
EGL Programmer’s Guide

���

ii EGL Programmer’s Guide

Contents

Developing segmented programs in EGL 1
Running in segmented mode 1
Running in nonsegmented mode 2
Comparison of segmented and nonsegmented
programs for CICS 2
Choosing between segmented and nonsegmented
programs 5
Program design considerations 6

Implementing a hierarchical structure for
segmenting programs using a transfer to program
statement 7

Switching transaction codes for program segments . 9
Using a show statement with inputForm 11
Accessing multiple DB2 plans in z/OS CICS . . . 12
Accessing multiple DB2 plans in IMS. 14
Error processing for segmented programs 14

Index 15

iii

iv EGL Programmer’s Guide

Developing segmented programs in EGL

When you create an EGL Text UI program, you can specify whether the program is
to run in segmented mode or nonsegmented mode by setting the segmented
property. Based on the target runtime environment, the use of the segmented
property affects both the generation of the program and how the program behaves
at a converse statement.

Debug, Java generation, and COBOL generation for iSeries
EGL simulates the logical effects of segmented mode by committing
recoverable resources, reloading library parts, refreshing certain system
variables, and refreshing the contents of single-user DataTables at a
segmented converse.

CICS Nonsegmented processing is equivalent to CICS conversational processing;
segmented processing is equivalent to CICS pseudoconversational
processing.

IMS/VS
Text UI programs must always run in segmented mode.

Related information

“Running in segmented mode”
“Running in nonsegmented mode” on page 2
“Error processing for segmented programs” on page 14

Running in segmented mode
When a converse occurs while running in segmented mode, a program saves
current program status in a work file or database. An example of current program
status is the current values for variables. The program releases all storage, file, and
database resources whenever it requests input from the terminal using a converse
or a show statement. When running in nonsegmented mode, these resources are
not released.

Before defining programs that run in segmented mode, you must understand the
effect of segmenting in the runtime environment. Because segmenting might alter
the results of the program, you must consider whether or not to segment programs
during the initial design phase.

Segmented mode enables a larger number of terminals to run EGL programs
within the same system storage address space for CICS systems at the same time.
Although segmenting programs enables concurrent use by a larger number of
terminals, the response time for each terminal is increased by the time required for
each transfer of data (roll out or roll in), and the time required by the host
subsystem to create a new system task.

Segmented programs do not use address space during user think time. This is
because the program address space is saved on external storage when the current
system task ends, and the program needs input from the user to continue.

When the user presses Enter, Clear, a PA key, or a function key, a new system task
is started. EGL restores the address space for the task with the data retrieved from
external storage.

1

Related information

“Running in nonsegmented mode”
“Comparison of segmented and nonsegmented programs for CICS”

Running in nonsegmented mode
Nonsegmented programs consume address space from start to finish including
user think time. User think time starts with each converse statement and varies by
program and form. System resources are used by the program while waiting for
the user to enter the next transaction, as when the user presses Enter, Clear, a PA
key, or function key.
Related information

“Running in segmented mode” on page 1
“Comparison of segmented and nonsegmented programs for CICS”

Comparison of segmented and nonsegmented programs for CICS
For CICS environments, you can specify whether a program runs in segmented
(CICS pseudoconversational) or nonsegmented (CICS conversational) mode by
setting the segmented property when you define the program. If you are running
in VAGen compatibility mode, you can also dynamically change the runtime mode
for the program by using the converseVar.segmentedMode system variable.
converseVar.segmentedMode is set to the default value (1 for segmented mode
and 0 for nonsegmented mode) after every converse.

The following diagram illustrates the flow of a program running in nonsegmented
mode. The sample update program, CSUP, converses a form, displays the customer
data that can be updated, accepts data from a user to update the customer record,
and replaces the record with the changed data. When you use nonsegmented
mode, you should set the converseVar.commitOnConverse system variable to 1.
This causes a commit point to occur at the converse, so that changes to files and
databases are committed and locks are released. The diagram also illustrates saving
a copy of the record for comparison purposes after the converse to ensure that no
other changes have been made to the record during user think time.

2 EGL Programmer’s Guide

The following diagram shows the flow of the same update program running in
segmented mode.

CONVERSE
MENU

EXIT
PROGRAM

READ CUSTOMER
RECORD

SAVE COPY
OF RECORD

CONVERSE
CUSTOMER DATA

GET CUSTOMER
RECORD FOR

UPDATE

COMPARE WITH
SAVED COPY

REPLACE WITH

UPDATED DATA IF

OUTSIDE CHANGES

NO

CSUP

Figure 1. Update file program running in nonsegmented mode

Developing segmented programs in EGL 3

When a program runs in segmented mode, temporary storage must be provided to
contain the roll out/in data during segmentation. Each program requires
approximately 6000 bytes plus the total size of all objects accessed by the program
(records, variables, and forms). In addition, because the program must be started
after each user input, you might want to make the program, print services
program, and FormGroup format module resident for segmented programs.

CONVERSE MENU
OUTPUT

PUT APPLICATION
DATA IN CICS

TEMPORARY STORAGE

RETURN TO CICS
TRANSID CSUP

GET APPLICATION
DATA FROM

TEMPORARY STORAGE

CONVERSE MENU
INPUT

READ CUSTOMER RECORD

SAVE COPY OF
RECORD

CONVERSE CUSTOMER
DATA OUTPUT

PUT APPLICATION
DATA IN

TEMPORARY STORAGE

RETURN TO CICS
TRANSID CSUP

CICS

CICS

GET APPLICATION
DATA FROM CICS

TEMPORARY STORAGE

IF

PUT APPLICATION
DATA IN CICS

TEMPORARY STORAGE

CONVERSE CUSTOMER
DATA INPUT

UPDATE CUSTOMER
RECORD

COMPARE WITH
SAVED COPY

REPLACE WITH
UPDATED DATA

NO OUTSIDE CHANGES

CONVERSE MENU
OUTPUT

RETURN TO CICS
TRANSID CSUP

GET APPLICATION
DATA FROM CICS

TEMPORARY STORAGE

CONVERSE MENU
INPUT

EXIT PROGRAM

CSUP

CSUP CSUP

CSUP

Figure 2. Update file program running in segmented mode

4 EGL Programmer’s Guide

Related information

“Running in segmented mode” on page 1
“Running in nonsegmented mode” on page 2
“Choosing between segmented and nonsegmented programs”

Choosing between segmented and nonsegmented programs
When you are deciding whether to design your program as segmented or
nonsegmented, you should be aware of two issues. The first issue is the effect of
the transaction on contention resources, such as storage and processor use. The
second issue is the effect on exclusive-use resources, such as records and
recoverable data sets, recoverable transient data queues, and enqueue items.

Nonsegmented programs have a high impact on storage because they run longer
than the sum of the transactions that are in an equivalent segmented program.
However, processor overhead is lower because only one program is started instead
of one for every transaction.

A nonsegmented program retains exclusive use of resources for a longer period of
time, unlike the equivalent segmented program. For this reason, segmented
programs are quicker to respond, but for recovery and integrity considerations,
you might prefer a nonsegmented program.

If you have forms in called programs or need to lock the database during a
converse, you should design your program to run in nonsegmented mode.

The following list contains considerations for segmented and nonsegmented
programs:
v Segmented mode uses more processor time because CICS spends more time

initiating and ending transactions.
v Nonsegmented mode uses more virtual storage because transactions are still

active during user think time. However, with Dynamic Transaction Routing
(CICS/ESA 3.1) CICS can automatically start another region and send
transactions to the next region when the first region is constrained.

v Nonsegmented mode can also use other resources such as locks in the database
during user think time. (This can be solved by setting the system variable
converseVar.commitOnConverse to 1.)

v CICS accounting and security is less granular with nonsegmented transactions
because you have a few large transactions, rather than a lot of small ones.

v CICS shutdown can be more difficult with a lot of nonsegmented transactions.
You might have to end transactions before you can shut down because someone
is out for a break in the middle of a nonsegmented transaction. (This can be
solved by having transactions time out if the user has not pressed Enter after a
specified time).

v Programming nonsegmented programs can be easier because you can do the
following:
– Use text forms in called programs.
– Hold locks and cursor position in the database over a converse.

v Only segmented programs can be generated for the IMS environment.

When running a program on a system where storage contention is not a problem, a
good compromise between running in segmented or nonsegmented mode is to run
in nonsegmented mode with the converseVar.commitOnConverse variable set to 1.

Developing segmented programs in EGL 5

This approach forces a commit at every converse from the main program, and it
has the good performance characteristics of nonsegmented mode, but it does not
hold file or database resources during user think time.
Related information

“Running in segmented mode” on page 1
“Running in nonsegmented mode” on page 2
“Comparison of segmented and nonsegmented programs for CICS” on page 2
“Program design considerations”
You should consider a number of factors when designing segmented programs.

Program design considerations
You should consider a number of factors when designing segmented programs.
v Any called program loses the return point if segmentation occurs; therefore, the

following restrictions apply:
– EGL programs defined as called transactions can run converse statements that

reference forms but cannot be generated to run in segmented mode. Called
Text UI programs are not supported for the IMS environment.

– If a program is called from a main program that is running in segmented
mode, the transaction runs in CICS conversational mode (nonsegmented)
until the program returns from the called program.

– If an EGL program calls a non-EGL program, the non-EGL program cannot
use segmented mode. Any interaction with the program user must be in CICS
conversational (nonsegmented) mode.

v Segmentation ends the current system task. CICS and IMS commit all
recoverable resources when the task ends.

v A record cannot be held for update (locked) across a segmented converse.

Note: Holding a record for update across a converse is not a good practice on
any system, because it locks resources during user think time, preventing
additional users from accessing the system.
For a better approach to holding a record for update across a converse, refer to
the code in the following example.
customerRecord Customer;
savedRecord Customer;
updateComplete char(1) = "N";

// check that data has not changed during user think time
customerRecord.CustomerID = 1;
get customerRecord;
while (updateComplete == "N")

move customerRecord to savedRecord byName;
move customerRecord to custDetailForm byName;
converse custDetailForm;
// validate input data on custDetail form
// assuming validation passed, continue
get customerRecord;
// check all fields in customerRecord to determine
// whether anything changed during user think time
if (customerRecord.field1 == savedRecord.field1
&& customerRecord.field2 == savedRecord.field2
...
&& customerRecord.fieldn == savedRecord.fieldn)

// if no changes, move changed data from form to customerRecord
replace customerRecord;
updateComplete = "Y";

else

6 EGL Programmer’s Guide

// message to user that data was modified by someone else
end

end

record Customer type ...
field1 ...
field2 ...
...
fieldn ...

end

v Locks created by the forUpdate keyword and current positions in files or
databases are lost during a converse statement when running in segmented
mode.

v The program structure and I/O objects determine the amount of response time
delay caused by the roll out/roll in process:
– The longest delay occurs in a segmented program that has a large amount of

variable field data on forms or large records and short user think time.
– The shortest delay occurs in a menu type program that has a small amount of

variable field data on forms, only a small record, and long periods of user
think time.

v In CICS, if the UCTRAN operand has been set to YES for the terminal control
table PROFILE or TYPETERM entries for the terminal, CICS folds user data from
forms to upper case when running in segmented mode. The folding of user data
by CICS causes the EGL upperCase property have no effect.

v On CICS systems, when the user presses the Enter key or a function key, the
system returns input data through CICS to the EGL program. CICS examines the
beginning of the data, searching for Basic Mapping Support (BMS) commands.
When designing segmented programs, ensure that the first physical variable
field on your EGL form does not contain a valid BMS paging command. For
more information on design considerations for segmented programs in CICS,
refer to the CICS documentation.

Related information

“Implementing a hierarchical structure for segmenting programs using a transfer to
program statement”
This section describes a set of EGL programs that should perform well running in
segmented mode in the CICS environment.

Implementing a hierarchical structure for segmenting
programs using a transfer to program statement

This section describes a set of EGL programs that should perform well running in
segmented mode in the CICS environment.

An additional benefit is that these programs are easier to maintain, test, and
enhance than a single EGL program that contains all the same functions.

The diagram below shows the relationship between four EGL programs that
perform three tasks. The only purpose of the menu program is to access the other
three programs. When the user selects the desired task, the menu program
transfers control to the corresponding program using a transfer to program
statement. The menu program passes a small working storage record to further
define the request. The transferred-to program prompts the user for required data,
performs the task as often as needed and uses the transfer to program statement to
return to the menu program.

Developing segmented programs in EGL 7

Using a transfer to program statement solves the following segmented mode
restrictions:
v Called programs cannot run in segmented mode.
v Called programs do not release the caller’s resources because program control

returns to the calling program.
v The amount of data rolled in/out during a segmented converse is much smaller.

Only the program currently in control has its data areas saved.

In the IMS/VS environment, a transfer to program does not release the storage for
the original program (the MENU program in the example). If you are developing
programs that run in both IMS and CICS environments, you can use either a
transfer to program or a transfer to transaction statement. If you are developing
programs that run in IMS only, use a transfer to transaction statement for the
following reasons:
v To free resources for the transferred-from programs
v To cause a commit point and release forUpdate locks
v To permit each program to have its own DB2 plan and a different PSB
v To permit each program to have different performance tuning information in the

IMS system definition

Use a transfer to program statement in the IMS environment if you do not want a
commit point to occur or if you need both programs to use the same DB2 plan and
PSB.

Dynamically changing between segmented and non-segmented
mode

Note: This technique is only supported in VAGen Compatibility mode. It should
not be used for new programs.

When you specify the segmented property for a program, you set the default
mode for how a converse statement is handled at runtime. The segmented
property initializes the value of the converseVar.segmentedMode system variable
in the following way:

0 indicates that the program is nonsegmented

1 indicates that the program is segmented

You can change the converseVar.segmentedMode system variable to dynamically
control segmentation at runtime. By setting converseVar.segmentedMode to 0 or 1,
you can override the default value for the next converse statement. Before each

Function A

transfer to program

Function B

MENU

Function C

Figure 3. Hierarchical structure using a transfer to program statement

8 EGL Programmer’s Guide

converse statement, EGL checks the value of converseVar.segmentedMode and
processes the converse statement in the following way:
v If converseVar.segmentedMode is set to 1, EGL treats the converse statement as

a segmented converse.
v If converseVar.segmentedMode is set to 0, EGL treats the converse statement as

a nonsegmented converse.

When the converse statement completes successfully, EGL resets
converseVar.segmentedMode to the default value based on the segmented
property for the program.

The converseVar.segmentedMode system variable enables you to switch in and
out of segmented mode for reasons of performance, function, and target system
differences. To control segmentation, use either of the following statements prior to
a converse statement:
converseVar.segmentedMode = 1; // force the next converse to be segmented
converseVar.segmentedMode = 0; // force the next converse to be nonsegmented

Remember that converseVar.segmentedMode is reset to its generated default after
every converse. Therefore, you should only set converseVar.segmentedMode if
you want to alter the behavior of a specific converse from the default processing.

Note: EGL ignores the use of converseVar.segmentedMode system variable in the
IMS/VS environment. All programs containing converse statements must run in
segmented mode in the IMS/VS environment.
Related information

“Program design considerations” on page 6
You should consider a number of factors when designing segmented programs.
“Switching transaction codes for program segments”

Switching transaction codes for program segments
On CICS and IMS systems, a segmented converse statement ends the current
transaction. Terminal input from the user starts a new transaction. The new
transaction is identified by the sysVar.transactionID system variable when the
program processes the converse statement. The default value of
sysVar.transactionID is the current transaction ID associated with the initial
program in the current transaction.

If you use a segmented converse statement in a program started by a transfer to
program statement from another program (for example, A uses a transfer to
program statement to transfer control to B, which issues the converse statement),
then the default transaction ID starts the original program (A) again on the input
from program B’s converse. The generated program A reads the transaction status
record from the work database, determines that B was the program that issued the
converse, and transfers to B to continue processing. This logic is generated into the
program for you.

You can bypass the overhead of restarting the original program through the
following actions:
v Define a unique transaction ID for each segmented program started by a

transfer to program statement.

Developing segmented programs in EGL 9

v Move the transaction ID that corresponds to a program into
sysVar.transactionID before running the first converse statement in that
program.

Each transaction ID you use must be defined to IMS or CICS as being associated
with its corresponding program.

The following two diagrams show the difference in program flow when you use a
transfer to program statement with default transaction IDs, as opposed to setting
the sysVar.transactionID variable.

For CICS, if you use default transaction IDs, you need one RDO TRANSACTION
entry to associate transaction ABCD with the menu program. If you call transfer to
program and then set sysVar.transactionID to ″GETD″, you need two
TRANSACTION entries, one to associate transaction ABCD with the menu
program and one to associate transaction GETD with program GETDATA.

Transaction ABCD

program Menu
. . .

transfer to program GETDATA;

program GETDATA
. . .

converse form1;

Transaction ABCD

program Menu

EGL-generated logic
• why did application restart?
• tr ;

program GETDATA

restore status
process input from converse

. . .

ansfer to program GETDATA

After segmented converse

Figure 4. Example transfer to program using default transaction IDs

Transaction ABCD

program Menu
. . .

transfer to program GETDATA;

program GETDATA
. . .

sysVar.transactionID="GETD";
converse form1;

Transaction GETD

program GETDATA
restore status
process input from converse

. . .

After segmented converse

Figure 5. Example transfer to program using sysVar.transactionID

10 EGL Programmer’s Guide

For IMS, if you use default transaction IDs, you need one pair of APPLCTN and
TRANSACT macros to associate transaction ABCD with the PSB for the menu
program. If you call transfer to program and then setsysVar.transactionID to
″GETD″, you need two pairs of APPLCTN and TRANSACT macros, one pair to
associate transaction ABCD with the PSB for the menu program and one pair to
associate transaction GETD with the PSB for program GETDATA.
Related information

“Program design considerations” on page 6
You should consider a number of factors when designing segmented programs.
“Using a show statement with inputForm”

Using a show statement with inputForm
With the show statement, a form name is required; a record name is optional. The
generated program displays the form and identifies the next transaction to the
CICS or IMS environment. The new transaction is scheduled when input is
received from the program user.

When you use a show statement, you must specify the same form in the
inputForm property for the transferred-to program. The inputForm property
contains the name of the form that provides input to the program before
processing begins. The transferred-to program begins by reading the same form
displayed using the show statement in the initial program. You can use the
inputForm property and show statement to create an IMS deferred program switch
or a RETURN TRANSID for CICS.

Note: For IMS/VS, when you use a show statement and the inputForm property,
the two programs must share the same FormGroup. For other environments, the
form can be in different FormGroups, but it must be the same form.

When you specify the inputForm property for a program, the processing that
occurs when that program is started varies:
v If a form is not received, the generated program automatically displays the form

that was specified in the inputForm property.
v If a form is received, the generated program automatically performs any

validation edits that are required before beginning the normal processing logic.

When you transfer program control using a show statement, you control the
amount of data saved during user think time and the location where it is saved:
v You can specify a record when you define the show statement in addition to the

form.
For the IMS/VS environment, Rational COBOL Runtime automatically saves the
record in one of the following places:
– In the Scratchpad Area (SPA) for conversational processing where the spaSize

build descriptor option is set greater than 0 and the spaADF build descriptor
option is set to ″NO″.

– In the work database for nonconversational processing where the spaSize
build descriptor option is set to 0 or for conversational processing when the
spaADF build descriptor option is set to ″YES″.

For the CICS environment, Rational COBOL Runtime automatically saves the
record in the COMMAREA.

v You can put additional data on the form by setting the intensity form field
property to invisible. This allows the data to be available to the transferred-to

Developing segmented programs in EGL 11

program when it reads the inputForm, but keeps the user from seeing the data
when the form is displayed. A copy of the form is saved in the work database so
the data can be displayed again if the user requests a help form.

For the IMS/VS environment, if you want to avoid saving a copy of the form in
the work database, you must do the following:
v Set the modified property to YES for all variable fields on the form. You can do

this when you define the default attributes for the fields on the form or with the
set statement.

v Ensure that all the other properties are set to their defined values before the
show statement.

v You can save data in a database using EGL add or replace statements and then
restore the data in the transferred-to program.

v You can also use a show statement to transfer to the same program (program A
can transfer to program A by using a show statement).

v

Related information

“Accessing multiple DB2 plans in z/OS CICS”
“Accessing multiple DB2 plans in IMS” on page 14

Accessing multiple DB2 plans in z/OS CICS
When creating a system of programs that access DB2 tables, you might not want to
bind all the database request modules (DBRMs) for each program into one DB2
plan. For security and maintenance reasons, you might want to access several DB2
plans in a system of programs. This section discusses three of the possible methods
for accessing multiple DB2 plans in CICS for z/OS. The first two methods describe
how to change the transaction ID. The third method uses the DB2 Dynamic Plan
Selection function.

If you have associated the DB2 plan name and transaction ID in an RDO
DB2ENTRY or DB2TRAN definition, you can change the DB2 plan name by
changing the transaction ID. For more information on the RDO DB2ENTRY and
DB2TRAN definitions, refer to the appropriate installation or administration
manual for your version of DB2.

Accessing DB2 plans using sysVar.transactionID

EGL system variable sysVar.transactionID enables you to dynamically change the
segmented transaction ID. When running a segmented program, the value in
sysVar.transactionID is used as the transaction ID to start the program again
immediately after every converse statement. A simple example of using
sysVar.transactionID to dynamically change the transaction ID is shown in the
following diagram, where the initial value of the transaction ID is ″Menu″.

12 EGL Programmer’s Guide

Table 1. Changes to transaction ID

Application: APPA APPB APPC

Transaction ID (after converse): AAAA BBBB CCCC

DB2 Plan: PLANA PLANB PLANC

In this example, the menu program converses a menu form with three options.
When the user selects an option, the menu program issues a transfer to program
statement to the corresponding task-oriented program. Each of the three
task-oriented programs moves a transaction ID to sysVar.transactionID, converses
a form, and retrieves a row from a DB2 table. For example, the following logic
could be used in each of the task-oriented programs:
...
sysVar.transactionID="AAAA"; // Set new transaction ID
converseInfoform(); // Converse information form to user
readDB2Record(); // Retrieve data from a DB2 table
...

There are no SQL statements in the menu program or, prior to the converse
statement, in the task-oriented programs.

Each task-oriented program’s DBRM is bound into a unique DB2 plan and
associated with a unique transaction ID in the RDO DB2ENTRY or DB2TRAN
definition. This is the transaction ID that is moved to sysVar.transactionID before
the converse statement. After the converse statement, a new transaction starts with
the plan associated with the new transaction ID.

The transaction IDs AAAA, BBBB, and CCCC are associated in the RDO
DB2ENTRY definition with DB2 plans PLANA, PLANB, and PLANC, respectively.

This method of association can be used only in segmented programs. However, for
CICS programs, you can access different DB2 plans with a transfer to transaction
statement or by dynamically selecting a DB2 plan.

Accessing DB2 plans with a transfer to transaction statement

This method is useful if you transfer control between programs using a transfer to
transaction statement. The transaction ID is changed when you transfer from one
program to another using a transfer to transaction statement. This gives you
access to a new DB2 plan if you associated the new transaction ID with a different
DB2 plan in the RDO DB2ENTRY definition.

APPA

transfer to program

APPB APPC

MENU

Figure 6. Example of using sysVar.transactionID

Developing segmented programs in EGL 13

Dynamically selecting a DB2 plan

This method uses DB2 dynamic plan selection, which provides the ability to
dynamically select a DB2 plan name for a z/OS CICS transaction. DB2 dynamic
plan selection provides you with the option of defining a PLANEXITNAME in the
RDO DB2ENTRY definition instead of a DB2 plan name. The exit program selects a
DB2 plan for the z/OS CICS transaction. With this function, you can associate
several plans with one transaction ID. For more information about DB2 dynamic
plan selection, refer to your DB2 system documentation.

The first SQL statement in a logical unit of work (LUW) starts the exit program.
Related information

“Accessing multiple DB2 plans in IMS”

Accessing multiple DB2 plans in IMS
All the DBRMs that run together using a single IMS PSB must be bound together
in a single DB2 plan. The following programs run together using a single IMS PSB:
v A main program and all programs it calls.
v A program and all programs that it transfers to using a transfer to program

statement.

You can change DB2 plans with the following techniques:
v Transfer to a new program using a transfer to program statement, change the

sysVar.transactionID system variable to a new transaction code, and then do a
converse before using any SQL I/O options. For more information on this
technique, see “Accessing DB2 plans using sysVar.transactionID” on page 12.

v Transfer control to a new transaction using a transfer to transaction statement.
Different transactions can use different PSBs and can, therefore, have different
DB2 plans.

Related information

“Accessing multiple DB2 plans in z/OS CICS” on page 12

Error processing for segmented programs
The test facility issues warning messages if it detects the potential for error. For
example, warning messages are issued if a record is currently being updated, a
converse is encountered, and the converseVar.segmentedMode system variable
equals 1.

EGL validation and generation performs the following actions:
v Prevents you from referencing the converseVar.segmentedMode system variable

unless you are running in VAGen compatibility mode.
v Prevents programs from being generated for IMS/VS if the segmented property

is explicitly set to ″NO″.
Related information

“Developing segmented programs in EGL,” on page 1

14 EGL Programmer’s Guide

Index

R
runtime messages

customizing EGL system messages 1,
2, 5, 6, 7, 9, 11, 12, 14

15

	Contents
	Developing segmented programs in EGL
	Running in segmented mode
	Running in nonsegmented mode
	Comparison of segmented and nonsegmented programs for CICS
	Choosing between segmented and nonsegmented programs
	Program design considerations
	Implementing a hierarchical structure for segmenting programs using a transfer to program statement

	Switching transaction codes for program segments
	Using a show statement with inputForm
	Accessing multiple DB2 plans in z/OS CICS
	Accessing multiple DB2 plans in IMS
	Error processing for segmented programs

	Index
	R

