<|ll

IBM Enterprise Developer Server Guide for
7/ O0S

Version 500

SC31-6306-03

<|ll

IBM Enterprise Developer Server Guide for
7/ O0S

Version 500

SC31-6306-03

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 199,

Fourth Edition (October 2005)

This edition applies to Version 5.0.0 of IBM Enterprise Developer Server (product number 5655-157) and to all
subsequent releases and modifications until otherwise indicated in new editions.

You can order publications through your IBM representative or the IBM branch office serving your locality.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Trademarks. Vi
Terminology Used in This Document. vii

About This Document ix
Who Should Use This Documentix

Part 1. Preparing toInstall. 1

Chapter 1. Preparing for the Installation
of Enterprise Developer Server. 3

Chapter 2. Storage Requirements for
Enterprise Developer Server .

Virtual Storage Requirements .

Enterprise Developer Server Load Module Storage
Application Load Module Storage .

COBOL Dynamic Storage . . .
Enterprise Developer Server Dynam1c Storage .
Storage Requirements for CICS .

Disk Storage Requirements for Enterprise Developer
Server

N o oaurul O

N

Work Database Space For Segmented Apphcatlons 7
Chapter 3. Installation Considerations. . 9
z/0S Batch Considerations9

DL/I Considerations.9

DB2 Considerations9
CICS Installation Considerations10

DL/I Considerations10

DB2 Considerations10

Security Considerations10

Monitoring and Tuning10

CICS Utilities. . . R i |

Using the data Build Descrlptor Optron B |

Modifying CICS Resource Tables11
IMS Installation Considerations.11

IMS/ESA Exploitation.12

DB2 Considerations12

Security Considerations12

Monitoring and Tuning12

IMS System Definition.13

IMS Control Region13

Work Database13

Chapter 4. Customizing Enterprise
Developer Server15

General Customization Consrderatrons forz/OS . .15
Customizing Enterprise Developer Server . . .15
Security Considerations15
Performance Considerations.15
Customizing Build Scripts16
Modifying the Language Envrronment Run—trme
Option.16

© Copyright IBM Corp. 1994, 2005

Using Generated Programs with PL/I Programs 16
Installation and Language-Dependent Options for
z/0S e e . 16
Part 2. Administering on z/0S
Systems .21
Chapter 5. General System
Considerations for z/OS Systems . . 23
Considerations that Affect Performance . .23
Build Descriptor and Compiler Options . .23
Modules in Memory .o .23
Files and Databases. .24
Defining and Loading VSAM Program Data Flles .24
Defining VSAM Data Sets S .24
Loading Data in the Files. . 26
Support for DBCS terminals . .27
Extended Addressing Considerations for Enterpr1se
Developer Server . .27
Database Considerations . .27
Preparing Programs . . 28
Checking Access Authorlzat1on . 28
Backing Up Data . 28
Chapter 6. System Considerations for
CICs. . 29
Required File Descr1pt1ons . . .29
Segmented and Nonsegmented Processmg . .30
Using Transient Data Queues for Printing in z/OS
CICS . . 30
z/0S CICS termmal prmtmg . 31
Special Parameter Group for the FZETPRT
Program . oo .31
PRTBUF Parameter .32
PRTMPP Parameter. . 33
PRTTYP Parameter . . 33
FORMEFD Parameter . 33
CICS Entries for FZETPRT (DBCS only) . 34
Using the New Copy Function . .. 34
Specifying Recovery Options in the CICS Tables .. 34
Considerations that Affect Performance . .35
Residency (Modules in Memory) Consrderatrons 35
Using and Allocating Data Files in CICS. . 36
Considerations for Using DB2 in CICS . 40
Considerations for Using DL/I in CICS . . 40
Setting up the National Language . . 41
Chapter 7. System Considerations for
z/0S Batch . . 43
Required File Descriptions . 43
Using VSAM Program Data Flles inz / OS Batch .44
Considerations for Using DB2 in z/OS Batch . .44
Recovery and Database Integrity Considerations 44
Considerations for Using DL/I in z/OS Batch . .44
iii

Defining the Program Specification Block (PSB) 44
Recovery and Database Integrity Considerations 45
Performance Considerations for z/OS Batch . . 45
RuntimeJjCcL.45

Chapter 8. System Considerations for

IMS Y 4
Required File Descrrptrons .o .. 47
Defining the Program Specrﬁcatron Block (PSB) . .48
Processing Modes . . . B
Printing Considerations for IMS o .. 49
Recovery and Database Integrity Con51derat10ns .49
Considerations that Affect Performance 50
Residency Considerations and the IMS Preload
Function . . . oo ..o oo h0
Database Performance T 74
Limiting MFS Control Blocks53
Monitoring and Tuning the IMS System . . .53
Considerations for Using DB2 in IMS.53
Recovery and Database Integrity Considerations 54
Checking Authorization . . .
Considerations for Using DL/I in IMSb4
Recovery and Database Integrity Considerations 55
Maintaining the Work Database inIMS55
Deleting Old Records from the Work Database . 55
Expanding the Work Database57
Supporting Multiple Work Databases. . . . 60

Considerations for Message Format Services in IMS 61

Part 3. Preparing and Running
Generated Applications 63

Chapter 9. Output of Program
Generation on z/0OS Systems 65

Allocating Preparation Data Sets65
List of Program Preparation Steps after Program
Generation . . B V4
Deploying generated code to USS B 74
Outputs of Generation. . . B V4
Objects Generated for Programs70
Objects Generated for Tables.71
Objects Generated for Form Groups71

Chapter 10. zOS Builds 73

z/0S Build Server . . . e ... T4
Starting a z/OS Build Server L.76
Starting a USS Build Server79
Stopping servers. . . e e T
Configuring a build server79
Working with Build Scripts79
Working with z/OS Build Scripts79
Converting JCL to Pseudo-JCL81

Chapter 11. Preparing and Running a
Generated PrograminCICS 85

Modifying CICS Resource Tables85
Program Entries (PPT).85
Transaction Entries (PCT).86
Destination Control Table Entries (DCT) . . .86

iv IBM Enterprise Developer Server Guide for z/OS

File Control Table Entries (FCT)87
Resource Control Table Entry (RCT)87
Using Remote Programs, Transactions, or Files . 87
Modifying CICS Startup JCL. 87
Making New Modules Available in the CICS
Environment . . . T < 74
Making Programs Resrdent88
Running Programs under CICS. 88
Controlling Diagnostic Information in the CICS
Environment88
Printing Diagnostic Messages in the CICS
Environment88

Chapter 12. Preparing and Running
Generated Programs in z/OS Batch . . 89
Running Main Programs under z/OS Batch . . . 89
Examples of Runtime JCL for z/OS Batch Programs 89
Running a Main Batch Program with No
Database Access. . . . 90
Running a Main Batch Program w1th DBZ Access 90
Running Main Batch Program with DL/T Access 90
Running a Main Batch Program with DB2 and
DL/I Access L9
Recovery and Restart for Batch Programs L. .92

Chapter 13. Creating or Modifying
Run-time JCL on 2/0S Systems . . .93

Tailoring JCL before Generation9
Modifying Run-time JCL.94

Chapter 14. Preparing and Running
Generated Programs in IMS/VS and

IMSBMP. 97
Modifying the IMS System Deflnltlon Parameters .97
Defining an Interactive Program97
Defining Parameters for a Batch Program as an
MPP. . 98
Deﬁning Parameters for a Batch—Oriented BMP
Program99
Defining Parameters for a Transactlon—Orlented
BMP Program . . e e 9
Creating MFS Control Blocks . L0099
Making New Modules Available in the IMS
Environment 100
Preloading Program, Prmt Serv1ces and Table
Modules100
Running Programs under IMS e (0
Starting a Main Program Directly. 101
Starting a Main Transaction Program Using the
/FORMAT Command 101
Running Transaction Programs as IMS MPPs 101
Running Batch Programs as MPPs 103
Running a Main Program under IMS BMP . . . 103

Examples of Runtime JCL for IMS BMP Programs 104
Running a Main Batch Program as an IMS BMP

Program . . . 104

Running a Mam Batch Program as an IMS BMP

Program with DB2 Access 105
Recovery and Restart for IMS BMP Programs .. 106

Chapter 15. Moving Prepared
Programs to Other Systems from z/OS

Systems o107
Moving Prepared Programs To Another z/0S
System . . e (04

Maintaining Backup Coples of Productron L1brar1es 107

Part 4. Utilities 109

Chapter 16. Using Enterprise
Developer Server Utilities on z/0S

Systems. e b
Using the CICS Utilities Menu B U ¥
New Copy . . . A i)
Diagnostic Message Prmtmg Utlhty ... 114

Chapter 17. Diagnostic Control

Options 117
Change or View Dlagnostlc Control Optlons for a
Transaction 118
Change or View Default Dlagnostlc Control

Options119

Chapter 18. Using the Parameter
Group Utility. 121

Chapter 19. IMS Diagnostic Message
PrintUtility125

Part 5. Diagnosing Problems . . . 127

Chapter 20. Diagnosing Problems for
Enterprise Developer Server on z/0S
Systems129

Detecting Errors . . .o 129
File and Database Errors—Category 1 oo 129
File and Database Errors—Category 2 130
File and Database Errors—Category 3 130

Reporting Errors 131
Controlling Error Reportmg in CICS A £
Controlling Error Reporting in IMS
Environments 131
Controlling Error Reportmg in z / OS Batch .. 132
Error Reporting Summary132
Transaction Error132
Run Unit Error.132
Catastrophic error 133
Enterprise Developer Server Error133
Using the Enterprise Developer Server Error
Panel 133

Printing Diagnostic Informatlon for IMS oL 134
ERRDEST Message Queue134
IMS Log Format 135
Running the Diagnostic Prmt Ut1hty 136

Printing Diagnostic Information for CICS 136
CICS Diagnostic Message Layout. 136

Running the Diagnostic Print Utility. 137

Analyzing Errors Detected while Running a
Program138

Chapter 21. Finding Information in

Dumps 139
Enterprise Developer Server ABEND Dumps .. 139
COBOL or Subsystem ABEND Dumps 139
Information in the Enterprise Developer Server

Control Block e 2 10)
Information in an Apphcatlon . . 140
How to Find the Current Position in a Program at

Time of Error141

Chapter 22. Enterprise Developer
Server Trace Facility 143

Enabling Enterprise Developer Program
Source-Level Tracing with Build Descriptor

Options143

Activating a Trace. . . oo 144
Activating a Trace Sessmn for CICS P
Activating a Trace Session for z/OS Batch. . . 147

Deactivating a Trace Session 149

Printing Trace Output . . B
Printing the Trace Output in CICS e)
Printing the Trace Output in z/OS Batch . . . 149

Reporting Problems for Enterprise Developer

Server.149

Chapter 23. Common Messages
during Preparation for z/OS Systems . 151

Common Abend Codes during Preparation . . . 151
DB2 Precompiler and Bind Messages 151
COBOL Compilation Messages151

Chapter 24. Common System Return
Codes for z/0S Systems 153

Common SQL Return Codes153
Common DL/I Status Codes 155
Common VSAM Status Codes.155
OPEN request type156
CLOSE request type . . . 156
GET/PUT/POINT/ERASE / CHECK / ENDREQ
request types . . B 1574}
COBOL Status Key Values T 1 V4

Chapter 25. Enterprise Developer
Server Return Codes and Abend
Codes for z/0S Systems 159

Return Codes S 151°)
ABEND Codes15
CICS Environments . . . 159
IMS, IMS BMP, and z/OS Batch Env1ronments 161
z/OSBatch162

Chapter 26. Codes from Other
Products for z/0OS Systems 163

Common System Abend Codes for All
Environments163

Contents V

LE Run-time Messages .

COBOL Run-time Messages .
Common COBOL Abend Codes .
Common IMS Runtime Messages.
Common IMS Runtime Abend Codes
Common CICS Run-time Messages .
Common CICS Abend Codes .
COBOL Abends under CICS

. 164
. 164
. 165
. 165
. 166
. 167
. 167
. 168

Part 6. Appendixes 169

vi IBM Enterprise Developer Server Guide for z/OS

Appendix. Enterprise Developer
Server Run-time Messages

Notices .

Index .

.17

. 199

. 203

Trademarks

The following terms are trademarks of the IBM® Corporation in the United States
or other countries or both:

CICS®
CICS/ESA®
Current

DB2®

IBM
MS™
Language Environment®
RACF®
VisualAge®
WebSphere® Studio
WebSphere
z/0S®

The following terms are trademarks of other companies:

Microsoft® Windows®, and Windows NT® are trademarks or registered trademarks
of Microsoft Corporation.

Windows, is a registered trademark of Sun Microsystems, Inc.

Terminology Used in This Document

Unless otherwise noted in this publication, the following references apply:

EGL refers to Enterprise Generation Language

CICS applies to Customer Information Control System

“Region” or “CICS region” corresponds to CICS Transaction Server for region
Workstation applies to a personal computer, not an AIX workstation

The make process applies to the generic process, and not to specific make
commands, such as make, nmake, pmake, polymake

© Copyright IBM Corp. 1994, 2005 vii

viii IBM Enterprise Developer Server Guide for z/OS

About This Document

This manual provides information about customizing and administering Enterprise
Developer Server in the following environments:

* z/0S UNIX System Services (USS)
* z/0S
« CICS

Note: Hereafter in this book, IBM Enterprise Developer Server for z/OS is referred
to simply as “Enterprise Developer Server.”

Who Should Use This Document

This manual is intended for system administrators and system programmers
responsible for installing, maintaining, and administering Enterprise Developer
Server. It provides information to complete the following tasks:

* Manage system requirements

* Manage file utilization and conflicts

This manual is also intended for use by the programmers responsible for preparing
and running EGL-generated programs. It provides information on the following
items:

* Outputs of the generation process

* How to prepare generated programs for running

* Error codes

* How to use Enterprise Developer Server utilities

* How to diagnose and report problems

— Attention IBM VisualAge Generator Users
Enterprise Developer Server provides the required components to support
development and execution of programs generated by Enterprise Generation
Language (EGL) or VisualAge Generator Developer.

To understand how VisualAge Generator Developer is used on z/OS, please
refer to your VisualAge Generator documentation for information regarding
VisualAge Generator Server for z/OS function and use.

— Attention CICS Users
Please refer to the CICS documentation for the level of CICS installed on your
system for detailed information regarding CICS functions and operations.

— Attention: Accessing the EGL helps
To access the EGL helps, open the EGL client and select Help->Help Contents
from the menu bar.

© Copyright IBM Corp. 1994, 2005 ix

X IBM Enterprise Developer Server Guide for z/OS

Part 1. Preparing to Install

Chapter 1. Preparing for the Installation of
Enterprise Developer Server

Chapter 2. Storage Requirements for Enterprise
Developer Server
Virtual Storage Requlrements . .
Enterprise Developer Server Load Module Storage
Application Load Module Storage .
COBOL Dynamic Storage . . .
Enterprise Developer Server Dynarmc Storage .
Storage Requirements for CICS .
Disk Storage Requirements for Enterprise Developer
Server

Work Database Space For Segmented Apphcatlons

Chapter 3. Installation Considerations .
z/0S Batch Considerations
DL/I Considerations.
DB2 Considerations .
CICS Installation Con51deratlons
DL/I Considerations
DB2 Considerations
Security Considerations
Monitoring and Tuning
CICS Utilities . .
Using the data Build Descrrptor Optron .
Modifying CICS Resource Tables
Using Spool Files .
Temporary Storage .
IMS Installation Considerations.
IMS/ESA Exploitation .
DB2 Considerations
Security Considerations
Monitoring and Tuning
IMS System Definition.
IMS Control Region
Work Database . .
DL /I Work Database Consrderatrons .
DB2 Work Database Considerations

Chapter 4. Customizing Enterprise Developer

Server .

General Customlzatron Con51derat10ns for z / OS
Customizing Enterprise Developer Server
Security Considerations
Performance Considerations .

Customizing Build Scripts

Modifying the Language Env1ronment Run t1me
Option .

Using Generated Programs w1th PL / I Programs
Installation and Language-Dependent Options for
z/0S

© Copyright IBM Corp. 1994, 2005

NN Gl O ot O

NN

. 15
.15
.15
.15
.15
. 16

. 16

16

. 16

2 IBM Enterprise Developer Server Guide for z/OS

Chapter 1. Preparing for the Installation of Enterprise
Developer Server

After selecting the production environments, do the following to prepare for the

installation of the Enterprise Developer Server:

* Obtain a copy of the Program Directory for Enterprise Developer Server for z/OS
(GI10-3241-00) (shipped with the product’s installation materials).

* Determine the hardware, software, and storage requirements for the production
environments selected.

* Install the hardware and software required by the Enterprise Developer Server.

* Collect information before customization.

* Understand specific environment considerations before defining applications.

Before continuing with the current document, do as follows:
1. Access the following Web site:

http:/ /www.ibm.com/software/awdtools/studioenterprisedev

2. For details on product updates, click Support and search for information on
EGL

3. To see what documents are available, click Library and review the list of
publications; in particular, the entries under Product Information

The following document is of particular value because it includes prerequisite
and planning information:

IBM WebSphere Developer for zSeries® Host Planning Guide

The document number for that guide is SC31-6599-02. Later editions of that
Guide (if any) will have a higher number in the last digit.

Copies of documents are also available from the IBM Publications Center:

http:/ /www.elink.ibmlink.ibm.com /public/applications/publications/cgibin /pbi.cgi

© Copyright IBM Corp. 1994, 2005 3

4 1BM Enterprise Developer Server Guide for z/OS

Chapter 2. Storage Requirements for Enterprise Developer
Server

The following sections give approximate estimates of Enterprise Developer Server
storage use by type of storage.

Virtual Storage Requirements

A program requires virtual storage for the following:
* Enterprise Developer Server load modules

* Application load modules

* COBOL dynamic area

* Enterprise Developer Server dynamic area

CICS applications also use specialized CICS storage facilities.

Enterprise Developer Server Load Module Storage

Most of the modules in the run-time function are not linked with the generated
programs. Only one copy of these modules needs to be available for use by all
programs generated with Enterprise Generation Language (EGL).

For z/0S, these modules can be in a library (DFHRPL), or placed in the link pack
area (LPA). For CICS, you might want to make the modules resident. Refer to the
Enterprise Developer Server program directory for a list of LPA eligible load
modules.

Table 1. Enterprise Developer Server Reentrant Load Module Storage Estimates

Function Size RMODE
CICS base services 240 KB ANY
CICS base services, 24-bit addressing mode 8 KB 24
Double-byte language ASCII/EBCDIC code Chinese - 50 KB ANY

conversion tables

Application Load Module Storage

Application load module storage is the storage required for generated COBOL
applications. The load modules are created by link-editing the generated COBOL
applications produced by EGL’s COBOL generation facility. The size of the load
module can be determined from the linkage editor module map. The size varies
depending on the functions utilized with the applications.

The application load module storage includes all generated application programs,
data table programs, form group format modules, and print services programs
used by a batch job step or transaction. The size of an application load module
also includes the small Enterprise Developer Server programs that are statically
linked with the programs. The load modules produced by link-editing the
generated programs are reentrant. Each module can be linked with RMODE(ANY)
so that the load module can reside in extended storage.

© Copyright IBM Corp. 1994, 2005 5

The size of the Enterprise Developer Server modules linked with each generated
program, print services program, or data table program is shown in These
estimates should be added to the application load module size to determine the
overall load module size.

Table 2. Enterprise Developer Server Statically Linked Module Storage Estimates

Print service Data table
Environment Application program program
CICS 2.5 KB 1 KB 1 KB
z/0S 1.3 KB 1 KB 1 KB

Note: Enterprise Developer Server modules are not statically linked with a form group
format module.

COBOL Dynamic Storage

Application load modules acquire dynamic storage while they are running. The
COBOL run-time library requires this storage for application data structures such
as records, forms, and data tables. The storage includes both the internal and
external data structures.

The COBOL data build descriptor option determines whether to acquire storage
below the 16 MB line. The procedures shipped with the Enterprise Developer
Server enable data (a build descriptor option) to control the value for the COBOL
DATA compiler option. The default value of that build descriptor option is 31. Set
data to 24 if an application calls another application or program that is linked as
AMODE(24). Data table program and print services programs must also use
data=24 if any application being used is linked AMODE(24).

When you generate z/OS batch or CICS programs with dynamic storage
requirements greater than 64 KB, the value data=31 is required.

The amount of storage required for internal data structures is listed in the compile
listing of the COBOL application when the MAP, OFFSET, or LIST compiler
options are used.

Applications that run outside of CICS use COBOL external data structures to share
information between applications in the same run unit. The storage required is
approximately 1 KB.

Enterprise Developer Server Dynamic Storage

6

When applications are running, Enterprise Developer Server allocates storage as
shown in [Table 3 on page 7] The initial application of the run unit determines
where the shared storage between Enterprise Developer Server and the generated
COBOL application is allocated. If the initial application is generated with the
build descriptor option data set to 24 or is link-edited with AMODE(24), this
storage is allocated below the 16 MB line. Otherwise, the storage is allocated with
31-bit addresses as shown in the following table:

IBM Enterprise Developer Server Guide for z/OS

Table 3. Enterprise Developer Server Dynamic Storage Utilization

24- or 31-bit
Function Storage Required Addressing mode
Persistent dynamic storage pool. The pool is 32 KB increment 31
extended as needed in 32 KB increments.
Most transactions or jobs require only the
initial allocation.
CICS - service program dynamic storage 48 KB 31
stack
z/0S batch 64 KB 24
Storage Requirements for CICS
Generated COBOL applications use the following CICS storage facilities:
Table 4. Enterprise Developer Server Use of CICS Storage Areas
Type of Storage Function Size
Transaction Work Area Enterprise Developer Server 1 KB
(TWA) Control Block. Offset in TWA
is specified in twaOffset build
descriptor option.
COMMAREA Calls using COMMPTR 4 times the number of
parameters
COMMAREA Calls using COMMDATA Total length of all parameters
COMMAREA Remote calls Total length of all parameters,
plus 12

Disk Storage Requirements for Enterprise Developer Server

The auxiliary disk storage space required to install files for the Enterprise
Developer Server is approximately 2 MB. Additional disk space for user programs
can vary.

Work Database Space For Segmented Applications

The space required for saving application status across a terminal I/O operation in
CICS is the sum of all segmented applications” data areas (maps and records) plus
6 KB per application. In CICS, disk space is used only if auxiliary temporary
storage is specified as the work database during application generation.

Chapter 2. Storage Requirements for Enterprise Developer Server 7

8 1BM Enterprise Developer Server Guide for z/OS

Chapter 3. Installation Considerations

The following sections describe installation considerations for the Enterprise
Developer Server.

z/OS Batch Considerations

If the installation has z/OS batch applications that gain access to relational
databases, do as follows:

1.
2.
3.

4.

Install the correct version of DB2.
Create the tables in the relational database that the applications will access.

Follow the optional DB2-related steps for Enterprise Developer Server
installation, as described in the Program Directory.

Define plans.

DL/I Considerations

If the installation has applications that gain access to DL/I databases, do the
following:

1.

Install the correct version of IMS. For more information on the correct version
of IMS, see Prerequisites for WebSphere Developer for zSeries (SC31-6352). This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

Define databases and PSBs to IMS as described in the IMS utilities reference
document.

Follow the optional DL/I-related steps for Enterprise Developer Server
installation as described in the Program Directory for Enterprise Developer Server
for z/OS.

The data build descriptor option defaults todata="24" for non-CICS
environments.

DB2 Considerations

If the installation has applications that gain access to relational databases, do the
following:

1.

© Copyright IBM Corp. 1994, 2005

Install the correct version of DB2. For more information on the correct version
of DB2, see Prerequisites for WebSphere Developer for zSeries (SC31-6352). This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

Create the tables in the relational database that the applications will access.

Follow the optional DB2-related steps for Enterprise Developer Server
installation as described in the Program Directory for Enterprise Developer Server
for z/OS.

Define application plans as described in the resource definition and installation
and operation guides.

CICS Installation Considerations

This section discusses some general considerations when installing EGL-generated
programs in the CICS environment.

DL/l Considerations

If the installation has applications that gain access to DL/I databases, you must do
the following:

1.

Install the correct version of IMS. For more information on the correct version
of IMS, see Prerequisites for WebSphere Developer for zSeries (SC31-6352). This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi..

Define databases and PSBs to IMS as described in the IMS utilities reference
document.

Follow the optional DL/I-related steps for Enterprise Developer Server
installation as described in the Program Directory for Enterprise Developer Server
for z/OS.

Add DL/I support to CICS and define databases and PSBs to CICS as
described in the resource definition and installation and operation guides or in
the IMS database control guide.

DB2 Considerations

If the installation has programs that gain access to relational databases, do the
following;:

1.
2.

Install the correct version of DB2.
Create the tables in the relational database to which the applications will gain
access.

Follow the optional DB2-related steps for Enterprise Developer Server
installation as described in the Program Directory for Enterprise Developer Server
for z/OS.

Add DB2 support to CICS and define application plans to CICS as described in
the DB2 system administration guides.

Security Considerations

CICS provides access control to resources (such as data files and programs) and
transactions. This access can be controlled by the user or by the terminal.

CICS resources (such as data files, programs, destinations, journals, and temporary
storage) can be assigned a security lock value. CICS users are assigned one or
more key values. If a user is running an CICS transaction that is defined for
resource security checking, the user’s keys are checked every time a resource is
requested. If the user does not have a key that matches the lock, access is denied
by ending the transaction with an AEY7 ABEND code.

Monitoring and Tuning

Use CICS monitoring facilities to get information about CICS tasks.

Refer to the performance guide for your release of CICS for more information.

10 1BM Enterprise Developer Server Guide for z/OS

CICS Utilities

In the CICS environment, the Enterprise Developer Server includes a set of utilities
to assist in managing the error diagnosis and control facilities of the Enterprise
Developer Server environment. These utilities are EGL COBOL applications. See
[“Using the CICS Utilities Menu” on page 111| for more information about these
utilities.

Using the data Build Descriptor Option

Set the build descriptor option data to 24 on generated COBOL programs to enable
calls from the generated program to programs using 24-bit addresses, as long as
the length of the COBOL dynamic storage (as defined in the COBOL
working-storage section) required for the application is less than 64 KB. Programs
whose dynamic storage requirements are greater than 64 KB must be compiled
with the build descriptor option data set to 31. Otherwise, COBOL ends the
program with a 1009 ABEND code.

Note: The build scripts and procedures shipped with the Enterprise Developer
Server enables the data build descriptor option to control the value for the
COBOL DATA compiler option. The build descriptor option data is set to 31
as the default for the CICS environment.

Modifying CICS Resource Tables

CICS uses tables to identify startup parameters, transactions, programes, files,
databases, transient data destinations, and system locations for proper operation.
The application developer must add or modify these tables to correctly identify all
objects to be used in the new or changed application. The CICS tables are compiled
as assembler programs and stored in a run-time library. Some tables can also be
maintained through an online facility as described in the CICS resource definition
online document. CICS requires that the online facility be used instead of PPT and
PCT entries.

To generate model resource definition online (RDO) program and transaction
definitions, specify the build descriptor option cicsEntries=RDO.

The CICS system initialization table needs to include EXEC=YES.

Add any transaction that invokes an application that uses DB2 to the resource
control table (RCT) with the appropriate plan name. You can also use a resource
definition.

Using Spool Files
To use the spool files, include the SPOOL=YES parameter in the System
Initialization Table (SIT).

Temporary Storage
Temporary storage queues used by the Enterprise Developer Server must be
defined as nonrecoverable. These queues start with X'EE'.

IMS Installation Considerations

This section discusses some general considerations for running EGL COBOL
applications in the IMS environment.

Chapter 3. Installation Considerations 11

12

IMS/ESA Exploitation

The procedures shipped with the Enterprise Developer Server cause the generated
COBOL applications to be compiled with the data="31" build descriptor option
and linked in AMODE(31) and RMODE(ANY). If the application calls another
application that is linked with AMODE(24), then the data="24" build descriptor
option is required.

You can link the generated COBOL application to run below the 24-bit line.
However, if AMODE(24) is used to link the application, you must use data="24"
build descriptor option for the following situations:

* For an application that calls an application or program that is linked as
AMODE(24)

* For the first application in the run unit, if any generated application in the run
unit is linked as AMODE(24) or if a non-EGL COBOL application that uses DL/I
is linked as AMODE(24)

* For a table or mapping services program, if any application being used is linked
as AMODE(24)

DB2 Considerations

If the installation has applications that gain access to relational databases, do the
following:

1. Install the correct version of DB2. For more information on the correct version
of DB2, see Prerequisites for WebSphere Developer for zSeries (SC31-6352). This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the applications will gain access
to.

3. Follow the optional DB2-related steps for Enterprise Developer Server
installation as described in the Program Directory for Enterprise Developer Server

for z/OS.

4. Add DB2 support to IMS and define application plans to IMS as described in
the DB2 system administration guide.

Security Considerations

Resource Access Control Facility (RACF) can be used to control users authority to
each transaction.

Monitoring and Tuning

Potential performance problems can be tracked before they occur by checking
processing statistics on a regular basis. The following are some of the statistics to
monitor:

* Use the IMS DC monitor facilities to check transaction utilization. Consider
preloading applications or groups of applications that are frequently used.

¢ Use the IMS database monitor facilities to check how effectively the databases
are performing and using space.

Use the following tools to monitor IMS performance:

¢ The IMS Performance Analysis and Reporting System (IMSPARS, program
number 5798-CQP).

IBM Enterprise Developer Server Guide for z/OS

This tool presents information on transaction transit times, IMS resource usage,
and IMS resource availability, and detailed reports tracing individual transaction
and database change activity. These reports are based on the contents of the IMS
log data set.

TM

¢ The Resource Measurement Facility (RMF ") II

This tool collects information about processor, channel, and I/O device
utilization.

e The DB Tools product (program number 5668-856)

This tool provides information to help improve access efficiency and space
utilization.

Refer to the IMS system administration document and the database administration
guide for the release of IMS for additional information on monitoring the IMS
online system and DL/I databases.

IMS System Definition

If you plan to use IMS, define all PSBs and transactions in the IMS system
definition. In addition, define DL/I application databases.

IMS Control Region

You might need to review the values for the following:

* PSB work area pool (PSBW parameter)

* FORMAT pool (FBP parameter)

e MES test area (MFS parameter)

* Communications input/output area (TPDP parameter)

In addition, if a DL/I work database is used, the work database would need to be
added to either the control region JCL or to the dynamic allocation table.

Work Database

The work database is used to save the status of an EGL COBOL application during
a CONVERSE process option, and to pass information during certain types of
program-to-program message switches. The work database can be either a DL/I
database or a DB2 table. The application developer specifies the workDBType
build descriptor option when generating an application to determine which type of
database is to be used. A DL/I or DB2 work database is used only for Enterprise
Developer transaction applications that are generated for the IMS/VS target
environment. In general, a DL/I work database performs better than a DB/2 work
database.

Multiple DL/I or DB2 work databases can be installed. Use separate databases for
each application system to improve performance or data availability.

DL/I Work Database Considerations

If you plan to use a DL/I implementation for the work database, you might need
to tailor the database description (DBD) before running the job that creates and
initializes the DL/I work database.

DB2 Work Database Considerations
If you plan to use a DB2 implementation for the work database, review the
database definition before running the job that initializes the DB2 work database. A

DB2 synonym needs to be created for each user and application gaining access to
the DB2 work database.

Chapter 3. Installation Considerations 13

14

The DB2 work database requires a 32KB page size. If a DB2 work database is used,
you might need to increase the allocation of the 32KB buffers. To increase the
allocation of buffers, modify and assemble the DB2 parameter module (default is
DSNZPARM). Refer to the DB2 documents for the system for additional
information.

If you select DB2, a DB2 application plan for each transaction is needed even if the
EGL COBOL application itself does not require DB2.

If you select DB2 and if the Enterprise Developer Server needs maintenance
applied to the module that handles the DB2 work database access, bind the
application plans again for all transactions that use this database.

There are also considerations with the DB2 authorization used by the IMS program
that is gaining access to the DB2 work database. For example, authorization needs
to be granted to LTERM and a synonym needs to be created.

IBM Enterprise Developer Server Guide for z/OS

Chapter 4. Customizing Enterprise Developer Server

Before starting the customization process, determine the following:

* The target environments that application developers specify during generation
* Whether the applications use relational databases

¢ The IMS Work database and terminal types

* The national language support requirements

General Customization Considerations for z/OS

The following sections discuss some general considerations for running Enterprise
Developer-generated applications in the supported z/OS environment.

Customizing Enterprise Developer Server

Customizing Enterprise Developer Server consists of performing some of the same
procedures used to install the product on the system. These procedures are
described in the Program Directory for Enterprise Developer Server for z/OS.

Security Considerations

The Enterprise Developer Server does not provide security services. Standard
system or database manager security functions can be used with generated COBOL
applications in the same way that they are used with customer-developed COBOL
applications.

For example, if the applications use DB2, define DB2 application plans and give
run authority to those users that are authorized to use the applications associated
with the plan. The Resource Access Control Facility (RACF*) can also be used to
grant users authority to read or update files.

Performance Considerations

Other chapters in this book provide detailed information on considerations that
affect performance. See the following chapters for information on these
performance-related topics and others:

Performance Topic Where to Find Info

Build descriptor options + [Chapter 5, “General System Considerations|
for z/0S Systems,” on page 23]

Placing Enterprise Developer Server product |¢ [Chapter 5, “General System Considerations|
and generated application modules in for z/0S Systems,” on page 23]
memory

Residency and work-database considerations |, [Chapter 6, “System Considerations for]

in CICS ICICS,” on page 29

Monitoring and tuning tools + [Chapter 6, “System Considerations for|
ICICS,” on page 29

Residency and database considerations in + [Chapter 8, “System Considerations for]

IMS IMS,” on page 47|

© Copyright IBM Corp. 1994, 2005 15

Customizing Build Scripts

The Enterprise Developer Server includes build scripts used for preparing
generated applications for running. These build scripts can be customized to meet
any data set naming conventions. Refer to the EGL helps for additional
information.

Modifying the Language Environment Run-time Option

In the non-CICS environments, generated COBOL applications rely on COBOL
working storage being initialized to binary zeros to determine whether Enterprise
Developer Server is initialized. For LE, this is done by specifying STORAGE=((00))
in the CEEDOPT CSECT.

In the non-CICS environments, generated COBOL programs that access sequential
files (including print files) require the ALL31 runtime option to be set to OFF. This
is done by specifying ALL31(OFF) in the CEEDOPT CSECT.

The modified runtime options modules must be in a library allocated to the
STEPLIB placed in the link pack area or in a library managed by the Virtual
Lookaside Facility and Library Lookaside features of z/OS for each non-CICS
z/0S environment. If those modules are in a separate library, the library must
precede the library that contains the unmodified modules.

Alternatively, these options can be set for each program by creating a CEEUOPT
load module with these options set as listed above and link-editing this modoule
with each generated COBOL program. Refer to the Language Environment
documentation for more information on creating and using a CEEUOPT module to
set run-time options.

Using Generated Programs with PL/I Programs

If PL/I programs are used with generated COBOL applications in a non-CICS
environment, you must generate the COBOL application to invoke the PL/I
program using a static COBOL call. This requires the PL/I programs to be linked
with the COBOL application in the same load module.

If PL/I programs are used with generated COBOL applications in the CICS
environment, you must generate the COBOL application to call the PL/I program
using the CICS LINK command. This is the default linkage for the CICS
environment. The calling and called programs must not be linked together for the
CICS environment.

Refer to the EGL helps for additional information.

Installation and Language-Dependent Options for z/0S

The following are the language-dependent options required for z/OS. To change
the defaults use the steps outlined in the Program Directory for Enterprise
Developer Server for z/OS (GI10-3241-00) to specify the settings and for
instructions on customizing the Run-time Default Options and Language
Dependent Options.

Table 5. Installation and Language-dependent Options for z/OS

Question Default Your Selection

Enterprise Developer Server Run-time Default
Options

16 1BM Enterprise Developer Server Guide for z/OS

Table 5. Installation and Language-dependent Options for z/OS (continued)

Question

Default language code
Enterprise Developer Server trace buffer size
CICS? temporary storage control interval size

Enterprise Developer Server National Language
Dependent Options (One code is needed for each
national language you install. The default values

vary for each language.)

National language code (US English)
Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator
National language code (Simplified Chinese)
Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator
National language code (Swiss German)
Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator
National language code (German)
Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string

Default

ENU
64
16

ENU
MM/DD/YYYY
MM/DD/YY
YYYY-DDD
YY-DDD
ELACNENU
YES

NO

~

!

CHS
YYYY-MM-DD
YY-MM-DD
YYYY-DDD
YY-DDD
ELACNCHS
YES

NO

~

!

DES
DD.MM.YYYY
DD.MM.YY
YYYY.DDD
YY.DDD
ELACNDES
YES

NO

$

!

DEU
DD.MM.YYYY
DD.MM.YY
DDD/YYYY
DDD/YY

ELACNDEU
YES

Your Selection

Chapter 4. Customizing Enterprise Developer Server

17

Table 5. Installation and Language-dependent Options for z/OS (continued)

Question

Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator
National language code (Upper Case English)
Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator
National language code (Spanish)
Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator
National language code (Japanese)
Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator
National language code (Korean)
Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string

Default
NO

7

Your Selection

$

!

ENP
MM/DD/YYYY
MM/DD/YY
YYYY-DDD
YY-DDD
ELACNENP

YES
NO

~

!

ESP
DD/MM/YYYY
DD/MM/YY
DDD/YYY
DDD/YY
ELACNESP

SI

NO

$

!

JPN
YYY-MM-DD
YY-MM-DD
YYYY-DDD
YY-DDD
ELACNJPN

YES
NO

~

!

KOR
MM/DD/YYYY
MM/DD/YY
DDD/YYYY
DDD/YY
ELACNKOR
YES

NO

18 1BM Enterprise Developer Server Guide for z/OS

Table 5. Installation and Language-dependent Options for z/OS (continued)

Question

Decimal point character
Numeric separator character
Currency symbol

SQL host variable indicator
SQL host column indicator

National language code (Brazilian Portuguese)

Long Gregorian date format
Short Gregorian date format
Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator
National language code (French)
Long Gregorian date format
Short Gregorian date format
Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator

National language code (Traditional Chinese)

Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string
Decimal point character

Numeric separator character
Currency symbol

SQL host variable indicator

SQL host column indicator
National language code (Italian)
Long Gregorian date format

Short Gregorian date format

Long Julian date format

Short Julian date format
Conversion table name

Positive response character string
Negative response character string

Default

~

PTB
DD/MM/YYYY
DD/MM/YY
DDD/YYYY
DDD/YY
ELACNPTB
SIM

NAO

$

!

FRA
MM/DD/YYYY
MM/DD/YY
DDD/YYYY
DDD/YY
ELACNFRA

OUI
NAN

$

!

CHT
YYYY-MM-DD
YY/MM/DD
YYYY-DDD
YY-DDD
ELACNCHT

YES
NO

~

!

ITA
MM/DD/YYYY
MM/DD/YY
DDD/YYYY
DDD/YY
ELACNITA

SI

NO

Your Selection

Chapter 4. Customizing Enterprise Developer Server

19

Table 5. Installation and Language-dependent Options for z/OS (continued)

Question Default Your Selection

Decimal point character ,
Numeric separator character

Currency symbol $
SQL host variable indicator
SQL host column indicator

20 1BM Enterprise Developer Server Guide for z/OS

Part 2. Administering on z/OS Systems

Chapter 5. General System Considerations for
z/0S Systems .
Considerations that Affect Performance .
Build Descriptor and Compiler Options .
Modules in Memory .
Files and Databases.
Defining and Loading VSAM Program Data Frles
Defining VSAM Data Sets .o
Defining an Alternate Index .
Loading Data in the Files.
Support for DBCS terminals . .
Extended Addressing Considerations for Enterpr1se
Developer Server .
Database Considerations .
Preparing Programs .
Checking Access Authorlzat1on
Backing Up Data

Chapter 6. System Considerations for CICS
Required File Descriptions . .
Segmented and Nonsegmented Processmg .
Using Transient Data Queues for Printing in z/OS
CICS
z/0S CICS termmal prmtmg
Special Parameter Group for the FZETPRT
Program . e
PRTBUF Parameter
PRTMPP Parameter.
PRTTYP Parameter .
FORMFD Parameter
CICS Entries for FZETPRT (DBCS only)
Using the New Copy Function . .
Specifying Recovery Options in the CICS Tables .
Considerations that Affect Performance .
Residency (Modules in Memory) Con51derat1ons
Virtual Storage Considerations and Residency
Work Database Temporary Storage Queue
Considerations .
Using and Allocating Data F1les in CICS
Defining and Loading VSAM Data Files .
Using Remote Files . . .
Defining Transient Data Queues
Considerations for Using DB2 in CICS
Associating DB2 Databases with CICS
Transactions . .o
Recovery and Database lntegnty
Considerations
Considerations for Using DL / I in CICS
Recovery and Database Integrrty
Considerations
Setting up the National Language

Chapter 7. System Considerations for z/0S
Batch .

Required File Descr1pt10ns

Using VSAM Program Data F1les inz / OS BatCh

© Copyright IBM Corp. 1994, 2005

. 23
.23
. 23
.23
.24
. 24
.24
.25
. 26
.27

.27
.27
. 28
. 28
. 28

. 29
. 29
. 30

. 30
.31

.31
.32
. 33
. 33
. 33
. 34
. 34
. 34
. 35

35

. 36
. 36
. 37
. 38
. 38
. 40

. 40

. 40
. 40

. 40
.41

. 43
. 43
. 44

Considerations for Using DB2 in z/OS Batch .
Recovery and Database Integrity Considerations
Considerations for Using DL/I in z/OS Batch .
Defining the Program Specification Block (PSB)
Recovery and Database Integrity Considerations
Performance Considerations for z/OS Batch
Runtime JCL .

Chapter 8. System Considerations for IMS .
Required File Descriptions
Defining the Program Specrfrcat1on Block (PSB)
Processing Modes e
Printing Considerations for IMS . .
Recovery and Database Integrity Consrderahons .
Considerations that Affect Performance .
Residency Considerations and the IMS Preload
Function .
Preloading Enterprlse Developer Server
Modules
Loading Enterprise Developer Server Modules
into the Link Pack Area
Preloading Generated Programs
Database Performance . .
Limiting MFS Control Blocks
Monitoring and Tuning the IMS System
Considerations for Using DB2 in IMS. .
Recovery and Database Integrity Considerations
Checking Authorization
Considerations for Using DL/I in IMS
Recovery and Database Integrity Considerations
Maintaining the Work Database in IMS . .
Deleting Old Records from the Work Database
DL /I Work Database S
DB2 Work Database .
Expanding the Work Database .
DL/I Work Database
DB2 Work Database
Supporting Multiple Work Databases
DL/I Work Databases .
DB2 Work Databases
Considerations for Message Format Servrces in IMS

. 44

. 44

44

. 45
. 45

. 47
. 47
. 48
. 49
. 49

. 50

. 50

. 51

. 52
. 52
. 52
. 53
. 53
. 53

54

. 54
. 54

55

. 55
. 55
. 55
. 56
. 57
. 57
. 58
. 60
. 60
. 60

61

21

22 IBM Enterprise Developer Server Guide for z/OS

Chapter 5. General System Considerations for z/OS Systems

This chapter describes the system requirements and considerations for
administering the Enterprise Developer Server in all of the supported z/OS
environments.

The following information is discussed:

* Considerations that affect performance

* Defining and loading VSAM program data files

* Support for DBCS terminals

* Extended addressing considerations for Enterprise Developer Server
e DB2 considerations

* Backing up data

* Customizing Enterprise Developer Server

Considerations that Affect Performance

Specifying certain build descriptor and compiler options and making reentrant
programs resident in memory can affect the performance of EGL-generated
programs.

Build Descriptor and Compiler Options

Setting build descriptor options as follows may improve run-time performance:
* checkNumericOverflow=NO
* debugTrace=NO

¢ fillWithNulls=NO

* initlORecords=NO

* initNonIOData=NO

* leftAlign=NO

* math=COBOL

* setFormltemFull=NO

* validateMixedItems=NO

* validateOnlylfModified=YES

Specifying the following compiler options also may improve run-time performance:
* NOFDUMP

* NOSSRANGE

* NOTEST

* OPT

Note: Refer to the Enterprise COBOL for z/OS documentation for details on these
compiler options.

Modules in Memory

Placing load modules in memory can improve performance by reducing the
number of I/O operations (EXCPs). Load modules can be placed in memory by
using the features of z/OS or the features of the environment in which you are
running. Refer to the appropriate performance consideration sections for more
detailed information about improving performance in a particular run-time
environment.

General z/OS* methods to place load modules in memory are listed below:

© Copyright IBM Corp. 1994, 2005 23

* Place modules in the link pack area (LPA). Some of the modules that are
shipped with the Enterprise Developer Server are reentrant and can be placed in
the LPA. Refer to the Program Directory for Enterprise Developer Server for z/OS
(GI10-3241-00) for information about modules that are reentrant and LPA
eligible.

Generated programs, online print-service programs, form group format modules,
and shared data tables are also reentrant and can be included in the LPA.

* Manage the Enterprise Developer Server data sets and the data sets containing
the generated programs, online print services programs, form group format
modules, and shared data tables. Use the Virtual Lookaside Facility (VLF) and
the Library Lookaside (LLA) features of z/OS. Those features can place both the
load modules and the partitioned data set (PDS) directories in memory.

Note: The STEPLIB and ISPLLIB libraries are searched first. For the z/0OS
methods, the load module (for LPA) or the data set (for VLF/LLA) cannot
be contained in the STEPLIB or ISPLLIB concatenation list.

Files and Databases

Standard tuning techniques (such as buffering) can be used with files and
databases used by generated COBOL programs.

Defining and Loading VSAM Program Data Files

24

This section describes how to define and load VSAM data sets for use as program
data files in the CICS or z/OS batch environment. The section contains the
following information:

* Defining VSAM data sets

* Defining an alternate index

* Loading data into the files

Defining VSAM Data Sets

VSAM data files can be serial (ESDS), relative (RRDS), or indexed (KSDS) files. Use
the IDCAMS program to define a user VSAM data file. [Figure 1 on page 25 shows
example JCL that can be used to define the VSAM files.

IBM Enterprise Developer Server Guide for z/OS

//DEFVSAM JOB ...

//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD =*

/* THE FOLLOWING SAMPLE DEFINES A =/
/* VSAM INDEXED FILE */

DEFINE CLUSTER (NAME(ELA1.USER.KSDS) -
VOL (xXXXXX) -
CYLINDERS (pp ss) -
KEYS(1 d) -
RECORDSIZE (aaa mmm) -
INDEXED)

/* THE FOLLOWING SAMPLE DEFINES A VSAM =/
/* NUMBERED RELATIVE RECORD FILE */

DEFINE CLUSTER (NAME(ELA1.USER.RRDS) -
VOL (xxxxxX) -
CYLINDERS (pp ss) -
RECORDSIZE (aaa mmm) -
NUMBERED)

/* THE FOLLOWING SAMPLE DEFINES A VSAM =/
/* ESDS FILE */

DEFINE CLUSTER (NAME(ELA1.USER.ESDS) -
VOL (XXXXXX) -
CYLINDERS (pp ss) -
RECORDSIZE (aaa mmm) -
NONINDEXED)

where:

xxxxxx Specifies a valid volume serial number

pr Specifies the primary number of cylinders to be allocated
ss Specifies the secondary number of cylinders to be allocated
1 Specifies the length of the key

d Specifies the offset of the key

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 1. Defining VSAM Data Files

Defining an Alternate Index

An alternate index provides you with another way of gaining access to the records
in a given KSDS file. Using a secondary key eliminates the need for you to keep
several copies of the same information organized in different ways for different
programs.

To gain access from an alternate index to the file through its prime index (base
cluster), you must define a path to it. The path sets up an association between the
alternate index and the base cluster, allowing the records in the data set to be
available to you in different sequences. The alternate index is built after the base
cluster is defined.

Chapter 5. General System Considerations for z/OS Systems 25

26

shows example IDCAMS definition commands for the base cluster and the
alternate index cluster for an indexed file.

DEFINE CLUSTER (NAME(VSAM.KSDS.BASE.FILE) -
VOLUMES (xxxxxx) -
CYLINDERS (pp ss) -
KEYS(1 d) -
RECORDSIZE (aaa mmm) -
INDEXED)

DEFINE ALTERNATEINDEX (NAME(VSAM.KSDS.ALT.INDEX) -
KEYS(1 d) -
CYLINDERS (pp ss) -
RELATE (VSAM.KSDS.BASE.FILE) -
VOLUMES (xxxxxx))

DEFINE PATH(NAME (VSAM.KSDS.ALT.INDEX.PATH) -
PATHENTRY (VSAM.KSDS.ALT.INDEX))

BLDINDEX INDATASET(VSAM.KSDS.BASE.FILE) -
OUTDATASET (VSAM.KSDS.ALT.INDEX)

where:

xxxxxx Specifies a valid volume serial number

PP Specifies the primary number of cylinders to be allocated
ss Specifies the secondary number of cylinders to be allocated
1 Specifies the key length

d Specifies the key displacement

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 2. Defining the Base Cluster and the Alternate Index Cluster

Loading Data in the Files

If you are using a VSAM indexed file (KSDS) and you want to open it for input
only, initialize the file with at least one record. The file must have at least one
record because a VSAM restriction prevents a file from being opened for input if
the file is empty. While an empty file might be opened for output or both input
and output, it must contain data to be opened for input.

There are several ways that you can put data into a file. One way is to create a
Enterprise Developer program that uses an ADD process option to add records to
an empty serial file. Once the program ends, you can use the IDCAMS REPRO
command to copy the serial file into an indexed file.

Another way is to write a program that uses an ADD process option to add
records to an empty indexed file. You must close the file in order to make the new
records accessible.

Another way to initialize a VSAM KSDS file is to use a utility program shipped
with the Enterprise Developer Server product. This utility can be used to initialize
the key of a VSAM KSDS file. [Figure 3 on page 27 shows how to initialize a VSAM
KSDS file by setting the key to hexadecimal zeros.

IBM Enterprise Developer Server Guide for z/OS

//LOAD JOB...

//JOBLIB DD DSN=ELA.VXRXMO.SELALMD,DISP=SHR

//INITK EXEC PGM=FZEZREBO,PARM="I,KSDS'

//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,BLKSIZE=121,RECFM=FB)

//KSDS DD DSN=USER.KSDS,DISP=SHR
//SYSIN DD DUMMY

Figure 3. Initializing a VSAM KSDS File

You can also use the IDCAMS utility to load initial data into an indexed file.
shows an example of loading data into a VSAM KSDS file. The data
contained in the USER.KSDS.INPUT file is loaded into the USER.KSDS data set.

//JOB KSDSLOAD
//LOAD EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=x
//SYSIN DD *
REPRO INDATASET('USER.KSDS.INPUT') OUTDATASET('USER.KSDS')
/*
//

Figure 4. Loading a VSAM KSDS File

Support for DBCS terminals

Enterprise Developer Server provides support for the IBM Personal System/55 and
the IBM 5550 family of terminals (emulating an IBM 3270 device). In addition to
the basic hardware, this support uses character set F8 and four hardware attributes
for double-byte character set (DBCS). The extended attributes are shift-out (5O)
and shift-in (SI) enable, field outlining, color, and extended highlighting.
Unpredictable results can occur if attributes are used that are not supported by the
hardware.

Extended Addressing Considerations for Enterprise Developer Server

Some of the code provided with Enterprise Developer Server can run in extended
addressing mode. This section describes considerations for using the extended
addressing mode.

Most of the code shipped with Enterprise Developer Server runs in 31-bit
addressing mode and resides above the 16MB line.

Most of the storage acquired by Enterprise Developer Server is above the 16MB
line unless the first Enterprise Developer-generated program in the run unit is
link-edited with AMODE(24) or generated with the build descriptor option data set
to 24. The AMODE(24) program attribute specifies that the program runs in 24-bit
addressing mode.

Database Considerations

This section discusses preparing programs and checking access authorization to
database resources when using the following:

e DB2 on z/0S systems

Chapter 5. General System Considerations for z/OS Systems 27

Preparing Programs

Before running a program, the SQL* statements need to be analyzed and prepared.
If you use DB2, you also need to bind the DB2 program plan.

Note: Both of the above tasks are performed by the Enterprise Developer Server
build process.

Checking Access Authorization

The database manager checks whether program users have the authority to access
tables or run programs. The type of checking done varies depending on your
system and the processing mode.

When accessing DB2 in generated COBOL programs, program users must be
authorized to run the corresponding DB2 program plan and package.

DB2 requires an authorization identifier to ensure that program users have the DB2

authority to perform operations on the database and tables. The type of

authorization checking done depends on whether the processing mode is static or

dynamic. The authorization identifier of the program developer performing the

BIND command is used for static SQL statements; the authorization identifier of

the program user is used for dynamic SQL statements. Generated COBOL

programs use dynamic SQL statements in either of two cases:

* The SQL statement is in an EGL prepare statement

e The EGL statement uses an SQL record, and a host variable identifies the SQL
table name associated with that record

Any other SQL statements in the program are static statements. Refer to the DB2
administration manual for more information on the various ways the authorization
identifier value is set.

Backing Up Data

28

You should regularly back up your data. This includes all files related to Enterprise
Developer Server, private libraries, user-created data files, and user load libraries.
System services are provided to back up and restore user libraries.

IBM Enterprise Developer Server Guide for z/OS

Chapter 6. System Considerations for CICS

This chapter provides additional system requirements and considerations for
administering Enterprise Developer Server in the CICS environment.

The following information is discussed:

* Required file descriptions

* Segmented and nonsegmented processing

* Using transient data queues for printing

* Using the new copy function

¢ Recovery and database integrity considerations
* Considerations that affect performance

* Using and allocating data files

* Considerations for using DB2

* Considerations for using DL/I

* Considerations for using called remote programs

Required File Descriptions

Enterprise Developer Server requires the following files:

File Name

ELAD

Description

This transient data queue is the default destination for Enterprise
Developer Server error messages. Enterprise Developer Server produces
error messages when it detects an error that prevents a program from
continuing.

The ELAD transient data queue is defined when Enterprise Developer
Server is installed. If you want to direct error messages for different
transactions to different queues, define the other queues with the same
characteristics as ELAD. Use the error diagnostic utility ELAC to direct
error messages to the required queue. See the description of the utility in
(Chapter 17, “Diagnostic Control Options,” on page 117| for more
information.

ELACFIL

ELAT

This is the error diagnostic control file. This file is created during
customization.

This transient data queue is the destination for Enterprise Developer Server
trace records.

If requested, Enterprise Developer Server can create trace records for
selected runtime operations. The ELAT transient data queue is defined
when Enterprise Developer Server is installed. For details, see |Chapter 22,|
[“Enterprise Developer Server Trace Facility,” on page 143)

ELATOUT

This file is associated with the ELAT transient data queue at installation
time. The output of the Enterprise Developer Server trace facility is sent to
this data set. The attributes of this datase are DSORG=PS, LRECL=133,
BLKSIZE=1330, RECFM=FBA.

EZEPRINT

© Copyright IBM Corp. 1994, 2005

The file that you associate to the Enterprise Developer file name PRINTER
29

at resource association will be used when printing from a program that
displays printer maps. This file can be defined with a file type of SPOOL
or TRANSIENT. This file is normally associated with the transient data
queue PRIN.

If you installed Enterprise Developer Server as described in the Enterprise
Developer Server program directory, PRIN is defined as an indirect
destination associated with the system printer. The maximum record length
that a generated program writes to the system printer is 650 bytes for
double-byte character set (DBCS) print maps and 133 bytes for single-byte
character set (SBCS) print maps. The first byte is an American National
Standards printer control character. The DBCS record length is longer than
the physical printer line length because the print record can contain
outlining and shift-out/shift-in (SO/SI) control characters that do not
appear on the device.

If you are using Enterprise Developer Server to print to a file destination
other than PRIN, the characteristics of that file should be the same as
PRINTER.

EZEPRMG
This VSAM indexed file (KSDS) contains the parameter group records used
for print control options for the Enterprise Developer Server terminal
printer utility, FZETPRT. The FZETPRT program reads this file searching
for the parameter group matching the transaction name that started
FZETPRT.

Segmented and Nonsegmented Processing

Two different storage queues are used to support segmentation. The storage queue
names have the following format:

xyyytttt

where:

X Specifies a byte with the hex value X'EE'

yyy Specifies WRK (program working storage) or MSG (current form saved
across help or error display)

tttt Specifies the terminal ID associated with the transaction

The build descriptor option workdb specifies whether a main or auxiliary storage
queue is used. The storage queues are deleted at the end of a run unit.

For details on segmentation, see the EGL help system.

Using Transient Data Queues for Printing in zZ/OS CICS

30

Printed output destined for a transient data queue is accumulated in temporary
storage. The temporary storage queue name has the following format:

ttttnnnn

where:
tttt Is the transient data queue name
nnnn Is the EXEC Interface Block (EIB) task number

The default print destination for z/OS CICS is a transient data queue named EZEP.
If you installed Enterprise Developer Server as described in the Enterprise
Developer Server program directory, EZEP is an indirect destination associated

IBM Enterprise Developer Server Guide for z/OS

with the system printer. During program generation, this destination can be
changed to any 4-character transient data queue name. The destination control
table (DCT) entry for the queue determines the actual destination. The destination
can be the system printer, a data set, or a terminal printer.

z/0OS CICS terminal printing

The program called FZETPRT supports terminal printing. This program runs as a
CICS transaction that starts automatically when records are written to the transient
data queue. If Enterprise Developer Server was installed as described in the
Enterprise Developer Server program directory, the transaction name is EZEZ for
IBM 5550-type printers and EZEP for all other printers. To send printed output to
the terminal, you must include a TYPE=INTRA for the transient data queue in the
CICS destination control table (DCT). Specify EZEP or EZEZ for the transaction ID
in the DCT entry. Unless you specify a terminal name in the DCT entry, the queue
identifier must be the same as the terminal printer identifier. The trigger level in
that entry must be set to 1 to ensure proper output. See [Printing Transient Data af]
la Terminal Device” on page 39| for a sample DCT entry.

When the FZETPRT program is initiated, it reads a line from the transient data
queue, converts the American National Standards printer-control character to NL
EOM format, and writes to the terminal printer specified in the DCT entry. The
FZETPRT program buffers multiple print lines into a single CICS SEND command
to improve performance.

When using terminal printing with Enterprise Developer Server, you should be
aware of potential problems regarding form-feed orders and page alignment. When
the FZETPRT program is triggered, a form-feed order is issued to the printer to
ensure that it begins printing at the top of a page. If a second map is sent to the
queue before it is emptied by the FZETPRT program, a form-feed order is not
issued before the second map is printed. Page alignment can vary depending on
the timing with which successive maps are sent to the queue.

Another potential problem can occur when printing successive maps. If one of the
maps in the series is defined with lines equal to, or one line fewer than, the
lines-per-page setting on the printer, a blank page occurs between the printed
maps. To avoid this, define the map size as 2 lines fewer than the lines-per-page
setting on the printer. Because the FZETPRT program inserts a new-line order to
ensure that printing begins in column 1, the first line of the map to be printed is
actually printed on the second line of the page. The second line must be allowed
because a new-line order is added after the last line of the map, which advances
the print head to the beginning of the next line. If this happens to be the first line
of the following page, the next form-feed order causes the page to be skipped
before printing resumes.

Another thing to consider is that although Enterprise Developer Server sometimes
causes successive, stand-alone form-feed orders (“1”), the FZETPRT program
suppresses all but one of these in converting them to NL EOM format.

If these form-feed considerations are too restrictive for your needs, consider using
the FORMFD=NO parameter.

Special Parameter Group for the FZETPRT Program

You can provide terminal printing parameters to the FZETPRT program to vary the
printed output by using a special parameter group file.

Chapter 6. System Considerations for CICS 31

32

The FZETPRT program attempts to read a file named EZEPRMG for a parameter
group that has the same name as the transaction used to start the FZETPRT
program. For example, if the print transaction that starts the FZETPRT program is
named EZEP, then FZETPRT tries to find the parameter group named EZEP. If the
parameter group is not located in a file named EZEPRMG, or if EZEPRMG does
not exist, then the FZETPRT program reads the DCAPRMG file to find the
parameter group associated with this transaction.

When the transaction starts, the FZETPRT program reads the parameter group and
varies the printer output according to the contents. If you need to use the terminal
printing parameters, create a parameter group using the Enterprise Developer
Server utility provided for this purpose.

For this parameter group, you can specify the following four parameters:
* PRTBUF=xxx

* PRTMPP=nnn

s PRTTYP=D

* FORMFD=NO

Note: Do not include blanks between keywords and their associated values.

PRTBUF Parameter

Use the PRTBUF parameter to set the size of the printer buffer. The number of
SEND commands sent to the terminal printer depends on the size of the printer
buffer. The following example shows how to specify the buffer size using the
PRTBUF parameter:

PRTBUF=xxx

where:

XXX Is the size in bytes of the printer buffer

The FZETPRT program uses a default buffer size if any of the following conditions

occur:

* The parameter is not specified in the parameter group.

* There is no parameter group associated with the transaction.

* The parameter keyword is misspelled.

* The value specified is not valid (values greater than 8K bytes, smaller than 480
bytes, or not numeric).

* The EZEPRMG or DCAPRMG file does not exist or is not available.

The default buffer size is 2KB (where KB equals 1024 bytes) for the standard
character set printers and 480 bytes for LU type 3 printers.

For double-byte character set (DBCS) users the default buffer size and the
maximum buffer size allowed is 1918 bytes. The default value is used if your
specified value exceeds the maximum number of bytes.

When the buffer size is larger than the default, usage of the PRTBUF parameter is
optional. However, using the PRTBUF parameter is recommended to reduce the
number of SEND commands sent to the terminal. If the printer buffer size is
smaller than the default, specify the real buffer size using this parameter. Not
specifying the real buffer size can cause unpredictable results.

IBM Enterprise Developer Server Guide for z/OS

PRTMPP Parameter

Use the PRTMPP parameter to set the maximum number of print positions. The
following example shows how to specify the number of print positions using the
PRTMPP parameter:

PRTMPP=nnn

where:

nnn s the physical length (maximum print position) of the printer line

The FZETPRT program assumes a default maximum print positions of 132 if any
of the following occurs:

¢ The parameter is not specified in the parameter group.

* There is no parameter group associated with the transaction.

e The parameter keyword is misspelled.

* The value specified is not valid (not numeric).

* The EZEPRMG or DCAPRMG file does not exist or is not available.

Use caution when coding the value of this parameter. If the value entered is a
valid numeric, the FZETPRT program uses the value without validating it. If the
value is greater than the number of print positions available on the actual printer,
possible malfunctioning can take place causing more line skips than necessary.

Note: For DBCS users, this parameter must be specified unless the printer is
configured with MPP=132.

PRTTYP Parameter

Use the PRTTYP parameter if you use a DBCS printer. The following example
shows how to specify the use of a DBCS printer using the PRTTYP parameter:

PRTTYP=D

Note: This parameter must be used to specify that you are a DBCS user and your
output is being directed to an IBM 5550-family printer.

If you use multiple printers with different characteristics (namely different MPP,
different buffer size, or DBCS versus non-DBCS printers), you need as many
transaction IDs as there are printers, each one associated with the FZETPRT
program. For examples of table entries for two printers, see the CICS transaction
definitions provided with Enterprise Developer Server for the EZEP (non-DBCS
printers) and EZEZ (DBCS printers) transactions.

FORMFD Parameter

Use the FORMFD parameter to control the form-feed orders that the FZETPRT
program issues. The following example shows the format of the FORMFD
parameter:

FORMFD=NO

The FZETPRT program defaults to inserting form-feed orders into the printer data
stream if any of the following occurs:

* The parameter is not specified in the parameter group.

* There is no parameter group associated with the transaction.

¢ The parameter does not appear as FORMFD=NO.

¢ The EZEPRMG or DCAPRMG file does not exist or is not available.

Chapter 6. System Considerations for CICS 33

If the parameter is specified correctly, the FZETPRT program does not insert
form-feed orders for any reason.

CICS Entries for FZETPRT (DBCS only)

If you are using an SCS-type printer and you use DBCS, ensure that your system
programmer has coded the destination control table (DCT) and the program
control table (PCT) entries for a transaction that runs FZETPRT with the following
option:

MSGPOPT=CCONTRL

The MSGPOPT option defines the optional facilities that a task can use. The
CCONTRL parameter indicates that the program can control the outbound
chaining of request units. Refer to the CICS manuals for more information.

Using the New Copy Function

The new copy function (either the Enterprise Developer Server new copy utility or
the CICS NEWCOPY command) causes a transaction to use a new copy of a
program, form group, or data table referenced in the transaction. The Enterprise
Developer Server new copy utility is implemented as an EGL program in the CICS
environment. Active transactions continue to use the current version of a program,
form group, or data table until the transaction either completes or reaches the end
of a segment. A new copy of the program, form group, or data table is then made
available to the transaction by Enterprise Developer Server. Use the new copy
function when programs, form groups, and data tables are modified and generated
again. This enables you to install new versions of programs, form groups, and data
tables onto your system without disrupting operation.

For programs and form groups you can use the CICS NEWCOPY command or the
Enterprise Developer Server new copy utility to cause the new copy of the
program to be used the next time a load request is issued for the program.

The Enterprise Developer Server new copy utility does a new copy for both the
online print services program and the form group format module when you
specify a part type of form group. If you use the CICS NEWCOPY command for a
form group, you must issue the NEWCOPY for both the online print services
program and the form group format module.

For data tables, you must use the Enterprise Developer Server new copy utility to
cause a fresh copy of the data table to be used the next time a load request is
issued for the data table. Do not use the CICS NEWCOPY command for data
tables. The Enterprise Developer Server new copy utility sets a flag indicating that
the new copy of the table is to be used the next time a program loads the table
contents.

For more information on the Enterprise Developer Server new copy utility, see
[“New Copy” on page 112

Specifying Recovery Options in the CICS Tables

EGL-generated programs can make use of all the z/OS CICS recovery and data
integrity features. For a description of those features, refer to the recovery and
restart information for your release of CICS.

34 1BM Enterprise Developer Server Guide for z/OS

The system initialization table (SIT) for CICS should specify DBP=XX, where XX is
not equal to NO. If the DBP value is not equal to NO it prevents ASPE abends
when generated programs issue CICS SYNCPOINT and CICS SYNCPOINT
ROLLBACK commands.

If DTB=YES is specified on the program control table (PCT) entries for the
transactions, the value specified for DBP is significant. CICS provides two dynamic
backout programs, one for systems that require DL/I support and the other for
systems that do not require DL/I support. These programs are provided by CICS if
an entry is included in the processing program table (PPT) that specifies
TYPE=GROUP and FN=BACKOUT.

Considerations that Affect Performance

This section describes factors that affect system performance and suggestions on
how to improve performance. For information beyond what is stated in this
section, refer to the performance guide for your release of CICS.

Residency (Modules in Memory) Considerations

The performance of a program is affected by the number of times that a running

program requires access to a disk. Programs require access to disks for the

following reasons:

* Locating and loading Enterprise Developer Server load modules or phases

* Retrieving and storing user data

* Locating and loading application programs, form group format modules, and
online print services programs

The Enterprise Developer Server loads objects as they are needed. For example, the
Enterprise Developer Server loads an application program, online print services
program, form group format module, or data table when another program calls or
references it. If you make an object resident, then the object remains in storage
after it is loaded by the Enterprise Developer Server. You can use the RES
parameter program definition to make any of these resident: an application
program, online print services program, or form group format module. The
data-table developer uses options in the part declaration to specify whether a data
table is resident.

Virtual Storage Considerations and Residency

It is true that if an program is resident, less I/O is required for multiple loads.
However, making these objects resident requires more virtual storage because the
modules accumulate in storage as they are loaded and are not deleted after they
are used.

When deciding what to make resident, consider the following:

 Storage constraints

* Frequency of program use

* Long running programs versus programs that are started more frequently

Because most systems have virtual storage constraints, it is not possible to make
everything resident. You should establish priorities for deciding which objects you
want to make resident. These residency priorities reflect a trade-off between
program usage and storage constraints. Your priorities can dictate that some
components of a program (such as the online print services program or form group
format module) should be made resident, while other components (such as data
tables) should not.

Chapter 6. System Considerations for CICS 35

In CICS, when a program component is made resident, it remains in storage from
the time it is loaded into storage until either CICS is shut down or the new copy
function is used. To aid in deciding which programs should be made resident, you
can use CICS shutdown statistics to determine how often a generated program or
other component is loaded into the region or partition.

Generally, objects that are loaded more than once are prime candidates for
residency. Examples of this a data table that is used by more than one program or
a program that is called more than once.

Programs that are not frequently initiated or have long running time should not be
made resident.

If you plan to run a program in pseudoconversational mode, you should consider
making all components of the program resident. In pseudoconversational mode,
the program and its components are deleted and are loaded again at each segment
break if they are not made resident, and these actions degrade performance.

Work Database Temporary Storage Queue Considerations

When running in pseudoconversational mode (using a segmented CONVERSE
process option), the data and the status associated with the program must be saved
during user think time. You can control whether this information is saved into the
CICS main temporary storage or auxiliary storage. Using main temporary storage
can result in better performance because the data is written to memory within the
CICS address space instead of writing the data to disk space.

Note: Use of main temporary storage can degrade system performance because the
increased address space that is referenced can increase the paging activity.
Also, CICS can experience a short-on-storage condition if the program data
to be saved exceeds the available CICS storage. Therefore, if you take
advantage of main temporary storage for programs requiring better
performance, you should monitor your system to ensure that virtual storage
problems do not occur.

The amount of data written or read on each request to CICS when saving program
data and status, can also affect performance. The installation options module,
ELARPIOP, specifies the largest size record Enterprise Developer Server writes to
main or auxiliary temporary storage. The default size is 32KB (where KB equals
1024 bytes), which is the largest value allowed by CICS. Use a large value to
ensure that the least number of write requests are required, and, if using auxiliary
storage, to ensure that the least number of I/O operations are required. See the
Program Directory for Enterprise Developer Server for z/OS for information on how to
change the value in the installation options module.

Note: If you are using auxiliary storage queues, you should ensure the control
interval size (CISIZE) of the VSAM data set used for auxiliary temporary
storage matches the size specified in the installation options file. If the
CISIZE for the data set is smaller, CICS splits the data written or read into
smaller pieces and does multiple I1/O operations for each Enterprise
Developer Server request. Also ensure that you have an adequate number of
buffers for the auxiliary temporary storage data set in order to reduce the
number of physical I/O operations.

Using and Allocating Data Files in CICS

This section describes how to define data files for use in generated EGL-generated
programs in the CICS.

36 IBM Enterprise Developer Server Guide for z/OS

Defining and Loading VSAM Data Files

Before CICS programs can use VSAM data files, you must define and load them.
See ["Defining and Loading VSAM Program Data Files” on page 24| for information
on defining VSAM data sets, defining an alternate index, and loading a VSAM
data set.

Adding the Job Control Statements: After the data set has been defined and
loaded, add the data set name to the CICS startup JCL to allocate user files. You
can also let CICS dynamically allocate the data set to the file using the information
specified in the file control table (FCT). shows example allocation
statements for an indexed, relative, and serial file, and an alternate index.

//KSDSFILE DD DSN=ELA1.USER.KSDS,DISP=SHR
//RRDSFILE DD DSN=ELA1.USER.RRDS,DISP=SHR
//ESDSFILE DD DSN=ELA1.USER.ESDS,DISP=SHR
//KSDSAIX DD DSN=VSAM.KSDS.ALT.INDEX.PATH,DISP=SHR

Figure 5. Allocating User Files

Adding the File Name to the CICS File Control Table: After the data set has
been defined, loaded, and added to the CICS startup JCL, the FCT entry must be
created for the file name for a CICS program to gain access to the data set.
Creating an FCT entry can be accomplished using online (RDO) or macro
definitions.

[Figure 6 on page 38 shows sample macro definition entries that can be used to add
a file name to the FCT. Enterprise Developer Server uses the name on the FILE
operand. The FILE operand name must be the same as the ddname (z/OS) in the
CICS startup JCL. All other operands must be the same as when you add an
indexed, relative, or serial file to the FCT.

With CICS, make an entry to the FCT for every file used by a program. The CICS
files can be defined as remote FCT entries.

For further information, refer to the appropriate CICS resource definition guide for
your environment.

Chapter 6. System Considerations for CICS 37

KSDS

DEFINE FILE(KSDSFILE) GROUP (xxxxxx)
DSNAME (Indexed.DSName)
DISPOSITION(SHARE) ADD(YES)
BROWSE(YES) DELETE(YES) READ(YES)
UPDATE(NO) RECORDFORMAT (F)
STRINGS(8) LSRPOOLID(NONE)
RECOVERY (NONE) NSRGROUP (GROUP1)
INDEXBUFFERS(8) DATABUFFERS(9)

Alternate Index

DEFINE FILE(KSDSAIX) GROUP(xxxxxx)
DSNAME (AlternateIndex.DSName)
LSRPOOLID(NONE) DISPOSITION(SHARE)
STRINGS(5) NSRGROUP(GROUP1)
BROWSE(YES) DELETE(NO) READ(YES)
ADD(NO) UPDATE(NO) RECORDFORMAT (F)
RECOVERY (NONE) INDEXBUFFERS(5)
DATABUFFERS (6)

RSDS

DEFINE FILE(RSDSFILE) GROUP (xxxxxx)
DSNAME (Relative.DSName)
DISPOSITION(SHARE) ADD(YES)
BROWSE (YES) DELETE(YES) READ(YES)
UPDATE(NO) RECORDFORMAT (F)
STRINGS(8) LSRPOOLID(NONE)
RECOVERY (NONE) NSRGROUP (GROUP1)
INDEXBUFFERS(8) DATABUFFERS(9)

ESDS

DEFINE FILE(ESDSFILE) GROUP(xxxxxx)

DSNAME (EntrySequenced.DSName)
DISPOSITION(SHARE) ADD(YES)

BROWSE (YES) DELETE(YES) READ(YES)
UPDATE(NO) RECORDFORMAT (F)
STRINGS(8) LSRPOOLID(NONE)
RECOVERY (NONE) NSRGROUP (GROUP1)
INDEXBUFFERS (8) DATABUFFERS(9)

wkxxakx END OF USER DATA FILES stkrschnn

Figure 6. Adding a File Resource Definition

Using Remote Files
EGL-generated programs can gain access to files that do not reside on your CICS
system.

Refer to the EGL helps for additional information.

Defining Transient Data Queues

Transient data queues are used in CICS for reading or writing data from tapes,
disks, or other sequential files. If you associated a serial file with a transient data
queue at generation, you must define a CICS destination control table (DCT) entry
for the queue.

38 1BM Enterprise Developer Server Guide for z/OS

You can define the following types of transient data queues:
¢ Intrapartition (temporary data)
* Extrapartition (data that other non-CICS regions can use)

Intrapartition transient data files contain data that is not usable after it is read.
Defining Intrapartition Transient Data:

Passing Transient Data between CICS Transactions: This is an example of a DCT

entry that can be used to pass data from one CICS transaction to another. The file

destination specified at generation with the SYSNAME option should be xxxx.
DFHDCT TYPE=INTRA, C

DESTID=xxxx, C
DESTFAC=FILE

Printing Transient Data at a Terminal Device: This is an example of a DCT entry that
can be used for terminal printing in Enterprise Developer Server. At generation
time, the resourceAssociation part specifies how you want to handle printer. The
default is the first four characters, i.e., prin. (A DCT entry is supplied for prin that
sends the printed output to the system printer.) The program supplied for printing,
FZETPRT, reads records from the transient data queue and issues SEND
commands to the terminal in order to print the records.

In this sample DCT, the PRO1 terminal is to receive the printed output. PRO1 is a
z/0OS CICS printer terminal name. You specify the printer destination at generation
as PRO1. Enterprise Developer Server writes the printed output to the transient
data queue, PRO1. The transaction EZEP starts and causes the program FZETPRT
to run. The data is read from the transient data queue and sent to the terminal,
PRO1. The program control table (PCT) entries for EZEP and the processing
program table (PPT) entries for FZETPRT are supplied. You must supply the
destination control table and the terminal control table entries for the transient data
and terminal.
DFHDCT TYPE=INTRA,
DESTID=PRO1,
DESTFAC=TERMINAL,

TRANSID=EZEP,
TRIGLEV=1

OO0

If the terminal printer is a DBCS printer, specify EZEZ as the TRANSID.

Defining Extrapartition Transient Data: Data to be read from tape or sent to a
printer is contained in extrapartition transient data queues.

To provide these definitions as RDO entries, see the CICS resource definition
guide.

The following two examples show how to use extrapartition transient data queues.
These files can be used by non-CICS devices and by CICS.

Printing Transient Data: This is an example of a DCT entry specification that can
be used to print output on a high-speed system printer. The file destination

specified at generation with the systemName association element should be zzzz.

You need to add the appropriate JCL to the CICS runtime JCL to assign a printer
to the file name. The following sample entry for the DCT is for printed output.

Chapter 6. System Considerations for CICS 39

40

DFHDCT TYPE=EXTRA,
DESTID=27717,
DSCNAME=PRINTER

DFHDCT TYPE=SDSCI,
DSCNAME=PRINTER,
RECFORM=VARBLKA,
RECSIZE=133,
BLKSIZE=1330,
TYPEFLE=OUTPUT

oo

OOOOO0

The JCL used in the extrapartition destination data queue sample requires the
following JCL:

//PRINTER DD SYSOUT=+,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=1330)

Considerations for Using DB2 in CICS

This section presents considerations for programs that access DB2 databases, and
recovery and database integrity for DB2 programs running in the CICS
environment.

Associating DB2 Databases with CICS Transactions
If the programs running under a transaction access DB2 databases, then you must
define an entry in the CICS resource control table (RCT).

For information on the parameters you can specify when you define RCT entries,
refer to the chapter on connecting the CICS attachment facility in the DB2
installation manual for your version of DB2.

To provide these definitions as RDO entries, see the CICS resource definition
guide.

Recovery and Database Integrity Considerations
EGL-generated programs can use all the recovery and data integrity features that
are provided by DB2 in the CICS environment.

Relational databases are recoverable resources. If your program makes changes to a
relational database, the changes are not committed to the database until the end of
a logical unit of work (LUW). If your program ends abnormally before the end of
an LUW, all changes that were made since the beginning of the LUW are backed
out.

Considerations for Using DL/l in CICS

This section discusses recovery and database integrity considerations for DL/I
programs running in the CICS environment.

Refer to the EGL helps for additional information.

Recovery and Database Integrity Considerations
EGL-generated programs can make use of all the recovery and data integrity
features that are provided by DL/I in the z/OS CICS environment.

DL/I databases are recoverable resources. If your program makes changes to a
DL/I database, the changes are not committed to the database until the end of a
logical unit of work (LUW). If your program ends abnormally before the end of an
LUW, all changes that were made since the beginning of the LUW are backed out.

IBM Enterprise Developer Server Guide for z/OS

Setting up the National Language

On CICS, the national language code used for the first program in the run unit
determines the language that is used for all messages for all programs in the run

unit.

The next table lists the national languages that are supported for these purposes:

* To present Enterprise Developer Server messages on z/0S

* To present program-specific VisualAge Generator messages on any platform.

The code page for the language you specify must be loaded on your target

platform.

Code Languages

CHS Simplified Chinese
CHT Traditional Chinese
DES Swiss German
DEU German

ENP Uppercase English
ENU US English

ESP Spanish

FRA French

ITA Ttalian

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

Chapter 6. System Considerations for CICS

41

42 1BM Enterprise Developer Server Guide for z/OS

Chapter 7. System Considerations for z/OS Batch

This chapter presents system considerations for running EGL-generated programs
in the z/OS batch environment.

The following information is discussed:
* Required file descriptions

* Recovery considerations

* Using VSAM program data files

* Considerations for using DB2

* Runtime JCL

Required File Descriptions

Enterprise Developer Server requires the following files:

File Name

EZEPRINT

Description

This file is used when printing from a program that displays
printer maps. EZEPRINT can be allocated to either a data set or to
a SYSOUT class. The file must have a VBA (variable-blocked ANSI)
record format.

The maximum record length that a generated program can write to
the print data set is 654 bytes for DBCS maps and 137 bytes for
SBCS maps. The record length includes 4 bytes for the variable
length record header, 1 byte for the American National Standards
printer-control character, and the print line for the print map. The
DBCS record length is longer than the printer line length because
the print line can contain outlining control characters and shift-out
(SO) and shift-in (SI) characters that are not displayed on the
device. The logical record length defined for the data set must be
greater than or equal to the length of the longest line written by
the program, including the DBCS SO/SI characters.

If you are using Enterprise Developer Server to print to a file
destination other than EZEPRINT, the characteristics of that file
should be the same as EZEPRINT.

SYSPRINT, SYSOUT, SYSABOUT, SYSUDUMP

ELAPRINT

ELATRACE

ELATOUT

© Copyright IBM Corp. 1994, 2005

These z/0OS system files are used by EGL-generated programs. Do
not specify DCB parameters for these files.

This system output file is used by generated programs. Specify
ELAPRINT with RECFM=FBA and BLKSIZE=1330 DCB
parameters.

This file is the trace control file for the z/OS batch environment.
The attributes for this data set are LRECL=80, RECFM=FB, and
BLKSIZE=multiple of 80. The trace filters are specified in the
ELATRACE data set.

The output of the Enterprise Developer Server trace facility is sent
to this data set in the z/OS batch environment. The attributes for
this data set are DSORG=PS, LRECL=133, BLKSIZE=1330, and
RECFM=FBA.

43

Using VSAM Program Data Files in z/0S Batch

VSAM program data files must be defined before your z/OS batch program can
use them. See ["Defining and Loading VSAM Program Data Files” on page 24 for
information on defining VSAM data sets, defining alternate indexes, and for
information on loading VSAM data sets.

The DD statements for user files are generated for you and placed in the sample
runtime JCL.

Considerations for Using DB2 in z/OS Batch

This section presents system considerations for database recovery and integrity for
DB2 programs.

For information on running DB2 programs in z/OS batch, see |Chapter 12,|
[“Preparing and Running Generated Programs in z/OS Batch,” on page 89.|

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features
provided by DB2.

Relational databases are recoverable resources. If your program makes changes to a
relational database, the changes are not committed to the database until the end of
a logical unit of work (LUW). If your program ends abnormally before the end of
an LUW, all changes that were made since the beginning of the LUW are backed
out. For information on when an LUW ends, see the EGL help topic called Logical
unit of work.

Considerations for Using DL/l in z/OS Batch

44

This section presents the following information:
* Defining the program specification block (PSB)
* Recovery and database integrity considerations

Refer to the EGL helps for additional information.

Defining the Program Specification Block (PSB)

The following list shows considerations for defining a PSB that is used in the z/OS
batch environment:

e DL/I PSBs used in the z/OS batch environment must have CMPAT=YES
specified in the PSBGEN statement for the PSB. This enables you to use the
CHKP and ROLB functions with the PSB.

* The PSBGEN statement must include the parameter LANG=COBOL or
LANG=ASSEM.

* DL/I PSBs used in the z/OS batch environment must be defined with a
minimum of two PCBs of any type in the PSB. This enables the generated
COBOL program to test whether it is being started from the IMS region
controller or from an OS XCTL macro in a non-Enterprise Developer program
passing working storage and dliLib.psbData as parameters.

* z/0S batch programs can implement serial files as GSAM databases. These
GSAM files are treated as a special type of database and require a PCB in the
PSB. The GSAM PCBs must follow all database PCBs.

IBM Enterprise Developer Server Guide for z/OS

Recovery and Database Integrity Considerations

In z/OS batch DL/I programs, a commit point causes a DL/I basic CHKP
(checkpoint) call. The contents of dliLib.psbData are used as the checkpoint
identifier. After the CHKP call, dliVar.statusCode contains the status code returned
with the CHKP call.

If the program runs under the z/OS terminal monitor program for SQL access,
calling sysLib.rollback() results in an SQL ROLLBACK WORK.

If the program runs as a DL/I batch job, and DL/I or SQL requests have been
issued, calling sysLib.rollback() results in a DL/I ROLB call. The IMS batch
parameter BKO=Y must be specified when the batch job is started in order for the
ROLB call to be honored. The BKO parameter is specified in the job step that calls
the IMS control program DFSRRCO00. If BKO=N is specified, DL/I returns status
code AL for the ROLB call. Enterprise Developer Server treats the AL as a soft
error, and no error message is issued.

Serial or print files associated with GSAM files and AUDIT service routine calls
result in DL/I requests and cause the DL/I ROLB call to be issued.

Performance Considerations for z/OS Batch

See [“Modules in Memory” on page 23 for information on performance
considerations and the methods used to place modules in memory. These methods
are particularly beneficial if the Enterprise Developer program is being called
repeatedly by a non-Enterprise Developer program.

If you are running generated programs in z/OS batch, you no longer need to use
the forUpdate option on the I/O statement prior to a delete or replace statement.
Eliminating the forUpdate option allows for better performance, as it eliminates a
COBOL read. However, make sure that you perform a get or get next before the
delete or replace to ensure that the record is available.

Runtime JCL

See [Chapter 12, “Preparing and Running Generated Programs in z/OS Batch,” on|
lpage 89 for examples of batch runtime JCL.

Chapter 7. System Considerations for z/OS Batch 45

46 1BM Enterprise Developer Server Guide for z/OS

Chapter 8. System Considerations for IMS

This chapter provides additional administrative information that applies to the IMS
environments.

The following information is discussed:

* Required file descriptions

¢ Defining the program specification block

* Processing modes

* Printing considerations for IMS

¢ Recovery and database integrity considerations
* Considerations that affect performance

* Considerations for using DB2
 Considerations for using DL/I

* Maintaining the work database

Required File Descriptions

Enterprise Developer Server requires the following files:
File Name Description

ELASNAP This is an optional file that contains the snap dump listing when a
Enterprise Developer Server error occurs and the ELASNAP DD
statement was included in the startup JCL. This file has a 125-byte
logical record length, a 882-record block size, and a VBA
(variable-blocked ANSI) record format. If this file is directed to the
system logical unit SYSOUT define it with RECFM=VBA and
BLKSIZE=4096.

ELAPRINT This file is an optional output file for Enterprise Developer Server
error messages. This file has a fixed block record format, a 133-byte
logical record length, and a block size of 1330. If this file is directed
to the system logical unit SYSOUT, define it with RECFM=FBA
BLKSIZE=1330.

ELADIAG This is the default name for the optional message queue for
Enterprise Developer Server error messages.

This message queue is defined in the IMS system definition during
Enterprise Developer Server installation. Refer to(Chapter 19, “IMS|
[Diagnostic Message Print Utility,” on page 125| for information
about printing the error messages contained in the ELADIAG
message queue.

ELATRACE This is the trace control file for the IMS BMP environment. The
attributes for this data set are LRECL=80, DSORG=PS, and
BLKSIZE=multiple of 80. The trace filters are specified in the
ELATRACE data set.

ELATOUT The output of the Enterprise Developer Server trace facility is sent
to this data set in the IMS BMP environment. The attributes for this
data set are LRECL=133, BLKSIZE=1330, and RECFM=FBA.

ELAT The output of the Enterprise Developer Server trace facility is sent
to this output message queue in the IMS/VS environment. Use the
ELAMQJUD job to retrieve the trace.

© Copyright IBM Corp. 1994, 2005 47

EZEPRINT This is the default message queue (IMS/VS) or output file (IMS
BMP) for print output from generated programs. For IMS BMP
programs, the print records are variable length. For single-byte
languages, define EZEPRINT with LRECL=137, BLKSIZE=141, and
RECFM=VBA. For double-byte languages, define EZEPRINT with
LRECL=654, BLKSIZE=658, and RECFM=VBA. If the file is
directed to the system logical unit SYSOUT, define it with
RECFM=VBA, BLKSIZE=4096.

Defining the Program Specification Block (PSB)

48

You need to define both an IMS PSB and a Enterprise Developer PSB for your
program. The Enterprise Developer PSB contains a subset of the information from
the IMS PSB and is used to build default segment search arguments (SSAs) for the
Enterprise Developer process options.

You need to generate an IMS PSB to correspond to the Enterprise Developer PSB.
For IMS/VS, the IMS PSB must have the same name as the load module for the
associated COBOL program. A program control block (ACB) generation is also
required for the IMS/VS environment. For BMP and DL/I batch, the IMS PSB
name does not have to match the program load module name.

When you define the PSBs for IMS programs, consider the following criteria:

* The I/O PCB (program control block) is automatically supplied and does not
appear in the IMS or Enterprise Developer PSB source.

* Alternate PCBs are used to route output to terminals other than the originating
terminal, or to other transactions. Alternate PCBs must appear before the
database PCBs both in the IMS and the Enterprise Developer PSB source.

* When an Enterprise Developer program is generated for the IMS/VS or IMS
BMP environment, a modifiable alternate PCB and a modifiable express alternate
PCB are required, in that order, as the first two PCBs following the I/O PCB.
Both of these PCBs must have the parameters ALTRESP=NO and
SAMETRM=NO. To avoid having to edit your DL/I call modifications to adjust
for the two required PCBs, include these PCBs whenever you plan to generate a
program for the IMS/VS or IMS BMP target environments.

¢ The PSBGEN statement must include the parameters CMPAT=YES, and
LANG=COBOL or LANG=ASSEM.

* IMS BMP programs can implement serial files as GSAM databases. These GSAM
files are treated as a special type of database and require a PCB in the PSB. The
GSAM PCBs must follow all database PCBs.

If a DL/I work database is used, the PCB for this database must be included in the
IMS PSB. This PCB can be created using the macro ELAPCB and concatenating
ELA.VIR2MO.ELASAMP as part of the SYSLIB in the PSBGEN procedure.
shows an example of the PCB expansion that occurs when ELAPCB is
used.

WORKDBD defaults to ELAWORK. The WORKDBD parameter must be used if the
DBD name is changed.

IBM Enterprise Developer Server Guide for z/OS

ELAPCB [WORKDBD=customer-dbd-name]
--- expands into ---

PCB TYPE=DB,DBDNAME=customer-dbd-name,PROCOPT=AP,KEYLEN=19
SENSEG NAME=ELAWCNTL,PARENT=0

SENSEG NAME=WORKLVO1,PARENT=ELAWCNTL

SENSEG NAME=WORKLVG2,PARENT=WORKLVO1

SENSEG NAME=WORKLV14,PARENT=WORKLV13
SENSEG NAME=MSGLVO1,PARENT=ELAWCNTL
SENSEG NAME=MSGLVOZ2,PARENT=MSGLVO1

SENSEG NAME=MSGLV14,PARENT=MSGLV13

Figure 7. Generating the DL/I Work Database PCB

Processing Modes

IMS requires segmented or single-segment mode. Refer to the EGL help for
additional information on segmented and single-segment modes.

The spaSize=xxxx build descriptor option determines whether a program runs as
IMS conversational (xxxx is greater than 0) or nonconversational (xxxx is 0). Refer
to the EGL help for more information.

The work database is used for both conversational and nonconversational
processing to save information during a converse. In conversational mode, the
scratch-pad area (SPA) is used to set the transaction identifier and to save
information during a program-to-program message switch. Refer to the EGL help
for information on how the SPA is used for program-to-program message
switching.

Printing Considerations for IMS

From Enterprise Developer Server, printing is initiated when a program processes a
print statement for an Enterprise Developer-defined printForm. Refer to the online
helps for information on defining forms for printers.

Printing is accomplished using MFS control blocks produced when the form group
is generated. The default print destination in IMS is a message queue named
EZEPRINT. The printer destination can be changed at generation time. You can
also change the print destination at run time by changing the
converseVar.printerAssociation. Refer to the Enterprise Developer help facility for
additional information.

Recovery and Database Integrity Considerations

EGL-generated programs can make use of all the IMS recovery and data integrity
features.

If your program makes changes to a recoverable resource, the changes are not
committed until the end of a logical unit of work (LUW). If your program
abnormally ends before the end of an LUW, all changes that were made since the
beginning of the LUW are backed out.

Chapter 8. System Considerations for IMS 49

An LUW for an IMS transaction ends whenever a commit point or a rollback
occurs. A commit point occurs in IMS when one of the following occurs:

* The top-level program in a run unit ends successfully.

For IMS BMPs, a run unit consists of all EGL-generated programs and
non-EGL-generated programs that transfer control among themselves using a
transfer statement of the form transfer to a transaction or transfer to a program, or
call statement. For non-EGL-generated programs, this also includes transfers
using an OS XCTL macro or CALL statement.

For IMS/VS, a run unit is equivalent to a single transaction and consists of all
EGL-generated programs and non-EGL-generated programs that transfer control
among themselves using a transfer statement of the form transfer to a program or
a call statement. For non-EGL-generated programs, this also includes transfers
using a CALL statement.

* A program uses a converse statement.

The best time for a commit point to occur is after terminal output and before the
next terminal input. A commit point at terminal I/O synchronizes updates to the
database and confirmation messages to the program user.

* A batch-oriented IMS BMP program (one that does not scan a serial file
associated with the I/O PCB) calls sysLib.commit().

* A batch-oriented IMS BMP program issues a transfer statement of the form
transfer to a transaction and the synchOnTrxTransfer build descriptor option is
set to "YES" for the transferred-from program.

* A program does a successful get unique to the I/O PCB.

A rollback occurs when one the following occurs:
* A program calls sysLib.rollback().
* A program ends because of an error condition.

When a rollback occurs, all database changes that were made since the start of the
LUW are backed out.

Considerations that Affect Performance

50

This section describes factors that affect system performance and suggestions on
how to improve performance.

Residency Considerations and the IMS Preload Function

The performance of a program is affected by the number of times a disk is

accessed while running the program. Programs require access to disks for the

following reasons:

* Locating and loading Enterprise Developer Server load modules

* Retrieving and storing user data

* Locating and loading application, form group format modules, MFS print
services programs, and table load modules

Enterprise Developer Server loads objects as they are needed. For example,
Enterprise Developer Server loads an application, MFS print services program,
form group format module, or table when another program calls or references it.
The overhead of locating and loading modules can be reduced by using the IMS
preload function. Preloading an object reduces the amount of I/O required for
multiple loads. However, preloading generated programs requires more virtual
storage for your system because preloaded modules remain in storage until the
message region is shut down.

IBM Enterprise Developer Server Guide for z/OS

It is usually not possible for everything to be preloaded. Therefore, you should
establish priorities for deciding which objects you should preload. These
preloading priorities reflect a trade-off between your program usage and your
storage constraints. Because of individual considerations such as storage
constraints, environment, and types of programs, your priorities might dictate that
some components (such as MFS print services programs) for a program be
preloaded, while other components (such as tables) should not be preloaded. Make
the decision on what modules to preload on an individual basis, according to how
the program uses them.

When deciding what to preload, consider the following:

 Storage constraints

* Frequency of program use

* Long-running programs as compared to programs that are started more
frequently

Generally, objects that are loaded more than once are prime candidates for
preloading. Examples of this are a table that is used by more than one program
and a program that is called more than one time. The following are some general
rules for preloading:

* When deciding what to preload, consider the following objects:
— Called programs
— MEFS print services programs

Form group format modules

— Tables

— Main programs

* Programs that are started or referenced frequently should be preloaded. In
addition to programs that are loaded by IMS when a transaction is scheduled,
this includes programs that are started by the Enterprise Developer transfer
statements of the form transfer to a program or call statements.

* Programs that are not frequently initiated should not be preloaded.

See [“Preloading Generated Programs” on page 52| for additional information.

Preloading Enterprise Developer Server Modules
For best performance, use the preload option for the following Enterprise
Developer Server modules:

* ELARPRTR, the Enterprise Developer Server module that handles address mode
switching

¢ ELARPRTM, the Enterprise Developer Server load module

* ELARPIODP, the installation options module

* ELARIccc (where ccc is the language code), the language-dependent options
module

¢ ELACNccc (where ccc is the language code), the conversion table

* ELANCccc (where ccc is the language code), the module for Enterprise
Developer Server constants and the fold table

* ELARSCNT, the configuration table
* ELA2SSQW, the module that supports the DB2 work database

* ELARSDCB, which is used for accessing Enterprise Developer Server sequential
files

* ELA2SSQL, its alias ELA2SSQY, and ELA2SSQX

ELA2SSQL, its alias ELA2SSQY, and ELA2SSQX are used to gain access to the
DB2 work database, and they support commit and rollback processing for DB2

Chapter 8. System Considerations for IMS 51

52

program databases. Preload these modules only if you are using programs that
were generated and bound using CSP/370RS V1R1.

The modules ELARSDCB and ELANCccc are loaded below the 16MB line.
ELARSDCB is used only in reporting errors detected by Enterprise Developer
Server. Both can be omitted from the preload list if storage space below the 16MB
line is limited.

Note: You should also monitor the usage of the LE runtime modules. Because
many are used by the generated COBOL programs, these modules might
also be candidates for preloading.

Refer to the IMS documentation for your system for information on the preload
option. An alternative to preloading is to place modules in the link pack area.

Loading Enterprise Developer Server Modules into the Link Pack
Area

Placing modules in the link pack area causes all regions to share a single copy of
the modules and saves storage space. Refer to the on-line helps for information
about what modules can be put into the link pack area.

Only one version of CSP/370RS V2R1, CSP/370RS V1R1, VisualAge Generator
Server VIR2, or IBM Enterprise Developer Server modules can be placed in the
link pack area. If multiple releases are installed concurrently on the same system,
override the link pack area by defining the correct library in the STEPLIB or
JOBLIB DD statements for the region.

Preloading Generated Programs

You can reduce the overhead of searching the STEPLIB, JOBLIB, link pack area,
and link list by preloading generated programs (application programs, online print
services programs, map group format modules, and table modules) that are
frequently used. However, in this case, virtual storage is still occupied by the
modules when they are not in use.

To improve response time, you might also preload any module associated with any
transaction that might require better performance, even though the module itself is
not frequently used.

To preload generated programs, do the following:
1. Put the module in a LNKLST library.

2. Include the module name in a preload member (DFSMPLxx, where xx is a
two-character ID that you select) in the IMS procedure library.

3. Indicate in the JCL for the IMS message region that the preload member is to
be included.

Database Performance

Database performance can be improved under IMS/ESA® by defining
HIPERSPACE* buffer usage for IMS in the DFSVSMxx member. This is the same as
defining many buffers for the files, but has the advantage that the HIPERSPACE
buffers all come from 31-bit storage, not from within the IMS/ESA region. The
tuning of database buffer pools is recommended. Refer to the IMS manuals for
details on the tuning of database buffer pools.

IBM Enterprise Developer Server Guide for z/OS

If you have IMS/ESA installed and use a DL/I work database, make the work
database nonrecoverable to reduce the amount of logging that occurs. Making the
work database nonrecoverable might help improve performance.

Limiting MFS Control Blocks

Limiting the size and number of message format service (MFS) control blocks
might help improve performance. MFS is used for mapping support in the IMS
environment. MFS control blocks are generated using MFS utility control
statements.

You can reduce the size and number of MFS control blocks that are generated by
doing the following:

* In device selection of map definition, select only those Enterprise Developer
devices that are used for the application system. For additional information
about valid device types that can be specified, refer to the Devices list on the
Map Definition Profile - Device Selection window within Enterprise Developer.

* Include in the mfsDevice build descriptor option only device types that your
installation or application system uses. For additional information about
specifying the mfsDevice build descriptor option, see the online helps.

Monitoring and Tuning the IMS System

You can track potential performance problems before they occur by checking
processing statistics on a regular basis. The following are some of the statistics to
monitor:

e Use the IMS DC monitor facilities to check transaction utilization. Consider
preloading programs or groups of programs which are frequently used.

* Use the IMS database monitor facilities to check how effectively the databases
are performing and using space.

You can also use the following tools to monitor IMS performance:

¢ The IMS Performance Analysis and Reporting System (IMSPARS, Program No.
5798-CQP). This tool presents information on transaction transit times, IMS
resource usage, and IMS resource availability, as well as detailed reports tracing
individual transaction and database change activity. These reports are based on
the contents of the IMS log data set.

¢ The Resource Measurement Facility* (RMF*) II . This tool collects information
about processor, channel, and 1/O device utilization.

¢ The DB Tools product (Program No. 5685-093). This tool provides information to
help improve database efficiency and space utilization.

Refer to the system administration manuals and the database administration guide
for your release of IMS for detailed information about monitoring the IMS online
system and DL/I databases.

Considerations for Using DB2 in IMS

This section discusses considerations for recovery, database integrity, and security
issues for DB2 programs.

For information on designing and generating DB2 programs for the IMS
environment, refer to the online helps.

Chapter 8. System Considerations for IMS 53

For information on preparing DB2 programs for running in the IMS environment,
see [Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS|
BMP,” on page 97.|

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features that
are provided by DB2 in the IMS environment.

Relational databases are recoverable resources. If your program makes changes to a
relational database, the changes are not committed to the database until the end of
a logical unit of work (LUW). If your program ends abnormally before the end of
an LUW, all changes that were made since the beginning of the LUW are backed
out. See [“Recovery and Database Integrity Considerations” on page 49| for
additional information on when an LUW ends.

Checking Authorization

The database manager checks whether the program users have authority to gain
access to tables or to run programs. The type of checking done varies depending
on your system and the processing mode.

When using DB2 in generated COBOL programs, the program users must be
authorized to run the corresponding DB2 program plan. For transaction-oriented
regions, the authorization ID depends on the type of IMS security being used:

* If sign-on security is used, IMS provides the sign-on name as the authorization
ID.

* If sign-on security is not used, IMS provides the name of the originating
terminal as the authorization ID.

The plan used with a transaction has the same name as the program associated
with the transaction.

For batch-oriented regions, the authorization ID is the contents of the ASXBUSER
field, if valid, or the PSB name. The plan name is specified as one of the batch
program parameters.

For more information on IMS security mechanisms, refer to the appropriate IMS
manual.

Considerations for Using DL/I in IMS

54

This section discusses considerations for DL/I programs in the IMS environment.

See [“Defining the Program Specification Block (PSB)” on page 48| for information
on defining a PSB for DL/I programs.

For information on designing and generating DL/I programs for the IMS
environment, refer to the EGL helps.

For information on preparing DL /I programs for running in the IMS environment,
see [Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS|

|§MP. ’|

IBM Enterprise Developer Server Guide for z/OS

Recovery and Database Integrity Considerations

EGL-generated programs can make use of all the recovery and data integrity
features that are provided for DL/I databases in the IMS environment.

DL/I databases are recoverable resources. If your program makes changes to a
DL/I database, the changes are not committed to the database until the end of a
logical unit of work (LUW). If your program ends abnormally before the end of an
LUW, all changes that were made since the beginning of the LUW are backed out.
See [“Recovery and Database Integrity Considerations” on page 49 for additional
information on when an LUW ends.

Maintaining the Work Database in IMS

You should monitor and tune the DL/I and DB2 work databases just as you would
any other DL/I database or DB2 table. You can use the normal database
administration utilities to monitor these databases and to determine when they
need to be reorganized to improve performance.

The activities involved in maintaining the work database are the following:
¢ Deleting old records from the work database

* Expanding the work database

* Supporting multiple DL/I or DB2 work databases

Deleting Old Records from the Work Database

The terminal ID is the key for the records in the work database. Each record
contains a time stamp that indicates the last time the record was updated.

Deleting old records from the database reduces the amount of disk space required
in the work database. You probably want to delete records in the following
situations:

¢ Some users might run a generated program only infrequently, less than once a
day, for example. In this case, you might want to delete old records on a daily or
weekly basis.

* Sometimes terminal names are changed or users are moved to terminals with
different names. In this case, new records are created for the new terminals, but
the old records are not automatically deleted.

The utilities that delete records from the DL/I and DB2 work databases validate
the date and time to ensure that your request does not result in deletion of records
that are less than 24 hours old.

DL/I Work Database

[Figure 8 on page 56| shows the JCL used to remove old records from a DL/I work
database. The JCL is supplied as member ELAWKJCD in the ELA.VIR2MO0.ELA]JCL
file. Specify the records you want to delete by entering the date (in Julian format)
and time prior to which all records are to be deleted.

Chapter 8. System Considerations for IMS 55

R AR R e T T e
//** ELAWKJCD - JOBSTREAM TO CLEAN UP THE DLI WORK DATABASE

/%% FOR VISUALAGE GENERATOR SERVER.

//**

//*% LICENSED MATERIALS - PROPERTY OF IBM

//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 1998

//** SEE COPYRIGHT INSTRUCTIONS

]/ **

//** STATUS = VERSION 1, RELEASE 2, LEVEL 0

]/ **

//** TO TAILOR THIS JOBSTREAM:

as 1. COPY A JOBCARD.

/%% 2. REPLACE DATE AND TIME STAMP VALUE WITH DESIRED
/%% VALUE. ALL RECORDS WITH LESS THAN THAT DATE AND
/%% TIME WILL BE DELETED.

//**

//** RETURN CODES

A 0 - SUCCESSFUL COMPLETION

/%% 12 - FATAL ERROR. INVALID INPUT

[** 16 - FATAL ERROR. PROCESSING TERMINATED

//**
//‘k*'k**************‘k*"k****‘k*'k****************"k****‘k*********************
/1*

//DLIWORK EXEC IMSBATCH,MBR=ELAWKPC1,

// PSB=ELAWKPB1,RGN=4096K

//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2MO.SELALMD,DISP=SHR

//G.ELAPRINT DD SYSOUT=x
//G.SYSOUT DD SYSOUT=*
//G.SYSIN DD =*
YYDDDHHMMSS

Figure 8. JCL to Remove OIld Records from DL/I Work Database

DB2 Work Database

[Figure 9 on page 57 shows the JCL used to remove old records from a DB2 work
database. The JCL is supplied as member ELAWK]JC2 in the ELA.VIR2MO0.ELAJCL
file. Specify the records you want to delete by entering the date (in Julian format)
and time prior to which all records are to be deleted.

56 1BM Enterprise Developer Server Guide for z/OS

R R R R R S E e e Ty
//** ELAWKJC2 - JOBSTREAM TO CLEAN UP THE DB2 WORK DATABASE

/%% FOR VISUALAGE GENERATOR SERVER.

//**

//*% LICENSED MATERIALS - PROPERTY OF IBM

//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 1998

//*% SEE COPYRIGHT INSTRUCTIONS

]/ %%

//* STATUS = VERSION 1, RELEASE 2, LEVEL 0O

]/ **

//*% TO TAILOR THIS JOBSTREAM:

[/** 1. COPY A JOBCARD.

/[** 2. REPLACE DATE AND TIME STAMP WITH THE DESIRED DATA.
[]** ALL ROWS WITH A DATE AND TIME LESS THAN THE

/] %% SPECIFIED DATE/TIME WILL BE DELETED.

//**

//** RETURN CODES

[+ 0 - SUCCESSFUL COMPLETION

[** 12 - FATAL ERROR. INVALID INPUT

/[** 16 - FATAL ERROR. PROCESSING TERMINATED
//**

R R R R T T
/1%

//DB2WORK EXEC PGM=ELAWKPC2,REGION=4096K
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2MO.SELALMD,DISP=SHR
//SYSOUT DD SYSOUT=+

//SYSABOUT DD SYSOUT=+

//ELAPRINT DD SYSOUT=+

//ELASNAP DD SYSOQUT==

//EZESPUFI DD DSN=&&TMP1,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK, (1,0)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)
//SYSIN DD *

YYDDDHHMMSS

/1*

//DB2SPUF EXEC PGM=IKJEFTO1,REGION=4096K,COND=(0,NE)
//STEPLIB DD DSN=DSN.RUNLIB.LOAD,DISP=SHR

//SYSOUT DD SYSOUT=x

//SYSUDUMP DD SYSOUT=+

//SYSTSPRT DD SYSOUT=+

//SYSPRINT DD SYSOUT=*

//SYSIN DD DSN=&&TMP1,UNIT=SYSDA,DISP=(0LD,DELETE)

/*
//SYSTSIN DD =
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA??)
END
/*

Figure 9. JCL to Remove Old Records from DB2 Work Database

Expanding the Work Database

At times, you need to expand the work database. For example, you need to
expand the database when you expand the usage of an existing program system to
a larger user set comprising a much larger number of terminals that gain access to
EGL-generated programs.

DL/I Work Database
To expand the DL/I work database, perform the following steps:

1. Stop the DL/I database.

Chapter 8. System Considerations for IMS 57

2. Unload the database using the old database description (DBD).
Change the DBD information and perform a DBD generation.

w

4. If you are having application control blocks (ACBs) prebuilt rather than built
dynamically, build the ACBs again.

5. Delete the space allocated for the old database and allocate space for the new
definition.

6. Load the database using the new DBD.

7. Make an image copy of the new database for back-up purposes as soon as it is
loaded.

Refer to the database administrator’s guide and the IMS utilities manual for
additional information.

DB2 Work Database

You might need to expand the table spaces containing the DB2 work database
because of degraded performance from too many secondary extents, or because the
application users receive a DB2 message DSNP0071 indicating that no more space
is available.

Ideally, when the size of a DB2 table space is increased, the primary extent should
be made large enough to accommodate all the data in the work database. In any
case, try to minimize the number of secondary extents required to store rows in the
database.

The method you use to expand the table space depends on the version of DB2 that
is installed and whether the table space is user-managed.

The procedure supplied with Enterprise Developer Server that installs the work
database also installs the table space as user-managed table space (no associated
DB2 storage group).

Before attempting to change the size of the table space data set, you need to
estimate the space requirements for the table space. One factor in your estimate is
the amount of space currently used. If the space is currently DB2-managed
(resulting from an earlier change in space allocation), you can get this information
by first running the DB2 STOSPACE utility against the table space storage group,
and then running the following query:

SELECT SPACE

FROM SYSIBM.SYSTABLEPART
WHERE TSNAME='tsname' and DBNAME='dbname';

The result (SPACE) gives the number of kilobytes of storage currently allocated to
the table space.

If the space for the table space is user-managed, you can use the TSO LISTCAT
command to obtain the space information. You need to know the data set name of
the VSAM file used for table space. The data set name for the VSAM file has the
following format:

catname.DSNDBC.dbname.tsname.I0001.Annn
where:
catname Specifies the VSAM catalog name or alias

This is the same name or alias as in the USING VCAT clause of the
CREATE TABLESPACE statement.

58 1BM Enterprise Developer Server Guide for z/OS

dbname Specifies the DB2 database name

This is the same as the database name in the CREATE
TABLESPACE statement.

tsname Specifies the table space name

nnn

This is the same as the table space name in the CREATE
TABLESPACE statement.

Specifies the data set number

For partitioned table spaces, the number is 001 for the first
partition, 002 for the second, and so forth, up to the maximum of
64 partitions. For a simple or segmented table space, the number is
001 for the first data set. If the simple or segmented table space
exceeds 2 gigabytes, the second data set is 002, and so forth.

To expand table space do the following:
1. Stop the DB2 database by using the command -STOP DB (dbname).

2. Make an image copy of the table space. You can use the image copy to restore
the data set if the procedure is not successful.

3. Create a storage group for the table space. Do this only if the table space
currently is user-managed and a storage group is not already available.

4. Change the table space definition as follows:

e If the table space data sets are user-managed, use a DB2 statement as

follows:

ALTER TABLESPACE dbname.tsname
USING STOGROUP stogrp
PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

stogrp Specifies the name of the storage group

pPPP Specifies new primary allocation size (in
kilobytes) for the expanded table space

ssSS Specifies new secondary allocation size (in

kilobytes) for the expanded table space

Note: This statement changes the table space from user-managed to
DB2-managed.

If the table space data sets are already DB2-managed, use a DB2 statement as
follows:

ALTER TABLESPACE dbname.tsname
PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

pPPPP Specifies new primary allocation size (in
kilobytes) for the expanded table space

SSSS Specifies new secondary allocation size (in

kilobytes) for the expanded table space

Chapter 8. System Considerations for IMS 59

60

5. Move the table space data. Simply changing the table space definition does not
put the new size into effect. You need to move the table space to the newly
allocated space. You can, for example, reorganize the table space using the DB2
REORG utility.

6. Start the DB2 database. Enter the command -START DB (dbname).

Supporting Multiple Work Databases

You can use separate work databases for different application systems. For
example, you might want to use separate databases for payroll and shipping to
improve performance or to increase data availability. The work database is used to
pass information during certain types of program-to-program message switches
between applications. When this occurs, both the transferring application and the
transferred-to application must use the same physical work database.

DL/I Work Databases

To create an additional DL/I work database called ELAWORK?2, do the following:

1. Copy the ELAWORK DBD in the ELA.VIR2MO0.ELASAMP file, and name it
ELAWORK2.

2. Change the NAME parameter on the DBD statement to ELAWORK2. Also
change the DD1 parameter on the DATASET statement to ELAWORK2. Make
any other changes to the block size, number of blocks, and randomizing routine
based on the application system requirements.

3. Make copies of the ELAWKLD and ELAWKPB1 program specification blocks
(PSBs) in the ELA.VIR2M0.ELASAMP file and give them new member names.
Change the NAME parameter on the program control block (PCB) statement
from ELAWORK to ELAWORK2.

4. Modify job ELACJWKD in the ELA.VIR2MO.ELAJCL file to refer to the new
database. This job does the DBD, PSB, and ACB generations needed for the
work database, allocates the database, and then initializes it. You need to
change the DD and data set names for the work database, and name the new
DBD and PSB.

5. Add the new database to the JCL for your IMS control region, and to your IMS
stage-1 system definition.

6. When you create IMS PSBs for applications that need to use this new database,
use the ELAPCB macro to create the PCB definition for the work database.
Enter the following command:

ELAPCB WORKDBD=ELAWORK2

DB2 Work Databases

To create an additional DB2 work database, do the following;:

1. Create an ELAWORK table using the ELACJWK2 job in the
ELA.VIR2MO.ELA]CL file. Perform the following steps before running the job:

a. Add an authorization ID to the CREATE TABLE command in ELAWORK2
in the ELA.VIR2M0.ELASAMP file, for example:

CREATE PAYROLL.ELAWORK
b. Change the table space name and index in ELAWORK?2.

c. Change the DELETE and DEFINE CLUSTER statements to use the table
space name and index you specified in ELAWORK2.

d. Comment out the WRKDROP step to avoid dropping the existing work
database.

IBM Enterprise Developer Server Guide for z/OS

2. Each developer or system administrator using the payroll ELAWORK table
needs to create a SYNONYM for the table. The following example shows how
to use the CREATE SYNONYM command to create a synonym:

CREATE SYNONYM ELAWORK FOR PAYROLL.ELAWORK

The BIND command generated from the default BIND templates FDA2MBDB,
FDA2MBDD, and FDA2MBDC bind DBRMs for Enterprise Developer Server
modules to the application being generated. The CREATE SYNONYM
command ensures that developers referencing the ELAWORK table use the
payroll version of the table.

Considerations for Message Format Services in IMS

Enterprise Developer generates message format services (MFS) source statements
used for conversing and displaying maps in IMS environments. The generated
MEFS source includes DEV statements, which identify the device types on which
maps can be displayed and the characteristics of those devices. The device types
and characteristics must be compatible with the device types and characteristics
defined in the TERMINAL and TYPE macros in your IMS system definition.

The information on the generated DEV statements is controlled by the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor options. Review the default
specifications for the TERMINAL and TYPE and change them to be compatible
with your system definition. You can delete the mfsDevice entries for any terminal
types not supported at your installation and change the DEV statement parameters
for any types for which the default parameters are not correct.

Refer to the IMS system definition reference manual for your release of IMS for
additional information on the parameters for the TERMINAL and TYPE macros.
Also refer to the stage-1 system definition macros for your IMS system to
determine the parameters actually used for your installation. Refer to the MFS
manuals for your release of IMS for additional information about the DEV
statement.

You might also want to look at your non-Enterprise Developer MFS source to see
the parameters that you currently specify on the DEV statement.

Once you have determined the correct values for the mfsDevice, mfsExtendedAttr,
and mfsIgnore build descriptor options, code the default build descriptor options
in all the default build descriptor files that you use when generating for the IMS or
IMS BMP target environments.

Chapter 8. System Considerations for IMS 61

62 IBM Enterprise Developer Server Guide for z/OS

Part 3. Preparing and Running Generated Applications

Chapter 9. Output of Program Generation on
z/0S Systems . .
Allocating Preparation Data Sets .
List of Program Preparation Steps after Program
Generation
Deploying generated code to USS
Outputs of Generation.
Objects Generated for Programs
Application COBOL Program
Sample Run-time JCL .
Bind Commands.
Objects Generated for Tables
Table COBOL Program .
Objects Generated for Form Groups .
Online Print Services Program .
Batch Print Services Program
Form Group Format Module
MFS Source

Chapter 10. z/OS Builds.
z/0S Build Server .
Starting a z/OS Build Server
Starting a USS Build Server .
Stopping servers.
Configuring a build server
Working with Build Scripts . .
Working with z/OS Build Scripts .
Writing a JCL build script
File Name Conversions for z/OS .
Converting JCL to Pseudo-JCL .

Chapter 11. Preparing and Running a Generated

Program in CICS . . .

Modifying CICS Resource Tables
Program Entries (PPT).

Transaction Entries (PCT). .

Destination Control Table Entries (DCT)

File Control Table Entries (FCT)

Resource Control Table Entry (RCT) .

Using Remote Programs, Transactions, or Files
Modifying CICS Startup JCL. . .
Making New Modules Available in the CICS
Environment . . e
Making Programs Re51dent .

Running Programs under CICS. .
Controlling Diagnostic Information in the CICS
Environment . . .
Printing Diagnostic Messages in the CICS
Environment . P

Chapter 12. Preparing and Running Generated
Programs in z/OS Batch . .o
Running Main Programs under z/ OS Batch
Examples of Runtime JCL for z/OS Batch Programs

© Copyright IBM Corp. 1994, 2005

. 65
. 65

. 67
. 67
. 67
.70
.70
. 70
. 70
.71
.71
.71
.71
.71
.71
.71

. 73
. 74
. 76
.79
.79
.79
.79
.79
. 80
. 81
. 81

. 85
. 85
. 85
. 86
. 86
. 87
. 87
. 87
. 87

. 87

. 88

. 88

. 88

. 88

. 89
. 89

Running a Main Batch Program with No

Database Access .

Running a Main Batch Program w1th DB2 Access

Running Main Batch Program with DL/I Access

Running a Main Batch Program with DB2 and

DL/I Access . ..
Recovery and Restart for Batch Programs

Chapter 13. Creating or Modlfylng Run-time JCL
on z/OS Systems . .o
Tailoring JCL before Generatlon

Modifying Run-time JCL .

Chapter 14. Preparing and Running Generated

Programs in IMS/VS and IMS BMP .

Modifying the IMS System Definition Parameters
Defining an Interactive Program .
Defining Parameters for a Batch Program as an
MPP.

Defining Parameters for a Batch—Oriented BMP
Program .

Defining Parameters for a Transactlon—Orlented
BMP Program .

Creating MFS Control Blocks

Making New Modules Available in the IMS

Environment .

Preloading Program, Prmt Serv1ces, and Table

Modules . .

Running Programs under IMS
Starting a Main Program Directly.

Starting a Main Transaction Program Using the
/FORMAT Command .o .
Running Transaction Programs as IMS MPPs

IMS Commands .

Keyboard Key Operation

DBCS Data on a Non-DBCS Termlnal

Error Reporting .

Responding to IMS Error Messages .
Running Batch Programs as MPPs

Running a Main Program under IMS BMP

Examples of Runtime JCL for IMS BMP Programs
Running a Main Batch Program as an IMS BMP
Program .

Running a Mam Batch Program as an IMS BMP
Program with DB2 Access . .
Recovery and Restart for IMS BMP Programs

Chapter 15. Moving Prepared Programs to
Other Systems from z/OS Systems .
Moving Prepared Programs To Another z/OS
System

Maintaining Backup Coples of Productlon lerarles

.90

90

.91
.92

. 93
. 93
. 94

. 97
. 97
.97
. 98
.99

. 99
.99

. 100
. 100
. 101
. 101

. 101

101

. 101
. 102
. 102
. 102
. 102
. 103
. 103

104

. 104

. 105
. 106

. 107

. 107
107

63

64 1BM Enterprise Developer Server Guide for z/OS

Chapter 9. Output of Program Generation on z/OS Systems

This chapter provides an overview of the files produced at generation time and of
the steps needed to prepare code for use at run time.

Output files are transferred to z/OS, where preparation steps include running
translators, precompilers, and compilers; doing link-edits; and defining control
tables for the target run-time environment.

For additional information on the outputs of program generation, please refer to
the EGL helps.

Allocating Preparation Data Sets

The EGL COBOL generator builds and runs a preparation command file to transfer
generated objects to z/OS and to submit a preparation job (one of the generated
objects) to the internal reader to complete the preparation process.

The transferred objects are stored in partitioned data sets. You allocate the required
data sets using the ELACUSER CLIST shipped in the data set that has the
low-level qualifier ELACLST. This CLIST was customized at product installation to
set keyword default values to settings appropriate for your environment.

For you to use this CLIST, your customized data set must be placed before the
installation data set that has the low-level qualifier SELACLST in the SYSPROC
concatenation list. Make sure that every COBOL generation user has the required
data sets allocated for every environment in which the product will be used.

The following keyword parameters within CLIST ELACUSER may either be
customized within the CLIST or overridden when executing the CLIST:
Keyword Possible Values

IMSVS

¢ Y = allocate user data sets for this environment

¢ N = do not allocate user data sets for this environment

ZOSBATCH

¢ Y = allocate user data sets for this environment

¢ N = do not allocate user data sets for this environment
ZOSCICS

¢ Y = allocate user data sets for this environment

¢ N = do not allocate user data sets for this environment
IMSBMP

¢ Y = allocate user data sets for this environment

¢ N = do not allocate user data sets for this environment
VOL vvvvvv = serial number
UNIT uuuuu = valid unit name
HLQ hhhhhhhh = high-level qualifier for user data sets

© Copyright IBM Corp. 1994, 2005 65

CLST

DB2

LBLK

An example of the command syntax to execute the CLIST is as follows:

* FB = allocate a fixed blocked CLIST library
* VB = allocate a variable blocked CLIST library

* Y = DB2 databases will be used with this product
* N = DB2 databases will not be used with this product

11111 = load library data set block size

ex 'myServer.v5rOm0@.elacist(elacuser) zoscics(y) zosbatch(y)
vol(at1235) unit(sysda) hlg(tsouid) db2(y)"

describes the data sets that are allocated. The DD name in the table is the
DD name in the build scripts that are used by the build server. The meaning of
lower-case strings in the data set name is as follows:

chqlq The high-level qualifier in use at your installation.

env The generation environment. One of these:

* ZOSBATCH (for z/OS batch)
» ZOSCICS (for z/OS CICS)

« IMSVS (for IMS/VS)

« IMSBMP (for IMS BMP)

Table 6. Program Preparation User Data Set Information

Target En-
DD Name Data Set Name Description DCB Information vironment
DBRMLIB cghlq.env.DBRMLIB Database request DSORG=PO, All z/OS,
module library =~ RECFM=FB, if DB2
for DB2 BLKSIZE=6160, used
programs LRECL=80
EZEBIND cghlq.env.EZEBIND Bind commands DSORG=PO, All z/0S,
RECFM=FB, if DB2
BLKSIZE=6160, used
LRECL=80
EZEJCLX cghlq.env.EZEJCLX Batch program DSORG=PO, ZOSBATCH
runtime job RECFM=FB,
stream BLKSIZE=6160,
LRECL=80
EZEOB] cghlq.env.OBJECT Object library DSORG=PO, All z/OS
RECFM=U,
BLKSIZE=6144,
LRECL=0
EZESRC cghlq.env.EZESRC COBOL source DSORG=PO, All z/0OS
library RECFM=FB,
BLKSIZE=6160,
LRECL=80
SYSLMOD cghlq.env.LOAD Load library DSORG=PO, All z/OS
RECFM=U,
BLKSIZE=6144,
LRECL=0

IBM Enterprise Developer Server Guide for z/OS

Table 6. Program Preparation User Data Set Information (continued)

Target En-

DD Name Data Set Name Description DCB Information vironment
EZEPCT cghlq.env.EZEPCT CICS PCT entries DSORG=PO, ZOSCICS

or RDO RECFM=FB,

TRANSACTION BLKSIZE=6160,

entries LRECL=80
EZEPPT cghlq.env.EZEPPT CICS PPT entries DSORG=PO, ZOSCICS

or RDO RECFM=FB,

PROGRAM BLKSIZE=6160,

entries LRECL=80

List of Program Preparation Steps after Program Generation

Enterprise Developer Server supports program preparation and installation in the
z/0S environments using build scripts with Enterprise Developer Server. You must
perform the steps listed in before you can run your program in an z/0S
target environment.

Table 7. Preparation Steps for z/OS Environments

Preparation Step Environment

Transfer from workstation to the host All

DB2 precompile DB2 use only

CICS translation CICS only

COBOL compile All

Link All

Bind DB2 use only. an Enterprise Developer Server
program.

Additionally, for CICS, you must define your program and transactions to the
environment. For CICS, you do this using the program properties table (PPT) and
program control table (PCT) entries or the Resource Definition Online (RDO)
PROGRAM and TRANSACTION entries. For information on CICS entries, see
(Chapter 11, “Preparing and Running a Generated Program in CICS.”|

Deploying generated code to USS

The setup for deploying generated Java " code in USS is the same as for Windows.
Please see the EGL help topic Setting up the J2EE run-time environment for
EGL-generated code.

To access the help system in the development Workbench, select Help->Help
Contents from the menu bar. When the help interface appears, select Enterprise
Developer Documentation, then Developing, then Enterprise Generation Language.

Outputs of Generation

After you have generated a program, you have a number of objects that need to be
transferred to the host system. To place these outputs in a PDS, you must first
customize the EGL build scripts. On the z/OS system, these members need to be
prepared before the program can be run.

Chapter 9. Output of Program Generation on z/OS Systems 67

Outputs of preparation are placed in a PDS automatically. You control the high
level qualifier of the PDS using the build descriptor option projectID.

By default the build scripts do not save the generated program source code.

The build scripts save the link edit file, the bind control file and the CICS entries.
The CICS entries are saved because they are needed to install the program in CICS.
The link edit and bind control files are saved because they are needed to reproduce
a load module from the prepared object module if you want to save the prepared
outputs in an SCM repository.

You can not save the load module in the repository and restore it to an
environment, but you can save the object deck and relink it in a production
environment. If an enterprise wants to save the source code, it is necessary to
modify the fdacl, fdabcl, fdapcl, fdatcl, fdaptcl, and fdamfs build scripts. There are
instructions in the build scripts on how to do this by uncommenting certain lines
and commenting others.

All program and form-group objects are generated for one environment and cannot
be used in another. Data tables generated and prepared in a particular
environment (whether CICS or z/OS batch) can be used in another environment
on the same system.

provides information about the types of files produced by generation,

including:

* Type of object produced

* Low-level qualifiers of the default PDS name to which the object is written if the
build scripts are customized to save the generated files

* Whether production is controlled by a COBOL build descriptor option

* Whether the object can be modified after generation is performed

A description of each object begins on page
For additional information on generation outputs, see the EGL help topics.

You can specify an alias for a program, data table, or form group, and that alias is
used for generated outputs. If you do not specify an alias, the default value is the
name of the part truncated to the requirements of the target environment (8
characters, for z/OS).

The name given to the outputs includes the alias or the default name, as shown by
alias in the next table.

A bind control file is always generated and used in preparation for programs that
access an SQL database. You can specify your own bind control part to be used to
generate the bind control file using the bind option, or you can develop a bind
control part with the same name as the program part. Otherwise, a default bind
control part is generated.

Table 8. Objects Generated for Programs for a z/OS Host by the Enterprise Developer build process

PDS Build

Low-level PDS Member File Name on z/OS Run-time |Descriptor
File Type Qualifier Name Workstation Environment Option Modifiable
COBOL EZESRC alias alias.CBL All None No
program

68 1BM Enterprise Developer Server Guide for z/OS

Table 8. Objects Generated for Programs for a z/OS Host by the Enterprise Developer build process (continued)

PDS Build
Low-level PDS Member File Name on z/OS Run-time | Descriptor
File Type Qualifier Name Workstation Environment Option Modifiable
Sample EZEJCLX alias alias.JCL z/0S Batch IMS | genRunFile Yes
run-time JCL BMP
Bind command |EZEBIND alias alias. BND All bind Yes
Link Edit File EZELINK alias alins. LED All linkEdit Yes
Build Plan Not applicable | Not applicable |aliasBuildPlan All prep No
(see note [1) xml
CICS Entry (See | EZEPPT Part specified alias CICS cicsEntries Review and
note when generation possible
was requested modification
(alias.PPT) required

Table 9. Objects Generated for Tables and Transferred to a z/OS Host by the Enterprise Developer Preparation Ultility

PDS Low-level PDS Member z/OS Run-time Build Descriptor
File Type Qualifier Name Environment Option Modifiable
Table COBOL EZESRC alias.CBL All genDataTables No
program

Table 10. Objects Generated for Form Groups and Transferred to a z/OS Host by the Enterprise Developer
Preparation Utility

PDS z/0S
Low-level |PDS Member File Name on Run-time Build Descriptor

File Type Qualifier |Name Workstation Environment | Option Modifiable

Online print | EZESRC alias alias.CBL All genFormGroup, No

services genHelpFormGroup

program - (See

note

Batch print EZESRC aliasP1 aliasP1.CBL z/0S batch, |genFormGroup, No

services IMS BMP genHelpFormGroup

program - (See

note

Form group |EZEFOBJ |aliassFM aliasFM.FMT z/0S CICS, | genFormGroup, No

format IMS/VS genHelpFormGroup

module - (See

note EI)

MES print EZESRC alias alias.CBL IMS/VS genFormGroup No

services IMS BMP

COBOL

program

MEFS control | EZEMFS alias alias MFS IMS/VS formServicePgmType,| No

blocks IMS BMP genFormGroup,
genHelpFormGroup

COBOL EZECOPY |alias alias.CPY IMS/VS formServicePgmType,| No

copybook for IMS BMP genFormGroup,

MFS genHelpFormGroup

MID/MOD

layout

Chapter 9. Output of Program Generation on z/OS Systems

69

70

Notes:

1. Build plans are not transferred to the host. They define what needs to be sent
to the host. Specifically, the build plan includes the name of a build script that
runs on the build server. The build script also contains substitution variable
values that are used for substitution in the build script.

For additional details, see the EGL help topics.

2. If you specify the cicsEntries=RDO build descriptor option, the PROGRAM
entries are placed in alias. PPT

3. This object is produced only if the form group contains print forms.
4. This object is produced only if the form group contains text forms.

Objects Generated for Programs

Application COBOL Program

The generated program is a COBOL program that contains the following:
¢ Program control logic

* Logic for functions and I/O operations

* Data for both the program and program control

The program control logic performs the following functions for a program, as
needed:

* Initialization

* Cleanup at end of program

* Error reporting

* Transfer of control

Sample Run-time JCL

The generator produces sample JCL for running programs in the z/OS batch
environments when the build descriptor option genRunFile is specified during
program generation. Each person using the JCL must provide a JOB statement.

The JCL is produced from model JCL templates that can be modified to enforce
customer data set naming conventions.

The JCL might not be complete and should be reviewed and modified if necessary
before being used. For example, the JCL for the generated program does not
contain any DD statements for data sets used by other programs that can be
started by CALL or TRANSFER statement. Comments in the JCL indicate where
DD statements for these programs need to be added. To build the final JCL needed
to run a set of programs as a run unit, you should edit the program JCL and
include the DD statements for invoked programs with the JCL for the first main
program. You might need to add DD statements for files that are specified during
run time with the record-specific variable resourceAssociation or with the system
variable sysVar.printerAssociation.

Bind Commands

Bind commands are required for an SQL program. The bind commands either
reside in a bind control part that has the same name as the program or, you can
specify the bind control part using the bind build descriptor option.

You are not required to supply a bind control part. If one is not supplied, EGL
generates a default bind control part that may or may not meet the requirements of
the program.

IBM Enterprise Developer Server Guide for z/OS

The bind control part generated by default cannot be affected by users. However,
bind control parts provided by the user may contain references to symbolic
parameters which get substituted at generation time.

Objects Generated for Tables

Table COBOL Program

The table program is a COBOL program that contains the table contents defined in
program working storage. This object is produced when you specify the build
descriptor option genDataTables. This allows tables to be generated independently
of programs when the contents of a table need to be changed.

Objects Generated for Form Groups

Online Print Services Program

The online print services program is a COBOL program that performs print 1/0,
output formatting, and SET operations for a generated online CICS program that
prints output. This object is produced when you specify the build descriptor option
genFormGroup during program generation.

Batch Print Services Program

The batch print services program is a COBOL program that formats data for line
printers and writes the data to either the printer output file (directly to the printer
or a QSAM file) or to a generalized sequential access method (GSAM) file. This
program is used with programs that run in the z/OS batch environment. This
object is produced when you specify the build descriptor option genFormGroup or
genHelpFormGroup.

Form Group Format Module

The form group format module is a generated structure that describes the layout
for text forms in the form group. The generator builds the structure as a z/OS
object module for the CICS environment. This object is produced when you specify
the build descriptor option genFormGroup or genHelpFormGroup.

MFS Source

In the IMS environment, an MFS source file is generated at the same time as the
form group format module. The build server automatically compiles this MFS
source to generate IMS format, input, and output messages for each device type
defined.

Chapter 9. Output of Program Generation on z/OS Systems 71

72 IBM Enterprise Developer Server Guide for z/OS

Chapter 10. z/OS Builds

The EGL process generates the files needed to create an executable program. After
creating these files, the generation process communicates with the build server on
z/0S to transfer the files to the host and then initiate the appropriate builds
(compiles, link-edits, binds, etc.) for these programs.

To control the build process, the EGL generation process creates an XML file called
a build plan for each generated program. This build plan contains specific
information that the build server uses when building the generated program.

The type of information that the build plan contains includes:

¢ The name of the build script that the build server invokes to process the build

* The location on the client workstation where the server places listings and
diagnostics from the build tools (for example, the compiler or linkage editor)

* The generated program

* A list of dependent files for the build process (for example, the name of the link
edit file or the bind file) containing information used by the build process

e A list of environment variables that are used to override the default VARS
values specified in the Pseudo-JCL build script

The environment variables defined in the build plan are set using build descriptor
options and symbolic parameters specified by the user during program generation.

Using the information in the build plan, the server invokes the build script
overriding any pre-defined defaults in the JCL with the appropriate values
specified in the build plan.

Following the steps outlined in the build script, the build server transforms one set
of files into another by invoking tools such as compilers and linkers. For example,

using a build script, the build server might transform a COBOL source file into an

object file. Another build script might perform the database bind.

Once the build has finished, the server places the listings and diagnostics from the
build process in the location specified in the build plan or build script.

Prepared outputs are placed into PDSs on the build server machine. The high level

and middle qualifiers of the PDS are controlled by the projectID and system build
descriptor options. The low level qualifiers are controlled by the type of output.

© Copyright IBM Corp. 1994, 2005 73

Build Servers

Workstation Client
TCRIP :
:: Socke;> Win
Java
WSED | Build command
] Build :
EGL | Elulld Command | Build command ;L';'; Uss
an Processor | o . q
()(ML:I ulid comman
Cobol
[2
Source Socket TS0

Figure 10. z/OS Build Process

z/OS Build Server

74

On z/0S, you can configure the build server to perform z/OS or USS builds. If
you need both builds, then you need to start two servers, each listening on a
unique TCP/IP port for each type.

The Remote Build server performs the following tasks:
* Receives build requests and files.

* Performs character conversions.

* Runs builds within its environment.

* Optionally collects and returns results to the client.
In z/0S, the server load module CCUBLDS receives client build requests.

CCUBLDS triggers the JCL member CCUMVS, which executes the CCUBLDW
module. CCUBLDW processes your build scripts.

IBM Enterprise Developer Server Guide for z/OS

Remicde Build Chenl

TCRAP

CCURLIMA

Chilil Prowess

Figure 11. Processing a z/OS Build Request

b IBMs HACE
N=ezr W Walidation |

.....................................

TCPIP
SCSSM0N

[Seript |
I:lprmﬂﬂﬂinﬂj

"'.. -~

i

For USS operations, the server load module CCUMAIN and CCUBLDS run in
z/0S. CCUBLDS triggers the JCL member CCUUSS, which starts the USS shell
script ccubldw. The ccubldw script starts the executable ccubldw, which processes

build requests.

Chapter 10. z/OS Builds 75

CCUMAIN <} = IBM'=s RACF
lacr 1D YWalidation

4
’—‘1_,~ CCUBLDS

TCPIP

Remote Build Client I
CCISS

L L

MVS

Hs%s TCPAP
Session

ccubldw.sh

}

CCOUBLDW

Child Process

e

(Script Eb
Processing

Figure 12. Processing a USS Build Request

Starting a z/0S Build Server

The z/OS build server, CCUBLDS, is an z/OS load module that you can run as a
batch program.

76 IBM Enterprise Developer Server Guide for z/OS

//CCUBLDS JOB (ACCT#),'TEST',REGION=0M,
// CLASS=0,MSGCLASS=T

//* PROGRAM:
//* JCL to start CCU z/0S Build Server

/1%

CCURUN

//* COPYRIGHT: Copyright (C) International Business
Corp. 2001

/1%
/1%

//* DISCLAIMER OF WARRANTIES:

//* The following enclosed code is sample code created
//* by IBM Corporation. This sample code is not part
//* any standard product and is provided to you solely
//* for the purpose of assisting you in the development
//* of your applications. The code is provide "AS IS",
//* without warranty of any kind. IBM shall not be

//* Tliable for any damages arising out of your use

//* of the sample code
Sy
//* Some dataset names may need to be modified

//* according to your system's customization

//RUNPGM
// -p 4112
//STEPLIB
//CCUNJCL
//STDOUT
//STDERR
//CCUBLOG
//

EXEC PGM=CCUMAIN,DYNAMNBR=30,REGION=7400K, TIME=NOLIMIT,
2 -n3-q20-T20

DSN=CUST.UCCBLD. LOAD,DISP=SHR
DISP=SHR,DSN=CUST.UCCBLD.JCL(CCUMVS)

-a
DD
DD
DD
DD
DD

SYSOUT=+
SYSOUT=*
SYSOUT=+

Figure 13. An example of the JCL needed to start the build server for z0OS

The CCUBLDS job initiates a new job for each build transaction. The sample JCL for
that job is in member CCUMVS.JCL of the installation data set whose low-level
qualifier is SCCUSAMP. The server is multi-threaded, so these jobs run
concurrently and are independent of each other. The number of concurrent jobs
running at any one time is limited by system resources (such as initiators).

The server receives commands and files, performs character conversions, sets up
the environment, runs builds within this environment, collects the results and
returns the results.

See the program directory for Enterprise Developer Server for additional
information on customizing the CCURUN, CCURUNU, CCUMYVS, and CCUUSS
JCL and the ccubldw.sh script.

If you start the server on z/OS from an APF-authorized library (this is required in
modes 1 and 2 but is optional in mode 0), the server state is authorized ("A”) and
the build script can specify an APF authorized program as the executable.

For additional information about installing code in an APF-authorized library to
allow users to run builds under the authority of the person making a build
request, refer to the EGL program directory.

Note: In this case, the build script can also specify non-APF authorized programs.

However, in a multistep JCL script, an authorized program cannot be
executed after an unauthorized program.

Chapter 10. z/OS Builds 77

78

If the server is not started from an APF-authorized library, the server state is not
authorized ("U’) and the build script can specify only non-APF authorized
programs as executables.

You start a build server by using z/OS JCL commands. The syntax for the
parameters line is as follows:

Syntax: // PARM= '-p <portno> [-V ...] [-a {2]|1|0} [-n <n>] [-q <gq>] [-t] [-T <n>]'

where:

—-p Specifies the port number (portno) to which the server listens to
communicate with the clients.

-V Specifies the verbosity level of the server. You may specify this parameter up
to three times (maximum verbosity).

For example, to increase the verbosity to the maximum, you specify -V -V
-V

—-a Specifies the authentication mode of the CCUBLDS server. The server state is
either A’ (APF authorized) or "U’ (not APF authorized).

2 Server state: A. The user submitting the build request must specify a valid
user ID and password when the user initiates a build by using the remote
build client. The server performs the build transaction under the access
and authority of this user ID. Mode 2 is the default.

1 Server state: A. The user submitting the build request can provide a valid
user ID and password. The server performs the build transaction under
the access and authority of this user. If the user does not provide a user
ID and password, the build transaction is performed under the access and
authority of the user ID assigned to the build server job.

0 Server state: A or U. If U, APF-authorized build programs will fail. If the
user submitting the build request specifies a TSO user ID and password,
the server ignores them and the build transaction is performed under the
access and authority of the user ID assigned to the build server job.

You can use modes 1 and 2 only if the server load modules are run from an
APF-authorized library.

Note: For additional information about installing code in an APF-authorized
library to allow users to run builds under the authority of their userid,
see the program directory for Enterprise Developer Server.

-n Specifies the number of concurrent builds. The default is 1. Set n equal to the
number of concurrent builds you want to allow. Once there are n number of
concurrent builds running, the build server queues any additional requests
and submits them on a first come first served basis as builds are completed.

—q Specifies the size of the queue (q) for clients. The default is 10. Each queued
client uses a TCP/IP socket. Therefore setting this too high may require more
sockets than are available, causing unpredictable results. If the queue is full,
subsequent clients are rejected by the server. However, the build client
automatically retries the build in that case.

-t Starts tracing of this server job and writes output to STDOUT. This parameter
is normally used only for debugging.

-T Specifies the number of minutes the build server will wait for a started child
process (CCUBLDW) to complete. If the system is overloaded, increase this
value. The default is 5.

IBM Enterprise Developer Server Guide for z/OS

Note: See the program directory for Enterprise Developer Server for information
about modifying the JCL necessary to start the USS and z/OS build servers

Starting a USS Build Server

You start the USS build server the same way you start the z/OS build server,
except with a different dataset allocated by DD name CCUW]JCL. This difference is
reflected in the CCURUN and CCURUNU JCL customized at installation. The
sample JCL CCURUNU needs to be modified just as CCURUN.

The CCUW]JCL DD name uses the JCL member CCUUSS. As found in the
installation data set whose low-level qualifier is SCCUSAMP, that member acts as a
template in submitting build requests to USS using the BPXBATCH utility to
submit the USS shell script ccubldw.sh.

The build server creates temporary datasets and directories in the directory where
the program is initiated. It is important that the ID that starts the server has the
appropriate authority to create these datasets and directories otherwise the server
will not initiate properly and all transactions will fail.

Stopping servers

To stop an z/OS server, cancel the job that was used to start it.

Configuring a build server

To configure a build server, you must modify members of the installation data set
whose low-level qualifier is SCCUSAMP. Those members contain JCL and are
named as follows:

* CCUMVS (for z/OS builds)

» CCUUSS (for USS builds)

Note: See the program directory for Enterprise Developer Server for information
about configuring the USS and z/OS build servers.

Working with Build Scripts

There is a fundamental difference between build scripts on z/OS and build scripts
on USS. Build scripts on z/OS must be text files and must be written in
Pseudo-JCL. On USS, you can use any executable file as a build script and the file
can be either text or binary.

Working with z/OS Build Scripts

The build script processed by the z/OS server is always a text file written in
Pseudo-JCL. It is specified in one of two ways. If the build script is not specified as
part of the build command, then the server looks for it as a member of the PDS
specified by the ddname CCUPROC for the server job. This PDS must be of
RECFM=FB, LRECL=80.

The build script is parsed by the server. From the parsed results, the server
allocates the specified ddnames and data sets; it then executes the programs

dynamically.

On z/0S, the server also uses the JCL to determine where to store the files
involved in an z/OS build.

Chapter 10. z/OS Builds 79

80

EGL uses and Enterprise Developer Server provides build scripts in the PDS
specified by DD name CCUPROC in the CCUMVS JCL. These build scripts are the
defaults specified in the EGL generated build plans. The member names are
FDABCL, FDABIND, FDACL, FDALINK, FDAPCL, FDAPTCL, FDATCL, and
FDAMES.

These must be members in the PDS specified in the CCUPROC DD card in the JCL
used to invoke a build request (see the previous section). The members provide the
following functions:

FDABCL
Compile and link EGL-generated z/OS batch programs
FDABIND
Bind generated programs that contain DB2 statements
FDACL
Compile and link of generated COBOL programs that do not contain CICS
commands
FDALINK
Link of generated format module.
FDAMFS
Invocation of MFS utilities to prepare MFS source for execution in IMS/VS.
FDAPCL

DB2 precompile, compile, and link of generated z/OS batch programs that
contain DB2 statements.

FDAPTCL
DB2 precompile, CICS translation, compile, and link of generated CICS
COBOL programs that contain DB2 statements.

FDATCL
CICS translation, compile, and link of generated CICS COBOL programs
that do not contain DB2 statements.

To override the default build scripts, use the symbolic parameter
DISTBUILD_BUILD_SCRIPT. To identify the PDS from which to access build
scripts at build time, specify the PDS name in the symbolic parameter
BUILD_SCRIPT_LIBRARY.

See the EGL helps for more information on how to use symbolic parameters
during generation.

Writing a JCL build script

JCL build scripts must be written using Pseudo-JCL. The best starting point for a
JCL build script is an existing JCL fragment that is used for transforming inputs
into outputs. For example, suppose you want to create a build script that compiles
a Cobol source file into an OBJECT file using a z/OS compiler. You probably
already have JCL that can be submitted as a batch job that does this.

When you create a build script for the z/OS environment, you specify Pseudo-JCL
statements, as described in these EGL help topics:

* Pseudo-JCL syntax

* Pseudo-JCL substitution variables

* Setting and including pseudo-JCL substitution variables
* Predefined pseudo-JCL substitution variables

IBM Enterprise Developer Server Guide for z/OS

For more information about JCL syntax, refer to the JCL User’s Guide and JCL
Reference for your version of z/OS.

File Name Conversions for z/OS
Workstation file names are modified by the z/OS server according to the following
rules:

* The directory path of a file name is not used. The end of a directory path of a
file name is specified by a slash or left parenthesis ("/", "(", or "\"). All
characters of a file name up to and including the rightmost slash or left
parenthesis are discarded.

* Lowercase characters are converted to uppercase characters.

* The file extension is stripped from the right, up to and including the separating
period. The extension, minus the period, is used by the z/OS server to direct the
file to particular data sets according to user-specified syntax in the JCL build
scripts.

* The remaining name is truncated from the left, to a maximum of 8 characters.

¢ Names must contain characters that are valid in z/OS. z/OS allows the
following characters:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$@#
However, the name must begin with an alphabetic character.
* Underscore characters (_) in a file name are converted to at signs (@).

The following are examples of how a workstation name is converted:
* A file name of src\build\thbldobj.CBL is converted to FHBLDOB] on z/OS.
* A file name of src/build/fhbtruncate.cbl is converted to FHBTRUNC on z/OS.

In both of these examples, the .CBL or .cbl is split away. The z/OS server uses the
resulting extension to resolve and possibly allocate the z/OS data sets needed for
the build process. The extensions are required for files that participate in an z/OS
build.

Converting JCL to Pseudo-JCL
The following is a JCL procedure for an z/OS compile and link:

//**

//* JCL Procedure - COBOL COMPILE AND LINK-EDIT

//**

/1%

//ELACL PROC CGHLQ='USER',

// COBCOMP="SYS1.IGY.SIGYCOMP',

// COBLIB="'SYS1.SCEELKED',

// ELA="VGEN.HS.V1R2MO",

// DATA='31",

// ENV="'Z0SCICS',

// MBR=PGMA,

// RESLIB='SYS1.RESLIB',

// RGN=1024K,

// SOUT="x",

// WSPC=500 |,

/1%

//* PARAMETERS:

/] CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER
/1% COBCOMP = COBOL COMPILER LIBRARY

/1% COBLIB = LE RUN TIME LIBRARY

//* ELA = EGL HIGH LEVEL QUALIFIER

/1* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE
/1/* ABOVE 16M LINE

/1% ENV = COBOL GENERATION USER DATA SET ENVIRONMENT QUALIFIER

Chapter 10. z/OS Builds 81

82

//* (SHOULD BE EQUAL TO GENERATION TARGET ENVIRONMENT)
/1% MBR SOURCE NAME

/% RESLIB = IMS RESLIB LIBRARY

/% RGN = REGION SIZE

/% SOUT = SYSOUT ASSIGNMENT

/] WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION

//*
//‘k‘k*"k***‘k‘k*‘k‘k***‘k*‘k‘k*****‘k‘k***‘k*‘k‘k*"k****‘k*‘k‘k*"k‘k‘k*‘k‘k**‘k‘k*‘k‘k**‘k‘k*‘k‘k*‘k‘k***
/% COMPILE THE COBOL PROGRAM
//**
/1%

//C EXEC PGM=IGYCRCTL,REGION=&RGN,

/] PARM= (NOSEQ,QUOTE ,OFFSET, LIB,RENT,NODYNAM, DBCS, OPT,

/] 'TRUNC (BIN) ', 'NUMPROC (NOPFD) ' ,NOCMPR2, ' DATA (&DATA) ')

//STEPLIB DD DISP=SHR,DSN=&COBCOMP

//SYSIN DD DISP=SHR,DSN=&CGHLQ..&ENV..EZESRC(&MBR)
//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY

//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=VIO,

// SPACE=(800, (8&WSPC,&WSPC))

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUT1 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT2 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT3 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT4 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT5 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT6 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT7 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO

/1%

[] FHFkk ke ke kk ke kK rxIhhhhhhhkkrhhh kKK ko, kKK I I IR KRKhhhhhkr*hh kKK * ok *kkxx IR hKhK
/1% LINK-EDIT THE COBOL PROGRAM

/1% IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS

R R R R R A T R ST
/1%

//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,

// PARM="'RENT,REUS,LIST,XREF,MAP,AMODE (31) ,RMODE (ANY) '

//SYSLIB DD DISP=SHR,DSN=&COBLIB

// DD DISP=SHR,DSN=&RESLIB

//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD

//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET

// DD DDNAME=SYSIN

//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&ENV..LOAD(&MBR)
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUT1 DD SPACE=(1024, (&WSPC,&WSPC)),UNIT=VIO

The first step in converting the JCL fragment is to recognize the intent for each of
the data sets and ddnames. For this Cobol compiler example, the SYSIN ddname
needs to be associated with the source file, the SYSLIN ddname needs to be
associated with the object file, and so on.

In each of these cases, the build script must tell the server where to pick up the
input files before the execution of the specified program (PGM=IGYCRCTL) and
where to put the output files after the execution of the specified program.

Assume that your source files have the extension cbl. You allocate a data set to the
SYSIN ddname to contain a source file with a .cbl extension. You specify the DCB,
UNIT, DISP, and SPACE attributes to dynamically create this data set every time
this build script is invoked. You add CCUEXECBL to indicate that the file content
comes from an input file with an extension of .cbl.

IBM Enterprise Developer Server Guide for z/OS

You specify the output messages that will be returned by using the CCUOUT

attribute. This attribute tells the z/OS server to return the information in the data

set associated with the CCUEXT=CCUOUT attribute.

The following JCL build script is the result of converting the JCL procedure.

//**

//* BUILD SCRIPT - COBOL COMPILE AND LINK-EDIT

//**

/1%

//DEFAULTS VARS CGHLQ=USER,

// COBCOMP=SYS1.IGY.V3RIMO.SIGYCOMP,

// COBLIB=SYS1.SCEELKED,

// COBLISTPARMS=0FFSET&COMMA .NOLIST&COMMA . MAP,
// ELA=EDS.V5R2MO,

// DATA=31,

// SYSTEM=Z0SCICS,

// MBR=PGMA,

// RGN=4096K

// CCUEXTC=CCUOUT,

// CCUEXTL=CCUOUT,

// SOUT=*,

// DBCS=&COMMA.DBCS

// WSPC=2500

/1%

//* PARAMETERS:

/1% CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER

/1* COBCOMP COBOL COMPILER LIBRARY
/1% COBLIB = LE RUN TIME LIBRARY
/1* COBLISTPARMS = LISTING OPTIONS FOR COBOL COMPILER

/1% ELA = VISUALAGE GENERATOR SERVER HIGH LEVEL QUALIFIER
/1* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE

/1* ABOVE 16M LINE

/1% DBCS = COMPILE OPTION FOR INDICATING SOURCE CONTAINS DBCS
/1* CHARACTERS

/1% SYSTEM = SYSTEM GENERATING FOR. USED AS USER DATASET MIDDLE
/1* QUALIFIER

/1% MBR = SOURCE NAME

/1 RGN = REGION SIZE

/1% CCUEXTC = CCUEXT VALUE FOR COMPILE PRINTOUTS RETURNED TO

/1% CLIENT.

/1* CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME
/1% CCUSTD=RETURN TO CLIENT AS STANDARD OUT

/1* CCUERR=RETURN TO CLIENT AS STANDARD ERROR

/1% CCUEXTL = CCUEXT VALUE FOR LINK PRINTOUTS RETURNED TO CLIENT
/1* CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME
/1* CCUSTD=RETURN TO CLIENT AS STANDARD OUT

/1% CCUERR=RETURN TO CLIENT AS STANDARD ERROR

/1* SouT = SYSOUT ASSIGNMENT IF A SYSOUT FILE NOT RETURNED
/1% TO CLIENT

/1* WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION

/1%
//**
/1* COMPILE THE COBOL PROGRAM
//**
/1%

//C EXEC PGM=IGYCRCTL,REGION=&RGN,

// PARM="NOSEQ,QUOTE,LIB,RENT,NODYNAM, OPT&DBCS,

// TRUNC (BIN) , NUMPROC (NOPFD) , &COBLISTPARMS. ,DATA (&DATA) '

//STEPLIB DD DISP=SHR,DSN=&COBCOMP

//+ COBOL SOURCE CODE UPLOADED FROM CLIENT (&MBR.CBL)

//SYSIN DD CCUEXT=CBL,DISP=(NEW,DELETE),

// UNIT=SYSDA,SPACE=(TRK, (10,10)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY

//SYSLIN DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..OBJECT (&MBR) ,ENQ=YES
//* RETURN COMPILER LISTING TO CLIENT AS FILE &PREFIX.C.SYSPRINT

Chapter 10. z/OS Builds

83

//SYSPRINT DD CCUEXT=&CCUEXTC,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(CYL,(5,5)),

// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)

//* UNIT=VIO,SPACE=(TRK,(30,10)),

//SYSUT1 DD SPACE=(800, (&WSPC,&WSPC), , ,ROUND) ,UNIT=VIO
//SYSUT2 DD SPACE=(800, (&WSPC,&WSPC), , ,ROUND) ,UNIT=VIO
//SYSUT3 DD SPACE=(800, (&WSPC,&WSPC), , ,ROUND) ,UNIT=VIO
//SYSUT4 DD SPACE=(800, (&WSPC,&WSPC), , ,ROUND) ,UNIT=VIO
//SYSUT5 DD SPACE=(800, (&WSPC,&WSPC), , ,ROUND) ,UNIT=VIO
//SYSUT6 DD SPACE=(800, (&WSPC,&WSPC), , ,ROUND) ,UNIT=VIO
//SYSUT7 DD SPACE=(800, (&WSPC,&WSPC), , ,ROUND) ,UNIT=VIO

/1%
R R R e T Y
/% LINK-EDIT THE COBOL PROGRAM

//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS

[] FHFk ke d kR *k kK I I IR hKhhh IR I I h* Kk kK H % kKK xR I I IR KR hh IR AR I**K* KK H % *kkxx IR K*KhK
/1%

//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,

// PARM="'RENT,REUS,LIST,XREF,MAP,AMODE (&DATA) , RMODE (ANY) '

//SYSLIB DD DISP=SHR,DSN=8COBLIB

//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD

//OBJLIB DD DISP=SHR,DSN=8CGHLQ..&SYSTEM. .0BJECT

//* LINK EDIT CONTROL FILE UPLOADED FROM CLIENT (&MBR.LED)
//SYSLIN DD CCUEXT=LED,DISP=(NEW,DELETE),

// UNIT=SYSDA,SPACE=(TRK, (10,10)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSLMOD DD DISP=SHR,DSN=8CGHLQ..&SYSTEM. .LOAD (&MBR) , ENQ=YES
//* RETURN LINK EDIT LISTING TO CLIENT AS FILE &PREFIX.L.SYSPRINT
//SYSPRINT DD CCUEXT=&CCUEXTL,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(TRK, (30,10)),

// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)

//SYSUT1 DD SPACE=(1024, (8WSPC,&WSPC)),UNIT=VIO

//

84 1BM Enterprise Developer Server Guide for z/OS

Chapter 11. Preparing and Running a Generated Program in
CICS

This chapter describes the unique steps required to prepare and run a generated
COBOL program in an CICS environment:

* Modifying CICS startup JCL

* Making new modules available

* Making programs resident

* Running programs

Modifying CICS Resource Tables

The CICS environment uses resource definitions to identify startup parameters,
transactions, programes, files, databases, transient data destinations, and system
locations for proper operation. You must add to or modify these resource
definitions to correctly identify all objects to be used in the new or changed
program. When using CICS tables, the tables are compiled as assembler programs
and stored in a run-time library. Some tables can also be maintained through an
online facility as described in the resource definition online manual for your
version of CICS. CICS requires that the online facility be used in place of
processing program table (PPT) and program control table (PCT) entries.

Refer to the CICS resource definitions guide for additional information on
providing definitions.

You can either write your own PPT, PCT, or RDO program and transaction entries
or use the ones generated by Enterprise Developer. You must handle DCT, FCT,
and RCT entries yourself.

Program Entries (PPT)

The entries in the PPT define programs to CICS. The EGL COBOL generation
process creates programs that must be defined, as a resource definition online
(RDO) PROGRAM entry or by using dynamic program entries.

An entry is required for each Enterprise Developer generated program. You can
request that sample PPT or RDO entries be generated for you by specifying the
cicsEntries build descriptor option at generation.

Either the batch program DFHCSDUP utility or the resource definition online
(RDO) CEDA DEFINE PROGRAM command can be used to define the server
program to CICS.

If you specify cicsEntries=RDO, CICS RDO DEFINE PROGRAM commands are
generated for you for each program that requires an RDO PROGRAM entry. The
preparation command created during generation copies the RDO command files to
the z/OS library specified at generation.

The following examples show how to define the same entries using the RDO
CEDA transaction DEFINE PROGRAM command.

CEDA DEF PROG(progname) L(LE370) REL(NO) RES(NO) S(ENABLED) GROUP(xxxx)

© Copyright IBM Corp. 1994, 2005 85

86

The values shown for REL, RES, and S keywords are the default values and can be
omitted from the command. RES(YES) might provide better performance for
frequently used programs.

Transaction Entries (PCT)

A CICS transaction entry contains the control information used by CICS for
identifying and initializing a transaction. This entry is required by CICS to verify
incoming requests to start transactions, and to supply information about the
transaction such as the transaction priority, the security key, and the length of the
transaction work area (TWA).

A CICS RDO TRANSACTION entry is required for each transaction code used to
start a Enterprise Developer generated program.

EGL generated programs can be started by a remote procedure call from some
remote system. The CICS support mirror program DFHMIRS, normally invoked by
the CPMI transaction is used during this remote procedure call. It:

1. Determines which server program should be given control

2. Builds the COMMAREA

3. Links to the defined server program via CICS LINK

CPMLI is the CICS supplied default transaction code to invoke the CICS mirror
program DFHMIRS. When using CPMI to start EGL programs, you must change
the transaction definition for CPMI to specify a TWASIZE of at least 1024 bytes.

To avoid making changes to the CPMI definition in the CICS supplied group, it is
recommended that you copy the CICS supplied CPMI definitions to a new group
or create a unique transaction ID with the same characteristics as CPMI. The new
transaction or copy of CPMI should be changed and verified to ensure the
following values are set.

1. The twasize is 1024
2. The profile is DFHCICSA (CICS default would be DFHCICST (T for terminal))
3. The program invoked is DFHMIRS

Example:
DEFINE TRANSACTION(MYMI) PROGRAM(DFHMIRS) TWASIZE(1024) PROFILE(DFHCICSA)

Destination Control Table Entries (DCT)

A CICS destination control table (DCT) entry is required for each program file that
is assigned to a transient data queue. A DCT entry is also required for destinations
specified as error destination queue names using the Enterprise Developer Server
diagnostic controller utility. The parameters for DCT entries depend on your
destination type. There are intrapartition, extrapartition, indirect, and remote
destinations. See|“Using and Allocating Data Files in CICS” on page 36| for
information about defining and managing program data files and .“Defininé
[Transient Data Queues” on page 3§ for information about defining the DCT entry
for the error destination queue. Refer to appropriate CICS manuals for more
information on DCT entries.

To provide these definitions as RDO entries, see the CICS resource definition
guide.

IBM Enterprise Developer Server Guide for z/OS

File Control Table Entries (FCT)
A CICS file control table (FCT) entry is required for each program file that is

specified as file type VSAM. You must identify all FCT entries that might be
referenced at run time. Files can also be defined using RDO. See
|Allocating Data Files in CICS” on page 36 for more information on defining and
managing program data files in the CICS environment.

Resource Control Table Entry (RCT)

If the programs running under a transaction access DB2 databases, then you must
define an entry in the CICS resource control table (RCT) that associates the
transaction identifier with the program plan name.

The following example shows the minimum RCT entry required: Index text:
sample JCL, RCT entry

DSNCRCT TYPE=ENTRY TXID=tran PLAN=plan-name

For more information on the other parameters you can specify when you define
RCT entries, refer to the chapter on connecting the CICS attachment facility in the
DB2 installation manual for your version of DB2.

To provide these definitions as RDO entries, see the CICS resource definition
guide.

Using Remote Programs, Transactions, or Files

Refer to the appropriate CICS manuals for information about defining remote
programs, transactions, or files.

Modifying CICS Startup JCL

You must include the load library where your generated programs reside in the
DFHRPL DD concatenation. Your system administrator included the LE run-time
libraries and the Enterprise Developer Server load library in the DFHRPL DD
concatenation when the Enterprise Developer Server product was installed.

The CICS startup JCL might need to be modified to add or change allocations for
files used by EGL-generated programs. These include VSAM files and
extrapartition transient data destinations.

For VSAM data sets, it is not necessary to include allocations in the startup JCL if
you specify the data set name and disposition in the CICS FCT or RDO entry for
the file. CICS dynamically allocates the file at open time.

Making New Modules Available in the CICS Environment

After you generate a new version of a program, you need to make the modules
available to CICS.

For programs, you can use the CICS NEWCOPY command or the Enterprise
Developer Server new copy utility to cause the new copy of the program to be
used the next time a load request is issued for the program.

For more information on the Enterprise Developer Server new copy utility, see
[“New Copy” on page 112

Chapter 11. Preparing and Running a Generated Program in CICS 87

Making Programs Resident

You can make frequently used programs or programs with high performance
requirements resident to avoid the overhead of loading the programs when they
are used. To aid in deciding which programs should be made resident, you can use
CICS shutdown statistics to determine how often a generated program is loaded in
a CICS region.

To make a program resident, specify the program as resident in the RDO entry for
the program.

Running Programs under CICS

88

Called programs can be started by another Enterprise Developer program, by a
non-Enterprise Developer program, or through the remote CICS services.

Prior to running a generated program, the program user might be required to sign
on to the CICS environment. Refer to CICS documentation for information about
signing on.

Controlling Diagnostic Information in the CICS Environment

Enterprise Developer Server provides a diagnostic controller utility for the CICS
environment. This utility allows you to control the type of dump, the name of the
error destination queue and journal number for error messages, and whether the
transaction is disabled when a run unit error occurs. See [Chapter 17, “Diagnostic|
[Control Options,” on page 117|for more information about the diagnostic controller
utility.

Printing Diagnostic Messages in the CICS Environment

Enterprise Developer Server provides a way to print diagnostic messages written
to a transient data queue. See [“Diagnostic Message Printing Utility” on page 114|
for more information.

IBM Enterprise Developer Server Guide for z/OS

Chapter 12. Preparing and Running Generated Programs in
z/OS Batch

This chapter describes the unique steps required to prepare a generated COBOL
program to run in a z/OS batch environment:

* Running main programs

* Examples of runtime JCL

¢ Recovery and restart

For general information on preparing your program for the runtime environment,
see [Chapter 9, “Output of Program Generation on z/OS Systems.”| For information
on modifying the JCL, see|Chapter 13, “Creating or Modifying Run-time JCL on|
z/OS Systems.”]|

Running Main Programs under z/OS Batch

A main batch program generated for the z/OS batch environment can be started
by submitting JCL. Called programs can only be started by another Enterprise
Developer program or by a non-Enterprise Developer program.

The EGL COBOL generation process creates sample runtime JCL for running
programs in the z/OS batch environment. The generated JCL has same name as
the program. If you set the genRunFile build descriptor option to "YES", a sample
JCL is created specifically for the program during program generation. The runtime
JCL is transferred to a z/OS partitioned data set (PDS) by the Enterprise Developer
prepare function.

The JCL might need to be modified to add data sets required by called or
transferred-to programs. You also need to modify the JCL to add any data sets that
are dynamically allocated with the EZEDEST or EZEDESTP special function words.
See [Chapter 13, “Creating or Modifying Run-time JCL on z/OS Systems,” on pagd
for more information on modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the generation listing for the
programs involved for any error messages related to JCL generation. In addition,
ensure the tailoring that was done for the JCL templates is correct. Also check any
changes you made when you customized the sample runtime JCL.

The following sections show JCL for different z/OS batch programs.

Examples of Runtime JCL for z/0S Batch Programs

The generated JCL in the following examples has these characteristics:

e The examples are based on the JCL templates shipped with Enterprise
Developer. Your actual JCL templates might differ if your system administrator
has tailored them for your organization. Refer to the online helps for more
information about tailoring JCL templates.

* Lowercase text appears in the examples where a generic example name has been
substituted for an actual program or data set name.

e EZEPRINT is always routed to SYSOUT=*.

© Copyright IBM Corp. 1994, 2005 89

If you route EZEPRINT to a data set, you must use the following DCB
attributes:

- LRECL=137, BLKSIZE=141, RECFM=VBA if the map group does not contain
any DBCS maps

— LRECL=654, BLKSIZE=658, RECFM=VBA if the map group contains any
DBCS maps

You cannot use map groups that do not have any DBCS maps with map groups
that do have DBCS maps in a same job step.

Running a Main Batch Program with No Database Access
shows the JCL used to start a main batch program.

//jobname JOB ,MSGCLASS=A

//stepnam EXEC PGM=appl-name

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2MO.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR
//ELAPRINT DD SYSOUT=x,DCB=(RECFM=FBA,BLKSIZE=1330)
//ELASNAP DD SYSOUT=+,DCB=(RECFM=VBA,BLKSIZE=4096)
//EZEPRINT DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//SYSABOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//* Application specific DD statements
[/file-name-1 DD ...vviinnniinniiiiiiieneennnnn.
//file-name-n DDivvunnnineennnnnneneennnnns

Figure 14. JCL for Main Batch Program Run as z/OS Batch without DB2 or DL/I Access

Running a Main Batch Program with DB2 Access

shows the JCL used to start a main batch program that gains access to
DB2 resources. The JCL must run the z/OS TSO terminal monitor program to run
the generated program.

//jobname JOB USER=userid,........
//stepname EXEC PGM=IKJEFTO1,DYNAMNBR=20,REGION=4M
//STEPLIB DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V1R2MO.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR

//ELAPRINT DD SYSOUT=x,DCB=(RECFM=FBA,BLKSIZE=1330)
//ELASNAP DD SYSOUT=+,DCB=(RECFM=VBA,BLKSIZE=4096)
//EZEPRINT DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//SYSABOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSTSIN DD =*

DSN SYSTEM (ssid)

RUN PROG (appl-name) PLAN (plan-name) -

LIB ('cghlg.env.LOAD')

END
/*
//SYSTSPRT DD SYSOUT=*
//* Application specific DD statements
//file-name-1 DD ..vvvrnnineneennnnnnneeennnnnnnn
//file-name-n DD ..uiitiiiininiiii i

Figure 15. JCL for Main Batch Program Run as z/OS Batch with DB2 Access

Running Main Batch Program with DL/I Access

If a main batch program runs as a DL/I batch program, then all DL/I requests are
handled by a private IMS region. The JCL for the step that runs the batch program

90 1BM Enterprise Developer Server Guide for z/OS

must include DD statements for the IMS log if databases are opened with update
intent or if the program uses the Enterprise Developer CALL AUDIT service
routine. Also, a DD statement must be included for each of the data sets associated
with the DL/I databases referenced in the IMS PSB. The IMS log DD statements
(IEFRDER and IEFRDER?) are normally included in the DLIBATCH procedure.

Enterprise Developer uses the JCL template FDA2MDLI to build the DD
statements for program databases. This template has the DD statement commented
out because the high-level program database qualifiers are not collected by
Enterprise Developer. You need to provide the final tailoring of these DD
statements in the sample runtime JCL. Alternatively, depending on your naming
conventions, your administrator might be able to modify the FDA2MDLI template
so that you can use the symbolicParameter build descriptor option to set
high-level qualifiers for databases. Refer to the online helps for information about
modifying templates and using the symbolicParameter build descriptor option.

shows the sample JCL used to run a generated program as a DL/I batch
program.

//jobname JOBiiiiiiiiiinnnnn
//stepname EXEC DLIBATCH,DBRC=Y,

// MBR=app1-name,PSB=ims-psb-name,BKO=Y, IRLM=N
//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2MO.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH
//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION
//G.DFSVSAMP DD DSN=ELA.V1R2MO.ELASAMP (ELAVSAMP) ,DISP=SHR
//G.ELAPRINT DD SYSOUT=x,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=+

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements including DL/I DB DD statements
//file-name-1 DD ..vvvvrrnenneennnnnneeeennnnns

//file-name-n DDiiinirinnnennnnennannnnnnn

Figure 16. JCL for Main Batch Program Run as z/OS Batch with DL/I Access

Running a Main Batch Program with DB2 and DL/l Access

[Figure 17 on page 92| shows the JCL that enables a program to run as a stand-alone
DL/I batch processing program and to gain access to DB2 databases. Special
recovery considerations are required. Refer to the DB2 documentation for your
system for additional information.

The JCL for the step that runs the batch program must include DD statements for
the IMS log if databases are opened with update intent or if the program uses the
Enterprise Developer CALL AUDIT service routine. Also, a DD statement must be
included for each of the data sets associated with the DL/I databases referenced in
the IMS PSB. The IMS log DD statements (IEFRDER and IEFRDER2) are normally
included in the DLIBATCH procedure.

Enterprise Developer uses the JCL template FDA2MDLI to build the DD
statements for DL/I program databases. This template has the DD statement
commented out because the high-level program database qualifiers are not
collected by Enterprise Developer. You need to provide the final tailoring of these
DD statements in the sample runtime JCL. Alternatively, depending on your

Chapter 12. Preparing and Running Generated Programs in z/OS Batch 91

naming conventions, your administrator might be able to modify the FDA2MDLI
template so that you can use the symbolicParameter build descriptor option to set
high-level qualifiers for databases. Refer to the online helps for information about
modifying templates and using the symbolicParameter build descriptor option.

//jobname JOB ...ttt
//stepname EXEC DLIBATCH,DBRC=Y,

// MBR=DSNMTVO1,PSB=ims-psb-name,BKO=Y, IRLM=N
//G.STEPLIB DD

// DD

// DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.VIR2MO.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH
//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION
//G.DFSVSAMP DD DSN=ELA.V1R2MO.ELASAMP (ELAVSAMP) ,DISP=SHR

/*

//G.DDOTVO2 DD DSN=8&TEMP1,

// DISP=(NEW,PASS,DELETE),

// SPACE=(CYL,(1,1),RLSE),UNIT=SYSDA,

// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)

//G.DDITVO2 DD =

ssid,SYS1,DSNMIN1O,,R,-,connection name,plan-name,appl-name
/*
//G.ELAPRINT DD SYSOUT=x,DCB=(RECFM=FBA,BLKSIZE=1330)
//G.ELASNAP DD SYSOUT=+,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*
//G.SYSOUT DD SYSOUT=+
//* Application specific DD statements including DL/I DB DD statements
J/fiTe-name-1 DD tuuvrvrrneinenennennennennennns
//file-name-2 DD ..vuvrrrnieeiieneeennennaanns
/1%
//* Attempt to print out the DDOTVO2 data set created in previous step
//stepnam2 EXEC PGM=DFSERA10,COND=EVEN
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=+
//SYSUT1 DD DSNAME=&&TEMP1,
// DISP=(OLD,DELETE)
//SYSIN DD *
CONTROL CNTL K=000,H=8000
OPTION PRINT
/*

Figure 17. JCL for Main Batch Program Run as z/OS Batch with DB2 and DL/I Access

Recovery and Restart for Batch Programs

92

For z/OS batch programs that use DL/I, the generated runtime JCL includes the
parameter BKO=Y. If the program updates databases or files, specify BKO=Y in the
runtime JCL in order to have rollback (ROLB) requests honored. If you specify
BKO=N, DL/I returns status code AL for the roll-back call. Enterprise Developer
Server treats the AL status code as a soft error. No error message is issued, and
processing continues.

You should develop recovery procedures in the event of program or system errors.
Enterprise Developer does not generate JCL to perform restart or recovery
procedures.

IBM Enterprise Developer Server Guide for z/OS

Chapter 13. Creating or Modifying Run-time JCL on z/OS

Systems

This chapter contains the information you need to modify the sample run-time JCL
created during program generation. You might need to modify the run-time JCL
for the following reasons:

* EGL does not include DD statements in the JCL to allocate data sets accessed by
programs called by or transferred to from the generated program.

* The generator does not include DD statements to allocate data sets accessed
when the EGL program moves a value to the record-specific variable
resourceAssociation or to the system variable sysVar.printerAssociation.

¢ The generator does not create any recovery or restart JCL.
* The sample JCL is based on the initial program in the run unit.

You need to ensure that the load libraries containing the initial program and any
dynamically invoked programs are included in the STEPLIB concatenation unless
you are using methods to put the load modules in memory. This includes program
modules that are called dynamically or that receive control by a transfer and
includes print services programs, form group format modules, and data-table
programs.

Tailoring JCL before Generation

EGL creates sample run-time JCL for batch programs. The sample run-time JCL is
based on templates that are installed in the MVSTEMPLATES subdirectory of the
following plugin:

com.ibm.etools.egl.generators.cobol_version

version
The product version; for example, 6.0.0.

You can specify the location of site-specific templates by setting the build
descriptor option templateDir.

Some of the reasons to tailor the JCL templates are as follows:

* Implementing your installation’s data set naming conventions
* Adding DD statements to the STEPLIB concatenation

* Specifying a different DB2 subsystem

The sample JCL is shown in [Chapter 12, “Preparing and Running Generated|
[Programs in z/OS Batch,” on page 89

Table 11. Run-time JCL Templates Based on Environment and Databases

JCL Template Database Environment
FDA2MEBE None z/0S batch
FDA2MEBD DB2 z/0S batch
FDA2MEBA Any, for called program z/0S batch
FDA2MEBB DB2 and DL/I z/0OS batch
FDA2MEBC DL/1 z/0S batch

© Copyright IBM Corp. 1994, 2005 93

Table 11. Run-time JCL Templates Based on Environment and Databases (continued)

JCL Template Database Environment
FDA2MEIA DB2 IMS BMP
FDA2MEIB None IMS BMP

shows the JCL templates that serve as models for DD statement
generation for program-dependent files and databases.

Table 12. Model DD Statement for Program-Dependent Files and Databases

JCL Template Contents

FDA2MSDI QSAM input file

FDA2MSDO QSAM output file

FDA2MVSI VSAM input file

FDA2MVSO VSAM output file

FDA2MGSI GSAM input file

FDA2MGSO GSAM output file

FDA2MIMS GSAM IMS dataset for IMS BMP

FDA2MCAL Comment indicating where to insert DD statements for known

transferred-to and called programs

FDA2MEZA Comment indicating where to insert DD statements for programs
transferred-to using the system variable sysVar.transferName

FDA2MEZD Comment indicating where to insert DD statements for data sets
using the record-specific variable resourceAssociation or the system
variable sysVar.printerAssociation

FDA2MDLI Comment indicating where to insert DD statements for DL/I
databases on z/OS batch

Modifying Run-time JCL

94

The sample run-time JCL for main batch programs contains EXEC statements to
run a program or a cataloged procedure. The JCL for main batch programs does
not include a JOB statement or the DD statements for data sets accessed by called
or transferred-to programs. Before you use the JCL to run the program, you must
do the following:

* Add a JOB statement.

* Insert missing DD statements as required. Comments in the generated JCL
indicate where to insert the DD statements.

The sample run-time JCL for a called program contains only the DD statements
that are required for the called program.

After generation, add the DD statements for any files required by called or
transferred-to programs (including those named with sysVar.transferName) to the
sample JCL for the main program. In addition, you must add DD statements for
any files accessed by moving a value to the record-specific variable
resourceAssociation or to the system variable sysVar.printerAssociation. You do not
need to add DD statements for files that you access dynamically.

IBM Enterprise Developer Server Guide for z/OS

The type of run-time JCL generated for a main batch program varies based on the
types of databases used by the main program. The generated run-time JCL does
not consider the types of databases accessed by called or transferred-to programs.
If the main program does not use relational databases, but it calls or transfers to
programs that use relational databases, you must modify the run-time JCL for the
main program.

For example, consider the following situation:

* Program A is a main batch program that does not use relational databases.
* Program B is main program that accesses relational databases.

¢ Programs A and B are generated for the z/OS batch environment.

e Program A transfers to program B

Because program A does not use DB2, the JCL generated for program A is for a

main batch program without DB2 access (as shown in [Figure 14 on page 90). This

JCL will not run correctly because program B requires DB2 to run. However, the

JCL generated for program B is for an z/OS batch job with DB2 access (as shown

in [Figure 15 on page 90). The run-time JCL for program B can serve as a starting

point for creating the JCL required to run program A. The following changes are

required to the run-time JCL for program B:

¢ Change RUN PROG(APPLB) to RUN PROG(APPLA).

* Add any DD statements for files required by program A or other programs in
the job step.

If program B is a called program and program A calls B rather than transferring to
B, the run-time JCL for program B consists only of DD statements. In this situation,
you need to create your own program JCL. Any one of the following can serve as a
starting point for the JCL:

* The run-time JCL for another main program that accesses relational databases.

You can avoid the modification just described if you include an SQL process option
in the initial main program.

If you get a JCL error for the run-time JCL, check the generation listing for the
programs involved for any error messages related to JCL generation. In addition,
ensure the tailoring that was done for the JCL templates is correct. Also check any
changes you made when you customized the sample run-time JCL.

Chapter 13. Creating or Modifying Run-time JCL on z/OS Systems 95

96 IBM Enterprise Developer Server Guide for z/OS

Chapter 14. Preparing and Running Generated Programs in
IMS/VS and IMS BMP

This chapter describes the steps required to prepare and run a generated COBOL
program in an IMS environment:

* Modify the IMS system definition parameters

* Create the MFS control blocks

* Precompile, compile, link, and bind the generated program

* Make the new modules and MFS control blocks available to IMS

* Create or modify runtime JCL (IMS BMP only)

For general information on preparing programs for the runtime environment, see
(Chapter 9, “Output of Program Generation on z/OS Systems,” on page 65.| For
information about modifying JCL, see|Chapter 13, “Creating or Modifying|
[Run-time JCL on z/OS Systems,” on page 93/

Modifying the IMS System Definition Parameters

The following information describes the basic IMS system definition parameters
that are required to prepare EGL-generated programs. You should review the
performance options described in the IMS documentation for your system to
determine the most effective options.

An IMS TRANSACT macro is required for each transaction code used to start a
Enterprise Developer generated main program in the IMS/VS environment and for
each transaction-oriented BMP program. This includes the following transactions:

 Started from a clear IMS screen
* Used as a sysVar.transactionID

* Used as the target of a transfer statement of the form transfer to a transaction or
sysLib.startTransaction() statement

* Transferred to by a non-Enterprise Developer program

* Started as the result of an add statement that adds a transaction to a message
queue

* Started by other IMS facilities

The TRANSACT macro must follow the APPLCTN macro for the IMS PSB that is
to be used for the transaction.

Defining an Interactive Program

Each main transaction program must be defined as either an IMS message
processing program (MPP) or a fast-path program with an associated transaction
code, except when the program is started through a transfer statement of the form
transfer to a program from another program.

[Figure 18 on page 98| shows the system definition parameters that are required for
defining an interactive Enterprise Developer program.

© Copyright IBM Corp. 1994, 2005 97

APPLCTN PGMTYPE=TP,PSB=ims-psh-name. 1

TRANSACT CODE=trancode, X2
INQUIRY=NO, X3
MODE=SNGL, X
MSGTYPE=(SNGLSEG, RESPONSE) , X4
EDIT=ULC, X5
SPA=(size, [DASD|CORE], [FIXED]) 6

Figure 18. IMS System Definition for an Interactive Transaction

1 The IMS PSB name and the Enterprise Developer program name must
match.
2 Multiple transactions can be associated with one program. If the program

changes the value of sysVar.transactionID before a CONVERSE, include a
TRANSACT macro for the original transaction code and a TRANSACT
macro for the EZESEGTR value.

3 INQUIRY=NO is the default for IMS. If DL/I is used for the work
database, INQUIRY=NO is required. The Enterprise Developer Server work
database supports help maps and displays data again if an input error
occurs, as well as the CONVERSE process option. Therefore, even if the
program databases are inquiry only, INQUIRY=NO is necessary. If DB2 is
used for the work database and the program’s use of all DL/I databases is
inquiry only, then INQUIRY=YES can be used.

4 SNGLSEG is required. Either RESPONSE or NONRESPONSE can be used
with Enterprise Developer Server, depending on whether you want the
keyboard to remain locked until the transaction completes. Even if
NONRESPONSE mode is used, multiple simultaneous transactions from a
single terminal are not supported.

5 Required for input in lowercase.

6 Include this parameter only if an IMS scratch pad area (SPA) is required.
The SPA size is the length of the IMS SPA header (14 bytes) plus the length
of the longest working storage record that might be received or sent during
a transfer statement of the form transfer to a transaction. However, if you
include the spaStatusBytePosition and omit the spaADF build descriptor
options, then you must add an additional byte when calculating the size.
The SPA size must match the number specified for the spaSize build
descriptor option when the program is generated.

You can also include the FPATH=YES parameter on the TRANSACT macro if the
program might be run in an IMS Fast Path (IFP) region. If you include
FPATH=YES, be sure to include the imsFastPath="YES" build descriptor option
when you generate the program. Refer to the IMS manuals for your system for
additional information about using IFP regions.

Defining Parameters for a Batch Program as an MPP

A Enterprise Developer batch program can also run as an asynchronous MPP. For
example, a Enterprise Developer batch program can be used to process the
information inserted to the message queue by a sysLib.startTransaction() statement
or an add statement in another program. This type of program differs from one
that runs as a BMP in that the MPP cannot access any GSAM, indexed, or relative
files, and cannot include any special restart logic. [Figure 19 on page 99 shows the
system definition parameters required for this case.

98 I1BM Enterprise Developer Server Guide for z/OS

APPLCTN PGMTYPE=TP,PSB=ims-psh-name 1
TRANSACT CODE=trancode, X 2
MODE=SNGL

Figure 19. IMS System Definition for an Asynchronous MPP Program

1 The IMS PSB name and the Enterprise Developer program name must
match.
2 Multiple transactions can be associated with one program.

You can also include the FPATH=YES parameter on the TRANSACT macro if the
program might be run in an IMS Fast Path (IFP) region. If you include
FPATH=YES, be sure to include theimsFastPath="YES" build descriptor option
when you generate the program. Refer to the IMS manuals for your system for
additional information about using IFP regions.

Defining Parameters for a Batch-Oriented BMP Program

If a Enterprise Developer batch program is generated to run as an IMS BMP
program and it does not process an input message queue, it is a batch-oriented
BMP program. shows the system definition parameters required for
defining a main batch program as a batch-oriented BMP program.

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name

Figure 20. IMS System Definition for a Main Batch Program Running as a Batch-Oriented
BMP Program

Defining Parameters for a Transaction-Oriented BMP Program
If a Enterprise Developer batch program is generated to run as an IMS BMP
program and it processes an input message queue created by MPP programs or by

other BMP programes, it is a transaction-oriented BMP program. [Figure 21| shows
the system definition parameters that are required to define a main batch program
as a transaction-oriented BMP program.

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name

TRANSACT CODE=trancode, X 1
MODE=SNGL, X
WFI 2

Figure 21. IMS System Definition for a Main Batch Program Running as a
Transaction-Oriented BMP Program

1 Multiple transactions can be associated with one program.

2 Wait-for-input (WFI) is optional. If it is specified, the program remains
resident until the operator stops the transaction or shuts down the region.

Creating MFS Control Blocks

The message format services (MFS) control blocks are generated when the
formGroup is generated for the IMS environment. The build script FDAMEFS is
used. FDAMEFS has functionality similar to that of the MFSUTL and the MFSTEST
JCL procedures that ship with the IMS product. When you generate the program,
you specify the mfsUseTestLibrary build descriptor option to choose between the
functionality of MFSUTL and MFSTEST. YES indicates MFSTEST.

When you set mfsUseTestLibrary to YES, the variable MFSTEST is set to YES in
the build plan. The build script FDAMES uses this variable to determine which of

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 99

the JCL procedures (MFSUTL or MFSTEST) to follow. Refer to the message format
services documentation for your system for additional information about the MFS
control blocks. Refer to the online helps for more information about the build
descriptor options that control what is included in the MFS source.

If your program contains DBCS or mixed data, note that a long mixed constant
field that results in multiple lines of MFS source might contain unpaired shift-in
and shift-out characters. This occurs when the DBCS portion of the constant is split
into more than one line. The MFS still works correctly.

Making New Modules Available in the IMS Environment

Whenever you install a new version of a program, MFS print services program,
map group format module, or table, you need to recycle the message region.

If you generated with mfsUseTestLibrary="YES", then the MFS control blocks
were placed in the MFS test library (the TFORMAT library). To use the new
version of the MFS control blocks, use the /TEST MFS command after you have
signed on your IMS system and before you attempt to run a transaction that uses
the new version of the maps.

If you generated with mfsUseTestLibrary="NO”", then the MFS control blocks were

placed in the MFS staging library (FORMAT library). To use the new version of the

MES control blocks, you must do the following:

1. Run the IMS online change utility (OLCUTL) to copy the new MFS control
blocks into the inactive format library.

2. Use the following IMS commands:

/MODIFY PREPARE FMTLIB
/MODIFY COMMIT

Note: If the MFS control blocks and the map group format module do not have
the same generation date and time, Enterprise Developer Server issues an
error message.

Preloading Program, Print Services, and Table Modules

100

Preloading programs, MFS print services programs, map group format modules,
and table modules that are frequently used might reduce the overhead of searching
the STEPLIB, JOBLIB, link pack area, and link list. However, if modules are
preloaded, they occupy virtual storage when they are not in use.

To improve response time, you might also preload modules associated with any
transaction that might require better performance, even though the module itself is
not frequently used.

To preload a program, MFS print services program, map group format module, or
table program, have your system administrator do the following:

1. Put the module in a LNKLST library.

2. Include the module name in a preload member (DFSMPLxx, where xx is a
two-character ID that you select) in IMSVS.PROCLIB.

3. Indicate in the JCL for the IMS message region that the preload member is to
be included.

Refer to the IMS manuals for your system to get general information on preloading
modules.

IBM Enterprise Developer Server Guide for z/OS

Running Programs under IMS

Prior to starting a generated program, the program user might be required to sign
on to the IMS environment with a /SIGN command. Refer to the IMS
documentation for information about the /SIGN command.

Starting a Main Program Directly

The simplest way for a program user to start a Enterprise Developer program is by
entering the IMS transaction code from an unformatted screen. The transaction
code can be up to 8 characters. It is associated with the program in the IMS system
definition TRANSACT macro. The following is an example of starting a
transaction:

MYTRANS

IMS requires the transaction code to be followed by at least one blank prior to
pressing the ENTER key.

Starting a Main Transaction Program Using the /FORMAT
Command

A program user can use the IMS /FORMAT command to display a formatted
screen to start a transaction if the First Map for a program is defined with the IMS
transaction code for the program as an 8-byte constant with the protect and dark
attributes. The attribute byte on the map becomes the attribute byte in the
generated MFS. The 8-byte constant contains the name of the IMS transaction that
is started when the map is processed.

The /FORMAT command directs IMS to display a screen format; however, the
command does not cause the program to be run. After the program user enters
data and presses the Enter key (or a function key), the message from the terminal
is sent to the generated program for processing.

The syntax of the /FORMAT command is as follows:

/FORMAT modname [mapname]
or
/FOR modname [mapname]

The modname operand is the map group name with an O suffix. The mapname
operand is required if there is more than one map in the map group. It must be
the map name that was specified as the First Map for the program.

Because the transaction code must be included in the map, and a transaction code
can only be associated with one program in the IMS system definition, only one
program using the map can be started using the /FORMAT command.

Running Transaction Programs as IMS MPPs

Running generated programs is similar to running non-EGL-generated programs in
the IMS MPP environment, with the following differences:

IMS Commands

The /HOLD command should be avoided. Enterprise Developer Server uses the
logical terminal identifier as the key of the work database. The data in the work
database is destroyed if another generated program is run from the same terminal
prior to resuming the original conversation.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 101

102

Keyboard Key Operation

When the Clear key is pressed in IMS, IMS clears the screen, but does not notify
the program. No transaction is scheduled, so the map is not automatically
displayed again. If the program is conversational, the program user can enter the
IMS /HOLD command followed immediately by an IMS /RELEASE command to
display the map again.

When the EOF key is pressed in the first position of a field on a map, the data is
not blanked. To blank the data, the program user must enter at least one blank
before pressing the EOF key. Also, the program user should not use the DELETE
CHARACTER key to erase the entire field because this is equivalent to pressing
the EOF key in the first position of the field.

When typing over characters in a right-justified numeric field, any intervening
spaces between the new digits entered and the original digits in the field should be
deleted by pressing the DELETE CHARACTER key. Alternatively, the program
user can type in all digits for the new value and use the EOF key to erase any
remaining digits.

DBCS Data on a Non-DBCS Terminal

If a program inadvertently attempts to display a map with DBCS or mixed data on
a non-DBCS terminal or printer, the results are unpredictable. The terminal might
be logged off IMS and returned to the VTAM® sign-on screen without displaying
any warning or error messages. If this happens, review your use of DBCS. Also,
review your values for the mfsDevice , mfsExtendedAttr, and mfsIgnore
generation options, and compare them to the IMS system definition for the
terminal that had the problem.

Error Reporting
In certain error situations, Enterprise Developer Server displays its own panel to
explain the error to the program user. This occurs in the following situations:

* A message needs to be displayed, but the form field named in the form property
msgField does not exist. Form ELAMO1 in formGroup ELAxxx, where xxx is the
national language code, is used.

* An unexpected program error has occurred. Form ELAMO02 and (if necessary)
continuation form ELAMO3 are used to display the error messages. See
[the Enterprise Developer Server Error Panel” on page 133| for an example of
ELAMO2.

If an error occurs information might have been written to the message queue
identified by the errorDestination build descriptor option for the first program in
the run unit. See [Chapter 19, “IMS Diagnostic Message Print Utility,” on page 125|
for information on printing diagnostic errors.

Responding to IMS Error Messages

If a DFS™ message is displayed on your screen, make a note of the message. Then,
depending on how your IMS system is set up, press either PA1 or PA2 to see if
Enterprise Developer Server has queued an error map to the terminal with more
information. This can happen in the following situations:

* If Enterprise Developer Server issues a ROLL call because of a run unit or
catastrophic error, IMS issues the message:

DFS5551 TRAN tttttttt ABEND S000,U0778 ; MSG IN PROCESS:
tttttttt mmmmmmmmMAP 53339date gtime rdate rtime

IBM Enterprise Developer Server Guide for z/OS

Where tttttttt is the IMS transaction code, mmmmmmmm is the map name, gdate
and gtime are the date and time the map group was generated, and rdate and
rtime are the date and time of the abend.

The DFS5551 message is also used by IMS when other abends occur, including
the 1600, 1601, 1602, and 1606 abends from Enterprise Developer Server.

* If Enterprise Developer Server ends the run unit for a transaction program that
was generated with imsFastPath="YES" and is being run in an IMS fast-path
region, IMS issues the message:

DFS27661 PROCESS FAILED

* If Enterprise Developer Server abnormally ends the logical unit of work (LUW)
for a transaction program that was generated with imsFastPath="YES", IMS
might issue the message:

DFS20821 RESPONSE MODE TRANSACTION TERMINATED WITHOUT REPLY

See [Chapter 20, “Diagnosing Problems for Enterprise Developer Server on z/OS|
Systems,” on page 129[for information on diagnosing errors.

Running Batch Programs as MPPs

A Enterprise Developer main batch program can be generated to run in the IMS
MPP environment. In this situation, IMS automatically starts the transaction
whenever a message is written to the message queue associated with the
transaction.

If an error occurs information might have been written to the message queue
identified by the errorDestination build descriptor option for the first program in
the run unit. See [Chapter 19, “IMS Diagnostic Message Print Utility,” on page 125|
for information on printing diagnostic errors.

Running a Main Program under IMS BMP

A main batch program generated for the IMS BMP environment can be started by
submitting JCL. Called programs can only be started by another Enterprise
Developer program or by a non-Enterprise Developer program.

The EGL COBOL generation process creates sample runtime JCL for running
programs in the IMS BMP environment. The generated JCL has the same name as
the program. If you set the genRunFile build descriptor option to "YES”, a sample
JCL is created specifically for the program during program generation. The runtime
JCL is transferred to a z/OS partitioned data set (PDS) by the Enterprise Developer
prepare function.

The JCL might need to be modified to add data sets required by called or
transferred-to programs, or for data sets used by setting
sysVar.resourceAssociation or converseVar.printerAssociation. You also need to
modify the JCL to add any data sets that are dynamically allocated with the
EZEDEST or EZEDESTP special function words. See |Chapter 13, “Creating od
IModifying Run-time JCL on z/OS Systems,” on page 93| for more information on
modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the generation listing for the
programs involved for any error messages related to JCL generation. In addition,
ensure the tailoring that was done for the JCL templates is correct. Also check any
changes you made when you customized the sample runtime JCL.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 103

The following sections show JCL for different IMS BMP programs.

Examples of Runtime JCL for IMS BMP Programs

104

The generated JCL in the following examples has these characteristics:

* The examples are based on the JCL templates shipped with Enterprise
Developer. Your actual JCL templates might differ if your system administrator
has tailored them for your organization. Refer to the online helps for more
information about tailoring JCL templates.

* Lowercase text appears in the examples where a generic example name has been
substituted for an actual program or data set name.

* EZEPRINT is always routed to SYSOUT=*.

If you route EZEPRINT to a data set, you must use the following DCB
attributes:

- LRECL=137, BLKSIZE=141, RECFM=VBA if the map group does not contain
any DBCS maps

— LRECL=654, BLKSIZE=658, RECFM=VBA if the map group contains any
DBCS maps

You cannot use form groups that do not have any DBCS forms with form
groups that do have DBCS forms in a single job step.

The first library in the STEPLIB concatenation sequence must have the largest
block size, or BLKSIZE=32760 can be specified on the first STEPLIB DD statement
for the step.

Running a Main Batch Program as an IMS BMP Program

If a main batch program runs as a BMP program, all DL/I requests are passed to a
central copy of IMS which coordinates updates to the databases across multiple
BMPs and MPPs. The DD statements for the IMS log and the program databases
are not required in the JCL for the BMP job step. These databases and the IMS log
are allocated to the IMS control region.

shows a sample set of JCL to run a generated program as a BMP
program.

//jobname JOBiiiiiiiiinnnnn.

//stepname EXEC IMSBATCH,

// MBR=appl-name,PSB=ims-psbh-name, IN=trans-name
//G.STEPLIB DD

/1l DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V1R2MO.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR

//G.ELAPRINT DD SYSOUT=*,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=#,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements for files

//* No application specific DD statements for databases required
[/file-name-1 DD ...uurnnrineeieiieenneannann

[/file-name-n DD ...vvrnetrnneennne i

Figure 22. JCL for Main Batch Program as an IMS BMP Program

If you run a transaction-oriented BMP program, the trans-name must be set to the
name of the transaction for the message queue that the BMP program processes. If

IBM Enterprise Developer Server Guide for z/OS

not, trans-name should be a null value. The sample runtime JCL created by
Enterprise Developer defaults trans-name to the program name for a
transaction-oriented BMP program that uses SCAN to read the message queue. The
sample runtime JCL created by Enterprise Developer defaults trans-name to null for
batch-oriented BMP programs or for transaction-oriented BMP programs that use
VGLib.VGTDLI(), AIBTDLI(), or EGLTDLI() to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in
the sample runtime JCL:

//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR

These DD statements are generated from the FDA2MIMS JCL template.

Running a Main Batch Program as an IMS BMP Program with
DB2 Access

shows a sample set of JCL to run a generated program that accesses DB2
resources as a BMP. The DD statements for the IMS log and the DL/I program
databases are not required in the JCL for the BMP job step. The DL/I databases
and the IMS log are allocated to the IMS control region.

//jobname JOBiiiiiiiiiiinnn.

//stepname EXEC IMSBATCH,

// MBR=app1-name,PSB=ims-psb-name, IN=trans-name
//G.STEPLIB DD

// DD

// DD DSN=DSN.SDSNLOAD,DISP=SHR

/1 DD DSN=CEE.SCEERUN,DISP=SHR

/! DD DSN=ELA.VIR2MO.SELALMD,DISP=SHR
/1l DD DSN=cghlq.env.LOAD,DISP=SHR
//G.DFSESL DD DSN=IMS.RESLIB,DISP=SHR

// DD DSN=DSN.SDSNLOAD,DISP=SHR

//G.ELAPRINT DD SYSOUT=+,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=+,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=+

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements for files

//* No application specific DD statements for databases required
[/file-name-1 DD ...vvvirnnnnnenennnnnennnnnnnns

[/file-name-n DD ...ttt

Figure 23. JCL for Main Batch Program as an IMS BMP Program with DB2

If you run a transaction-oriented BMP program, the trans-name must be set to the
name of the transaction for the message queue that the BMP program processes. If
not, trans-name should be a null value. The sample runtime JCL created by
Enterprise Developer defaults trans-name to the program name for a
transaction-oriented BMP program that uses SCAN to read the message queue. The
sample runtime JCL created by Enterprise Developer defaults trans-name to null for
batch-oriented BMP programs or for transaction-oriented BMP programs that use
CSPTDLI to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in
the sample runtime JCL:

//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
These DD statements are generated from the FDA2MIMS JCL template.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 105

Recovery and Restart for IMS BMP Programs

You should develop recovery procedures in the event of program or system error.
Enterprise Developer does not generate JCL to perform restart or recovery
procedures.

106 1BM Enterprise Developer Server Guide for z/OS

Chapter 15. Moving Prepared Programs to Other Systems
from z/OS Systems

You might need to move a prepared program from one system to another. For
example you might have the compiler on one host development machine but want
to run the program on several production machines.

If you use DB2, the DB2 BIND must be done on the production system.
The COBOL and Enterprise Developer Server products on the production machine

must be at the same maintenance level as, or a higher level than, on the
development machine.

Moving Prepared Programs To Another z/0OS System

If a program has been completely prepared on one system and you want to move

the prepared program to another system, perform the following steps:

1. Copy the program-related parts (including the form group and table parts) to
the production system. The names of the source libraries are shown with the
default naming convention used in the build scripts, where cghlq is the user or
project-related high level qualifier and env is the run-time environment code.

Table 13. Parts to Copy

Data Set Name Contents

cghlq.env.LOAD Application module, print services program,
form group format modules, and data table
modules.

cghlq.env.DBRMLIB DB2 database request modules (DBRMs) for
SQL programs

cghlq.env.EZEBIND BIND commands for SQL programs

Note:

The cghlq variable comes from the projectID build descriptor option. The env variable comes
from the system build descriptor option.

2. Provide your own JCL to build the plans for DB2 programs using the BIND
commands from the BIND library and the DBRMs from the DBRM library. You
need to edit the EZEBIND member, and make the appropriate changes such as
DB2 subsystem name or collection IDs to match the new system where you are
moving the program.

3. Follow the procedures identified in this manual for defining programs to CICS.

4. Define files and databases used by the program on the new system.

Maintaining Backup Copies of Production Libraries

Follow your installation-defined guidelines and procedures for making backup
copies of production libraries. Having backup copies of production libraries
enables you to return to the prior level of a program in case of errors. The
production libraries for which copies should be made are those listed in

© Copyright IBM Corp. 1994, 2005 107

108 1BM Enterprise Developer Server Guide for z/OS

Part 4. Utilities

Chapter 16. Using Enterprise Developer Server
Utilities on z/OS Systems.
Using the CICS Utilities Menu.
New Copy
Diagnostic Message Printing Utility .

Chapter 17. Diagnostic Control Options.
Change or View Diagnostic Control Options for a
Transaction . e
Change or View Default Diagnostic Control
Options

Chapter 18. Using the Parameter Group Utility

Chapter 19. IMS Diagnostic Message Print
Utility.

© Copyright IBM Corp. 1994, 2005

1M
. 111
. 112
. 114
. 117
. 118

. 119

121

. 125

109

110 1BM Enterprise Developer Server Guide for z/OS

Chapter 16. Using Enterprise Developer Server Utilities on
z/OS Systems

Enterprise Developer Server provides a set of utilities in CICS to help manage the
error diagnosis and control facilities of the Enterprise Developer Server run-time
environment. You can access these utilities from the CICS utilities menu.

Using the CICS Utilities Menu

To access the CICS utilities do the following:

1. Log on to CICS.

2. Type ELAM on a clear screen.

3. Press Enter. When the ELAM transaction is started, a copyright panel is
displayed.

4. Press Enter. The CICS Utilities Menu is displayed.

~
ELAM Enterprise Developer Server
CICS Utilities Menu
Select one of the following utilities; then press Enter.
Action...._
_1. New Copy
_2. Diagnostic Message Printing
_3. Diagnostic Control Options
ENTER F1=HELP F3=EXIT Y

Figure 24. CICS Utilities Menu

Three functions are available from the CICS Utilities Menu panel ([Figure 24):

New Copy
This function causes a new copy of a program, form group, or data table to
be used by subsequent transactions. Use the new copy function when
programs, form groups, and data tables are modified and generated again.

For programs and form groups, you can also use the Enterprise Developer
Server new copy utility or the CICS NEWCOPY command to cause the
new copy of the program to be used the next time a load request is issued
for the program.

The Enterprise Developer Server new copy utility does a new copy for
both the online print services program and the form group format module

© Copyright IBM Corp. 1994, 2005 111

112

when you specify a part type of form group. If you use the CICS
NEWCOPY command for a form group, you must issue the NEWCOPY for
both the online print services program and the form group format module.

For data table, you must use the Enterprise Developer Server new copy
utility to cause a fresh copy of the data table to be used the next time a
load request is issued for the data table. Do not use the CICS NEWCOPY
command for data tables.

Diagnostic Message Printing
This function routes the diagnostic messages in an error destination
transient data queue to a spool file for printing or subsequent processing.

Diagnostic Control Options
This function lets you view or change the diagnostic control options set for
the installation or for individual transactions. The options include dump
control, error message routing to a transient data queue or the CICS
journal, and transaction disabling when serious problems occur.

New Copy

The Enterprise Developer Server new copy utility causes a new copy of a program,
form group, or data table to be used by subsequent transactions. Transactions that
are in progress when this function was started continue to use the copy that was
current when the transaction began. Programs must end before the new copy is
used.

Programs must end or reach the end of a segment before the new copy is used.
The Enterprise Developer Server new copy utility must be run separately for
programs, form groups, and data tables to replace the copy already in storage.

To gain access to the Enterprise Developer Server new copy utility, do the
following:

1. Select option 1, New Copy, on the CICS Utilities Menu panel (Figure 24).
2. Press Enter.

The New Copy panel (Figure 25 on page 113) is displayed.

Note: You can also gain access to the Enterprise Developer Server new copy utility
by doing the following:
1. Type ELAN on a clear screen.
2. Press Enter. When the ELAN transaction is started, a copyright panel is
displayed.
3. Press Enter. The New Copy panel (Figure 25 on page 113) is displayed.

IBM Enterprise Developer Server Guide for z/OS

ELAN Enterprise Developer Server
New Copy

Type choices; then press Enter.

Part name...........

Part type...........
1. Program

2. Map Group
3. Table

ENTER F1=HELP F3=EXIT

Figure 25. New Copy panel

Enter the following on the New Copy panel:

Part name

Specifies the name of the program, form group, or data table to be used as
a new copy in subsequent transactions

Part type

Specifies the type of part to be replaced

Note: Enterprise Developer Server does not validate the part type. You
must specify the correct type because different processing is required
for programs, form groups, and data tables. If you have problems in
processing after using the Enterprise Developer Server new copy
utility, try the Enterprise Developer Server new copy utility again to
ensure you specified the part type correctly.

The correct type can be one of the following:

Program
This type causes the utility to issue a CICS SET PROGRAM(name)

NEWCOPY command to access a new copy of the program. This
command does not cause a new copy for called programs that are
statically linked with their caller.

Form Group
This type causes the utility to issue a CICS SET PROGRAM(name)

NEWCOPY command to access a new copy of the form group
format module and the online print services program associated
with the form group.

Data Table
This type causes the utility to issue a CICS SET PROGRAM(name)

NEWCOPY command to access a new copy of the data-table
program and sets a flag for Enterprise Developer Server, indicating
that a new copy of the data table is to be used the next time a
program loads the data-table contents.

Chapter 16. Using Enterprise Developer Server Utilities on z/OS Systems 113

114

If the data table has been generated as a shared data table,
currently running transactions continue to use the old copy of the
data table while new transactions share the new copy of the data
table.

You can also access the new copy utility in batch mode. To invoke the batch new
copy utility, link to program ELABNEW:
EXEC CICS LINK PROGRAM("ELABNEW")

COMMAREA (passed-parms)
LENGTH(174)

where the passed-parms record has the following structure:

Field Length in Type of Data Description

Bytes
NLS code 3 Character NLS code identifying language
Part name 8 Character Name of program, form group, or

data table to be used as a new
copy in subsequent transactions

Part type 1 Character Type of part to be replaced:
"1" Program
"2" Form group
"3" Data table

For more information, see the
description for part type in the
online help discussion of the new

copy utility.
Return code 2 Binary Return code from new copy
Message 1 80 Character Message returned from new copy
Message 2 80 Character Message returned from new copy

The following fields must be provided by the user:
* NLS code

* Part name

* Part type

The other fields are filled in by the new copy utility.
Any nonzero return code means that the new copy operation was not successful. If
a nonzero value is returned in the return code field, check messages 1 and 2 for

details indicating what error occurred.

Note: Message 2 is not always filled in. It may be blank.

Diagnostic Message Printing Utility

Diagnostic message printing allows you to route diagnostic messages in an error
destination transient data queue to a JES spool file for printing.

To gain access to the diagnostic message print utility do the following:
1. Select option 2, Diagnostic Message Printing, from the CICS Utilities Menu
panel (Figure 24 on page 111).

IBM Enterprise Developer Server Guide for z/OS

2. Press Enter.
The Diagnostic Message Printing panel (Figure 26) is displayed.

Note: You can also access the diagnostic message print function by doing the
following:
1. Type ELAU on a clear screen.
2. Press Enter. When ELAU is started, a copyright panel is displayed.
3. Press Enter. The Diagnostic Message Printing panel is
displayed.

ELAU Enterprise Developer Server
Diagnostic Message Printing

Fi1l in the appropriate fields; then press Enter.

Error destination queue name....... ELAD

JES Spool File Information

Node.woveineinneinnnnnnn,
Userid...eeeeinnennnnnn..
CTaSS e e nernnennnnennns A

Clear destination queue............ Y Y=Yes, N=No

\\ENTER F1=HELP F3=EXIT

Figure 26. Diagnostic Message Printing panel

You can enter information in the following fields on the Diagnostic Message
Printing panel:

Error destination queue name
This field specifies the name of an existing error destination.

Enter the 1 to 4 character DCT name of the ERRDEST error destination
transient data queue. The queue name is initialized to the default error
destination queue. The default is ELAD. You can either leave the messages
in the queue or clear them after they have been printed.

JES Spool File Information
This field specifies the spool file where the messages are to be written. If
you do not specify anything in these fields, the system uses the default
values and sends the report to the local spool printer where your local
CICS is running.

Clear destination queue
This field specifies whether to clear the error queue of all messages after
the messages are written to a spool file. The default is Y.

Chapter 16. Using Enterprise Developer Server Utilities on z/OS Systems 115

116 1BM Enterprise Developer Server Guide for z/OS

Chapter 17. Diagnostic Control Options

The diagnostic control options utility enables you to alter the diagnostic action
options taken for a given transaction code that is assigned to a generated CICS
program. If multiple transaction codes are assigned to a program, each transaction
code is specified independently to the diagnostic control options utility.

You can also specify a default action to take place for transactions that are not
explicitly defined to the diagnostic control options utility.

To gain access to the diagnostic control options utility, do the following;:

1. Select option 3, Diagnostic Control Options, from the CICS Utilities Menu
(Figure 24 on page 111).

2. Press Enter. The Diagnostic Control Options panel is displayed.

Note: You can also gain access to the diagnostic control options utility by doing
the following:
1. Type ELAC on a clear screen.
2. Press Enter. When ELAC is started, a copyright panel is displayed.
3. Press Enter. The Diagnostic Control Options panel is
displayed.

ELACO1 Enterprise Developer Server
Diagnostic Control Options

Select one of the following actions; then press Enter.

1. Change or View the Diagnostic Control Options for a Transaction
2. Change or View the Default Diagnostic Control Options

\ENTER F1=HELP F3=EXIT

Figure 27. Diagnostic Control Options panel

You can gain access to the following functions from the Diagnostic Control Options
panel:

Change or View the Diagnostic Control Options for a Transaction
This option enables you to change or view the diagnostic options for a
specific transaction code.

Change or View the Default Diagnostic Control Options
This option enables you to change or view the installation default
diagnostic options.

© Copyright IBM Corp. 1994, 2005 117

This affects transaction codes that are not specifically identified to the
diagnostic controller.

Change or View Diagnostic Control Options for a Transaction

This function enables you to change the Enterprise Developer Server error
diagnostic and control options in effect for a specific CICS transaction.

To start the function do the following:

1. Select option 1, Change or View the Diagnostic Control Options for a
Transaction, from the Diagnostic Control Options panel (Figure 27 on page 117).

2. Press Enter. The Change or View Diagnostic Control Options for a Transaction

panel (is displayed.

4 N

ELACO2 Enterprise Developer Server
Change or View Diagnostic Control Options for a Transaction

Fi1l in the appropriate fields; then press Enter.
Transaction ID.....covviiveinnnnns

Diagnostic Control Options
Transaction ABEND Dump 1. No Dump

2. Complete CICS dump

3. Task dump

Runtime Error Dump 1. No Dump

2. Complete CICS dump

3. Task dump

Error Destination Queue Name...

Journal Number................. __ blank,00-99

Journal Record Identifier...... _

Disable on Run Unit Failure.... _ Y=Yes, N=No
[NEBUEMo000000000000000000000000000 3

1. Change diagnostic control options
2. Use default control options
3. View diagnostic control options

ENTER F1=HELP F3=EXIT

Figure 28. Change or View Diagnostic Control Options for a Transaction panel

The following fields can be entered on the Change or View Diagnostic Control
Options for a Transaction panel :

Transaction ID
Specifies the 1 to 4 character identifier of the transaction you want to
change the diagnostic options for

Diagnostic Control Options

Transaction ABEND Dump
Specifies the type of dump taken on a CICS transaction ABEND

The types of dumps are:

1. No Dump
2. Complete CICS dump
3. Task dump

Runtime Error Dump
Specifies the type of dump taken on a Enterprise Developer
Server-detected error for which a dump is indicated in the error
message explanation

The types of dumps are:

118 1BM Enterprise Developer Server Guide for z/OS

1. No Dump
2. Complete CICS dump
3. Task dump

Error Destination Queue Name
Specifies the 1 to 4 character name of a transient data queue to
which Enterprise Developer Server error diagnostic messages are
written whenever a transaction ends abnormally due to an error

If this field is blank, no messages are written to a queue.

Journal Number
Specifies the journal number of the CICS journal to which error
diagnostic messages are written whenever a transaction is not
successful due to an error

If this field is blank, no journal messages are written.

Journal Record Identifier
Specifies the 1 to 2 character record identifier used when messages
are written to the CICS journal

If this field is blank, the default identifier EZ is used.

Disable on Run Unit Failure
Specifies whether a transaction is disabled whenever an error is
detected that is likely to occur each time the transaction is run

Y Specifies that the transaction is disabled when these errors are
detected
N Specifies that the transaction is not be disabled

Action
Allows you to change the current options, view the current options, or
accept the default options

To change the options currently set for a transaction do the following;:
1. Specify the transaction identifier and any changes.

2. Select 1, Change diagnostic control options.

3. Press Enter.

To use the installation defaults for the transaction do the following:
1. Type the transaction identifier.

2. Select 2, Use default control options.

3. Press Enter.

To view the options currently set for a transaction do the following:
1. Type the transaction identifier.

2. Select 3, View diagnostic control options.

3. Press Enter.

Change or View Default Diagnostic Control Options

This function enables you to change or view the default diagnostic options for
transactions that are not identified to the diagnostic controller. If your default
options were not modified at installation, the default diagnostic options are set as
follows:

* Transaction ABEND and run-time errors both cause a task dump.

* The error destination queue name is ELAD.

* Diagnostic messages are not written to a CICS journal data set.

* Transactions are not disabled on a run unit error.

Chapter 17. Diagnostic Control Options 119

To start this function do the following:

1. Select 2, Change or View the Default Diagnostic Control Options, from the
Diagnostic Control Options panel ([Figure 27 on page 117).

2. Press Enter. The Change or View Default Diagnostic Control Options panel is
displayed:

ELACO4 Enterprise Developer Server
Change or View Default Diagnostic Control Options

Fill in the appropriate fields; then press Enter.

Default Diagnostic Control Options

Transaction ABEND Dump 3 1. No Dump
= 2. Complete CICS dump
3. Task dump
Runtime Error Dump 3 1. No Dump
= 2. Complete CICS dump
3. Task dump
Error Destination Queue Name... ELAD
Journal Number................. —_ blank,00-99
Journal Record Identifier...... EZ
Disable on Run Unit Failure.... N_ Y=Yes, N=No

ENTER F1=HELP F3=EXIT

Figure 29. Change or View Default Diagnostic Control Options

The options on this panel are the same as those defined for changing or viewing
the diagnostic control options for a transaction. They are all defined following
[Figure 28 on page 118}

120 1BM Enterprise Developer Server Guide for z/OS

Chapter 18. Using the Parameter Group Utility

Use the parameter group utility to create and maintain the parameter groups in the
parameter group file. Each group contains parameters for controlling terminal
printer utility (FZETPRT) transactions.

See [“Special Parameter Group for the FZETPRT Program” on page 31|for a
description of the startup parameters that can be included in the parameter group
used with the FZETPRT program.

You can use the parameter group utility to perform the following operations:
* Display the contents of existing parameter groups

* View a list of existing parameter group names

* Add a new parameter group

* Change a parameter group

* Delete a parameter group

shows the steps used to define a parameter group file.
Table 14. Defining Parameter Group Files for z/OS CICS

Procedure

1. Define the parameter group file using the IDCAMS utility.

DEFINE CLUSTER (NAME (PARM.GROUP.FILE)-
RECORDS (100 100) KEYS(16 0) RECORDSIZE (272 272) INDEXED)

2. Initialize the parameter group file by using the IDCAMS REPRO function to insert a
dummy record into the file.

3. Specify the FCT for the parameter group file utility to have access to a user-defined
message file for CICS.

DFHFCT TYPE=DATASET,
DATASET=EZEPRMG,
ACCMETH=VSAM,
SERVREQ=(READ,UPDATE ,ADD,DELETE,BROWSE) ,
FILESTAT=(ENABLED,CLOSED),
RECFORM=FIXED

4. Allocate the file by adding the following statement to the z/OS CICS startup JCL:
//EZEPRMG DD DISP=SHR,DSN=PARM.GROUP.FILE

OOOOO0O

Note: The name that designates the parameter group file (EZEPRMG) is a reserved file
name and cannot be used as a data file by an EGL-generated program.

When the file has been created and allocated, you can gain access the parameter
group utility by doing the following;:

1. Log on to CICS.

2. Type ELAP on a clear screen.

3. Press Enter.

The parameter group utility does not give message-specific tutorial help after a
message is displayed and PF1 is pressed.

© Copyright IBM Corp. 1994, 2005 121

122

Once the parameter iroui utility has been started, the Parameter Group

Specification panel (Figure 30)) is displayed. You can specify the parameter group
name on this panel.

/PRGMOO PARAMETER GROUP UTILITY h

ENTER = Continue PF1 = Help PF3 = Exit

........................ PARAMETER GROUP SPECIFICATIONvvivvniieniiennnnn.

Specify Parameter Group Name =>

- J
Figure 30. Parameter Group Specification panel

The parameter group name can be from 1 to 4 alphanumeric characters and must
be the name of the transaction that was used to start the FZETPRT program. (The
utility does not verify this.)

You can enter a group name that already exists if you want to modify a parameter
group, or you can enter one that does not exist if you want to define a new
parameter group.

Entering a question mark (?) as the group name on the Parameter Group
Specification panel displays a list of previously-defined group names on the next
panel, the Parameter Group List Display panel . Entering some
characters followed by an asterisk (*) displays a list of parameter group names that
begin with the characters that you entered. Entering a specific parameter group
name displays the Parameter Group Definition panel (Figure 32 on page 123)).

IBM Enterprise Developer Server Guide for z/OS

4 PRGMO1 PARAMETER GROUP UTILITY h

ENTER = Continue PF3 = Exit PF4 = Refresh PF1 = Help
PF7 = Back PF8 = Forward

....................... PARAMETER GROUP LIST DISPLAYeiiiiiiiiiiieinnnnnnn,

EZEP USRQ

- J
Figure 31. Parameter Group List Display panel

From the Parameter Group List Display panel, you can select a group name to edit
by typing an S in the selection field to the left of the group name. You can delete a
group by typing a D in the selection field to the left of the group name.

If the specified parameter group already exists, its contents are displayed on the
Parameter Group Definition panel. The parameter group can be altered. If the
specified parameter group does not exist, the Parameter Group Definition panel is
displayed without any data. You can define the new contents; up to 256 characters
of data can be entered for a parameter group.

4 PRGMO2 PARAMETER GROUP UTILITY h

PA2 = Cancel PFl = Help PF3 = File and Exit
Parameter Group = CCCCCCCC

........................... PARAMETER GROUP DEFINITION.....ovvvivriininnneennnnn.

Parameter Group:

=>PRTBUF=2048 PRTMPP=132 PRTTYP=D FORMFD=NO

- J
Figure 32. Parameter Group Definition panel

Chapter 18. Using the Parameter Group Utility 123

124

The parameter group utility does not validate or format the parameters that are
specified on the Parameter Group Definition panel. Any parameters that are not
valid are ignored when the FZETPRT program is started.

If you press PE3 on the Parameter Group Definition panel without entering any
parameters, a parameter group is stored without any associated parameters. You
can store an empty parameter group to reserve parameter group names.

Empty parameter groups do not affect the initialization of the FZETPRT program.

The parameter group utility left-justifies the parameter group name and pads it to
the right with blanks (X'40"). The parameter group utility uses this name as a key
to index the parameter group file.

If you selected a parameter group from the Parameter Group List Display panel
(Figure 31 on page 123), after the Parameter Group Definition panel is processed,
the Parameter Group List Display panel is displayed again with the original
request replaced by an asterisk beside the group name that was processed. An
asterisk (*) is ignored as input on the Parameter Group Definition panel if more
processing is done.

IBM Enterprise Developer Server Guide for z/OS

Chapter 19. IMS Diagnostic Message Print Utility

When a generated program ends abnormally due to an error condition in IMS
environments, diagnostic error messages are written to the message queue
identified by the errorDestination build descriptor option for the first program in

the run unit.

A BMP is provided to print the messages in the message queue. The JCL needed to

print the diagnostic information is supplied as member ELAMQJUD of

ELA.VIR2MO.ELAJCL (see [Figure 33).

The msg-queue identified by the IN parameter is the name of the queue that was
specified for errorDestination when the program was generated.

[[FFF ko kkk ok kk ok kkkkkk kR kk kR kkk kR kk kR hk kR kk kR kkkkkkkkkkkkrkkkxkkxxx%%x00000100

//** ELAMQJUD - JCL TO DRAIN AND PRINT THE ELADIAG MESSAGE QUEUE

//**
]/ **
//**

F
.I.

OR VISUALAGE GENERATOR SERVER.
HIS PROGRAM RUNS AS A BMP.

//** LICENSED MATERIALS - PROPERTY OF IBM
//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 1998
//** SEE COPYRIGHT INSTRUCTIONS

/%%

//** STATUS = VERSION 1, RELEASE 2, LEVEL 0

]/ **

//** TO TAILOR THIS JOBSTREAM:

//**
]/ %%
//**
]/ %%
//**
]/ **

1.
2.

3.

COPY A JOBCARD.

CHANGE IN= TO THE NAME OF YOUR ERROR DIAGNOSTIC
QUEUE.

MAKE SURE THAT THE TRANSACTION SPECIFIED BY IN=
AND THE ELAMPUTL PROGRAM ARE STARTED BY IMS.

//*% RETURN CODES

/[*% O - SUCCESSFUL COMPLETION

/%% 4 - NO MESSAGES ON QUEUE TO DRAIN.

Es 16 - FATAL ERROR. PROCESSING TERMINATED
[** 20 - OPEN FAILED ON ELAPRINT

//**

00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400

[[FFFxk ok ok kR kk kR k kR R R IR ERTHERKFERI I AR I ARR I I IR T IR R TR AR *FA**F A *xxxx%4%%x00002500
//DRAINMQ EXEC IMSBATCH,MBR=ELAEPUTL,
// PSB=ELAMPUTL, IN=ELADIAG,RGN=4096K

//G.STEPLIB DD
// DD
// DD

// DD
//G.ELAPRINT DD
//G.SYSOUT DD
//G.SYSPRINT DD
/*

DSN=CEE.SCEERUN,DISP=SHR
DSN=ELA.V1R2MO.SELALMD,DISP=SHR
SYSOUT=+

SYSOUT=+

SYSOUT=+

Figure 33. ELAMQJUD

© Copyright IBM Corp. 1994, 2005

00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500

125

126 1BM Enterprise Developer Server Guide for z/OS

Part 5. Diagnosing Problems

Chapter 20. Diagnosing Problems for Enterprise

. 129
. 129
. 129
. 130
. 130
. 131
. 131

Developer Server on z/0S Systems .
Detecting Errors .
File and Database Errors—Category 1 .
File and Database Errors—Category 2 .
File and Database Errors—Category 3 .
Reporting Errors
Controlling Error Reportmg in CICS
Controlling Error Reporting in IMS
Environments .
Controlling Error Reportmg in z/ OS Batch
Error Reporting Summary . .
Transaction Error .
Run Unit Error .
Catastrophic error .
Enterprise Developer Server Error
Using the Enterprise Developer Server Error
Panel . .
Printing Diagnostic Inforrnatlon for IMS
ERRDEST Message Queue .
IMS Log Format
Running the Diagnostic Prmt Ut111ty
Printing Diagnostic Information for CICS .
CICS Diagnostic Message Layout.
Running the Diagnostic Print Utility.
Analyzing Errors Detected while Running a
Program .

Chapter 21. Finding Information in Dumps.
Enterprise Developer Server ABEND Dumps .
COBOL or Subsystem ABEND Dumps .
Information in the Enterprise Developer Server
Control Block .

Information in an Apphcahon

How to Find the Current Position in a Program at

Time of Error

Chapter 22. Enterprise Developer Server Trace

Facility . .
Enabling Enterprise Developer Program
Source-Level Tracing with Build Descriptor
Options .
Activating a Trace .
Activating a Trace Sessmn for CICS
Activating a Trace Session for z/OS Batch.
Deactivating a Trace Session
Printing Trace Output
Printing the Trace Output in CICS
Printing the Trace Output in z/OS Batch .
Reporting Problems for Enterprise Developer
Server .

Chapter 23. Common Messages during

Preparation for z/OS Systems . .
Common Abend Codes during Preparatlon

© Copyright IBM Corp. 1994, 2005

. 131
. 132
. 132
. 132
. 132
. 133
. 133

. 133
. 134
. 134
. 135
. 136
. 136
. 136
. 137

. 138

. 139
. 139
. 139

. 140
. 140

. 141

. 143

. 143
. 144
. 144
. 147
. 149
. 149
. 149
. 149

. 149

. 151
. 151

DB2 Precompiler and Bind Messages
COBOL Compilation Messages

Chapter 24. Common System Return Codes for

z/OS Systems. .
Common SQL Return Codes
Common DL/I Status Codes
Common VSAM Status Codes.
OPEN request type
CLOSE request type .

GET/PUT/POINT/ERASE/ CHECK / ENDREQ

request types .
COBOL Status Key Values .

Chapter 25. Enterprise Developer Server Return

Codes and Abend Codes for z/0OS Systems
Return Codes e
ABEND Codes .

CICS Environments

IMS, IMS BMP, and z/OS Batch Envrronments

z/0S Batch .

Chapter 26. Codes from Other Products for
z/OS Systems.

Common System Abend Codes for All
Environments e
LE Run-time Messages .

COBOL Run-time Messages .
Common COBOL Abend Codes .
Common IMS Runtime Messages.
Common IMS Runtime Abend Codes
Common CICS Run-time Messages .
Common CICS Abend Codes .
COBOL Abends under CICS

. 151
. 151

. 153
. 153
. 155
. 155
. 156

. 156

. 156
. 157

. 159
. 159
. 159
. 159

161

. 162

. 163

. 163
. 164
. 164
. 165
. 165
. 166
. 167
. 167
. 168

127

128 1BM Enterprise Developer Server Guide for z/OS

Chapter 20. Diagnosing Problems for Enterprise Developer
Server on z/0OS Systems

The chapter contains diagnosis, modification, or tuning information. Use this
information to determine the source of the problem you encountered. Some
common program definition, database, and system errors that might cause
problems are described. This chapter also explains how to obtain error listings and
diagnose run-time errors.

Detecting Errors

You can find most logic errors by using the EGL debugger before you generate
your program.

During generation, a validation step checks your program for any remaining
syntax errors. In addition, Enterprise Developer also checks that your use of
language elements is consistent with the resource association information you
select for each file.

When you run your generated program, different types of errors are detected by
Enterprise Developer Server, COBOL, CICS, or z/OS. The error handling varies
depending on which product detects the error.

For diagnostic information of interest at development time, see the EGL help
system.

For those errors detected by Enterprise Developer Server that result in a Run Unit
Error, error messages are written to the transient data queue specified through the
diagnostic control options. You can print those messages by using the diagnostic
printing utility (see ['Diagnostic Message Printing Utility” on page 114)) or by using
CICS utilities (for example, CEBR).

For more information, see [Chapter 17, “Diagnostic Control Options,” on page 117

File and Database Errors—Category 1
A hard error occurred in a file or database I/O operation. For example:
e I/0 error on the file or database
* File not found

© Copyright IBM Corp. 1994, 2005 129

130

Table 15. Types of Errors

EGL COBOL Set Controls

Error Detected By

Error Handling

Use
VGVar.handleHardIOErrors
to indicate whether the
program provides logic to
override normal database and
file error processing for hard
errors. Hard errors are
defined in the online helps
within Enterprise Developer

Access method or database
manager. The access method
or database manager return
an error code to the
generated logic or Enterprise
Developer Server.

If
VGVar.handleHardIOErrors
is set to 0 and a hard error
occurs, the program ends
with a transaction error, as
described in
For SQL errors, the DB2
messages describing the SQL
error code are obtained from
DB2. Refer to the DB2
messages manual for your
system for explanations of
the error codes.

If
VGVar.handleHardIOErrors
is set to 1 and a hard error
occurs, the program is
responsible for controlling the
error handling.

File and Database Errors—Category 2

A file or database error occurs due to incorrect program logic. For example,
deleting or replacing a record without first doing an UPDATE process option is an

example of this error type.

Table 16. Types of Errors

EGL COBOL Set Controls

Error Detected By

Error Handling

Follow the file management
rules in the Enterprise
Developer help facility.

Enterprise Developer Server.

The program ends with a run
unit error, as described in
[Table 18 on page 132}

File and Database Errors—Category 3

Two generated programs which are being used together are defined in an
inconsistent manner. For example, two programs have been generated with

different file definitions.

Table 17. Types of Errors

EGL COBOL Set Controls

Error Detected By

Error Handling

Follow the rules in the EGL
help facility.

COBOL or Enterprise
Developer Server.

If detected by Enterprise
Developer Server, the
program ends with a run unit

error, as described in

If detected by COBOL, a
formatted dump is generated.

IBM Enterprise Developer Server Guide for z/OS

Reporting Errors

Enterprise Developer Server provides functions that help you determine the cause
of a run-time problem. All run-time errors that Enterprise Developer Server traps
are accompanied by error messages and supporting information to help diagnose
the problem. [Table 18 on page 132 shows the error diagnostic actions that can be
taken based on the severity of the error and type of system being used.

Controlling Error Reporting in CICS

In the CICS environment, error actions are controlled through the online diagnostic
controller utility installed as transaction ELAC.

The utility allows you to specify what type of dump is requested, the name of the
transient data queue to which Enterprise Developer Server diagnostic messages are
written, the CICS journal number and identifier for error messages, and whether or
not a transaction is disabled when a run unit error is detected. The utility lets you
reset the default options for all transactions and override the default options for
individual transactions.

See [Chapter 17, “Diagnostic Control Options,” on page 117] for more details about
the diagnostic controller utility.

Controlling Error Reporting in IMS Environments

The following error responses are controlled by build descriptor options for the
IMS/VS and IMS BMP environments:

* Write error messages to the error destination. The destination is determined by
the errorDestination build descriptor option.

* Write error messages to the system log. The log ID is determined by the
imsLogID build descriptor option. If the imsLogID option does not appear in
the build descriptor file, error messages will not be written to the system log.

* Put the message that caused the problem for transaction-oriented IMS BMP
programs back on the message queue. restoreCurrentMsgOnError="YES"
indicates that the message being processed when the error occurred should be
placed back on the message queue before the program ends.
restoreCurrentMsgOnError="NO" indicates that the message being processed
should be deleted and not placed back on the message queue. This option is
applicable only to a run unit error when Enterprise Developer Server detects the
error. It does not apply to transaction-oriented BMPs that use VGLib.VGTDLI()
to read the message queue.

e Issue ROLL call or abend for a run unit error. imsFastPath="NO" results in a
ROLL call. imsFastPath="YES" results in a 1602 abend.

The actions controlled by the runtime JCL are as follows:

* Print message. This is done only if there is an ELAPRINT DD statement in the
runtime JCL.

e Snap dump. If the message indicates a snap dump is taken, the snap dump is
produced only if there is an ELASNAP DD statement in the runtime JCL.

¢ Abend 1602 or 1600. This creates a dump only if the runtime JCL contains a
SYSUDUMP or SYSABEND DD statement.

Abend code 1602 is the user code issued by Enterprise Developer Server when it
ends the run unit for an imsFastPath="YES" program because of an error.

Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems 131

Abend code 1600 is the user code issued by Enterprise Developer Server in all
other situations when it ends program processing because of an unrecoverable
erTor.

IMS takes the following actions, based on the way Enterprise Developer Server
ends the program:

* If a rollback (ROLB) call is issued, the database changes are backed out, the
logical unit of work ends, the next message is read from the message queue, and
processing continues.

e If a ROLL call is issued, the database changes are backed out, the logical unit of
work ends, and IMS stops the program with a user 778 abend. The transaction
and PSB are not stopped and can be scheduled again without operator
intervention.

* If either a 1600 or a 1602 abend is issued, the database changes are backed out,
the logical unit of work ends, and IMS stops the program. The transaction and
PSB are also stopped, and they require operator intervention to start them again.

Use ELASNAP so that sufficient data is captured the first time an error occurs.

Controlling Error Reporting in zZ/OS Batch
The actions controlled by the run-time JCL are as follows:

* Print message. This is done only if there is an ELAPRINT DD statement in the
runtime JCL.

e Snap dump. If the message indicates a snap dump is taken, the snap dump is
produced only if there is an ELASNAP DD statement in the runtime JCL.

* Abend 1600. This creates a dump only if the run-time JCL contains a
SYSUDUMP or SYSABEND DD statement.

Error Reporting Summary

The following tables summarize the error processing actions for Enterprise
Developer Server.

Transaction Error

This error affects only the current CICS task. The transaction is still available to
other end users.

Table 18. Error Processing Actions For Enterprise Developer Server Detected Errors

Environment Action

CICS * Write error messages to error destination (diagnostic controller option)

* Write error messages to CICS journal data set (diagnostic controller
option)

¢ CICS dump, dump code ELAD, as determined by message. The type of
dump issued for a particular transaction is a diagnostic control option.

* Issue a rollback request

 Display error messages on terminal, if possible

* Set return code to 693

z/0OS Batch See run unit error

Run Unit Error

The error is likely to occur for every user. In CICS, the transaction might be
disabled.

132 1BM Enterprise Developer Server Guide for z/OS

Table 19. Error Processing Actions For Enterprise Developer Server Detected Errors

Environment Action

CICS * Write error messages to error destination (diagnostic control option), if

possible

* Write error messages to CICS journal data set (diagnostic control option),
if possible

¢ Disable transaction (diagnostic control option)

¢ CICS dump, dump code ELAD, as determined by message. The type of
dump issued for a particular transaction is a diagnostic control option.

* Issue a rollback request

 Display error messages on terminal, if possible

* Set return code to 693

* Return

z/0OS Batch ¢ Print message (ELAPRINT DD statement)
* Snap dump determined by the message (ELASNAP DD statement)
* Issue a rollback request if DB2 databases were used
* Set return code to 693
* Return

Catastrophic error

This error indicates storage is corrupted or standard error reporting processing
ends abnormally.

Table 20. Error Processing Actions For Enterprise Developer Server Detected Errors

Environment Action

CICS * Write error messages to error destination (diagnostic control option), if

possible

* Write error messages to CICS journal data set (diagnostic control option),
if possible

¢ Disable transaction (diagnostic control option)

* Display error messages on terminal, if possible

* ABEND ELAE. The type of dump issued for a particular transaction is a
diagnostic control option.

z/0OS Batch * Print message (ELAPRINT DD statement), if possible
* Abend 1600 (SYSUDUMP or SYSABEND, DD statement)

Enterprise Developer Server Error

A Enterprise Developer Server error at a point where standard error reporting
process is not active.

Table 21. Error Processing Actions For Enterprise Developer Server Detected Errors

Environment Action

All * Abend, ABEND code indicates the reason for the error
environments

See [Table 25 on page 139 for information concerning the contents of the registers
when either a 1600, 1602, or an ELAE abend occurs.

Using the Enterprise Developer Server Error Panel

When an error occurs, Enterprise Developer Server attempts to display error
messages on the current terminal. The panels used in displaying error messages
are defined as map group ELAxxx where xxx is the language code.

Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems 133

The following figure shows the error panel (map ELAMO2 in the map group) as it
is shipped with the product. The panel shows the same diagnostic information that
is written to the error destination queue, system log or journal, or ELAPRINT file.
If there are more error messages than can fit on a single panel, the last line on the

panel prompts the user to press a key to display additional error messages.

4 N\
Unexpected Program Failure
An unexpected input/output or program error occurred in the
program you were running. Please make a note of the program
name, date, time, and initial error messages and report them to your
system administrator.
Program name ... ART22
Date ...oevvnnn.. 08/21/90
Time ...ovvvenn. 13:04:23
Error Messages:
ELAGOO93I Error occurred in application ART22, process or group ART229
ELAGO131P MSGQ error, file = UNKNOWN, function = CHG, status code = Al
ELAGOO66I DL/I I/0 area = UNKNOWN
EDDDDED4
45256650
o J

Figure 34. Panel ELAMOZ2 (example).

Printing Diagnostic Information for IMS

134

Diagnostic messages are sent either to a print file for batch jobs or to a message
queue for BMPs or online transactions. A diagnostic utility is provided to print
messages written to a message queue. Optionally, based on the imsLogID build
descriptor option, the diagnostic information can be written to the IMS log.

ERRDEST Message Queue

shows the format of the information in the IMS message queue when

ERRDEST is used.

Table 22. ERRDEST IMS Message Queue

Field Length in Bytes Type of Data Description
Record length 2 Binary The length of the record.
Reserved 2 Binary A reserved field that must

contain binary zeros.

IMS transaction code 8

Character

The name used to identify
the IMS message queue
that was specified with
the errorDestination build
descriptor option.

Date 8

Character

Date of the transaction
from the I/O PCB
(MM/DD/YY).

Time 8

Character

Time of the transaction
from the I/O PCB
(HH:MM:SS).

IBM Enterprise Developer Server Guide for z/OS

Table 22. ERRDEST IMS Message Queue (continued)

Field Length in Bytes Type of Data Description

NLS 3 The value specified for the
targetNLS build
descriptor option

Message number 9 The message number:

Bytes 1-3
Message File
Identifier (ELA)

Byte 4 Application
Identifier (0)

Bytes 5-8
Message Number

Byte 9 Message Type. A
message type of
’C’ indicates this
record is a
continuation of
the specified
message from a
previous record
in the queue.

Message number

separator (reserved Byte 10 Blank

position)

Message Text Variable Character The text from the message
file with specified message
inserts.

IMS Log Format
shows the format of the information in the IMS log.

Table 23. IMS Log Record

Field Length in Bytes Type of Data Description
Record length 2 Binary The length of the record.
Reserved 2 Binary A reserved field that must

contain binary zeros.

Log ID 1 Character The value specified with
the imsLogID build
descriptor option.

Date 8 Character Date of the transaction
from the I/O PCB
(MM/DD/YY).

Time 8 Character Time of the transaction
from the I/O PCB
(HH:MM:SS).

NLS 3 The value specified for the
targetNLS build
descriptor option

Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems 135

Table 23. IMS Log Record (continued)

Field Length in Bytes Type of Data Description
Message number 9 The message number:
Bytes 1-3

Message File
Identifier (ELA)

Byte 4 Application
Identifier (0)

Bytes 5-8
Message Number

Byte 9 Message Type. A
message type of
’C’ indicates this
record is a
continuation of
the specified
message from a
previous record
in the queue.

Message number

separator (reserved Byte 10 Blank

position)

Message Text Variable Character The text from the message
file with specified message
inserts.

Running the Diagnostic Print Utility

A BMP is provided to print diagnostic information that is written to the message
queue specified by the errorDestination build descriptor option. The JCL needed
to print the diagnostic information is supplied as member ELAMQJUD of
"ELA.VIR2MO.ELA]CL.

The msg-queue identified by the IN parameter is the name of the queue that was
specified in the errorDestination option when the application was generated. See
[“Diagnostic Message Printing Utility” on page 114 for more information.

Printing Diagnostic Information for CICS

136

Diagnostic messages are sent to a transient data queue for CICS transactions. A
diagnostic print utility is provided to print messages written to a transient data
queue. Optionally, as specified by the diagnostic controller utility, the diagnostic
information can also be written to an CICS journal data set.

CICS Diagnostic Message Layout

shows the format of the information in each error message record written
to a transient data queue or CICS journal.

Table 24. Diagnostic Message Layout

Field Length in Bytes Type of Data Description

SYSID name 4 Character The name of the CICS
system that the error
message was created on.

IBM Enterprise Developer Server Guide for z/OS

Table 24. Diagnostic Message Layout (continued)

Field Length in Bytes Type of Data Description

TRANID name 4 Character The name of the CICS
transaction code that
started the logical
unit-of-work.

Task identifier 8 Character The task identifier
assigned by CICS to each
transaction instance that is
processed. This number is
reset to 0 when CICS is
cold-started. This is taken
from EIB field EIBTASKN.

ERRDEST name 4 Character The name of the CICS
transient data queue. This
field is blank if the record
is written to the CICS

journal.

Date 8 Character Date of the transaction
(MM/DD/YY)

Time 8 Character Time of the transaction
(HH:MM:SS)

NLS 3 Character The value specified for the

targetNLS build
descriptor option

Message number 9 Character The message number:

Bytes 1-3
Message File
Identifier (ELA)

Byte 4 Application
Identifier (0)

Bytes 5-8
Message Number

Byte 9 Message Type. A
message type of
'C’ indicates this
record is a
continuation of
the specified
message from a
previous record
in the queue.

Message number

separator (reserved Byte 10 Blank

position)

Message text 110 Character The text from the message
file with specified message
inserts

Running the Diagnostic Print Utility

Use the ELAU transaction to print the messages routed to a transient data queue.
You enter the following information on the ELAU panel:

Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems 137

Error destination queue name
The name of the queue containing the messages. The default name is
ELAD.

JES spool file information
The node, user ID, and class to which the messages on the queue are
spooled. The default class is A and the default node and user ID are *
which routes the printed messages to the local spool printer.

Clear queue
Y specifies the queue is deleted after its contents are printed. N specifies
the messages are left in the queue after they are printed. Y is the default
value.

See [“Diagnostic Message Printing Utility” on page 114|for more information about
running the diagnostic print utility.

Analyzing Errors Detected while Running a Program

138

Use the error messages and diagnostic messages to determine the cause of the
problem. If the error is detected by another product (for example, COBOL), check
the information in [Chapter 24, “Common System Return Codes for z/0OS Systems”]
and [Chapter 26, “Codes from Other Products for z/OS Systems”|and the
documentation for the other product. the cause

For environmental debugging, you can use the run-time diagnostic facility (EDF)
for CICS programs. In addition, if you use the TEST COBOL compile option, you
can use the COBOL debugging facilities.

Refer to the CICS and COBOL manuals for your versions of these products for
additional information on their debugging facilities.

If you get a JCL error for the run-time JCL, check the generation output for any
programs involved for any error messages related to JCL generation. In addition,
ensure the tailoring that was done on the JCL templates and EGL build scripts is
correct. Also check any changes made to customize the sample runtime JCL.

When abends occur, the problem determination might require assistance from the
IBM Support Center. In this case, be prepared to provide IBM with the following
information:

* Enterprise Developer print of the problem program
* COBOL source file created using the commentLevel=1 build descriptor option.
* Formatted dump

* Enterprise Developer Server diagnostic information written to either the error
diagnostic queue or listed in the printout

* CICS journal

IBM requests a COBOL debugger trace listing only if the information is needed for
problem determination. IBM will give you the information on how to specify the
trace options if the information is necessary.

IBM Enterprise Developer Server Guide for z/OS

Chapter 21. Finding Information in Dumps

Information about the problem program can be determined by finding the address
of the Enterprise Developer Server control block in a dump.

Enterprise Developer Server ABEND Dumps

If the dump code is 1600, 1602, or ELAE, the dump was initiated because
Enterprise Developer Server detected an error. Register 2 at ABEND points to the
Enterprise Developer Server control block. Register 4 points to a linked list of
messages formatted as shown in

Table 25. Registers when a SNAP dump is taken or a Enterprise Developer Server ABEND
occeurs.

Reg. Value

2 Points to Enterprise Developer Server control block. At offset 272 (hexadecimal
offset 110) from the start of the Enterprise Developer Server control block is the
address of the initial program profile block, which provides information about
the first generated program that was started. At offset 276 (hexadecimal offset
114) from the start of the Enterprise Developer Server control block is the
address of the current program profile block, which provides information about
the Enterprise Developer program that was running at the time of the abend.

4 Points to the message buffer that contains all messages.

The following diagram shows the format of the message buffer that contains all the
messages in the dump.

Register 4 ——» | Pointer to Next Message Message 1 Text

|

Pointer to Next Message Message 2 Text

.

Pointer to Next Message Message n Text

Il

Figure 35. Message Buffer Format

COBOL or Subsystem ABEND Dumps

If the dump is not a Enterprise Developer Server abend, you can use the following
method to locate the Enterprise Developer Server control block:

© Copyright IBM Corp. 1994, 2005 139

* On CICS systems, locate the CICS Task Work Area (TWA) in the dump. Locate
the string *EZERTS-CONTROL* in the TWA. This string is the identifier at the
start of the Enterprise Developer Server control block. The * and - characters
might be converted to periods in a formatted dump.

* On other systems, locate the string ELARHAPP followed immediately by a
program name. ELARHAPP is the identifier at the start of a program profile
block. The four-byte address at hex offset 20 in the program profile is the
Enterprise Developer Server control block address. If 0, the program might not
yet be activated. Do a search for another ELARHAPP control block followed by
a program name.

For information in the program profile control Block, see [Table 27

Information in the Enterprise Developer Server Control Block

The following information is in the Enterprise Developer Server control block:

Table 26. Information in the Enterprise Developer Server Control Block

Offset in hex Length in bytes Contents

0 16 Control block identifier -
EZERTS-CONTROL

104 4 CICS EIB Pointer

110 4 Program profile address for current program

114 4 Program profile address for initial program

118 8 Terminal identifier

120 8 User identifier

128 8 Transaction identifier

150 12 DLILib.psbData

1CC 18 Current process or group

Information in an Application

140

Each generated COBOL program contains a profile control block in COBOL
working storage initialized with information about the program. The first eight
bytes contain an eye-catcher constant identifying whether the program is an
application. The second eight bytes contain the program name. Other information
in the profile block is shown in the following table:

Table 27. Locator Format for Generated COBOL Program Dumps

Offset in hex Length in hex Contents
00 08 Program type identifier:
ELARHAPP — Application program
08 08 Program name
10 08 Program generation date (MM/DD/YY)
18 08 Program generation time (HH:MM.:SS)
20 04 Enterprise Developer Server control block
address
24 02 Generator version
26 02 Generator release
28 02 Generator modification level

IBM Enterprise Developer Server Guide for z/OS

Table 27. Locator Format for Generated COBOL Program Dumps (continued)

Offset in hex Length in hex Contents
2A 10 Reserved
34 08 Target run-time system

How to Find the Current Position in a Program at Time of Error

The Enterprise Developer Server control block identifies the currently running
program and function at the time of the error ([Table 26 on page 140). Associated
error messages identify the Enterprise Developer statement number for errors
detected by Enterprise Developer Server that need statement identification to
resolve the problem. For performance reasons, the generated COBOL program does
not keep track of the Enterprise Developer statement number for each generated
statement. If a program exception occurs in a generated program, you can
determine the Enterprise Developer statement number by finding the COBOL
statement that was not successful in a COBOL program listing that contains the
Enterprise Developer statements generated as comments.

Chapter 21. Finding Information in Dumps 141

142 1BM Enterprise Developer Server Guide for z/OS

Chapter 22. Enterprise Developer Server Trace Facility

The Enterprise Developer Server trace facility can be used by the IBM Support
Center to aid in problem determination, or by the program user to trace program
activity.

There are two levels of tracing available:
* Enterprise Developer program source-level tracing
* Enterprise Developer Server run-time level tracing

With source-level tracing, you can request traces of Enterprise Developer
statements, traces of the data, and error codes after every SQL call in a program,
except SQL calls made with the SQLEXEC process option. Source-level tracing is
enabled with the use of the sqllOTrace, sqlErrorTrace, and statementTrace build
descriptor options. Source-level tracing is activated in the run-time environment by
specifying trace filter criteria. See [“Activating a Trace” on page 144|for more
information on activating traces.

With run-time level tracing, you can request a data stream trace, a Enterprise
Developer Server internal dump trace, or a service routine trace. Run-time level
tracing does not require the use of a build descriptor option. Run-time level tracing
is activated in run-time environment by specifying trace filter criteria. See
[“Activating a Trace” on page 144| for more information on activating traces.

Use these functions only with the assistance of the IBM Support Center. If you use
these functions without assistance, large amounts of trace output might be
produced based on trace option selection.

Enabling Enterprise Developer Program Source-Level Tracing with
Build Descriptor Options

You must specify the sqllOTrace, sqlErrorTrace, and statementTrace build
descriptor options in order to get source-level trace output.

The Enterprise Developer preprocessor validates the build descriptor option and its
parameters. Enterprise Developer creates the necessary COBOL code to accomplish
the type of tracing that you request.

The trace build descriptor options are sqllOTrace, sqlErrorTrace, and
statementTrace. When using these options, you must specify a value of YES or NO.
Each of these build descriptor options tells the COBOL generator whether or not to
generate code to allow execution time tracing of a particular aspect of execution -
SQL I/0, SQL Errors, and EGL statement execution path.

Note: These options are intended for the use of support personnel and should
only be used when a trace is requested as part of a support effort. Normal
application debugging should be done through the use of the EGL
Debugger.

© Copyright IBM Corp. 1994, 2005 143

Activating a Trace

144

Tracing is activated during run time either by using the ELAZ transaction in the
CICS environment.

Activating a Trace Session for CICS

A utility is supplied to activate tracing in the CICS environment. To start the
utility, enter the utility transaction code, ELAZ. The utility transaction must start
prior to running the transaction to be traced.

The ELAZ transaction must run in the same region as the transactions to be traced.
In CICS, enter the ELAZ transaction and the transaction to be traced from
terminals attached to the same CICS region.

shows the initial panel for the ELAZ transaction that enables you to
specify which transactions are to be traced. You use a secondary panel to specify
filter criteria for a specific transaction that control what information is traced for
that transaction.

~
ELAZO1 Enterprise Developer Server
Trace Transaction Selection
Specify the transaction you want to trace; then press Enter.
To select specific programs and services for tracing, place the cursor
on a transaction name and press F4.
Transaction codes or initial program names
\FNTER F1=HELP F3=EXIT F4=FILTER F9=REFRESH F10=STOP TRACE)

Figure 36. Enterprise Developer Server Trace Transaction Selection Panel

Enterprise Developer Server then presents the panel shown in [Figure 37 on page
for trace filter selection:.

IBM Enterprise Developer Server Guide for z/OS

ELAZ02 Enterprise Developer Server
Trace Filter Selection

Transaction code or Initial Program

Fill in the appropriate fields, then press Enter.

3270 Data Stream....... N APP Statement Trace..... N

Terminal ID............ SQL/I0 Trace.....eeeen.. N

Trace to File.......... N SQL/ERR Trace........... N

EDS IDUMP Trace........ N

FILENAME ELATOUT NODE * USERID EZEUSRID CLASS A FORM =
Programs

Services

\\ENTER F1=HELP F3=RETURN F9=REFRESH

Figure 37. Enterprise Developer Server Trace Filter Selection Panel

The filter criteria include the following:

3270 Data Stream (Y or N)
Specifies whether to trace 3270 data streams

If yes (Y), the 3270 data streams built or received by Enterprise Developer

Server are traced. The default is no (N).

Terminal ID
Specifies a terminal identifier

If specified, only transactions initiated from that terminal are traced. If not

specified, service requests from any terminal are traced.

Trace to File (Y or N)
Specifies whether the trace output goes to a file

If yes (Y), the trace output of Enterprise Developer Server is sent to the

ELAT transient data queue in CICS. This trace is also written to an
in-storage wrap-around trace buffer.

If no (N) the trace output goes to an in-storage wrap-around trace buffer.
The size of this trace buffer is defined during customization of Enterprise

Developer Server.

Y must be specified if you specify Y (yes) for the SQL/IO Trace or

SQL/ERR Trace options. All trace output for SQL/IO and error tracing is

sent to a file, not to the in-storage wrap-around trace buffer.

EDS IDUMP Trace (Y or N)

Specifies whether to dump Enterprise Developer Server internal storage

areas

If yes (Y), the trace facility provides dumps of certain Enterprise Developer

Server internal storage areas. The default is no (N), no internal storage

dumps.

APP Statement Trace (Y or N)

Specifies whether to trace Enterprise Developer statements in a program

Chapter 22. Enterprise Developer Server Trace Facility

145

If yes (Y), the trace facility provides the process name and the statement
for each Enterprise Developer statement that the program processes.
Specify statementTrace=YES to enable this type of tracing. The default is no
(N).

SQL/IO Trace (Y or N)
Specifies whether to trace SQL/IO

If yes (Y), the trace facility provides traces of the data and error codes on
the return from the SQL call. The Enterprise Developer SQL process name,
the process option, the process object, the SQL function name, and the
Enterprise Developer data item name, length, type, and contents are given.
Specify statementTrace=YES to enable this type of tracing. The default is no
(N).

SQL/ERR Trace (Y or N)
Specifies whether to trace SQL error information

If yes (Y), the trace facility provides traces of the error information that
comes back from SQL on every database call. The SQLCODE, SQLERRP,
SQLSTATE, SQLWARN, SQLERRD, SQLEXT, and SQLERRMC codes are
given. Specify statementTrace=YES to enable this type of tracing. The
default is no (N).

FILENAME
The system resource name for the trace output. The default is ELATOUT.

NODE
1 to 8 characters that specify the system node ID. The default is the current
system node ID.

USERID
1 to 8 characters that specify the user ID. The default is the value of the
EZEUSRID special function word.

CLASS
A single character that specifies the print class. The default is A.

FORM
1 to 4 characters that specify the form number for print output. The default
is your location’s standard form.

Applications
Specifies whether to limit the trace to certain application programs or print
services programs

If specified, only the requested programs are traced.

Services
Specifies whether to limit the trace to certain services

If specified, only the requested services are traced. Otherwise all service

numbers are traced if the other criteria are met.

Note: The entry to ELARSINI (initialization service) and the exit from
ELARSTRM (cleanup service) are not traced. ELARSINI initializes
the trace facility. ELARSTRM ends the trace facility.

If you are running a trace to aid in problem determination, enter the filter criteria
as directed by the IBM support center.

146 1BM Enterprise Developer Server Guide for z/OS

Activating a Trace Session for z/0S Batch

Tracing is activated by providing trace filters in a preallocated data set with the
DD name ELATRACE before starting the program or job to be traced. ELATRACE
contains control statements which control the programs and events to be traced.
The attributes for the data set are LRECL=80, DSORG=PS, and RECFM=FB. If the
ELATRACE data set is empty or allocated as DD DUMMY, all services are traced,
data streams are not traced, and SQL I/O, SQL errors, and program statement are
not traced even if enabled through sqlIOTrace, sqlErrorTrace, or statementTrace
build descriptor options. shows the correct syntax for the trace control
statements.

:FILTER DATASTREAM=Y [N
:FILTER TRACETOFILE=Y]N
:FILTER APPSTMT=Y|N ~
:FILTER SQLIO=Y|N ~
:FILTER SQLERR=Y]N
:FILTER IDUMP=Y|N
:APPLS -

' [name]

:EAPPLS
:SERVICES

[service number]

:ESERVICES
:EFILTER

Figure 38. ELATRACE Data Set Entries

Notes:
1. Only one program name or service number can be entered on each line.

2. The :FILTER and :EFILTER tags are required if any other tags are included in
the ELATRACE data set.

3. More than one filter can be specified on a line. The filters must be separated by
0 or more blanks. The example below shows sample :FILTER statements that
are valid and equivalent:

:FILTER APPSTMT=Y
:FILTER SQLERR=Y

:FILTER APPSTMT=YSQLERR=Y

:FILTER APPSTMT=Y SQLERR=Y

:FILTER APPSTMT=Y SQLERR=Y
The filters cannot be continued on the next line. The statement shown below is
not valid:
:FILTER APPSTMT=Y SQLERR=
Y

The control card tags and attributes that control filtering have the following
meaning:

Chapter 22. Enterprise Developer Server Trace Facility 147

148

:FILTER

:APPLS

Options controlling what information is traced and where trace
data is written

The following attributes can be used with the :FILTER statement:
* DATASTREAM=Y IN

If DATASTREAM=Y is specified, the 3270 data streams built or
received by Enterprise Developer Server are traced. The default
value is N, no data stream tracing.

* TRACETOFILE=Y IN

If TRACETOFILE=Y is specified, the trace output is directed to
the preallocated data set named ELATOUT in addition to being
directed to an in-storage wrap-around trace buffer.

If TRACETOFILE=N is specified, the trace output goes to an
in-storage wrap-around trace buffer. The size of this trace buffer

is defined during customization of Enterprise Developer Server.
The default for the TRACETOFILE option is N.

TRACETOFILE=Y must be specified if SQLIO=Y or SQLERR=Y
are specified. All trace output for SQL I/O and SQL errors is
directed to the ELATOUT data set, not to the in-storage
wrap-around trace buffer.

* APPSTMT=YIN

If APPSTMT=Y is specified, the trace facility provides the
process name and the statement for each Enterprise Developer
statement that the program processes. You must use the
statementTrace="YES" build descriptor option to enable this
type of tracing. The default for the APPSTMT option is N.

+ SQLIO=YIN

If SQLIO=Y is specified, the trace facility provides traces of the
data and error codes on the return from the SQL call. The
Enterprise Developer SQL process name, the process option, the
process object, the SQL function name, and the Enterprise
Developer data item name, length, type, and contents are given.
You must use thesqlIOTrace="YES" build descriptor option to
enable this type of tracing. The default for the SQLIO option is
N.

« SQLERR=YIN

If SQLERR=Y is specified, the trace facility provides traces of the
error information that comes back from SQL on every database
call. The SQLCODE, SQLERRP, SQLSTATE, SQLWARN,
SQLERRD, SQLEXT, and SQLERRMC codes are given. You must
use the sqlErrorTrace="YES" or the sqlIOTrace="YES" build
descriptor option to enable this type of tracing. The default for
the SQLERR option is N.

* IDUMP=YIN

If IDUMP=Y is specified, the trace facility provides dumps of
certain Enterprise Developer Server internal storage areas. The
default for the IDUMP option is N, no internal storage dumps.

Application program names or print service program names

If program names are specified, only the specified programs are
traced. Otherwise service requests from each generated program
are traced. Up to 16 program names can be specified.

IBM Enterprise Developer Server Guide for z/OS

:SERVICES Service numbers

If service numbers are specified, only those specific services are
traced. To trace all service numbers, 999 must be specified.
Otherwise, up to 32 service numbers can be specified.

Note: The entry to ELARSINI (initialization service) and the exit
from ELARSTRM (cleanup service) are not traced.
ELARSINI initializes the trace facility. ELARSTRM ends the
trace facility.

Deactivating a Trace Session

To stop all trace activity for CICS, use the ELAZ transaction to delete the
transaction codes from the list of transactions to be traced by using the F10
function key. When a transaction ends and is subsequently restarted, tracing does
not start if the transaction code no longer appears in the transaction list.

To stop tracing in z/OS batch, cancel the program and remove the ELATRACE and
ELATOUT DD cards from the run-time JCL.

Printing Trace Output

If the trace output is not directed to a file for the CICS environment, trace output
is written to a wrap-around trace buffer in memory. The trace output can be seen
in dumps taken when programs end abnormally.

Printing the Trace Output in CICS

Trace output for CICS is routed to an extrapartition transient data queue which is
directed to a data set named ELATOUT if you direct the trace output to a file by
specifying yes (Y) on the ELAZ02 panel. The ELATOUT data set has the attributes
of LRECL=133, RECFM=FBA. The file can be printed as directed on the DD
statement for ELATOUT in the CICS startup JCL.

Printing the Trace Output in zZ/OS Batch

Trace output is directed to the ELATOUT DD statement and is printed as directed
on the DD statement.

Reporting Problems for Enterprise Developer Server

For instructions on reporting problems, visit the following Web site, click Support,
and click Submit and track problems:

http:/ /www.ibm.com /software/awdtools/studioenterprisedev

Chapter 22. Enterprise Developer Server Trace Facility 149

150 1BM Enterprise Developer Server Guide for z/OS

Chapter 23. Common Messages during Preparation for z/OS
Systems

This chapter contains some error messages from other products. It is not a
complete list. For a complete explanation of product messages, refer to the
documentation provided with that product.

Common Abend Codes during Preparation

Only the most frequently occurring preparation abend codes are listed in this
section. If you receive any other abend code or need a more complete explanation
of one of the abend codes, refer to the documentation for that product.

System B37
The temporary work space is filling up. The WSPC parameter is used in
the build scripts to prepare generation outputs specifies the amount of
temporary space allocated. The build script names used by default are
fdacl, fdatcl, and fdaptcl, depending on whether you are preparing a CICS
server with no SQL access, or a CICS server with SQL access.

To solve the abend, use a symbolic descriptor option named WSPC and set
it to a larger value.

System 213, or System 230
Two program developers tried to update the directory of a PDS at the
same time. Submit the job again.

This problem can also be prevented by specifying ENQ=YES for the DD
statement for the PDS for which the 213 occurred. However, this serializes
preparation of servers when their preparation outputs are placed in the
same PDS's.

DB2 Precompiler and Bind Messages

Only the most frequently occurring DB2 precompiler and bind messages are listed
in this section. If you receive other messages that start with DSN or if you need a
more complete explanation of one of the messages, refer to the documentation for
your release of DB2.

DSNX100I BIND SQL WARNING 0000 IS NOT DEFINED
where xxxxxxx is the table name.

Explanation: One or more DB2 tables have not been

created. The tables that do not exist will be identified in

an explanation associated with the message by:

User response: Create the necessary DB2 tables and
synonyms.

COBOL Compilation Messages

Only the most frequently occurring COBOL compilation messages are listed in this
section. If you receive other compilation messages that start with IGY or if you
need a more complete explanation of one of the messages, refer to the
documentation for your release of COBOL.

© Copyright IBM Corp. 1994, 2005 151

IGYPS20151 The paragraph or section prior to
paragraph or section
EZEMAIN-PROCESS did not contain
any statements.

IGYPS2023I Paragraphs prior to section
EZEMAIN-PROCESS were not
contained in a section

Explanation: These two messages occur if your
program has been processed by the DB2 precompiler.

User response: They are normal messages that you
can ignore.

IGYOP3091W Code from "?” to "?” can never be
executed, and was therefore discarded.

IGYOP3093W The "PERFORM" statement at "?”
cannot reach its exit.

IGYOP3094W There may be a loop from the
"PERFORM" statement at "?" to itself.
"PERFORM" statement optimization was
not attempted.

Explanation: These messages occur if your program
has been processed using the OPTIMIZE compiler
option.

User response: These are normal messages that you
can ignore.

IGYPA3013W Data item "?" and "?" had overlapping
storage. An overlapping move will occur
at execution time.

Explanation: This message occurs if your program
attempts to assign the value of a data item to the same
data item.

User response: You might want to check that you
really intended to do this.

IGYPG3113W Truncation of high-order digit
positions may occur due to precision of
intermediate results exceeding 30.

Explanation: This message might occur if your
program was generated with the math=COBOL build
descriptor option.

User response: You might want to change the
arithmetic expression identified in the message. For
example, you could split the expression into several
smaller ones.

If you do not change the expression, ensure that the
intermediate values will fall within the precision that
COBOL supports. Refer to the programming guide for
your release of COBOL for more information about the

152 1BM Enterprise Developer Server Guide for z/OS

precision of intermediate results.

IGYSC2025W "EZEPCB-?" or one of its subordinates
was referenced, but "EZEPCB-?" was a
"LINKAGE SECTION" item that did not
have addressability. This reference will
not be resolved successfully at
execution.

Explanation: This warning message occurs when PCBs
or any data structure is generated in the linkage
section, but is not used in a statement.

User response: Ignore the messages and the program
will work correctly.

Chapter 24. Common System Return Codes for z/0S Systems

The information within this chapter is diagnosis, modification, or tuning
information.

Enterprise Developer Server messages might include return codes from databases
or operating systems that are being used. This could include DB2, z/OS VSAM, or
CICS EXEC Interface Block (EIB) codes.

This chapter contains only the most common errors that occur during file input
and output operations.

The return codes included in this chapter are for the following databases and
operating systems:

+ CICS

+ DB2

¢ VSAM

+ COBOL

For details on values returned to the program, see the EGL help topic for the
system variable sysVar.returnCode.

Common SQL Return Codes

Only the most frequently occurring SQL codes are listed in this section. If you
receive other SQL codes or if you need a more complete explanation of one of the
SQL codes, refer to the documentation for your release of DB2.

RC Meaning

100 No rows were found by SQL that meet the search criteria specified in the
WHERE clause of the SQL statement, or if processing in conjunction with a
setting or setupd statement, the end of the selected rows has been reached.
The possible causes are the following:

* The key value(s) were not moved correctly to the host variable(s) used
in the WHERE clause.

* No rows meet the search criteria specified in the WHERE clause.

* Enterprise Developer stripped trailing blanks for the character host
variables used in a LIKE predicate in the WHERE clause. You can use
the sqllOTrace=YES build descriptor option to enable tracing of the data
sent to SQL and the data coming back from SQL. See thapter 22,|
[“Enterprise Developer Server Trace Facility,” on page 143 for more
information about using the Enterprise Developer Server trace facility.

-301, -302, -303, -304
The Enterprise Developer data item definition does not match the
definition of the same column in the DB2 table. This can be caused by
defining a column as variable length, but not defining the data item in
Enterprise Developer with a variable-length SQL code. This can also be
caused by specifying a different length to Enterprise Developer from what
was defined in the DB2 table.

Make the necessary changes in the Enterprise Developer data item
definition to match the DB2 table and generate the program again.

© Copyright IBM Corp. 1994, 2005 153

154

-302

-805

-818

Refer to the program directory in the appendix of this manual for
information about installing a DB2 work database.

The DBRM for the current program was not bound as part of the current
DB2 plan. Possible causes are:

¢ The BIND process was never run for the program.
* An incorrect plan name was specified at startup.

* The plan name specified in the RCT on CICS did not match the plan
name used in the BIND process.

* All programs that run together under a single transaction or job step
must be bound into the same DB2 plan.

Look at the message inserts to see what DB2 returned as the program
name and plan name. If these are what you expect, review the steps used
for preparing the program.

The DB2 precompiler-generated time stamp in the load module is different
from the database request module (DBRM) used on the most recent BIND
for the PLAN being used. Both of these precompiler outputs must match
and one of them is not from the most recently-run precompile. This
typically happens when the precompile, link-edit, and bind process is run
more than once and either the DBRM library or the load library used for
the load module is changed. This creates the opportunity to pick up the
old load module at run time if the old load library is first in the search
sequence at run time. Alternatively, the BIND process might be using an
old DBRM library that contains an old copy of that member.

Ensure that you are running with the most recent copy of the load module
and that you are using the same DBRM library on the precompile and
BIND steps. On CICS ensure that the latest copy of the load module has
been picked up by issuing an CICS NEWCOPY command or by using the
Enterprise Developer Server new copy utility.

-911,-913

-922

A deadlock condition occurred. Possible causes are:

* The isolation level was set for repeatable read.

* There were long periods of time between commit points.

¢ In EGL, the program issued a get statement with the hold option, but
failed to issue a related replace statement. In VisualAge Generator, the
program issued an update without a replace.

Note: The program should be coded to handle these conditions.

Connection authorization was not successful. The type of error is indicated
in the SQL error message. Some typical causes are not granting authority
for the DB2 plan or not creating a synonym for one or more of the DB2
tables.

Make the necessary changes to provide authorization to the DB2 plan and
then run the program again. You might also want to refer to the
documentation for your release of DB2 for additional causes of the
authorization error.

IBM Enterprise Developer Server Guide for z/OS

Common DL/l Status Codes

Only the most frequently occurring DL/I status codes are listed in this section. If
you receive other DL/I status codes or if you need a more complete explanation of
one of the DL/I status codes, refer to the application programming manual for
your release of IMS.

Code
AD

Al

AJ

AK

AM

GA

GB

GD

GE

GK

GP

II

Meaning

The function parameter on the call is not valid. If the function code is
correct, the status code can be from an I/O or alternate PCB for a database
call. You might have a mismatch between the PSB you defined in
Enterprise Developer and the IMS PSB definition.

A data management open error occurred. Either no DD statements were
supplied for logically related databases, or the DD name is not the same as
the name specified on the DATASET statement of the DBD. The segment
name area in the DB PCB has the DD name of the data set that could not
be opened.

The format of one of your SSAs is not valid. Either the SSA contains a
command code for that call that is not valid, or the SSA uses an R, S, W, or
M command code for a segment for which there are no subset pointers
defined in the DBD.

An SSA contains either a field name that is not valid or a name that is not
defined in the DBD, or the Enterprise Developer data item for DL/I
segment does not match the name defined to DL/L

The call function is not compatible with the processing option in the PCB,
the segment sensitivity, the transaction-code definition, or the program

type.

In trying to satisfy an unqualified GN or GNP call, DL/I crossed a
hierarchic boundary into a higher level.

In trying to satisfy a GN, DL/I reached the end of the database.

The program issued an ISRT that was not qualified for all levels above the
level of the segment being inserted. The segment might have been deleted
by a DLET using a different DB PCB.

DL/I is unable to find a segment that satisfies the segment described in a
get call.

DL/I has returned a different segment type at the same hierarchic level for
an unqualified GN or GNP.

The program issued a GNP when parentage is not established, or the
segment level specified in the GNP is not lower than the level of the
established parent.

The program issued an ISRT that tried to insert a segment that already
exists in the database.

Common VSAM Status Codes

Only the most frequently occurring VSAM codes are listed in this section. If you
receive other VSAM codes or if you need a more complete explanation of one of
these values, refer to the z/OS VSAM Administration: Macro Instruction Reference
manual.

Chapter 24. Common System Return Codes for z/OS Systems 155

156

OPEN request type

Code
64

74

80

94

98

A0

A8

BC

Co
C4

Meaning

Warning message: OPEN encountered an empty alternate index that is part
of an upgrade set.

This is a warning message indicating the data set was not properly closed.
Either the implicit verify for the OPEN was unsuccessful, or the user
specified that the implicit verify should not be attempted for the OPEN. A
previous VSAM program might have ended abnormally. The VERIFY
command of Access Method Services can be used to properly close the
data set.

The DD statement for this access method control block is either missing or
not valid.

Either no record for the data set to be opened was found in the available
catalog or catalogs, or an unidentified error occurred while VSAM was
searching the catalog.

Security verification was not successful; the password specified in the
access method control block for a specified level of access does not match
the password in the catalog for that level of access.

The operands specified in the ACB or GENCB macro are inconsistent either
with each other or with the information in the catalog record. You might
have attempted to open an empty data set for input only (SCAN).

The data set was not available for the type of processing you specified, or
an attempt was made to open a reusable data set with the reset option
while another user had the data set open.

The data set indicated by the access method control block is not a valid
type of data set for specification by an access method control block. You
might have used a sequential data set as the physical file, but specified
VSAM or VSAMRS as the file type for resource association when you
generated the program.

An unusable data set was opened for output.

Access to data was requested using an empty path.

CLOSE request type

Code
04
88

94

Meaning
The data set indicated by the access method control block is already closed.

Not enough virtual storage was available in the address space of your
program for the work area required by CLOSE.

An unidentified error occurred while VSAM was searching the catalog.

GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

Note: The following occur when register 15=8(8).

Code Meaning

08 An attempt is made to store a record with a duplicate key, or there

is a duplicate record for an alternate index with the unique key
option.

IBM Enterprise Developer Server Guide for z/OS

6C

70
Co

The RECLEN specified was one of the following:

* Larger than the maximum allowed

* Equal to 0

e Smaller than the sum of the length and the displacement of the
key field

* Not equal to the record(slot) size specified for a relative record
data set

The KEYLEN specified was too large or equal to 0.

A relative record number that is not valid was encountered.

COBOL Status Key Values

This shows the most frequently occurring COBOL status key values. If you receive
other status key values or if you need a more complete explanation for one of
these values, refer to the application programming language reference for your
release of COBOL.

Status Key
10
22

23

35

39

44

96

Explanation
The end of a file was reached.

An attempt was made to write a record with a key that duplicated
one that was already in the file.

Record not found. This can also be caused by an optional file not
being allocated.

No DD statement was included in the JCL. This can occur if the
program calls another program or transfers to another program
using a DXFR statement, but the DD statements for the second
program have not been added to the sample runtime JCL for the
main program.

The physical file that you specified during resource association
does not match the file characteristics that you specified during
record definition. The file characteristics include file organization
(sequential, relative or indexed), the prime record key, the alternate
record keys, and the maximum record size.

A variable-length record was written that is not valid. This can
occur if the value in the number of occurrences field is larger than
the maximum value, or the value in the record length item field is
larger than the maximum length of the record.

No DD statement was included in the JCL for a VSAM file.

Chapter 24. Common System Return Codes for z/OS Systems 157

158 1BM Enterprise Developer Server Guide for z/OS

Chapter 25. Enterprise Developer Server Return Codes and
Abend Codes for z/OS Systems

The information within this chapter is diagnosis, modification, or tuning
information.

Only the most frequently occurring system abend codes are listed in this section. If
you receive other abend codes or if you need a more complete explanation of one
of the codes, refer to the z/OS messages and codes manual for your release of
z/0S.

Return Codes

This section contains a listing of codes set by Enterprise Developer Server and
returned in the COBOL return code of a program.

If a generated program completes normally, the COBOL return code is set to the
value in the sysVar.returnCode. This code must be less than or equal to 512.
Return codes greater than 512 are reserved for Enterprise Developer Server. The
return codes set by Enterprise Developer Server are:

693 The program ended due to an error detected by Enterprise Developer
Server. The error description is reported as described inlE hapter 20,|
[“Diagnosing Problems for Enterprise Developer Server on z/OS Systems.”]

4093 A program generated using Enterprise Developer Server Version 1.2 ended
due to an error detected by Enterprise Developer Server.

If LE detects an error and returns to the operating system, the LE return code
modifier (2000 - error, 3000 - severe error, or 4000 - critical error) is added to the
user or Enterprise Developer Server return code.

ABEND Codes

Enterprise Developer Server reports errors by error messages whenever possible.
ABEND:s are issued only in situations where initialization has not progressed to
the point where messages can be issued or when the error messages cannot be
written to their normal destination.

CICS Environments

For CICS, you can control whether or not a core dump is taken by using the
diagnostic controller utility. If a core dump is taken, the dump code is ELAD. See
[“Controlling Error Reporting in CICS” on page 131| for information on the
diagnostic controller utility.

ELA1 This abend code should never be received. However, if register 1 in a
dump contains "ELA1", then a database manager or subsystem interface
module was not linked with a Enterprise Developer Server program at
product installation. Registers 3 and 4 in the dump usually contain the
name of the stub program. The abending load module is the module that
was not linked correctly.

ELA2 The Task Work Area (TWA) does not exist or is not long enough to be used
by Enterprise Developer Server. The TWA length must be greater than or

© Copyright IBM Corp. 1994, 2005 159

160

ELA3

ELA4

ELA5

ELA6

ELA7

ELA9

ELAB
ELAC

ELAE

equal to the sum of 1024 plus the twaOffset (TWA offset) build descriptor
option specified when the initial program in the transaction was generated.

Use the TWASIZE parameter in the transaction definition to define a TWA
with an adequate length for the transaction.

When this is a client/server program set, ensure that the CICS mirror
transactions on the server CICS have a TWA size at least equal to the TWA
size specified for the Enterprise Developer transaction on the client system.

Load for module ELARSCNT was not successful. Enterprise Developer
Server has not been installed correctly.

Ensure the CICS region can gain access to the Enterprise Developer Server
run-time library and that module ELARSCNT is defined in the program
definition.

When this is a client/server program set, ensure that the security
level-checking parameters (RSL and RSLC) for the CICS mirror transactions
on the server CICS are the same as those specified for the Enterprise
Developer transaction on the client system.

Load for module ELARPRTX was not successful. Enterprise Developer
Server has not been installed correctly.

Ensure the CICS region can gain access to the Enterprise Developer Server
run-time library and that module ELARPRTRX is defined in the program
definition.

Load for module ELARPRTC was not successful. Enterprise Developer
Server has not been installed correctly.

Ensure the CICS region can gain access to the Enterprise Developer Server
run-time library and that module ELARPRTC is defined in the program
definition.

The dynamic storage stack used for working storage for Enterprise
Developer Server modules was exhausted and Enterprise Developer Server
could not continue.

This problem should not occur. Report the problem to the IBM support
center.

A GETMAIN was not successful. There was not enough storage for the
program to complete.

Try the program again when the region is less busy or try it again in a
larger region.

Load or link for a Enterprise Developer Server module was not successful.
Enterprise Developer Server has not been installed correctly. Use CEDF to
determine the module name. Look for a PGMIDERR on a CICS LOAD or

CICS LINK command.

Ensure that the CICS region can gain access to the Enterprise Developer
Server run-time library and the module name being loaded is defined in
the PPT.

A call was made to a main program, which is not allowed.

Enterprise Developer Server has detected a FREEMAIN request that is not
valid. Collect the dump and contact the IBM Support Center for assistance.

A generated program has ended because of a serious error. This occurs for
one of the following reasons:

IBM Enterprise Developer Server Guide for z/OS

 Storage has been corrupted so that a dump is necessary to debug the
abend.

¢ Error handling was unable to write messages to the error destination
queue or to the user at the terminal. The dump is necessary to make the
diagnostic information available. The situation can occur if the error
destination queue specified for the transaction using the diagnostic
controller utility is not defined to CICS. In CICS, if the error destination
queue is defined as an intrapartition queue, this situation occurs when
there is no more space on the intrapartition queue and the error
messages cannot be written.

* A severe error has occurred. Refer to the error destination queue for the

corresponding error messages. The default name is ELAD. The queue
name can be changed using the diagnostic controller utility.

See [“Enterprise Developer Server ABEND Dumps” on page 139 for
information on how to find error messages in the dump on an ELAE
abend.

ELAF ELATSRST has detected one of the following errors:

* ELATSRST was not initiated with a CICS XCTL command (for example,
the restart transaction ID was associated directly to ELATSRST).

* The COMMAREA length on entry was not 0 or 10.

¢ The Enterprise Developer Server portion of the TWA had been
initialized, indicating that a converse was not in process or the
non-Enterprise Developer program uses the TWA and the program was
not generated with the proper TWA offset.

ELAW A program was generated using incompatible versions of COBOL

generators.

IMS, IMS BMP, and z/OS Batch Environments

1600

1601

A generated program has ended because of a serious error. This occurs for
one of the following reasons:

* Storage has been corrupted so that a dump is necessary to debug the
abend.

* Error handling was unable to write messages to the error destination
queue or to the user at the terminal. The dump is necessary to make the
diagnostic information available. In IMS, the situation can occur if the
error destination queue specified using the errorDestination build
descriptor option is not defined to IMS.

* A severe error has occurred. In IMS, refer to the error destination queue
specified using the errorDestination build descriptor option for the
corresponding error messages. In z/OS Batch, refer to the data set
ELAPRINT for the messages.

See [“Enterprise Developer Server ABEND Dumps” on page 139 for
information on how to find error messages in the dump on a 1600 abend.

A database manager or subsystem interface module (for example,
ASMTDLI for DL/I access) was not linked with a Enterprise Developer
Server program at product installation. Registers 3 and 4 in the dump
contain the name of the stub program. The abending load module is the
module that was not linked correctly.

Refer to the Program Directory for Enterprise Developer Server for z/OS for
information on correctly linking the abending load module.

Chapter 25. Enterprise Developer Server Return Codes and Abend Codes for z/OS Systems 161

162

1602

1606

1608

z/OS Batch

1600

1601

1606

1608

A program generated with theimsFastPath="YES" build descriptor option
ended because of a run unit error. The abend is issued to prevent any
further scheduling of the program in error.

See [“Enterprise Developer Server ABEND Dumps” on page 139| for
information on how to find error messages in the dump on a 1602 abend.
Depending on the generation options specified for the program, the
message might also have been written to an error diagnostic message
queue, on the IMS log, or to an ELAPRINT file. See E?hapter 20,|
[“Diagnosing Problems for Enterprise Developer Server on z/OS Systems”|
for more information on Enterprise Developer Server error reporting.

The dynamic storage stack used for working storage for Enterprise
Developer Server modules was exhausted and Enterprise Developer Server
could not continue.

This problem should not occur. Report the problem to the IBM Support
Center.

Enterprise Developer Server has detected a FREEMAIN request that is not
valid. Collect the dump and contact the IBM Support Center for assistance.

A generated program has ended because of a serious error. This occurs for

one of the following reasons:

* Storage has been corrupted so that a dump is necessary to debug the
abend.

* Error handling was unable to write messages to the error destination
queue or to the user at the terminal. The dump is necessary to make the
diagnostic information available.

* A severe error has occurred. Refer to the data set ELAPRINT for the
messages.

See [“Enterprise Developer Server ABEND Dumps” on page 139| for
information on how to find error messages in the dump on a 1600 abend.

A database manager or subsystem interface module was not linked with a
Enterprise Developer Server program at product installation. Registers 3
and 4 in the dump contain the name of the stub program. The abending
load module is the module that was not linked correctly.

Refer to the Program Directory for Enterprise Developer Server for z/OS for
information on correctly linking the abending load module.

The dynamic storage stack used for working storage for Enterprise
Developer Server modules was exhausted and Enterprise Developer Server
could not continue.

This problem should not occur. Report the problem to the IBM Support
Center.

Enterprise Developer Server has detected a FREEMAIN request that is not
valid. Collect the dump and contact the IBM Support Center for assistance.

IBM Enterprise Developer Server Guide for z/OS

Chapter 26. Codes from Other Products for z/0S Systems

The chapter contains lists of common system abend codes, COBOL run-time
messages, LE abend codes, and common run-time messages from CICS.

Common System Abend Codes for All Environments

Only the most frequently occurring abend codes are listed in this section. If you
receive another abend code or if you need a more complete explanation of one of
the abend codes, refer to the System Codes manual for your release of z/OS.

System 0C7

System 806

© Copyright IBM Corp. 1994, 2005

Data exception. The abend occurs when fields defined as decimal
or packed decimal are retrieved from a database and are found to
contain data of a different format.

The abend can also occur if fields that are not initialized are used
in calculations or comparisons. This happens if the program
attempts to read a record from a database and the record is not
found, but the program uses fields in the record anyway. To ensure
that records are initialized, use a SET record EMPTY statement in
the program or specify initAdditional WS and initlORecords as
build descriptor options. Refer to the Enterprise Developer online
help system for additional information on how to initialize records
using a SET record EMPTY statement in the program. Scan the
helps using the phrase SET record EMPTY.

The abend can also occur when SET record EMPTY is used or
when initAdditionalWS and initlORecords are used if one of the
following is true:

* There are redefined records with different data types or variable
tield boundary alignments from the original record.

* The primary working storage record receives a transferred
record that contains different data types or variable-field
boundary alignments from the original record.

Module not found in a library. This can occur if a new version of a
module is put into a load library and is placed in secondary
extents. To avoid this when you allocate load libraries, specify a
large primary allocation and 0 for the secondary allocation. This
insures that if there is enough space for the load module it will be
placed in the primary extent. If there is not enough space, there
will be an abend (for example, a B37 abend for insufficient space)
when you link the module into the load library. Using this
technique detects the space problem during the preparation step
rather than at run time.

In other environments, this can occur if the module is not in a
library defined in your link list, JOBLIB, or STEPLIB concatenation
sequence.

If the missing module name is ELACxxx, the NLS language code
identified by the last 3 characters of the module name is not
installed on the system. This language code was specified with the
targetNLS build descriptor option when the program was
generated.

163

If you try to run an EGL-generated program under Enterprise
Developer Server and cannot load the module ELARSCNT, the
system abends with an 806.

LE Run-time Messages

Only the most frequently occurring LE run-time messages are listed in this section.
If you receive other run-time messages that start with IGZ or if you need a more
complete explanation of one of the messages, refer to the debugging manual for

your release of LE.

IGZ0033S An attempt was made to pass a
parameter address above 16 megabytes

to AMODE(24) program program-name.

Explanation: An attempt was made to pass a
parameter located above the 16-megabyte storage line
to a program in AMODE(24). The called program will
not be able to address the parameter.

Programmer response: If the calling program is
compiled with the RENT option, the DATA(24) option
may be used in the calling program to make sure that
its data is located in storage accessible to an
AMODE(24) program. If the calling program is
compiled with the NORENT option, the RMODE(24)
option may be used in the calling program to make
sure that its data is located in storage accessible to an
AMODE(24) program. Verify that no linkedit, binder or
genmod overrides are responsible for this error.

System action: The application was terminated

IGZ0064S A recursive call to active program
program-name in compilation unit

compilation-unit was attempted.

Explanation: COBOL does not allow reinvocation of
an internal program which has begun execution, but
has not yet terminated. For example, if internal
programs A and B are siblings of a containing program,
and A calls B and B calls A, this message will be
issued.

Programmer response: Examine your program to
eliminate calls to active internal programs.

System action: The application was terminated.

IGZ0066S The length of external data record
data-record in program program-name
did not match the existing length of the

record.

Explanation: While processing External data records
during program initialization, it was determined that
an External data record was previously defined in
another program in the run unit, and the length of the
record as specified in the current program was not the
same as the previously defined length.

Programmer response: Examine the current file and
ensure the External data records are specified correctly.

System action: The application was terminated.

1GZ0075S Inconsistencies were found in
EXTERNAL file file-name in program
program-name. The following file
attributes did not match those of the
established external file: attribute-1
attribute-2 attribute-3 attribute-4

attribute-5 attribute-6 attribute-7

Explanation: One or more attributes of an external file
did not match between two programs that defined it.

Programmer response: Correct the external file. For a
summary of file attributes which must match between
definitions of the same external file, see IBM COBOL
Language Reference.

System action: The application was terminated.

COBOL Run-time Messages

Only the most frequently occurring COBOL run-time messages are listed in this
section. If you receive other run-time messages that start with IGZ or if you need a
more complete explanation of one of the messages, refer to the Debugging and
Run-time Messages Guide for your release of LE.

IGZ033S An attempt was made to pass a
parameter address above 16 megabytes to

AMODE(24) program program-name.

Explanation: An attempt was made to pass a
parameter above the 16-megabyte storage line to a

164 1BM Enterprise Developer Server Guide for z/OS

program in AMODE(24). The called program will not
be able to address the parameter.

1GZ064S A recursive call to active program

program-name in compilation unit

compilation-unit was attempted.

Explanation: COBOL does not allow an internal
program that has started to run, but has not completed,
to be invoked again. For example, if internal programs
A and B are siblings of a containing program, and A
calls B and B calls A, this message will be issued.

I1GZ066S The length of external data record
data-record in program program-name did
not match the existing length of the

record.

Explanation: While processing external data records
during program initialization, it was determined that
an external data record was previously defined in

another program in the run unit, and the length of the
record as specified in the current program was not the
same as the previously defined length.

1GZ075S Inconsistencies were found in
EXTERNAL file file-name in program
program-name. The following file
attributes did not match those of the
established external file: attribute-1
attribute-2 attribute-3 attribute-4 attribute-5

attribute-6 attribute-7

Explanation: One or more attributes of an external file
did not match between two programs that defined it.

Common COBOL Abend Codes

Only the most frequently occurring abend codes are listed in this section. If you
receive another abend code or if you need a more complete explanation of one of
the messages, refer to the debugging manual for your release of LE.

User 4087

This is an LE abend code. If reason code is 7, the error could be

due to the region size not being large enough to run the COBOL

program.

Common IMS Runtime Messages

Only the most frequently occurring IMS runtime messages are listed in this section.
If you receive another runtime message that starts with DFS or if you need a more
complete explanation of one of the messages, refer to the IMS messages and codes

manual for your release of IMS.

DFS0571 REQUESTED BLOCK NOT
AVAILABLE: blockname RC = reason

code

Explanation: The blockname is either the MOD or the
DOF name. If it is the DOF name, the first 2 bytes of
the name are the device type and features printed in
hexadecimal. Refer to the message format services
manual for your release of IMS for an interpretation of
these 2 bytes. If it is a MOD name, it will be the name
of a map group.

User response: If a DOF name was specified, review
the values you specified for the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor
options, and compare them to the IMS system
definition for the terminal that had the problem.

If a MOD name was specified, ensure that you installed
the MFS control blocks into the correct library. If you
specified the mfsUseTestLibrary="YES" build
descriptor option, ensure that you used the /TEST MFS
command. If you specified mfsUseTestLibrary="NO”",
ensure that your system administrator has run the IMS
online change utility to copy in the new format
definitions.

DFS064 NO SUCH TRANSACTION CODE

Explanation: This message is sent to a terminal when
the transaction code requested by the user is not
defined to IMS. An example of a situation that results
in this message is when a program does an XFER with
a map to a transaction that is not defined to IMS. The
map is written to the terminal, but when the user
enters data, the transferred-to transaction cannot be
scheduled because it is not defined to IMS.

User response: Either ensure the transaction code is
defined to IMS or change the XFER statement in the
transferring program to reference the correct IMS
transaction code.

DFS182 INVALID OR MISSING PARAMETER

Explanation: An IMS reserved word (for example,
LTERM) was used as a map name in a /FORMAT
command.

User response: If you need to use the /FORMAT
command to display this map, you need to change the
map name and generate the map group and any
programs that use this map again.

Chapter 26. Codes from Other Products for z/OS Systems 165

DFS5551 TRAN tttttttt ABEND S000,Uaaaa; MSG
IN PROCESS: (up to 78 bytes of data)

time stamp

Explanation: This message indicates that the
transaction running in IMS has ended abnormally.
Typical abend codes are shown below:

DFS27661 PROCESS FAILED

Explanation: IMS issues this message if Enterprise
Developer Server ends the run unit for a transaction
program that was generated with imsFastPath="YES"
and run in an IMS fast-path region.

0778 IMS user abend, indicating that a ROLL

request was issued

1602 Enterprise Developer Server abend because a
rununit error occurred in a program that was
generated with the imsFastPath="YES" build

descriptor option

1600 Enterprise Developer Server abend because an
unrecoverable error occurred in situations
other than rununit errors for programs
generated with imsFastPath="YES"

User response: Press the PA1 or PA2 key to display
the error map that contains error diagnostics that
describe the error. See|Chapter 20, “Diagnosing|
Problems for Enterprise Developer Server on z/0S]
Systems”| for additional information.

(none) Logged off IMS and returned to the
VTAM sign-on screen without any
warning or error message being
displayed.

Explanation: One of the following might have
occurred:

User response: Press the PA1 or PA2 key to display

the error map that contains the error diagnostics that

describe the error.

* The program attempted to display a map with DBCS
or mixed data on a non-DBCS terminal or printer.

* The values specified for the mfsDevice,

DFS2082

Explanation: Enterprise Developer Server has ended
the logical unit of work for a program that was
generated with the imsFastPath="YES" build descriptor

option.

RESPONSE MODE TRAN
TERMINATED WITHOUT REPLY

mfsExtendedAttr, and mfsIgnore build descriptor
options do not match the IMS system definition for
the terminal that had the problem.

User response: Correct the program or generation
options, generate the program and map group again,
and then run the program again.

User response: Press the PA1 key to display the error
map that contains the error diagnostics that describe

the error.

Common IMS Runtime Abend Codes

Only the most frequently occurring IMS abend codes are listed in this section. If
you receive another abend code or if you need a more complete explanation of one
of the abend codes, refer to the messages and codes manual for your release of

IMS.
IMS 259

IMS 462

IMS 778

A program has been compiled with the DATA(31) compile option
and is being run in a non-IMS/ESA environment. The program
should be recompiled with the DATA(24) compile option.

A program was scheduled in a message region, but the program

ended without successfully issuing a get unique for an input

message. This can occur if Enterprise Developer Server detects an

error that would prevent the program from processing properly.

Examples of these errors are:

* The IMS PSB does not match the PSB defined in Enterprise
Developer.

* The print services program is missing.

A ROLL call has been issued Enterprise Developer Server because
of a rununit error or a catastrophic error in the IMS/VS
environment. The ROLL is issued to prevent further scheduling of
the program in error. IMS displays message DFS555I indicating
that abend 778 has occurred. The Enterprise Developer Server error
message panel can be displayed by pressing PA1.

166 1BM Enterprise Developer Server Guide for z/OS

IMS 1008

IMS 3042

Based on your generation options and the JCL for your message
region, additional diagnostic information might be provided on an
error diagnostic message queue, on the IMS log, or in ELAPRINT.
See [‘Controlling Error Reporting in IMS Environments” on page|
for additional information.

Note: Press PA2 if PA1 does not cause the Enterprise Developer
Server error map to display.

A program that was running as a BMP and that obtained access to
fast-path databases did not issue a SYNC or CHKP call at the end
of the job step. You can force the CHKP call to occur by:

* Using the EZECOMIT special function word in a batch-oriented
BMP

* Ensuring that the transaction-oriented BMP ends with an EOF
(QC status) for the file being used for input from the IMS
message queue

Access to DB2 cannot be obtained. Possible causes of this are:

¢ The terminal ID is not defined to DB2.

* The DB2 program plan is not valid or access to the DB2 program
plan cannot be obtained.

If the program was being run as a BMP, see [Figure 23 on page 105]
for sample JCL.

Common CICS Run-time Messages

Only the most frequently occurring CICS run-time messages are listed in this
section. If you receive another CICS run-time message that starts with DFH or if
you need a more complete explanation of one of the messages, refer to the CICS
messages and codes manual for your release of CICS.

DFHAC2016 date time applied Transaction tranid DFHAC2206 time applied Transaction tranid has
cannot run because program failed with abend abcode. Resource
program-name is not available. backout was successful.

Explanation: The transaction tranid cannot be run Explanation: The transaction tranid has ended

because the initial program for the transaction is not abnormally with abend code abcode. abcode is either

available. This could occur because the transaction is an CICS transaction abend code or a user abend code.

defined in the PCT, but the program is not defined in
the PPT or is not in a library in the DFHRPL

User response: If the user abend code starts with
ELA, see[“CICS Environments” on page 159]If it is an

concatenation. CICS abend code, see|“Common CICS Abend Codes”|
User response: Have your system administrator check to see if it is included there. If not, refer to the CICS
the PPT entries. Be sure the program is in a library in messages and codes manual for your release of CICS.

the DFHRPL concatenation.

Common CICS Abend Codes

Only the most frequently occurring CICS abend codes are listed in this section. If
you receive another CICS abend or if you need a more complete explanation of
one of the abend codes, refer to the CICS messages and codes manual for your
release of CICS.

Depending on your diagnostic options, information might be available on an error
destination queue or in an CICS journal. See [“Controlling Error Reporting in CICS’|
and the appropriate ELA messages in Chapter 2.

ADLD

A program isolation deadlock occurred and a transaction was

Chapter 26. Codes from Other Products for z/OS Systems 167

AEY9

AFCY

APCT

ASRA

ATDD

AXFQ

selected for an abend. Refer to the VisualAge Generator Design Guide
for information on using the EZEDLRST special function word and
for information on designing restartable transactions.

Access to DB2 cannot be obtained. This occurs if DB2 is not
running.

A transaction was purged when a deadlock occurred because a file
is defined with LSRPOOLID not equal to NONE in the FCT, and
one process within a program has performed a SCAN against a file
and another process requested an update or add to the same file
(or its alternate index) without ending the SCAN. Change the
LSRPOOLID to NONE, or change the program design to end the
SCAN before the update or add is requested.

A requested module cannot be located in the program definitions
or in the program library.

A program check occurred. Some of the reasons this can occur for
a Enterprise Developer program are as follows:
* Incorrectly linked Enterprise Developer Server modules.

If register 1 contains ELA1, see the information for ELA1 in
[“CICS Environments” on page 159.]
e Data not initialized or data initialized to incorrect values.

If the error occurred as a result of a data exception, see the
explanation for "System 0C7” in|“Common System Abend Codes|
[for All Environments” on page 163

The program attempted to process a transient data queue that is
disabled. This can occur for a program file associated with a
transient data queue or for the transient data queue used for error
diagnostic information.

The most common cause is the result of INBFMH not being
specified equal to ALL in the profile associated with the CICS
mirror program (CPMI).

Note: CICS users that receive abend codes ADLD, ADCP, AKCT, or D106 might
see four question marks in place of the CICS abend code for the resulting
Enterprise Developer Server message. The CSMT console log contains the
true CICS abend code that was issued.

COBOL Abends under CICS

168

1009

1029

A program has a dynamic storage requirement greater than 64KB, but was
compiled with the DATA(24) compiler option. Compile the module again
with the DATA(31) compiler option.

Either a PPT entry for a program attached through a COBOL dynamic call
is not found or the module being invoked cannot be found in the CICS
region program library search string. Additional information can be
retrieved by entering transaction CEBR on the terminal where the error
occurred.

IBM Enterprise Developer Server Guide for z/OS

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2005 169

170 1BM Enterprise Developer Server Guide for z/OS

Appendix. Enterprise Developer Server Run-time Messages

This section describes a series of messages that are given by Enterprise Developer

Server.

ELAO00002P Enterprise Developer Server is required
for program %01C08

Explanation: The generated COBOL program is not
compatible with the installed version of Enterprise
Developer Server.

Enterprise Developer Server ends the program with a
user abend.

User response: Contact the system administrator.
Enterprise Developer Server should be installed.

ELA00003P PCB %01D03 DL/I error, function =
%02C04, status code = %03C02

Explanation: The program control logic attempted a
DL/I call to a teleprocessing PCB and received an error
status code from IMS on the call. The message specifies
the PCB that was used on the call (0 is the I/O PCB, 1
is the modifiable alternate PCB, and 2 is the express
modifiable alternate PCB). The message also specifies
the function code and the status code. For ISRT calls,
the message is accompanied by message ELA00066I,
which displays the first 255 bytes of the DL/11/0O area.

The run unit ends. If the ELASNAP data set is
allocated, Enterprise Developer Server issues a SNAP
dump for all status codes other than Al

User response: Look up the status code in the IMS
messages and codes documentation for your system.

ELAO00005A Date entered is not valid for defined
date format %01C10

Explanation: Data entered into a form field defined
with a date edit either does not meet the requirements
of the format specification, or the month or day of the
month is not valid.

It is not necessary to enter the separator characters
shown in the message, but if they are omitted, enter
leading zeros. For example, if the date format is
MM/DD/YY, you can enter 070491.

User response: Enter the date in the format shown in
the message.

ELAO00007P File OPEN error on file %01C08, file
status = %02C08

Explanation: The specified file did not open
successfully.

© Copyright IBM Corp. 1994, 2005

The format of the file status depends on the file type.

For SEQ files, the file status is the 2-character COBOL
status code followed by six zeros.

For VSAM files, the file status is composed of the
2-character COBOL status code followed by the VSAM
return code (two characters), VSAM function code (one
character), and the VSAM feedback code (three
characters). The VSAM codes could be blank if the file
OPEN was not completed.

For VSAMRS files, the file status is composed of the
2-character ACB (access control block) return code in
hexadecimal format followed by six zeros.

The run unit ends.

User response: First see the table of common COBOL
and VSAM status codes in the IBM Enterprise Developer
Server Guide for z/OS. If the codes in the message are
not listed in the table, refer to the COBOL
programming language reference and VSAM
administration guide for your system for a definition of
other file status and VSAM codes. Also look for system
error messages pertaining to the specified DD name or
DLBL name. Correct the error and run the program
again.

ELAO00008P File CLOSE error on file %01CO08, file
status = %02C08

Explanation: The specified file did not close
successfully, and the run unit ends.

The format of the file status depends on the file type.

For SEQ files, the file status is the 2-character COBOL
status code followed by six zeros.

For VSAM files, the file status is composed of the
2-character COBOL status code followed by the VSAM
return code (two characters), VSAM function code (one
character), and the VSAM feedback code (three
characters).

For VSAMRS files, the file status is composed of the
2-character ACB (access control block) return code in
hexadecimal format followed by six zeros.

User response: First see the table of common COBOL
and VSAM status codes in the IBM Enterprise Developer
Server Guide for z/OS. If the codes in the message are
not listed in the table, refer to the COBOL
programming language reference and VSAM
administration guide for your system for a definition of
other file status and VSAM codes. Also look for system

171

error messages pertaining to the DD name. Correct the
error and run the program again.

ELAO00009P Overflow occurred because the target
item is too short

Explanation: The target of a move or assignment
statement is not large enough to hold the result without
truncating significant digits. The value of
sysVar.handleOverflow is 1, and the run unit ends if
the overflow condition occurs.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, the Enterprise Developer
Server issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Do as follows:

* Increase the number of significant digits in the target
data item; or
* Define the program logic to handle the overflow

condition by using sysVar.handleOverflow and
sysVar.overflowIndicator.

ELA00014P A replace was attempted without a
preceding get for update on %01C18

Explanation: This error occurs in these cases:

* A replace statement was issued against a record that
was not successfully read for update; or

¢ A replace statement is associated with a specific get
statement, but a different get statement was used to
select the record.

The read for update might have been cancelled as the
result of a converse statement in a segmented program.

The run unit ends.

User response: Make sure that in the get and replace
statements, the program correctly used record names or
resultSetID.

Also make sure that the sequence of statements is
appropriate. To step through the program, you can use
the EGL debugger or (for CICS-based programs) CEDE.

ELA00015P READ/WRITE error for file %01C08, file
status = %02C08

Explanation: An I/O operation was not successful for
the specified file. Program processing ends on any
nonzero status code if the I/O statement is not in a try
block; and ends on a hard error if the I/O statement is
in a try block when sysVar.handleHardIOErrors is set to
0.

The format of the file status depends on the file type.
For SEQ files, the file status is the 2-character COBOL

172 1BM Enterprise Developer Server Guide for z/OS

status code followed by six zeros.

For VSAM files, the file status is composed of the
2-character COBOL status code followed by the VSAM
return code (two characters), VSAM function code (one
character), and the VSAM feedback code (three
characters).

The run unit ends.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: First see the table of common COBOL
and VSAM status codes in the IBM Enterprise Developer
Server Guide for z/OS. If the codes in the message are
not listed in the table, refer to the COBOL
programming language reference and VSAM
administration guide for your system for a definition of
the other file status and VSAM codes. Also look for
system error messages pertaining to the specified DD
name. Correct the error and run the program again.

ELA00016P %01CO08 error for file %02C08, %03C44,

file status = %04C08

Explanation: An I/O operation was not successful for
the specified file. Program processing ends on any
nonzero status code if the I/O statement is not in a try
block; and ends on a hard error if the I/O statement is
in a try block when sysVarhandleHardIOErrors is set to
0.

The message identifies the VSAM operation that was
not successful, the Enterprise Developer file name
associated with the record, the system resource name,
and the file status. The file status is composed of two
zeros followed by the VSAM return code (two
characters), VSAM function code (one character), and
the VSAM feedback code (three characters).

The run unit ends.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: First see the table of common VSAM
status codes in the IBM Enterprise Developer Server Guide
for z/OS. If the codes in the messages are not listed in
the table, refer to the VSAM administration guide for
your system for a definition of other VSAM codes. Also
look for system error messages pertaining to the
specified system resource. Correct the error and run the
program again.

ELA00021I An error occurred in program %01C08

on statement number %02D06

Explanation: An error occurred in the specified
program on the specified statement. The actual error
that occurred is identified in the messages following
this message.

User response: Refer to a listing of the program,
correct the statement, and generate the program again.

ELA00022P Form group format module %01C08
could not be loaded

Explanation: The specified form group format module
could not be loaded. The module is a generated object
module linked as a program that contains data tables
that describe the format and constant fields for text
forms in a form group. The module name is the form
group alias (or a variation to conform with length and
character restrictions) followed by the characters FM.

If the format module name uses the format ELAxxxFM,
where xxx is the language code, the definitions for the
Enterprise Developer Server error forms could not be
loaded.

The run unit ends.

User response: Have the system administrator verify
that the specified program has been generated,
compiled, and linked into a library defined in the
library search order.

For z/0OS CICS, the search order includes the DFHRPL
data sets, and you should verify that the program has
been defined to the system.

ELA00023P Call to data-table program %01C07 was
not successful

Explanation: A dynamic COBOL call to the specified
data-table program was not successful. The run unit
ends.

User response: Make sure that the specified program
was generated, compiled, and linked into a library
defined in the library search order. For z/OS CICS, the
search order includes the DFHRPL data sets.

Also for z/OS CICS, make sure that the program was
generated with data (a build descriptor option) set to
31 and that the program is defined to the CICS region.

ELA00024P Conversion table %01C08 could not be
loaded

Explanation: Either the specified table program could
not be loaded or the program that was loaded is not a
Enterprise Developer Server conversion table.

The run unit ends.

User response: Verify that the correct conversion table
name was specified in the generation-time linkage
options part; that a correct conversion table has been
moved into the system variable
sysVar.callConversionTable at run time; or that a correct
conversion table has been specified on any call to the
system function sysLib.convert. For details, see the EGL
help topic on data conversion.

If the conversion table was properly specified in the

program, make sure that the table program was
generated, compiled, and linked into a library defined
in the library search order. For z/OS CICS, the search
order includes the DFHRPL data sets.

Also for z/OS CICS, make sure that the table program
was generated with data (a build descriptor option) set
to 31 and that the table program is defined to the CICS
region.

ELA00026P A calculation caused a maximum-value
overflow

Explanation: During a calculation in an arithmetic
statement, an intermediate result exceeded the
maximum value (18 significant digits). This condition
also occurs when division by zero occurs. If
sysVar.handleOverflow is set to 0 or 1, the program
ends.

This error can only occur when you specify the build
descriptor option checkNumericOverflow.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Correct the program logic either to
avoid the error or to use sysVarhandleOverflow and
sysVar.overflowIndicator to handle the error.

ELAO00027P The data on a character-to-numeric move
is not valid

Explanation: The statement in error involves a move
from a character to a numeric data item. The character
data item contains nonnumeric data.

The run unit ends.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Change the program to ensure that the
source operand contains valid numeric data.

ELA00029P Transfer to %01C08 was not successful

Explanation: The transfer to another program was not
successful. Usually, the program being transferred to
could not be found.

The run unit ends.

User response: Make sure that the program was
generated, compiled, and linked into a library defined
in the library search order. For z/OS CICS, the search
order includes the DFHRPL data sets.

Appendix. Enterprise Developer Server Run-time Messages 173

Also for z/OS CICS, make sure that the program was
generated with data (a build descriptor option) set to
31 and that the table program is defined to the CICS

region.

ELA00031P Call to %01C08 was not successful

Explanation: A dynamic call to the specified program
failed, ending the run unit.

User response: Make sure that the program was
generated, compiled, and linked into a library defined
in the library search order. For z/OS CICS, the search
order includes the DFHRPL data sets.

Also for z/OS CICS, make sure that the program was
generated with data (a build descriptor option) set to
31 and that the program is defined to the CICS region.

ELA00032P Called program %01C07 received a
parameter list that is not valid

Explanation: A call to the specified program was not

successful for one of the following reasons:

* The calling program passed too many or too few
parameters.

* Different values are in the linkage-options part,
callLink element, parmform property for the called
and calling programs.

¢ The parmform value COMMDATA was specified for
the call, and the COMMAREA passed has a different
length than the length expected by the called
program.

If the called program is a remote program, a CICS
abend occurs. Because the COMMAREA is too small,
the called program cannot notify the calling program of
the error.

In all other cases, the run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Verify that the argument list in the call
statement matches the parameter list for the program
being called, and then generate the called and calling
program with the same parmform value in the linkage
options part, callLink element.

ELA00033P Call to program %01C08 returned
exception code %02D05.

Explanation: An exception code was returned on a
call to the specified program, indicating that one of the
arguments passed to the program was not valid. The
run unit ended because the call was not in a try block.

174 1BM Enterprise Developer Server Guide for z/OS

User response: Place the call statement in a try block
and make sure that all the passed arguments are valid.

ELA00034P Program %01C07 was declared as a main
program and cannot be called

Explanation: The specified program was not declared
as a called program.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Declare the program as a called
program.

ELA00035A Data type error in input - enter again

Explanation: The data in the first highlighted field is
not valid numeric data. The field was defined as
numeric.

User response: Enter only numeric data in this field,
or press a bypass edit key to bypass the edit check. In
either situation, the program continues.

ELA00036A Input minimum length error - enter
again

Explanation: The data in the first highlighted field
does not contain enough characters to meet the
required minimum length.

User response: Enter enough characters to meet the
required minimum length, or press a bypass edit key to
bypass the edit check. In either situation, the program
continues.

ELA00037A Input not within defined range - enter
again
Explanation: The data in the first highlighted field is

not within the range of valid data defined for this item.

User response: Enter data that conforms to the
required range, or press a bypass edit key to bypass the
edit check. In either situation, the program continues.

ELAO00038A Table edit validity error - enter again

Explanation: The data in the first highlighted field
does not meet the table edit requirement defined for
the variable field.

User response: Enter data that conforms to the table
edit requirement, or press the bypass edit key to bypass
the edit check. In either situation, the program
continues.

ELA00039A Modulus check error on input - enter
again

Explanation: The data in the first highlighted field
does not meet the modulus check defined for the
variable field.

User response: Enter data that conforms to the
modulus check requirements, or press a bypass edit key
to bypass the edit check. In either situation, the
program continues.

ELA00040A No input received for required field -
enter again

Explanation: No data was typed in the field
designated by the cursor. The field is required.

User response: Enter data in this field, or press a
bypass edit key to bypass the edit check. Blanks or
nulls will not satisfy the data input requirement for any
type of field. In addition, zeros will not satisfy the data
input requirement for numeric fields. The program
continues.

ELA00041P Property msgTablePrefix was not
specified for a program: Message
%01C04, NLS code %02C03

Explanation: The program tried to display a message
from a message table but lacks a value for the property
msgTablePrefix.

The run unit ends.

User response: Do any of the following:

* Assign a valid value in the message table property
and generate the program again.

¢ Change the program to avoid requesting the user
message, then generate the program again.

* Remove the user message number from the
validation property validatorTableMsgKey and
generate the program or form group again.

ELA00042P The expected number of inserts for
message %01C08, NLS code %02C03 was
not received

Explanation: The expected number of variable inserts
for an Enterprise Developer Server message did not
match the number received. The message text is in the
language-dependent message table program, ELACxxx,
where xxx is the language code.

The program is generated from a data-table part that
might have been modified and generated specifically
for your installation.

The inserts show the original error message number
that occurred and the language code being used.
Message ELA00163P shows the original error message
number that occurred and the message inserts that
would have been displayed for that message.

The run unit ends.

User response: Correct the problem identified by the
original message.

If the language-dependent message table was modified,
correct the modified message so that the inserts are the
same as the inserts defined in the default data table
that was shipped with Enterprise Developer Server.

ELA00043P %01C08, %02C03

Explanation: The Enterprise Developer Server
message table program ELACxxx (where xxx is the
language code) did not contain a runtime message.

The program is generated from a data-table part that
might have been modified and generated specifically
for your installation.

The inserts show the original error message number
that occurred and the language code being used.
Message ELA00163P shows the original error message
number that occurred and the message inserts that
would have been displayed for that message.

The run unit ends.

User response: Correct the problem identified by the
original message.

If the language-dependent message table was modified,
verify that the message numbers in the modified table
match the message numbers in the message table as
shipped in the product. Also, verify that the program
loaded is at the same maintenance and release level as
the message table shipped in the product.

ELA00044P Message %01C08, NLS code %02C03, not
found

Explanation: The Enterprise Developer Server
message table program ELANCxxx (where xxx is the
NLS code) did not contain a runtime message.

The program is generated from a data-table part that
might have been modified and generated specifically
for your installation.

The inserts show the original error message number
that occurred and the NLS language code that was
being used. The message is accompanied by message
ELAO00163P, which shows the original error message
number that occurred and the message inserts that
would have been displayed for that message.

The original error message that occurred determines if
(and how) the program ends and if a SNAP dump is
issued.

User response: Correct the error identified by the first
message insert.

If the message table was modified, check that the
message numbers in the modified table match the
message numbers in the message table as shipped in

Appendix. Enterprise Developer Server Run-time Messages 175

the product. Also, check that the program loaded by
the program is at the same maintenance and release
level as the message table shipped in the product.

ELA00045P Error reading message %01C08, NLS
code %02C03, status %03C08

Explanation: The user message file or database did
not contain a user-defined message for the language
associated with the language code. Message files and
databases are used only in COBOL programs generated
using CSP/370 Runtime Services Version 1 Release 1.

The format of the message ID is as follows:
* Positions 1-3 = User message file
* Positions 4-8 = Message number

The status code varies depending on the type of user

message file or database being used:

* For VSAM, status is eight characters. The first two
bytes of code are either 08 (to specify a relative
message within a record is not used) or 12 (to specify
a record was not found in the VSAM file). The
remaining six bytes of code are the VSAM return
code (two characters), function (one character), and
feedback code (three characters), all in decimal
format. Refer to the VSAM administration guide for
your system for a definition of the VSAM codes.

» For DB2, status is the 4-character SQL code. Refer to
the DB2 manuals for your system for a description of
the SQL code.

User response: Make sure that the message is defined

in the program message file in one of two ways:

* Convert the message file to an EGL message table.
Generate the program and the message table again
using Enterprise Developer.

* If a message database is being used, add or replace
the message in the message database using the Cross
System Product/370 Runtime Services Version 1
Release 1 message database utility.

ELA00046P Call to print services program %01C08
was not successful

Explanation: A dynamic COBOL call to the specified
print services program was not successful.

The run unit ends.

User response: Make sure that the program was
generated, compiled, and linked into a library defined
in the library search order. For z/OS CICS, the search
order includes the DFHRPL data sets.

Also for z/OS CICS, make sure that the program was
generated with data (a build descriptor option) set to
31 and that the program is defined to the CICS region.

176 1BM Enterprise Developer Server Guide for z/OS

ELA00047P Message %01D04 was not found in
message table program %02C07

Explanation: A user message could not be found in
the program message table.

In all z/OS environments, the Enterprise Developer
Server issues a SNAP dump if the ELASNAP data set is
allocated.

The run unit ends.

User response: Either add the message to the table or
modify the program to use a message that is defined in
the table.

ELAO00050A Number of allowable significant digits
exceeded - enter again

Explanation: The user entered data into a numeric
field that was defined with decimal places, a sign,
currency symbol, or numeric separator edits. The
number of significant digits that can be displayed
within the editing criteria was exceeded by the input
data; the number entered is too large. The number of
significant digits cannot exceed the field length, minus
the number of decimal places, minus the places
required for editing characters.

User response: Enter a number with fewer significant
digits.

ELA00051P Form %01C08 was not found in form
group %02C06

Explanation: The specified form name is not in the
form group.

The run unit ends.

User response: Re-generate the form group and the
program.

ELA00057P Delete attempted without preceding
update on record %01C18

Explanation: This error occurs in these cases:

* A delete statement was issued against a record that
was not successfully read for update; or

* A delete statement is associated with a specific get
statement, but a different get statement was used to
select the record.

The read for update might have been cancelled as the
result of a converse statement in a segmented program.

The run unit ends.

User response: Make sure that in the get and delete
statements, the program correctly used record names or
resultSetID.

Also make sure that the sequence of statements is
appropriate. To step through the program, you can use

the EGL debugger or (for CICS-based programs) CEDEF.

ELA00061P DL/I error, function = %01C04, status
code = %02C02

Explanation: DL/I returned an error status code in

response to the DL /I call for the current function and

either of the following occurred:

* There was no error routine specified for the function.

* Both special function words EZEFEC and
EZEDLERR were set to 0 (this indicates that the
program should end on abnormal DL/I conditions),
and the status code specified either an abnormal
condition, or a condition that was not expected.

The status code in the message comes from the DL/I
PCB used for the DL/I call.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

This is either a program error or a database definition
error.

User response: Do the following:

1. Locate the specified error code. Refer to the IMS
messages and codes or the IMS application
programming manuals for a description of the
specified status code.

2. Correct the error.

3. Generate the program again.

ELA00062P DL/I call overlaid storage area, record
%01C18

Explanation: A DL/I call read a block of data that was
larger than the record defined to hold the data. The
storage area immediately following the record buffer
was overlaid.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, the Enterprise Developer
Server issues a SNAP dump if the ELASNAP data set is
allocated.

User response: This is a program error. Define the
record so that its length matches the length of the
segment it represents and generate the program again.

ELA000631 PCB DB %01C08, segment %02C08, level

%03D02, options %04C04

Explanation: This message provides additional
diagnostic information for a database I/O error. The

PCB passed in the DL/I call contained the specified
information.

For unsuccessful DL/I1/0O call, the segment name field
contains the last segment along with the path to the
requested segment that satisfied the call. When a
program is initially scheduled, the name of the
database might be put in the segment name field if no
segment is satisfied.

User response: Refer to message ELA00061P.

ELA00064I PCB key feedback area length %01D04

Explanation: This message provides additional
diagnostic information for a database I/O error. The
PCB passed in the DL/I call contained the specified
key feedback length. This is the length of the
concatenated key of the hierarchical database path.

User response: Refer to message ELA00061P.

ELA00065I PCB key feedback area = %01C255

Explanation: This message provides additional
diagnostic information for a database I/O error. The
PCB passed in the DL/I call contained the specified
key feedback area.

The first 255 bytes are displayed. If necessary, because
of the line and data lengths, the message wraps around
to display all 255 bytes. The data is displayed as
character data in the message. The message is followed
by two lines that give the hexadecimal value under
each character.

User response: Refer to message ELA00061P.

ELA000661 DL/I I/O area = %01C255

Explanation: This message provides additional
diagnostic information for a hard DL/II/O error. The
message displays the contents of the DL/I1/O area.

The first 255 bytes are displayed. If necessary, because
of the line and data lengths, the message wraps around
to display all 255 bytes. The data is displayed as
character data in the message. The message is followed
by two lines that give the hexadecimal value under
each character.

User response: This message is always accompanied
by another message (for example, ELA00003P or
ELAQ0061P) that specifies the error. See the explanation
and user response of the accompanying message.

ELA00067I DL/I SSA %01D02: %02C255

Explanation: This message provides additional
diagnostic information for a DL/I 1/O error. The
message displays the contents of a segment search
argument (SSA) for the DL/I call. The first message
insert gives the number of the SSA. The second insert
gives the first 255 bytes of the SSA.

Appendix. Enterprise Developer Server Run-time Messages 177

If necessary, because of the line and data lengths, the
message wraps around to display all 255 bytes. The
data is displayed as character data in the message. The
message is followed by two lines that give the
hexadecimal value under each character.

This message is repeated once for each SSA used in the
DL/I call.

User response: Refer to message ELA00061P.

ELA00068P DL/I variable segment length is not
valid, segment %01C08

Explanation: A DL/I segment I/O area is shorter than
the segment returned in a DL/I retrieval, or the
computed segment length on an ADD or REPLACE
1/0 option is not valid.

If the I/O option was an INQUIRY, UPDATE, or
SCAN, the BYTES parameter in the DBD is greater than
the length of the record defined to Enterprise
Developer.

If the I/O option was an ADD or REPLACE, the
program has erroneously set the length of the segment.
If this error occurs for a path call, the DL/I1/O area
shown in message ELA00061I contains only segments
before the segment with the error. Because the length is
in error, the segment with the error cannot be moved to
the DL/I1/0 area.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, the Enterprise Developer
Server issues a SNAP dump if the ELASNAP data set is
allocated.

User response: If the error occurred in a retrieval,
have the database administrator correct either the DBD
or VisualAge Generator record definition, and generate
the program again.

If the error occurred on an update, correct the logic
associated with calculating the length of the segment.
Generate the program again.

ELA00069P The value of an input variable is too
large for the target SQL column

Explanation: The run unit ends.

In CICS environments, Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, the Enterprise Developer
Server issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to ensure that
values that overflow the even-numbered length of the

178 1BM Enterprise Developer Server Guide for z/OS

record item are detected and rectified before executing
any function that has an SQL row record as its object,
and that uses the record item as an input host variable
in its SQL statement.

This condition is not detected in programs that have
the build descriptor option checkNumericOverflow;
instead the high-order digit of the record item’s value
is truncated before being used in the SQL statement.

ELAO00070P %01C04 error, status code %02C02

Explanation: DL/I returned an error status code other
than QC or AL in non-VSE environments or HX or XR
on VSE environments in response to a CHKP
(checkpoint) or ROLB (rollback) DL/T call.

CHKP and ROLB calls are issued for the following

reasons:

e The program calls the commit or rollback functions.

* The program ends abnormally and a PSB is active.

* The program causes a commit to be taken at a
CONVERSE 1/0 option, a First Map, or because of
the /SYNCXFER generation option.

The status code in the message is taken from the I/O
PCB used with the DL/I call.

The run unit ends.

In the VSE batch environment, the Enterprise
Developer Server issues a SNAP dump that is directed
either to the system logical unit SYSLST or the dump
data set of the partition.

In all z/OS and VSE environments, the Enterprise
Developer Server issues a SNAP dump if the
ELASNAP data set is allocated.

User response: Make a note of the message and notify
the system programmer. On z/OS systems, refer to the
application programming manual or the IMS messages
and codes manual for a description of the status code.
On VSE systems, refer to the DOS DL/I messages and
codes manual for a description of the status code.

ELA00072P %01C18, set record position is not
supported

Explanation: The SET SCAN indicator was on for a
DL/I segment record when a SCAN function with a
user-modified SSA list was used with that record. The
SET SCAN indicator is not supported for DL/T calls
with modified SSA lists.

The run unit ends.

User response: Modify the program logic so that it
does not set the SET SCAN indicator for a segment
with a modified DL/T call.

ELA00073P SQL error, command = %01C08, SQL
code = %02D04

Explanation: The SQL database manager returned an

error code for an SQL statement. Program processing

ends following an SQL request whenever the sqlcode in

the SQL communications area (SQLCA) is not 0, and

either of the following is true:

¢ The I/O statement is not in a try block; or

* The sqlcode indicated a hard error and the system
variable sysVar.handleHardIOErrors was set to 0.

The message is followed by message ELA000741 which
displays the substitution variables associated with the
sqlcode. (Those substitution variables are also available
to the program by way of the system variable
sysVar.sqlerrmc.)

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Determine the cause of the problem
from the SQL code and the SQL error information.

Either correct the program or the database definition.
Refer to the appropriate database manager messages
and codes manual for information on the SQL code and
SQL error information.

ELA00074I SQL error message: %01C70

Explanation: This message accompanies message
ELA00073P when an SQL error occurs. It displays the
relational database manager error information returned
in the SQLCA field SQLERRM and is repeated as many
times as necessary to display the complete description.

User response: Use the information from this message
and ELAQ00073P to correct the error.

ELA00076P Invalid data is used in a
character-to-hexadecimal assignment or
comparison

Explanation: The current statement involves either a
move from a character data item to a hexadecimal data
item, or a comparison between a character data item
and a hexadecimal data item. The characters in the
character data item all must occur in the following set
for the move or compare to complete successfully:

abcdefABCDEF0123456789

One or more of the characters in the character data
item is not in this set. This condition causes a program
€rror.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Change the program to ensure that the
character data item contains valid data when the
character-to-hexadecimal move or compare operation
occurs. In text-form fields, you can use the isHexDigit
validation property to ensure that user input contains
only valid characters.

ELAO00080A Hexadecimal data is not valid

Explanation: The data in the variable field identified
by the cursor must be in hexadecimal format. One or
more of the characters you entered does not occur in

the following set:

abcdefABCDEFO0123456789

User response: Enter only hexadecimal characters in
the variable field. The characters are left-justified and
padded with the character zero. Embedded blanks are
not allowed.

ELA00086P %01C18 - No active open or get for
update is in effect

Explanation: One of these case applies:

* A get next statement cannot run because a related
open did not run previously in the same program; or

* A replace or delete statement cannot run because a
related open or get for update did not run previously
in the same program.

All rows selected for update are released when a called
program returns to the calling program.

The run unit ends.

User response: Make sure that in the second
statement (get next, replace, or update), the program
correctly used record names or resultSetID to match the
first statement (open or get).

Also make sure that the sequence of statements is
appropriate. To step through the program, you can use
the EGL debugger or (for CICS-based programs) CEDE.

ELA00093I An error occurred in program %01CO08,

function %02C18

Explanation: An error occurred in the specified
function for the specified program. Other information
about the error is given in the messages that follow this
message.

Appendix. Enterprise Developer Server Run-time Messages 179

If a function is not active, the second insert contains the
name of a section in the generated initialization or
ending logic of the program.

User response: Refer to the error messages following
this message to determine the cause of the error.

ELA00096P A data operand of type MBCHAR is not
valid

Explanation: An operand in a move or assignment
statement contains mixed double-byte and single-byte
data that is not valid.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Verify that the data is valid in
variables that are of type MBCHAR and are in a move
or assignment statement.

ELAO00105I Error occurred at terminal %01C08, date

%02C08, time %03C08, user %04C08

Explanation: An error occurred at the specified logical
terminal on the specified date and time. This message
precedes any error diagnostic information routed to an
alternate error destination.

For a program running in z/OS batch, the first insert is
etk which indicates that the terminal identifier is
not known.

For z/OS CICS, the last insert is only provided if
sign-on security is active on or provided in the system.

User response: Examine all error messages that follow
this message and precede the next occurrence of this
message. Use the information from these messages to
diagnose and correct the error.

ELA00106P Program %01C08 PSB does not match
the generated PSB definition

Explanation: The PCBs passed to the program at
program initialization time did not match the PSB
defined for the program. The number of PCBs passed
was less than the number of PCBs defined in the
Enterprise Developer definition.

The run unit ends. In CICS environments Enterprise
Developer Server issues a dump based on options
selected using the diagnostic controller utility.

In all z/OS environments, the Enterprise Developer
Server issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Either correct the program definition

180 1BM Enterprise Developer Server Guide for z/OS

of the PSB and generate the program again, or correct
the IMS PSB and generate it again.

ELA00109P Input form must be form %01CO08 rather
than form %02C08, for program %03C07

Explanation: The form received by the program is not
the form specified as the value of program property
inputForm. This error occurs when the program starts.

The run unit ends.

User response: Make sure that the transferring
program specifies the correct form on the show
statement and that the receiving program has the
correct value in property inputForm.

ELAO00110P Shared data table %01C07 cannot be
updated

Explanation: The program modifies a data table that
was generated as a shared table. Shared data tables
cannot be updated.

The run unit ends.

User response: Either generate the data table as
non-shared or change the program to avoid modifying
the data table.

ELAO00111P Length of input form %01C08 is not
valid

Explanation: The length of an input form received by
a program is not the length defined for the form in the
program.

The run unit ends.

User response: Use the same form declaration when
generating both the program that receives the input
form and the program that issues the show statement.

ELA00114P A transfer to called program %01C07 is
not allowed

Explanation: A program cannot transfer to a called
program.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Replace the transfer statement with a
call statement.

ELA00115P Use of a transfer statement is invalid
because the receiving program (%01C07)
has an input form

Explanation: Only a show statement can transfer to a
program that requires an input form.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

The Enterprise Developer Server issues a SNAP dump
if the ELASNAP data set is allocated.

User response:

Do either of these actions:
e Use a show statement to invoke the receiving
program indirectly; or

* Remove the value in the inputForm property of the
receiving program. The program can show the form
after receiving control.

ELA00118P Missing PSB for program %01C07

Explanation: A PSB was specified for the named
program during definition. However, the program ran
as a z/OS batch job. This can happen if you do not use
the sample JCL or CLIST created by the generation
function.

The run unit ends.

User response: If the program contains DL/I1/O or
other DL/I functions, change the runtime JCL or CLIST
to run DL/I programs. If the program does not use
DL/I, remove the PSB name from the program
definition.

ELA00119P Programs %01C07 and %02C07 are not
compatible

Explanation: A program started by a transfer or call
statement is not compatible with the starting program
because the programs were generated for different
target systems.

The run unit ends.

User response: Re-generate the program for which the
target system was wrong.

ELAO00120P sysLib.startTransaction failed, logical
terminal ID = %01CO08, status code =
%02C02

Explanation: Common status codes are as follows:
QOH Unknown output destination

A1l Unknown output destination

Both status codes indicate that the 8-character logical
terminal ID was not defined to the IMS system as
either a terminal or transaction.

The run unit ends.

User response: Do as follows:

1. Ensure that the transaction code field of the record
specified on sysLib.startTransaction is defined to the
IMS system.

2. Review the program logic ensure that the
transaction code file is set correctly.

3. Refer to the IMS application programming manual
or the IMS messages and codes manual for your
system for an explanation of status codes other than
the ones listed above.

ELA00121P sysLib.audit was not successful, logical
terminal ID = %01C08, status
code=%02C04

Explanation: The status code is the 2-character status
from the I/O PCB.

The run unit ends.

User response: Refer to the IMS application
programming manual or the IMS messages and codes
manual for your system.

ELA00125P Error number %01D04 is not valid

Explanation: The error handler was called with an
error number that it did not recognize. This is a
product error.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Ensure that the generated COBOL

code has not been modified by generating the program

again. Afterwards, run the program again. If the

problem persists, do as follows:

1. Record the message number

2. Obtain the dump

3. Record the scenario under which this message
occurs

4. Obtain the COBOL source for the problem program

5. Use your electronic link with IBM Service if one is
available, or contact the IBM Support Center

ELA00127P A requested function is not supported
for form %01C08, form group %02C06

Explanation: A form field referenced a validation
function, but the program does not include that
function.

Appendix. Enterprise Developer Server Run-time Messages 181

The run unit ends.

User response: Check the field properties and the
program, then re-generate the program with build
descriptor option genFormGroup set to YES.

ELA001291 Form %01C08 was received
Explanation: Related messages give further details.

User response: Refer to the related error messages.

ELA00130P GSAM error, file = %01C08, function =
%02C04, status code = %03C02

Explanation: An I/O error occurred on an ADD,
SCAN, or CLOSE 1/0 option for a file associated with
a GSAM database. Program processing ends on a hard
status code if EZEFEC is set to 0, or on any error status
code if there is no process error routine.

This message can also occur on an implicit OPEN or
CLSE call to the GSAM database. An implicit OPEN or
CLSE call occurs as a result of an ADD or SCAN
process. Program processing ends on a hard status code
if EZEFEC is set to 0, or on any error status code if
there is no process error routine for the ADD or SCAN
that caused the implicit OPEN or CLSE call.

An Al status code for an implicit OPEN might be
caused by specifying a file name during Enterprise
Developer resource association or with the ASSOCIATE
command that is different from the DD name specified
in the GSAM DBD.

For an ADD, message ELA00066] accompanies this
message and provides the DL/I1/O area that was used
for the call.

The run unit ends. If ELASNAP is allocated, the
Enterprise Developer Server issues a SNAP dump.

User response: Determine the cause of the I/O error
from the DL/I status code and either correct the
program or the database definition. Refer to the IMS
application programming manual or the IMS messages
and codes manual for your system for an explanation
of the DL/I status code.

ELA00131P MSGQ error, file = %01C08, function =
%02C04, status code = %03C02

Explanation: An error occurred on a SCAN or ADD
function for a file or a DISPLAY function for a print
map when the file or EZEPRINT is associated with an
IMS message queue (I/O or TP PCB). Program
processing ends on a hard status code, if EZEFEC is set
to 0, or on any error status code, if there is no I/O
error routine.

Common status codes are:

QH Unknown output destination (ADD, DISPLAY,
or CONVERSE)

182 1BM Enterprise Developer Server Guide for z/OS

Al Unknown output destination (ADD, DISPLAY,
or CONVERSE)

A6 Output segment limit exceeded (ADD,
DISPLAY, or CONVERSE)

FD Deadlock occurred (SCAN).

For an ADD, DISPLAY, or CONVERSE, the listed status
codes specify that the 8-character system resource name
associated with the file or EZEPRINT at generation or
in the EZEDEST or EZEDESTP special function words
was not defined to the IMS system as either a terminal
or a transaction.

For an ADD, DISPLAY, or CONVERSE, message
ELA00066I accompanies this message and shows the
DL/I1/0O area that was used for the call.

The run unit ends. If ELASNAP is allocated, the
Enterprise Developer Server issues a SNAP dump.

User response: If the output destination is not valid,
ensure that it is defined to the IMS system. Also review
the program logic to ensure that EZEDEST, if used, is
set correctly. For an explanation of status codes other
than the ones listed above, refer to the IMS application
programming manual or the IMS messages and codes
manual for your system.

ELA00135P The program is not expecting an input
form

Explanation: A program issued a show statement that
included an input form, but the receiving program has
no value for property inputForm.

The run unit ends.

User response: Either change the invoking program to
avoid sending a form or change the receiving program
to specify an input form.

ELA00136P DL/I error occurred in work database
operation

Explanation: An error occurred during use of the
work database when it was implemented using DL/L.
This message is accompanied by additional DL/I
diagnostic messages, including ELA00061P, that provide
additional information about the error. Message
ELAO00061P includes the DL /I function and status code.
Refer to the IMS messages and codes or IMS
application programming manual for your system for a
description of the status code.

The run unit ends. If ELASNAP is allocated, the
Enterprise Developer Server issues a SNAP dump.

User response: This is a database definition error or
an error in the definition of the work database PCB in
your IMS PSB. Record this information and any other
diagnostic messages, and notify the system
administrator.

ELA00137P SQL error occurred in work database
operation

Explanation: An error occurred during use of the
work database when it was implemented using SQL.
This message is accompanied by additional SQL
diagnostic messages, including ELA00073P, that provide
additional information about the error.

The run unit ends. If ELASNAP is allocated, the
Enterprise Developer Server issues a SNAP dump.

User response: Determine the cause of the problem
from the SQL code and the SQL error information in
related message ELA000741, and correct the database
definition.

ELA00138P %01C07 was replaced in the middle of a
conversation

Explanation: The program was running in segmented
mode and ran a converse statement, but was replaced
in the load library during user think time (the time
between writing the form to the terminal and receiving
the user’s input).

The program conversation with the user started with
the original version of the program and cannot be
resumed.

The run unit ends. In CICS environments Enterprise
Developer Server issues a dump based on options
selected using the diagnostic controller utility.

User response: Run the program again.

ELA00139P MFS map program %01C06 and MFS
map %02C08 have different versions

Explanation: An MFS mapping services program
attempted to process a message input descriptor for an
MFS map that was generated at a different time than
the MFS mapping services program. Both the MFS
mapping services program and the map it works with
must be built in the same generation step.

This is probably a problem with the installation of
either the program or the MFS map after generation of
a map group. One of the following might have
occurred:

* The MFS mapping services program might have
been compiled and linked without installing the MFS
maps, or vice versa.

* The MFS map might have been installed in an MFS
test library, but you did not enter an IMS /TEST
MFS command prior to starting the transaction.

¢ The MFS map might have been installed in the MFS
production library, and you entered a /TEST MFS
command prior to starting the transaction.

¢ The MFS map might have been used in an XFER
with a map from another program. The transfer-from
program used a different map group, but the map
name on the XFER is the same as the First Map
name for the transfer-to program.

In the IMS/VS environment, the transaction (logical
unit of work) ends and processing continues with the
next message. In all other environments, the run unit
ends.

User response: Ensure that the same version of the
MFS mapping services program and the MFS control
blocks are installed in the correct libraries. If an XFER
and First Map are involved, ensure that the
transfer-from and transfer-to programs use the same
map group.

ELA00140P Segmentation storage size discrepancy
for %01C07

Explanation: The size of the segmentation storage
record is not valid for the specified program.

Possible causes for the error include:

* The program is replaced in the load library in the
middle of a program conversation with the user

* The program issues a show statement that includes a
form, but the receiving program expects an input
form that has different characteristics

* The program is segmented and issues a converse
statement when sysVar.transactionID contains a
transaction code, but that code is associated with a
program that has no relationship to the issuing
program. If the sysVar.transactionID is used to switch
transaction codes, the new transaction must start
either the same program that was started by the old
transaction or the program that issued the converse
statement.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Try the transaction again. If the
program works correctly, the error was caused by a
re-link in the middle of the conversation. If the error
still occurs, determine why there is a mismatch and
correct the situation that caused the error.

ELA00141P Data table %01C07 cannot be modified.
Delete %02D06 bytes.

Explanation: The program’s attempt to modify a
shared data table would cause an increase in data-table
size beyond the CICS limit, which is 65535 bytes.

The run unit ends.

User response: Either change the logic of the program
so that the data table is not modified or decrease the

Appendix. Enterprise Developer Server Run-time Messages 183

size of the data-table content by the specified number
of bytes.

ELA00142P Map %01CO08 in group %02C06 not
supported on this device

Explanation: A map has been sent to a device using
IMS Message Format Services, but the device type was
not in the list of devices specified for the map using the
Enterprise Developer device selection function. The
message appears when either of the following occurs:

* A printer map was sent to a destination that is
defined as a terminal in the IMS System Generation.
The destination is the system resource name
specified for EZEPRINT at generation or an override
value loaded into the EZEDESTP special function
word at run time. The message appears at the
terminal where the printer map was directed, not at
the terminal that originated the transaction. Program
processing continues.

* A terminal map is defined in a map group that
contains multiple maps with different device
selections. The device to which the map was directed
was not specified using the Enterprise Developer
device selection function. The message appears at the
terminal that originated the transaction as the result
of a CONVERSE or an XFER with a map. The
program conversation with the user at this device
ends because there is no way for the user to enter
data. The program continues processing with the
next input message on the message queue.

The program is not notified by MFS that a problem has
occurred. Therefore, message ELA00142P is built into
the MFS source to provide a method of notifying you
when an error occurs. A SNAP dump is not issued.

User response: If the error occurred for a printer map,
review the resource association information specified
during generation, the program logic used to set the
value of EZEDESTP, and the MFS generation options
(/MFSDEV, /MFSIGNORE, and /MFSEATTR) to
determine the appropriate corrections to make.
Depending on the corrections required, generate either
the program or map group again. In addition, if the
printer map was sent to a terminal device, it might be
necessary for the system administrator to purge the
messages pending for the terminal using the IMS
/DEQ command.

If the error occurred for a terminal map, review the
terminal device types specified for this map and the
MFS generation options (/MFSDEV, /MFSIGNORE,
and /MFSEATTR) to determine the appropriate

corrections to make. Generate the map group again.

If the program using the terminal map is a
nonconversational program (/SPA=0 generation
option), the user only needs to clear the screen and
type another transaction code to resume work.

If the program that used the terminal map is a

184 1BM Enterprise Developer Server Guide for z/OS

conversational program (/SPA generation option
greater than 0), the user must clear the screen, type
/EXIT to end the conversation and then type another
transaction code to resume work.

ELA00143P Data table %01C07 is not a message
table

Explanation: A message table was specified for the
program. The data table specified is not a message
table.

The run unit ends.

User response: Either declare the data table as a
message table and generate the data table again, or
correct the message table name specified for the
program and generate the program again.

ELA00144P Segmentation storage error

Explanation: Segmentation storage has an internal
error mapping memory.

The run unit ends. In CICS environments Enterprise
Developer Server issues a dump based on options
selected using the diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: This is an internal system error.
Contact the system administrator for assistance.

ELA00145A Map name required - enter /FOR
%01C060 map-name

Explanation: The map group has more than one map,
but a valid map name was not entered when the IMS
/FOR command was used to display the map.

User response: Enter the /FOR command again, using
the following format:

/FOR map-group0 map-name

ELA00146P Segmentation status error

Explanation: The status byte for segmentation storage
management is lost and the program has no way to
recover.

This error occurs when a PA key is pressed prior to
pressing the ENTER key or a PF key for an IMS
conversational transaction.

If the program was generated with /SPA=n or
/SPA=(n,ADF), then there was no recovery feature
generated in the program.

If the program was generated with /SPA=(n,,m) or
/SPA=(n,ADEm) then the recovery feature was
generated in the program, but was bypassed. A bypass
of the recovery feature occurs when a deferred message
switch comes from a non-generated program or a

generated program that was not generated with the
same /SPA generation option.

In the IMS/VS environment, the transaction (logical
unit of work) ends and processing continues with the
next message.

User response: Restart the transaction sequence and
avoid using PA keys while on a Enterprise
Developer-generated screen.

Consider generating the Enterprise Developer programs
with one of the /SPA generation options that will allow
recovery from pressing a PA key.

ELA00147A Key sequence is not valid. Last screen
will display - enter the data again

Explanation: A PA key was pressed prior to pressing
the ENTER key or a PF key. IMS has reserved the use
of the PA keys. All modifications on the previous screen
are lost.

User response: Enter the data again and avoid use of
PA keys while on a generated screen.

ELA00149I %01C07 command ignored during

message database load

Explanation: The PSB for the message database
specifies that the database is being initially loaded.
Only ADD commands are supported during initial load
of a DL/I message database.

User response: Run the message utility again,
specifying the PSB for the database.

ELA00151P %01C07 of message record failed for the
message database

Explanation: The message utility program
encountered an error inserting or deleting a message in
the message database. This message is accompanied by
diagnostic messages describing the error.

If an ELASNAP DD statement is specified in the JCL,
Runtime Services issues a snap dump. The run unit
ends.

User response: Review the diagnostic messages. Verify
that the database has been successfully defined by
checking the DB2 message database create job
(ELAMSJL2) messages. Correct the problem and run
the job again.

ELA00152I Message file %01C03 has been added

Explanation: The indicated user message file has been
successfully added to the message database.

User response: Test the programs that use this user
message file.

ELA00153P %01CO08 failed on file %02C08

Explanation: While running the message utility, an
attempt was made to access (open, close, read, or write)
the indicated file. The access failed and the message
utility ended. The first message insert indicates the type
of access that failed. The most common errors are a
missing DD card for the file.

User response: Refer to the job listing for system error
messages pertaining to the indicated DD name. Correct
the error and run the job again, starting with the
command that caused the error.

ELA001541 Message file %01C03 has been replaced

Explanation: The indicated user message file has been
successfully replaced in the message database.

User response: Test the programs that use this user
message file.

ELA001551 Message file %01C03 has been deleted

Explanation: The indicated user message file has been
successfully deleted from the message database.

User response: Change the program using this user
message file to use another message file and generate
the program again.

ELA001561 Replace on non-existent message file

%01C03, file was added

Explanation: A REPLACE command was issued for
the indicated message file, but the file did not exist in
the message database. The file was added instead.

User response: None, provided the file was added to
the correct message database.

ELAO00157P %01C08 failed on file %02C08, file
status = %03C06

Explanation: While running of the message utility, an
attempt was made to access (open, close, read, or write)
the indicated VSAM file. The file identifies the DD
name. The file status consists of the VSAM return code
(2 characters), function (1 character), and feedback code
(3 characters). The access failed and the message utility
terminated. The first message insert indicates that type
of access that failed.

User response: Refer to the VSAM administration
guide for your system for a definition of the status
codes. Also look at the job listing for system error
messages pertaining to the indicated DD name. Correct
the error and run the job again, starting with the
command that caused the error.

Appendix. Enterprise Developer Server Run-time Messages 185

ELA00158P Syntax error on command

Explanation: A command being processed by the
message utility did not follow the correct syntax. The
message utility ends.

User response: Correct the command and rerun the
job, starting with the command that had the incorrect
syntax.

ELA00159P Message file %01C03 already exists in
the message database

Explanation: An attempt to add a user message file
failed because the message file already existed in the
message database for the language specified in the
current message utility command. The return code is
set to 08.

User response: Use the REPLACE command to
update the message file in the message database.

ELA00160P Message file %01C03 does not exist in
the message database

Explanation: An attempt to remove or list a user
message file failed because the message file does not
exist in the message database for the language specified
in the current message utility command. The return
code is set to 08. If the insert is an asterisk, you
attempted to list all messages in an empty message
database.

User response: Correct the message file ID in the
command and run the job again.

ELA00162P Message I/O error, type %01C04, file
%02C08, code %03C08

Explanation: An error occurred when a program
generated using Cross System Product/370 Runtime
Services Version 1 Release 1 attempted to open or close
a user message file. The type variable insert specifies
VSAM as the message file type. The file insert specifies
the DD name. The first two bytes of the code insert are
either 08 (to specify an OPEN) or 16 (to specify a
CLOSE). The next two bytes are the ACB (Access
control block) return code in hexadecimal format. The
remaining bytes in the code insert are zero.

The run unit ends.

User response: Have the administrator do one of the
following:

* Determine the cause of the problem from the VSAM
error code. First see the table of common VSAM
codes in the IBM Enterprise Developer Server Guide for
z/OS. If the codes are not listed in the table, refer to
the VSAM administration guide for your system for
a definition of other VSAM codes. Also verify that
the user message file is allocated correctly.

186 1BM Enterprise Developer Server Guide for z/OS

¢ Convert the message file to a message table and
generate the program again under VisualAge
Generator or CSP/370AD Version 4 Release 1.

ELA00163P %01C08, %02C60

Explanation: This message is used when a Enterprise
Developer Server message cannot be found in the
language-dependent message table program ELACxxx,
where xxx is the language code.

The first variable insert in this message is the error
message number for the error that actually occurred.
The second insert in this message contains one of the
message inserts that is used by the error that actually
occurred. This message is repeated as many times as
necessary to report all inserts. The inserts are reported
in order by their number: %01, %02, and so on.

User response: See the message with the
corresponding message number in this manual. Take
the action appropriate for that message. Also, contact
the system administrator to determine why the
message could not be found in the Enterprise
Developer Server language-dependent message table
program.

ELA00164P %01CO08, %02C04, %03C02, %04X08

Explanation: The error handler was not successful in

using a DL/I call to write diagnostic information about

another error to normal destinations for error

information. The variable inserts contain the following

information:

* Destination from the terminal identifier field of the
PCB used in the call.

The destination can be the error destination specified
at program generation, the user terminal ID, or the
IMS log.

* DL/I function

* DL/I status code

+ PCB Address

Enterprise Developer Server ends the program with a
user abend.

User response: See [Chapter 20, “Diagnosing Problems|

for Enterprise Developer Server on z/0S Systems,” on|

page 129 for information about locating the diagnostic
messages in the dump. These messages relate to the
original error that ended the program. Also verify that
the errorDestination value specified in your build
descriptor options is included in the IMS system
generation.

ELA00166P The recursion stack exceeds the
maximum size allowed

Explanation: The stack that contains information to
support recursion or segmentation has become too
large.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Check for an infinite loop that is
causing a large number of recursions. Either limit the
number of recursions, or reduce the number of
functions in the program.

ELA00168P %01C03

Explanation: The NLS language code in the file
allocated to ELAMSG as shown in the insert is not
valid. The Enterprise Developer Server utility ends
because the language code for messages and report
headings cannot be determined.

User response: Correct the JCL so that the ELAMSG
DD statement references a sequential file or in-stream
data that contains a valid NLS code in columns 1
through 3 of the first record. Refer to the IBM
Enterprise Developer Server Guide for z/OS for a list
of the valid NLS codes.

ELA001691 Work database purged of %01D08
records older than day %02C06, time

%03C06

Explanation: The utility that purges obsolete records
from the work database has completed normally.

User response: None required.

ELA00170P Input is not valid

Explanation: Either the date or the time provided to
the utility that purges obsolete records from the work
database was nonnumeric or was not valid.

The run unit ends.

User response: Ensure that the date is in Julian format
(YYDDD - two positions for the year and three
positions for the day of the year). Ensure that the time
is in HHMMSS format (two position for the hour, two
positions for the minutes, and two positions for the
seconds). The date and time specified must be at least
24 hours before the time that the purge program is run.

ELA00172I CICS error, system identifier %01C08

Explanation: An error occurred on a CICS function to
be performed on a remote system. The message
displays the CICS identifier for the remote system.

This message is always issued along with other
messages that identify the function being performed
and the CICS error return information.

User response: None required.

ELA00173P An error occurred in remote program
%01C08, date %02C08, time %03C08

Explanation: An error occurred in a remote program
that caused the remote program to stop running.
Diagnostic messages might have been logged at the
remote location giving information about the error. The
date and time stamp on this message can be used to
associate the messages logged at the remote system
with this error message.

The run unit ends.

User response: Report the error to the system
administrator.

ELA00179P An error occurred starting transaction
%01C08

Explanation: IMS or CICS indicates that an error
occurred when a program attempted to start the
specified transaction. A message following this message
gives the IMS or CICS error codes.

The run unit ends.

User response: Determine the cause of the error from
the following message and correct the error.

ELA00184P Program %01C07 and mapping services
program %02C08 are not compatible

Explanation: The specified program and mapping
services program are generated for different systems.

The run unit ends.

User response: Generate the mapping services
program for the same environment as the program.

ELA00185P Length of %01D02 for record %02C18 is
not valid and conversion ended

Explanation: Conversion of a variable length record
between the workstation format and host format cannot
be performed because of one of the following
conditions:
* The record length for the current record indicates
that the record ends in one of the following:
— The middle of a numeric field
— The middle of a DBCHAR character
— The middle of an SO/SI string.
* The record is longer than the maximum length
defined for the record.

The run unit ends. In CICS environments Enterprise
Developer Server issues a dump based on options
selected using the diagnostic controller utility.

Appendix. Enterprise Developer Server Run-time Messages 187

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to set the record
length so that it ends on a valid field boundary.

ELA00186P An operand of type MBCHAR in a
conversion operation is not valid

Explanation: Conversion of an item from EBCDIC to
ASCII or from ASCII to EBCDIC cannot be performed
because a double-byte data value is not valid.

The run unit ends. In CICS environments Enterprise
Developer Server issues a dump based on options
selected using the diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to ensure that any
items of type MBCHAR are valid in the records to be
converted.

ELA00187P Conversion table %01C08 does not
support double-byte character
conversion

Explanation: Conversion of an item of type MBCHAR
or DBCHAR from ASCII to EBCDIC or from EBCDIC
to ASCII cannot be performed because the specified
conversion table does not include conversion tables for
double-byte characters.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to specify a
conversion table that contains the double-byte
conversion tables that are valid for data of types
DBCHAR and MBCHAR. For background information,
see the EGL help topic Data Conversion.

ELAO00188P Conversion Error. Function: %01C25,
Return Code: %02C05, Table: %03C08

Explanation: A system function was called to perform
code page conversion for data used in a client/server
program. The function failed.

Possible causes for the failure are:

* The code pages identified in the conversion table are
not supported by the conversion functions on your
system.

188 1BM Enterprise Developer Server Guide for z/OS

 For double-byte character conversion where the
source data is in ASCII format, the source data was
created under a different DBCS code page than the
code page that is currently in effect on the system.

User response: Consider the EGL help topic Data
conversion.

ELA00191I Program %01C07, generation date

%02C08, time %03C08

Explanation: An error in the specified program has
occurred. The error is identified in other messages
preceding this message. The error might be caused by
changes to individually generated components of the
program.

User response: Verify the generation date and time of
the program with that of other generated components.

ELA00192I Print services program %01C08,

generation date %02C08, time %03C08

Explanation: An error in the specified print services
program has occurred. The error is identified in other
messages preceding this message. The error might be
caused by changes to individually generated
components of the controlling program.

User response: Verify the generation date and time of
the print services program with that of other generated
components in the program.

ELA00195I Form group format module %01C08,

generation date %02C08, time %03C08

Explanation: An error in the specified form group
format module has occurred. The error is identified in
other messages preceding this message. The error
might be caused by changes to individually generated
components of the controlling program.

User response: Verify the generation date and time of
the form group format module with that of other
generated components in the program.

ELA00201P z/OS %01CO08 error in service %02C08,
RC = %03D04

Explanation: Enterprise Developer Server received an
error return from a z/OS macro. The inserts identify
the macro name, the Enterprise Developer Server
program name, and the return code.

The run unit ends.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Contact the system administrator.

ELA00202P The file name %01C65 is not valid in
the record-specific variable
resourceAssociation or in
sys Var.printerAssociation

Explanation: The format of the record name is not
valid. The run unit ends.

User response: Refer to the EGL help to determine the
valid syntax, then correct and regenerate the program.

ELA00203P CICS I/O error on file %01C08, resource
%02C08

Explanation: The current program has attempted to
gain access to a CICS file, and CICS returned a status
code that indicated an I/O error occurred. The file is
the logical file name specified in the record part
declaration. The resource is the CICS file control table
(FCT) or destination control table (DCT) name.

Possible causes of the error are the following;:

* The file does not exist on disk.

* The file is not defined in the CICS FCT or DCT.

¢ The file was specified to be opened when first
referenced.

* On z/0S CICS, the file was closed using the CSMT
or CEMT transactions.

e For z/0S CICS, the DD statement for the file in the
CICS startup JCL is missing, does not match the FCT
name, or is in error.

¢ The file has been changed or otherwise corrupted.

Message ELA00204I is also displayed with the
information from the EXEC interface block (EIB).

The run unit ends. Enterprise Developer Server issues a
dump based on information supplied for the
transaction with the diagnostic controller utility.

User response: Have the CICS administrator refer to
the CICS messages and codes manual for an
explanation of the EIB codes. Correct the error and run
the program again.

ELA00204I CICS EIBFN %01X04, RCODE %02X12,

RESP %03D04, RESP2 %04D04

Explanation: The current program has received an
error code for a CICS command. The run unit ends.

User response: Refer to the CICS application
programmers’ guide for an explanation of the EXEC
interface block (EIB) codes. Correct the error and run
the program again.

ELA00205P A CICS %01C22 error occurred in
service %02C08

Explanation: Enterprise Developer Server received an
error status code for a CICS command. This message
identifies the command and the service program that

issued the command. This message is accompanied by
message ELA00204L, which contains the response codes
from the EXEC interface block (EIB).

The run unit ends. Enterprise Developer Server issues a
dump based on information supplied for the
transaction with the diagnostic controller utility.

User response: Have the system administrator use the
CICS diagnostic information in this message and in
message ELA00204I to determine the cause of the error.
Correct the error and run the program again.

ELA00206P Format of file %01C08 is not valid,
reason code %02C01, resource %03C56

Explanation: The attributes of the system resource
associated with the specified file name are not
compatible with the properties defined for the record in
the program. The reason code identifies the problematic
attribute, as follows:

1 Key offset

2 Key length

3 Access method
4 Record format
5 Record length

An access method mismatch occurs when the type of
data set allocated does not match what the program
expects. For example, a VSAM file is allocated as a
system sequential file or a partitioned data set is
allocated as a sequential file without specifying a part
name.

The run unit ends.

User response: Change the record part declaration, the
resource association part, or both, so that the record
properties match the system resource attributes.
Generate and test the affected programs again.

ELA00207P The attributes for file %01C08 are not
compatible, reason code %02C01

Explanation: A program has attempted to use a file
having file attributes that differ from another program
in the run unit. All programs in a run unit must use
the same attributes for a file. The reason code identifies
the problematic attribute, as follows:

1 Key offset

2 Key length

3 Access method
4 Record format
5 Record length

Appendix. Enterprise Developer Server Run-time Messages 189

6 Use the system variable
sysVar.remoteSystemlID to identify the location
of a remote file

The run unit ends.

User response: Change the record-part declarations,
the resource association part, or both, so that all
programs in the run unit have identical attributes for
the file; then regenerate the affected programs.

ELA00208P Print services program %01C06 and form
group format module %02C08 were
generated separately

Explanation: The specified print services program
attempted to process a form that was generated at a
time different from the form group format module.
Both the print services program and the form group
format module must be generated at the same time.

The run unit ends.

User response: Make sure that the print services
program and the form group format module were
generated at the same time and are installed in the
correct libraries.

ELA00210P Service number %01D04 is not valid

Explanation: An attempt was made to start a
Enterprise Developer Server routine that does not exist
or that is not valid.

The run unit ends.

In CICS environments Enterprise Developer Server
issues a dump based on options selected using the
diagnostic controller utility.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Regenerate and test the program. If the

problem persists, do as follows:

1. Record the message number

2. Obtain the dump

3. Record the scenario under which this message
occurs

4. Obtain the COBOL source for the problem program

5. Use your electronic link with IBM Service if one is
available, or contact the IBM Support Center

ELA00212P Error encountered gaining access to file
%01CO08, spool resource %02C65

Explanation: An error was received when attempting
to gain access to a spool file. The message is
accompanied by message ELA002041, which contains
response codes from the CICS EXEC interface block
(EIB).

If the function was a write spool request (EIBFN 5602)

190 1BM Enterprise Developer Server Guide for z/OS

and the spool resource name was specified as node ID
without being qualified by user ID, an error will occur
if the user did not log on using the CICS logon
procedure.

The run unit ends. Enterprise Developer Server issues a
dump based on information supplied for the
transaction with the diagnostic controller utility.

User response: If the spool resource name specifies
node ID without specifying user ID, log on using the
CICS logon procedure before running the program
again. Otherwise, refer to the CICS customization
documentation for an explanation of the codes that are
returned by the spool interface; then, correct the
problem specified in the response codes.

Refer to the EGL help for additional information on the
format of the system resource name.

ELA00215P PSB does not match the
development-time PSB definition

Explanation: The number of PCBs passed to the
program at program initialization time was less than
the number of PCBs in the development-time PSB
definition. This message is accompanied by ELA002171.

The run unit ends. Enterprise Developer Server issues a
dump based on information supplied for the
transaction with the diagnostic controller utility.

User response: Do as follows:

* Correct the DL/I PSB; or

¢ Correct the development-time PSB definition and
generate the program again

ELA00216P CICS DL/I error, function %01C04,
UIBFCTR %02X02, UIBDLTR %03X02

Explanation: CICS detected an error in a DL/T call.
The message variable inserts specify the function being
requested and the return codes from the CICS user
interface block (UIB). If the function code is PCB, the
program was attempting to schedule the program PSB.
The message is accompanied by message ELA002171.

Common return codes are as follows:

UIBFCTR UIBDLTR Description

08 00 Argument on DL/I call
not valid. This error can
occur if the IMSESA
installation option in
module ELARPIOP is
specified as YES, but the
IMS environment is not

IMS/ESA.

08 01 PSB not found. The PSB

must be defined to CICS.

UIBEFCTR UIBDLTR Description

08 03 The calling program has
already successfully issued
a scheduling (PCB) call
that has not been followed

by a TERM call.

08 05 PSB initialization was not

successful.

08 06 The PSB in the scheduling
call is not defined in the
program control table

(DLZACT).

08 07 A TERM call was issued
when the task had already

been terminated.

08 09 An MPS batch program
attempted to issue a PCB
call for a read-only PSB or
for a nonexclusive PSB if
program isolation was

active.

08 FF DL/I not active

0C 02 Intent scheduling conflict

The run unit ends.

User response: Check the definition of the call to the
CSPTDLI service routine in the program, if the DL/I
call is not valid. Otherwise, correct the problem
specified by the error code. For additional codes, refer
to the CICS application programmers’ guide for your
system to determine the meaning of the error codes.

ELA00217I Program %01C07, PSB name %02C08

Explanation: An error was detected in the specified
DL/I program. The message is accompanied by
messages ELA00215P or ELA00216P, which identify the
problem.

The run unit ends.

User response: Refer to the accompanying messages
for the problem cause.

ELA00218P Invocation of sysLib.audit not
successful, journal id = %01D05, journal
type = %02C02

Explanation: This message is accompanied by
ELA002041, which displays the contents of EIBRESP.

Common EIBRESP codes for CICS are as follows:
22 LENGERR

The computed length for the journal record
exceeds the total buffer space allocated for the
journal data set as specified in the journal
control table (JCT) entry for the data set

43 JIDERR
Occurs if the specified journal identifier does
not exist in the JCT

The run unit ends.

User response: Refer to the CICS programming
documentation to define journal data sets, or contact
the system administrator.

ELA00219P %01C22 error for %02C06 file %03CO08,
%04C56

Explanation: An I/O operation was not successful for
the specified file.

Program processing ends on any nonzero status code if
the I/O statement is not in a try block; and ends on a
hard error if the I/O statement is in a try block when
sysVar.handleHardIOErrors is set to 0.

The message identifies the I/O operation, the file type,
the file name as specified in the record part, and the
system resource name associated with the file.

The run unit ends.

In all z/OS environments, Enterprise Developer Server
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Check that the correct data set has
been allocated for this file.

ELA00220P Dynamic allocation was not successful,
file %01C08, return %02D04, error
reason code %03X04.

Explanation: Enterprise Developer Server was not
successful on an attempt to perform dynamic allocation
for the specified file. The other inserts are the return
code in register 15 and the error reason code returned
by the SVC 99 instruction.

The most common cause is that the file was not
available. If you want your program to receive control
after getting the status fileNotAvailable, place the I/O
operation in a try block and set
sysVar.handleHardIOErrors to 1.

The run unit ends.

User response: Contact the system administrator.
Refer to the MVS System Programming: System Macros
and Facilities manual for an explanation of the codes.

ELA00221P File %01C08, system resource name
%02C56, not found

Explanation: Enterprise Developer Server attempted
to dynamically allocate the file with the system
resource name shown in the message. The file could
not be found.

If the system resource name is a 1- to 8-character DD

Appendix. Enterprise Developer Server Run-time Messages 191

name, then there is no DD card for the file in the job
JCL. If the system resource name is a data set name,
then the data set either does not exist or is not
cataloged.

The run unit ends.

User response: If the name is a DD name, allocate a
file to the DD name in the JCL. If the name is a data
set name, ensure that the file exists and is cataloged.

ELA00222P Transaction %01C04 ended abnormally
with CICS abend code %02C04

Explanation: The specified CICS transaction ended
abnormally with the specified code.

On z/0S CICS systems, the following additional
information is provided:

* On CICS Version 2 systems, if the ABEND code is
ASRA or ASRB, this message is accompanied by the
message ELA00223P and the ABEND exit can
determine the module within which the error
occurred.

* On later CICS systems, if the abend code is ASRA or
ASRB, CICS message DFHAP0001 identifies the
offset in the module at which the error occurred. The
diagnostic control option specified for transaction
abends using the Enterprise Developer Server
diagnostic control utility determines whether a dump
occurs.

The Enterprise Developer Server abend handler ends
the program by issuing another ABEND command
using the same code.

User response: See "ABEND Codes” in the IBM
Enterprise Developer Server Guide for z/OS for a
description of abend codes using the format ELAX.
Refer to CICS or user program documentation for an
explanation of other abend codes.

ELA00223P Program %01C08 abended at offset
%02X08

Explanation: The specified program has abended with
an ASRA or ASRB abend code. This indicates that a
program check has occurred at the specified
hexadecimal offset.

Enterprise Developer Server ends the program with a
user abend.

User response: If the program is a generated COBOL
program, use the compile listing to find the COBOL
verb that was running when the program ended
abnormally. The COBOL comments identify the EGL
statements associated with the COBOL verb. Determine
from the dump whether the problem was caused by
bad data passed to the program. If the generated
COBOL is in error, use your electronic link with IBM
Service or contact the IBM Support Center.

192 1BM Enterprise Developer Server Guide for z/OS

ELA00225P Temporary storage queue name %01C08
is not valid

Explanation: The record-specific variable
sysVar.resourceAssociation is set to a temporary storage
queue name that is not valid. The name conflicts with a
queue name that is reserved for Enterprise Developer
Server. Names cannot begin with EZE.

The run unit ends.

User response: Specify a valid temporary storage
queue name in the program.

ELA00228P The program attempted to use the
resource %01C65 with file %02C07 and
file %03C07

Explanation: The program attempted to associate the
same system resource with two different files. The
resource cannot be associated with two different files at
the same time.

The run unit ends.

User response: Examine the program and correct the
logic. Generate and test the affected programs again.

ELA00229P Invocation of sysVar.startTransaction
failed, transID = %01C04, terminal ID =
%02C08

Explanation: This message is accompanied by the
message ELA002041, which displays the contents of
EIBRESP.

Common codes are as follows:

11 TERMID error
The specified terminal ID is not known to
CICS.

28 TRANSID error

The specified transaction ID is not known to
CICS.
The run unit ends.

User response: Have the system administrator define
the terminal or transaction to CICS.

ELA00230P An error was encountered accessing
CICS queue %01CO08

Explanation: An error was received when attempting
to access a CICS queue. The queue can be a transient
data queue or temporary storage queue. This message
is accompanied by message ELA002041, which contains
response codes from the CICS EXEC interface block
(EIB).

The run unit ends. Enterprise Developer Server issues a
dump based on information supplied for the
transaction with the diagnostic controller utility.

User response: Refer to the CICS application
programmers’ guide for an explanation of the response
codes.

ELA00231P Error encountered retrieving data passed
to program %01C08

Explanation: An error was received when attempting
to retrieve data being passed to this program by a
transfer statement or by sysVar.startTransaction. This
message is accompanied by message ELA00204I, which
contains response codes from the CICS EXEC interface
block (EIB).

The run unit ends. Enterprise Developer Server issues a
dump based on information supplied for the
transaction with the diagnostic controller utility.

User response: Refer to the CICS application
programmers’ guide for an explanation of the codes
that are returned.

ELA00232P Form %01CO08 in form group %02CO06 is
not declared or is not supported

Explanation: The specified form does not exist or is
not defined for the type of device being used.

The run unit ends.

User response: Either define the map for your device
type or select the device for the map. Generate the map
group again.

If you are running on a CICS system, have the system
administrator check that the alternate screen size for
your device type is specified in the PCT entry for your
transaction.

If the map group name uses the format ELAxxx, where
xxx is the language code, the map group might have
been modified incorrectly. The ELAxxx map group
contains the Enterprise Developer Server error maps.

ELA00237P CICS TS Queue %01X16 error occurred
in work database operation for program
%02C07

Explanation: An error was received when attempting
to access a CICS temporary storage queue. This
message is accompanied by message ELA002041, which
contains response codes from the CICS EXEC interface
block (EIB).

If the error is an INVREQ (EIBRESP=16), the problem
might be caused by Enterprise Developer Server
attempting to write a record that is longer than the
control interval size for the VSAM data sets used for
the auxiliary storage queue. The maximum
segmentation record size written by Enterprise
Developer Server is set by the TSQUE option in the
installation options module ELARPIOP. TSQUE
specifies the maximum size as the number of kilobytes;
the default value is 16 KB.

The run unit ends.

User response: Refer to the CICS application
programmers’ guide for an explanation of the codes.

If the control interval size is the problem, have the
system administrator assemble the installation module
again after setting the TSQUE value to a value less than
the control interval size.

Refer to the Server program directory for your system
for more information.

ELA00249P Mapping services program %01C08
compiled with DATA(31) cannot be used
by program

Explanation: A mapping services program compiled
with the DATA(31) compiler option has been loaded for
a program link-edited as AMODE(24).

User response: Compile the mapping services
program again with the COBOL DATA(24) option; and
make sure that data (a build descriptor option) is set to
24 whenever the form group is generated.

ELA00250P Program cannot process data with 31-bit
addresses

Explanation: The initial program in the run unit was
compiled with DATA(31). The current program was
link-edited as AMODE(24). This is not compatible.
User response: Do one of the following:

* Compile the initial program in the run unit as
DATA(24).

* Link-edit the current program as AMODE(31).

ELA00251P Data table %01C08 compiled with
DATA(@31) cannot be used by program

Explanation: A data table compiled with the
DATA(31) compiler option has been loaded for a
program link-edited as AMODE(24).

User response: Compile the table program again with
the COBOL DATA(24) option. Also ensure the
/DATA=24 generation option is specified whenever the
table is generated.

ELA00252P Error on file %01C08, queue name
%02C08, RC = %03C08

Explanation: An I/O logic error was detected by
Enterprise Developer Server during processing of an
I/0 option for a CICS temporary storage queue.

Program processing ends on any nonzero status code if
the I/O statement is not in a try block; and ends on a
hard error if the I/O statement is in a try block when
sysVar.handleHardIOErrors is set to 0.

Because the error was detected by Enterprise Developer
Server instead of the access method, the return code

Appendix. Enterprise Developer Server Run-time Messages 193

value consists of the characters RS (for runtime
services) followed by a Enterprise Developer return
code number.

The run unit ends. Enterprise Developer Server issues a
dump based on information supplied for the
transaction with the diagnostic controller utility.

User response: See the section on return codes in the
IBM Enterprise Developer Server Guide for z/OS to
determine the meaning of the Enterprise Developer
return code, and take the appropriate action.

ELA00253P Program %01C08 was not generated to
receive form %02C08

Explanation: The specified program received a form
as an input form, but the program does not contain
processing logic for handling segmented programs.
Either the wrong transaction name was specified when
the program was started, or the wrong program was
specified in the transaction definition.

The run unit ends.

User response: Make sure that the following are
specified correctly:
* The transaction ID in the show statement

* The form name in the program property inputForm

Re-generate the modified program.

ELA00254P Invalid values for sysLib.audit, journal
ID = %01DO05, type = %02C02, length =
%03D05

Explanation: A parameter in sysLib.audit is not valid:

¢ The journal ID must be between 1 and 99

¢ The third byte in the record must be in the range

X"A0" to X'FF’
¢ The record length must be between 28 and 32767

The run unit ends. Enterprise Developer Server issues a
dump based on information supplied for the
transaction with the diagnostic controller utility.

User response: Correct the error and regenerate the
program.

ELA00255P Invalid values for sysLib.audit, type =
%01C02, length = %02D05

Explanation: A parameter in sysLib.audit is not valid:

* The third byte in the record must be in the range
X'A0" to X'FF’

* The record length must be between 28 and 32767

The run unit ends.

User response: Correct the error and regenerate the
program.

194 1BM Enterprise Developer Server Guide for z/OS

ELA00265E Segmented converse is not supported
when local variables or function
parameters are in the run-time stack

Explanation: The message indicates that a converse
statement is invalid because the EGL run time cannot
restore the values of parameters or local variables after
the converse runs.

A segmented converse is described in the help topic on
Segmentation.

The run-time stack is a list of functions; specifically, the
current function plus the series of functions whose
running made possible the running of the current
function.

User response: Modify the program in one of two

ways:

¢ Make sure that the functions on the run-time stack
have neither parameters nor local variables; or

¢ Make sure that the converse is not segmented.

ELA00266E MQ function $01C08, Completion Code
$02C02, Reason Code $03C08.

Explanation: The MQ function did not complete
successfully, as indicated by the following completion
codes: 1 (MQCC_WARNING) 2 (MQCC_FAILED) The
reason for the completion code is set in the reason code
field by MQSeries®. Some common reason codes are:
2009 (Connection broken) 2042 (Object already open
with conflicting options) 2045 (Options not valid for
object type) 2046 (Options not valid or not consistent)
2058 (Queue manager name not valid or not known)
2059 (Queue manager not available for connection)
2085 (Unknown object name) 2086 (Unknown object
queue manager) 2087 (Unknown remote queue
manager) 2152 (Object name not valid) 2153 (Object
queue-manager name not valid) 2161 (Queue manager
quiescing) 2162 (Queue manager shutting down) 2201
(Not authorized for access) 2203 (Connection shutting
down)

The run unit ends.

User response: Please refer to the MQSeries Application
Programming Reference for further information on
MQSeries completion and reason codes.

ELA00267E Queue Manager Name %01C48.

Explanation: This is the name of the queue manager
associated with the failing MQ function call listed in
message ELA00266. If the failing MQ function was
MQOPEN, MQCLOSE, MQGET, or MQPUT, the name
identifies the queue manager specified with the object
name when the queue was opened. Otherwise, the
name is the name of the queue manager to which the
program is connected (or trying to connect). If the
queue manager name is blank, the queue manager is
the default queue manager for your system.

The run unit ends.

User response: Please refer to the MQSeries Application
Programming Reference for further information on the
MQSeries completion and reason codes that are listed
in message ELA00266.

ELA00268E Queue Name %01C48.

Explanation: This is the name of the queue object
associated with the failing MQ function call listed in
message ELA00266.

The run unit ends.

User response: Please refer to the MQSeries Application
Programming Reference for further information on
MQSeries completion and reason codes that are list in
message ELA00266.

ELAO00269E Array index value %01D07 out of range
for array %02C18 with size of %03D07

Explanation: The index specified for the dynamic
array is out of bounds.

User response: Specify an index between 1 and the
current number of elements in the array.

ELA00270E An attempt was made to exceed the
maximum size of array %01C18

Explanation: An attempt was made to add an element
to a dynamic array that already contains the maximum
allowed number of elements.

User response: Modify the program in either of two

ways:

¢ Increase the value of the dynamic-array property
maxSize; or

¢ Change the logic so that the number of elements is
always less than or equal to the value of maxSize.

ELA00300I A new copy was requested for part

%01C08

Explanation: A new copy was requested for the
programs associated with the specified part. Newly
started transactions use the new copy of the program.

User response: None required.

ELA00301I The diagnostic control options were

changed

Explanation: The diagnostic control options were
changed after a user request from the Enterprise
Developer Server Diagnostic Control utility.

User response: None required.

ELA00302I Error message queue sent to print

destination

Explanation: The contents of the transient data queue
containing the error messages were sent to the spooling
system after a user request from the Enterprise
Developer Server Diagnostic Print utility.

User response: None required.

ELA00303I Error message queue sent to print

destination and deleted

Explanation: The contents of the transient data queue
containing the error messages were sent to the spooling
system after a user request from the Enterprise
Developer Server Diagnostic Print utility. The contents
of the transient data queue were then deleted.

User response: None required.

ELAO00304A Type a valid selection number, then
press Enter

Explanation: The selection number entered for a field
on one of the Enterprise Developer Server utility panels
is not valid. The cursor is positioned at the field in
error.

User response: Type a valid selection and press Enter.

ELA00305A Type a name, then press Enter

Explanation: A required field was left blank on one of
the Enterprise Developer Server utility panels. The
cursor is positioned at the empty field.

User response: Type a valid name and press Enter.

ELA00306P CICS new copy was not successful for
program %01CO08. Press F2.

Explanation: The CICS SET NEWCOPY command
was not successful for the specified part. The specified
part was requested on the Enterprise Developer Server
New Copy panel.

User response: Press F2 to view message ELA00204I,
which contains the CICS response information from the
EXEC interface block (EIB). Verify that the part name is
correct. Refer to the CICS application programmers’
guide for an explanation of the EXEC interface block
(EIB) codes.

ELAO00308P I/O error on error message queue. Press
F2.

Explanation: A CICS error occurred when attempting
to gain access to the error destination queue identified
on the Enterprise Developer Server Diagnostic Print
panel.

User response: Press F2 to view message ELA00204I,

Appendix. Enterprise Developer Server Run-time Messages 195

which contains the CICS response information from the
EXEC interface block (EIB). Verify that the error
destination name is correct. Refer to the CICS
application programmers’ guide for an explanation of
the EXEC interface block (EIB) codes.

ELAO00309A Error message queue was not found

Explanation: The error destination queue identified on
the Enterprise Developer Server Diagnostic Print panel
was not found.

User response: Specify the correct error destination
queue name on the panel.

ELAO00310A Type a valid response, then press Enter.

Explanation: A value that was not recognized was
specified in the field where the cursor is positioned.
Valid values are shown following the field on the form.

User response: Type a valid value in the field and
press Enter.

ELA00313I Default options are in effect for this

transaction

Explanation: You made a request to view the
diagnostic control options in effect for a specific
transaction. The options currently in effect for the
transaction are the default options.

User response: To exit, press F3. To change the
options for this transaction do as follows:

1. Type the new options

2. Select action 1

3. Press Enter

ELA00314I Error message queue was empty

Explanation: A request was made to print an error
message queue that does not contain any messages.

User response: None required.

ELA00315I Trace transaction list was updated

successfully

Explanation: The list of transactions you specified to
be traced has been processed successfully.

User response: None required.

ELA00316I Trace filter criteria updated successfully

Explanation: The list of trace filter criteria you
specified has been processed successfully.

User response: None required.

196 1BM Enterprise Developer Server Guide for z/OS

ELA00317P Service number is not valid

Explanation: The trace filter criteria contains a service
number that is not valid. If this error is detected during
ELATRACE data set parsing, the run unit ends.

User response: Correct the service number
specification in the ELATRACE data set and run the
program again.

ELA00318P Tag in %01CO08 is not valid

Explanation: The filter criteria contains a tag that is
not valid. Valid tags are FILTER, EFILTER, APPLS,
EAPPLS, SERVICES, and ESERVICES. The run unit
ends.

User response: Correct the tag specification and run
the program again.

ELA00319P Missing or misplaced tag in %01C08

Explanation: The filter criteria contains a missing or
misplaced tag. The run unit ends.

User response: Correct the filter criteria and run the
program again.

ELA00320P Too many programs in %01C08

Explanation: The filter criteria contains too many
programs. The maximum number is 16. The run unit
ends.

User response: Reduce the number of programs or
remove all program filter criteria, then run the program
again.

ELA00321P Too many services in %01C08

Explanation: The filter criteria contains too many
services. The maximum number is 32. The run unit
ends.

User response: Reduce the number of services or
remove all service filter criteria, then run the program
again.

ELAO00322P One or more filters has a invalid value

Explanation: One or more codes entered for the
DATASTREAM, TRACETOFILE, APPSTMT, SQLIO,
SQLERR or IDUMP filters is not valid. The valid code
that is entered must be either Y (yes) or N (no).

For z/0S batch, the run unit ends.

If you are defining filters online on z/OS CICS, the
filter containing the value that is not correct is
highlighted.

User response: For z/OS batch, specify either Y or N
for these filters and run the program again. For CICS,
type one of the valid values for the highlighted filter as

shown on the form, then press Enter.

ELA00323P I/O error on storage queue %01C08.

Press F2.

Explanation: An error was received when attempting
to access a temporary storage queue in the diagnostic
message print utility. Press F2 to view message
ELA002041, which contains response codes from the
CICS EXEC interface block (EIB).

User response: Refer to the CICS application
programmers’ guide for an explanation of the codes.

ELA00324P Error reading trace control record. Press
F2.

Explanation: An error was encountered when
attempting to read or write to the trace control record
in CICS. Press F2 to view more information.

For z/0OS CICS, message ELA00204I is displayed,
which contains response codes from the CICS EXEC
interface block (EIB).

User response: Review the accompanying error
messages.

ELA00325P Error opening %01C08

Explanation: An error was encountered when
attempting to open the specified data set.

User response: Make sure that the data set has the
correct attributes.

ELA00326P Error reading %01C08

Explanation: An error was encountered when
attempting to read the specified data set.

User response: Make sure that the data set has the
correct attributes.

ELA00342A The maximum number of copies already
exists for the data table

Explanation: The maximum number of copies of a
data table that can be used in a CICS region at one
time is 5. The request for a new copy of the data table
was rejected.

User response: Old copies of a data table that are in
use are freed when all the transactions that are using
the data table end. Retry the new copy request later.

ELA03001I F3=EXIT F8=CONTINUE
Explanation: None.

User response: None required.

ELA03002I F3=EXIT
Explanation: None.

User response: None required.

ELA03003I CLEAR=EXIT
Explanation: None.

User response: None required.

ELA03004I PF3=EXIT PF8=FORWARD
Explanation: None.

User response: None required.

ELA030051 PF3=EXIT
Explanation: None.

User response: None required.

ELAO03006I PA1=CONTINUE
Explanation: None.

User response: None required.

ELA03007I ENTERPRISE DEVELOPER SERVER
Explanation: None.

User response: None required.

Appendix. Enterprise Developer Server Run-time Messages

197

198 1BM Enterprise Developer Server Guide for z/OS

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you. This
information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated
in new editions of the publication. IBM may make improvements and/or changes
in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1994, 2005 199

200

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

P.0. Box 12195, Dept. TL3B/B503/B313
3039 Cornwallis Rd.

Research Triangle Park, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming
interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows: 9999 (your company name) (year). Portions

IBM Enterprise Developer Server Guide for z/OS

of this code are derived from IBM Corp. Sample Programs. 9999 Copyright IBM
Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Notices 201

202 1BM Enterprise Developer Server Guide for z/OS

Index

Special characters

/FORMAT command 101

/HOLD command 101

/MODIFY command 100

/WORKDB generation option
IMS 13

A

abend

ASPE
CICS 34

codes
CICS 159, 167
COBOL 165
IMS runtime 166
non-CICS environments 161, 162
preparation 151

system 163
dumps
COBOL 139

Enterprise Developer Server 139
recovery considerations
z/OS 40, 44, 45, 54, 55
activating trace sessions
CICS 144
adding
file name to the CICS file control table
z/0S 37
job control statements
z/OS 37
addressing, extended 27
alternate index, defining 24
alternate PCB, using 48
American National Standards printer
control character
z/OS 29,31
AMODE 6
analyzing
detected errors 138
application
load module storage for Enterprise
Developer Server 5
plan for DB2 14
applying maintenance to
Enterprise Developer Server 3
ASA (see also American National
Standards printer control character) 31
ASPE abend, preventing 34
attributes for DBCS, hardware 27

backing up data 28
backup, maintaining copies of production
libraries 107
batch
print services program 71

© Copyright IBM Corp. 1994, 2005

BIND
command
data set 66
default 70

defining 70

DB2 programs 28

precompile messages 151

buffer size, printing
CICS 32
build descriptor

and compiler options that affect
performance 23

options
commentLevel 138
errorDestination 131, 134, 136
imsFastPath 131, 166
imsLogID 131, 135
initAdditional WS 163
initlORecords 163
language code 135, 137
mfsDevice 165, 166
mfsExtendedAttr 165, 166
mfslgnore 165, 166
mfsUseTestLibrary 165
performance considerations 23
restoreCurrentMsgOnError 131
spaSize 49, 98
targetNLS 163
trace 143

output files 67

C

catastrophic error 133
cautions
empty KSDS data set, VSAM
restriction 26
PRTMPP parameter, line skip
malfunction 33
CEDA transaction, RDO 85
change or view
defaults - ELAC04 120
options - ELAC02 118
checking
access authorization
z/OS 28
database authorization
CICS 28
IMS 54
CICS
abend codes 167
activating trace sessions 144
database
recovery considerations 40
DB2 considerations 10, 40
destination control table (DCT)
printing, DBCS 34
sample entry 39
transient data queue name 30
diagnostic control options 117
DL/I considerations 10, 40

CICS (continued)
ELAC transaction 117
ELAM transaction 111
ELAN transaction 112
ELAU transaction 114
EZEP transaction 31
EZEZ transaction 31
file descriptions 29
installation considerations 10
mode, pseudoconversational,
residency consideration 36
monitoring and tuning 10
new modules 87
parameter group
print file 29
parameter group, creating and
maintaining 121
PCT (program control table), printing,
DBCS 34
performance
considerations 35
preparation 85
print destination, specifying in
DCT 39
printing
buffer size 32
DBCS (double-byte character
set) 31,34
DCT (destination control
table) 30, 31
destination control table
(DCT) 30, 31, 39
double-byte character set
(DBCS) 31
EZEP transaction 31
EZEZ transaction 31
file description 29
form-feed 31
FORMFD=NO parameter 31
FZETPRT program 31, 39
parameter, PRTTYP 33
PCT (program control table),
FZETPRT program 34
printer destination 39
program control table (PCT) 34,
39
PRTBUF parameter 31
PRTMPP parameter 31
PRTTYP parameter 31
SEND command 32
terminal control table (TCT),
entry 39
transient data queue 39
processing mode
types 30
program control table (PCT)
DTB=YES and DBP value 39
printing, DBCS 34
pseudoconversational
processing mode 36
programs and residency 36

203

CICS (continued)
residency
considerations 35, 36
general rules 35
resource tables 85
security considerations 10
spool files 11
startup JCL 87
storage facilities used by Enterprise
Developer Server 7
system considerations 29
temporary storage queues for
Enterprise Developer Server 11
terminal control table (TCT),
entry 39
terminal printing 31
transaction
EZEP 31
EZEZ 31
PRO1 transient data queue 39
transactions, passing transient data
between 39
transient data queue 30
utilities
(see also CICS, utilities) 111
diagnostic control facility,
ELAM 111
diagnostic control options,
ELAC 117
diagnostic message printing,
ELAU 114
menu 11
new copy utility, ELAN 112
CICS, PRGM transaction 122
CICS, utilities, change diagnostic control
options 118
CICS, utilities, default diagnostic control
options 119
CICS, utilities, parameter group utility,
PRGM 122
CICS, utilities, PRGM, parameter group
utility 122
CICS, utilities, view diagnostic control
options 118
CICS/ESA
monitoring and tuning 10
clearing records from databases 55, 56
client/server 87
CLIST
modifying 93
templates 93
CMPAT parameter, IMS 48
COBOL
abend codes 165
abend dumps 139
abends under CICS 168
DATA compiler option 6, 11
status key values 157
WSCLEAR option 16
COBOL dynamic storage
for Enterprise Developer Server 6
COBOL/370 runtime messages 164
codes
abend, IMS 166
return
SQL 153

commit point
IMS 50
common system return codes 153
compiler options that affect
performance 23
considerations
batch
DB2 44
DL/T 44
program runtime support 44
system 43
customization 15
database integrity
DB2, CICS 40
DB2, IMS 54
IMS 49
database recovery
IMS 49
DB2
CICS 40
DB2 database recovery
CICS 40
IMS 54
DL/1
CICS 40
IMS 54
z/OS batch 44
DL/I database integrity and recovery
CICS 40
IMS 55
z/OS batch 45
message format services 61
performance
CICS 35
compiler options 23
IMS 50, 52
link pack area 52
printing
IMS 49
recovery
IMS 49
residency
CICS 35
system
backing up data 28
CICS 29
DBCS 27
extended addressing 27
IMS 47
tuning IMS 53
z/OS/XA 27
control block 140
control character, American National
Standards, printer 29
control region in IMS 13
controlling error reporting
CICS 131
IMS 131
conversational processing mode,
CICS 30
creating
MFS control blocks 99
CREATX service routine, print
destination 30
customizing
Enterprise Developer Server 15
JCL procedures 16

204 1BM Enterprise Developer Server Guide for z/OS

D

DATA compiler option 6, 11, 12
data file
backing up 28
defining 36
program, defining 24
data queue
extrapartition 39
intrapartition 39
transient 38
data set
bind command 66
CICS
PCT entries 67
PPT entries 67
DB2 database request module 66
DBRMLIB 66
EZEBIND 66
EZEJCLX 66, 107
EZEPCT 67
EZEPPT 67
EZEPRINT 43, 89, 104
EZESRC 66
load library 66
loading KSDS files 26
object library 66
SYSLIN 66
SYSLMOD 66
user 66
database
expanding 57
multiple
work 60
request module, DB2 66
work
clearing records 55
expanding 57
maintaining 55
database authorization
checking
IMS 54
z/0S 28
database integrity and recovery
considerations

DB2
CICS 40
IMS 54
DL/I
CICS 40
IMS 55
z/0S batch 45
IMS 49
DB Tools product 53
DB2

application plan 14
checking authorization
IMS 54
z/OS 28
considerations
CICS 10, 40
IMS 12
TSO 9
database
request module data set 66
table space 58, 59

DB2 (continued)
database integrity and recovery
considerations
CICS 40
IMS 54
precompile
messages 151
programs
bind 28
work database
clearing records 56
expanding the table space 58
IMS 13
multiple 60
DBCS (double-byte character set)
data on a non-DBCS terminal 102
hardware attributes 27

printing
CICS 31, 34, 39
DBRMLIB 66

DCAPRMG file, parameter group for
FZETPRT 31
DCT (destination control table)
entries 86
printing, DBCS 34
sample entry 39
transient data queue 30, 31
trigger level 31
DD statements by file type 94
deactivating a trace session 149
default
print destination, IMS 49
defining
alternate index 24
data files 36
ESDS (serial) data set 24
KSDS (indexed) data set 24
program data files 36
program specification block (PSB)
IMS 48
RRDS (relative) data set 24
transient data
extrapartition 39
intrapartition 39
transient data files
extrapartition 39
intrapartition 39
transient data queues
extrapartition 38, 39
intrapartition 38, 39
VSAM data files 24
deleting old records from the work
database 55
descriptions
CICS files 29
IMS files 47
destination control table (DCT)
entries 86
printing, DBCS 34
sample entry 39
transient data queue 30, 31
trigger level 31
destination, default print, IMS 49
detecting errors 129
determining position in program 141
DFHAC2016 messages 167
DFHAC2206 messages 167

DFS0571 error message 165
DFS064 error message 165
DFS182 error message 165
DFS2082 error message 103, 166
DFES2766I error message 103, 166
DEFS5551 error message 102, 166
diagnosing problems 129
diagnostic control
facility
CICS utilities 111
options
change or view defaults 120
change or view options 118
ELAC transaction 117
diagnostic message print utility,
ELAU 114
disk storage requirements
for Enterprise Developer Server 7
DL/1
considerations
CICS 10, 40
IMS 54
SO 9
z/OS batch 44
integrity and recovery considerations
CICS 40
IMS 55
z/0S batch 45
status codes 155
work database
clearing records 55
expanding the database 57
inIMS 13
multiple 60
double-byte character set (DBCS)
hardware attributes 27

printer 39
DSNX100I messages 151
dumps

snap, listing file on IMS 47
dynamic

interface plan 28
storage utilization in Enterprise
Developer Server 6

E

ELA2SSQL module 51

ELA2SSQX module 51

ELA2SSQY module 51

ELAC, diagnostic control options 117

ELACO2 panel, change or view
options 118

ELACO04 panel, change or view
defaults 120

ELACJWKD member 60

ELADIAG file 47

ELAM, CICS utilities menu 111

ELAN, new copy utility 112

ELANCccc module 51

ELAPCB macro 48

ELAPRINT system output file 43, 47

ELARPRTM load module 51

ELARPRTR load module 51

ELARSDCB load module 51

ELASNAP file 47

ELAU, diagnostic message printing
utility 114
ELAWKJC2 member 56
ELAWKJCD member 55
ELAWORK work database PCB 48
ELAWORK2 DL/I work database 60
emulating IBM 3270 devices 27
Enterprise Developer Server
abend dumps 139
application load module storage 5
applying maintenance 3
COBOL dynamic storage 6
control block 140
control options by transaction 118
customizing JCL procedures 16
DB2 considerations
CICS 10
IMS 12
IMS work database 13
TSO 9
default control options 120
diagnostic control options 117
disk storage requirements 7
DL/I considerations
CICS 10
IMS work database 13
TSO 9
dynamic storage 6
error 133
extended addressing 27
generated programs
using with PL/I programs 16
IMS/ESA exploitation 12
installation considerations
CICS 10
IMS 11
preparing to install 3
load module
reentrant 5
storage 5
storage estimates, statically
linked 6
new copy 112
performance considerations 15
security considerations
all systems 15
CICS 10
IMS 12
storage facilities for CICS, using 7
storage requirements 5
temporary storage queues 11
utilities
diagnostic control facility
(ELAM) 111
diagnostic control options
(ELAC) 117
diagnostic message printing utility
(ELAU) 114
for CICS 11
new copy (ELAN) 112
virtual storage requirements 5
work database space for segmented
applications 7
WSCLEAR option for COBOL,
specifying 16
Enterprise Developer Server, utilities,
parameter group utility, PRGM 122

Index 205

Enterprise Developer Server, utilities,
PRGM, parameter group utility 122
ERRDEST message queue 134
error
detection 129
file
definition 130
I/0 129
processing 130
message
file 47
panel 133
reporting 131
IMS 131
in IMS 102
summary 132
ESDS (serial) define cluster 24
expanding
the table space (DB2) 58
work database 57
express alternate PCB 48
extended addressing considerations
z/OS 27
external work file, backing up 28
extrapartition transient data, defining 39
EZEBIND data set 66
EZEDESTP special function word 43
EZEJCLX data set 66
EZEP transaction 29, 31, 39
EZEPCT data set 67
EZEPPT data set 67
EZEPRINT data set
IMS 49
specify as PRO1 39
EZEPRMG file
CICS 29
parameter group for FZETPRT 31
EZEROLLB service routine
IMS 50
EZESRC data set 66
EZETRACE data set 43
EZEZ transaction 31, 39

F

FCT (file control table)
entries 87
user data file 37
file
control table (FCT)
described 87
default message queue, IMS 47
definition errors 130
description
CICS 29
IMS 47
descriptions 29
error message 47
from generation 67
1/0O errors 129
parameter group 29
processing errors 130
snap dump listing, IMS 47
system output 43
trace 43
file control table (FCT)
entries 87

206

file control table (FCT) (continued)
user data file 37
form feed
order (see American National
Standards printer control
character) 31
printing 31
FORMFD parameter
option=NO, forms alignment 31
parameter group for EZEP or
EZEZ 33
used with FZETPRT program 31
function
new copy 34
preload, IMS 50
FZETPRT program 34
DBCS considerations 34
EZEP or EZEZ transaction 39
special parameter group 31
terminal printing support in CICS 31
FZEZREBO utility, initializing indexed
files 26

G

generated applications

with PL/I programs 16
generating

application control block 48

H

hardware attributes for DBCS 27

IBM 3270 device, emulating 27
IBM 5550 family of terminals 27
IDCAMS program
BLDINDEX command 24
DEFINE PATH command 24
loading indexed files 27
REPRO command 24, 26
IGYOP3091W error message 152
IGYOP3093W error message 152
IGYOP3094W error message 152
IGYPA3013W error message 152
IGYPG3113W error message 152
IGYPS2015I error message 152
IGYPS2023I error message 152
IGYSC2025W error message 152
IGZ033S error message 164
1GZ064S error message 164
IGZ066S error message 165
IGZ075S error message 165
improving
performance 53
library lookaside (LLA) 24
link pack area (LPA) 24
virtual lookaside facility (VLF) 24
response time 52
IMS
commit point 50
control region 13
database
authorization checking 54

IBM Enterprise Developer Server Guide for z/OS

IMS (continued)
database (continued)
integrity considerations 49
recovery considerations, DB2 54
recovery considerations, DL/I 49
DB2 considerations 12
default
message queue file 47
print destination 49
DL/I considerations 54
ELAPCB macro 48
error
controlling, generation
options 131
messages 102
reporting 102
file descriptions 47
HIPERSPACE buffer usage 52
installation considerations 11
integrity considerations, DB2 54
log format 135
logical unit of work 55
monitoring and tuning 12, 53
new modules 100
performance considerations 52
preload function 50
preloading
Enterprise Developer Server
modules 51
program modules 52
preparation 97
processing modes 49
program specification block,
defining 48
residency considerations 50
rollback 50
runtime
abend codes 166
messages 165
security considerations 12
segmented mode 49
single-segmented mode 49
snap dump listing file 47
system considerations 47
system definition
batch program as an MPP 98
batch-oriented BMP program 99
general 13
interactive program 97
parameters 97
transaction-oriented BMP 99
system printing considerations 49
work database considerations
DB2 13
DL/I 13
IMS DC monitor facilities 12
IMS Performance Analysis and Reporting
System 12
IMS/ESA exploitation 12
IMS/VS, message format service (MFS)
Control Blocks 53
IMSPARS 12, 53
indexed (KSDS) data set
define cluster 24
loading 26
installation considerations
preparing to install 3

integrity considerations, database
DB2
CICS 40
IMS 54
DL/I
CICS 40
IMS 55
z/0OS batch 45
IMS 49
intrapartition transient data
defining 39

J

JCL
by environment 93
examples of runtime 90, 91, 92, 104,
105
modifying 93, 94
modifying runtime 94
tailoring before generation 93
templates 93
job stream data set
runtime 66

K

KSDS (indexed) define cluster 24

L

LE
runtime messages 164
library
backup 28
production copies, maintaining
backup 107
link pack area
loading 52
performance considerations 52
listing file
IMS, snap dump 47
load library data set 66
load module
preloading 51
storage for Enterprise Developer
Server 5
storage for Enterprise Developer
Server application 5
loading
modules into link pack area 52
logical unit of work (LUW)
IMS 54, 55

M

macro, ELAPCB 48
maintaining
backup copies of production
libraries 107
work database 55
maintenance, applying to
Enterprise Developer Server 3
map group
format module 71

message
format services
considerations 61
description 27, 61
queue file, default, IMS 47
message format service (MFS) control
blocks in IMS 53
messages
COBOL/370 runtime 164
DFHAC2016 167
DFHAC2206 167
DFS0571 165
DFS064 165
DFS182 165
DFS2082 103, 166
DFS27661 103, 166
DFS5551 102, 166
DSNX100I 151
IGYOP3091W 152
IGYOP3093W 152
IGYOP3094W 152
IGYPA3013W 152
IGYPG3113W 152
IGYPS20151 152
IGYPS20231 152
IGYSC2025W 152
1GZ0033S 164
1GZ0064S 164
1GZ0066S 165
1GZ0075S 165
IMS runtime 165
preparation 151

runtime
COBOL/370 164
IMS 165
z/0OS 167
z/0S runtime 167
MFS
control blocks 99
mode

CICS execution, performance
considerations 36
processing
CICS 30
IMS 49
models
JCL 93
modifying
IMS system definition parameters 97
JCL or CLISTs 93
runtime
JCL 94
modules
CICS 87
IMS 100
in memory 23
loading into link pack area 52
preloading 52
monitoring and tuning
CICS 10
IMS system 12, 53
performance 53
moving prepared programs
z/0S 107
multiple work databases 60

N

new copy
function 34
new copy utility 112
new copy utility, ELAN 112
new modules
CICS 87
IMS 100
nonsegmented processing mode,
CICS 30

(0

object library data set 66
objects generated
application COBOL program 70
batch print services program 71
BIND command 70
from generation 67
map group format module 71
online print services program 71
runtime
JCL 70
table program 71
online print services program 71
option
preloading
Enterprise Developer Server
modules, IMS 51
program modules, IMS 52
recovery 34
SPA 49
output of program generation 67

P

panels
Parameter Group Definition
(PRGMO02) 123
Parameter Group Specification
(PRGMO00) 122
panels, Parameter Group List Display
(PRGMO01) 123
parameter
group associated with FZETPRT
program
DCAPRMG file 31
EZEPRMG file 31
resident 35
WORK in ELAPCB 48
Parameter Group Definition panel
(PRGM02) 123
parameter group file, EZEPRMG data set,
CICS 29
Parameter Group List Display panel
(PRGMO1) 123
Parameter Group Specification panel
(PRGMO00) 122
passing transient data between CICS
transactions 39
PCT (program control table)
entries 86
FZETPRT program 34
performance
considerations 23
CICS 35
207

Index

performance (continued)
considerations (continued)
general 15, 23
IMS 50, 53
IMS/ESA 52, 53
z/OS batch 45
generation and compiler options 23
HIPERSPACE buffers for IMS 52
library lookaside (LLA) 24
limiting MFS control blocks 53
link pack area 23
monitoring and tuning
IMS 12,53
preload modules 100
RES(YES) parameter, RDO DEFINE
PROGRAM command 86
tuning IMS 53
virtual lookaside facility (VLF) 24
Performance Analysis and Reporting
System (PARS) 53
PL/I programs 16
plan, DB2 28
PPT (processing program table)
defining programs to CICS 67
entries 85
PRO1 transient data queue 39
precompile messages
BIND 151
DB2 151
preloading
Enterprise Developer Server modules,
IMS 51
objects, IMS 50
print services
description 100
module 51
program 52
program 100
program modules 51, 52
service module 51
table modules 51, 100
preparation
abend codes 151
messages 151
preparing
and running programs
CICS 85
IMS 97
z/OS batch 89
to install Enterprise Developer
Server 3
PRGMO0 (Parameter Group List Display
panel) 123
PRGMO0 (Parameter Group Specification

panel) 122
PRGMO02 (Parameter Group Definition
panel) 123

print destination
CICS, specifying in DCT 39
default
IMS 49
print file, utilities 29
print services program
object of generation 71
preloading 52
printing
buffer size 32

208

printing (continued)
CICS
considerations 29
file descriptions 29
CICS, destination control table
(DCT) 31
considerations
IMS 49
CREATX call for print destination 30
DBCS (double-byte character set),
printer 39
DCT (destination control table)
transient data queue name 30
trigger level 31
default, print destination 30
destination control table (DCT)
transient data queue name 30
trigger level 31
destination, using CREATX call 30
diagnostic information
CICS 136
IMS 134
EZEP transaction 31
EZEZ transaction 31
file descriptions, CICS 29
form-feed 31
FORMFD=NO parameter
FZETPRT program 31
parameter
FORMFD 31, 33
group associated with FZETPRT
program 31
PRTBUF 31
PRTMPP 31, 33
PRTTYP 31,33
PCT (program control table),
FZETPRT program 34
PRO1 transient data queue 39
print destination, default 30
printer destination 39
program control table (PCT),
FZETPRT program 34
SEND command 32
transient data
at a terminal device 39
transient data queue 30, 39
problem
diagnosis 129
processing
batch 43
processing mode
CICS
types 30
IMS 49
processing program table (PPT)
entries 85
production libraries, maintaining copies
for backup 107
profile block
program 140
program
bind DB2 28
data files, defining 24
entries 85
module, preloading 51
preloading 52
profile block 140

31, 33

IBM Enterprise Developer Server Guide for z/OS

program (continued)
return codes 159
program communication block (PCB)
alternate 48
ELAPCB macro 48
program control table (PCT)
DTB=YES and DBP value 39
entries 86
FZETPRT program 34
program specification block (PSB)
defining 48
generation 48
PRTBUF parameter
specifying print buffer size 31
using with the FZETPRT program 31
PRTMPP parameter
specifying maximum print
positions 33
using with FZETPRT program 33
PRTTYP parameter
DBCS printing 33
using with the FZETPRT program 31
pseudoconversational
processing mode
CICS 30, 36

R

RCT 87
RDO (resource definition online),
generation output 69
RDO CEDA transaction 85
reading transient data from tape 39
recovery
options
specifying 34
recovery considerations
DB2
CICS 40
IMS 54
DL/I
CICS 40
IMS 55
z/0S batch 45
IMS 49
reentrant code 23
reentrant load module storage estimates
for Enterprise Developer Server 5
relative (RRDS) define cluster 24
reporting
errors 131
problems 149
request module, DB2 66
residency
considerations
CICS 35
IMS 50
general rules, CICS 35
resident
parameter 35
programs 88
resource
control table 87
tables for CICS 85
Resource Measurement Facility II 13, 53
response time, improving 52

return codes
SQL 153
system 153
RMF 13,53
rollback
IMS 50
RRDS, data set definition 24
running

main programs under z/OS batch 89

programs under IMS 101
running under
CICS 88
IMS
BMP with DB2 105
main batch as BMP 104

main program under BMP 103

z/0OS batch
main batch with DL/I 90

main batch with no database 90

main batch with no DB2 90
runtime
JCL 70,94
job stream data set 66
messages
COBOL/370 164
IMS 165
z/OS 167
messages, LE 164

S

sample JCL
BMP with DB2 105
IMS BMP program 104
RCT entry 87
z/OS Batch with DB2 Access 90

z/0S Batch with DB2 and DL/I 92
z/0S batch with DL/I Access 91

z/0S batch without DB2 90
saving storage space 52
security considerations

CICS 10

general 15

IMS 12
segmented processing mode

CICS 30

IMS 49
SEND command, printing 32
serial (ESDS) define cluster 24
service module, preloading 51
services, message format 27
sharing modules 52
single-segment mode, IMS 49
snap dump listing file, IMS 47
spa build descriptor option 49, 98
spool files, CICS 11
SQL

considerations 28

return codes 153
starting

IMS programs

/FORMAT command
(transaction) 101
directly (main) 101
MPPs (transactions) 101
startup JCL for CICS 87
statistics, performance 53

status 13
codes
DL/T 155
key values, COBOL 157
storage requirements
for Enterprise Developer Server
COBOL dynamic storage 6
subsystem ABEND dumps 139
support for DBCS terminals 27
SYSLIN 66
SYSLMOD 66
SYSOUT system output file 43
SYSPRINT system output file 43
system
abend codes 163
considerations
CICS 29
general 23
IMS 47
definition, IMS 13
output file 43
return codes 153
SYSUDUMP system output file 43

-

table
modules, preloading 51
preloading 52
program 71
space
expanding 58, 59
requirements 58
TCT (terminal control table) 39
templates
CLIST 93
JCL 93
temporary storage queues 11
terminal control table (TCT) 39
terminal printing
CICS 31
trace facility 143
trace file 43
tracing
activating 144
deactivating 149
transaction
entries 86
error 132
transient data
defining extrapartition 39
printing 39
queue
defining 38
printing, CICS 30

TYPE=INTRA entry in DCT 31

reading from tape 39
tuning
IMS 12,53

U

unit of work, logical
IMS 54,55
user data set 66

using
data build descriptor option 11
generated applications with PL/I
programs 16
multiple work databases 60
remote files, CICS 38
using spool files 11
utilities
diagnostic control options
(ELAC) 111, 117
diagnostic message printing
(ELAU) 114
for CICS with Enterprise Developer
Server 11
IMS diagnostic message print 125
new copy (ELAN) 112
utilities, diagnostic, message print utility,
CICS 114
utilities, parameter group utility,
PRGM 122

\'

virtual storage
considerations and residency 35
requirements
Enterprise Developer Server 5
VSAM
data set definition 24
defining an alternate index 24
file loading 26
indexed (KSDS) data set 24
relative (RRDS) data set 24
serial (ESDS) data set 24
status codes 155

w

warnings
empty KSDS data set, VSAM
restriction 26
PRTMPP parameter, line skip
malfunction 33
work database
clearing records 55
deleting old records 55
ELAPCB macro 48
expanding 57
IMS 13
maintaining 55
multiple 60
space for segmented applications 7
WORK parameter in ELAPCB 48
WSCLEAR option for COBOL 16

Z

z/0S

DB2 considerations for Enterprise
Developer Server 9

DL/I considerations 9

DL/I considerations for Enterprise
Developer Server 9

installation considerations 3

preparation 89

runtime messages 167

Index 209

z/0S batch
DL/I considerations 44
z/0S/XA considerations 27

210 1BM Enterprise Developer Server Guide for z/OS

Program Number: 5655-157

Printed in USA

SC31-6306-03

	Contents
	Trademarks
	Terminology Used in This Document

	About This Document
	Who Should Use This Document

	Part 1. Preparing to Install
	Chapter 1. Preparing for the Installation of Enterprise Developer Server
	Chapter 2. Storage Requirements for Enterprise Developer Server
	Virtual Storage Requirements
	Enterprise Developer Server Load Module Storage
	Application Load Module Storage
	COBOL Dynamic Storage
	Enterprise Developer Server Dynamic Storage
	Storage Requirements for CICS
	Disk Storage Requirements for Enterprise Developer Server
	Work Database Space For Segmented Applications

	Chapter 3. Installation Considerations
	z/OS Batch Considerations
	DL/I Considerations
	DB2 Considerations

	CICS Installation Considerations
	DL/I Considerations
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	CICS Utilities
	Using the data Build Descriptor Option
	Modifying CICS Resource Tables
	Using Spool Files
	Temporary Storage

	IMS Installation Considerations
	IMS/ESA Exploitation
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	IMS System Definition
	IMS Control Region
	Work Database
	DL/I Work Database Considerations
	DB2 Work Database Considerations

	Chapter 4. Customizing Enterprise Developer Server
	General Customization Considerations for z/OS
	Customizing Enterprise Developer Server
	Security Considerations
	Performance Considerations
	Customizing Build Scripts
	Modifying the Language Environment Run-time Option
	Using Generated Programs with PL/I Programs
	Installation and Language-Dependent Options for z/OS

	Part 2. Administering on z/OS Systems
	Chapter 5. General System Considerations for z/OS Systems
	Considerations that Affect Performance
	Build Descriptor and Compiler Options
	Modules in Memory
	Files and Databases

	Defining and Loading VSAM Program Data Files
	Defining VSAM Data Sets
	Defining an Alternate Index

	Loading Data in the Files

	Support for DBCS terminals
	Extended Addressing Considerations for Enterprise Developer Server
	Database Considerations
	Preparing Programs
	Checking Access Authorization

	Backing Up Data

	Chapter 6. System Considerations for CICS
	Required File Descriptions
	Segmented and Nonsegmented Processing
	Using Transient Data Queues for Printing in z/OS CICS
	z/OS CICS terminal printing
	Special Parameter Group for the FZETPRT Program
	PRTBUF Parameter
	PRTMPP Parameter
	PRTTYP Parameter
	FORMFD Parameter

	CICS Entries for FZETPRT (DBCS only)
	Using the New Copy Function
	Specifying Recovery Options in the CICS Tables
	Considerations that Affect Performance
	Residency (Modules in Memory) Considerations
	Virtual Storage Considerations and Residency
	Work Database Temporary Storage Queue Considerations

	Using and Allocating Data Files in CICS
	Defining and Loading VSAM Data Files
	Using Remote Files
	Defining Transient Data Queues

	Considerations for Using DB2 in CICS
	Associating DB2 Databases with CICS Transactions
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in CICS
	Recovery and Database Integrity Considerations

	Setting up the National Language

	Chapter 7. System Considerations for z/OS Batch
	Required File Descriptions
	Using VSAM Program Data Files in z/OS Batch
	Considerations for Using DB2 in z/OS Batch
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in z/OS Batch
	Defining the Program Specification Block (PSB)
	Recovery and Database Integrity Considerations
	Performance Considerations for z/OS Batch

	Runtime JCL

	Chapter 8. System Considerations for IMS
	Required File Descriptions
	Defining the Program Specification Block (PSB)
	Processing Modes
	Printing Considerations for IMS
	Recovery and Database Integrity Considerations
	Considerations that Affect Performance
	Residency Considerations and the IMS Preload Function
	Preloading Enterprise Developer Server Modules
	Loading Enterprise Developer Server Modules into the Link Pack Area
	Preloading Generated Programs

	Database Performance
	Limiting MFS Control Blocks
	Monitoring and Tuning the IMS System

	Considerations for Using DB2 in IMS
	Recovery and Database Integrity Considerations
	Checking Authorization

	Considerations for Using DL/I in IMS
	Recovery and Database Integrity Considerations

	Maintaining the Work Database in IMS
	Deleting Old Records from the Work Database
	DL/I Work Database
	DB2 Work Database

	Expanding the Work Database
	DL/I Work Database
	DB2 Work Database

	Supporting Multiple Work Databases
	DL/I Work Databases
	DB2 Work Databases

	Considerations for Message Format Services in IMS

	Part 3. Preparing and Running Generated Applications
	Chapter 9. Output of Program Generation on z/OS Systems
	Allocating Preparation Data Sets
	List of Program Preparation Steps after Program Generation
	Deploying generated code to USS

	Outputs of Generation
	Objects Generated for Programs
	Application COBOL Program
	Sample Run-time JCL
	Bind Commands

	Objects Generated for Tables
	Table COBOL Program

	Objects Generated for Form Groups
	Online Print Services Program
	Batch Print Services Program
	Form Group Format Module
	MFS Source

	Chapter 10. z/OS Builds
	z/OS Build Server
	Starting a z/OS Build Server
	Starting a USS Build Server
	Stopping servers
	Configuring a build server

	Working with Build Scripts
	Working with z/OS Build Scripts
	Writing a JCL build script
	File Name Conversions for z/OS

	Converting JCL to Pseudo-JCL

	Chapter 11. Preparing and Running a Generated Program in CICS
	Modifying CICS Resource Tables
	Program Entries (PPT)
	Transaction Entries (PCT)
	Destination Control Table Entries (DCT)
	File Control Table Entries (FCT)
	Resource Control Table Entry (RCT)
	Using Remote Programs, Transactions, or Files

	Modifying CICS Startup JCL
	Making New Modules Available in the CICS Environment
	Making Programs Resident
	Running Programs under CICS
	Controlling Diagnostic Information in the CICS Environment
	Printing Diagnostic Messages in the CICS Environment

	Chapter 12. Preparing and Running Generated Programs in z/OS Batch
	Running Main Programs under z/OS Batch
	Examples of Runtime JCL for z/OS Batch Programs
	Running a Main Batch Program with No Database Access
	Running a Main Batch Program with DB2 Access
	Running Main Batch Program with DL/I Access
	Running a Main Batch Program with DB2 and DL/I Access

	Recovery and Restart for Batch Programs

	Chapter 13. Creating or Modifying Run-time JCL on z/OS Systems
	Tailoring JCL before Generation
	Modifying Run-time JCL

	Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP
	Modifying the IMS System Definition Parameters
	Defining an Interactive Program
	Defining Parameters for a Batch Program as an MPP
	Defining Parameters for a Batch-Oriented BMP Program
	Defining Parameters for a Transaction-Oriented BMP Program

	Creating MFS Control Blocks
	Making New Modules Available in the IMS Environment
	Preloading Program, Print Services, and Table Modules
	Running Programs under IMS
	Starting a Main Program Directly
	Starting a Main Transaction Program Using the /FORMAT Command
	Running Transaction Programs as IMS MPPs
	IMS Commands
	Keyboard Key Operation
	DBCS Data on a Non-DBCS Terminal
	Error Reporting
	Responding to IMS Error Messages

	Running Batch Programs as MPPs

	Running a Main Program under IMS BMP
	Examples of Runtime JCL for IMS BMP Programs
	Running a Main Batch Program as an IMS BMP Program
	Running a Main Batch Program as an IMS BMP Program with DB2 Access

	Recovery and Restart for IMS BMP Programs

	Chapter 15. Moving Prepared Programs to Other Systems from z/OS Systems
	Moving Prepared Programs To Another z/OS System
	Maintaining Backup Copies of Production Libraries

	Part 4. Utilities
	Chapter 16. Using Enterprise Developer Server Utilities on z/OS Systems
	Using the CICS Utilities Menu
	New Copy
	Diagnostic Message Printing Utility

	Chapter 17. Diagnostic Control Options
	Change or View Diagnostic Control Options for a Transaction
	Change or View Default Diagnostic Control Options

	Chapter 18. Using the Parameter Group Utility
	Chapter 19. IMS Diagnostic Message Print Utility
	Part 5. Diagnosing Problems
	Chapter 20. Diagnosing Problems for Enterprise Developer Server on z/OS Systems
	Detecting Errors
	File and Database Errors—Category 1
	File and Database Errors—Category 2
	File and Database Errors—Category 3

	Reporting Errors
	Controlling Error Reporting in CICS
	Controlling Error Reporting in IMS Environments
	Controlling Error Reporting in z/OS Batch
	Error Reporting Summary
	Transaction Error
	Run Unit Error
	Catastrophic error
	Enterprise Developer Server Error
	Using the Enterprise Developer Server Error Panel

	Printing Diagnostic Information for IMS
	ERRDEST Message Queue
	IMS Log Format
	Running the Diagnostic Print Utility

	Printing Diagnostic Information for CICS
	CICS Diagnostic Message Layout

	Running the Diagnostic Print Utility
	Analyzing Errors Detected while Running a Program

	Chapter 21. Finding Information in Dumps
	Enterprise Developer Server ABEND Dumps
	COBOL or Subsystem ABEND Dumps
	Information in the Enterprise Developer Server Control Block
	Information in an Application
	How to Find the Current Position in a Program at Time of Error

	Chapter 22. Enterprise Developer Server Trace Facility
	Enabling Enterprise Developer Program Source-Level Tracing with Build Descriptor Options
	Activating a Trace
	Activating a Trace Session for CICS
	Activating a Trace Session for z/OS Batch

	Deactivating a Trace Session
	Printing Trace Output
	Printing the Trace Output in CICS
	Printing the Trace Output in z/OS Batch

	Reporting Problems for Enterprise Developer Server

	Chapter 23. Common Messages during Preparation for z/OS Systems
	Common Abend Codes during Preparation
	DB2 Precompiler and Bind Messages
	COBOL Compilation Messages

	Chapter 24. Common System Return Codes for z/OS Systems
	Common SQL Return Codes
	Common DL/I Status Codes
	Common VSAM Status Codes
	OPEN request type
	CLOSE request type
	GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

	COBOL Status Key Values

	Chapter 25. Enterprise Developer Server Return Codes and Abend Codes for z/OS Systems
	Return Codes
	ABEND Codes
	CICS Environments
	IMS, IMS BMP, and z/OS Batch Environments
	z/OS Batch

	Chapter 26. Codes from Other Products for z/OS Systems
	Common System Abend Codes for All Environments
	LE Run-time Messages
	COBOL Run-time Messages
	Common COBOL Abend Codes
	Common IMS Runtime Messages
	Common IMS Runtime Abend Codes
	Common CICS Run-time Messages
	Common CICS Abend Codes
	COBOL Abends under CICS

	Part 6. Appendixes
	Appendix. Enterprise Developer Server Run-time Messages
	Notices
	Index

