<|ll

Rational Business Developer

Tutorial: Create a hello world service with

EGL

Version 8.5

<|ll

Rational Business Developer

Tutorial: Create a hello world service with

EGL

Version 8.5

Note
FBefore using this information and the product it supports, read the information in[“Notices,” on page 23/

This edition applies to version 8.5 of Rational Business Developer and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Create a hello world service with EGL. . 1
Introduction .1
Lesson 1: Create an EGL web pro]ect for the service . 3
Create the interface to define the service 4
Create the service. 6
Lesson 2: Set up the service 8
Verify the deployment descrlptor and bu11d

descriptor . . .)
Generate the WSDL fﬂe10
Lesson 3: Create an EGL service client13

© Copyright IBM Corp. 2000, 2012

Create the client web page
Lesson 4: Set up the project as a client

Set up the EGL deployment descriptor file .

Use the service in the web page
Summary .

Appendix. Notices.

Trademarks

.13
. 16
. 16
. 18
.21

. 23
.25

iii

1V Rational Business Developer: Tutorial: Create a hello world service with EGL

Create a hello world service with EGL

In this tutorial, you will learn how to build a simple web service with EGL. Then,
you will create a client that uses this service.

Learning objectives

In this tutorial, you learn to do the following tasks:

* Create and configure an EGL project

¢ Create a web service with EGL

* Configure an EGL project to act as a service or as a client at run time
* Create a web page controlled by EGL

* Test an application on a web application server
Time required

90 minutes

Introduction

In this tutorial, you will learn how to build a simple web service with EGL. Then,
you will create a client that uses this service.

This tutorial might require some optionally installable components. To ensure that
you installed the appropriate optional components, see the System requirements
list.

Service-oriented architecture is a method of organizing applications in modular pieces
called services and clients. The services provide logic to the clients in the form of
functions, in much the same way that EGL libraries make functions available to
programs. However, in service-oriented architecture, the services are stateless,
meaning that they do not remember interactions with a particular client. In this
way, each time the service is called, it is as though that service is being used for
the first time. Services are also able to provide their functionality to a wide variety
of applications through the WSDL standard, promoting flexibility and code reuse.

Learning objectives

In this tutorial, you learn to do the following tasks:

* Create and configure an EGL project

* Create a web service with EGL

* Configure an EGL project to act as a service or as a client at run time
* Create a web page controlled by EGL

* Test an application on a web application server
Time required
To complete this tutorial, you will need approximately 90 minutes. If you decide to

explore other facets of EGL or web services while working on the tutorial, it could
take longer to finish.

© Copyright IBM Corp. 2000, 2012 1

Skill level

Intermediate

System requirements
* Enterprise Generation Language
* WebSphere® Application Server

Prerequisites
There are no prerequisites for this tutorial.
Tutorial application

In this tutorial, you will create a simple web service in EGL. This service accepts a

person's name and the name of a city and returns a string combining the two, such
as "Bill, welcome to New York!" You will use the service-oriented architecture tools
included in Rational® Business Developer Extension to expose this service as a web
service and publish the information about the service in a WSDL file.

package sServices: ;I

import interfaces.HelloInterface:

“zervrice HelloService implements HelloInterface

function SayHello (name string in, city string in) returns (string)
Returnitring string:
FeturnString = name::", welcome to M::ocityr:fIif:
return [(ReturnString):

end

end

You will then create a project to act as a client for this service. This project includes
a simple web page that retrieves the two input parameters, passes them to the
service, and displays the output from the service on the page:

2 Rational Business Developer: Tutorial: Create a hello world service with EGL

o ﬂ:ﬁh |http:,l',l'Iu:u:thu:ust:QDBZ,I'EGLCIient,l'CIientF‘age.Fan:es

ClientPage

fatme |Eii||

city INEW York

cutput Bill, welcome to MNew Yotk

getHella |

Lesson 1: Create an EGL web project for the service

EGL projects can act as services, as clients, or as both simultaneously. For this
tutorial, you will create two projects: one to act as the service and one to act as the
client. While you could put all the code into a single EGL project, using two
projects demonstrates how EGL can call services in another application.

Show Me

1. Optionally, you may want to use a separate workspace while working on the
tutorial so you do not interfere with any of your other projects. If you want to
use a different workspace, follow these optional steps:

a. In the workbench, click File > Switch Workspace. The Workspace
Launcher window opens.

b. Enter a new workspace location in the Workspace field.

c. Click OK. The workbench reopens using the new workspace location. You
can switch workspace locations at any time, and you can have as many
workspace locations as you want.

2. Switch to the web perspective:
a. Click Window > Open Perspective > Other.

b. From the list of perspectives, click Web. If you don't see the web
perspective, select the Show all check box.

c. Click OK.

3. Make sure EGL is set up to automatically generate deployment descriptors.
Deployment descriptors contain information that describes how EGL services
will be made available to other applications and how EGL applications will
find services provided by other applications.

a. In the workbench, click Window > Preferences... > EGL.

b. Under Default EGL Project Features Choices, make sure that Create an
EGL deployment descriptor is selected. If not, click this field to select it.

c. Click OK.
4. In the workbench, click File > New > Project.

Create a hello world service with EGL 3

5. In the New Project window, expand EGL and click EGL Project. If you don't
see EGL Project, select the Show All Wizards check box. If you still don't see
an EGL category or EGL Project, EGL is not installed on your system. Run
the product setup again and select the Additional Feature item for EGL.

6. Click Next.

7. In the Project name field, give your project this name:

EGLService

8. Under EGL Project Types, click Web Project. This type of project allows you
to use web page user interfaces.

9. Click Next.

10. Under Target Runtime, select a version of WebSphere Application Server.

11. Make sure that Create a new build descriptor is selected. Build descriptors
contain options for generating your program into another language. You do
not need to worry about them at this point because the wizard will create an
appropriate build descriptor for you. You do not need to use the advanced
settings unless you use WAS and you have previously changed the default
setting that adds the project to an EAR (Enterprise Application Resource). If
you use WAS, your EGLService project must belong to an EAR. The
workbench remembers this setting.

12. You may see a window asking if you want to switch to the J2EE perspective.
If you see this window, click No.

The new project appears in the Project Explorer view.

Ellz'] Deployment Descripkor: EGLService
: 'fu Security Editor

g wWab Diagram

[web Site Mavigation

Elb‘r'- EGLSource
i """ T,a EGLService . eglbld
i 28 EalService. eqldd
‘lﬁ Java Resources: src
(= build

. @[webContent

B2 EGLServicsEAR

Create the interface to define the service

EGL uses the term "interface" in the same way as object-oriented languages do. For
EGL, an interface defines a plan for a service to follow. Specifically, an interface
contains one or more function protfotypes, or summaries of functions. These
prototypes are not usable functions themselves, but they set out plans for the real
functions.

For example, suppose you needed to write an application that performed
mathematical operations like a calculator. You might start by listing all of the
mathematical operations your application would need (such as addition,
subtraction, and multiplication), without actually writing the code to perform these
operations. In this case, you would name each operation and specify each

4 Rational Business Developer: Tutorial: Create a hello world service with EGL

operation's input and output parameters, but you would not start coding any logic.
In this way, you would be listing the functions that the EGL service application
would need in an interface. Such an interface might begin like this:

interface myCalculatorInterface
//Function to add numbers together

function addNumbers (numberl decimal(10,2) in,
number2 decimal(10,2) in) returns (decimal(10,2));

//Function to subtract numbers
function subtractNumbers(numberl decimal(10,2) in,
number2 decimal(10,2) in) returns (decimal(10,2));

end

Then, when you are ready to begin coding the service, you can use this interface
both as a starting point and as a test to make sure you are following your plan.

You will rarely be required to write an interface, but in general, using interfaces to
describe your services is good programming practice:

* The interface lets you plan the service ahead of time, and EGL warns you if the
service deviates from the interface.

¢ Interfaces provide a concise summary of a service, explaining what the service
can do without providing all of the details of the service's implementation.

¢ Interfaces can serve as requirements for development or compliance.
1. In the Project Explorer view, right-click your EGLService project to select it.
2. Click New > Other.

3. In the New window, expand EGL and click Interface. Make sure you are
using the Interface item under EGL and not the Interface item under Java.

4. Click Next.

5. In the New EGL Interface window, make sure that your project's EGLSource
folder is shown in the Source folder field. This field should say
EGLService\EGLSource.

6. In the Package field, type this name:
interfaces

EGL will create this new package because your project doesn't have a package
with this name yet.

7. In the EGL source file name field, type this name for the new interface:
HellolInterface

The New EGL Interface window looks like this:

Create a hello world service with EGL 5

() New EGL Interface | LBl 25 |

New EGL Interface < _-?
Create an EGL interface part. : _3
Source folder: EGLService\EGLSource
Package: interfaces

EGL source file name: Hellolnterface

Hellolnterface

8. Click Finish. The new interface is created and opens in the EGL editor. This
interface contains one function prototype already, as a sample:

function functionName(parameterName string in) returns (int);
9. Delete this function prototype.

10. Where the sample prototype was, insert this code for your own function
prototype:

function SayHello(name string in, city string in) returns (string);

11. Save and close the file.

Following are some technical details about the code you just entered:

* As explained above, this is not a complete piece of EGL logic. Instead, this
function prototype describes a function that will be in the service. In this case, the
prototype describes a function named SayHello.

* The function accepts two pieces of input from the client, called parameters:
— A string variable for a person's name
— A string variable for a city
The function will use these parameters to put together a piece of output to
return to the client.

* The code returns (string) indicates this return value and its type.

The interface looks like this:

package interfaces; ;I

/{ interface
“interface HellolInterface

function SayHello (name string in, city string in) returns (string):

end

Create the service

1. In the Project Explorer view, right-click your project and then click New >
Service.

6 Rational Business Developer: Tutorial: Create a hello world service with EGL

2. In the New EGL Service window, make sure that your project's EGLSource
folder is shown in the Source folder field. This field should say
EGLService\EGLSource.

3. In the Package field, type this name:
services

4. In the EGL source file name field, type this name for the new service:
HelloService

5. Next to Interfaces to implement, click Add.

6. Type an asterisk * in the Choose Interfaces field. Your interface is shown in
the Matching parts list.

7. Click the HelloInterface from the Matching parts list to select it.
8. Click OK. The interface is now shown in the Interfaces to implement list.

9. Select the two check boxes to add deployment information to the deployment
descriptor file. The New EGL Service window looks like this:

) New EGL Service =3

Mew EGL Service

Create an EGL service part, _1:
Source Folder: | EGLServicel EGLSource | [Browse. ..]
Package: | services
EGL source file narme: | HelloService |
Interfaces boimplement: ‘:%interfaces.HeIIDInterFace Add. ..

Remove

Create as weh (SOARP) service
[create as web (EGL REST-RPC) service

Show advanced =

@ [Fnish || cancel |

10. Click Finish. The new service is created and opens in the EGL editor. The
service already contains a starter function based on the prototype in the
interface.

11. Remove the comment // TODO Auto-generated function, and in its place, type
the following code:

Create a hello world service with EGL 7

ReturnString string;
ReturnString = name::", welcome to "::city::"I";
return (ReturnString);

This code creates a string variable and assigns it a value based on the
parameters, such as "Jim, welcome to Chicago!" The :: code is a concatenation
operator, which joins separate strings into a single string. The code looks like
this:

package services; AI

import interfaces.HelloInterface:

“gerrvice HelloSerwvice implements HelloInterface

function SayHello(name string in, city string in) returns (string)
Returnicring string:
Returni3cring = nawe::", welcoms to "rroicy::mifr:
return [(Feturn3tring);

end

end

12. Save and close the file.

Lesson 2: Set up the service

Now that you have written the code for this service, you can make it available to
other applications as a web service. Making the service available in this way
involves creating service binding information, which tells other applications where
to find the service and what functions are available in the service. The service
publishes this information as a Web Services Description Language (WSDL) file.

As an alternative to web services, EGL client applications can access EGL service
applications as EGL services. This method offers better performance then web
services, but it can be used only between two EGL applications. For the broadest
compatibility, this tutorial uses web services, which can be used between two EGL
applications, two non-EGL applications, or an EGL application and a non-EGL
application. For more information, see the EGL documentation by clicking Help >
Help Contents.

Service binding information is contained in an EGL deployment descriptor. In
these steps, you work with the project's deployment descriptor and configure the
project's build descriptor to use that deployment descriptor.

Show Me
Verify the deployment descriptor and build descriptor

When you created the EGL project, you automatically created a deployment
descriptor file named EGLService.egldd. Then, when you created the service, you
selected the Create as web service check box, which automatically added the
service to the deployment descriptor. In this section, you verify these settings.

1. In the Project Navigator view, expand the EGLService project and the
EGLSource folder. Open the EGL deployment descriptor file by double-clicking
the EGLService.egldd file.

8 Rational Business Developer: Tutorial: Create a hello world service with EGL

2. In the EGL deployment descriptor editor, click the Web Service Deployment
tab.

3. Make sure that your service is shown in the list of services to be deployed as
web services, as in the following picture:

) EGLService.eqldd 52
Web Service Deployment

Services Deployment

Generate the Following service parts as web
services,

Generake Implementation

Remaowve

4. Close the deployment descriptor file.

5. Double-click the build descriptor for the project to open it in the build parts
editor. This file is named EGLService.eglbld and is located in the project's
EGLSource folder. The build descriptor file contains build descriptor options,
which describe how EGL will generate your project into the output language.

6. In the list of build descriptor options, find the option named
deploymentDescriptor. Note that it is set to the name of the deployment
descriptor, which has the same name as the project by default. The deployment
descriptor must be referenced in this way to be used. The build parts editor
looks like this, with the value of serverType appropriate to your version of
WebSphere Application Server:

Create a hello world service with EGL 9

% 5| Bl Service. eqlbld X

'3,?] EGLServiceWebBuildOptions zeneral Options

Build option Filker: i.ﬁ.l.ln VI

Load DB options using Connection: l V Mew, ..
Show only specified options

! Qption Yalue (F1 For Help)

| dbmns DE2

| deploymentDe... EGLService
| genDataTables YES

| genProject EGLSetvice

| genProperties GLOBAL

| serverType WEBSPHERES. %
| sglJNDIMame

| syskem WIN

|
|
|
|
|
iZee YES |
!
|
|
|
|

7. Close the build descriptor.

8. Generate the entire project by right-clicking the project in the Project Explorer
view and then clicking Generate.

Generate the WSDL file

WSDL files communicate information about services to clients, describing the
functions provided in the service and specifying the location of the service. In this
section, you generate a WSDL file from the service. Later, your client application
will import this WSDL file and use the information in it.

EGL uses the information in the deployment descriptor file and the service part
itself to generate a WSDL file, but it needs one more piece of information: on
which port the server will host the service. By default, the port is 9080. Follow
these steps to find out the port number of your server:

1. Open the Servers view. If you can't find the Servers view, click Window >
Show View > Servers.

2. Right-click the server named WebSphere Application Server. At the popup
menu, add EGLServiceEAR by clicking Add and Remove and then start the
server by clicking Start. The server may take some time to start, depending on
your system.

3. Wait until the server shows Started, Synchronized in its Status field, as
shown in this picture:

10 Rational Business Developer: Tutorial: Create a hello world service with EGL

© 0N

10.

‘B problems iE Console ! = Properties [[ﬁ EGL Genera [EE EL Deplay i{@ Progress Yie I,Qj Search | #%SQLgQ;iES » ___|

E

. i Eg ‘Web Preview Server [Stopped]
o 5phere Applicati

When the server has started, right-click it in the Servers view and then click
Run administrative console, not Run administrative script. The administrative
console opens in the editor.

At the left side of the administrative console, expand Servers and click
Application servers. Your server is shown as a listing under Application
servers, as in this picture:

Help Logout
| View: |All tasks i Cell=rbdtesturm07Hode02 Cell, Profile=AppSrv02 Close page

Welcome

Applicat
Guided Activities pplication servers

Use this page to view a list of the application servers in your environrment and the
= Servers status of each of these servers. You can also use this page to change the status of

a specific application server.
= Server Types B EE

WebSphere applic: n # Preferences
WebhSphere MG e

Web zervers

]

@i
£

Mame 2 | Mode % | Host Hame O3 |‘u"ersi0n 5

B

Applications
: “ou can adriinister the following resources:

[+ Services
serverl | rbdtestvrn07Hode02 | rbdtestern07. rp raleigh.ibrm. com | MO 2.5.0.0
Resources |
Total 1
[# Security
Environment
Sustem administration
e 3 [=] »

Click the server name in the Name column.
On the page describing your server, click the Configuration tab.
On the Configuration tab, under Communications, click the Ports link.

From the list of ports, click the port with the Port Name labeled
WC_defaulthost.

On the page describing this port, write down the port number in the Port
field. In this picture, the port number is 9082.

Create a hello world service with EGL 11

Adnin C

Integrated Solutions Console ~ WelcomeH=lp | Logout .I I I =
| et Im Z| application servers Cloze pagel |
Welesiie Application servers e

Guided Activities Application servers = serverl = Ports > WC_defaulthost

Bl Servers Specifies the TCP/IP ports this server uses for connections,

G Configuration ‘

Waeb zarvers
WebSphere MQ

Applications General Properties
Resources Port Mame
Security W _defaulthost
Enviranment

Host
System adrinistra |*
Usars and Groups i
Manitoring and Tun |9'332 !

H Troublezhooting =

Service integration | Apply ﬂl @ M

EE'I*I | o

11. Close the administrative console without making any changes.

12. In the top menu, click Window > Preferences.... In the left panel, expand EGL
and click Services.

13. If the entry for the Port field does not match the server port number in the
administrative console, enter the port number from the console here. The
window looks like this:

| type filter text Service

- General - .
- Active Correlation Ter - WSDL Document Style/Encoding:

- Agent Controller * Document-Literal Wrapped ¢ RPC-Literal
- Analysis
Ant —WSDL Generation
. Backward Compatiilt Host Name: | localhost
- Connectivity

-Crystal Reports
-Data

-EGL

- Bidi Preferences
- Debug

- Default Build Desc
- Editor

- (aeneration

- Page Designer

- 50L

Port: f 5082

14. Click Finish.

12 Rational Business Developer: Tutorial: Create a hello world service with EGL

15. In the Project Explorer view, right-click the HelloService.egl file, which is in
the services package of the EGLSource folder, and then click EGL Services >
Generate WSDL File.

16. In the Create WSDL File window, click Finish. EGL creates a WSDL file in the
wsd1 package of the EGLSource folder and displays it graphically in the
WSDL editor.

17. Examine the graphical representation of the WSDL file and close it when you
are finished.

Now you have configured the service to be used by other applications at run time.
The WSDL file describes the service so that clients can connect to it at run time,
and the deployment descriptor file allows EGL to make the service available at run
time.

In the real world, services run independently of the clients that use them. To
simulate this situation, you could create a new instance of the application server
and run the service there. For the sake of this tutorial, there is no advantage to
consuming these additional resources, so you will run the service on your existing
application server at the time you test your client.

Lesson 3: Create an EGL service client

The next step is to create a client project to use the service. While the client you
create in this tutorial is in the same workspace, you can imagine that it is in a
completely separate location or on a different platform. Since services and clients
do not need to be written in the same code language, you can also imagine that
this client application is written in a different language or is created with an
entirely different set of tools.

Show Me

1. Click File > New > Project.

2. Expand EGL and click EGL Project.
3. Click Next.

4. Name the new EGL project EGLCTient.
5. Click Web Project.

6. Click Next.

7

. Make sure that Create a new build descriptor is selected. You do not need to
change the advanced settings unless you use WAS and have previously
changed the settings to disable adding the project to an EAR.

8. You may see a window asking if you want to switch to the J2EE perspective. If
you see this window, click No.

Create the client web page

To use the service, you will create a web page in the client to retrieve input, pass
that input to the service, and display the output from the service. You will start by
creating a JSF Handler, a type of EGL logic part that controls a web page, and then
EGL will create a web page to go along with this JSF Handler.

1. In the Project Explorer view, click the EGLClient project to select it.
2. Click File > New > Other.

3. Expand EGL and click JSF Handler.

4. Click Next.

Create a hello world service with EGL 13

5. In the New EGL JSF Handler window, make sure that the Source folder field
is set to the project's EGLSource folder:

EGLCTient\EGLSource

6. In the Package field, type this name:
jsfhandlers

7. In the EGL source file name field, type this name:
ClientPage

The window looks like this:

& New EGL Part X|

Mew EGL 1SF Handler -
D—F' =
Zreate an EGL J5F handler part, ULI
-

Source Folder: I EGLClient\EGLSource Browse, .,

Package: | jsfhandlers Browse, .,

J

EGL source file name: | ClientPage

Handler mame: | ClientPage

8. Click Finish. The new JSF Handler opens in the editor.

Don't save the file until these instructions tell you to do so. When you save a
JSF Handler, EGL checks to see if the web page referred to in the view
property exists or not. If not, EGL creates the file and adds fields
automatically based on the variables in the JSF Handler and the DisplayUse
properties of those variables. If you save the file before you've added all the
variables, the new web page will not include all of the variables. If this
happens, you can delete the JSP file (not the JSF Handler file) and generate
the JSF Handler again to get a new web page.

9. Remove the sample code from the new JSF Handler so that the following is all
that is left:

package jsfhandlers;
handler ClientPage type JSFHandler
{view = "jspLocation/jspName.jsp"}
end
10. Set the value of the view property to ClientPage.jsp, as in this example:
{view = "ClientPage.jsp"}
11. Within the JSF Handler, create the following variables:

name string {DisplayUse = input};
city string {DisplayUse = input};
output string {DisplayUse = output};

12. Below the variables, add this function:
function getHello()

end

You will add code to this function later. The JSF Handler looks like this:

14 Rational Business Developer: Tutorial: Create a hello world service with EGL

13.

14.

15.

16.

17.

package jsfhandlers:

“handler ClientPage type J3FHandler
iview="ClientPage.jsp™}

name string {Displavlse = inputi:
city string {Displavl=se = input}:
output string {DisplaylUse = output}:

= function gecHello ()

end

end

Save the file. When you save the file, EGL creates a web page from the file
automatically. This file is named with the value of the view property,
ClientPage.jsp, and the file is placed in the WebContent folder of your project.

If you did not get a JSP file, EGL is not configured to generate JSF Handler
parts automatically. Generate the JSF Handler manually by right-clicking it
either in the Project Explorer view or in the EGL editor and then clicking
Generate. Then, follow these additional steps to set up automatic generation
of JSF Handlers:

a. Click Window > Preferences.

b. In the Preferences window, click EGL and ensure that EGL support with
JSF and EGL support with JSF Component Interfaces are selected.

c. Expand EGL and click Generation.

d. On the Generation page, select the Java check box.

e. Click OK.

Now JSF Handlers will generate automatically when you save them.

Open the ClientPage.jsp file in the editor. This page has fields on it based on
the variables you created in the JSF Handler. These fields are pre-bound to the
variables. This way, when the values of these fields change on the page, the
variables will change to match. Similarly, when the values of the variables in
the JSF Handler change, the values of the fields on the page will change to
match.

This page also has several error message fields. This does not mean that your
page has errors; these fields will show errors on the page if there are any
when you run it.

Locate the Page Data view. If you cannot find this view, click Window >
Show View > Page Data. This view shows the data available to your page,
including the variables you created in the JSF Handler. It also shows functions
in the JSF Handler.

In the Page Data view, expand JSF Handler > Actions and find the getHello()
function.

Drag the getHello() function from the Page Data view directly onto the bottom
of the page. A button bound to the function appears on the page. When the
user presses the button on the page at run time, the function in the JSF
Handler will run.

Create a hello world service with EGL 15

18. Save the page.

The page looks like this:

e

{Error Messages}

getHello | o

Design | Source | Preview |

You now have a web page ready to use the web service. In the next lesson you
will set up the project to act as a client for the service through this web page.

Lesson 4: Set up the project as a client

Just like the service project, the client project uses an EGL deployment descriptor
file. However, in the client project, the EGL deployment descriptor will hold
information about where to find services. You will import the WSDL file you
created from the service and EGL will add appropriate binding information to the
EGL deployment descriptor so the client can find the service.

In the process, EGL creates an interface part to represent the service within the
client project. Once the interface part is bound to the actual service, you can use
that interface part as though it were the service itself.

Show Me

Set up the EGL deployment descriptor file

1. Open the client project's EGL deployment descriptor file by double-clicking
EGLC1ient/EGLSource/EGLC1ient.egldd in the Project Explorer view. Note that
the EGL deployment descriptor has no relation to the Java Deployment
Descriptor folder, which is also in the EGLClient project.

2. In the deployment descriptor editor, go to the Service Bindings tab.

16 Rational Business Developer: Tutorial: Create a hello world service with EGL

10.

1.

12.

13.
14.

15.

16.

On the Service Bindings tab, click Add.
In the Add a Service Binding window, click SOAP service binding.
Click Next.

Select the Choose wsdl file from workspace and copy it to the current
project check box.

Click Browse.

Select the HelloService.wsd] file, which is located in the EGLService project
in the folder EGLSource\wsdl, and then click OK.

Under Interface Options, select the Generate EGL Interface from WSDL file
radio button. With this option selected, EGL will create the parts you need to
access the service automatically.

Accept the defaults for the other fields on the page and click Next. The New
EGL Interface page shows a list of all the services described in the WSDL file.
EGL will create an interface part in the client project for each service you
select on this page. For now, only the service you created in the service project
is listed here.

Make sure the check box for the HelloService service is selected and then
click Next. The next page allows you to set where the new interface part will
be created and what it will be named. You can also select which functions
from the service to include in the interface part. By default, all of the functions
in the service part are included.

In the Source folder field, make sure that the client project's source folder is
specified: EGLCT1ient\EGLSource.

In the Package field, make sure that the services package is specified.

Make sure that the check box next to the SayHello function is selected in the
Functions list.

Click Finish. You have now created a service binding. Using this binding, the
web page you created in this project can access the service. The binding in the
deployment descriptor file looks like this:

]
Service Client Bindings Configuration
Service Client Bindings Web Service Client Binding =
Information needed by service dlients o locate and Elniaetntthbe“fdr;gertles of i s iad s n
Mame: [Helloservice |
@ Interface: services, HelloService | El
WSDL File: [Helogervicemsdl |
WSDL Port: |Hellagervice |
WSDL Service: |Lt|_e_l_lg_§g_r_'_\f_i_cg_?_-g_r_v_i_c_e_ |
WSDL UR; [|

Enable Generate

=
4| | ®

b Sharable Protocols

|
Cverview | Service Client Bindings | Web Service Deployment |

Save and close the deployment descriptor file. Note that EGL has created an
interface part in the project's services package. The interface part looks like

Create a hello world service with EGL 17

this:

package services;

“interface HelloService{[lxml {name="HelloSerwvice™,
namespace="http://services"}}

= function JavHello(hawme string in, city string in)
returns (string) {@xml {namwe="ZIayHello™}}:
end

This interface is similar to the one you created in the service application, but
this one has additional properties to refer to the binding in the deployment
descriptor file.

17. Just as you did in the EGLService project, make sure the deployment
descriptor appears in the client build descriptor file:

a. Double-click the build descriptor for the project to open it in the build
parts editor. This file is named EGLClient.eglbld and is located in the
project's EGLSource folder.

b. In the list of build descriptor options, the option named
deploymentDescriptor should be set to EGLCTient.

c. Click OK and close the file.

Use the service in the web page

1. Open the JSF Handler for the web page, named ClientPage.egl.

2. In the JSF Handler, create a variable from the interface part. It is usually
easiest to use content assist to create a variable in this way:

a. In the JSF Handler file, place the cursor on a blank line immediately after
the three variables you created in a previous section.

b. On the blank line, type the following code, as the first few characters of
the interface part:

he

C. Press CTRL+space. The content assist completes the line for you with the
following code:

helloService HelloService {@bindService};
Content assist also adds an import statement to the JSF Handler so you

can use this part without specifying its complete location. The results look
like the following picture:

18 Rational Business Developer: Tutorial: Create a hello world service with EGL

3.

4.
5.

6.

package jsfhandlers: AI
import services.HelloService:

~handler ClientPage type J3FHandler
{wview = "ClientPage.jsp"}

name string {Displaylse = inputi:

city string {DisplaylUse = input};

output string {DisplaylUse = output};
helloService HelloService {fbindSerwice}:
function getHella()

end

end

On a blank line within the getHello() function, invoke the SayHello()
function in the service by passing it the name and city variables and assigning
the output to the output variable:

output = helloService.SayHello(name, city);

Remember that you can use content assist by typing the first few characters of
a keyword or part and then pressing CTRL+space. The JSF Handler looks like
this:

package Jjsfhandlers: ;I
import services.HelloZerwvice:

“handler ClientPage type J3FHandler
{view = "ClientPage.jsp™}

name string {DisplaylUse = input}:

city string {DisplaylUse = input}:
output string {DisplaylUse = output}:

helloService HelloService{[@Bind3erwvice {}}:
= function getHello()
output = helloS3ervice.3ayHello (name, city):

end

end

Save and close the JSF Handler.

Generate the entire client project by right-clicking it in the Project Explorer
view and then clicking Generate.

Next, for testing purposes, you must let your application server know about
the service you intend to call. In the Servers view, right-click the appropriate
version of WebSphere Application Server and click Add and Remove
Projects.

Create a hello world service with EGL 19

7. On the Add and Remove Projects page, verify that both the EGLClientEAR
and the EGLServiceEAR are listed as Configured projects. If the
EGLServiceEAR is in the Available projects column, click it to highlight it,
then click Add and Finish. The window looks like the following picture:

& Add and Remove Projects ! EI

Add and Remove Projects
Modify the projects that are configured on the server

I

Move projects to the right to configure them on the server
Available projects: Configured projects:

—
[(F EGLClientEAR
P | - EGLServiceEAR

= Remove |

Now the web page is ready to use.

8. In the Project Explorer view, right-click the ClientPage.jsp web page in the
WebContent folder, not the JSF Handler, and then click Run As > Run on
Server.

9. In the Define a New Server window, click the radio button for Choose an
existing server, then click the appropriate version of WebSphere Application
Server. Click Finish. The server publishes the page and displays it in the
internal web browser. If you prefer to use an external web browser, you can
copy the URL from the internal web browser and paste it into the URL field
of the external web browser.

10. Type a name and city into the name and city fields, and then press the button
on the page. The output field on the page shows a string such as "Bill,
welcome to New York!" depending on the name and city you enter, as in this

picture:
A= .:gﬁ' |http:,l',l'Iu:u:thu:ust:':'JIZIE!E,I'EGLCIient,l'CIientPage.Fan:es

ClientPage

fiatme |Eii||

city |New York

output Bill, welcome to MNew Yorkl

getHello |

This may seem like a lot of work for a simple task, but these projects demonstrate
how EGL can create services, clients, or both, and how those applications work

20 Rational Business Developer: Tutorial: Create a hello world service with EGL

together. Using web services and clients in service-oriented architecture, you can
integrate a wide variety of EGL and non-EGL applications in a way that is flexible
and modular.

Summary

This is the end of the tutorial Create a hello world service with EGL.

The service you created and used in this tutorial was not powerful or complex, but
it demonstrates how service-oriented architecture can separate your applications
into modular, flexible pieces.

Lessons learned

By completing this tutorial, you learned how to do the following tasks:

Create and configure an EGL project

Create a web service with EGL

Configure an EGL project to act as a service or as a client at run time
Create a web page controlled by EGL

Test an application on a web application server

You may want to continue learning by working with the tutorial application. Try
adding additional functionality on your own. If you have done any other EGL
tutorials, you could try putting the logic from those tutorials into a service, or you
could try adding additional functions to your existing service.

Create a hello world service with EGL 21

22 Rational Business Developer: Tutorial: Create a hello world service with EGL

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2000, 2012 23

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

5 Technology Park Drive

Westford, MA 01886

USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

24 Rational Business Developer: Tutorial: Create a hello world service with EGL

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. enter the year or year, year.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at http://www.ibm.com/
legal/copytrade.html..

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices 25

26 Rational Business Developer: Tutorial: Create a hello world service with EGL

Printed in USA

	Contents
	Create a hello world service with EGL
	Introduction
	Lesson 1: Create an EGL web project for the service
	Create the interface to define the service
	Create the service

	Lesson 2: Set up the service
	Verify the deployment descriptor and build descriptor
	Generate the WSDL file

	Lesson 3: Create an EGL service client
	Create the client web page

	Lesson 4: Set up the project as a client
	Set up the EGL deployment descriptor file
	Use the service in the web page

	Summary

	Appendix. Notices
	Trademarks

