
Rational Business Developer

Access a database with EGL Rich UI
Version 8 Release 5

���

Rational Business Developer

Access a database with EGL Rich UI
Version 8 Release 5

���

Note
Before using this information and the product it supports, read the information in “Notices,” on page 87.

This edition applies to version 8.5 of Rational Business Developer and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2009, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Access a database with EGL Rich UI . . 1
Introduction 1
Lesson 1: Plan the application 3

Sketch the interface 3
Consider the application flow. 3
Identify the application structure 4
Lesson checkpoint 5

Lesson 2: Connect to a new Derby database 5
Create an SQL database connection 5
Switch to the Data perspective 7
Create a table 8
Lesson checkpoint 9

Lesson 3: Set up the projects and use the EGL SQL
retrieve feature 9

Create the PaymentService project 10
Create the PaymentClient project 12
Edit the build descriptor for the PaymentService
project 14
Use the EGL SQL retrieve feature to create a
Record part 15
Lesson checkpoint 17

Lesson 4: Create the Rich UI handler 17
Create the initial layout 17
Create a data grid to hold the content of a set of
database rows 19
Add the first set of buttons 24
Add a variable and layout to handle a single row 26
Add the second set of buttons 31
Lesson checkpoint 33

Lesson 5: Create the service 33
Create a Service part 34
Lesson checkpoint 35

Lesson 6: Add code for the service functions . . . 36
Add a payment record 36
Read all database records. 38
Replace a record 39
Delete a record 39
Create test data 40
Lesson checkpoint 41

Lesson 7: Create a library of reusable functions . . 41
Create a Library part 41
Create the categories array 42
Create the get functions for categories 42
Lesson checkpoint 43

Lesson 8: Add variables and functions to the Rich
UI handler. 43

Add code to support the data grid 43
Code the function that responds when the user
clicks the data grid 44
Format column values in the grid 45
Test the formatting of the data grid and the
transfer of data to the single-record layout . . . 45
Comment the prototype data 46
Declare a service-access variable 47
Create functions that use the service-access
variable to invoke the service 47
Update the start function to initialize the data
grid with database rows 49
Complete the callback functions 49
Test the interface 50
Lesson checkpoint 52

Lesson 9: Complete the code that supports the user
interface 52

Complete the layout that displays a single row 53
Test the new code 53
Complete the code for the second set of buttons 54
Test the new code 55
Lesson checkpoint 58

Lesson 10: Install Apache Tomcat 58
Download and access the server 58
Lesson checkpoint 59

Lesson 11: Deploy and test the payment application 60
Edit the deployment descriptor 60
Set the data source for the new project 62
Deploy the Rich UI application 63
Run the generated code 64
Lesson checkpoint 67

Summary 67
Resources 67

Code for PaymentFileMaintenance.egl after
lesson 4. 68
Finished code for SQLService.egl after lesson 6 73
Finished code for PaymentLib.egl after lesson 7 74
Code for PaymentFileMaintenance.egl after
lesson 8. 74
Finished code for PaymentFileMaintenance.egl . 80

Appendix. Notices 87
Trademarks 89

© Copyright IBM Corp. 2009, 2012 iii

iv Rational Business Developer: Access a database with EGL Rich UI

Access a database with EGL Rich UI

In this tutorial, you create a Rich UI application so that the user can access rows in
an SQL database.

Learning objectives

In this tutorial, you will complete these tasks:
v Plan the application and design the interface.
v Create a Derby database.
v Write a data-access service that interacts with the database tables.
v Create a web application that accesses the service, displays the retrieved data,

and processes the user's updates.
v Install and configure the Apache Tomcat web server.
v Deploy the web application and service.

Time required

About 3 hours
The tutorial in HTML format:

“Access a database with EGL Rich UI” at http://wilson.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

Introduction

The following image shows the main page of the application that you will create:

© Copyright IBM Corp. 2009, 2012 1

http://wilson.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.richui.sql.tutorial.doc/topics/egl_richui_sql_abstract.html
http://wilson.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.richui.sql.tutorial.doc/topics/egl_richui_sql_abstract.html

The web page displays all rows in a database table and lets the user update each
one. In addition, the user can add and delete rows.

The technology for developing the web page with EGL Rich UI involves several
steps:
1. You write the code.
2. You generate the code and deploy it to another project in the workbench. At

that point, the code that is destined for a browser is an HTML and JavaScript
format; but other code is in Java format, as described later.

3. You deploy all the code to a server such as Apache Tomcat.
4. The server transmits the HTML and JavaScript code to the user's browser.
5. The application both presents data to the user and accesses services that run

remotely on a server.

A main benefit of EGL Rich UI is that users can interact with a responsive,
local-running web application even as services do background work such as
accessing a database.

In this tutorial, the Rich UI application accesses a service that you write and
deploy along with the Rich UI application. This kind of service is called an EGL
dedicated service. In general, you can use a dedicated service to do tasks that other
EGL-generated Java services can do, such as accessing a database or file system.
However, the dedicated service is not available to other code unless you redeploy
it as an EGL-generated web service.

The benefit of a dedicated service results from its shared deployment with the Rich
UI application. If a Rich UI application accesses a web service, your deployment of
the application typically requires that you specify the service location. However, if
a Rich UI application accesses a dedicated service, your deployment of the
application does not require the location detail. Instead, the service will be
available wherever you deploy the Rich UI application.

Note: Invocation of a dedicated service is slow in the Rich UI editor, but access is
much faster when the application and services are deployed to a server.

Learning objectives

The learning objectives are described in “Access a database with EGL Rich UI,” on
page 1.

Time required

This tutorial takes about 3 hours to finish. If you explore other concepts related to
this tutorial, it might take longer to complete.

You can create the EGL files you need for this application in one of the following
ways:
v Line by line (most helpful): Complete the individual lessons to explore the code

in small, manageable chunks, learning important keywords and concepts. This
method also requires the greatest time commitment.

v Finished code files: At the end of each lesson in which you develop logic, you
can link to the completed code, which you can copy into the Rich UI editor.

2 Rational Business Developer: Access a database with EGL Rich UI

Skill level

Introductory

Audience

This tutorial is designed for people who know the basic concepts of programming
and want experience with EGL Rich UI.

System requirements

To complete this tutorial, you must have the following tools and components
installed on your computer:
v Rational® Business Developer Version 8.0.1.2 or higher.
v A working Internet connection.

Prerequisites

You do not need any experience with EGL to complete this tutorial.

Expected results

You will create a working Rich UI application and database-access service.

Lesson 1: Plan the application
Design your application on paper before you begin coding.

When you plan an application, do as follows:
v List your objectives, as this tutorial did earlier.
v Sketch the interface.
v Consider the flow of events.
v Identify the application structure.

Sketch the interface

Use this sketch as a guide when you create the components of the interface:

At the left are three buttons (Add, Delete, and Sample) and a data grid; on the
right are two buttons (Clear and Save) and a single-record layout.

Consider the application flow

At run time, the user can do as follows:

Access a database with EGL Rich UI 3

v Click the Sample button to delete all rows from the database table, to add
sample rows, and to display the sample rows in the data grid.

v Click the Add button to add an almost empty row to the database and to
display that data.

v Click the Delete button to delete, from the database, the data that was displayed
in the currently selected row of the data grid.

v Click the Clear button to remove content from the single-record layout.
v Click a row of the data grid to copy the details of that row to the single-record

layout.
v Change the details in the single-record layout and click the Save button to

update the related database row.

The reader might disagree with this flow of events. For example, why not have the
user clear the single-record layout, type data into the layout, and click the Add
button to create a database row that has useful data from the start? That change is
one of many options, and a good learning strategy is to follow the steps of this
tutorial and to use the lessons learned for a production-level application.

Identify the application structure

When you write a complex Rich UI application, you write code in several Rich UI
handlers, each of which corresponds to a web page or to a section of a web page.
However, in this tutorial you develop only one handler. As noted earlier, a handler
can access services, some of which you might develop by using an EGL Service
part.

Whenever possible, use preexisting resources. Your Rich UI application will use the
following EGL projects that are provided with the product:

com.ibm.egl.rui.dojo.widgets
Provides the following widget types for this tutorial:
v DojoButton
v DojoCheckbox
v DojoComboBox
v DojoCurrencyTextBox
v DojoDateTextBox
v DojoTitlePane

All those widget types are based on Dojo, as are many other widgets that
are available to you. For background details on that technology, see Dojo
toolkit (http://dojotoolkit.org).

com.ibm.egl.rui
Provides the following widget types for this tutorial:
v DataGrid
v GridLayout
v TextField
v TextLabel

You will develop the following logic:

SQLService
A dedicated service that interacts with a database table.

4 Rational Business Developer: Access a database with EGL Rich UI

http://dojotoolkit.org
http://dojotoolkit.org

PaymentLib
A library that can provide code to several handlers

PaymentFileMaintenanceHandler
The handler that defines the web application.

Lesson checkpoint

In this lesson, you completed the following tasks:
v Sketched the application interface
v Considered the runtime flow of events.
v Identified the application structure

In the next lesson, you create a Derby database and a table.

Lesson 2: Connect to a new Derby database
Use the Derby open source database manager to handle the data store for the
application.

This tutorial uses the open source Derby database. In this chapter, you connect to a
Derby database and create the table to be accessed. Alternatively, you can connect
to a database of one of the following kinds: Cloudscape, DB2® UDB, Informix®,
Oracle, or SQL Server. If you prefer to use one of those databases, review the
following help topic: “Creating an SQL database connection” at
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0. In any case, create the
table described in this lesson.

Follow these steps to set up the Derby database:
1. Create an SQL database connection through the EGL Preferences.
2. Use the Data perspective to create and connect to the database.
3. Write an SQL script to create a table within the database.
4. Disconnect from the database, as is necessary because Derby allows only one

connection, which you will need during code development.

Create an SQL database connection
1. In the top menu of the EGL workbench, click Window and then click

Preferences > EGL > SQL Database Connections.
2. Next to the list of connection details, click New.
3. In the Connection Profile window, complete these steps:

a. Under Connection Profile Types, click Derby.
b. In the Name field, type the following string:

Derby Database Connection

c. Click Next.
4. In the Specify a Driver and Connection Details window, specify the following

information:
a. From the Drivers list, select Derby Embedded JDBC Driver 10.1 Default.
b. For the Database location field, enter a simple path:

C:\databases\PaymentDB

The final element in the path is the name of a folder that does not yet exist.

Access a database with EGL Rich UI 5

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_sql_db_connect_tsk.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_sql_db_connect_tsk.html

c. Specify generic login information:
v In the User name field, enter admin

v In the Password field, also enter admin

d. Select the Create database (if required) check box.
e. Select the Save password check box. When you work with live data, you

might prefer not to select this option, but it simplifies the tutorial.
f. Make sure that Connect when the wizard completes is selected and that

Connect every time the workbench is started is cleared.

g. Click Test Connection. You should see a message that says “Ping
succeeded!” Click OK to close the message window. If the test failed, get
more information by clicking Details on the failure message.

h. Click Finish.

6 Rational Business Developer: Access a database with EGL Rich UI

5. In the Preferences window, make sure that Derby Database Connection is
highlighted, then click OK.

Switch to the Data perspective

To set up the Derby database for your application, use the Data perspective, which
is a workbench perspective and different from the EGL Data view.

To connect to the database:
1. Change to the Data perspective as follows:

a. Click the Open Perspective button, which is located by default in the right
side of the navigation bar.

b. If the Data perspective is not shown on the menu, click Other.
c. If you still do not see the Data perspective, select Show All at the bottom of

the wizard. Click Data and then click OK.

2. Locate the Data Source Explorer view, by default in the lower left corner of the
workbench; and under Database Connections, right-click Derby Database
Connection. Click the Connect option. The option was enabled because you set

Access a database with EGL Rich UI 7

the following check boxes when you created the connection: Create database (if
required) and Connect when the wizard completes.

Create a table

While in the Data perspective, you can write an SQL script to create a table in the
database.
1. In the Data Source Explorer view, expand Derby Database Connection.

Right-click the PaymentDB database name and click New SQL Script.
A new script file opens in the editor.

2. Copy the following SQL code into the script file:
CREATE TABLE PAYMENT(

PAYMENT_ID INT PRIMARY KEY NOT NULL
GENERATED ALWAYS AS IDENTITY
(START WITH 1, INCREMENT BY 1),

CATEGORY INT,
DESCRIPTION CHAR(30),
AMOUNT DECIMAL(10,2),
FIXED_PAYMENT SMALLINT,
DUE_DATE DATE,
PAYEE_NAME CHAR(30),
PAYEE_ADDRESS1 CHAR(30),
PAYEE_ADDRESS2 CHAR(30));

In the next step, you run this code to create a table named PAYMENT.

Note:

a. The PAYMENT_ID column is an identity column, which means that
Derby will place a unique value into that column whenever the user
creates a record. Each value is one more than the last.

b. The names of Derby tables and columns are always in uppercase
regardless of the case of names that are in the CREATE TABLE
statement.

8 Rational Business Developer: Access a database with EGL Rich UI

3. Right-click anywhere in the background of the editor pane, and then click Run
SQL. The SQL Results view, which is by default at the bottom center of the
workbench, should show the “create table” operation and a status of
“Succeeded”. You can now expand the PaymentDB entry in the Data Source
Explorer and see the columns for the new table:

4. Close the script file. You do not need to save the file, as you will not need it
again.

5. You cannot access the database from EGL source code while the Data view is
using the connection. Right-click Derby database connection and click
Disconnect.

Lesson checkpoint

In this lesson, you completed the following tasks:
v Created an EGL database connection
v Created a database named PaymentDB

v Created a database table named PAYMENT

In the next lesson, you start writing application code.

Lesson 3: Set up the projects and use the EGL SQL retrieve feature
Before you write your logic, create two EGL projects, as well as a Record part that
is based on the database table.

An EGL application is organized in one or more projects, each of which is a
physical folder in the workspace. A project contains an EGL source folder that is
provided for you, and that folder contains one or more packages, which in turn
contain EGL source files. This hierarchy is basic to your work in EGL: a project,
then an EGL source folder, then a package with EGL source files.

Access a database with EGL Rich UI 9

The EGL source files include EGL parts, which are type definitions that you create.
For example, a Service part contains logic, and a Record part can be the basis of a
variable that you declare in your Service part.

Packages are important because they separate parts into different contexts, or
namespaces:
v A part name might be duplicated in two different packages, and any EGL source

code can reference each part precisely. The main benefit of namespaces is that
different teams can develop different EGL parts without causing name collisions.

v Each part name in a given package is unique within that package:
– A part in one package can easily reference another part in the same package

by specifying the part name. For example, here is a declaration of a record
that is based on the Record part MyRecordPart:
myRecord MyRecordPart{};

– A part in one package can also reference a part in a second package by giving
the package name and part name, or by a shortcut that involves importing
the part.

One project can reference the parts in a second project, but only if the EGL build
path of the referencing project identifies the referenced project. Again, this tutorial
gives examples. However, in all cases, avoid using the same package name in
different projects, as that usage can cause problems in name resolution.

Your next task in this tutorial is to create the following projects:

PaymentService
Holds an EGL Service part and related definitions

PaymentClient
Holds the Rich UI handlers and related definitions

You can include all your code in a single project, but the separation shown here
lets you easily deploy the two kinds of code in different ways.

Parts in one project can use parts in a different project. EGL uses a build path to
search for unresolved references. Later in this lesson, you will add the
PaymentService project to the build path for the PaymentClient project.

Create the PaymentService project

To create an EGL project to contain the service:
1. Change back to the EGL perspective by clicking the EGL button in the upper

right of the workbench.

2. Click File > New > EGL Project, or click the New EGL Project icon on the
menu bar.

10 Rational Business Developer: Access a database with EGL Rich UI

3. In the New EGL Project window, enter the following information:
a. In the Project name field, type the following name:

PaymentService

b. In the EGL project types section, click General Project.

c. Click Next.
4. In the second EGL Project window, the defaults that EGL provides should be

correct. Verify the following information:
a. The Target runtime platform is Java. This setting indicates that EGL

generates Java source code from your EGL Service part.
b. Under Build descriptor options, the Create a build descriptor radio button

is selected. Build descriptors control the generation process. Because you are
creating a separate project for your service, you can use the default build
descriptor that EGL creates for you.

5. Click Finish.

Access a database with EGL Rich UI 11

EGL creates a project named PaymentService. Note the folders inside the directory:

EGLSource
Put your packages and source files here.

EGLGen/JavaSource
EGL places the Java files it generates here.

JavaSource
Put any custom Java source files here. These files are not overwritten
during the generation process.

JRE System Library
EGL uses this folder for JAR files that support the Java Runtime
Environment.

Related reference

“Default build descriptors” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

Create the PaymentClient project

An EGL Rich UI project includes many shortcuts to speed the development of a
user interface for the web.

To create an EGL Rich UI project:
1. Click the New EGL Project icon on the menu bar.
2. In the EGL Project window, enter the following information:

a. In the Project name field, type the following name:
PaymentClient

b. Under EGL project types, click Rich UI Project.
c. Click Next.

12 Rational Business Developer: Access a database with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.gg.doc/topics/gegl_core_default_build_descriptors.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.gg.doc/topics/gegl_core_default_build_descriptors.html

3. In the second EGL Project window, the defaults that EGL provides should be
correct. Verify the following information:
a. Use the default location for the project is selected.
b. The Widget libraries list contains the following projects:

v EGL Rich UI widgets
v EGL Dojo widgets

c. In the EGL project features group, Create an EGL deployment descriptor is
selected.

4. Click Next.
5. On the build settings page, select PaymentService.

The PaymentService project is added to the build path for the project being
created so that the Rich UI handler can use parts that are defined in
PaymentService.

6. Click Finish.

EGL creates a project named PaymentClient and adds support projects to the
workspace for Rich UI, Dojo Widgets, and the Dojo runtime library. In addition to
the directories that EGL created for the General project, a Rich UI project includes
the following directory:

WebContent
Contains support files, such as cascading style sheets (CSS) and images.

Access a database with EGL Rich UI 13

When you first add a Rich UI project to your workspace, three other projects are
added automatically:
v com.ibm.egl.rui
v com.ibm.egl.rui.dojo.runtime.local
v com.ibm.egl.rui.dojo.widgets

These three projects contain widgets and other support files that you use in
creating a Rich UI application.

Edit the build descriptor for the PaymentService project

The EGL build file has the extension .eglbld and contains build parts, which are
XML definitions that are inputs for the EGL generator.

A build file typically includes multiple build descriptors so that you can generate
EGL code in multiple ways. For example, EGL created the following build
descriptors in the PaymentService.eglbld file:
v PaymentServiceJavaBuildOptions
v PaymentServiceDebugBuildOptions

You must change the build descriptors for the project so that the logic you write
there can access a database.

To edit the build descriptor:
1. In the PaymentService project, expand the EGLSource folder. Double-click the

PaymentService.eglbld file. The Build Parts editor opens.
2. In the Load DB options using Connection field, click the down arrow and

select the Derby Database Connection.
3. Find the Outline view, located by default in the lower left corner of the

workbench. The PaymentServiceJavaBuildOptions build descriptor should
currently be highlighted. Double-click PaymentServiceDebugBuildOptions and

14 Rational Business Developer: Access a database with EGL Rich UI

repeat step 2 for the other build descriptor, which is used by the EGL debugger.

4. Save and close the build descriptor file.

Use the EGL SQL retrieve feature to create a Record part
You can automatically retrieve the fields for a Record part that corresponds to the
PAYMENT table in the PaymentDB database. The column names are the basis of the
field names in the Record part.
1. Change preferences for the SQL retrieve feature:

a. From the top menu in the workbench, click Window > Preferences > EGL
> SQL.

b. In the third group of options, Case control rules for naming structure
items, select Change to lower case and capitalize first letter after
underscore. Field names will be in mixed case.

c. In the fourth group of options, Underscore control rules for naming
structure items, select Remove underscores. Field names will not include
the underscores in column names.

d. In the last group of options, make sure that Retrieve primary key
information from the system catalog is selected. One or more fields in the
Record part will correspond to key fields in the SQL table, as is useful when
you rely on default EGL SQL processing.

e. Clear Prompt for SQL user ID and password when needed. You prevent a
dialog window from opening each time you access the database.

f. Click OK.
2. In the Project Explorer view, right-click PaymentService and then click New >

Record

3. In the New EGL Source Record window, enter the following information:
a. In the EGL source file name field, enter the following name:

ServiceRecords

EGL adds the .egl file extension automatically.
b. In the Package field, enter the following name:

records

c. Click Finish.

EGL creates the records directory and the ServiceRecords.egl file and then
opens the file in the EGL editor.

4. Replace the contents of the file by copying and pasting the following code:

Access a database with EGL Rich UI 15

package records;

record paymentRec type SQLRecord {tableNames = [["PAYMENT"]]}

end

Note:

a. Your use of a Record part that is labeled with SQLRecord means
that, in the following case, the EGL generator will create code that is
appropriate for SQL I/O:
v You code an I/O statement such as add, as in this example:

add mySQLRecord;

v The record on which the I/O statement operates (in the example,
mySQLRecord) is an SQL record; that is, the record is based on a
Record part that is labeled with SQLRecord.

b. The SQL Record part uses several properties such as tableNames, in
most cases to change the output of the EGL generator and in this
way to change runtime behavior.

c. Table names are specified as two-dimensional arrays because you
might have reason to specify a table label (an SQL alias), which is
useful when you write custom SQL statements. Here is a tableNames
property setting that includes a table label:
tableNames=[["PAYMENT", "A"]]

d. You can avoid setting the tableNames property if you are creating a
Record part that corresponds to a single database table and if that
Record part has the same name as the database table. In this tutorial,
the Record part has a different name, and the tableNames property is
required.

5. Right-click anywhere in the Record statement and click SQL record > Retrieve
SQL. EGL automatically creates fields for the Record part in accordance with
information that is provided by the database management system. You
specified little more than the table name, and here is the result:

6. Change the type for amount from decimal(10,2) to money. The change provides
additional options when you drag-and-drop the Record part from the EGL data
view to the Rich UI Design surface, as shown later.

7. Change the type for fixedPayment to boolean. Again, the change is useful
during a later drag-and-drop operation.

16 Rational Business Developer: Access a database with EGL Rich UI

8. Save (Ctrl-S) and close the ServiceRecords.egl file.

Lesson checkpoint

In this lesson, you completed the following tasks:
v Created an EGL project for developing a data-access service.
v Created an EGL project for developing a Rich UI application.
v Modified the build descriptors in a build file; specifically, by adding database

information from a connection definition in the workbench.
v Set preferences for the EGL SQL retrieve feature.
v Created a Record part, retrieving most information from a database.

In the next lesson, you develop some of the Rich UI application and view your
prototype code in action.

Lesson 4: Create the Rich UI handler
Start to build the handler by using EGL wizards and then the Rich UI editor.

You can add widgets to a web page by dragging content to the Design surface of
the Rich UI editor. The drag-and-drop and subsequent interaction with the editor
updates the source code for the Rich UI handler that you are developing.

Two sources of drag-and-drop content are available:
v A palette of widget types
v The EGL Data view, which provides data-type definitions such as EGL Record

parts. You first drag content from this view and then choose from among the
widget types that can display the type of data you selected.

By default, the widget palette is at the right of the editor, and the Data view is at
the lower left of the workbench.

In this lesson, you create a Rich UI Handler and add a data grid to display all
rows in the database. Later, you will add a grid layout to display the fields in a
selected record.

Create the initial layout

To create the handler:
1. In the PaymentClient project, select the EGLSource folder and click New >

Rich UI Handler.

2. In the New Rich UI Handler part window, enter the following information:

Access a database with EGL Rich UI 17

a. In the EGL source file name field, enter the following name:
PaymentFileMaintenance

b. In the Package field, enter the following name:
handlers

c. Click Finish.

The new Handler opens in Design view in the Rich UI editor. EGL creates the
handlers package for you in the EGLSource folder.

EGL automatically created a grid layout as your initial UI. By default, this
widget has four rows and three columns. Compare this layout with the sketch
in lesson 1, which uses only four cells.

3. To reduce the size of the layout, click into it and go to the Properties view,
which by default is one of several tabbed pages below the editor pane. On the
General page, set the rows property to 2 and the columns property to 2, and
then click the Design surface.

18 Rational Business Developer: Access a database with EGL Rich UI

A later step demonstrates a different way to change the number of rows and
columns in a grid layout. The main layout of this Rich UI handler now has a
first row, where the handler will display two sets of buttons, and a second row,
where the handler will display the following content: on the left, a list of
records, and on the right, a layout for displaying the details of one record.

Create a data grid to hold the content of a set of database
rows

Create a data grid by dragging a record array variable onto the Rich UI editor.

To create the data grid:
1. Create a record array variable.

a. The EGL Data view, which is located by default in the lower left corner of
the workbench, lists all of the primitive and record variables for the handler
that is currently open in the editor. Right-click the empty space below the
entry for the PaymentFileMaintenance file. Click New > EGL Variable.

b. In the New EGL Rich UI Data Fields wizard, request a new record variable
based on the paymentRec record:
v Make sure Type Selection is set to Record.
v Select the paymentRec record. This record should be the only one in the

list.
v In the Array Properties section, select the Array check box. Leave the

Size field blank.
v For Enter the name of the field, enter the following name:

allPayments

v Click Finish.

Access a database with EGL Rich UI 19

This process creates the following record declaration in the source code for the
handler:
allPayments paymentRec[0];

In the EGL Data view is now a record variable that you can drag the variable
onto the editor.

2. Drag the allPayments record variable from the EGL Data view to the lower left
cell of the layout.

20 Rational Business Developer: Access a database with EGL Rich UI

EGL displays the Configure data widgets page of the Insert Data wizard. Use
this page to configure the widgets that EGL creates. The widget types depend
on the type of fields in the record array that you dragged onto the Design
surface.

3. Make the following changes in the Insert Data wizard:
a. Under Create Widgets for, leave the default value of Read-only data.
b. The check boxes under the allPayments variable indicate the fields that are

to be used as columns in the display. Clear all the fields by clicking None.
c. Check the following fields:

v category
v description
v amount

d. Change the labels for those fields:
v Change category to Type.
v Change description to Description.
v Change amount to Amount due.

The wizard uses these labels as column headers for the grid.
e. Clear Add support for formatting and validation. Here are the completed

settings:

Access a database with EGL Rich UI 21

f. Click Finish. The empty grid is displayed:

4. Click into the Properties view:
v Ensure that the following title is displayed: DataGrid (allPayments_ui). If

not, click into the data grid, ensure that the title is displayed, and click back
to the Properties view.

v On the General page, change the selectionMode property to SINGLE. This
property indicates that the user can select only one row of the grid at a time.

v On the Layout page, change the verticalAlignment property to TOP.

22 Rational Business Developer: Access a database with EGL Rich UI

This property ensures that the allPayments_ui data grid will line up with the
detail grid you will add later.

5. Click the Source tab at the bottom of the editor to see the code that you
already created. Take this opportunity to reduce the width of two columns in
the data grid. Specifically, consider the DataGridColumn declarations for the
category and amount columns and change the width property from the default
120 pixels to 90 pixels. Here is the data grid declaration after your change:
allPayments_ui DataGrid {

layoutData = new GridLayoutData
{row = 2, column = 1
verticalAlignment = GridLayoutLib.VALIGN_TOP},

columns =[
new DataGridColumn{name = "category",

displayName = "Type",
width = 90},

new DataGridColumn{name = "description",
displayName = "Description",
width = 120},

new DataGridColumn{name = "amount",
displayName = "Amount due",
width = 90}

],
data = allPayments as any[],
selectionMode = DataGridLib.SINGLE_SELECTION};

6. Add prototype data in the start function, which is referenced in the
onConstructionFunction property of the handler and which runs before the
user first accesses the web page. Specifically, assign an array of records to the
data property of the data grid:
function start()

allPayments_ui.data =
[

new paymentRec{category = 1, description = "test01", amount = 100.00},
new paymentRec{category = 2, description = "test02", amount = 200.00},
new paymentRec{category = 3, description = "test03", amount = 300.00}

]; end

7. To format the file, click Ctrl-Shift-F.
8. Click the Preview tab.

Access a database with EGL Rich UI 23

9. Save the file.

Add the first set of buttons

To create the Add, Delete, and Sample buttons on the Design surface:
1. Click the Design tab.
2. In the Palette view, go to the Layout drawer and find the GridLayout widget

type. Drag a new grid layout to the upper left corner of the main layout.
Assign the following name to the new widget:
buttonLayout

3. Click into the new layout, right click a cell, and notice that you can insert or
delete content by using the menu.

4. Click Delete > Row.
5. Click again into the new layout, right click a cell, and click Delete > Row. A

single row remains, with three columns.
6. Create the Add button:

a. In the Palette view, go to the Display and Input drawer and then to
Button (Dojo). Drag a Dojo Button widget to the leftmost cell of
buttonLayout.

24 Rational Business Developer: Access a database with EGL Rich UI

b. Assign the following name to the button:
addButton

c. Go to the Properties view:
v On the General page, change the text property to Add.
v On the Events page, select the row for the onClick event. A plus sign

(+) is displayed at the far right of the line. Click the plus sign and
specify the following name for a function that will be invoked when the
user clicks the Add button:
addRow

The Source view opens to display the addRow function. Rather than complete
the function now, finish laying out this section of the web page. Click the
Design tab to return to the Design surface.

7. Create the Delete button:
a. In the Palette view, go to the Display and Input drawer and then to

Button (Dojo). Drag a Dojo Button widget to the middle cell of
buttonLayout.

b. Assign the following name to the button:
deleteButton

c. Go the Properties view for the button:
v On the General page, change the text property to Delete.
v On the Events page, assign the following function name to the onClick

event:
deleteRow

d. When the deleteRow function is displayed, click the Design tab.
8. Using the same process as in previous steps, create a Dojo button in the

rightmost cell of buttonLayout. Name the button sampleButton, change the
text property to Sample, and use the following name for the onClick function:
sampleData. The sampleData function is displayed.

9. Inspect the source code, noting the code that was provided for each of the
buttons.

10. Click the Preview tab.

Access a database with EGL Rich UI 25

11. Save the file.

Add a variable and layout to handle a single row

You previously created an array to hold the database rows. You now declare a
variable for a single row and then drag that variable onto the Design surface to
create a layout for displaying the row.

To create the variable:
1. Click the Design tab to display the Design surface.
2. Right-click the background of the EGL Data view, which is likely to be at the

bottom left of the workbench. Click New > Variable.
3. In the Create a new EGL Data Variable wizard, request a new record variable

based on the paymentRec record:
a. Make sure that Type Selection is set to Record.
b. Select the paymentRec record.
c. In the Array Properties section, make sure that the Array check box is

cleared.
d. For Enter the name of the field, enter the following name:

selectedPayment

26 Rational Business Developer: Access a database with EGL Rich UI

e. Click Finish.

As noted in the Preview section of the page shown, the following record
declaration is created in the source code for the handler:
selectedPayment paymentRec;

To create the grid layout:
4. In the Palette view, go to the Layout drawer and find the TitlePane (Dojo)

widget type. Drag a new title pane to the lower right cell of the main grid
layout, next to the cell that holds the allPayments_ui grid.

Access a database with EGL Rich UI 27

5. Assign the following name to the title pane:
editPane

Click OK.
6. Make the following changes to the properties for the editPane widget:

v On the General page, change the title property to Payment record

v On the Position page, change the width property to 350. This value leaves
room for error messages.

v On the Layout page, change the verticalAlignment property to TOP.

The web page should now look like the following image:

7. Save the file.
8. From the EGL Data view, drag the selectedPayment variable to the bracketed

area inside the payment record pane.

28 Rational Business Developer: Access a database with EGL Rich UI

The Configure data widgets wizard is displayed.
9. Make the following changes:

a. Under Create Widgets for, select Editable data.
b. Make sure that the Widget Type for the selectedPayment record is

GridLayout.
c. Change the Label fields as shown in the following table. These labels are

used to identify the fields in the display:

Table 1. Revised names for selectedPayment fields

Default name Revised name

paymentID Key:

category Category:

description Description:

amount Amount:

fixedPayment Fixed pmt:

dueDate Due date:

payeeName Payee:

payeeAddress1 Address 1:

payeeAddress2 Address 2:

You must specify colons explicitly, as they are not added automatically to
labels.

d. For the category field, in the Widget Type column, click DojoTextField. A
down arrow is displayed. Click the arrow, and then click DojoComboBox.

e. For the amount field, in the Widget Type column, click DojoTextField. A
down arrow is displayed. Click the arrow, and then click
DojoCurrencyTextBox. This widget provides some basic formatting for
currency.

f. Ensure that Add support for formatting and validation is checked. The
selection creates a Form Manager, which uses the EGL Rich UI
Model-View-Controller (MVC) framework to manage Rich UI validation
and formatting.
Here are the settings:

Access a database with EGL Rich UI 29

g. Click Finish.

The new grid layout contains a form.

30 Rational Business Developer: Access a database with EGL Rich UI

Note: You might need to click the Refresh button in the upper right corner of
the Rich UI editor to see this change:

10. Make the Key field read-only:
a. Repeatedly click the Dojo text field next to the Key label until only that

field is surrounded by a dotted line.

b. In the Properties view, General page, select the readOnly check box.

11. For a more uniform appearance, do as follows:
a. Click the DojoCurrencyTextBox widget for Amount until only that widget

is surrounded by a dotted line.
b. On the Position page of the Properties view, set the width property to 166.

Add the second set of buttons

To add the Clear and Save buttons:

Access a database with EGL Rich UI 31

1. In the Palette view, go to the Layout drawer and find the GridLayout widget
type. Drag a new grid layout to the upper right corner of the main layout and
assign the following name:
detailButtonLayout

2. With the new layout selected, update the number of rows and columns in
whichever way you prefer: in the Properties view, or by deleting the rows and
columns, or by changing the source code. In any case, ensure that the layout
has 1 row and 2 columns.

3. At the Design surface, create the Clear button:
a. In the Palette view, go to the Display and Input drawer and then to Button

(Dojo). Drag a Dojo button to the first cell of the new layout.
b. Using the same process as was used earlier, name the button clearButton,

change the text property to Clear, and use the following name for the
onClick function: clearAllFields. The clearAllFields function is
displayed.

4. Create the Save button:
a. Click the Design tab.
b. In the Palette view, go to the Display and Input drawer and then to Button

(Dojo). Drag a Dojo button to the second cell of the new layout.
c. Name the button saveButton and change the text property to Save.
d. On the Events page, select the onClick event and click the down arrow in

the second column to display the available function names. Click
selectedPayment_form_Submit, which is a function that EGL created
automatically when you dragged the selectedPayment record variable onto
the user interface.

e. Click the Preview tab.

32 Rational Business Developer: Access a database with EGL Rich UI

f. Save the file, which should match the finished code in “Code for
PaymentFileMaintenance.egl after lesson 4” on page 68.

Related reference

“Rich UI overview” at http://publib.boulder.ibm.com/infocenter/rbdhelp/
v8r0m0

“Rich UI DataGrid and DataGridTooltip” at http://
publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0

“Rich UI GridLayout” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

“Rich UI validation and formatting” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

“Form processing with Rich UI” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

Lesson checkpoint

In this lesson, you completed the following tasks:
v Created a Rich UI handler.
v Created variables in the EGL Data view.
v Created a data grid by dragging a record array variable onto the editor.
v Adjusted widgets in the Properties view and by using a menu.
v Worked in all three tabs of the Rich UI editor, updating the source and

previewing the web page.

In the next lesson, you create the service that will access the database.

Lesson 5: Create the service
Create a dedicated service to access the database.

Access a database with EGL Rich UI 33

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_richui_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_richui_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_datagrid.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_datagrid.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_gridlayout.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_gridlayout.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_validation.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_validation.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_forms.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_forms.html

In this lesson, you create an EGL Service part, which is a generatable part. You
must place each generatable part in a separate source file, and the name of the part
must be the same as the name of the file.

Create a Service part

To create a Service part:
1. In the Project Explorer window, right-click PaymentService, and then click

New > Service.
2. In the New EGL Service Part window, enter the following information:

a. In the EGL source file name field, enter the following name:
SQLService

EGL adds the .egl file extension automatically.
b. In the Package field, enter the following name:

services

c. Verify that Create as web (SOAP) service and Create as web (REST)
service are cleared, and leave the Implements Interfaces field empty.

34 Rational Business Developer: Access a database with EGL Rich UI

3. Click Finish. EGL opens the new Service part in the editor.
4. Remove the code from the file, leaving only the following lines:

package services;

service SQLService

end

5. Save the file, but do not close it.

Lesson checkpoint

You learned how to create an EGL Service part.

In the next lesson, you add code for the functions to SQLService.
Related reference

Access a database with EGL Rich UI 35

“Services: a top-level overview” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

Lesson 6: Add code for the service functions
In EGL, I/O statements such as add and get access data that resides in different
kinds of persistent data storage, from file systems to queues to databases. The
coding is similar for the different cases.

In this lesson, you add functions that access rows in a relational database. Add the
functions in order, before the final end statement in SQLService.egl.

Add a payment record

The addPayment() function adds a new row to the database.

To code the function:
1. In the EGL editor, copy and paste the following lines into SQLService.egl

before the end statement:
function addPayment(newPayment paymentRec inOut)
add newPayment;
end

2. Before you continue, you must resolve the reference to the paymentRec Record
part. You can automatically create import statements by using the Organize
Imports feature. Right-click any blank area in the editor and click Organize
Imports.
EGL adds the following statement to the beginning of the file:

import records.paymentRec;

36 Rational Business Developer: Access a database with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_core_service_part_cpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_core_service_part_cpt.html

The reference is now resolved. You will use this feature often, whether by
selecting the menu item or by pressing Ctrl-Shift-O.

3. Save the file (Ctrl-S), and then place your cursor anywhere in the add
statement. Right-click and select SQL Statement > Add.
This feature changes the implicit SQL that underlies the EGL add statement

into embedded code that you can modify.

4. Because the paymentID field is auto-generated, you must not overwrite it:
a. Delete PAYMENT_ID and subsequent comma from the INSERT list.

Access a database with EGL Rich UI 37

b. Delete :newPayment.paymentId and subsequent comma from the VALUES
list.

Note: In keeping with SQL terminology, each variable that is referenced in
an SQL statement is called a host variable. The word host refers to the
language that embeds the SQL statement; in this case, EGL. For
example, the initial colon in :newPayment.paymentId indicates a host
variable.

The revised add statement looks like the following image:

5. Save the file.
Related reference

“add considerations for SQL” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

“Functions” at http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0

“import” at http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0

“SQL data access” at http://publib.boulder.ibm.com/infocenter/rbdhelp/
v8r0m0

Read all database records

The getAllPayments function reads all of the records from the table and stores
them in an array.

To code the function:
1. In the EGL editor, copy and paste the following lines into SQLService.egl

before the end statement:
function getAllPayments() returns (paymentRec[])

paymentArray paymentRec[];
get paymentArray;
return (paymentArray);

end

38 Rational Business Developer: Access a database with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_add.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_add.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_core_function.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_core_import.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_overview.html

The EGL get statement generates an SQL SELECT statement to retrieve a result
set. When the target of the get statement is a dynamic array of records, EGL
retrieves all matching rows from the result set and inserts each successive row
into the next array element.

2. Save the file.
Related reference

“get considerations for SQL” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

Replace a record

The editPayment function replaces an existing row in the database with an edited
version. The function assumes that the user previously read the row from the
database.

To code the function:
1. In the EGL editor, copy and paste the following lines into SQLService.egl

before the end statement:
function editPayment(chgPayment paymentRec inOut)

replace chgPayment nocursor;
end

The EGL replace statement generates an SQL UPDATE statement.
2. Save the file.

Related reference

“replace considerations for SQL” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

Delete a record

The deletePayment function deletes the specified record from the table.

To code the function:
1. In the EGL editor, copy and paste the following lines into SQLService.egl

before the end statement:
function deletePayment(delPayment paymentRec inOut)

try
delete delPayment nocursor;

onException(exception SQLException)
if(SQLLib.sqlData.sqlState != "02000") // sqlState is of type CHAR(5)

throw exception;
end

end
end

The EGL delete statement generates an SQL DELETE statement. If no rows are
present, the Derby database returns an SQLState value of "02000", and the EGL
runtime code throws an exception that the function catches: that is, processes in
some onException logic.
When a function catches but ignores an exception, processing continues without
interruption. That rule applies to the preceding logic, when the value of
SQLState is "02000". When a function uses the throw statement to throw an

Access a database with EGL Rich UI 39

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_get.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_get.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_replace.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_replace.html

exception, the exception stays active. That rule also applies to the preceding
logic, when the value of SQLState is other than "02000".
At run time, if a service does not handle an exception, the service requester
receives an exception of type ServiceInvocationException. Incidentally, if the
service cannot be accessed, the requester receives an exception of type
ServiceInvocationException or ServiceBindingException, depending on the
details of the error.

2. Save the file.
Related reference

“delete considerations for SQL” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

“Exception handling” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

Create test data

The createDefaultTable function creates a set of data for testing your completed
application.

To code the function:
1. In the EGL editor, copy and paste the following lines into SQLService.egl

before the end statement:
function createDefaultTable() returns (paymentRec[])

try
execute #sql{

delete from PAYMENT
};

onException(exception SQLException)

if (SQLLib.sqlData.sqlState != "02000") // sqlState is of type CHAR(5)
throw exception;

end
end;

ispDate DATE = dateTimeLib.dateValueFromGregorian(20110405);
addPayment(new paymentRec{category = 1, description = "Apartment",

amount = 880, fixedPayment = YES});
addPayment(new paymentRec{category = 2, description = "Groceries",

amount = 450, fixedPayment = NO});
addPayment(new paymentRec{category = 5, description = "ISP",

amount = 19.99, fixedPayment = YES, dueDate = ispDate });
return (getAllPayments());

end

The code acts as follows:
v The EGL execute statement runs a literal SQL statement that deletes all rows

from the PAYMENT table.
v The ispDate variable receives a date value from the

dateTimeLib.dateValueFromGregorian() system function. The content of the
variable is then in a format that is appropriate for insertion into the dueDate
field in the database.

v The addPayment function is repeatedly invoked to add new rows to the
PAYMENT table.

v The call to the getAllPayments function returns an array of rows that were
retrieved from the table.

40 Rational Business Developer: Access a database with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_delete.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_delete.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_core_xcpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_core_xcpt.html

2. Press Ctrl-Shift-F to format the code. If you see any red Xs, compare your code
with the finished code in “Finished code for SQLService.egl after lesson 6” on
page 73

3. Save and close the file.
Related reference

“execute considerations for SQL” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

“dateValueFromGregorian” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

Lesson checkpoint

You learned how to complete the following tasks:
v Add embedded SQL code to a program and modify that code
v Automatically create and organize import statements

In the next lesson, you will create a widget to hold the table of expense data.

Lesson 7: Create a library of reusable functions
Create a library to format money values and to associate category numbers with
descriptions.

Libraries contain functions, constants, and variables that you can use in multiple
locations.

When you reference a declaration in the library from other logic such as a service
or handler, you can include the library name as a prefix. For example,
MyLibrary.myLibraryVariable is appropriate if the library name is MyLibrary and
the library includes the myLibraryVariable variable. Alternatively, you can include
the library name in a use statement in the other logic and avoid the need to
qualify every reference. In that case, myLibraryVariable is sufficient to reference
that variable.

Create a Library part

To create a Library part:
1. Right-click the PaymentClient folder, then click New > Library.
2. In the New EGL Library window, enter the following information:

v In the EGL source file name field, enter the following name:
PaymentLib

v In the Package field, enter the following name:
libraries

v Under EGL Library Type, leave the default value of Basic selected.

The new Library part opens in the EGL editor.
3. Replace the boilerplate code in the Library part with the following lines:

package libraries;

library PaymentLib type BasicLibrary {}

end

Access a database with EGL Rich UI 41

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_execute.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_data_sql_execute.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_core_date_date_value_greg.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_core_date_date_value_greg.html

4. Save the file.

Create the categories array

Add the following code before the final end statement:
categories STRING[] = [

"Rent", // 1
"Food", // 2
"Entertainment", // 3
"Automotive", // 4
"Utilities", // 5
"Clothes", // 6
"Other" // 7

];

The value is an array, and as is true of all arrays in EGL, the index of the first
element is 1, not 0.

The array is used in logic that acts as follows:
v Places an expense category into the database in integer form, to save space.
v Places the expense category onto the web page in string form, for clarity.

Create the get functions for categories

The next functions convert between the following two formats for expense
categories: integer and string.
1. Add the following code before the final end statement:

function getCategoryDesc(cat INT in) returns(STRING)
if(cat) // the integer is not 0

return(categories[cat]);
else

return("");
end

end

The function receives the integer format of an expense category and returns the
related array element. If the input value is 0, the function returns an empty
string.

2. Add the following code before the final end statement:
function getCategoryNum(desc STRING in) returns(INT)

for(i INT from 1 to categories.getSize())
if(categories[i] == desc)

return(i);
end

end
return(0); // no match

end

This function receives the string format of an expense category and returns the
integer format, if possible. If no match is found for the received string, the
function returns 0.

3. Format the file.
4. Save and close the PaymentLib Library. If you see errors in your source file,

compare your code to the file contents in “Finished code for PaymentLib.egl
after lesson 7” on page 74.
Related reference

“Arrays” at http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0

42 Rational Business Developer: Access a database with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_core_array.html

Lesson checkpoint

You learned how to complete the following tasks:
v Create a Library part.
v Add functions and a variable to a library.

Lesson 8: Add variables and functions to the Rich UI handler
Add source code that supports the user interface.

In lessons 8 and 9, you update the EGL source code directly and review changes in
the Preview tab.

Add code to support the data grid

Change the declaration of the data grid for two purposes: to cause the web page
to react when the user selects a cell and to ensure that the grid output is formatted
correctly.
1. In Project Explorer, open PaymentClient > EGLSource > handlers and

double-click PaymentFileMaintenance.egl.
2. Click on the Source tab.
Make the following changes, ignoring the error marks:
3. In the allPayments_ui DataGrid declaration, add the following code

immediately before the columns property:
selectionListeners ::= cellClicked,

The selectionListeners property specifies one or more functions that are called
whenever the user selects a cell in the grid. In this case, you are appending a
function name to a pre-existing array. You will write the cellClicked function
later in this lesson.

4. Formatters are functions that change the appearance of the values in DataGrid
columns. To demonstrate the feature, find the DataGridColumn declaration for
category. To ensure that the user sees a category description rather than an
integer, add this code after width=90:
, formatters = [formatCategory]

5. When you display dollar amounts in a column, you typically right-align the
values. You do not need to code a function to cause right-alignment. Instead,
add this code after the width entry for amount:
, alignment = DataGridLib.ALIGN_RIGHT

The allPayments_ui declaration is now as follows, with error marks shown for
cellClicked and formatCategory:
allPayments_ui DataGrid {

layoutData = new GridLayoutData
{row = 2, column = 1,
verticalAlignment = GridLayoutLib.VALIGN_TOP},

selectionListeners ::= cellClicked,
columns =[

new DataGridColumn{name = "category",
displayName = "Type",
width = 90,
formatters = [formatCategory]},

new DataGridColumn{name = "description",
displayName = "Description",
width = 120},

new DataGridColumn{name = "amount",
displayName = "Amount due",

Access a database with EGL Rich UI 43

width = 90,
alignment = DataGridLib.ALIGN_RIGHT}

],
data = allPayments as any[],
selectionMode = DataGridLib.SINGLE_SELECTION};

6. Save the file.

Code the function that responds when the user clicks the data
grid

The cellClicked function is invoked when the user clicks a cell in the data grid.

Immediately below the start function, add the following lines:
function cellClicked(myGrid DataGrid in)

selectedPayment = allPayments_ui.getSelection()[1] as paymentRec;
selectedPayment_form.publish();

end

First, the cellClicked function updates the selectedPayment record with data from
a single data-grid row. That row can include more fields than are displayed to the
user. In this application, the single row in the data grid will have come from a
single row in the database.

Second, the publish function causes the transfer of data from the selectedPayment
record to the selectedPayment_ui layout. That transfer is made possible by code
that was provided for you when you created the selectedPayment_ui layout, which
is the single-record layout at the right of your web page. If you review the code,
you can trace the relationships:
v A Form Manager declaration includes form fields.
v Each form field references a controller declaration.
v The controller declaration relates a model to a view; in this case, a field of the

selectedPayment record to a child of the selectedPayment_ui layout.

The Form Manager provides various benefits but is essentially a collection of
controllers.

Here is an explanation of two other issues—the use of the bracketed array index
([1]), and the use of the as operator:
v The getSelection function always returns a subset of the rows in the data array

of the data grid. However, when you declared the data grid, you specified the
following setting to indicate that the user can select only one row at a time:
selectionMode = DataGridLib.SINGLE_SELECTION. When the user can select only
one row, only one element is available.

v Every element in the array returned by a getSelection function is of type ANY.
You typically use the same Record part to process input to the grid and to
process output from the grid, and in this tutorial, the Record part is paymentRec.
The Record part has the following uses:
– To be the basis of the array elements that you assign to the data property of

the data grid, as shown in the following setting:
data = allPayments as any[]

– To cast the array element that is returned by the getSelection function of the
data grid, as shown here:
allPayments_ui.getSelection()[1] as paymentRec

In each case, the as clause provides the necessary cast.

44 Rational Business Developer: Access a database with EGL Rich UI

Format column values in the grid

To add the formatter function:
1. Add the following code before the final end statement in the file:

function formatCategory(class string, value string, rowData any in)
value = PaymentLib.getCategoryDesc(value as INT);

end

Formatters have the parameters shown. In this case, the formatter wraps a
library function you created earlier.

2. Press Ctrl-Shift-O to organize the required import statements and save the file.
All the error marks disappear.

Test the formatting of the data grid and the transfer of data to
the single-record layout

You can test your recent changes even before you gain access to the database.
1. Click the Preview tab and note that the categories are now descriptions (for

example, “Rent” rather than “1”).

2. Click one or another row in the data grid and note that the single-row layout is
updated appropriately. However, the formatter affected only the data grid, and
the description field in the single-row layout contains a numeric. The tutorial
will address that issue later.

3. Click the Source tab and change the start function so that the first record in
the prototype data includes a value for payeeName, which is a paymentRec record
field that is not displayed by the data grid:
function start()

allPayments_ui.data =[
new paymentRec{

category = 1, description = "test01", amount = 100.00
, payeeName = "Someone"},

new paymentRec{category = 2, description = "test02", amount = 200.00},
new paymentRec{category = 3, description = "test03", amount = 300.00}];

end

4. Click the Preview tab and click the first row in the data grid.

Access a database with EGL Rich UI 45

As shown, you can switch quickly from one tab in the Rich UI editor to another, to
test even a small change.

Comment the prototype data

You can comment or uncomment code quickly, as shown in this step.
1. Click the Source tab.
2. In the start function, select the complete assignment statement, right-click the

area selected, and click Comment.

3. Comment marks (//) are now at the start of each line. You could remove the
comments by repeating the task and clicking Uncomment instead of Comment.
However, leave the comments in place. EGL also supports the use of slash
asterisk (/*) and asterisk slash (*/) delimiters, as shown here:

46 Rational Business Developer: Access a database with EGL Rich UI

/*

You can add comments in either of two ways.

*/

Declare a service-access variable

You now declare a service-access variable, which will let you communicate with
the service that you defined earlier.

To create the variable:
1. Near the top of the EGL source code, find the handler declaration for

PaymentFileMaintenance. Add a blank line, and immediately before the ui
GridLayout declaration, add the following statement:
dbService SQLService{@dedicatedService};

The @dedicatedService property indicates that the service being referenced is a
dedicated service, which will be deployed with the Rich UI handler.
In the following display, the red X in the margin indicates a problem in the
code:

To see the error message, move the cursor over the X.
2. Fix the “unresolved type” error by pressing Ctrl+Shift+O. The new import

statement provides access to the services package, SQLService part, which is in
the PaymentService project. The reference to SQLService is resolved because
that project is on the EGL build path of the PaymentClient project.

3. Save the file.

Create functions that use the service-access variable to
invoke the service

You now create several functions to invoke different functions in the dedicated
service. Once you understand how to set up one invocation, the others are
straightforward.

Begin by creating the function that reads all data.
1. Leave a blank line after the cellClicked function and add the following code:

function readFromTable()
call dbService.getAllPayments() returning to updateAll

onException serviceLib.serviceExceptionHandler;
end

Note:

a. The call statement in Rich UI is a variation used only to access
services. The runtime communication in this case is asynchronous,
which means that the user can continue to interact with the handler
while the service is responding.

Access a database with EGL Rich UI 47

b. The asynchronous call statement includes two function names:
v updateAll

v serviceLib.serviceExceptionHandler

The two are callback functions, which are invoked by the EGL
runtime code after the service responds or fails. If the service
returns a value successfully, the updateAll function is invoked. If
the call fails, the EGL runtime code invokes a function that is
associated with the name serviceLib.serviceExceptionHandler.
By default, an error results in the display of error information in the
Console view (at development time) or at the bottom of the web
page (at run time). However, you can specify an error handler of
your own, typically by assigning a function name in place of
serviceLib.serviceExceptionHandler.

2. Click anywhere in the call statement, right-click, and click Create Callback
Functions. Alternatively, you could clicked anywhere in the statement, held
down the Ctrl key, and pressed 1.
EGL creates an empty updateAll function. An error handler would have been

created as well if you had specified a function name for onException, other
than serviceLib.serviceExceptionHandler.
The parameter list in the created updateAll function is equivalent to the type
of return value that is expected from the service. Here are the relationships
that explain the behavior of the Rich UI editor:
v The parameter list in the callback function is correct because the

getAllPayments function in the Service part is available to the editor.
v The function is available because you resolved the reference to the

SQLService part in a previous step.

Next, create the function that adds sample data.
3. Click Ctrl-F to gain access to the Find/Replace dialog, type SampleData, and

click Find.
4. Update the sampleData function so that the code is as follows:

function sampleData(event Event in)
call dbService.createDefaultTable() returning to updateAll

onException serviceLib.serviceExceptionHandler;
end

You do not use the Create Callback Functions feature because the callback
functions exist.

Next, create the function that adds data.
5. Update the addRow function so that the code is as follows:

function addRow(event Event in)
call dbService.addPayment(new paymentRec) returning to recordAdded

onException serviceLib.serviceExceptionHandler;
end

48 Rational Business Developer: Access a database with EGL Rich UI

6. Click anywhere in the call statement, right-click, and click Create Callback
Functions. EGL adds the recordAdded function.

Create the function that deletes data.
7. Update the deleteRow function so that the code is as follows:

function deleteRow(event Event in)

for(i INT from 1 to allPayments.getSize())
if(allPayments[i].paymentID == selectedPayment.paymentID)

allPayments.removeElement(i);
exit for;

end
end

call dbService.deletePayment(selectedPayment) returning to recordRevised
onException serviceLib.serviceExceptionHandler;

end

The function acts as follows:
v Deletes the selected row from the local array of records
v Calls the database service to delete the row from the database itself

8. Click anywhere in the call statement, right-click, and click Create Callback
Functions. EGL adds the recordRevised function.

9. Press Ctrl-Shift-F to format the code.
10. Save the file.
Related information:

“Invoking a service asynchronously from a Rich UI application” at
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0

Update the start function to initialize the data grid with
database rows

To initialize the data grid, add the following code before the end statement of the
start function:
readFromTable();

Although you could have assigned the readFromTable function directly to the
onConstructionFunction property, you are advised to retain the start function as
a separate unit of logic in case you later decide to add other code that runs before
the web page is rendered.

Retain the commented code in the start function in case you need to test the web
page without accessing the database. You can use the comment and uncomment
capability of the Rich UI editor to quickly switch from the function call to the
prototype data and back again.

Complete the callback functions

You now complete the callback functions that were created automatically:
v updateAll

v recordAdded

v recordRevised

The updateAll function receives an array of paymentRec records from the dedicated
service. The function is called in the following ways:

Access a database with EGL Rich UI 49

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_ui_richui_rest_call_statement.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_ui_richui_rest_call_statement.html

v As a callback function at startup, after the readFromTable function calls the
service.

v As a callback function whenever the user clicks the Sample button to invoke the
sampleData function.

1. Update the updateAll function so that the code is as follows:
function updateAll(retResult paymentRec[] in)

allPayments = retResult;
allPayments_ui.data = allPayments as any[];

end

The function updates the global array of payment records with the data
received from the service and then refreshes the data grid.

The recordAdded function receives the record that was sent to and returned by the
service function addPayment.
2. Update the recordAdded function so that the code is as follows:

function recordAdded(newPayment paymentRec in)
readFromTable();

end

The function readFromTable reads all the rows from the database. The data
stored by the grid can then contain the new row, including the paymentID value
that was automatically generated by the database and that is otherwise
unavailable to the grid.

The recordRevised function receives the record that was sent to and returned by
the service function addPayment.
3. Update the recordRevised function so that the code is as follows:

function recordRevised(delPayment paymentRec in)
allPayments_ui.data = allPayments as any[];

end

The function refreshes the data grid.
4. Press Ctrl-Shift-F to format the code. If you see errors in your source file,

compare your code to the file contents in “Code for
PaymentFileMaintenance.egl after lesson 8” on page 74.

5. Save the file.

Test the interface

Preview your work now that you are accessing a database.
1. Click the Preview tab. The data grid has no content because you commented

out the prototype data, and the database has no rows.

2. Click Sample to create sample data.
3. If EGL requests a password, enter admin for both the User ID and Password

fields. Select Remember my user ID... and click OK.

50 Rational Business Developer: Access a database with EGL Rich UI

If you exit and restart the workbench before you complete this tutorial, this
window might be re-displayed the next time you attempt to access the
database. Eventually the grid is re-displayed with rows of sample data.

4. Click the Add button. A new row with a single default value is displayed at
the bottom of the grid.

5. Select the Apartment row and click Delete. The row is deleted from both the
display and the database.

Access a database with EGL Rich UI 51

6. Click the first row of the data grid.
Data from the database was transferred from the data grid to the single-record

layout. Note that the value of the Key field reflects how many rows were
added to the database and will probably not match the value on your web
page.

Lesson checkpoint

You learned how to complete the following tasks:
v To create formatters.
v To respond to the user's selection in a data grid.
v To transfer data from the data grid to a grid layout.
v To comment and uncomment code.
v To access services from a Rich UI application.

In the next lesson, you will complete the code for the Rich UI handler.

Lesson 9: Complete the code that supports the user interface
Next, you will complete the single-row layout, as well as the code that supports
the Clear and Save buttons.

52 Rational Business Developer: Access a database with EGL Rich UI

Complete the layout that displays a single row

To complete the single-row layout:
1. Click the Source tab, if necessary.
2. Locate the selectedPayment_category_comboBox declaration. In the set-values

block, in place of the brackets for the values property, specify the
PaymentLib.categories array. The list of values in the combo box will now be
the values in the categories array that you created in the PaymentLib library.
Here is the changed declaration:
selectedPayment_category_comboBox DojoComboBox{ values = PaymentLib.categories,

layoutData = new GridLayoutData{row = 2, column = 2}};

3. To set the value of that combo box to a category description rather than an
integer, update the cellClicked function to access a library function that you
coded earlier:
function cellClicked(myGrid DataGrid in)

selectedPayment = allPayments_ui.getSelection()[1] as paymentRec;
selectedPayment_form.publish();
selectedPayment_category_comboBox.value =

PaymentLib.getCategoryDesc(selectedPayment.category);
end

4. Save the file, but do not close it.

Test the new code

Review the effect of your last change.
1. Click the Preview tab.
2. Click the first line of sample data. The single-record layout now displays the

category name rather than an integer.

Access a database with EGL Rich UI 53

Complete the code for the second set of buttons

When the user clicks Clear to remove nondefault content from the single-record
layout, the clearAllFields function runs. The function sets up the layout so that
when the user types data and clicks Save, the new typed data updates an existing
database row.
1. Click the Source tab.
2. Find the clearAllFields function and make it as follows:

function clearAllFields(event Event in)
saveID INT = selectedPayment.paymentID; // retain the key
selectedPayment = new PaymentRec{};
selectedPayment.paymentID = saveID;
selectedPayment_form.publish();

end

The code retains the record key for use in a subsequent update of the database.
The code then creates a record, assigns it to the selectedPayment variable,
assigns the saved key value to that variable, and publishes the variable to the
single-record layout.

3. Complete the function that is invoked when the user clicks Save:
a. Find the function, which is named selectedPayment_form_Submit.
b. Make the function as follows:

function selectedPayment_form_Submit(event Event in)
selectedPayment_category_comboBox.value

= PaymentLib.getCategoryNum(selectedPayment_category_comboBox.value);

if (selectedPayment_form.isValid())
selectedPayment_form.commit();
selectedPayment_category_comboBox.value =

PaymentLib.getCategoryDesc(selectedPayment_category_comboBox.value);

// update allPayments with new version of selectedPayment
for(i INT from 1 to allPayments.getSize())

if(allPayments[i].paymentID == selectedPayment.paymentID)
allPayments[i] = selectedPayment;
exit for;

end
end

call dbService.editPayment(selectedPayment)
returning to recordRevised
onException serviceLib.serviceExceptionHandler;

end
end

The following clause checks the validity of copying the widget content to
the related field:
if (selectedPayment_form.isValid())

A problem arises with the Dojo combo box for Description, because the
widget content is of type STRING and the related field is
selectedPayment.category, which is of type INT. The validation of the Dojo
combo box requires that combo box include either integers or strings, such
as “1” or “20,” that can be converted to integers.
To handle the issue, use an EGL combo widget or ensure that the Dojo
combo box includes a valid integer before validation. The previous code
demonstrates the second option, and begins by assigning the integer:
selectedPayment_category_comboBox.value

= PaymentLib.getCategoryNum(selectedPayment_category_comboBox.value);

54 Rational Business Developer: Access a database with EGL Rich UI

The function thereafter checks the validity of the data in the single-record
layout and, if the data is valid, does as follows:
1) Commits the validated data to the selectedPayment record. This

“commit” is part of MVC processing and has nothing to do with a
database commit.

2) Updates the Dojo combo box in the single-record layout so that the
value of that field is again a string.

3) Revises the allPayments array element that contains the saved key
value. At that point, the array element includes a copy of the data that
the user wants in the database.

4) Calls the service to update a single row in the database. The related
callback function assigns the allPayments array to the data array of the
data grid, and that assignment re-renders the grid with the updated
data. The grid will be re-rendered with data assigned in the
selectedPayment_form_Submit function, not with data retrieved from the
database.

4. Save the file, but do not close it. If you see errors in your source file, compare
your code to the file contents in “Finished code for
PaymentFileMaintenance.egl” on page 80.

Test the new code

You can now test the completed application.
1. Click the Preview tab. The sample data that you entered earlier is displayed.
2. Select the blank record at the bottom of the sample data. You created this

record in a previous lesson. The Payment record grid shows blank fields, with
the following exceptions:
v A key number is displayed.
v The Amount field shows a zero value.
v The current date is used as a default because the value of the DATE variable

is null.

Access a database with EGL Rich UI 55

3. Complete the record with data such as the following:
v For Category, enter Automotive.
v For Description, enter Gas.
v For Amount, enter $80.00.
v Leave the Fixed pmt check box clear.
v Click the current date in the Due Date field and select a date from the

displayed calendar.

56 Rational Business Developer: Access a database with EGL Rich UI

v For Payee, enter Corner Gas Station.
v For Address 1, enter 101 Main Street

v For Address 2, enter Miami, FL.
4. Click Save. The new data is stored in the database and is displayed in the data

grid.

Access a database with EGL Rich UI 57

5.

6. Click Clear. The single-record layout is reset to initial values.

Lesson checkpoint

You learned how to complete the following tasks:
v Assign a preset string array as the set of values that are provided by a Dojo

combo box.
v Use conversion functions if you need to relate a field of type INT to a Dojo

combo box that contains strings.
v Use the Form Manager isValid and commit functions.

In the next lesson, you install Apache Tomcat on your system so that you can run
your application on a web server.

Lesson 10: Install Apache Tomcat
You can use Apache Tomcat to display the web page and to run the EGL-generated
service.

Download and access the server

If you have IBM® WebSphere® Application Server installed, you can skip to the
next lesson. In any case, you can download Apache Tomcat, if necessary, and make
it available in the workbench.

To gain access to server:
1. Locate the Servers view, which is by default at the lower right of the

workbench. EGL created an AJAX Test Server by default. Right-click the empty
space and click New > Server.

2. In the Define a New Server window, expand Apache and click Tomcat v6.0
Server with EGL debugging support. Accept the default values for the other
fields. Click Next.

3. In the Tomcat Server window, access the open-source software either by using
the Browse to find an existing installation directory (for example,
apache-tomcat-6.0.26) on your machine; or click Download and Install. If you

58 Rational Business Developer: Access a database with EGL Rich UI

found an existing installation directory, click Finish and continue the lesson at
step 5.
Accept the terms of the license agreement. Browse to a directory for the

application files, such as C:\Program Files\Apache. While the workbench
completes the installation, the Define a New Server window is displayed with
the installation directory specified. Progress is shown at the lower right of the
workbench.

4. When the installation is completed, click Finish.
5. Start the server by highlighting the server name and clicking the green Start

icon at the top of the Server view.

Lesson checkpoint

In this lesson, you completed the following tasks:
v Downloaded Apache Tomcat, if necessary

Access a database with EGL Rich UI 59

v Started the server.

In the next lesson, you deploy the application to a server and run it there.

Lesson 11: Deploy and test the payment application
During the deployment process, EGL creates HTML files and server-specific code
to match your target environment.

Deployment is a two stage process:
1. Internal deployment, when you deploy your handlers to a web project.
2. External deployment, when you deploy the web project to an application

server.

After you deploy the tutorial application internally, you can run it on an
application server in the workbench.

Edit the deployment descriptor

The EGL deployment descriptor manages the internal deployment and is created
automatically in each EGLSource folder. The main handler is in the
MortgageUIProject, and you use the EGL deployment descriptor in the
PaymentClient/EGLSource folder.

To edit the EGL deployment descriptor:
1. In the EGLSource folder, double-click the PaymentClient.egldd file. The EGL

deployment descriptor opens in the Deployment Descriptor editor. EGL
automatically added the embedded handlers to the list of Rich UI handlers to
deploy.

2. Because you are using a dedicated service, you do not need to add information
to the Service Bindings Configuration section. The list is empty.

3. Under Deployment Target, next to the Target project field, click New.

60 Rational Business Developer: Access a database with EGL Rich UI

The Dynamic Web Project wizard opens.
4. In the Project Name field, enter the following name:

PaymentWeb

Any web project is acceptable. You are creating a simple one for the purposes
of the tutorial.

5. For Target runtime, select one of the following options from the list:
v Apache Tomcat v6.0

v WebSphere Application Server vn.n

The value of the Configuration field changes automatically to match the new
runtime environment.

6. If you are deploying to a WebSphere Application Server runtime, select Add
project to an EAR, which is underneath EAR membership. If you add the
project to an EAR, accept the default name that the wizard displays. For
Apache Tomcat, ensure that the Add project to an EAR check box is clear.

Access a database with EGL Rich UI 61

7. Click Finish. EGL creates the web project and re-displays the deployment
descriptor.

8. Save and close the deployment descriptor.

Set the data source for the new project

Before you can access the database from the new project, you must connect the
project to the database.
1. In the Project Explorer view, right-click the PaymentWeb project and click

Properties > EGL Runtime Data Source.
2. Click Load values from a data tools connection.
3. Click the down arrow next to the Connection field and select Derby Database

Connection, which is the connection profile that you created in Lesson 2.

62 Rational Business Developer: Access a database with EGL Rich UI

4. Click OK.

Deploy the Rich UI application

You can now launch the deployment process:
1. In the EGLSource folder, right-click the PaymentClient.egldd file.
2. Click Deploy EGL Descriptor.

The deployment process requires no further action on your part. The process

copies many files and might take several minutes.
3. If the Tomcat server shows a status of “Restart”, consider that statement a

directive: restart the server by clicking the green Start icon in the upper right of

the Servers view . Alternatively, you can right-click the server name and
click Restart. When the server has restarted, the status is "Started,
Synchronized".

Access a database with EGL Rich UI 63

Run the generated code
1. To run the internally deployed code, focus your attention on the target project,

PaymentWeb. In the PaymentWeb/WebContent folder, find
PaymentFileMaintenance-en_US.html.

2. Right-click the file name and click Run As > Run on Server

The Run On Server window opens.
3. In the Run On Server window, select the appropriate server and click Always

use this server when running this project. Click Finish.

64 Rational Business Developer: Access a database with EGL Rich UI

Access a database with EGL Rich UI 65

4. If you are using Tomcat and see a page not found error (404), check whether
the server is showing a Restart status. If so, restart the server and refresh the
page.
The page opens.

5. Test the application by adding, deleting, and modifying payment records.

66 Rational Business Developer: Access a database with EGL Rich UI

Related concepts

“Introduction to EGL generation and deployment” at http://
publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0

Lesson checkpoint

You learned how to complete the following tasks:
v Edit a deployment descriptor to deploy a Rich UI handler.
v Run the application on an application server.

Summary
You completed the Access a database with EGL Rich UI tutorial.

You practiced the following skills:
v Creating and accessing a relational database.
v Creating a library of reusable functions.
v Designing and deploying a Rich UI application and a dedicated service.

Resources
A variety of resources are available.
v Completed tutorial code is here:

– “Code for PaymentFileMaintenance.egl after lesson 4” on page 68
– “Finished code for SQLService.egl after lesson 6” on page 73
– “Finished code for PaymentLib.egl after lesson 7” on page 74
– “Code for PaymentFileMaintenance.egl after lesson 8” on page 74
– “Finished code for PaymentFileMaintenance.egl” on page 80

v A complementary example of database processing is here:
– “End-to-end processing with a UI program and a data grid” at

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0
v The following help topics are of particular interest, and each has additional

links:
– “Overview of EGL Rich UI” at http://publib.boulder.ibm.com/infocenter/

rbdhelp/v8r0m0
– “Services: a top-level overview” at http://publib.boulder.ibm.com/

infocenter/rbdhelp/v8r0m0
– “SQL data” at http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0
– “Introduction to EGL generation and deployment” at http://

publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0
– “Rich UI validation and formatting” at http://publib.boulder.ibm.com/

infocenter/rbdhelp/v8r0m0
– “Form processing with Rich UI” at http://publib.boulder.ibm.com/

infocenter/rbdhelp/v8r0m0
– “Rich UI DataGrid and DataGridTooltip” at http://publib.boulder.ibm.com/

infocenter/rbdhelp/v8r0m0
– “Rich UI GridLayout” at http://publib.boulder.ibm.com/infocenter/rbdhelp/

v8r0m0

Access a database with EGL Rich UI 67

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.gg.doc/topics/gegl_core_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.gg.doc/topics/gegl_core_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_service_gateway_uiprogram_xmp.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_service_gateway_uiprogram_xmp.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_richui_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_richui_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_core_service_part_cpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_core_service_part_cpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_sql_overview_cpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.gg.doc/topics/gegl_core_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.gg.doc/topics/gegl_core_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_ui_richui_validation.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_ui_richui_validation.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/regl_ui_richui_forms.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/regl_ui_richui_forms.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_ui_richui_datagrid.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_ui_richui_datagrid.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/regl_ui_richui_gridlayout.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/regl_ui_richui_gridlayout.html

EGL Rich UI follows the Visual Formatting Model of the World Wide Web
Consortium (W3C). For details, go to the W3C web site (http://www.w3.org) and
search for “Visual formatting model.”

Code for PaymentFileMaintenance.egl after lesson 4
The following code is the text of the PaymentFileMaintenance.egl file at the end of
lesson 4.
package handlers;

import com.ibm.egl.rui.mvc.Controller;
import com.ibm.egl.rui.mvc.FormField;
import com.ibm.egl.rui.mvc.FormManager;
import com.ibm.egl.rui.mvc.MVC;
import com.ibm.egl.rui.widgets.DataGrid;
import com.ibm.egl.rui.widgets.DataGridColumn;
import com.ibm.egl.rui.widgets.DataGridLib;
import com.ibm.egl.rui.widgets.Div;
import com.ibm.egl.rui.widgets.GridLayout;
import com.ibm.egl.rui.widgets.GridLayoutData;
import com.ibm.egl.rui.widgets.GridLayoutLib;
import com.ibm.egl.rui.widgets.TextLabel;
import egl.io.sql.column;
import egl.ui.rui.Event;
import egl.ui.rui.Widget;
import dojo.widgets.DojoButton;
import dojo.widgets.DojoCheckBox;
import dojo.widgets.DojoComboBox;
import dojo.widgets.DojoCurrencyTextBox;
import dojo.widgets.DojoDateTextBox;
import dojo.widgets.DojoLib;
import dojo.widgets.DojoTextField;
import dojo.widgets.DojoTitlePane;
import records.paymentRec;

handler PaymentFileMaintenance type RUIhandler{
initialUI =[ui], onConstructionFunction = start,
cssFile = "css/PaymentClient.css", title = "PaymentFileMaintenance"}

ui GridLayout{columns = 2, rows = 2, cellPadding = 4,
children =

[detailButtonLayout, editPane, buttonLayout, allPayments_ui]
};

allPayments paymentRec[0];

allPayments_ui DataGrid{
layoutData = new GridLayoutData{

row = 2, column = 1,
verticalAlignment = GridLayoutLib.VALIGN_TOP},

columns =[
new DataGridColumn{name = "category", displayName = "Type", width = 90},
new DataGridColumn{name = "description", displayName = "Description",

width = 120},
new DataGridColumn{name = "amount", displayName = "Amount due", width = 90}

],
data = allPayments as any[],
selectionMode = DataGridLib.SINGLE_SELECTION};

buttonLayout GridLayout{
layoutData = new GridLayoutData{ row = 1, column = 1 },
cellPadding = 4, rows = 1, columns = 3,
children = [sampleButton, deleteButton, addButton] };

addButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 1 },

68 Rational Business Developer: Access a database with EGL Rich UI

http://www.w3.org

text = "Add", onClick ::= addRow };

deleteButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 2 },
text = "Delete", onClick ::= deleteRow };

sampleButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 3 },
text = "Sample", onClick ::= sampleData };

selectedPayment paymentRec;

editPane DojoTitlePane{
layoutData = new GridLayoutData{ row = 2, column = 2,

verticalAlignment = GridLayoutLib.VALIGN_TOP },
title = "Payment record",
isOpen=true, duration=1000, width = "350",
children =

[new Div {children = [selectedPayment_ui]}]
};

selectedPayment_ui GridLayout {
rows = 9, columns = 2, cellPadding = 4,
children = [selectedPayment_paymentId_nameLabel,

selectedPayment_paymentId_field,
selectedPayment_category_nameLabel,
selectedPayment_category_comboBox,
selectedPayment_description_nameLabel,
selectedPayment_description_field,
selectedPayment_amount_nameLabel,
selectedPayment_amount_textBox,
selectedPayment_fixedPayment_nameLabel,
selectedPayment_fixedPayment_checkBox,
selectedPayment_dueDate_nameLabel,
selectedPayment_dueDate_textBox,
selectedPayment_payeeName_nameLabel,
selectedPayment_payeeName_field,
selectedPayment_payeeAddress1_nameLabel,
selectedPayment_payeeAddress1_field,
selectedPayment_payeeAddress2_nameLabel,
selectedPayment_payeeAddress2_field] };

selectedPayment_paymentId_nameLabel TextLabel {
text="Key:" ,
layoutData = new GridLayoutData { row = 1, column = 1} };

selectedPayment_paymentId_field DojoTextField {
layoutData = new GridLayoutData { row = 1, column = 2},
readOnly = true };

selectedPayment_paymentId_controller Controller {
@MVC {model = selectedPayment.paymentId,

view = selectedPayment_paymentId_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_paymentId_formField FormField {
controller = selectedPayment_paymentId_controller,
nameLabel = selectedPayment_paymentId_nameLabel};

selectedPayment_category_nameLabel TextLabel {
text="Category:",
layoutData = new GridLayoutData { row = 2, column = 1} };

selectedPayment_category_comboBox DojoComboBox {
values = [],
layoutData = new GridLayoutData { row = 2, column = 2} };

Access a database with EGL Rich UI 69

selectedPayment_category_controller Controller {
@MVC {model = selectedPayment.category,

view = selectedPayment_category_comboBox as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_category_formField FormField {
controller = selectedPayment_category_controller,
nameLabel = selectedPayment_category_nameLabel};

selectedPayment_description_nameLabel TextLabel {
text="Description:" ,
layoutData = new GridLayoutData { row = 3, column = 1} };

selectedPayment_description_field DojoTextField {
layoutData = new GridLayoutData { row = 3, column = 2} };

selectedPayment_description_controller Controller {
@MVC {model = selectedPayment.description,

view = selectedPayment_description_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_description_formField FormField {
controller = selectedPayment_description_controller,
nameLabel = selectedPayment_description_nameLabel};

selectedPayment_amount_nameLabel TextLabel {
text="Amount:",
layoutData = new GridLayoutData { row = 4, column = 1} };

selectedPayment_amount_textBox DojoCurrencyTextBox {
currency = "USD", value = selectedPayment.amount, width = 166,
errorMessage="Amount is not valid.",
layoutData = new GridLayoutData { row = 4, column = 2} };

selectedPayment_amount_controller Controller {
@MVC {model = selectedPayment.amount,

view = selectedPayment_amount_textBox as Widget},

validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_amount_formField FormField {
controller = selectedPayment_amount_controller,
nameLabel = selectedPayment_amount_nameLabel};

selectedPayment_fixedPayment_nameLabel TextLabel {
text="Fixed pmt:" ,
layoutData = new GridLayoutData { row = 5, column = 1} };

selectedPayment_fixedPayment_checkBox DojoCheckBox {
layoutData = new GridLayoutData { row = 5, column = 2} };

selectedPayment_fixedPayment_controller Controller {
@MVC {model = selectedPayment.fixedPayment,

view = selectedPayment_fixedPayment_checkBox as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_fixedPayment_formField FormField {
controller = selectedPayment_fixedPayment_controller,
nameLabel = selectedPayment_fixedPayment_nameLabel};

selectedPayment_dueDate_nameLabel TextLabel {
text="Due date:",
layoutData = new GridLayoutData { row = 6, column = 1} };

selectedPayment_dueDate_textBox DojoDateTextBox {
formatLength = DojoLib.DATEBOX_FORMAT_LONG,
value = selectedPayment.dueDate,

70 Rational Business Developer: Access a database with EGL Rich UI

layoutData = new GridLayoutData { row = 6, column = 2} };

selectedPayment_dueDate_controller Controller {
@MVC {model = selectedPayment.dueDate,

view = selectedPayment_dueDate_textBox as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_dueDate_formField FormField {
controller = selectedPayment_dueDate_controller,
nameLabel = selectedPayment_dueDate_nameLabel};

selectedPayment_payeeName_nameLabel TextLabel {
text="Payee:",
layoutData = new GridLayoutData { row = 7, column = 1} };

selectedPayment_payeeName_field DojoTextField {
layoutData = new GridLayoutData { row = 7, column = 2} };

selectedPayment_payeeName_controller Controller {
@MVC {model = selectedPayment.payeeName,

view = selectedPayment_payeeName_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_payeeName_formField FormField {
controller = selectedPayment_payeeName_controller,
nameLabel = selectedPayment_payeeName_nameLabel};

selectedPayment_payeeAddress1_nameLabel TextLabel {
text="Address 1:" ,
layoutData = new GridLayoutData { row = 8, column = 1} };

selectedPayment_payeeAddress1_field DojoTextField {
layoutData = new GridLayoutData { row = 8, column = 2} };

selectedPayment_payeeAddress1_controller Controller {
@MVC {model = selectedPayment.payeeAddress1,

view = selectedPayment_payeeAddress1_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_payeeAddress1_formField FormField {
controller = selectedPayment_payeeAddress1_controller,
nameLabel = selectedPayment_payeeAddress1_nameLabel};

selectedPayment_payeeAddress2_nameLabel TextLabel {
text="Address 2:" ,
layoutData = new GridLayoutData { row = 9, column = 1} };

selectedPayment_payeeAddress2_field DojoTextField {
layoutData = new GridLayoutData { row = 9, column = 2} };

selectedPayment_payeeAddress2_controller Controller {
@MVC {model = selectedPayment.payeeAddress2,

view = selectedPayment_payeeAddress2_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_payeeAddress2_formField FormField {
controller = selectedPayment_payeeAddress2_controller,
nameLabel = selectedPayment_payeeAddress2_nameLabel};

selectedPayment_form FormManager {
entries = [selectedPayment_paymentId_formField,

selectedPayment_category_formField,
selectedPayment_description_formField,
selectedPayment_amount_formField,
selectedPayment_fixedPayment_formField,
selectedPayment_dueDate_formField,
selectedPayment_payeeName_formField,

Access a database with EGL Rich UI 71

selectedPayment_payeeAddress1_formField,
selectedPayment_payeeAddress2_formField] };

detailButtonLayout GridLayout{
layoutData = new GridLayoutData{ row = 1, column = 2 },
cellPadding = 4, rows = 1, columns = 2,
children = [saveButton, clearButton] };

clearButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 1 },
text = "Clear", onClick ::= clearAllFields };

saveButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 2 },
text = "Save", onClick ::= selectedPayment_form_Submit };

function start()
allPayments_ui.data =[

new paymentRec{category = 1, description = "test01", amount = 100.00},
new paymentRec{category = 2, description = "test02", amount = 200.00},
new paymentRec{category = 3, description = "test03", amount = 300.00}];

end

function addRow(event Event in)
end

function deleteRow(event Event in)
end

function sampleData(event Event in)
end

function selectedPayment_form_Submit(event Event in)

if(selectedPayment_form.isValid())
selectedPayment_form.commit();

end
end

function selectedPayment_form_Publish(event Event in)
selectedPayment_form.publish();
selectedPayment_form_Validate();

end

function selectedPayment_form_Validate()
selectedPayment_form.isValid();

end

function handleValidStateChange_selectedPayment(view Widget in, valid boolean in)

for (n int from selectedPayment_form.entries.getSize() to 1 decrement by 1)
entry FormField = selectedPayment_form.entries[n];

if(entry.controller.view == view)

if(valid)
// TODO: handle valid value

else
msg String? = entry.controller.getErrorMessage();
// TODO: handle invalid value

end
end

end
end

72 Rational Business Developer: Access a database with EGL Rich UI

function clearAllFields(event Event in)
end

end

Related tasks

“Lesson 4: Create the Rich UI handler” on page 17
Start to build the handler by using EGL wizards and then the Rich UI editor.

Finished code for SQLService.egl after lesson 6
The following code is the text of the SQLService.egl file after Lesson 6.
package services;

import records.paymentRec;

service SQLService
function addPayment(newPayment paymentRec inOut)

add newPayment with #sql{
insert into PAYMENT

(CATEGORY, DESCRIPTION, AMOUNT, FIXED_PAYMENT,
DUE_DATE, PAYEE_NAME, PAYEE_ADDRESS1, PAYEE_ADDRESS2)

values
(:newPayment.category, :newPayment.description, :newPayment.amount,
:newPayment.fixedPayment, :newPayment.dueDate, :newPayment.payeeName,
:newPayment.payeeAddress1, :newPayment.payeeAddress2)

};
end

function getAllPayments() returns(paymentRec[])
paymentArray paymentRec[];
get paymentArray;
return(paymentArray);

end

function editPayment(chgPayment paymentRec inOut)
replace chgPayment nocursor;

end

function deletePayment(delPayment paymentRec inOut)

try
delete delPayment nocursor;

onException(exception SQLException)
if(SQLLib.sqlData.sqlState != "02000") // sqlState is of type CHAR(5)

throw exception;
end

end
end

function createDefaultTable() returns(paymentRec[])

try
execute #sql{

delete from PAYMENT
};

onException(exception SQLException)
if (SQLLib.sqlData.sqlState != "02000") // sqlState is of type CHAR(5)

throw exception;
end

end;

ispDate date = dateTimeLib.dateValueFromGregorian(20110405);
addPayment(new paymentRec

Access a database with EGL Rich UI 73

{category = 1, description = "Apartment", amount = 880, fixedPayment = yes});
addPayment (new paymentRec

{category = 2, description = "Groceries", amount = 450, fixedPayment = no});
addPayment(new paymentRec

{category = 5, description = "ISP", amount = 19.99,
fixedPayment = yes, dueDate = ispDate});

return(getAllPayments());
end

end

Related tasks

“Lesson 6: Add code for the service functions” on page 36
In EGL, I/O statements such as add and get access data that resides in different
kinds of persistent data storage, from file systems to queues to databases. The
coding is similar for the different cases.

Finished code for PaymentLib.egl after lesson 7
The following code is the text of the PaymentLib.egl file after lesson 7.
package libraries;

library PaymentLib type BasicLibrary{}

categories string[] =[

"Rent", // 1
"Food", // 2
"Entertainment", // 3
"Automotive", // 4
"Utilities", // 5
"Clothes", // 6
"Other" // 7

];
function getCategoryDesc(cat int in) returns(string)
if(cat) // the integer is not 0

return(categories[cat]);
else

return("");
end

end

function getCategoryNum(desc string in) returns(int)
for(i int from 1 to categories.getSize())

if(categories[i] == desc)
return(i);

end
end

return(0); // no match
end

end

Related tasks

“Lesson 7: Create a library of reusable functions” on page 41
Create a library to format money values and to associate category numbers
with descriptions.

Code for PaymentFileMaintenance.egl after lesson 8
The following code is the text of the PaymentFileMaintenance.egl file at the end of
lesson 8.
package handlers;

import com.ibm.egl.rui.mvc.Controller;
import com.ibm.egl.rui.mvc.FormField;
import com.ibm.egl.rui.mvc.FormManager;

74 Rational Business Developer: Access a database with EGL Rich UI

import com.ibm.egl.rui.mvc.MVC;
import com.ibm.egl.rui.widgets.DataGrid;
import com.ibm.egl.rui.widgets.DataGridColumn;
import com.ibm.egl.rui.widgets.DataGridLib;
import com.ibm.egl.rui.widgets.Div;
import com.ibm.egl.rui.widgets.GridLayout;
import com.ibm.egl.rui.widgets.GridLayoutData;
import com.ibm.egl.rui.widgets.GridLayoutLib;
import com.ibm.egl.rui.widgets.TextLabel;
import egl.ui.rui.Event;
import egl.ui.rui.Widget;
import dojo.widgets.DojoButton;
import dojo.widgets.DojoCheckBox;
import dojo.widgets.DojoComboBox;
import dojo.widgets.DojoCurrencyTextBox;
import dojo.widgets.DojoDateTextBox;
import dojo.widgets.DojoLib;
import dojo.widgets.DojoTextField;
import dojo.widgets.DojoTitlePane;
import libraries.PaymentLib;
import records.paymentRec;
import services.SQLService;

handler PaymentFileMaintenance type RUIhandler{
initialUI =[ui], onConstructionFunction = start,
cssFile = "css/PaymentClient.css", title = "PaymentFileMaintenance"}

dbService SQLService{@dedicatedService};

ui GridLayout{columns = 2, rows = 2, cellPadding = 4,
children =

[detailButtonLayout, editPane, buttonLayout, allPayments_ui]
};

allPayments paymentRec[0];

allPayments_ui DataGrid{
layoutData = new GridLayoutData{

row = 2, column = 1,
verticalAlignment = GridLayoutLib.VALIGN_TOP},

selectionListeners ::= cellClicked,
columns =[

new DataGridColumn{name = "category", displayName = "Type",
width = 90, formatters = [formatCategory]},

new DataGridColumn{name = "description", displayName = "Description",
width = 120},

new DataGridColumn{name = "amount", displayName = "Amount due",
width = 90, alignment = DataGridLib.ALIGN_RIGHT}

],
data = allPayments as any[],
selectionMode = DataGridLib.SINGLE_SELECTION};

buttonLayout GridLayout{
layoutData = new GridLayoutData{ row = 1, column = 1 },
cellPadding = 4, rows = 1, columns = 3,
children = [sampleButton, deleteButton, addButton] };

addButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 1 },
text = "Add", onClick ::= addRow };

deleteButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 2 },
text = "Delete", onClick ::= deleteRow };

sampleButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 3 },

Access a database with EGL Rich UI 75

text = "Sample", onClick ::= sampleData };

selectedPayment paymentRec;

editPane DojoTitlePane{
layoutData = new GridLayoutData{ row = 2, column = 2,

verticalAlignment = GridLayoutLib.VALIGN_TOP },
title = "Payment record",
isOpen=true, duration=1000, width = "350",
children =

[new Div {children = [selectedPayment_ui]}]
};

selectedPayment_ui GridLayout {
rows = 9, columns = 2, cellPadding = 4,
children = [selectedPayment_paymentId_nameLabel,

selectedPayment_paymentId_field,
selectedPayment_category_nameLabel,
selectedPayment_category_comboBox,
selectedPayment_description_nameLabel,
selectedPayment_description_field,
selectedPayment_amount_nameLabel,
selectedPayment_amount_textBox,
selectedPayment_fixedPayment_nameLabel,
selectedPayment_fixedPayment_checkBox,
selectedPayment_dueDate_nameLabel,
selectedPayment_dueDate_textBox,
selectedPayment_payeeName_nameLabel,
selectedPayment_payeeName_field,
selectedPayment_payeeAddress1_nameLabel,
selectedPayment_payeeAddress1_field,
selectedPayment_payeeAddress2_nameLabel,
selectedPayment_payeeAddress2_field] };

selectedPayment_paymentId_nameLabel TextLabel {
text="Key:" ,
layoutData = new GridLayoutData { row = 1, column = 1} };

selectedPayment_paymentId_field DojoTextField {
layoutData = new GridLayoutData { row = 1, column = 2},
readOnly = true };

selectedPayment_paymentId_controller Controller {
@MVC {model = selectedPayment.paymentId,

view = selectedPayment_paymentId_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_paymentId_formField FormField {
controller = selectedPayment_paymentId_controller,
nameLabel = selectedPayment_paymentId_nameLabel};

selectedPayment_category_nameLabel TextLabel {
text="Category:",
layoutData = new GridLayoutData { row = 2, column = 1} };

selectedPayment_category_comboBox DojoComboBox {
values = [],
layoutData = new GridLayoutData { row = 2, column = 2} };

selectedPayment_category_controller Controller {
@MVC {model = selectedPayment.category,

view = selectedPayment_category_comboBox as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_category_formField FormField {
controller = selectedPayment_category_controller,
nameLabel = selectedPayment_category_nameLabel};

76 Rational Business Developer: Access a database with EGL Rich UI

selectedPayment_description_nameLabel TextLabel {
text="Description:" ,
layoutData = new GridLayoutData { row = 3, column = 1} };

selectedPayment_description_field DojoTextField {
layoutData = new GridLayoutData { row = 3, column = 2} };

selectedPayment_description_controller Controller {
@MVC {model = selectedPayment.description,

view = selectedPayment_description_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_description_formField FormField {
controller = selectedPayment_description_controller,
nameLabel = selectedPayment_description_nameLabel};

selectedPayment_amount_nameLabel TextLabel {
text="Amount:",
layoutData = new GridLayoutData { row = 4, column = 1} };

selectedPayment_amount_textBox DojoCurrencyTextBox {
currency = "USD", value = selectedPayment.amount, width = 166,
errorMessage="Amount is not valid.",
layoutData = new GridLayoutData { row = 4, column = 2} };

selectedPayment_amount_controller Controller {
@MVC {model = selectedPayment.amount,

view = selectedPayment_amount_textBox as Widget},

validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_amount_formField FormField {
controller = selectedPayment_amount_controller,
nameLabel = selectedPayment_amount_nameLabel};

selectedPayment_fixedPayment_nameLabel TextLabel {
text="Fixed pmt:" ,
layoutData = new GridLayoutData { row = 5, column = 1} };

selectedPayment_fixedPayment_checkBox DojoCheckBox {
layoutData = new GridLayoutData { row = 5, column = 2} };

selectedPayment_fixedPayment_controller Controller {
@MVC {model = selectedPayment.fixedPayment,

view = selectedPayment_fixedPayment_checkBox as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_fixedPayment_formField FormField {
controller = selectedPayment_fixedPayment_controller,
nameLabel = selectedPayment_fixedPayment_nameLabel};

selectedPayment_dueDate_nameLabel TextLabel {
text="Due date:",
layoutData = new GridLayoutData { row = 6, column = 1} };

selectedPayment_dueDate_textBox DojoDateTextBox {
formatLength = DojoLib.DATEBOX_FORMAT_LONG,
value = selectedPayment.dueDate,
layoutData = new GridLayoutData { row = 6, column = 2} };

selectedPayment_dueDate_controller Controller {
@MVC {model = selectedPayment.dueDate,

view = selectedPayment_dueDate_textBox as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_dueDate_formField FormField {

Access a database with EGL Rich UI 77

controller = selectedPayment_dueDate_controller,
nameLabel = selectedPayment_dueDate_nameLabel};

selectedPayment_payeeName_nameLabel TextLabel {
text="Payee:",
layoutData = new GridLayoutData { row = 7, column = 1} };

selectedPayment_payeeName_field DojoTextField {
layoutData = new GridLayoutData { row = 7, column = 2} };

selectedPayment_payeeName_controller Controller {
@MVC {model = selectedPayment.payeeName,

view = selectedPayment_payeeName_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_payeeName_formField FormField {
controller = selectedPayment_payeeName_controller,
nameLabel = selectedPayment_payeeName_nameLabel};

selectedPayment_payeeAddress1_nameLabel TextLabel {
text="Address 1:" ,
layoutData = new GridLayoutData { row = 8, column = 1} };

selectedPayment_payeeAddress1_field DojoTextField {
layoutData = new GridLayoutData { row = 8, column = 2} };

selectedPayment_payeeAddress1_controller Controller {
@MVC {model = selectedPayment.payeeAddress1,

view = selectedPayment_payeeAddress1_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_payeeAddress1_formField FormField {
controller = selectedPayment_payeeAddress1_controller,
nameLabel = selectedPayment_payeeAddress1_nameLabel};

selectedPayment_payeeAddress2_nameLabel TextLabel {
text="Address 2:" ,
layoutData = new GridLayoutData { row = 9, column = 1} };

selectedPayment_payeeAddress2_field DojoTextField {
layoutData = new GridLayoutData { row = 9, column = 2} };

selectedPayment_payeeAddress2_controller Controller {
@MVC {model = selectedPayment.payeeAddress2,

view = selectedPayment_payeeAddress2_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_payeeAddress2_formField FormField {
controller = selectedPayment_payeeAddress2_controller,
nameLabel = selectedPayment_payeeAddress2_nameLabel};

selectedPayment_form FormManager {
entries = [selectedPayment_paymentId_formField,

selectedPayment_category_formField,
selectedPayment_description_formField,
selectedPayment_amount_formField,
selectedPayment_fixedPayment_formField,
selectedPayment_dueDate_formField,
selectedPayment_payeeName_formField,
selectedPayment_payeeAddress1_formField,
selectedPayment_payeeAddress2_formField] };

detailButtonLayout GridLayout{
layoutData = new GridLayoutData{ row = 1, column = 2 },
cellPadding = 4, rows = 1, columns = 2,
children = [saveButton, clearButton] };

78 Rational Business Developer: Access a database with EGL Rich UI

clearButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 1 },
text = "Clear", onClick ::= clearAllFields };

saveButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 2 },
text = "Save", onClick ::= selectedPayment_form_Submit };

function start()
// allPayments_ui.data =[
// new paymentRec{category = 1, description = "test01",
// amount = 100.00, payeeName = "Someone"},
// new paymentRec{category = 2, description = "test02", amount = 200.00},
// new paymentRec{category = 3, description = "test03", amount = 300.00}];
readFromTable();

end

function cellClicked(myGrid DataGrid in)
selectedPayment = allPayments_ui.getSelection()[1] as paymentRec;
selectedPayment_form.publish();

end

function readFromTable()
call dbService.getAllPayments() returning to updateAll

onException serviceLib.serviceExceptionHandler;
end

function updateAll(retResult paymentRec[] in)
allPayments = retResult;
allPayments_ui.data = allPayments as any[];

end

function addRow(event Event in)
call dbService.addPayment(new paymentRec) returning to recordAdded

onException serviceLib.serviceExceptionHandler;
end

function recordAdded(newPayment paymentRec in)
readFromTable();

end

function deleteRow(event Event in)

for(i INT from 1 to allPayments.getSize())
if(allPayments[i].paymentID == selectedPayment.paymentID)

allPayments.removeElement(i);
exit for;

end
end

call dbService.deletePayment(selectedPayment) returning to recordRevised
onException serviceLib.serviceExceptionHandler;

end

function recordRevised(delPayment paymentRec in)
allPayments_ui.data = allPayments as any[];

end

function sampleData(event Event in)
call dbService.createDefaultTable() returning to updateAll

onException serviceLib.serviceExceptionHandler;
end

function selectedPayment_form_Submit(event Event in)

if(selectedPayment_form.isValid())
selectedPayment_form.commit();

Access a database with EGL Rich UI 79

end
end

function selectedPayment_form_Publish(event Event in)
selectedPayment_form.publish();
selectedPayment_form_Validate();

end

function selectedPayment_form_Validate()
selectedPayment_form.isValid();

end

function handleValidStateChange_selectedPayment(view Widget in, valid boolean in)

for (n int from selectedPayment_form.entries.getSize() to 1 decrement by 1)
entry FormField = selectedPayment_form.entries[n];

if(entry.controller.view == view)

if(valid)
// TODO: handle valid value

else
msg String? = entry.controller.getErrorMessage();
// TODO: handle invalid value

end
end

end
end

function clearAllFields(event Event in)
end

function formatCategory(class string, value string, rowData any in)
value = PaymentLib.getCategoryDesc(value as INT);

end
end

Related tasks

“Lesson 8: Add variables and functions to the Rich UI handler” on page 43
Add source code that supports the user interface.

Finished code for PaymentFileMaintenance.egl
The following code is the text of the PaymentFileMaintenance.egl file at the end of
lesson 9.
package handlers;

import com.ibm.egl.rui.mvc.Controller;
import com.ibm.egl.rui.mvc.FormField;
import com.ibm.egl.rui.mvc.FormManager;
import com.ibm.egl.rui.mvc.MVC;
import com.ibm.egl.rui.widgets.DataGrid;
import com.ibm.egl.rui.widgets.DataGridColumn;
import com.ibm.egl.rui.widgets.DataGridLib;
import com.ibm.egl.rui.widgets.Div;
import com.ibm.egl.rui.widgets.GridLayout;
import com.ibm.egl.rui.widgets.GridLayoutData;
import com.ibm.egl.rui.widgets.GridLayoutLib;
import com.ibm.egl.rui.widgets.TextLabel;
import egl.ui.rui.Event;
import egl.ui.rui.Widget;
import dojo.widgets.DojoButton;
import dojo.widgets.DojoCheckBox;
import dojo.widgets.DojoComboBox;
import dojo.widgets.DojoCurrencyTextBox;
import dojo.widgets.DojoDateTextBox;

80 Rational Business Developer: Access a database with EGL Rich UI

import dojo.widgets.DojoLib;
import dojo.widgets.DojoTextField;
import dojo.widgets.DojoTitlePane;
import libraries.PaymentLib;
import records.paymentRec;
import services.SQLService;

handler PaymentFileMaintenance type RUIhandler{
initialUI =[ui], onConstructionFunction = start,
cssFile = "css/PaymentClient.css", title = "PaymentFileMaintenance"}

dbService SQLService{@dedicatedService};

ui GridLayout{columns = 2, rows = 2, cellPadding = 4,
children =

[detailButtonLayout, editPane, buttonLayout, allPayments_ui]
};

allPayments paymentRec[0];

allPayments_ui DataGrid{
layoutData = new GridLayoutData{

row = 2, column = 1,
verticalAlignment = GridLayoutLib.VALIGN_TOP},

selectionListeners ::= cellClicked,
columns =[

new DataGridColumn{name = "category", displayName = "Type",
width = 90, formatters = [formatCategory]},

new DataGridColumn{name = "description", displayName = "Description",
width = 120},

new DataGridColumn{name = "amount", displayName = "Amount due",
width = 90, alignment = DataGridLib.ALIGN_RIGHT}

],
data = allPayments as any[],
selectionMode = DataGridLib.SINGLE_SELECTION};

buttonLayout GridLayout{
layoutData = new GridLayoutData{ row = 1, column = 1 },
cellPadding = 4, rows = 1, columns = 3,
children = [sampleButton, deleteButton, addButton] };

addButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 1 },
text = "Add", onClick ::= addRow };

deleteButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 2 },
text = "Delete", onClick ::= deleteRow };

sampleButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 3 },
text = "Sample", onClick ::= sampleData };

selectedPayment paymentRec;

editPane DojoTitlePane{
layoutData = new GridLayoutData{ row = 2, column = 2,

verticalAlignment = GridLayoutLib.VALIGN_TOP },
title = "Payment record",
isOpen=true, duration=1000, width = "350",
children =

[new Div {children = [selectedPayment_ui]}]
};

selectedPayment_ui GridLayout {
rows = 9, columns = 2, cellPadding = 4,
children = [selectedPayment_paymentId_nameLabel,

Access a database with EGL Rich UI 81

selectedPayment_paymentId_field,
selectedPayment_category_nameLabel,
selectedPayment_category_comboBox,
selectedPayment_description_nameLabel,
selectedPayment_description_field,
selectedPayment_amount_nameLabel,
selectedPayment_amount_textBox,
selectedPayment_fixedPayment_nameLabel,
selectedPayment_fixedPayment_checkBox,
selectedPayment_dueDate_nameLabel,
selectedPayment_dueDate_textBox,
selectedPayment_payeeName_nameLabel,
selectedPayment_payeeName_field,
selectedPayment_payeeAddress1_nameLabel,
selectedPayment_payeeAddress1_field,
selectedPayment_payeeAddress2_nameLabel,
selectedPayment_payeeAddress2_field] };

selectedPayment_paymentId_nameLabel TextLabel {
text="Key:" ,
layoutData = new GridLayoutData { row = 1, column = 1} };

selectedPayment_paymentId_field DojoTextField {
layoutData = new GridLayoutData { row = 1, column = 2},
readOnly = true };

selectedPayment_paymentId_controller Controller {
@MVC {model = selectedPayment.paymentId,

view = selectedPayment_paymentId_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_paymentId_formField FormField {
controller = selectedPayment_paymentId_controller,
nameLabel = selectedPayment_paymentId_nameLabel};

selectedPayment_category_nameLabel TextLabel {
text="Category:",
layoutData = new GridLayoutData { row = 2, column = 1} };

selectedPayment_category_comboBox DojoComboBox {
values = PaymentLib.categories,
layoutData = new GridLayoutData { row = 2, column = 2} };

selectedPayment_category_controller Controller {
@MVC {model = selectedPayment.category,

view = selectedPayment_category_comboBox as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_category_formField FormField {
controller = selectedPayment_category_controller,
nameLabel = selectedPayment_category_nameLabel};

selectedPayment_description_nameLabel TextLabel {
text="Description:" ,
layoutData = new GridLayoutData { row = 3, column = 1} };

selectedPayment_description_field DojoTextField {
layoutData = new GridLayoutData { row = 3, column = 2} };

selectedPayment_description_controller Controller {
@MVC {model = selectedPayment.description,

view = selectedPayment_description_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_description_formField FormField {
controller = selectedPayment_description_controller,
nameLabel = selectedPayment_description_nameLabel};

82 Rational Business Developer: Access a database with EGL Rich UI

selectedPayment_amount_nameLabel TextLabel {
text="Amount:",
layoutData = new GridLayoutData { row = 4, column = 1} };

selectedPayment_amount_textBox DojoCurrencyTextBox {
currency = "USD", value = selectedPayment.amount, width = 166,
errorMessage="Amount is not valid.",
layoutData = new GridLayoutData { row = 4, column = 2} };

selectedPayment_amount_controller Controller {
@MVC {model = selectedPayment.amount,

view = selectedPayment_amount_textBox as Widget},

validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_amount_formField FormField {
controller = selectedPayment_amount_controller,
nameLabel = selectedPayment_amount_nameLabel};

selectedPayment_fixedPayment_nameLabel TextLabel {
text="Fixed pmt:" ,
layoutData = new GridLayoutData { row = 5, column = 1} };

selectedPayment_fixedPayment_checkBox DojoCheckBox {
layoutData = new GridLayoutData { row = 5, column = 2} };

selectedPayment_fixedPayment_controller Controller {
@MVC {model = selectedPayment.fixedPayment,

view = selectedPayment_fixedPayment_checkBox as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_fixedPayment_formField FormField {
controller = selectedPayment_fixedPayment_controller,
nameLabel = selectedPayment_fixedPayment_nameLabel};

selectedPayment_dueDate_nameLabel TextLabel {
text="Due date:",
layoutData = new GridLayoutData { row = 6, column = 1} };

selectedPayment_dueDate_textBox DojoDateTextBox {
formatLength = DojoLib.DATEBOX_FORMAT_LONG,
value = selectedPayment.dueDate,
layoutData = new GridLayoutData { row = 6, column = 2} };

selectedPayment_dueDate_controller Controller {
@MVC {model = selectedPayment.dueDate,

view = selectedPayment_dueDate_textBox as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_dueDate_formField FormField {
controller = selectedPayment_dueDate_controller,
nameLabel = selectedPayment_dueDate_nameLabel};

selectedPayment_payeeName_nameLabel TextLabel {
text="Payee:",
layoutData = new GridLayoutData { row = 7, column = 1} };

selectedPayment_payeeName_field DojoTextField {
layoutData = new GridLayoutData { row = 7, column = 2} };

selectedPayment_payeeName_controller Controller {
@MVC {model = selectedPayment.payeeName,

view = selectedPayment_payeeName_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_payeeName_formField FormField {

Access a database with EGL Rich UI 83

controller = selectedPayment_payeeName_controller,
nameLabel = selectedPayment_payeeName_nameLabel};

selectedPayment_payeeAddress1_nameLabel TextLabel {
text="Address 1:" ,
layoutData = new GridLayoutData { row = 8, column = 1} };

selectedPayment_payeeAddress1_field DojoTextField {
layoutData = new GridLayoutData { row = 8, column = 2} };

selectedPayment_payeeAddress1_controller Controller {
@MVC {model = selectedPayment.payeeAddress1,

view = selectedPayment_payeeAddress1_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_payeeAddress1_formField FormField {
controller = selectedPayment_payeeAddress1_controller,
nameLabel = selectedPayment_payeeAddress1_nameLabel};

selectedPayment_payeeAddress2_nameLabel TextLabel {
text="Address 2:" ,
layoutData = new GridLayoutData { row = 9, column = 1} };

selectedPayment_payeeAddress2_field DojoTextField {
layoutData = new GridLayoutData { row = 9, column = 2} };

selectedPayment_payeeAddress2_controller Controller {
@MVC {model = selectedPayment.payeeAddress2,

view = selectedPayment_payeeAddress2_field as Widget},
validStateSetter = handleValidStateChange_selectedPayment};

selectedPayment_payeeAddress2_formField FormField {
controller = selectedPayment_payeeAddress2_controller,
nameLabel = selectedPayment_payeeAddress2_nameLabel};

selectedPayment_form FormManager {
entries = [selectedPayment_paymentId_formField,

selectedPayment_category_formField,
selectedPayment_description_formField,
selectedPayment_amount_formField,
selectedPayment_fixedPayment_formField,
selectedPayment_dueDate_formField,
selectedPayment_payeeName_formField,
selectedPayment_payeeAddress1_formField,
selectedPayment_payeeAddress2_formField] };

detailButtonLayout GridLayout{
layoutData = new GridLayoutData{ row = 1, column = 2 },
cellPadding = 4, rows = 1, columns = 2,
children = [saveButton, clearButton] };

clearButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 1 },
text = "Clear", onClick ::= clearAllFields };

saveButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 2 },
text = "Save", onClick ::= selectedPayment_form_Submit };

function start()
// allPayments_ui.data =[
// new paymentRec{category = 1, description = "test01",
// amount = 100.00, payeeName = "Someone"},
// new paymentRec{category = 2, description = "test02", amount = 200.00},
// new paymentRec{category = 3, description = "test03", amount = 300.00}];
readFromTable();

end

84 Rational Business Developer: Access a database with EGL Rich UI

function cellClicked(myGrid DataGrid in)
selectedPayment = allPayments_ui.getSelection()[1] as paymentRec;
selectedPayment_form.publish();
selectedPayment_category_comboBox.value =

PaymentLib.getCategoryDesc(selectedPayment.category);
end

function readFromTable()
call dbService.getAllPayments() returning to updateAll

onException serviceLib.serviceExceptionHandler;
end

function updateAll(retResult paymentRec[] in)
allPayments = retResult;
allPayments_ui.data = allPayments as any[];

end

function addRow(event Event in)
call dbService.addPayment(new paymentRec) returning to recordAdded

onException serviceLib.serviceExceptionHandler;
end

function recordAdded(newPayment paymentRec in)
readFromTable();

end

function deleteRow(event Event in)

for(i INT from 1 to allPayments.getSize())
if(allPayments[i].paymentID == selectedPayment.paymentID)

allPayments.removeElement(i);
exit for;

end
end

call dbService.deletePayment(selectedPayment) returning to recordRevised
onException serviceLib.serviceExceptionHandler;

end

function recordRevised(delPayment paymentRec in)
allPayments_ui.data = allPayments as any[];

end

function sampleData(event Event in)
call dbService.createDefaultTable() returning to updateAll

onException serviceLib.serviceExceptionHandler;
end

function selectedPayment_form_Submit(event Event in)
selectedPayment_category_comboBox.value =

PaymentLib.getCategoryNum(selectedPayment_category_comboBox.value);

if (selectedPayment_form.isValid())
selectedPayment_form.commit();
selectedPayment_category_comboBox.value =

PaymentLib.getCategoryDesc(selectedPayment_category_comboBox.value);

// update allPayments with new version of selectedPayment
for(i INT from 1 to allPayments.getSize())

if(allPayments[i].paymentID == selectedPayment.paymentID)
allPayments[i] = selectedPayment;
exit for;

end
end

Access a database with EGL Rich UI 85

call dbService.editPayment(selectedPayment)
returning to recordRevised
onException serviceLib.serviceExceptionHandler;

end
end

function selectedPayment_form_Publish(event Event in)
selectedPayment_form.publish();
selectedPayment_form_Validate();

end

function selectedPayment_form_Validate()
selectedPayment_form.isValid();

end

function handleValidStateChange_selectedPayment(view Widget in, valid boolean in)

for (n int from selectedPayment_form.entries.getSize() to 1 decrement by 1)
entry FormField = selectedPayment_form.entries[n];

if(entry.controller.view == view)

if(valid)
// TODO: handle valid value

else
msg String? = entry.controller.getErrorMessage();
// TODO: handle invalid value

end
end

end
end

function clearAllFields(event Event in)
saveID INT = selectedPayment.paymentID; // retain the key
selectedPayment = new PaymentRec{};
selectedPayment.paymentID = saveID;
selectedPayment_form.publish();

end

function formatCategory(class string, value string, rowData any in)
value = PaymentLib.getCategoryDesc(value as INT);

end
end

Related tasks

“Lesson 9: Complete the code that supports the user interface” on page 52
Next, you will complete the single-row layout, as well as the code that supports
the Clear and Save buttons.

86 Rational Business Developer: Access a database with EGL Rich UI

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2009, 2012 87

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

88 Rational Business Developer: Access a database with EGL Rich UI

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. enter the year or year, year.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at http://www.ibm.com/
legal/copytrade.html.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices 89

90 Rational Business Developer: Access a database with EGL Rich UI

����

Printed in USA

	Contents
	Access a database with EGL Rich UI
	Introduction
	Lesson 1: Plan the application
	Sketch the interface
	Consider the application flow
	Identify the application structure
	Lesson checkpoint

	Lesson 2: Connect to a new Derby database
	Create an SQL database connection
	Switch to the Data perspective
	Create a table
	Lesson checkpoint

	Lesson 3: Set up the projects and use the EGL SQL retrieve feature
	Create the PaymentService project
	Create the PaymentClient project
	Edit the build descriptor for the PaymentService project
	Use the EGL SQL retrieve feature to create a Record part
	Lesson checkpoint

	Lesson 4: Create the Rich UI handler
	Create the initial layout
	Create a data grid to hold the content of a set of database rows
	Add the first set of buttons
	Add a variable and layout to handle a single row
	Add the second set of buttons
	Lesson checkpoint

	Lesson 5: Create the service
	Create a Service part
	Lesson checkpoint

	Lesson 6: Add code for the service functions
	Add a payment record
	Read all database records
	Replace a record
	Delete a record
	Create test data
	Lesson checkpoint

	Lesson 7: Create a library of reusable functions
	Create a Library part
	Create the categories array
	Create the get functions for categories
	Lesson checkpoint

	Lesson 8: Add variables and functions to the Rich UI handler
	Add code to support the data grid
	Code the function that responds when the user clicks the data grid
	Format column values in the grid
	Test the formatting of the data grid and the transfer of data to the single-record layout
	Comment the prototype data
	Declare a service-access variable
	Create functions that use the service-access variable to invoke the service
	Update the start function to initialize the data grid with database rows
	Complete the callback functions
	Test the interface
	Lesson checkpoint

	Lesson 9: Complete the code that supports the user interface
	Complete the layout that displays a single row
	Test the new code
	Complete the code for the second set of buttons
	Test the new code
	Lesson checkpoint

	Lesson 10: Install Apache Tomcat
	Download and access the server
	Lesson checkpoint

	Lesson 11: Deploy and test the payment application
	Edit the deployment descriptor
	Set the data source for the new project
	Deploy the Rich UI application
	Run the generated code
	Lesson checkpoint

	Summary
	Resources
	Code for PaymentFileMaintenance.egl after lesson 4
	Finished code for SQLService.egl after lesson 6
	Finished code for PaymentLib.egl after lesson 7
	Code for PaymentFileMaintenance.egl after lesson 8
	Finished code for PaymentFileMaintenance.egl

	Appendix. Notices
	Trademarks

