from the DL/I status code and either correct the

program or the database definition. Refer to the IMS

application programming manual or the IMS messages

and codes manual for your system for an explanation

of the DL/I status code.

ELA00131P MSGQ error, file = %01C08, function =

%02C04, status code = %03C02

Explanation: An error occurred on a SCAN or ADD

function for a file or a DISPLAY function for a print

map when the file or EZEPRINT is associated with an

IMS message queue (I/O or TP PCB). Program

processing ends on a hard status code, if EZEFEC is set

to 0, or on any error status code, if there is no I/O

error routine.

 Common status codes are:

QH Unknown output destination (ADD, DISPLAY,

or CONVERSE)

A1 Unknown output destination (ADD, DISPLAY,

or CONVERSE)

A6 Output segment limit exceeded (ADD,

DISPLAY, or CONVERSE)

FD Deadlock occurred (SCAN).

 For an ADD, DISPLAY, or CONVERSE, the listed status

codes specify that the 8-character system resource name

associated with the file or EZEPRINT at generation or

in the EZEDEST or EZEDESTP special function words

was not defined to the IMS system as either a terminal

or a transaction.

 For an ADD, DISPLAY, or CONVERSE, message

ELA00066I accompanies this message and shows the

DL/I I/O area that was used for the call.

 The run unit ends. If ELASNAP is allocated, the

Enterprise Developer Server issues a SNAP dump.

User response: If the output destination is not valid,

ensure that it is defined to the IMS system. Also review

the program logic to ensure that EZEDEST, if used, is

set correctly. For an explanation of status codes other

than the ones listed above, refer to the IMS application

programming manual or the IMS messages and codes

manual for your system.

ELA00135P The program is not expecting an input

form

Explanation: A program issued a show statement that

included an input form, but the receiving program has

no value for property inputForm.

 The run unit ends.

User response: Either change the invoking program to

avoid sending a form or change the receiving program

to specify an input form.

ELA00136P DL/I error occurred in work database

operation

Explanation: An error occurred during use of the

work database when it was implemented using DL/I.

This message is accompanied by additional DL/I

diagnostic messages, including ELA00061P, that provide

additional information about the error. Message

ELA00061P includes the DL/I function and status code.

Refer to the IMS messages and codes or IMS

application programming manual for your system for a

description of the status code.

 The run unit ends. If ELASNAP is allocated, the

Enterprise Developer Server issues a SNAP dump.

User response: This is a database definition error or

an error in the definition of the work database PCB in

your IMS PSB. Record this information and any other

diagnostic messages, and notify the system

administrator.

182 IBM Enterprise Developer Server Guide for z/OS

ELA00137P SQL error occurred in work database

operation

Explanation: An error occurred during use of the

work database when it was implemented using SQL.

This message is accompanied by additional SQL

diagnostic messages, including ELA00073P, that provide

additional information about the error.

 The run unit ends. If ELASNAP is allocated, the

Enterprise Developer Server issues a SNAP dump.

User response: Determine the cause of the problem

from the SQL code and the SQL error information in

related message ELA00074I, and correct the database

definition.

ELA00138P %01C07 was replaced in the middle of a

conversation

Explanation: The program was running in segmented

mode and ran a converse statement, but was replaced

in the load library during user think time (the time

between writing the form to the terminal and receiving

the user’s input).

 The program conversation with the user started with

the original version of the program and cannot be

resumed.

 The run unit ends. In CICS environments Enterprise

Developer Server issues a dump based on options

selected using the diagnostic controller utility.

User response: Run the program again.

ELA00139P MFS map program %01C06 and MFS

map %02C08 have different versions

Explanation: An MFS mapping services program

attempted to process a message input descriptor for an

MFS map that was generated at a different time than

the MFS mapping services program. Both the MFS

mapping services program and the map it works with

must be built in the same generation step.

 This is probably a problem with the installation of

either the program or the MFS map after generation of

a map group. One of the following might have

occurred:

v The MFS mapping services program might have

been compiled and linked without installing the MFS

maps, or vice versa.

v The MFS map might have been installed in an MFS

test library, but you did not enter an IMS /TEST

MFS command prior to starting the transaction.

v The MFS map might have been installed in the MFS

production library, and you entered a /TEST MFS

command prior to starting the transaction.

v The MFS map might have been used in an XFER

with a map from another program. The transfer-from

program used a different map group, but the map

name on the XFER is the same as the First Map

name for the transfer-to program.

In the IMS/VS environment, the transaction (logical

unit of work) ends and processing continues with the

next message. In all other environments, the run unit

ends.

User response: Ensure that the same version of the

MFS mapping services program and the MFS control

blocks are installed in the correct libraries. If an XFER

and First Map are involved, ensure that the

transfer-from and transfer-to programs use the same

map group.

ELA00140P Segmentation storage size discrepancy

for %01C07

Explanation: The size of the segmentation storage

record is not valid for the specified program.

 Possible causes for the error include:

v The program is replaced in the load library in the

middle of a program conversation with the user

v The program issues a show statement that includes a

form, but the receiving program expects an input

form that has different characteristics

v The program is segmented and issues a converse

statement when sysVar.transactionID contains a

transaction code, but that code is associated with a

program that has no relationship to the issuing

program. If the sysVar.transactionID is used to switch

transaction codes, the new transaction must start

either the same program that was started by the old

transaction or the program that issued the converse

statement.

The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Try the transaction again. If the

program works correctly, the error was caused by a

re-link in the middle of the conversation. If the error

still occurs, determine why there is a mismatch and

correct the situation that caused the error.

ELA00141P Data table %01C07 cannot be modified.

Delete %02D06 bytes.

Explanation: The program’s attempt to modify a

shared data table would cause an increase in data-table

size beyond the CICS limit, which is 65535 bytes.

 The run unit ends.

User response: Either change the logic of the program

so that the data table is not modified or decrease the

Appendix. Enterprise Developer Server Run-time Messages 183

size of the data-table content by the specified number

of bytes.

ELA00142P Map %01C08 in group %02C06 not

supported on this device

Explanation: A map has been sent to a device using

IMS Message Format Services, but the device type was

not in the list of devices specified for the map using the

Enterprise Developer device selection function. The

message appears when either of the following occurs:

v A printer map was sent to a destination that is

defined as a terminal in the IMS System Generation.

The destination is the system resource name

specified for EZEPRINT at generation or an override

value loaded into the EZEDESTP special function

word at run time. The message appears at the

terminal where the printer map was directed, not at

the terminal that originated the transaction. Program

processing continues.

v A terminal map is defined in a map group that

contains multiple maps with different device

selections. The device to which the map was directed

was not specified using the Enterprise Developer

device selection function. The message appears at the

terminal that originated the transaction as the result

of a CONVERSE or an XFER with a map. The

program conversation with the user at this device

ends because there is no way for the user to enter

data. The program continues processing with the

next input message on the message queue.

The program is not notified by MFS that a problem has

occurred. Therefore, message ELA00142P is built into

the MFS source to provide a method of notifying you

when an error occurs. A SNAP dump is not issued.

User response: If the error occurred for a printer map,

review the resource association information specified

during generation, the program logic used to set the

value of EZEDESTP, and the MFS generation options

(/MFSDEV, /MFSIGNORE, and /MFSEATTR) to

determine the appropriate corrections to make.

Depending on the corrections required, generate either

the program or map group again. In addition, if the

printer map was sent to a terminal device, it might be

necessary for the system administrator to purge the

messages pending for the terminal using the IMS

/DEQ command.

 If the error occurred for a terminal map, review the

terminal device types specified for this map and the

MFS generation options (/MFSDEV, /MFSIGNORE,

and /MFSEATTR) to determine the appropriate

corrections to make. Generate the map group again.

 If the program using the terminal map is a

nonconversational program (/SPA=0 generation

option), the user only needs to clear the screen and

type another transaction code to resume work.

 If the program that used the terminal map is a

conversational program (/SPA generation option

greater than 0), the user must clear the screen, type

/EXIT to end the conversation and then type another

transaction code to resume work.

ELA00143P Data table %01C07 is not a message

table

Explanation: A message table was specified for the

program. The data table specified is not a message

table.

 The run unit ends.

User response: Either declare the data table as a

message table and generate the data table again, or

correct the message table name specified for the

program and generate the program again.

ELA00144P Segmentation storage error

Explanation: Segmentation storage has an internal

error mapping memory.

 The run unit ends. In CICS environments Enterprise

Developer Server issues a dump based on options

selected using the diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: This is an internal system error.

Contact the system administrator for assistance.

ELA00145A Map name required - enter /FOR

%01C06O map-name

Explanation: The map group has more than one map,

but a valid map name was not entered when the IMS

/FOR command was used to display the map.

User response: Enter the /FOR command again, using

the following format:

 /FOR map-groupO map-name

ELA00146P Segmentation status error

Explanation: The status byte for segmentation storage

management is lost and the program has no way to

recover.

 This error occurs when a PA key is pressed prior to

pressing the ENTER key or a PF key for an IMS

conversational transaction.

 If the program was generated with /SPA=n or

/SPA=(n,ADF), then there was no recovery feature

generated in the program.

 If the program was generated with /SPA=(n,,m) or

/SPA=(n,ADF,m) then the recovery feature was

generated in the program, but was bypassed. A bypass

of the recovery feature occurs when a deferred message

switch comes from a non-generated program or a

184 IBM Enterprise Developer Server Guide for z/OS

generated program that was not generated with the

same /SPA generation option.

 In the IMS/VS environment, the transaction (logical

unit of work) ends and processing continues with the

next message.

User response: Restart the transaction sequence and

avoid using PA keys while on a Enterprise

Developer-generated screen.

 Consider generating the Enterprise Developer programs

with one of the /SPA generation options that will allow

recovery from pressing a PA key.

ELA00147A Key sequence is not valid. Last screen

will display - enter the data again

Explanation: A PA key was pressed prior to pressing

the ENTER key or a PF key. IMS has reserved the use

of the PA keys. All modifications on the previous screen

are lost.

User response: Enter the data again and avoid use of

PA keys while on a generated screen.

ELA00149I %01C07 command ignored during

message database load

Explanation: The PSB for the message database

specifies that the database is being initially loaded.

Only ADD commands are supported during initial load

of a DL/I message database.

User response: Run the message utility again,

specifying the PSB for the database.

ELA00151P %01C07 of message record failed for the

message database

Explanation: The message utility program

encountered an error inserting or deleting a message in

the message database. This message is accompanied by

diagnostic messages describing the error.

 If an ELASNAP DD statement is specified in the JCL,

Runtime Services issues a snap dump. The run unit

ends.

User response: Review the diagnostic messages. Verify

that the database has been successfully defined by

checking the DB2 message database create job

(ELAMSJL2) messages. Correct the problem and run

the job again.

ELA00152I Message file %01C03 has been added

Explanation: The indicated user message file has been

successfully added to the message database.

User response: Test the programs that use this user

message file.

ELA00153P %01C08 failed on file %02C08

Explanation: While running the message utility, an

attempt was made to access (open, close, read, or write)

the indicated file. The access failed and the message

utility ended. The first message insert indicates the type

of access that failed. The most common errors are a

missing DD card for the file.

User response: Refer to the job listing for system error

messages pertaining to the indicated DD name. Correct

the error and run the job again, starting with the

command that caused the error.

ELA00154I Message file %01C03 has been replaced

Explanation: The indicated user message file has been

successfully replaced in the message database.

User response: Test the programs that use this user

message file.

ELA00155I Message file %01C03 has been deleted

Explanation: The indicated user message file has been

successfully deleted from the message database.

User response: Change the program using this user

message file to use another message file and generate

the program again.

ELA00156I Replace on non-existent message file

%01C03, file was added

Explanation: A REPLACE command was issued for

the indicated message file, but the file did not exist in

the message database. The file was added instead.

User response: None, provided the file was added to

the correct message database.

ELA00157P %01C08 failed on file %02C08, file

status = %03C06

Explanation: While running of the message utility, an

attempt was made to access (open, close, read, or write)

the indicated VSAM file. The file identifies the DD

name. The file status consists of the VSAM return code

(2 characters), function (1 character), and feedback code

(3 characters). The access failed and the message utility

terminated. The first message insert indicates that type

of access that failed.

User response: Refer to the VSAM administration

guide for your system for a definition of the status

codes. Also look at the job listing for system error

messages pertaining to the indicated DD name. Correct

the error and run the job again, starting with the

command that caused the error.

Appendix. Enterprise Developer Server Run-time Messages 185

ELA00158P Syntax error on command

Explanation: A command being processed by the

message utility did not follow the correct syntax. The

message utility ends.

User response: Correct the command and rerun the

job, starting with the command that had the incorrect

syntax.

ELA00159P Message file %01C03 already exists in

the message database

Explanation: An attempt to add a user message file

failed because the message file already existed in the

message database for the language specified in the

current message utility command. The return code is

set to 08.

User response: Use the REPLACE command to

update the message file in the message database.

ELA00160P Message file %01C03 does not exist in

the message database

Explanation: An attempt to remove or list a user

message file failed because the message file does not

exist in the message database for the language specified

in the current message utility command. The return

code is set to 08. If the insert is an asterisk, you

attempted to list all messages in an empty message

database.

User response: Correct the message file ID in the

command and run the job again.

ELA00162P Message I/O error, type %01C04, file

%02C08, code %03C08

Explanation: An error occurred when a program

generated using Cross System Product/370 Runtime

Services Version 1 Release 1 attempted to open or close

a user message file. The type variable insert specifies

VSAM as the message file type. The file insert specifies

the DD name. The first two bytes of the code insert are

either 08 (to specify an OPEN) or 16 (to specify a

CLOSE). The next two bytes are the ACB (Access

control block) return code in hexadecimal format. The

remaining bytes in the code insert are zero.

 The run unit ends.

User response: Have the administrator do one of the

following:

v Determine the cause of the problem from the VSAM

error code. First see the table of common VSAM

codes in the IBM Enterprise Developer Server Guide for

z/OS. If the codes are not listed in the table, refer to

the VSAM administration guide for your system for

a definition of other VSAM codes. Also verify that

the user message file is allocated correctly.

v Convert the message file to a message table and

generate the program again under VisualAge

Generator or CSP/370AD Version 4 Release 1.

ELA00163P %01C08, %02C60

Explanation: This message is used when a Enterprise

Developer Server message cannot be found in the

language-dependent message table program ELACxxx,

where xxx is the language code.

 The first variable insert in this message is the error

message number for the error that actually occurred.

The second insert in this message contains one of the

message inserts that is used by the error that actually

occurred. This message is repeated as many times as

necessary to report all inserts. The inserts are reported

in order by their number: %01, %02, and so on.

User response: See the message with the

corresponding message number in this manual. Take

the action appropriate for that message. Also, contact

the system administrator to determine why the

message could not be found in the Enterprise

Developer Server language-dependent message table

program.

ELA00164P %01C08, %02C04, %03C02, %04X08

Explanation: The error handler was not successful in

using a DL/I call to write diagnostic information about

another error to normal destinations for error

information. The variable inserts contain the following

information:

v Destination from the terminal identifier field of the

PCB used in the call.

 The destination can be the error destination specified

at program generation, the user terminal ID, or the

IMS log.

v DL/I function

v DL/I status code

v PCB Address

Enterprise Developer Server ends the program with a

user abend.

User response: See Chapter 20, “Diagnosing Problems

for Enterprise Developer Server on z/OS Systems,” on

page 129 for information about locating the diagnostic

messages in the dump. These messages relate to the

original error that ended the program. Also verify that

the errorDestination value specified in your build

descriptor options is included in the IMS system

generation.

ELA00166P The recursion stack exceeds the

maximum size allowed

Explanation: The stack that contains information to

support recursion or segmentation has become too

large.

186 IBM Enterprise Developer Server Guide for z/OS

The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Check for an infinite loop that is

causing a large number of recursions. Either limit the

number of recursions, or reduce the number of

functions in the program.

ELA00168P %01C03

Explanation: The NLS language code in the file

allocated to ELAMSG as shown in the insert is not

valid. The Enterprise Developer Server utility ends

because the language code for messages and report

headings cannot be determined.

User response: Correct the JCL so that the ELAMSG

DD statement references a sequential file or in-stream

data that contains a valid NLS code in columns 1

through 3 of the first record. Refer to the IBM

Enterprise Developer Server Guide for z/OS for a list

of the valid NLS codes.

ELA00169I Work database purged of %01D08

records older than day %02C06, time

%03C06

Explanation: The utility that purges obsolete records

from the work database has completed normally.

User response: None required.

ELA00170P Input is not valid

Explanation: Either the date or the time provided to

the utility that purges obsolete records from the work

database was nonnumeric or was not valid.

 The run unit ends.

User response: Ensure that the date is in Julian format

(YYDDD - two positions for the year and three

positions for the day of the year). Ensure that the time

is in HHMMSS format (two position for the hour, two

positions for the minutes, and two positions for the

seconds). The date and time specified must be at least

24 hours before the time that the purge program is run.

ELA00172I CICS error, system identifier %01C08

Explanation: An error occurred on a CICS function to

be performed on a remote system. The message

displays the CICS identifier for the remote system.

 This message is always issued along with other

messages that identify the function being performed

and the CICS error return information.

User response: None required.

ELA00173P An error occurred in remote program

%01C08, date %02C08, time %03C08

Explanation: An error occurred in a remote program

that caused the remote program to stop running.

Diagnostic messages might have been logged at the

remote location giving information about the error. The

date and time stamp on this message can be used to

associate the messages logged at the remote system

with this error message.

 The run unit ends.

User response: Report the error to the system

administrator.

ELA00179P An error occurred starting transaction

%01C08

Explanation: IMS or CICS indicates that an error

occurred when a program attempted to start the

specified transaction. A message following this message

gives the IMS or CICS error codes.

 The run unit ends.

User response: Determine the cause of the error from

the following message and correct the error.

ELA00184P Program %01C07 and mapping services

program %02C08 are not compatible

Explanation: The specified program and mapping

services program are generated for different systems.

 The run unit ends.

User response: Generate the mapping services

program for the same environment as the program.

ELA00185P Length of %01D02 for record %02C18 is

not valid and conversion ended

Explanation: Conversion of a variable length record

between the workstation format and host format cannot

be performed because of one of the following

conditions:

v The record length for the current record indicates

that the record ends in one of the following:

– The middle of a numeric field

– The middle of a DBCHAR character

– The middle of an SO/SI string.
v The record is longer than the maximum length

defined for the record.

The run unit ends. In CICS environments Enterprise

Developer Server issues a dump based on options

selected using the diagnostic controller utility.

Appendix. Enterprise Developer Server Run-time Messages 187

In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Modify the program to set the record

length so that it ends on a valid field boundary.

ELA00186P An operand of type MBCHAR in a

conversion operation is not valid

Explanation: Conversion of an item from EBCDIC to

ASCII or from ASCII to EBCDIC cannot be performed

because a double-byte data value is not valid.

 The run unit ends. In CICS environments Enterprise

Developer Server issues a dump based on options

selected using the diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Modify the program to ensure that any

items of type MBCHAR are valid in the records to be

converted.

ELA00187P Conversion table %01C08 does not

support double-byte character

conversion

Explanation: Conversion of an item of type MBCHAR

or DBCHAR from ASCII to EBCDIC or from EBCDIC

to ASCII cannot be performed because the specified

conversion table does not include conversion tables for

double-byte characters.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Modify the program to specify a

conversion table that contains the double-byte

conversion tables that are valid for data of types

DBCHAR and MBCHAR. For background information,

see the EGL help topic Data Conversion.

ELA00188P Conversion Error. Function: %01C25,

Return Code: %02C05, Table: %03C08

Explanation: A system function was called to perform

code page conversion for data used in a client/server

program. The function failed.

 Possible causes for the failure are:

v The code pages identified in the conversion table are

not supported by the conversion functions on your

system.

v For double-byte character conversion where the

source data is in ASCII format, the source data was

created under a different DBCS code page than the

code page that is currently in effect on the system.

User response: Consider the EGL help topic Data

conversion.

ELA00191I Program %01C07, generation date

%02C08, time %03C08

Explanation: An error in the specified program has

occurred. The error is identified in other messages

preceding this message. The error might be caused by

changes to individually generated components of the

program.

User response: Verify the generation date and time of

the program with that of other generated components.

ELA00192I Print services program %01C08,

generation date %02C08, time %03C08

Explanation: An error in the specified print services

program has occurred. The error is identified in other

messages preceding this message. The error might be

caused by changes to individually generated

components of the controlling program.

User response: Verify the generation date and time of

the print services program with that of other generated

components in the program.

ELA00195I Form group format module %01C08,

generation date %02C08, time %03C08

Explanation: An error in the specified form group

format module has occurred. The error is identified in

other messages preceding this message. The error

might be caused by changes to individually generated

components of the controlling program.

User response: Verify the generation date and time of

the form group format module with that of other

generated components in the program.

ELA00201P z/OS %01C08 error in service %02C08,

RC = %03D04

Explanation: Enterprise Developer Server received an

error return from a z/OS macro. The inserts identify

the macro name, the Enterprise Developer Server

program name, and the return code.

 The run unit ends.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Contact the system administrator.

188 IBM Enterprise Developer Server Guide for z/OS

ELA00202P The file name %01C65 is not valid in

the record-specific variable

resourceAssociation or in

sysVar.printerAssociation

Explanation: The format of the record name is not

valid. The run unit ends.

User response: Refer to the EGL help to determine the

valid syntax, then correct and regenerate the program.

ELA00203P CICS I/O error on file %01C08, resource

%02C08

Explanation: The current program has attempted to

gain access to a CICS file, and CICS returned a status

code that indicated an I/O error occurred. The file is

the logical file name specified in the record part

declaration. The resource is the CICS file control table

(FCT) or destination control table (DCT) name.

 Possible causes of the error are the following:

v The file does not exist on disk.

v The file is not defined in the CICS FCT or DCT.

v The file was specified to be opened when first

referenced.

v On z/OS CICS, the file was closed using the CSMT

or CEMT transactions.

v For z/OS CICS, the DD statement for the file in the

CICS startup JCL is missing, does not match the FCT

name, or is in error.

v The file has been changed or otherwise corrupted.

Message ELA00204I is also displayed with the

information from the EXEC interface block (EIB).

 The run unit ends. Enterprise Developer Server issues a

dump based on information supplied for the

transaction with the diagnostic controller utility.

User response: Have the CICS administrator refer to

the CICS messages and codes manual for an

explanation of the EIB codes. Correct the error and run

the program again.

ELA00204I CICS EIBFN %01X04, RCODE %02X12,

RESP %03D04, RESP2 %04D04

Explanation: The current program has received an

error code for a CICS command. The run unit ends.

User response: Refer to the CICS application

programmers’ guide for an explanation of the EXEC

interface block (EIB) codes. Correct the error and run

the program again.

ELA00205P A CICS %01C22 error occurred in

service %02C08

Explanation: Enterprise Developer Server received an

error status code for a CICS command. This message

identifies the command and the service program that

issued the command. This message is accompanied by

message ELA00204I, which contains the response codes

from the EXEC interface block (EIB).

 The run unit ends. Enterprise Developer Server issues a

dump based on information supplied for the

transaction with the diagnostic controller utility.

User response: Have the system administrator use the

CICS diagnostic information in this message and in

message ELA00204I to determine the cause of the error.

Correct the error and run the program again.

ELA00206P Format of file %01C08 is not valid,

reason code %02C01, resource %03C56

Explanation: The attributes of the system resource

associated with the specified file name are not

compatible with the properties defined for the record in

the program. The reason code identifies the problematic

attribute, as follows:

1 Key offset

2 Key length

3 Access method

4 Record format

5 Record length

 An access method mismatch occurs when the type of

data set allocated does not match what the program

expects. For example, a VSAM file is allocated as a

system sequential file or a partitioned data set is

allocated as a sequential file without specifying a part

name.

 The run unit ends.

User response: Change the record part declaration, the

resource association part, or both, so that the record

properties match the system resource attributes.

Generate and test the affected programs again.

ELA00207P The attributes for file %01C08 are not

compatible, reason code %02C01

Explanation: A program has attempted to use a file

having file attributes that differ from another program

in the run unit. All programs in a run unit must use

the same attributes for a file. The reason code identifies

the problematic attribute, as follows:

1 Key offset

2 Key length

3 Access method

4 Record format

5 Record length

Appendix. Enterprise Developer Server Run-time Messages 189

6 Use the system variable

sysVar.remoteSystemID to identify the location

of a remote file

 The run unit ends.

User response: Change the record-part declarations,

the resource association part, or both, so that all

programs in the run unit have identical attributes for

the file; then regenerate the affected programs.

ELA00208P Print services program %01C06 and form

group format module %02C08 were

generated separately

Explanation: The specified print services program

attempted to process a form that was generated at a

time different from the form group format module.

Both the print services program and the form group

format module must be generated at the same time.

 The run unit ends.

User response: Make sure that the print services

program and the form group format module were

generated at the same time and are installed in the

correct libraries.

ELA00210P Service number %01D04 is not valid

Explanation: An attempt was made to start a

Enterprise Developer Server routine that does not exist

or that is not valid.

 The run unit ends.

 In CICS environments Enterprise Developer Server

issues a dump based on options selected using the

diagnostic controller utility.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Regenerate and test the program. If the

problem persists, do as follows:

1. Record the message number

2. Obtain the dump

3. Record the scenario under which this message

occurs

4. Obtain the COBOL source for the problem program

5. Use your electronic link with IBM Service if one is

available, or contact the IBM Support Center

ELA00212P Error encountered gaining access to file

%01C08, spool resource %02C65

Explanation: An error was received when attempting

to gain access to a spool file. The message is

accompanied by message ELA00204I, which contains

response codes from the CICS EXEC interface block

(EIB).

 If the function was a write spool request (EIBFN 5602)

and the spool resource name was specified as node ID

without being qualified by user ID, an error will occur

if the user did not log on using the CICS logon

procedure.

 The run unit ends. Enterprise Developer Server issues a

dump based on information supplied for the

transaction with the diagnostic controller utility.

User response: If the spool resource name specifies

node ID without specifying user ID, log on using the

CICS logon procedure before running the program

again. Otherwise, refer to the CICS customization

documentation for an explanation of the codes that are

returned by the spool interface; then, correct the

problem specified in the response codes.

 Refer to the EGL help for additional information on the

format of the system resource name.

ELA00215P PSB does not match the

development-time PSB definition

Explanation: The number of PCBs passed to the

program at program initialization time was less than

the number of PCBs in the development-time PSB

definition. This message is accompanied by ELA00217I.

 The run unit ends. Enterprise Developer Server issues a

dump based on information supplied for the

transaction with the diagnostic controller utility.

User response: Do as follows:

v Correct the DL/I PSB; or

v Correct the development-time PSB definition and

generate the program again

ELA00216P CICS DL/I error, function %01C04,

UIBFCTR %02X02, UIBDLTR %03X02

Explanation: CICS detected an error in a DL/I call.

The message variable inserts specify the function being

requested and the return codes from the CICS user

interface block (UIB). If the function code is PCB, the

program was attempting to schedule the program PSB.

The message is accompanied by message ELA00217I.

 Common return codes are as follows:

 UIBFCTR UIBDLTR Description

08 00 Argument on DL/I call

not valid. This error can

occur if the IMSESA

installation option in

module ELARPIOP is

specified as YES, but the

IMS environment is not

IMS/ESA.

08 01 PSB not found. The PSB

must be defined to CICS.

190 IBM Enterprise Developer Server Guide for z/OS

UIBFCTR UIBDLTR Description

08 03 The calling program has

already successfully issued

a scheduling (PCB) call

that has not been followed

by a TERM call.

08 05 PSB initialization was not

successful.

08 06 The PSB in the scheduling

call is not defined in the

program control table

(DLZACT).

08 07 A TERM call was issued

when the task had already

been terminated.

08 09 An MPS batch program

attempted to issue a PCB

call for a read-only PSB or

for a nonexclusive PSB if

program isolation was

active.

08 FF DL/I not active

0C 02 Intent scheduling conflict

 The run unit ends.

User response: Check the definition of the call to the

CSPTDLI service routine in the program, if the DL/I

call is not valid. Otherwise, correct the problem

specified by the error code. For additional codes, refer

to the CICS application programmers’ guide for your

system to determine the meaning of the error codes.

ELA00217I Program %01C07, PSB name %02C08

Explanation: An error was detected in the specified

DL/I program. The message is accompanied by

messages ELA00215P or ELA00216P, which identify the

problem.

 The run unit ends.

User response: Refer to the accompanying messages

for the problem cause.

ELA00218P Invocation of sysLib.audit not

successful, journal id = %01D05, journal

type = %02C02

Explanation: This message is accompanied by

ELA00204I, which displays the contents of EIBRESP.

 Common EIBRESP codes for CICS are as follows:

22 LENGERR

 The computed length for the journal record

exceeds the total buffer space allocated for the

journal data set as specified in the journal

control table (JCT) entry for the data set

43 JIDERR

 Occurs if the specified journal identifier does

not exist in the JCT

 The run unit ends.

User response: Refer to the CICS programming

documentation to define journal data sets, or contact

the system administrator.

ELA00219P %01C22 error for %02C06 file %03C08,

%04C56

Explanation: An I/O operation was not successful for

the specified file.

 Program processing ends on any nonzero status code if

the I/O statement is not in a try block; and ends on a

hard error if the I/O statement is in a try block when

sysVar.handleHardIOErrors is set to 0.

 The message identifies the I/O operation, the file type,

the file name as specified in the record part, and the

system resource name associated with the file.

 The run unit ends.

 In all z/OS environments, Enterprise Developer Server

issues a SNAP dump if the ELASNAP data set is

allocated.

User response: Check that the correct data set has

been allocated for this file.

ELA00220P Dynamic allocation was not successful,

file %01C08, return %02D04, error

reason code %03X04.

Explanation: Enterprise Developer Server was not

successful on an attempt to perform dynamic allocation

for the specified file. The other inserts are the return

code in register 15 and the error reason code returned

by the SVC 99 instruction.

 The most common cause is that the file was not

available. If you want your program to receive control

after getting the status fileNotAvailable, place the I/O

operation in a try block and set

sysVar.handleHardIOErrors to 1.

 The run unit ends.

User response: Contact the system administrator.

Refer to the MVS System Programming: System Macros

and Facilities manual for an explanation of the codes.

ELA00221P File %01C08, system resource name

%02C56, not found

Explanation: Enterprise Developer Server attempted

to dynamically allocate the file with the system

resource name shown in the message. The file could

not be found.

 If the system resource name is a 1- to 8-character DD

Appendix. Enterprise Developer Server Run-time Messages 191

name, then there is no DD card for the file in the job

JCL. If the system resource name is a data set name,

then the data set either does not exist or is not

cataloged.

 The run unit ends.

User response: If the name is a DD name, allocate a

file to the DD name in the JCL. If the name is a data

set name, ensure that the file exists and is cataloged.

ELA00222P Transaction %01C04 ended abnormally

with CICS abend code %02C04

Explanation: The specified CICS transaction ended

abnormally with the specified code.

 On z/OS CICS systems, the following additional

information is provided:

v On CICS Version 2 systems, if the ABEND code is

ASRA or ASRB, this message is accompanied by the

message ELA00223P and the ABEND exit can

determine the module within which the error

occurred.

v On later CICS systems, if the abend code is ASRA or

ASRB, CICS message DFHAP0001 identifies the

offset in the module at which the error occurred. The

diagnostic control option specified for transaction

abends using the Enterprise Developer Server

diagnostic control utility determines whether a dump

occurs.

The Enterprise Developer Server abend handler ends

the program by issuing another ABEND command

using the same code.

User response: See ″ABEND Codes″ in the IBM

Enterprise Developer Server Guide for z/OS for a

description of abend codes using the format ELAx.

Refer to CICS or user program documentation for an

explanation of other abend codes.

ELA00223P Program %01C08 abended at offset

%02X08

Explanation: The specified program has abended with

an ASRA or ASRB abend code. This indicates that a

program check has occurred at the specified

hexadecimal offset.

 Enterprise Developer Server ends the program with a

user abend.

User response: If the program is a generated COBOL

program, use the compile listing to find the COBOL

verb that was running when the program ended

abnormally. The COBOL comments identify the EGL

statements associated with the COBOL verb. Determine

from the dump whether the problem was caused by

bad data passed to the program. If the generated

COBOL is in error, use your electronic link with IBM

Service or contact the IBM Support Center.

ELA00225P Temporary storage queue name %01C08

is not valid

Explanation: The record-specific variable

sysVar.resourceAssociation is set to a temporary storage

queue name that is not valid. The name conflicts with a

queue name that is reserved for Enterprise Developer

Server. Names cannot begin with EZE.

 The run unit ends.

User response: Specify a valid temporary storage

queue name in the program.

ELA00228P The program attempted to use the

resource %01C65 with file %02C07 and

file %03C07

Explanation: The program attempted to associate the

same system resource with two different files. The

resource cannot be associated with two different files at

the same time.

 The run unit ends.

User response: Examine the program and correct the

logic. Generate and test the affected programs again.

ELA00229P Invocation of sysVar.startTransaction

failed, transID = %01C04, terminal ID =

%02C08

Explanation: This message is accompanied by the

message ELA00204I, which displays the contents of

EIBRESP.

 Common codes are as follows:

11 TERMID error

 The specified terminal ID is not known to

CICS.

28 TRANSID error

 The specified transaction ID is not known to

CICS.

 The run unit ends.

User response: Have the system administrator define

the terminal or transaction to CICS.

ELA00230P An error was encountered accessing

CICS queue %01C08

Explanation: An error was received when attempting

to access a CICS queue. The queue can be a transient

data queue or temporary storage queue. This message

is accompanied by message ELA00204I, which contains

response codes from the CICS EXEC interface block

(EIB).

 The run unit ends. Enterprise Developer Server issues a

dump based on information supplied for the

transaction with the diagnostic controller utility.

192 IBM Enterprise Developer Server Guide for z/OS

User response: Refer to the CICS application

programmers’ guide for an explanation of the response

codes.

ELA00231P Error encountered retrieving data passed

to program %01C08

Explanation: An error was received when attempting

to retrieve data being passed to this program by a

transfer statement or by sysVar.startTransaction. This

message is accompanied by message ELA00204I, which

contains response codes from the CICS EXEC interface

block (EIB).

 The run unit ends. Enterprise Developer Server issues a

dump based on information supplied for the

transaction with the diagnostic controller utility.

User response: Refer to the CICS application

programmers’ guide for an explanation of the codes

that are returned.

ELA00232P Form %01C08 in form group %02C06 is

not declared or is not supported

Explanation: The specified form does not exist or is

not defined for the type of device being used.

 The run unit ends.

User response: Either define the map for your device

type or select the device for the map. Generate the map

group again.

 If you are running on a CICS system, have the system

administrator check that the alternate screen size for

your device type is specified in the PCT entry for your

transaction.

 If the map group name uses the format ELAxxx, where

xxx is the language code, the map group might have

been modified incorrectly. The ELAxxx map group

contains the Enterprise Developer Server error maps.

ELA00237P CICS TS Queue %01X16 error occurred

in work database operation for program

%02C07

Explanation: An error was received when attempting

to access a CICS temporary storage queue. This

message is accompanied by message ELA00204I, which

contains response codes from the CICS EXEC interface

block (EIB).

 If the error is an INVREQ (EIBRESP=16), the problem

might be caused by Enterprise Developer Server

attempting to write a record that is longer than the

control interval size for the VSAM data sets used for

the auxiliary storage queue. The maximum

segmentation record size written by Enterprise

Developer Server is set by the TSQUE option in the

installation options module ELARPIOP. TSQUE

specifies the maximum size as the number of kilobytes;

the default value is 16 KB.

The run unit ends.

User response: Refer to the CICS application

programmers’ guide for an explanation of the codes.

 If the control interval size is the problem, have the

system administrator assemble the installation module

again after setting the TSQUE value to a value less than

the control interval size.

 Refer to the Server program directory for your system

for more information.

ELA00249P Mapping services program %01C08

compiled with DATA(31) cannot be used

by program

Explanation: A mapping services program compiled

with the DATA(31) compiler option has been loaded for

a program link-edited as AMODE(24).

User response: Compile the mapping services

program again with the COBOL DATA(24) option; and

make sure that data (a build descriptor option) is set to

24 whenever the form group is generated.

ELA00250P Program cannot process data with 31-bit

addresses

Explanation: The initial program in the run unit was

compiled with DATA(31). The current program was

link-edited as AMODE(24). This is not compatible.

User response: Do one of the following:

v Compile the initial program in the run unit as

DATA(24).

v Link-edit the current program as AMODE(31).

ELA00251P Data table %01C08 compiled with

DATA(31) cannot be used by program

Explanation: A data table compiled with the

DATA(31) compiler option has been loaded for a

program link-edited as AMODE(24).

User response: Compile the table program again with

the COBOL DATA(24) option. Also ensure the

/DATA=24 generation option is specified whenever the

table is generated.

ELA00252P Error on file %01C08, queue name

%02C08, RC = %03C08

Explanation: An I/O logic error was detected by

Enterprise Developer Server during processing of an

I/O option for a CICS temporary storage queue.

 Program processing ends on any nonzero status code if

the I/O statement is not in a try block; and ends on a

hard error if the I/O statement is in a try block when

sysVar.handleHardIOErrors is set to 0.

 Because the error was detected by Enterprise Developer

Server instead of the access method, the return code

Appendix. Enterprise Developer Server Run-time Messages 193

value consists of the characters RS (for runtime

services) followed by a Enterprise Developer return

code number.

 The run unit ends. Enterprise Developer Server issues a

dump based on information supplied for the

transaction with the diagnostic controller utility.

User response: See the section on return codes in the

IBM Enterprise Developer Server Guide for z/OS to

determine the meaning of the Enterprise Developer

return code, and take the appropriate action.

ELA00253P Program %01C08 was not generated to

receive form %02C08

Explanation: The specified program received a form

as an input form, but the program does not contain

processing logic for handling segmented programs.

Either the wrong transaction name was specified when

the program was started, or the wrong program was

specified in the transaction definition.

 The run unit ends.

User response: Make sure that the following are

specified correctly:

v The transaction ID in the show statement

v The form name in the program property inputForm

Re-generate the modified program.

ELA00254P Invalid values for sysLib.audit, journal

ID = %01D05, type = %02C02, length =

%03D05

Explanation: A parameter in sysLib.audit is not valid:

v The journal ID must be between 1 and 99

v The third byte in the record must be in the range

X’A0’ to X’FF’

v The record length must be between 28 and 32767

The run unit ends. Enterprise Developer Server issues a

dump based on information supplied for the

transaction with the diagnostic controller utility.

User response: Correct the error and regenerate the

program.

ELA00255P Invalid values for sysLib.audit, type =

%01C02, length = %02D05

Explanation: A parameter in sysLib.audit is not valid:

v The third byte in the record must be in the range

X’A0’ to X’FF’

v The record length must be between 28 and 32767

The run unit ends.

User response: Correct the error and regenerate the

program.

ELA00265E Segmented converse is not supported

when local variables or function

parameters are in the run-time stack

Explanation: The message indicates that a converse

statement is invalid because the EGL run time cannot

restore the values of parameters or local variables after

the converse runs.

 A segmented converse is described in the help topic on

Segmentation.

 The run-time stack is a list of functions; specifically, the

current function plus the series of functions whose

running made possible the running of the current

function.

User response: Modify the program in one of two

ways:

v Make sure that the functions on the run-time stack

have neither parameters nor local variables; or

v Make sure that the converse is not segmented.

ELA00266E MQ function $01C08, Completion Code

$02C02, Reason Code $03C08.

Explanation: The MQ function did not complete

successfully, as indicated by the following completion

codes: 1 (MQCC_WARNING) 2 (MQCC_FAILED) The

reason for the completion code is set in the reason code

field by MQSeries®. Some common reason codes are:

2009 (Connection broken) 2042 (Object already open

with conflicting options) 2045 (Options not valid for

object type) 2046 (Options not valid or not consistent)

2058 (Queue manager name not valid or not known)

2059 (Queue manager not available for connection)

2085 (Unknown object name) 2086 (Unknown object

queue manager) 2087 (Unknown remote queue

manager) 2152 (Object name not valid) 2153 (Object

queue-manager name not valid) 2161 (Queue manager

quiescing) 2162 (Queue manager shutting down) 2201

(Not authorized for access) 2203 (Connection shutting

down)

 The run unit ends.

User response: Please refer to the MQSeries Application

Programming Reference for further information on

MQSeries completion and reason codes.

ELA00267E Queue Manager Name %01C48.

Explanation: This is the name of the queue manager

associated with the failing MQ function call listed in

message ELA00266. If the failing MQ function was

MQOPEN, MQCLOSE, MQGET, or MQPUT, the name

identifies the queue manager specified with the object

name when the queue was opened. Otherwise, the

name is the name of the queue manager to which the

program is connected (or trying to connect). If the

queue manager name is blank, the queue manager is

the default queue manager for your system.

194 IBM Enterprise Developer Server Guide for z/OS

The run unit ends.

User response: Please refer to the MQSeries Application

Programming Reference for further information on the

MQSeries completion and reason codes that are listed

in message ELA00266.

ELA00268E Queue Name %01C48.

Explanation: This is the name of the queue object

associated with the failing MQ function call listed in

message ELA00266.

 The run unit ends.

User response: Please refer to the MQSeries Application

Programming Reference for further information on

MQSeries completion and reason codes that are list in

message ELA00266.

ELA00269E Array index value %01D07 out of range

for array %02C18 with size of %03D07

Explanation: The index specified for the dynamic

array is out of bounds.

User response: Specify an index between 1 and the

current number of elements in the array.

ELA00270E An attempt was made to exceed the

maximum size of array %01C18

Explanation: An attempt was made to add an element

to a dynamic array that already contains the maximum

allowed number of elements.

User response: Modify the program in either of two

ways:

v Increase the value of the dynamic-array property

maxSize; or

v Change the logic so that the number of elements is

always less than or equal to the value of maxSize.

ELA00300I A new copy was requested for part

%01C08

Explanation: A new copy was requested for the

programs associated with the specified part. Newly

started transactions use the new copy of the program.

User response: None required.

ELA00301I The diagnostic control options were

changed

Explanation: The diagnostic control options were

changed after a user request from the Enterprise

Developer Server Diagnostic Control utility.

User response: None required.

ELA00302I Error message queue sent to print

destination

Explanation: The contents of the transient data queue

containing the error messages were sent to the spooling

system after a user request from the Enterprise

Developer Server Diagnostic Print utility.

User response: None required.

ELA00303I Error message queue sent to print

destination and deleted

Explanation: The contents of the transient data queue

containing the error messages were sent to the spooling

system after a user request from the Enterprise

Developer Server Diagnostic Print utility. The contents

of the transient data queue were then deleted.

User response: None required.

ELA00304A Type a valid selection number, then

press Enter

Explanation: The selection number entered for a field

on one of the Enterprise Developer Server utility panels

is not valid. The cursor is positioned at the field in

error.

User response: Type a valid selection and press Enter.

ELA00305A Type a name, then press Enter

Explanation: A required field was left blank on one of

the Enterprise Developer Server utility panels. The

cursor is positioned at the empty field.

User response: Type a valid name and press Enter.

ELA00306P CICS new copy was not successful for

program %01C08. Press F2.

Explanation: The CICS SET NEWCOPY command

was not successful for the specified part. The specified

part was requested on the Enterprise Developer Server

New Copy panel.

User response: Press F2 to view message ELA00204I,

which contains the CICS response information from the

EXEC interface block (EIB). Verify that the part name is

correct. Refer to the CICS application programmers’

guide for an explanation of the EXEC interface block

(EIB) codes.

ELA00308P I/O error on error message queue. Press

F2.

Explanation: A CICS error occurred when attempting

to gain access to the error destination queue identified

on the Enterprise Developer Server Diagnostic Print

panel.

User response: Press F2 to view message ELA00204I,

Appendix. Enterprise Developer Server Run-time Messages 195

which contains the CICS response information from the

EXEC interface block (EIB). Verify that the error

destination name is correct. Refer to the CICS

application programmers’ guide for an explanation of

the EXEC interface block (EIB) codes.

ELA00309A Error message queue was not found

Explanation: The error destination queue identified on

the Enterprise Developer Server Diagnostic Print panel

was not found.

User response: Specify the correct error destination

queue name on the panel.

ELA00310A Type a valid response, then press Enter.

Explanation: A value that was not recognized was

specified in the field where the cursor is positioned.

Valid values are shown following the field on the form.

User response: Type a valid value in the field and

press Enter.

ELA00313I Default options are in effect for this

transaction

Explanation: You made a request to view the

diagnostic control options in effect for a specific

transaction. The options currently in effect for the

transaction are the default options.

User response: To exit, press F3. To change the

options for this transaction do as follows:

1. Type the new options

2. Select action 1

3. Press Enter

ELA00314I Error message queue was empty

Explanation: A request was made to print an error

message queue that does not contain any messages.

User response: None required.

ELA00315I Trace transaction list was updated

successfully

Explanation: The list of transactions you specified to

be traced has been processed successfully.

User response: None required.

ELA00316I Trace filter criteria updated successfully

Explanation: The list of trace filter criteria you

specified has been processed successfully.

User response: None required.

ELA00317P Service number is not valid

Explanation: The trace filter criteria contains a service

number that is not valid. If this error is detected during

ELATRACE data set parsing, the run unit ends.

User response: Correct the service number

specification in the ELATRACE data set and run the

program again.

ELA00318P Tag in %01C08 is not valid

Explanation: The filter criteria contains a tag that is

not valid. Valid tags are FILTER, EFILTER, APPLS,

EAPPLS, SERVICES, and ESERVICES. The run unit

ends.

User response: Correct the tag specification and run

the program again.

ELA00319P Missing or misplaced tag in %01C08

Explanation: The filter criteria contains a missing or

misplaced tag. The run unit ends.

User response: Correct the filter criteria and run the

program again.

ELA00320P Too many programs in %01C08

Explanation: The filter criteria contains too many

programs. The maximum number is 16. The run unit

ends.

User response: Reduce the number of programs or

remove all program filter criteria, then run the program

again.

ELA00321P Too many services in %01C08

Explanation: The filter criteria contains too many

services. The maximum number is 32. The run unit

ends.

User response: Reduce the number of services or

remove all service filter criteria, then run the program

again.

ELA00322P One or more filters has a invalid value

Explanation: One or more codes entered for the

DATASTREAM, TRACETOFILE, APPSTMT, SQLIO,

SQLERR or IDUMP filters is not valid. The valid code

that is entered must be either Y (yes) or N (no).

 For z/OS batch, the run unit ends.

 If you are defining filters online on z/OS CICS, the

filter containing the value that is not correct is

highlighted.

User response: For z/OS batch, specify either Y or N

for these filters and run the program again. For CICS,

type one of the valid values for the highlighted filter as

196 IBM Enterprise Developer Server Guide for z/OS

shown on the form, then press Enter.

ELA00323P I/O error on storage queue %01C08.

Press F2.

Explanation: An error was received when attempting

to access a temporary storage queue in the diagnostic

message print utility. Press F2 to view message

ELA00204I, which contains response codes from the

CICS EXEC interface block (EIB).

User response: Refer to the CICS application

programmers’ guide for an explanation of the codes.

ELA00324P Error reading trace control record. Press

F2.

Explanation: An error was encountered when

attempting to read or write to the trace control record

in CICS. Press F2 to view more information.

 For z/OS CICS, message ELA00204I is displayed,

which contains response codes from the CICS EXEC

interface block (EIB).

User response: Review the accompanying error

messages.

ELA00325P Error opening %01C08

Explanation: An error was encountered when

attempting to open the specified data set.

User response: Make sure that the data set has the

correct attributes.

ELA00326P Error reading %01C08

Explanation: An error was encountered when

attempting to read the specified data set.

User response: Make sure that the data set has the

correct attributes.

ELA00342A The maximum number of copies already

exists for the data table

Explanation: The maximum number of copies of a

data table that can be used in a CICS region at one

time is 5. The request for a new copy of the data table

was rejected.

User response: Old copies of a data table that are in

use are freed when all the transactions that are using

the data table end. Retry the new copy request later.

ELA03001I F3=EXIT F8=CONTINUE

Explanation: None.

User response: None required.

ELA03002I F3=EXIT

Explanation: None.

User response: None required.

ELA03003I CLEAR=EXIT

Explanation: None.

User response: None required.

ELA03004I PF3=EXIT PF8=FORWARD

Explanation: None.

User response: None required.

ELA03005I PF3=EXIT

Explanation: None.

User response: None required.

ELA03006I PA1=CONTINUE

Explanation: None.

User response: None required.

ELA03007I ENTERPRISE DEVELOPER SERVER

Explanation: None.

User response: None required.

Appendix. Enterprise Developer Server Run-time Messages 197

198 IBM Enterprise Developer Server Guide for z/OS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you. This

information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated

in new editions of the publication. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this publication at any time

without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1994, 2005 199

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

P.O. Box 12195, Dept. TL3B/B503/B313

3039 Cornwallis Rd.

Research Triangle Park, NC 27709-2195

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in

source language, which illustrates programming techniques on various operating

platforms. You may copy, modify, and distribute these sample programs in any

form without payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any

form without payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application programming

interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows: 9999 (your company name) (year). Portions

200 IBM Enterprise Developer Server Guide for z/OS

of this code are derived from IBM Corp. Sample Programs. 9999 Copyright IBM

Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Notices 201

202 IBM Enterprise Developer Server Guide for z/OS

Index

Special characters
/FORMAT command 101

/HOLD command 101

/MODIFY command 100

/WORKDB generation option
IMS 13

A
abend

ASPE
CICS 34

codes
CICS 159, 167

COBOL 165

IMS runtime 166

non-CICS environments 161, 162

preparation 151

system 163

dumps
COBOL 139

Enterprise Developer Server 139

recovery considerations
z/OS 40, 44, 45, 54, 55

activating trace sessions
CICS 144

adding
file name to the CICS file control table

z/OS 37

job control statements
z/OS 37

addressing, extended 27

alternate index, defining 24

alternate PCB, using 48

American National Standards printer

control character
z/OS 29, 31

AMODE 6

analyzing
detected errors 138

application
load module storage for Enterprise

Developer Server 5

plan for DB2 14

applying maintenance to
Enterprise Developer Server 3

ASA (see also American National

Standards printer control character) 31

ASPE abend, preventing 34

attributes for DBCS, hardware 27

B
backing up data 28

backup, maintaining copies of production

libraries 107

batch
print services program 71

BIND
command

data set 66

default 70

defining 70

DB2 programs 28

precompile messages 151

buffer size, printing
CICS 32

build descriptor
and compiler options that affect

performance 23

options
commentLevel 138

errorDestination 131, 134, 136

imsFastPath 131, 166

imsLogID 131, 135

initAdditionalWS 163

initIORecords 163

language code 135, 137

mfsDevice 165, 166

mfsExtendedAttr 165, 166

mfsIgnore 165, 166

mfsUseTestLibrary 165

performance considerations 23

restoreCurrentMsgOnError 131

spaSize 49, 98

targetNLS 163

trace 143

output files 67

C
catastrophic error 133

cautions
empty KSDS data set, VSAM

restriction 26

PRTMPP parameter, line skip

malfunction 33

CEDA transaction, RDO 85

change or view
defaults - ELAC04 120

options - ELAC02 118

checking
access authorization

z/OS 28

database authorization
CICS 28

IMS 54

CICS
abend codes 167

activating trace sessions 144

database
recovery considerations 40

DB2 considerations 10, 40

destination control table (DCT)
printing, DBCS 34

sample entry 39

transient data queue name 30

diagnostic control options 117

DL/I considerations 10, 40

CICS (continued)
ELAC transaction 117

ELAM transaction 111

ELAN transaction 112

ELAU transaction 114

EZEP transaction 31

EZEZ transaction 31

file descriptions 29

installation considerations 10

mode, pseudoconversational,

residency consideration 36

monitoring and tuning 10

new modules 87

parameter group
print file 29

parameter group, creating and

maintaining 121

PCT (program control table), printing,

DBCS 34

performance
considerations 35

preparation 85

print destination, specifying in

DCT 39

printing
buffer size 32

DBCS (double-byte character

set) 31, 34

DCT (destination control

table) 30, 31

destination control table

(DCT) 30, 31, 39

double-byte character set

(DBCS) 31

EZEP transaction 31

EZEZ transaction 31

file description 29

form-feed 31

FORMFD=NO parameter 31

FZETPRT program 31, 39

parameter, PRTTYP 33

PCT (program control table),

FZETPRT program 34

printer destination 39

program control table (PCT) 34,

39

PRTBUF parameter 31

PRTMPP parameter 31

PRTTYP parameter 31

SEND command 32

terminal control table (TCT),

entry 39

transient data queue 39

processing mode
types 30

program control table (PCT)
DTB=YES and DBP value 39

printing, DBCS 34

pseudoconversational
processing mode 36

programs and residency 36

© Copyright IBM Corp. 1994, 2005 203

CICS (continued)
residency

considerations 35, 36

general rules 35

resource tables 85

security considerations 10

spool files 11

startup JCL 87

storage facilities used by Enterprise

Developer Server 7

system considerations 29

temporary storage queues for

Enterprise Developer Server 11

terminal control table (TCT),

entry 39

terminal printing 31

transaction
EZEP 31

EZEZ 31

PR01 transient data queue 39

transactions, passing transient data

between 39

transient data queue 30

utilities
(see also CICS, utilities) 111

diagnostic control facility,

ELAM 111

diagnostic control options,

ELAC 117

diagnostic message printing,

ELAU 114

menu 11

new copy utility, ELAN 112

CICS, PRGM transaction 122

CICS, utilities, change diagnostic control

options 118

CICS, utilities, default diagnostic control

options 119

CICS, utilities, parameter group utility,

PRGM 122

CICS, utilities, PRGM, parameter group

utility 122

CICS, utilities, view diagnostic control

options 118

CICS/ESA
monitoring and tuning 10

clearing records from databases 55, 56

client/server 87

CLIST
modifying 93

templates 93

CMPAT parameter, IMS 48

COBOL
abend codes 165

abend dumps 139

abends under CICS 168

DATA compiler option 6, 11

status key values 157

WSCLEAR option 16

COBOL dynamic storage
for Enterprise Developer Server 6

COBOL/370 runtime messages 164

codes
abend, IMS 166

return
SQL 153

commit point
IMS 50

common system return codes 153

compiler options that affect

performance 23

considerations
batch

DB2 44

DL/I 44

program runtime support 44

system 43

customization 15

database integrity
DB2, CICS 40

DB2, IMS 54

IMS 49

database recovery
IMS 49

DB2
CICS 40

DB2 database recovery
CICS 40

IMS 54

DL/I
CICS 40

IMS 54

z/OS batch 44

DL/I database integrity and recovery
CICS 40

IMS 55

z/OS batch 45

message format services 61

performance
CICS 35

compiler options 23

IMS 50, 52

link pack area 52

printing
IMS 49

recovery
IMS 49

residency
CICS 35

system
backing up data 28

CICS 29

DBCS 27

extended addressing 27

IMS 47

tuning IMS 53

z/OS/XA 27

control block 140

control character, American National

Standards, printer 29

control region in IMS 13

controlling error reporting
CICS 131

IMS 131

conversational processing mode,

CICS 30

creating
MFS control blocks 99

CREATX service routine, print

destination 30

customizing
Enterprise Developer Server 15

JCL procedures 16

D
DATA compiler option 6, 11, 12

data file
backing up 28

defining 36

program, defining 24

data queue
extrapartition 39

intrapartition 39

transient 38

data set
bind command 66

CICS
PCT entries 67

PPT entries 67

DB2 database request module 66

DBRMLIB 66

EZEBIND 66

EZEJCLX 66, 107

EZEPCT 67

EZEPPT 67

EZEPRINT 43, 89, 104

EZESRC 66

load library 66

loading KSDS files 26

object library 66

SYSLIN 66

SYSLMOD 66

user 66

database
expanding 57

multiple
work 60

request module, DB2 66

work
clearing records 55

expanding 57

maintaining 55

database authorization
checking

IMS 54

z/OS 28

database integrity and recovery

considerations
DB2

CICS 40

IMS 54

DL/I
CICS 40

IMS 55

z/OS batch 45

IMS 49

DB Tools product 53

DB2
application plan 14

checking authorization
IMS 54

z/OS 28

considerations
CICS 10, 40

IMS 12

TSO 9

database
request module data set 66

table space 58, 59

204 IBM Enterprise Developer Server Guide for z/OS

DB2 (continued)
database integrity and recovery

considerations
CICS 40

IMS 54

precompile
messages 151

programs
bind 28

work database
clearing records 56

expanding the table space 58

IMS 13

multiple 60

DBCS (double-byte character set)
data on a non-DBCS terminal 102

hardware attributes 27

printing
CICS 31, 34, 39

DBRMLIB 66

DCAPRMG file, parameter group for

FZETPRT 31

DCT (destination control table)
entries 86

printing, DBCS 34

sample entry 39

transient data queue 30, 31

trigger level 31

DD statements by file type 94

deactivating a trace session 149

default
print destination, IMS 49

defining
alternate index 24

data files 36

ESDS (serial) data set 24

KSDS (indexed) data set 24

program data files 36

program specification block (PSB)
IMS 48

RRDS (relative) data set 24

transient data
extrapartition 39

intrapartition 39

transient data files
extrapartition 39

intrapartition 39

transient data queues
extrapartition 38, 39

intrapartition 38, 39

VSAM data files 24

deleting old records from the work

database 55

descriptions
CICS files 29

IMS files 47

destination control table (DCT)
entries 86

printing, DBCS 34

sample entry 39

transient data queue 30, 31

trigger level 31

destination, default print, IMS 49

detecting errors 129

determining position in program 141

DFHAC2016 messages 167

DFHAC2206 messages 167

DFS057I error message 165

DFS064 error message 165

DFS182 error message 165

DFS2082 error message 103, 166

DFS2766I error message 103, 166

DFS555I error message 102, 166

diagnosing problems 129

diagnostic control
facility

CICS utilities 111

options
change or view defaults 120

change or view options 118

ELAC transaction 117

diagnostic message print utility,

ELAU 114

disk storage requirements
for Enterprise Developer Server 7

DL/I
considerations

CICS 10, 40

IMS 54

TSO 9

z/OS batch 44

integrity and recovery considerations
CICS 40

IMS 55

z/OS batch 45

status codes 155

work database
clearing records 55

expanding the database 57

in IMS 13

multiple 60

double-byte character set (DBCS)
hardware attributes 27

printer 39

DSNX100I messages 151

dumps
snap, listing file on IMS 47

dynamic
interface plan 28

storage utilization in Enterprise

Developer Server 6

E
ELA2SSQL module 51

ELA2SSQX module 51

ELA2SSQY module 51

ELAC, diagnostic control options 117

ELAC02 panel, change or view

options 118

ELAC04 panel, change or view

defaults 120

ELACJWKD member 60

ELADIAG file 47

ELAM, CICS utilities menu 111

ELAN, new copy utility 112

ELANCccc module 51

ELAPCB macro 48

ELAPRINT system output file 43, 47

ELARPRTM load module 51

ELARPRTR load module 51

ELARSDCB load module 51

ELASNAP file 47

ELAU, diagnostic message printing

utility 114

ELAWKJC2 member 56

ELAWKJCD member 55

ELAWORK work database PCB 48

ELAWORK2 DL/I work database 60

emulating IBM 3270 devices 27

Enterprise Developer Server
abend dumps 139

application load module storage 5

applying maintenance 3

COBOL dynamic storage 6

control block 140

control options by transaction 118

customizing JCL procedures 16

DB2 considerations
CICS 10

IMS 12

IMS work database 13

TSO 9

default control options 120

diagnostic control options 117

disk storage requirements 7

DL/I considerations
CICS 10

IMS work database 13

TSO 9

dynamic storage 6

error 133

extended addressing 27

generated programs
using with PL/I programs 16

IMS/ESA exploitation 12

installation considerations
CICS 10

IMS 11

preparing to install 3

load module
reentrant 5

storage 5

storage estimates, statically

linked 6

new copy 112

performance considerations 15

security considerations
all systems 15

CICS 10

IMS 12

storage facilities for CICS, using 7

storage requirements 5

temporary storage queues 11

utilities
diagnostic control facility

(ELAM) 111

diagnostic control options

(ELAC) 117

diagnostic message printing utility

(ELAU) 114

for CICS 11

new copy (ELAN) 112

virtual storage requirements 5

work database space for segmented

applications 7

WSCLEAR option for COBOL,

specifying 16

Enterprise Developer Server, utilities,

parameter group utility, PRGM 122

Index 205

Enterprise Developer Server, utilities,

PRGM, parameter group utility 122

ERRDEST message queue 134

error
detection 129

file
definition 130

I/O 129

processing 130

message
file 47

panel 133

reporting 131

IMS 131

in IMS 102

summary 132

ESDS (serial) define cluster 24

expanding
the table space (DB2) 58

work database 57

express alternate PCB 48

extended addressing considerations
z/OS 27

external work file, backing up 28

extrapartition transient data, defining 39

EZEBIND data set 66

EZEDESTP special function word 43

EZEJCLX data set 66

EZEP transaction 29, 31, 39

EZEPCT data set 67

EZEPPT data set 67

EZEPRINT data set
IMS 49

specify as PRO1 39

EZEPRMG file
CICS 29

parameter group for FZETPRT 31

EZEROLLB service routine
IMS 50

EZESRC data set 66

EZETRACE data set 43

EZEZ transaction 31, 39

F
FCT (file control table)

entries 87

user data file 37

file
control table (FCT)

described 87

default message queue, IMS 47

definition errors 130

description
CICS 29

IMS 47

descriptions 29

error message 47

from generation 67

I/O errors 129

parameter group 29

processing errors 130

snap dump listing, IMS 47

system output 43

trace 43

file control table (FCT)
entries 87

file control table (FCT) (continued)
user data file 37

form feed
order (see American National

Standards printer control

character) 31

printing 31

FORMFD parameter
option=NO, forms alignment 31

parameter group for EZEP or

EZEZ 33

used with FZETPRT program 31

function
new copy 34

preload, IMS 50

FZETPRT program 34

DBCS considerations 34

EZEP or EZEZ transaction 39

special parameter group 31

terminal printing support in CICS 31

FZEZREBO utility, initializing indexed

files 26

G
generated applications

with PL/I programs 16

generating
application control block 48

H
hardware attributes for DBCS 27

I
IBM 3270 device, emulating 27

IBM 5550 family of terminals 27

IDCAMS program
BLDINDEX command 24

DEFINE PATH command 24

loading indexed files 27

REPRO command 24, 26

IGYOP3091W error message 152

IGYOP3093W error message 152

IGYOP3094W error message 152

IGYPA3013W error message 152

IGYPG3113W error message 152

IGYPS2015I error message 152

IGYPS2023I error message 152

IGYSC2025W error message 152

IGZ033S error message 164

IGZ064S error message 164

IGZ066S error message 165

IGZ075S error message 165

improving
performance 53

library lookaside (LLA) 24

link pack area (LPA) 24

virtual lookaside facility (VLF) 24

response time 52

IMS
commit point 50

control region 13

database
authorization checking 54

IMS (continued)
database (continued)

integrity considerations 49

recovery considerations, DB2 54

recovery considerations, DL/I 49

DB2 considerations 12

default
message queue file 47

print destination 49

DL/I considerations 54

ELAPCB macro 48

error
controlling, generation

options 131

messages 102

reporting 102

file descriptions 47

HIPERSPACE buffer usage 52

installation considerations 11

integrity considerations, DB2 54

log format 135

logical unit of work 55

monitoring and tuning 12, 53

new modules 100

performance considerations 52

preload function 50

preloading
Enterprise Developer Server

modules 51

program modules 52

preparation 97

processing modes 49

program specification block,

defining 48

residency considerations 50

rollback 50

runtime
abend codes 166

messages 165

security considerations 12

segmented mode 49

single-segmented mode 49

snap dump listing file 47

system considerations 47

system definition
batch program as an MPP 98

batch-oriented BMP program 99

general 13

interactive program 97

parameters 97

transaction-oriented BMP 99

system printing considerations 49

work database considerations
DB2 13

DL/I 13

IMS DC monitor facilities 12

IMS Performance Analysis and Reporting

System 12

IMS/ESA exploitation 12

IMS/VS, message format service (MFS)

Control Blocks 53

IMSPARS 12, 53

indexed (KSDS) data set
define cluster 24

loading 26

installation considerations
preparing to install 3

206 IBM Enterprise Developer Server Guide for z/OS

integrity considerations, database
DB2

CICS 40

IMS 54

DL/I
CICS 40

IMS 55

z/OS batch 45

IMS 49

intrapartition transient data
defining 39

J
JCL

by environment 93

examples of runtime 90, 91, 92, 104,

105

modifying 93, 94

modifying runtime 94

tailoring before generation 93

templates 93

job stream data set
runtime 66

K
KSDS (indexed) define cluster 24

L
LE

runtime messages 164

library
backup 28

production copies, maintaining

backup 107

link pack area
loading 52

performance considerations 52

listing file
IMS, snap dump 47

load library data set 66

load module
preloading 51

storage for Enterprise Developer

Server 5

storage for Enterprise Developer

Server application 5

loading
modules into link pack area 52

logical unit of work (LUW)
IMS 54, 55

M
macro, ELAPCB 48

maintaining
backup copies of production

libraries 107

work database 55

maintenance, applying to
Enterprise Developer Server 3

map group
format module 71

message
format services

considerations 61

description 27, 61

queue file, default, IMS 47

message format service (MFS) control

blocks in IMS 53

messages
COBOL/370 runtime 164

DFHAC2016 167

DFHAC2206 167

DFS057I 165

DFS064 165

DFS182 165

DFS2082 103, 166

DFS2766I 103, 166

DFS555I 102, 166

DSNX100I 151

IGYOP3091W 152

IGYOP3093W 152

IGYOP3094W 152

IGYPA3013W 152

IGYPG3113W 152

IGYPS2015I 152

IGYPS2023I 152

IGYSC2025W 152

IGZ0033S 164

IGZ0064S 164

IGZ0066S 165

IGZ0075S 165

IMS runtime 165

preparation 151

runtime
COBOL/370 164

IMS 165

z/OS 167

z/OS runtime 167

MFS
control blocks 99

mode
CICS execution, performance

considerations 36

processing
CICS 30

IMS 49

models
JCL 93

modifying
IMS system definition parameters 97

JCL or CLISTs 93

runtime
JCL 94

modules
CICS 87

IMS 100

in memory 23

loading into link pack area 52

preloading 52

monitoring and tuning
CICS 10

IMS system 12, 53

performance 53

moving prepared programs
z/OS 107

multiple work databases 60

N
new copy

function 34

new copy utility 112

new copy utility, ELAN 112

new modules
CICS 87

IMS 100

nonsegmented processing mode,

CICS 30

O
object library data set 66

objects generated
application COBOL program 70

batch print services program 71

BIND command 70

from generation 67

map group format module 71

online print services program 71

runtime
JCL 70

table program 71

online print services program 71

option
preloading

Enterprise Developer Server

modules, IMS 51

program modules, IMS 52

recovery 34

SPA 49

output of program generation 67

P
panels

Parameter Group Definition

(PRGM02) 123

Parameter Group Specification

(PRGM00) 122

panels, Parameter Group List Display

(PRGM01) 123

parameter
group associated with FZETPRT

program
DCAPRMG file 31

EZEPRMG file 31

resident 35

WORK in ELAPCB 48

Parameter Group Definition panel

(PRGM02) 123

parameter group file, EZEPRMG data set,

CICS 29

Parameter Group List Display panel

(PRGM01) 123

Parameter Group Specification panel

(PRGM00) 122

passing transient data between CICS

transactions 39

PCT (program control table)
entries 86

FZETPRT program 34

performance
considerations 23

CICS 35

Index 207

performance (continued)
considerations (continued)

general 15, 23

IMS 50, 53

IMS/ESA 52, 53

z/OS batch 45

generation and compiler options 23

HIPERSPACE buffers for IMS 52

library lookaside (LLA) 24

limiting MFS control blocks 53

link pack area 23

monitoring and tuning
IMS 12, 53

preload modules 100

RES(YES) parameter, RDO DEFINE

PROGRAM command 86

tuning IMS 53

virtual lookaside facility (VLF) 24

Performance Analysis and Reporting

System (PARS) 53

PL/I programs 16

plan, DB2 28

PPT (processing program table)
defining programs to CICS 67

entries 85

PR01 transient data queue 39

precompile messages
BIND 151

DB2 151

preloading
Enterprise Developer Server modules,

IMS 51

objects, IMS 50

print services
description 100

module 51

program 52

program 100

program modules 51, 52

service module 51

table modules 51, 100

preparation
abend codes 151

messages 151

preparing
and running programs

CICS 85

IMS 97

z/OS batch 89

to install Enterprise Developer

Server 3

PRGM00 (Parameter Group List Display

panel) 123

PRGM00 (Parameter Group Specification

panel) 122

PRGM02 (Parameter Group Definition

panel) 123

print destination
CICS, specifying in DCT 39

default
IMS 49

print file, utilities 29

print services program
object of generation 71

preloading 52

printing
buffer size 32

printing (continued)
CICS

considerations 29

file descriptions 29

CICS, destination control table

(DCT) 31

considerations
IMS 49

CREATX call for print destination 30

DBCS (double-byte character set),

printer 39

DCT (destination control table)
transient data queue name 30

trigger level 31

default, print destination 30

destination control table (DCT)
transient data queue name 30

trigger level 31

destination, using CREATX call 30

diagnostic information
CICS 136

IMS 134

EZEP transaction 31

EZEZ transaction 31

file descriptions, CICS 29

form-feed 31

FORMFD=NO parameter 31, 33

FZETPRT program 31

parameter
FORMFD 31, 33

group associated with FZETPRT

program 31

PRTBUF 31

PRTMPP 31, 33

PRTTYP 31, 33

PCT (program control table),

FZETPRT program 34

PR01 transient data queue 39

print destination, default 30

printer destination 39

program control table (PCT),

FZETPRT program 34

SEND command 32

transient data
at a terminal device 39

transient data queue 30, 39

problem
diagnosis 129

processing
batch 43

processing mode
CICS

types 30

IMS 49

processing program table (PPT)
entries 85

production libraries, maintaining copies

for backup 107

profile block
program 140

program
bind DB2 28

data files, defining 24

entries 85

module, preloading 51

preloading 52

profile block 140

program (continued)
return codes 159

program communication block (PCB)
alternate 48

ELAPCB macro 48

program control table (PCT)
DTB=YES and DBP value 39

entries 86

FZETPRT program 34

program specification block (PSB)
defining 48

generation 48

PRTBUF parameter
specifying print buffer size 31

using with the FZETPRT program 31

PRTMPP parameter
specifying maximum print

positions 33

using with FZETPRT program 33

PRTTYP parameter
DBCS printing 33

using with the FZETPRT program 31

pseudoconversational
processing mode

CICS 30, 36

R
RCT 87

RDO (resource definition online),

generation output 69

RDO CEDA transaction 85

reading transient data from tape 39

recovery
options

specifying 34

recovery considerations
DB2

CICS 40

IMS 54

DL/I
CICS 40

IMS 55

z/OS batch 45

IMS 49

reentrant code 23

reentrant load module storage estimates

for Enterprise Developer Server 5

relative (RRDS) define cluster 24

reporting
errors 131

problems 149

request module, DB2 66

residency
considerations

CICS 35

IMS 50

general rules, CICS 35

resident
parameter 35

programs 88

resource
control table 87

tables for CICS 85

Resource Measurement Facility II 13, 53

response time, improving 52

208 IBM Enterprise Developer Server Guide for z/OS

return codes
SQL 153

system 153

RMF 13, 53

rollback
IMS 50

RRDS, data set definition 24

running
main programs under z/OS batch 89

programs under IMS 101

running under
CICS 88

IMS
BMP with DB2 105

main batch as BMP 104

main program under BMP 103

z/OS batch
main batch with DL/I 90

main batch with no database 90

main batch with no DB2 90

runtime
JCL 70, 94

job stream data set 66

messages
COBOL/370 164

IMS 165

z/OS 167

messages, LE 164

S
sample JCL

BMP with DB2 105

IMS BMP program 104

RCT entry 87

z/OS Batch with DB2 Access 90

z/OS Batch with DB2 and DL/I 92

z/OS batch with DL/I Access 91

z/OS batch without DB2 90

saving storage space 52

security considerations
CICS 10

general 15

IMS 12

segmented processing mode
CICS 30

IMS 49

SEND command, printing 32

serial (ESDS) define cluster 24

service module, preloading 51

services, message format 27

sharing modules 52

single-segment mode, IMS 49

snap dump listing file, IMS 47

spa build descriptor option 49, 98

spool files, CICS 11

SQL
considerations 28

return codes 153

starting
IMS programs

/FORMAT command

(transaction) 101

directly (main) 101

MPPs (transactions) 101

startup JCL for CICS 87

statistics, performance 53

status 13

codes
DL/I 155

key values, COBOL 157

storage requirements
for Enterprise Developer Server

COBOL dynamic storage 6

subsystem ABEND dumps 139

support for DBCS terminals 27

SYSLIN 66

SYSLMOD 66

SYSOUT system output file 43

SYSPRINT system output file 43

system
abend codes 163

considerations
CICS 29

general 23

IMS 47

definition, IMS 13

output file 43

return codes 153

SYSUDUMP system output file 43

T
table

modules, preloading 51

preloading 52

program 71

space
expanding 58, 59

requirements 58

TCT (terminal control table) 39

templates
CLIST 93

JCL 93

temporary storage queues 11

terminal control table (TCT) 39

terminal printing
CICS 31

trace facility 143

trace file 43

tracing
activating 144

deactivating 149

transaction
entries 86

error 132

transient data
defining extrapartition 39

printing 39

queue
defining 38

printing, CICS 30

TYPE=INTRA entry in DCT 31

reading from tape 39

tuning
IMS 12, 53

U
unit of work, logical

IMS 54, 55

user data set 66

using
data build descriptor option 11

generated applications with PL/I

programs 16

multiple work databases 60

remote files, CICS 38

using spool files 11

utilities
diagnostic control options

(ELAC) 111, 117

diagnostic message printing

(ELAU) 114

for CICS with Enterprise Developer

Server 11

IMS diagnostic message print 125

new copy (ELAN) 112

utilities, diagnostic, message print utility,

CICS 114

utilities, parameter group utility,

PRGM 122

V
virtual storage

considerations and residency 35

requirements
Enterprise Developer Server 5

VSAM
data set definition 24

defining an alternate index 24

file loading 26

indexed (KSDS) data set 24

relative (RRDS) data set 24

serial (ESDS) data set 24

status codes 155

W
warnings

empty KSDS data set, VSAM

restriction 26

PRTMPP parameter, line skip

malfunction 33

work database
clearing records 55

deleting old records 55

ELAPCB macro 48

expanding 57

IMS 13

maintaining 55

multiple 60

space for segmented applications 7

WORK parameter in ELAPCB 48

WSCLEAR option for COBOL 16

Z
z/OS

DB2 considerations for Enterprise

Developer Server 9

DL/I considerations 9

DL/I considerations for Enterprise

Developer Server 9

installation considerations 3

preparation 89

runtime messages 167

Index 209

z/OS batch
DL/I considerations 44

z/OS/XA considerations 27

210 IBM Enterprise Developer Server Guide for z/OS

����

Program Number: 5655-I57

Printed in USA

SC31-6306-03

	Contents
	Trademarks
	Terminology Used in This Document

	About This Document
	Who Should Use This Document

	Part 1. Preparing to Install
	Chapter 1. Preparing for the Installation of Enterprise Developer Server
	Chapter 2. Storage Requirements for Enterprise Developer Server
	Virtual Storage Requirements
	Enterprise Developer Server Load Module Storage
	Application Load Module Storage
	COBOL Dynamic Storage
	Enterprise Developer Server Dynamic Storage
	Storage Requirements for CICS
	Disk Storage Requirements for Enterprise Developer Server
	Work Database Space For Segmented Applications

	Chapter 3. Installation Considerations
	z/OS Batch Considerations
	DL/I Considerations
	DB2 Considerations

	CICS Installation Considerations
	DL/I Considerations
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	CICS Utilities
	Using the data Build Descriptor Option
	Modifying CICS Resource Tables
	Using Spool Files
	Temporary Storage

	IMS Installation Considerations
	IMS/ESA Exploitation
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	IMS System Definition
	IMS Control Region
	Work Database
	DL/I Work Database Considerations
	DB2 Work Database Considerations

	Chapter 4. Customizing Enterprise Developer Server
	General Customization Considerations for z/OS
	Customizing Enterprise Developer Server
	Security Considerations
	Performance Considerations
	Customizing Build Scripts
	Modifying the Language Environment Run-time Option
	Using Generated Programs with PL/I Programs
	Installation and Language-Dependent Options for z/OS

	Part 2. Administering on z/OS Systems
	Chapter 5. General System Considerations for z/OS Systems
	Considerations that Affect Performance
	Build Descriptor and Compiler Options
	Modules in Memory
	Files and Databases

	Defining and Loading VSAM Program Data Files
	Defining VSAM Data Sets
	Defining an Alternate Index

	Loading Data in the Files

	Support for DBCS terminals
	Extended Addressing Considerations for Enterprise Developer Server
	Database Considerations
	Preparing Programs
	Checking Access Authorization

	Backing Up Data

	Chapter 6. System Considerations for CICS
	Required File Descriptions
	Segmented and Nonsegmented Processing
	Using Transient Data Queues for Printing in z/OS CICS
	z/OS CICS terminal printing
	Special Parameter Group for the FZETPRT Program
	PRTBUF Parameter
	PRTMPP Parameter
	PRTTYP Parameter
	FORMFD Parameter

	CICS Entries for FZETPRT (DBCS only)
	Using the New Copy Function
	Specifying Recovery Options in the CICS Tables
	Considerations that Affect Performance
	Residency (Modules in Memory) Considerations
	Virtual Storage Considerations and Residency
	Work Database Temporary Storage Queue Considerations

	Using and Allocating Data Files in CICS
	Defining and Loading VSAM Data Files
	Using Remote Files
	Defining Transient Data Queues

	Considerations for Using DB2 in CICS
	Associating DB2 Databases with CICS Transactions
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in CICS
	Recovery and Database Integrity Considerations

	Setting up the National Language

	Chapter 7. System Considerations for z/OS Batch
	Required File Descriptions
	Using VSAM Program Data Files in z/OS Batch
	Considerations for Using DB2 in z/OS Batch
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in z/OS Batch
	Defining the Program Specification Block (PSB)
	Recovery and Database Integrity Considerations
	Performance Considerations for z/OS Batch

	Runtime JCL

	Chapter 8. System Considerations for IMS
	Required File Descriptions
	Defining the Program Specification Block (PSB)
	Processing Modes
	Printing Considerations for IMS
	Recovery and Database Integrity Considerations
	Considerations that Affect Performance
	Residency Considerations and the IMS Preload Function
	Preloading Enterprise Developer Server Modules
	Loading Enterprise Developer Server Modules into the Link Pack Area
	Preloading Generated Programs

	Database Performance
	Limiting MFS Control Blocks
	Monitoring and Tuning the IMS System

	Considerations for Using DB2 in IMS
	Recovery and Database Integrity Considerations
	Checking Authorization

	Considerations for Using DL/I in IMS
	Recovery and Database Integrity Considerations

	Maintaining the Work Database in IMS
	Deleting Old Records from the Work Database
	DL/I Work Database
	DB2 Work Database

	Expanding the Work Database
	DL/I Work Database
	DB2 Work Database

	Supporting Multiple Work Databases
	DL/I Work Databases
	DB2 Work Databases

	Considerations for Message Format Services in IMS

	Part 3. Preparing and Running Generated Applications
	Chapter 9. Output of Program Generation on z/OS Systems
	Allocating Preparation Data Sets
	List of Program Preparation Steps after Program Generation
	Deploying generated code to USS

	Outputs of Generation
	Objects Generated for Programs
	Application COBOL Program
	Sample Run-time JCL
	Bind Commands

	Objects Generated for Tables
	Table COBOL Program

	Objects Generated for Form Groups
	Online Print Services Program
	Batch Print Services Program
	Form Group Format Module
	MFS Source

	Chapter 10. z/OS Builds
	z/OS Build Server
	Starting a z/OS Build Server
	Starting a USS Build Server
	Stopping servers
	Configuring a build server

	Working with Build Scripts
	Working with z/OS Build Scripts
	Writing a JCL build script
	File Name Conversions for z/OS

	Converting JCL to Pseudo-JCL

	Chapter 11. Preparing and Running a Generated Program in CICS
	Modifying CICS Resource Tables
	Program Entries (PPT)
	Transaction Entries (PCT)
	Destination Control Table Entries (DCT)
	File Control Table Entries (FCT)
	Resource Control Table Entry (RCT)
	Using Remote Programs, Transactions, or Files

	Modifying CICS Startup JCL
	Making New Modules Available in the CICS Environment
	Making Programs Resident
	Running Programs under CICS
	Controlling Diagnostic Information in the CICS Environment
	Printing Diagnostic Messages in the CICS Environment

	Chapter 12. Preparing and Running Generated Programs in z/OS Batch
	Running Main Programs under z/OS Batch
	Examples of Runtime JCL for z/OS Batch Programs
	Running a Main Batch Program with No Database Access
	Running a Main Batch Program with DB2 Access
	Running Main Batch Program with DL/I Access
	Running a Main Batch Program with DB2 and DL/I Access

	Recovery and Restart for Batch Programs

	Chapter 13. Creating or Modifying Run-time JCL on z/OS Systems
	Tailoring JCL before Generation
	Modifying Run-time JCL

	Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP
	Modifying the IMS System Definition Parameters
	Defining an Interactive Program
	Defining Parameters for a Batch Program as an MPP
	Defining Parameters for a Batch-Oriented BMP Program
	Defining Parameters for a Transaction-Oriented BMP Program

	Creating MFS Control Blocks
	Making New Modules Available in the IMS Environment
	Preloading Program, Print Services, and Table Modules
	Running Programs under IMS
	Starting a Main Program Directly
	Starting a Main Transaction Program Using the /FORMAT Command
	Running Transaction Programs as IMS MPPs
	IMS Commands
	Keyboard Key Operation
	DBCS Data on a Non-DBCS Terminal
	Error Reporting
	Responding to IMS Error Messages

	Running Batch Programs as MPPs

	Running a Main Program under IMS BMP
	Examples of Runtime JCL for IMS BMP Programs
	Running a Main Batch Program as an IMS BMP Program
	Running a Main Batch Program as an IMS BMP Program with DB2 Access

	Recovery and Restart for IMS BMP Programs

	Chapter 15. Moving Prepared Programs to Other Systems from z/OS Systems
	Moving Prepared Programs To Another z/OS System
	Maintaining Backup Copies of Production Libraries

	Part 4. Utilities
	Chapter 16. Using Enterprise Developer Server Utilities on z/OS Systems
	Using the CICS Utilities Menu
	New Copy
	Diagnostic Message Printing Utility

	Chapter 17. Diagnostic Control Options
	Change or View Diagnostic Control Options for a Transaction
	Change or View Default Diagnostic Control Options

	Chapter 18. Using the Parameter Group Utility
	Chapter 19. IMS Diagnostic Message Print Utility
	Part 5. Diagnosing Problems
	Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems
	Detecting Errors
	File and Database Errors—Category 1
	File and Database Errors—Category 2
	File and Database Errors—Category 3

	Reporting Errors
	Controlling Error Reporting in CICS
	Controlling Error Reporting in IMS Environments
	Controlling Error Reporting in z/OS Batch
	Error Reporting Summary
	Transaction Error
	Run Unit Error
	Catastrophic error
	Enterprise Developer Server Error
	Using the Enterprise Developer Server Error Panel

	Printing Diagnostic Information for IMS
	ERRDEST Message Queue
	IMS Log Format
	Running the Diagnostic Print Utility

	Printing Diagnostic Information for CICS
	CICS Diagnostic Message Layout

	Running the Diagnostic Print Utility
	Analyzing Errors Detected while Running a Program

	Chapter 21. Finding Information in Dumps
	Enterprise Developer Server ABEND Dumps
	COBOL or Subsystem ABEND Dumps
	Information in the Enterprise Developer Server Control Block
	Information in an Application
	How to Find the Current Position in a Program at Time of Error

	Chapter 22. Enterprise Developer Server Trace Facility
	Enabling Enterprise Developer Program Source-Level Tracing with Build Descriptor Options
	Activating a Trace
	Activating a Trace Session for CICS
	Activating a Trace Session for z/OS Batch

	Deactivating a Trace Session
	Printing Trace Output
	Printing the Trace Output in CICS
	Printing the Trace Output in z/OS Batch

	Reporting Problems for Enterprise Developer Server

	Chapter 23. Common Messages during Preparation for z/OS Systems
	Common Abend Codes during Preparation
	DB2 Precompiler and Bind Messages
	COBOL Compilation Messages

	Chapter 24. Common System Return Codes for z/OS Systems
	Common SQL Return Codes
	Common DL/I Status Codes
	Common VSAM Status Codes
	OPEN request type
	CLOSE request type
	GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

	COBOL Status Key Values

	Chapter 25. Enterprise Developer Server Return Codes and Abend Codes for z/OS Systems
	Return Codes
	ABEND Codes
	CICS Environments
	IMS, IMS BMP, and z/OS Batch Environments
	z/OS Batch

	Chapter 26. Codes from Other Products for z/OS Systems
	Common System Abend Codes for All Environments
	LE Run-time Messages
	COBOL Run-time Messages
	Common COBOL Abend Codes
	Common IMS Runtime Messages
	Common IMS Runtime Abend Codes
	Common CICS Run-time Messages
	Common CICS Abend Codes
	COBOL Abends under CICS

	Part 6. Appendixes
	Appendix. Enterprise Developer Server Run-time Messages
	Notices
	Index

