
Developing EGL for CICS

���

ii Developing EGL for CICS

Contents

Developing EGL programs for the CICS
environment 1
Understanding CICS terminology 1
File techniques in CICS programs 3

Using temporary storage 4
Using transient data queues 6
Using spool files in z/OS CICS 7
Using spool files in VSE CICS 9
Using VSAM files 13
Using recordName.resourceAssociation 14

Printing techniques in CICS 15
Using transient data queues for printer output . 15

Using spool files for printer output on z/OS
CICS 16
Using VSE/POWER files for printer output . . 17
Using converseVar.printerAssociation 18

Debugging CICS programs 19
Setting the recovery unit of work 20
Using CICS functions from EGL programs 20
Communicating between multiple CICS transactions 24
Inter-transaction affinity considerations in a
CICSplex 25

Index 29

iii

iv Developing EGL for CICS

Developing EGL programs for the CICS environment

There are specific design and development considerations when creating EGL
programs for CICS® for z/OS and CICS for VSE.

You can perform the following tasks using EGL to develop CICS programs:
v Define programs for CICS.
v Test CICS program logic using the EGL debugger.
v Generate COBOL programs to run in the CICS environment.

The following sections contain additional information on developing programs for
the CICS environment:
v Accessing multiple DB2 plans in z/OS CICS
v Developing segmented programs in EGL

Refer to the EGL documentation for the following information about CICS:
v Transferring control in CICS environments.
v CICS considerations in the IBM Rational COBOL Runtime Guide for zSeries.
Related information

“Understanding CICS terminology”
Familiarize yourself with terms that have special meanings in CICS.
“File techniques in CICS programs” on page 3
Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note that
are specific to CICS.
“Printing techniques in CICS” on page 15
CICS handles the printer file differently on different platforms.
“Debugging CICS programs” on page 19
Test CICS programs by first fixing logic errors in the EGL debugger, then
generating the programs for your CICS test region.
“Setting the recovery unit of work” on page 20
The sysLib.commit() system function notifies EGL that the current recovery unit of
work is complete and a new unit of work is to be started.
“Using CICS functions from EGL programs” on page 20
You can use CICS functions in EGL programs.
“Communicating between multiple CICS transactions” on page 24
“Inter-transaction affinity considerations in a CICSplex” on page 25

Understanding CICS terminology
Familiarize yourself with terms that have special meanings in CICS.

Transaction
A unit of processing, consisting of one or more programs.

Task The processing of a transaction for a program user.

Conversational
The CICS term for running a program in nonsegmented mode. A
conversational program consists of a sequence of alternating entries and

1

responses between a user and the program. File and database position and
locks, and storage resources are held across the terminal I/O operation.

Pseudoconversational
The CICS term for running a program in segmented mode. A
pseudoconversational program consists of a series of single CICS tasks
designed to appear to the user as a continuous conversation. File and
database position and locks, and storage resources are released across the
terminal I/O operation. The program must save conversation status before
terminal output and restore it on terminal input.

Communication area (COMMAREA)
A data area used to transfer information between two programs within a
transaction or between two transactions from the same terminal. When one
program transfers to another, the COMMAREA can be any data area the
transferring program can access. The transferred-from program can both
pass data to that area and receive results in the area. The data area is
usually the working storage area of that program.

Transaction Work Area (TWA)
A fixed length storage area allocated for each transaction task control area.
Generated EGL programs use a 1024 byte section of the TWA. The offset of
the EGL section of bytes is controlled by the twaOffset build descriptor
option.

Resource Definitions Online (RDO)
Definitions of resources used or managed by the CICS system. Each
definition is created by using resource definition online (RDO). The
following list shows the types of definitions:

TDQUEUE
Used to define transient data destinations for the system.

FILE Used to define files used by the system.

PROGRAM
Contains information about each program. The Rational COBOL
Runtime for z/Series programs, generated COBOL programs,
libraries, and servers, FormGroup online print services programs,
FormGroup format modules, and DataTables must be defined.
Alternatively, if you use the CICS autoinstall feature for programs
you do not need to create PROGRAM definitions.

TRANSACTION
Defines the transaction identifiers that can be entered by program
users. For each transaction, it also defines the related program that
starts the processing for the transaction.

DB2CONN, DB2ENTRY, and DB2TRAN
Describe the interface between the CICS region and DB2®,
including the association of transaction codes with DB2 program
plans.

PROFILE, TYPETERM, and TERMINAL
Contain descriptions of terminals, their features, and operating
information.

Temporary storage queue
A CICS managed file for storing intermediate results. Records in a
temporary storage queue can be accessed serially or by a relative record
number. Descriptions of the two types of temporary storage follow:

2 Developing EGL for CICS

Auxiliary
A temporary storage queue that is stored on DASD. It can be
recovered and maintained from one CICS run to the next.

Main A temporary storage queue that exists in the CICS address space. It
is not recoverable and is not maintained from one CICS run to the
next.

Transient data queue
A CICS managed file that is serially organized. Descriptions of the two
types of transient data queues follow:

Extrapartition transient data queue
A CICS managed serial file in a system sequential data set or tape.
The file can be an input file or an output file but not both.
Extrapartition queues are not recoverable.

Intrapartition transient data queue
A transient data queue that is accessible to transactions running in
a CICS region. The queue can be used for both input and output.
On z/OS, the queue is stored in a VSAM entry sequenced data set.
Intrapartition queues can be recovered.

Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“File techniques in CICS programs”
Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note that
are specific to CICS.
“Printing techniques in CICS” on page 15
CICS handles the printer file differently on different platforms.

File techniques in CICS programs
Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note that
are specific to CICS.

Developing EGL programs for the CICS environment 3

Related information

“Using temporary storage”
“Using transient data queues” on page 6
You can use transient data queues for many of the same purposes as an auxiliary
temporary storage queue.
“Using spool files in z/OS CICS” on page 7
EGL programs generated for CICS for z/OS can access JES SPOOL files if the serial
or print file is associated with the spool file type at generation.
“Using spool files in VSE CICS” on page 9
EGL programs generated for VSE batch or CICS for VSE can create and write to a
VSE/POWER queue member by setting the fileType property to spool in the
resource association for the serial or print file at generation.
“Using VSAM files” on page 13
An EGL program generated for CICS can access VSAM files if the serial, indexed
or relative file is associated with the vsam file type at generation.
“Using recordName.resourceAssociation” on page 14
You can dynamically change the physical file associated with a record at run time.

Using temporary storage
In CICS, temporary storage is the primary method for storing data that must be
available to multiple transactions. Data items in temporary storage are placed in
queues with names assigned dynamically by the program storing the data.
Temporary storage is implemented in two different ways: main temporary storage
and auxiliary temporary storage:
v Main indicates that the queue is stored in space taken from the dynamic storage

area.
v Auxiliary indicates that the queue is written to an entry-sequenced VSAM data

set.

Main and auxiliary storage have the following characteristics:
v CICS maintains an index of items in main storage.
v Main temporary storage requires more virtual storage than does auxiliary. It

should be used for small queues that have short lifetimes or are accessed
frequently.

v Auxiliary temporary storage is designed for large amounts of data that must be
stored for a long time or are accessed infrequently.

v Queues can be recovered in auxiliary temporary storage.

Note: Only one transaction at a time can update a recoverable temporary
storage queue. Keep in mind the probability of enqueues as you design your
program. You should also ensure that there are enough VSAM strings to
eliminate as much contention as possible.

v If a task attempts to write to temporary storage and the space is not available,
CICS suspends the task. The task is not resumed until another task frees the
needed space in main storage or in the VSAM data set.

v Rational COBOL Runtime for zSeries uses temporary storage to save information
about the program during a segmented converse or to save a copy of the form
during a transfer using a show statement. You can use the workDBType build
descriptor option to specify whether the main or auxiliary temporary storage is
to be used.

Accessing temporary storage from EGL

4 Developing EGL for CICS

An EGL program generated for the CICS environment can access CICS temporary
storage as a serial or relative record. The following I/O statements are valid when
you access temporary storage:
v add

v close

v delete

v get

v get next

v get forUpdate

v replace

The resource association for the file must have the EGL file type specified as
tempaux (auxiliary storage file) or tempmain (main storage file) when the program
is generated. The system resource name (systemName property) is the queue name
associated with the temporary storage file.

Temporary storage files can be used by only one task at a time. EGL generates the
following CICS commands for you:
v When the queue is first accessed, EGL enqueues with a CICS ENQ command

(NOSUSPEND option) on the resource name EZETEMP-queuename.
v When the file is closed (close statement or end of program) or when recoverable

resources are committed, EGL dequeues with a CICS DEQ command.

Non-EGL programs that access the same file should enqueue on the same system
resource name while accessing the file.

Records in temporary storage have an additional byte added to the front of the
record that indicates the status of the record:

X’01’ indicates that the record has been logically deleted.

X’00’ indicates that the record logically exists in the file.

The additional byte is added to the record definition and managed by Rational
COBOL Runtime for z/Series. Do not include the additional byte in the EGL
record definition. However, if the temporary storage file is also used by a non-EGL
program, the non-EGL program must allocate space for the byte, interpret the byte,
and update it as EGL does. Processing of the additional byte is as follows:

add or replace
The byte is set to X’00’.

delete The byte is set to X’01’ and the record length is set to 1.

get next
Records with a value of X’01’ are skipped.

get or get forUpdate
Records with a value of X’01’ cause a noRecordFound record state to be
set.

The close statement does not delete temporary storage files. Use the sysLib.purge()
system function to delete the file. EGL enqueues by generating a CICS ENQ
command with the NOSUSPEND option on resource name EZETEMP-queuename
when sysLib.purge() is used and dequeues (DEQ command) after the queue is
deleted.

Developing EGL programs for the CICS environment 5

Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“File techniques in CICS programs” on page 3
Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note that
are specific to CICS.
“Using transient data queues”
You can use transient data queues for many of the same purposes as an auxiliary
temporary storage queue.
“Using spool files in z/OS CICS” on page 7
EGL programs generated for CICS for z/OS can access JES SPOOL files if the serial
or print file is associated with the spool file type at generation.
“Using spool files in VSE CICS” on page 9
EGL programs generated for VSE batch or CICS for VSE can create and write to a
VSE/POWER queue member by setting the fileType property to spool in the
resource association for the serial or print file at generation.
“Using VSAM files” on page 13
An EGL program generated for CICS can access VSAM files if the serial, indexed
or relative file is associated with the vsam file type at generation.
“Using recordName.resourceAssociation” on page 14
You can dynamically change the physical file associated with a record at run time.

Using transient data queues
You can use transient data queues for many of the same purposes as an auxiliary
temporary storage queue.

Like temporary storage, intrapartition transient data consists of data queues in a
single data set with an index in main storage. Transient data queues differ from
auxiliary temporary storage queues in the following ways:
v Transient data queue names must be defined in the RDO TDQUEUE entry

before CICS is started. Transient data queues do not have the same random
access characteristics as temporary storage queues.

v Transient data queues must be read sequentially, and each item can be read only
once. After a transaction reads an item, the item is removed from the queue and
is not available to any other transaction.

v Items in a transient data queue cannot be changed.
v Transient data queues are always written to a data set.
v Writing items to a transient data queue can initiate a specific transaction when

the trigger level for the queue is reached.
v A transient data queue can be physically or logically recoverable, and you can

specify that you want areas of the entry sequenced data set (ESDS) that have
been written and read to be reused for new data.

v You can direct print output to a transient data queue but not to a temporary
storage queue.

v Because the commands for intrapartition and extrapartition data sets are the
same, you can switch between the internal CICS facility and an external data set.
You need change only the RDO TDQUEUE entry.

6 Developing EGL for CICS

Accessing tranisent data queues from EGL

An EGL program generated for the CICS environment can access CICS transient
data queues as a serial record. The following I/O statements are valid when you
access a transient data queue:
v add

v close

v get next

The resource association for the file must have the EGL file type specified as
transient when the program is generated. The system resource name (systemName
property) is the name of the transient data queue as it is defined in the
corresponding TDQUEUE entry.

You can also use the resource association to direct print output to a transient data
queue.
Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“File techniques in CICS programs” on page 3
Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note that
are specific to CICS.
“Using temporary storage” on page 4
“Using spool files in z/OS CICS”
EGL programs generated for CICS for z/OS can access JES SPOOL files if the serial
or print file is associated with the spool file type at generation.
“Using spool files in VSE CICS” on page 9
EGL programs generated for VSE batch or CICS for VSE can create and write to a
VSE/POWER queue member by setting the fileType property to spool in the
resource association for the serial or print file at generation.
“Using VSAM files” on page 13
An EGL program generated for CICS can access VSAM files if the serial, indexed
or relative file is associated with the vsam file type at generation.
“Using recordName.resourceAssociation” on page 14
You can dynamically change the physical file associated with a record at run time.

Using spool files in z/OS CICS
EGL programs generated for CICS for z/OS can access JES SPOOL files if the serial
or print file is associated with the spool file type at generation.

The system resource name for a spool file depends on whether the file is an input
or output file:

Input file
Maximum 10–byte name in the format userid.class.

userid
A 4- to 8-character external writer name or an asterisk. If you use an
external writer name, CICS requires that the first 4 characters of the
external writer name be the same as the first 4 characters of the CICS
APPLID used to identify the CICS region to ACF/VTAM.

Developing EGL programs for the CICS environment 7

class
An optional 1-character spool class; the default is ″A″.

Output file
Maximum 19-byte name in the format nodeid.userid.class.

nodeid
A 1- to 8-character system node ID. You can use an asterisk for nodeid.

userid
A 1- to 8-character system user ID. You can use an asterisk for userid. If
you do not specify class, userid is also optional and defaults to the CICS
user id (the same value that is stored in sysVar.userID).

class
An optional 1-character spool class; the default is ″A″.

Refer to the CICS customization manual for more information.

Do not use spool files as temporary files that a program writes to and then reads.
You can specify the same resource name for the output and input file, but in this
case the resource name represents a destination rather than a specific file. If you
write to a spool destination and close the file, the file might not be immediately
available for input file from that destination and might be queued behind other
files sent to the same destination.

For more information on spool file access in CICS, refer to the CICS customization
manual.

Spool files are opened on first access and closed in one of the following
circumstances:
v The program ends.
v A close statement refers to the file.
v Recoverable resources are committed (sysLib.commit(), sysLib.rollback(), end of

transaction or segment).

8 Developing EGL for CICS

Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“File techniques in CICS programs” on page 3
Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note that
are specific to CICS.
“Using temporary storage” on page 4
“Using transient data queues” on page 6
You can use transient data queues for many of the same purposes as an auxiliary
temporary storage queue.
“Using spool files in VSE CICS”
EGL programs generated for VSE batch or CICS for VSE can create and write to a
VSE/POWER queue member by setting the fileType property to spool in the
resource association for the serial or print file at generation.
“Using VSAM files” on page 13
An EGL program generated for CICS can access VSAM files if the serial, indexed
or relative file is associated with the vsam file type at generation.
“Using recordName.resourceAssociation” on page 14
You can dynamically change the physical file associated with a record at run time.

Using spool files in VSE CICS
EGL programs generated for VSE batch or CICS for VSE can create and write to a
VSE/POWER queue member by setting the fileType property to spool in the
resource association for the serial or print file at generation.

A serial or print output file associated as a spool file type can be created and
routed to the RDR, LST, or PUN VSE/POWER queue. EGL programs generated for
CICS for VSE can also read from a VSE/POWER queue member by associating a
serial file as the spool file type at generation.

The first add statement for a record that is associated with a spool file creates a
new VSE/POWER queue member and adds the data to the beginning of the file.
Later add statements place data following the previously added data until the file
is closed. A close statement issued for a spool file closes the VSE/POWER queue
member.

Once a spool file is closed, a later add statement for a record with the same file
name creates a new VSE/POWER queue member. When adding data to a spool
file that is to be routed to the LST VSE/POWER queue, you must be aware of the
following: VSE/POWER LST queue members are opened by IBM Rational COBOL
Runtime for zSeries with the ASA option. This specifies that the report is created
using an ANSI printer-control character at the beginning of each line of data. If the
file is a serial file, you must ensure that valid carriage control characters are used.
If the file is a print file, then Rational COBOL Runtime adds the printer-control
characters for you.

A spool file is closed in any of the following circumstances:
v The program ends.
v A close statement references the file.
v Recoverable resources are committed (sysLib.commit(), sysLib.rollback(), end of

transaction or segment).

Developing EGL programs for the CICS environment 9

Any close indicates the end of the file.

Because you have a choice of a VSE/POWER queue destination when creating an
output spool file, you have the ability to create a file that is placed on the
VSE/POWER RDR queue as a batch job. Note that a close statement that refers to
a spool file that is a RDR queue member indicates the end of the file. A subsequent
add to the RDR queue file creates a new RDR queue member to be processed as a
separate batch job. Also note that when creating jobs, if a POWER EOJ statement is
output, the POWER job is made available to run before the spool file is closed.

System resource name format for VSE spool file

In z/VSE, the system resource name for a spool file depends on whether the file is
used for input or output. An input spool file can only be used for CICS for z/VSE,
not for zVSE batch.

Note: Rational COBOL Runtime performs no error checking to ensure that a
correct combination of values is specified for the qualifiers in the system resource
name. Rational COBOL Runtime sends the values for each of the system resource
name qualifiers ″as is″ to VSE/POWER. If the v60ExceptionCompatibility program
property is set to YES, Rational COBOL Runtime places the return code from
VSE/POWER in sysVar.errorCode. If the v60ExceptionCompatibility program
property is set to NO, a file I/O exception is thrown.

Input file
Maximum 10–byte name in the format userid.class

userid
A 1- to 8-character VSE/POWER identifier of the program or user that
will process the report. The identifier must not include blank or null
characters. There is no default for this value.

class
A 1-character spool class. The class component is optional; the default
is ″A″. You cannot use an asterisk to cause EGL to use a default class
for an input spool file. The input spool file is read from the
VSE/POWER PRT or PUN queue.

Output file
Maximum 65-byte name in the format
jobname.queue.class.disp.form.node.userid.parm

Note: The jobname parameter must be specified, or the default must be
explicitly requested by specifying an asterisk (*). All other parameters can
request the default value by specifying an asterisk (*) or a blank. However,
if you request a default value for a parameter by using a blank, default
values are used for all subsequent parameters.

jobname
A 1- to 8-character name that defines the jobname for the VSE/POWER
queue member. This value is used when the CICS Report Control
Facility (RCF) is being used; an asterisk (*) in this field causes the EGL
file name to be used for the record or EZEPRINT for a print file. When
RCF is not being used (for example, when the queue is PUN or LST),
the value in jobname is ignored, and the VSE/POWER queue member
jobname is the CICS for z/VSE program ID.

10 Developing EGL for CICS

queue
A 3-character name that identifies the destination VSE/POWER queue
for the file. The following values are valid:
v RDR for job output
v LST for list output
v PUN for punch output
v PRT for list output (using RCF)

Using any other characters for queue causes a spool name error. An
asterisk (*) or a blank in this field causes the PRT queue to be used.

When queue is set to RDR or PRT, RCF is used to access the file. When
queue is set to PUN or LST, basic CICS SPOOL support is used. Note
that both LST and PRT specify that the file is to be a part of the
VSE/POWER LST queue, but PRT uses RCF commands while LST
does not.

If you attempt to use RCF when you do not have RCF installed on
your CICS system, CICS returns an error message. This might be an
AEY9 transaction abend, a NOSPOOL condition, or the message
″SPOOLING SYSTEM IS NOT AVAILABLE″.

When the queue value is PRT or LST, Rational COBOL Runtime for
z/VSE opens the file with the ASA option. This option specifies that
the report is created using an American National Standard
printer-control character at the beginning of each line of data. If you
are using a serial file, you must ensure that valid carriage control
characters are used. If the file is a print file, Rational COBOL Runtime
for z/VSE automatically adds the American National Standard
printer-control characters for you.

class
A single character that specifies class. An asterisk (*) or blank in this
field causes the default of a null string to be used.

disp
A single character that specifies the VSE/POWER disposition status of
the queue member once it is closed. The following values are valid:

D Process the job and delete it after processing.

H Hold the job in queue until released.

K Process the job and keep it in the queue after processing.

L Let the job stay in the queue until released.

Using any other character for disp causes a spool name error. This field
is not applicable when queue is LST or PUN. An asterisk (*) or blank in
this field causes the default of ″D″ to be used.

form
A 4-character name that identifies the form number for print output.
An asterisk (*) or a blank in this field causes the default of your
location’s standard form to be used.

node
A 1- to 8-character name that specifies the system node ID. An asterisk
(*) or a blank in this field defaults to the current system node ID.

Developing EGL programs for the CICS environment 11

userid
A 1- to 8-character VSE/POWER identifier of the program or user that
will process the report. It must not include blanks or null characters.

Under CICS for z/VSE, an asterisk (*) or a blank in userid is handled in
the following way:
v If you are signed on to CICS, then userid defaults to the contents of

sysVar.userID.
v If you are not signed on to CICS, then userid remains an asterisk (or,

if blank, is changed to an asterisk).
v If userid is set to ANY, it is reset to an asterisk.

Under z/VSE Batch, an asterisk (*) or blank in the userid defaults to
ANY.

parm
A string of characters used to specify additional information when
queue is set to LST or PRT. The format of parm varies in the following
way depending on the runtime environment and the value of queue:
v If the runtime environment is VSECICS:

– If queue is set to LST, parm is set to outdescr as described later in
this section.

– If queue is set to PRT, parm is set to fcbname.copies as described
later in this section.

v If the runtime environment is VSEBATCH:
– If queue is set to LST or PRT, parm is set to fcbname.copies.

outdescr
A string that is passed to CICS in the OUTDESCR option of the
CICS for z/VSE SPOOLOPEN OUTPUT command. The characters
must be specified in the correct format for the OUTDESCR option.
The parameters use the same keywords and values as are used on
the VSE/POWER LST statement for program-user-defined output
operands, but the syntax varies slightly. The following example
shows how you can use FORMDEF FORM1 and PAGEDEF PAGE1
as the parm string:
FORMDEF(FORM1) PAGEDEF(PAGE1)

The following example shows how that parm might be used in the
corresponding spool file name:
JOBNAME1.LST.*.*.*.*.*.FORMDEF(FORM1) PAGEDEF(PAGE1)

Rational COBOL Runtime for z/VSE handles the calculation and
insertion of the length area at the beginning of the string as
required by CICS for z/VSE. The maximum length of the parm
string is variable and depends on the length of the spool file
specification up to this point; the total length of the spool file
specification cannot be over 65 characters.

fcbname
The name of the FCB-image phase which VSE/POWER uses for
printing the related job output. The name phase must be cataloged
in a sublibrary accessible from the VSE/POWER partition. The
name can be up to 8 alphanumeric characters (letters, numbers,
and special characters). If omitted, the system default FCB is used.
The default name can be specified with an asterisk (*).

12 Developing EGL for CICS

copies
A number from 1 to 255 that specifies the number of copies to be
printed. The default is 1.

Do not use spool files as temporary files for a program that writes to a file and
then reads the file. You can specify the same resource name for an output and
input file, but the resource name represents a destination rather than a specific file.
If you write to a spool destination and close the file, the file might not be
immediately available as an input file from that destination and might be queued
behind other files sent to the same destination.

For more information on spool file access in CICS, see the CICS customization
manual.

Spool files are opened on first access and closed in one of the following
circumstances:
v The program ends.
v A close statement refers to the file.
v Recoverable resources are committed (sysLib.commit(), sysLib.rollback(), end of

transaction or segment).
Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“File techniques in CICS programs” on page 3
Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note that
are specific to CICS.
“Using temporary storage” on page 4
“Using transient data queues” on page 6
You can use transient data queues for many of the same purposes as an auxiliary
temporary storage queue.
“Using spool files in z/OS CICS” on page 7
EGL programs generated for CICS for z/OS can access JES SPOOL files if the serial
or print file is associated with the spool file type at generation.
“Using VSAM files”
An EGL program generated for CICS can access VSAM files if the serial, indexed
or relative file is associated with the vsam file type at generation.
“Using recordName.resourceAssociation” on page 14
You can dynamically change the physical file associated with a record at run time.

Using VSAM files
An EGL program generated for CICS can access VSAM files if the serial, indexed
or relative file is associated with the vsam file type at generation.

The system resource name (systemName property) is the RDO FILE name for the
data set as it is defined to CICS.

For CICS, the close statement does not actually close the data set. The close
statement releases record locks and position in the file.

When accessing the same indexed data set using two file names for the same
physical data set or two file names that access a base data set and its alternate

Developing EGL programs for the CICS environment 13

index, an indefinite deadlock can occur in CICS that does not raise the deadlock
condition. When the file is not defined with LSRPOOLID equal to NONE in the
RDO FILE entry and one I/O statement in a program has performed a get next on
a file and another I/O statement performs a get...forUpdate or add statement for
the same file (or alternate index) without ending the get next, this deadlock can
occur. If you design this type of file access into your programs, make sure
LSRPOOLID for the file is set to NONE to avoid the deadlock.
Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“File techniques in CICS programs” on page 3
Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note that
are specific to CICS.
“Using temporary storage” on page 4
“Using transient data queues” on page 6
You can use transient data queues for many of the same purposes as an auxiliary
temporary storage queue.
“Using spool files in z/OS CICS” on page 7
EGL programs generated for CICS for z/OS can access JES SPOOL files if the serial
or print file is associated with the spool file type at generation.
“Using spool files in VSE CICS” on page 9
EGL programs generated for VSE batch or CICS for VSE can create and write to a
VSE/POWER queue member by setting the fileType property to spool in the
resource association for the serial or print file at generation.
“Using VSAM files” on page 13
An EGL program generated for CICS can access VSAM files if the serial, indexed
or relative file is associated with the vsam file type at generation.
“Using recordName.resourceAssociation”
You can dynamically change the physical file associated with a record at run time.

Using recordName.resourceAssociation
You can dynamically change the physical file associated with a record at run time.

Move the system resource name of the new file to recordName.resourceAssociation.
The new system resource is used in the next I/O statement associated with the
record. If another resource is already open for the record, that file is closed before
the new file is accessed. The new resource must have the same file type as the file
type specified for the record file when the program was generated.

14 Developing EGL for CICS

Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“File techniques in CICS programs” on page 3
Defining CICS programs is much the same as defining programs for other
environments. There are some file technique considerations you should note that
are specific to CICS.
“Using temporary storage” on page 4
“Using transient data queues” on page 6
You can use transient data queues for many of the same purposes as an auxiliary
temporary storage queue.
“Using spool files in z/OS CICS” on page 7
EGL programs generated for CICS for z/OS can access JES SPOOL files if the serial
or print file is associated with the spool file type at generation.
“Using spool files in VSE CICS” on page 9
EGL programs generated for VSE batch or CICS for VSE can create and write to a
VSE/POWER queue member by setting the fileType property to spool in the
resource association for the serial or print file at generation.
“Using VSAM files” on page 13
An EGL program generated for CICS can access VSAM files if the serial, indexed
or relative file is associated with the vsam file type at generation.

Printing techniques in CICS
CICS handles the printer file differently on different platforms.

Programs write printer data when the program processes a print statement for a
print form. The printer output is in line character format with ANSI printer-control
characters. The printer data is written to a logical file named printer.
v For z/OS CICS, you can associate the printer file with either a transient data

queue (transient file type) or a JES spool file (spool file type) at generation.
v For VSE CICS, you can associate the printer file with either a transient data

queue (transient file type) or a VSE/POWER file (spool file type) at generation.
Related information

“Using transient data queues for printer output”
If you associate printer with a transient data queue at generation, the system
resource name (systemName property) is the RDO TDQUEUE name for the queue.
“Using spool files for printer output on z/OS CICS” on page 16
If the printer file is associated with the spool file type at generation, the system
resource name (systemName property) identifies the node, user or external writer
identifier, and class that you want to spool the file.
“Using VSE/POWER files for printer output” on page 17
“Using converseVar.printerAssociation” on page 18
You can set the value of the converseVar.printerAssociation system variable to
change the print file destination (transient data queue or spool file name) at run
time.

Using transient data queues for printer output
If you associate printer with a transient data queue at generation, the system
resource name (systemName property) is the RDO TDQUEUE name for the queue.

Developing EGL programs for the CICS environment 15

You can define the destination for the queue as a system printer, a terminal printer,
or a data set. If the destination is a terminal printer, you need to define a
transaction that is started when data is written to the queue. The transaction runs
the Rational COBOL Runtime program FZETPRT. FZETPRT reads the queue and
writes the data to the terminal printer identified in the RDO TDQUEUE entry.

The program does not actually write the printer output to the transient data queue
until the print file is closed. The printed output is accumulated in temporary
storage. When the file is closed (close statement or end of transaction), Rational
COBOL Runtime carries out the following steps:
1. Enqueues on the transient data queue using the value of the systemName

property as the resource name
2. Copies the printer output to the queue
3. Dequeues

The maximum number of print records that can be accumulated in the transient
data queue is 32765. Your program must close the print file before 32765 records
are accumulated.
Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“Printing techniques in CICS” on page 15
CICS handles the printer file differently on different platforms.
“Using spool files for printer output on z/OS CICS”
If the printer file is associated with the spool file type at generation, the system
resource name (systemName property) identifies the node, user or external writer
identifier, and class that you want to spool the file.
“Using converseVar.printerAssociation” on page 18
You can set the value of the converseVar.printerAssociation system variable to
change the print file destination (transient data queue or spool file name) at run
time.

Using spool files for printer output on z/OS CICS
If the printer file is associated with the spool file type at generation, the system
resource name (systemName property) identifies the node, user or external writer
identifier, and class that you want to spool the file.

The name is in the following format:
nodeid.userid.class

nodeid
A 1- to 8-character system node ID.

userid
A 1- to 8-character system user ID.

class
A 1-character spool class.

You can specify an asterisk to use the default userid and nodeid. The class
component is optional and defaults to ″A″. If you do not specify class, userid is also
optional and defaults to the CICS user id (the same value as stored in
sysVar.userID). The maximum name size is 19 bytes.

16 Developing EGL for CICS

Refer to the CICS customization manual for more information. The spool file is
opened as needed on print statements and closed on close statements for a print
form, or when recoverable resources are committed (sysLib.commit(),
sysLib.rollback(), or end of transaction or segment).
Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“Printing techniques in CICS” on page 15
CICS handles the printer file differently on different platforms.
“Using VSE/POWER files for printer output”
“Using converseVar.printerAssociation” on page 18
You can set the value of the converseVar.printerAssociation system variable to
change the print file destination (transient data queue or spool file name) at run
time.

Using VSE/POWER files for printer output
Printing is initiated when a program processes a print statement for an
EGL-defined print form. Printing can also be initiated when the program processes
an add statement, in the circumstances described later in this topic.

When you initiate printing through a print statement and print form, the printer
output is routed to the file that is specified as the resource associated with printer.
You can specify the resource associated with printer at generation or at run time
(using the converseVar.printerAssociation system variable).

On CICS for z/VSE, if the resource associated with printer is a spool file, it is
spooled to VSE/POWER. You can specify that queue as LST or PRT, causing the
spool file to become a VSE/POWER LST queue member. You can specify the
jobname, class, disp, form, node, and userid of the VSE/POWER LST queue
member. You specify these values using the system resource name format for the
spool file. For more information, see “Using spool files in VSE CICS” on page 9.

You can use the CICS Report Controller in conjunction with Rational COBOL
Runtime printer functions to provide ease of handling printed output.

Printing can also be initiated when the program processes an add statement for a
serial record that is associated with the spool file type and with a systemName
property that specifies a destination queue of LST. The systemName property
specifies the VSE/POWER queue destination. If the queue is specified as LST or
PRT, the file becomes a VSE/POWER LST queue member.

Developing EGL programs for the CICS environment 17

Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“Printing techniques in CICS” on page 15
CICS handles the printer file differently on different platforms.
“Using spool files for printer output on z/OS CICS” on page 16
If the printer file is associated with the spool file type at generation, the system
resource name (systemName property) identifies the node, user or external writer
identifier, and class that you want to spool the file.
“Using converseVar.printerAssociation”
You can set the value of the converseVar.printerAssociation system variable to
change the print file destination (transient data queue or spool file name) at run
time.

Using converseVar.printerAssociation
You can set the value of the converseVar.printerAssociation system variable to
change the print file destination (transient data queue or spool file name) at run
time.

To change the print file destination, the program sets the
converseVar.printerAssociation system variable to the new system resource name
for the print file before the print statement is run. The new resource must have the
same file type as the one specified for printer when the program was generated.

Multiple print files can be open at the same time. A print statement writes to the
resource named in converseVar.printerAssociation at the time the statement is run.
A close statement for a print form closes only the resource named in
converseVar.printerAssociation. Any files not explicitly closed are closed at the
end of the transaction or segment, or commit point for spool files.

The default value for converseVar.printerAssociation is the system resource name
specified for the printer file at generation. If you set the printDestination build
descriptor option to TERMINALID and the program was started with a
vgLib.startTransaction() that had the termID parameter set to binary zeros and that
specified a prID parameter, then converseVar.printerAssociation is initialized to
the value in the prID.

If the program was started by a non-EGL program that specified the RTERMID on
the START command, then converseVar.printerAssociation is initialized to the
value specified for RTERMID.

18 Developing EGL for CICS

Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“Printing techniques in CICS” on page 15
CICS handles the printer file differently on different platforms.
“Using spool files for printer output on z/OS CICS” on page 16
If the printer file is associated with the spool file type at generation, the system
resource name (systemName property) identifies the node, user or external writer
identifier, and class that you want to spool the file.
“Using VSE/POWER files for printer output” on page 17
“Debugging CICS programs”
Test CICS programs by first fixing logic errors in the EGL debugger, then
generating the programs for your CICS test region.

Debugging CICS programs
Test CICS programs by first fixing logic errors in the EGL debugger, then
generating the programs for your CICS test region.

The EGL debugger runs only on Windows and Linux. There are steps you must
take in debugging because you cannot directly access CICS resources from the
debugger:
v Set your resource association fileType for the debugger to seqws (workstation

sequential file) for a serial file that you plan to implement as a CICS transient
data queue or spool file when you generate for CICS. Do the same thing for a
print file that you plan to implement as a CICS transient data queue or spool file
at runtime.

v Set your resource association fileType to ibmcobol (remote VSAM file on the
z/OS or VSE host) for a relative file that you plan to implement as a CICS
temporary storage queue when you generate for CICS. Note that Linux does not
support remote VSAM files.

v Set your resource association fileType to ibmcobol (remote VSAM file on the
z/OS or VSE host) for an indexed or relative file that you plan to implement as
a VSAM file when you generate for CICS. Note that Linux does not support
remote VSAM files.

When you have fixed any logic errors in your program, generate your program
again, this time for your CICS test region. In the CICS test region, you can verify
interactions that must be set up specifically for CICS, including I/O with the
following files and devices:
v temporary storage queues
v transient data queues
v spool files
v printers

Related reference

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.

Resource associations part

Developing EGL programs for the CICS environment 19

“Setting the recovery unit of work”
The sysLib.commit() system function notifies EGL that the current recovery
unit of work is complete and a new unit of work is to be started.

Setting the recovery unit of work
The sysLib.commit() system function notifies EGL that the current recovery unit of
work is complete and a new unit of work is to be started.

This system function issues a CICS SYNCPOINT command.

There is an implicit sysLib.commit() upon completion of a program (exit program
or a transfer or show statement). You can explicitly call sysLib.commit() at any
time during the execution of a program. Best practice is to call sysLib.commit()
from within programs that have get forUpdate, replace, delete, or add statements
with a logic loop at the completion of a logical unit of work so that the program
does not hold multiple locks.

Take care to prevent deadlocks when you access data sets using VSAM Local
Shared Resources (LSR) on CICS from a generated EGL program. When using LSR
and using a get next or get previous statement on a file, call sysLib.commit() at
the completion of a logical unit of work. Do this prior to attempting a get
forUpdate, replace, delete, or add statement that requires exclusive use of
resources. This releases the get next position and allows later updates to the data
set.

If you are defining transfer to program statements to replace transfer to
transaction statements, note that the recovery unit of work holds across the
transfer to program and you must call sysLib.commit() if you want to end the
unit of work.

A SYNCPOINT occurs on a transfer to program statement under the following
conditions:
v If a transfer to a non-EGL program occurs and a PSB is scheduled
v If the synchOnPgmTransfer build descriptor option is set to ″YES″ and a PSB is

scheduled
v If both of the following conditions are true:

– The synchOnPgmTransfer build descriptor option is set to ″NO″ for the
transferring program

– The transferring program had scheduled a PSB and different PSBRecord
names were specified for the two programs

Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“Using CICS functions from EGL programs”
You can use CICS functions in EGL programs.

Using CICS functions from EGL programs
You can use CICS functions in EGL programs.

20 Developing EGL for CICS

The following table lists the CICS functions that you can use in EGL programs. The
table also summarizes how to use these functions.

Table 1. CICS functions and how to represent them in EGL

CICS Function EGL Function Comments

Type of Program

Conversational segmented program property
= NO

Pseudoconversational segmented program property
= YES

The workDBType build
descriptor option specifies
whether to use a main
(MAIN) or auxiliary (AUX)
temporary storage queue for
saving status across the
terminal I/O.

Pseudoconversational,
different transaction names

Segmented converse with
sysVar.transactionID set to
the next transaction name

The workDBType build
descriptor option specifies
whether to use a main
(MAIN) or auxiliary (AUX)
temporary storage queue for
saving status across the
terminal I/O.

Terminal and Printer Support

Communication with the
terminal

converse for input/output,
display for output, or a
show statement with a form
for output and input
specified in the inputForm
property.

System printer support print statement; transient file
type for printer file

Associate RDO TDQUEUE
for transient data queue with
system printer

Terminal printer support print statement; transient file
type for printer file

Associate RDO TDQUEUE
for transient data queue with
terminal printer and trigger
FZETPRT transaction to
write to printer.

JES SPOOL file for printer
output for z/OS CICS

print statement; spool file
type for printer file

systemName in EGL
resource association entry
identifies node, spool writer
or user identifier, and class

VSE/POWER SPOOL file for
printer support for VSE CICS

print statement; spool file
type for printer file on VSE
environment

systemName in EGL
resource association entry
identifies jobname, queue,
class, disp, form, node,
userid, and parm of the
VSE/POWER LST queue
member.

Dynamic printer support converseVar.
printerAssociation set to
alter print destination for
print statement

Database and File Support

Developing EGL programs for the CICS environment 21

Table 1. CICS functions and how to represent them in EGL (continued)

CICS Function EGL Function Comments

DL/I database definition and
access

PSBRecord definition, DL/I
segment definition, and
normal I/O statements as
provided for DL/I database
access.

EGL creates default SSAs
and sets the default PCB
number.

PSB Scheduling dliVar.dliPsbName identifies
the PSB to be scheduled.

Scheduling is done
automatically prior to the
first DL/I operation in the
unit of work.

PSB Termination Done automatically on
sysLib.commit(),
sysLib.rollback(), or end of
transaction or segment.

A CICS SYNCPOINT occurs
on a transfer to program
statement under the
following conditions:

v If transfer to a non-EGL
program occurs and a PSB
is scheduled

v If synchOnPgmTransfer =
″YES″ and a PSB is
scheduled

v If synchOnPgmTransfer =
″NO″ for the transferring
program, and the
transferring program had
scheduled a PSB and
different PSBRecord names
were specified for the two
programs.

Program restart following
abnormal termination due to
deadlock in queueing on
database records

dliVar.cicsRestart Variable indicating whether
the program was restarted

DB2 database definition and
access

SQLRecord definition and
normal I/O statements as
provided for relational
database access.

VSAM file support vsam file type for serial,
relative, and indexed files

RDO FILE entry required for
file; systemName in EGL
resource association entry
matches FILE entry name

Transient data queue support fileType property set to
transient for serial files

RDO TDQUEUE entry
required for file;
systemName in EGL
resource association entry
matches TDQUEUE entry
name

Function shipping for VSAM
data sets and transient data
queues

remoteFile type for the
fileLink element in the
linkage options entry for the
file

22 Developing EGL for CICS

Table 1. CICS functions and how to represent them in EGL (continued)

CICS Function EGL Function Comments

Specifying SYSID when
function shipping.

remoteFile and locationSpec
= PROGRAMCONTROLLED
for the fileLink element in
the linkage options entry for
the file;
sysLib.remoteSystemID to
dynamically set the remote
system name

Main temporary storage
queue support

tempmain file type for serial
or relative file

Records have extra control
byte in byte 1

Auxiliary temporary storage
queue support

tempaux file type for serial
or relative file

Records have extra control
byte in byte 1

JES SPOOL file support for
z/OS CICS

spool file type for serial file systemName in EGL
resource association entry
identifies node (output only),
spool writer or user
identifier, and class

VSE/POWER SPOOL file for
VSE CICS

spool file type for serial file systemName in EGL
resource association entry
identifies spool writer or
user identifier and class
(input only); or jobname,
queue, class, disp, form,
node, userid, and parm for a
VSE/POWER RDR, PUN, or
LST queue member (output
only).

Program Communications

START transaction A transfer to program
statement or call to
vgLib.startTransaction()

RETURN TRANSID A show statement or a
segmented converse
statement

Function shipping for START
transaction

vgLib.startTransaction() with
asynchLink element,
type=remoteAsynch in
linkage options entry for the
record specified in
vgLib.startTransaction()

Specifying SYSID when
function shipping

asynchLink element, type =
remoteAsynch and
locationSpec =
PROGRAMCONTROLLED
in linkage options entry;
sysLib.remoteSystemID to
dynamically set the remote
system name

XCTL to another EGL
program

A transfer to transaction
statement

If a record is specified, it is
transferred in the
COMMAREA.

Developing EGL programs for the CICS environment 23

Table 1. CICS functions and how to represent them in EGL (continued)

CICS Function EGL Function Comments

XCTL to a non-EGL program A transfer to transaction
statement with
externallyDefined option

If a record is specified, it is
transferred in the
COMMAREA.

LINK to program with data
in COMMAREA

call statement; callLink
element, type = localCall,
linkType = ″CICSLINK″, and
parmForm = ″COMMDATA″
for linkage options entry for
called program

Distributed program LINK to
program with data in
COMMAREA

call statement; callLink
element, type = remoteCall,
linkType = ″CICSLINK″, and
parmForm = ″COMMDATA″
for linkage options entry for
called program

Specifying SYSID on
distributed program LINK

callLink element,
type=remoteCall and
serverID = ″serverName″ on
linkage options entry for
called program

Specifying TRANSID on
distributed program LINK

callLink element,
type=remoteCall and
serverID =
″transactionName″ on
linkage options entry for
called program

Specifying
SYNCONRETURN on
distributed program LINK

callLink element,
type=remoteCall and
luwControl =″SERVER″ on
linkage options entry for
called program

Miscellaneous

SYNCPOINT sysLib.commit()

SYNCPOINT ROLLBACK sysLib.rollback()

JOURNAL call sysLib.audit()

Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“Communicating between multiple CICS transactions”

Communicating between multiple CICS transactions
Programs running in a CICS environment can communicate with other programs
in the same CICS region using shared DataTables. DataTables defined as shared
cause all programs in the same CICS region to use the same copy of the DataTable
until a new copy is requested. In CICS environments, shared DataTables can be
modified at run time. Because of this, multiple EGL programs running in the same
CICS region could use a shared DataTable as a shared communications area. This
use of DataTables might have synchronization considerations depending on the
specific CICS platform and the way the data is modified in the DataTable.

24 Developing EGL for CICS

For CICS for z/OS and CICS for VSE, modifications to shared DataTables are not
synchronized across call statements or I/O statements.
Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.
“Inter-transaction affinity considerations in a CICSplex”

Inter-transaction affinity considerations in a CICSplex
A CICSplex consists of two or more CICS regions that are linked using CICS
intercommunication facilities. A CICS function known as dynamic transaction routing
supports load balancing by dynamically routing a transaction from a terminal to
any of the regions that have the resources to process the transaction.

Inter-transaction affinity occurs when two or more CICS transactions pass
information to one another in a way that requires the transactions to run in the
same CICS region. When inter-transaction affinity exists, you must define the
transactions to CICS so that they are routed to the same region.

The following topics describe transaction routing considerations for CICS programs
generated using EGL. For a more complete discussion of transaction routing, see
Dynamic Routing in a CICSplex, SC33-1012.

Segmented programs

Segmented programs use a temporary storage queue (the work database) for
saving the state of the program conversation during a converse or show statement.
All segments of the conversation must have access to the same temporary storage
queue and must continue to use the same terminal ID.

Sharing EGL DataTables for update

Programs can update shared EGL DataTables in the CICS environment. The shared
DataTable is stored in memory obtained through a CICS GETMAIN; any updates
are accessible only to programs running in the same region. Any transactions
dependent on passing information through a shared DataTable must be routed to
the same region.

Temporary storage queues

EGL support for temporary storage queues requires that access to the queues be
serialized. The generated program does this by using CICS ENQ and DEQ with
the queue name as the resource name. ENQ and DEQ are effective only within the
scope of a single region. To ensure that access to the queue is serialized, do one of
the following:
v Define the temporary storage queue as a local queue.
v Route all transactions that access the queue to same region.
v Use a queue naming convention that includes the terminal ID from

sysVar.terminalID as part of the queue name, so that a different queue is used
for each terminal. Since only one transaction is active from any one terminal at a
time, access to the queue is serialized.

Developing EGL programs for the CICS environment 25

Refer to the CICS manual for more information on using temporary storage queues
with transaction routing.

Using a transient data queue for printed output

Printed output can be routed to a transient data queue. The program accumulates
the printed output in a temporary storage queue. When the output is complete, the
program copies the output to the transient data queue, using ENQ/DEQ to ensure
that output from multiple transactions in the same system is not interspersed.

Because ENQ/DEQ are effective only within a region, define the queue as a local
queue to prevent interspersed output from multiple regions.

Also, if you have defined the queue to trigger the FZETPRT terminal printing
program, define the transaction for FZETPRT as a local transaction in the region
where the queue resides.

Error destination queque

Error messages from Rational COBOL Runtime can be directed to a transient data
queue called the error destination queue. Define the queue as a local queue to each
region in which an EGL program can run to ensure that messages related to a
single error are not interspersed with messages related to another error occurring
at the same time in another region.

Disable on run unit failure

One of the options that can be specified using the diagnostic control utility is
disabling a transaction whenever a run-unit error is detected for that transaction.

The disable action is implemented using the CICS SET function and is effective
only for the region in which the error occurred.

CICS utility function region affinity

The Rational COBOL Runtime CICS utilities perform functions that have region
affinity; therefore, you must ensure that the transaction is routed to the desired
region based on the user identifier, LU name, or alternate transaction name. The
following table lists the utilities, default transaction identifier, and function
description.

Table 2. Region Dependent Utilities

Utility
Default
ID Function Description

CICS Utilities Menu ELAM Menu for selecting the other utilities (except
trace).

New Copy ELAN Loads new copy of program, library, service,
FormGroup, or DataTable in region

Diagnostic Message Print ELAU Prints error message queue associated with the
region.

26 Developing EGL for CICS

Table 2. Region Dependent Utilities (continued)

Utility
Default
ID Function Description

Diagnostic Control Options ELAC Sets error reporting options for Rational COBOL
Runtime. Is region dependent if option file
(RDO FILE name ELACFIL) is defined as local
to each region; is not region dependent if
ELACFIL is defined as a shared file accessed
through a file owning region.

Trace ELAZ Trace options set by this utility are saved in
memory obtained through a CICS GETMAIN in
the region and are effective only in the region in
which the ELAZ transaction ran.

Related information

“Developing EGL programs for the CICS environment,” on page 1
There are specific design and development considerations when creating EGL
programs for CICS for z/OS and CICS for VSE.

Developing EGL programs for the CICS environment 27

28 Developing EGL for CICS

Index

C
CICS 20

CICSplex 25
communicating between

transactions 24
file techniques

spool files (VSE) 9
VSAM files 13

printing techniques
converseVar.printerAssociation 18

CICS (continued)
printing techniques (continued)

overview 15
spool files 16
transient data queues 16
VSE/POWER output 17

using functions from EGL 21
CICS program development

file techniques
overview 4
spool files (z/OS) 7

CICS program development (continued)
file techniques (continued)

temporary storage 4
transient data queues 6

overview 1
terminology 1

R
recovery unit of work 20

29

	Contents
	Developing EGL programs for the CICS environment
	Understanding CICS terminology
	File techniques in CICS programs
	Using temporary storage
	Using transient data queues
	Using spool files in z/OS CICS
	Using spool files in VSE CICS
	Using VSAM files
	Using recordName.resourceAssociation

	Printing techniques in CICS
	Using transient data queues for printer output
	Using spool files for printer output on z/OS CICS
	Using VSE/POWER files for printer output
	Using converseVar.printerAssociation

	Debugging CICS programs
	Setting the recovery unit of work
	Using CICS functions from EGL programs
	Communicating between multiple CICS transactions
	Inter-transaction affinity considerations in a CICSplex

	Index
	C
	R

