
Rational Business Developer

Tutorial: Introducing EGL, a quick-start
guide
Version 8.5

���

Rational Business Developer

Tutorial: Introducing EGL, a quick-start
guide
Version 8.5

���

Note
Before using this information and the product it supports, read the information in “Notices,” on page 53.

This edition applies to version 8.5 of Rational Business Developer and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introducing EGL 1
Introduction 1
Lesson 1: Setting up EGL 5

Preparing your workspace 8
Lesson 2: Create the projects and import the database 9

Installing the server (WebSphere Application
Server) 9
Installing the server (Tomcat) 10
Create the EGL web project (either server) . . . 12
Import the database 15
Lesson checkpoint 17

Lesson 3: Set up the database connection 18
Creating the connection 19
Lesson checkpoint 23

Lesson 4: Create parts to access a database 24
Create parts from the database connection . . . 24
Lesson checkpoint 26

Lesson 5: Create a web page. 27
Create the JSP file from a template 28
Preview the web page on the server 30

Lesson 6: Add data to the page 33
Add a record array to the Page Data view and
the JSF Handler 33

Display the data on the web page 35
Call a function from the EGL library 37
Test the page 40

Lesson 7: Pass a parameter to another page. . . . 41
Add the link to allcustomers.jsp 41
Add the parameter to the link 42

Lesson 8: Create an update page 44
Create the updatecustomer.jsp file 44
Add an EGL record and display it on the page 44
Retrieve the data 46
Update the record in the database 48
Test the finished site 50
You have completed the tutorial 50

Summary 50
Resources 51

Completed allcustomers.egl file after lesson 6 . . 51
Completed updatecustomer.egl file after lesson 8 52

Appendix. Notices 53
Trademarks 55

© Copyright IBM Corp. 2000, 2012 iii

iv Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

Introducing EGL

In this tutorial, you will learn how to build a simple dynamic web site using EGL.
This site has two pages: one to display a list of records in a database and another
to allow users to change the data from one of those records.

Enterprise Generation Language (EGL) is a development environment and
programming language that you can use to write full-function applications quickly,
freeing you to focus on the business problem your code is addressing rather than
on software technologies.

Learning objectives

In this tutorial, you learn how to complete these tasks:
v Create and configure an EGL project
v Create EGL source code that accesses a data source
v Create two simple web pages that access data in a relational database
v Pass a parameter from one web page to another
v Test an application on a web application server

Time required

90 minutes

Introduction
In this tutorial, you will learn how to build a simple dynamic web site using EGL.
This site has two pages: one to display a list of records in a database and another
to allow users to change the data from one of those records.

This tutorial might require some optionally installable components. To ensure that
you installed the appropriate optional components, see the System requirements
list.

Enterprise Generation Language (EGL) is a development environment and
programming language that you can use to write full-function applications quickly,
freeing you to focus on the business problem your code is addressing rather than
on software technologies.

Learning objectives

In this tutorial, you learn how to complete these tasks:
v Create and configure an EGL project
v Create EGL source code that accesses a data source
v Create two simple web pages that access data in a relational database
v Pass a parameter from one web page to another
v Test an application on a web application server

© Copyright IBM Corp. 2000, 2012 1

Time required

To complete this tutorial, you will need approximately 90 minutes. If you decide to
explore other facets of EGL or dynamic web sites while working on the tutorial, it
could take longer to finish.

Skill level

Introductory

System requirements

To complete this tutorial, you need to have the following tools and components
installed:
v Enterprise Generation Language (EGL)
v Either WebSphere® Application Server or Apache Tomcat server. The instructions

give you the option of using either server; and they will include instructions for
installing Apache Tomcat if you do not have WebSphere Application Server.

Prerequisites

You will be best prepared to complete this tutorial if you have programmed in any
third- or fourth-generation language such as COBOL, RPG, or a client/server
language, and if you are familiar with these topics:
v Terms used with relational databases, such as table, row, and column
v Basic web-related terms such as browser, web page, and web application server

Tutorial application

In this tutorial, you will create an EGL web project and import a sample database.
You will then create a simple EGL web application that works with this database.
The first of the two web pages in your application shows a list of customers from
data stored in the database:

2 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

The second web page shows details about one customer and allows users to
change those details:

Introducing EGL 3

EGL is the language that you use to manage the interaction between users and the
database:
v After retrieving data from the database, the functions that you write in EGL can

apply business rules as appropriate.
v When preparing to present data to users, those functions can alter characteristics

of the web-page display, even choosing which page to present.
v On accepting the users' responses, those functions can apply additional business

rules before storing the data.

Each of the two pages pictured above are controlled by EGL logic parts called
Handlers, which control the runtime interaction with a user interface. In this case,
the Handler parts are JSF Handler parts, Handler parts specialized to control a
single web page at run time. A JSF handler's function is invoked by a user click,
and the function in turn invokes a library function that you create. The result is
that a user working at a web browser can view and alter data stored in a database.

As shown in this tutorial, EGL promotes code reuse in several ways:

4 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

v First, EGL lets you define DataItem parts, which are a simple type of EGL data
structure. A DataItem part is based on a single primitive data type, with any
number of added EGL properties. For example, if your application uses many
telephone numbers, you can define a DataItem to represent a telephone number.
This DataItem would use a numeric primitive as its base and have properties
that define its exact length and output formatting. You can then create many
variables or other data parts in your code based on that single DataItem part.
DataItem parts are similar to entries in a data dictionary, with each part
including details on data size, type, formatting rules, input-validation rules, and
display suggestions. You define a DataItem once and can use it as the basis for
any number of variables or record fields.

v Second, EGL lets you define Record parts, which are used as the basis for
structured data. A Record part is a collection of other data parts (such as
DataItem parts or primitives) that are organized into a hierarchical structure.
This kind of data part is often used to create variables that access a file or
relational database.
In this tutorial, you create a record part that represents contact information for a
customer. This Record part contains data items representing information about a
customer, such as first and last name, telephone number, and address. Also, this
Record part is specialized, or stereotyped, as an sqlRecord part, to work directly
with the database.
A Record part can reference a series of DataItem parts, as shown in this tutorial.
If you organize your data in this way, you can realize a more consistent
definition of your data parts and can increase efficiency over time. Your changes
to a single DataItem part will cause a change in every variable that accesses the
related, stored data.

v Third, EGL lets you create source libraries, which contain functions, data parts,
and constants that provide a basis for logic reuse and for modular programming
based on proven code.

EGL also provides the Data Access Application wizard, which you will use to
create the elementary code necessary to access a relational database. This wizard
creates EGL parts that have these specific purposes:
v Record parts that reflect the characteristics of each database table.
v DataItem parts that reflect the characteristics of each table column.
v Source libraries that include functions to create, read, update, and delete rows in

the database.
The library functions include parameters that are based on the Record parts
created by the wizard. You can start to build a robust application just by
invoking those functions with arguments that are based on the same Record
parts.

Lesson 1: Setting up EGL
In this lesson, you will prepare to use EGL by setting up your workspace and
enabling the EGL capability.

Before you can begin this tutorial, you must make sure that your system is
configured to use EGL. You will need to do the steps in this lesson only once, even
if you create many EGL projects. These steps make sure that EGL is installed and
enabled on your system.

The workbench hides options that you are not using, based on which capabilities
are enabled. For example, when the EGL Development capability is disabled,

Introducing EGL 5

EGL-related projects and file types do not appear in the File > New menu. In this
way, capabilities keep the workbench from becoming cluttered with too many
options. For more information about EGL capabilities, see the help topic Enabling
EGL capabilities.

Follow these steps to enable EGL:

Show Me
1. Optionally, you may want to use a separate workspace while working on the

tutorial so you do not interfere with any of your other projects. If you want to
use a different workspace, follow these optional steps:
a. In the workbench, click File > Switch Workspace. The Workspace Launcher

window opens.
b. Enter a new workspace location in the Workspace field.
c. Click OK. The workbench reopens using the new workspace location. You

can switch workspace locations at any time, and you can have as many
workspace locations as you want.

2. From the menu bar, click Window > Preferences. The Preferences window
opens.

3. At the left side of the Preferences window, expand General and click
Capabilities.

4. On the Capabilities list, click Advanced. The Capabilities page looks like the
following example. You may have other capabilities available, depending on the
products and options you have installed.

6 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

5. In the Advanced Capabilities Settings dialog, expand EGL Developer and select
the check boxes for all the EGL capabilities you need. For this tutorial you need
only the EGL Core Language and EGL JSF capabilities.

Introducing EGL 7

6. Click OK.

You have enabled the necessary EGL capabilities to create EGL-related files and
projects. There might be many other capabilities available on the capabilities page.
You do not need to enable any other capabilities for this tutorial, but you other
tasks may require other capabilities.

Preparing your workspace

To follow this tutorial easily, open the web perspective and close the Welcome page
and any open files from other projects. To open the web perspective, follow these
steps:
1. Close the Welcome if it is open.
2. In the workbench, click Window > Open Perspective > Other. The Open

Perspective window opens.
3. Click Web.
4. Click OK.

8 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

The web perspective loads in the workbench, showing the views that you need to
complete this tutorial. You can go to any other perspective by clicking the Open a
perspective button:

You can also click Window > Open Perspective > Other and click a perspective. If
at any time you have closed or resized the views, you can click Window > Reset
Perspective to restore the perspective to its defaults.

Lesson 2: Create the projects and import the database
In this lesson, you will create projects to hold your EGL application and add a
database to use.

In this tutorial, you will spend most of your time working with files in an EGL
web project. This project will contain the EGL code, web pages, and sample
database that make up the logic, interface, and data for the application. Before you
begin creating projects, however, you need to decide which server you will use in
the tutorial.

If you choose WebSphere Application Server, you will need an Enterprise
Application Resource project (EAR project) in addition to the EGL web project. The
EAR project contains information about deploying an application in the J2EE
framework, including how to run it on a server and how to connect it to data
sources. An EAR project can contain one or more other projects, meaning that the
EAR project contains information on deploying those projects. The projects
contained by an EAR project are called modules. In this case, your EGL web project
will be a module within the EAR project. In a large application, an EAR project
could have many different types of modules doing different jobs.

If you choose Apache Tomcat, however, you will not need an EAR project, and in
fact, you will not be able to use an EAR project. WebSphere Application Server is a
full-featured application server that can run each of the types of modules in the
J2EE framework, including web projects (like your EGL web project), EAR projects,
and Enterprise JavaBean (EJB) projects. On the other hand, Tomcat is a web server,
designed to run only web projects; it does not support other types of J2EE projects
such as EAR projects or EJB projects.

The tutorial application will run the same way regardless of which server you use,
but you should be aware of the differences between the servers. If you use
WebSphere Application Server, you will create an EAR project and put the
database connection information in that EAR project. If you use Tomcat, you will
put the database connection information directly into the EGL web project.

For the rest of the tutorial, be aware of sections that apply to WebSphere
Application Server or to Apache Tomcat. If the instructions refer to projects, files,
or options that you do not have, check to see that you are in the correct section for
your server.

Installing the server (WebSphere Application Server)

WebSphere Application Server typically requires a separate installation process
from your EGL product. You must install WebSphere Application Server into the
same package group that contains your EGL product. If you can see WebSphere
Application Server in the Servers view, located by default at the bottom of the

Introducing EGL 9

workbench, then the product is installed. If not, you must buy the product or use
Tomcat instead.

Installing the server (Tomcat)

Installing Tomcat is usually as easy as downloading and unzipping the server files
and then telling the workbench where to find them. Follow these steps to install
and configure Tomcat 6.0:
1. In the Servers view, located by default at the bottom of the workbench,

right-click anywhere in the blank space, then click New > Server.
2. In the Define a New Server window, expand IBM if necessary and select the

version of Tomcat that is installed on your system, or that you wish EGL to
install on your system for you. If you select a version with debug support, you
can step through your programs in the EGL debugger.

10 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

3. In the Tomcat Server window, you have an option:
v If you have already installed Tomcat to your system, browse to the Tomcat

installation directory.
v If you have not yet installed Tomcat, click Download and Install and follow

the instructions on your screen. Repeat this step when you have installed the
software.

Introducing EGL 11

4. Click Finish. The new server is displayed in the Servers window.
5. Leave the EGL Workbench for a moment and use Windows Explorer to browse

to the folder where you installed Tomcat. Look for the lib folder inside this
folder. For example, the path might look like this:
D:\Program Files\Apache\lib

Make sure this folder contains a file named derby.jar. If not, copy the file into
the lib folder from the following folder in your installation directory:
installation_directory\plugins\org.apache.derby.core_10.1.2.1

Create the EGL web project (either server)

Because your project will have a web page interface, you need to create an EGL
web project. An EGL web project combines the features of a dynamic web project
and an EGL project. If you are using WebSphere Application Server, you will also
create an EAR project.

Show Me
1. Click the New EGL Project icon in the top left of the workbench.

12 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

EGL displays the New EGL Project wizard.
2. Alternatively, you can click File > New > Other, then in the Select a Wizard

dialog, expand the EGL folder and click EGL Project, then click Next.
EGL displays the New EGL Project wizard.

3. In the Project name field, enter this name for your project:
EGLWeb

4. Under EGL Project Types, click Web Project. Click Next.

Introducing EGL 13

5. Click Next.
6. In the Target Runtime field, select the name of the application server that you

verified at the beginning of this lesson.
7. Under Build Descriptor Options, make sure that Create a new build

descriptor is selected.
8. Select the Show Advanced Settings check box and click Next.
9. Leave the Use the default location for the project check box selected.

10. If you are using WebSphere Application Server, the Add project to an EAR
check box should be selected, and the name EGLWebEAR should appear for the
EAR project name. Accept both of these defaults.

11. You do not need to change anything in the Modify project facets section.
12. Clear the Create an EGL deployment descriptor check box. EGL deployment

descriptor files contain information on deploying and using web services. This
tutorial does not connect to any web services.

14 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

13. Click Finish.
14. You may see a message asking if you want to switch to the J2EE perspective.

If you see this message, click No.

The new project or projects are created in your workspace. The workbench may
display a Technology Quickstarts window with Help information. You can close
this window.

Import the database

This tutorial includes a sample Derby database to be used in your application. In
these steps, you add this database to your project. For more information on
Apache Derby, an open-source relational database, see http://db.apache.org/
derby/.
1. Click the following link and download the sample database to a temporary

folder on your computer, such as your desktop:
Sample database
It does not matter where you save the database, as long as you can find it
again later.

Introducing EGL 15

http://db.apache.org/derby/
http://db.apache.org/derby/

Alternately, you can find this sample database in your product installation
directory in the following location:
shared_resources/plugins/com.ibm.etools.egl.tutorial0001.doc_version/

resources/EGLDerbyDB.zip

shared_resources
The shared resources directory for your product, such as C:\Program
Files\IBM\SDP70Shared on a Windows system or /opt/IBM/SDP70Shared on
a Linux system. If you installed and kept a previous version of an IBM®

product containing EGL before installing your current product, you may
need to specify the shared resources directory that was set up in the earlier
installation.

version
The installed version of the plugin. If more than one is present, use the one
with the most recent version number, unless you have a reason to use an
older version.

2. In the workbench, click File > Import.
3. In the Import window, expand General, click Archive File, then click Next.
4. In the Archive file window, From archive file field, enter the location of the file

you just downloaded. You can use the Browse button to find it.
5. At the bottom of the wizard, next to the Into folder field, click the Browse

button.
6. In the Import into folder window, expand EGLWeb, click the WebContent

folder to select it, then click OK. This folder is where the database will be
added to your project. The Import window looks like this:

16 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

7. Click Finish.

The database is added to your workspace in the WebContent folder of the EGLWeb
project. Do not edit any of the files in the database directly. Later, you will create
an EGL application to view and edit this database.

Lesson checkpoint
In this lesson, you created one or two projects, depending on your server. You can
explore the project or projects in the Project Explorer view:
v The EGLWeb project will contain the EGL code, web pages, and other files

associated with the application. In particular, you will work with the EGLSource
and WebContent folders which will contain the EGL source code files and the
web pages for the application, respectively.

v The EGLWebEAR project is the Enterprise Application Resource for the EGLWeb
project. You have this project only if you are using WebSphere Application
Server.

The Enterprise Explorer view looks like this if you are using WebSphere
Application Server:

Introducing EGL 17

The Enterprise Explorer view looks like this if you are using Tomcat:

Lesson 3: Set up the database connection
In this lesson, you will connect your project to the database that you imported in
the previous lesson.

18 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

Because the goal of this tutorial is not to teach you how to connect to a database,
this lesson will not explain the process in detail. In short, you will set up a
database connection that allows your EGL application to connect to the database
both when you design the application (the design-time connection) and when you
run the application on the server (the run-time connection).

As explained in a previous lesson, WebSphere Application Server uses database
connection information in the EAR project. Tomcat uses database connection
information in the web project. Thus, the database connection steps differ for each
server.

Creating the connection

Regardless of which server you are using, you must create a design-time
connection to the database. If you are using WebSphere Application Server, EGL
automatically creates a matching run-time connection as well. If you are using
Tomcat, additional steps later in this lesson will guide you through associating this
connection with Tomcat. In the next lesson, you will also use this design-time
connection to create starter EGL code.

Show Me
1. In the Enterprise Explorer view, right-click the EGLWeb project and then click

Properties.
2. In the Properties window, click EGL Runtime Data Source.
3. On the EGL Runtime Data Source page, select Load values from a data tools

connection and then click New. The New Connection window opens.
4. In the Connection Profile window, under Connection profile types, click

Derby.
5. For Name, type the following name:

EGLDerbyDB

6. You can leave the description blank. Click Next.
7. From the Drivers list, leave the default BIRT SampleDb Derby Embedded

Driver.
8. Under Properties, in the Database location field, click Browse and navigate to

the following folder:
workspace-location/EGLWeb/WebContent/EGLDerbyDB

workspace-location is the full path to your current workspace. Click OK.
9. Clear the User name field and leave the Password field blank. You do not

need a user name or password for this database.
10. Accept the default value for URL. You can clear the check box for Create

database (if required) as the database already exists. Make sure Connect
when the wizard completes is selected.

11. Click Test Connection. If all information is correct, the New Connection
window should look like the following example, with your own workspace
and location information in the Database location field:

Introducing EGL 19

12. Click OK to close the test connection window.
13. Click Finish. The new connection is created and the necessary information for

the connection is filled into the fields below:

20 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

Note that EGL has given this connection a JNDI name, which is an identifier
for the connection. By default, the JNDI name is jdbc/EGLDerbyDB, based on
the name of the database. The application will use this name to access the
database connection at run time.

14. Click OK.
15. You may see a window asking if you want to update the information in the

default build options for this project. If you see this window, click Yes.
16. In the Project Explorer view, expand the EGLWeb project and the EGLSource

folder. Open the build file for the project by double-clicking the EGLWeb.eglbld
file in the Project Explorer view. The build file opens in the build parts editor.

17. Check to see that the EGL Runtime Data Source window has set the build
descriptor options based on the connection information. The build descriptor
options should look like this for WebSphere Application Server:

Introducing EGL 21

For the database connection to work, the following options need to be set:

dbms
This build descriptor option indicates the type of database, in this case
DERBY.

sqlDB
This build descriptor option indicates the connection URL, or a string that
the server uses to find the database. The format of the connection URL
differs for each type of database, but for Derby, the format is the
connection protocol (in this case JDBC), a colon separator, the type of
database (Derby), another colon separator, the path to the database on
disk, and any parameters for the connection. In this case, the connection
URL is something like the following example, with the path to your
database in place of D:\MyData\workspace_jsf_tutorial:
jdbc:derby:D:\MyData\workspace_jsf_tutorial\EGLWeb\WebContent\EGLDerbyDB

sqlValidationConnectionURL
This build descriptor option sets a connection URL to be used to validate
the connection to the database. In this case, as in most cases, this option is
the same as sqlDB.

sqlJDBCDriverClass
This build descriptor option sets the name of the database driver, the
program used to access the database. The New Connection window
retrieved this name from the derby.jar file:
org.apache.derby.jdbc.EmbeddedDriver.

22 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

sqlJNDIName
The JNDI name that represents the connection at run time.

18. If the build descriptor options have been set based on the information you
filled into the New Connection window, close the build descriptor without
making any changes. If the build descriptor options have not been set, follow
these steps to set them:
a. In the Load DB options using Connection list, select your EGLDerbyDB

connection. Several of the options are set, except for the sqlJNDIName
option.

b. Set the sqlJNDIName option to the following JNDI name, exactly as
shown:
jdbc/EGLDerbyDB

Note: To open the sqlJNDIName option for editing, click twice slowly in
the Value column next to that option. Also, you can click three
times quickly in the Value column.

The values of the build descriptor options now match those described
above.

c. Save and close the build descriptor.
d. Optionally, set the EGL Runtime Database Connection window to make

these changes in the future by enabling the associated preference. Click
Window > Preferences and then click EGL > Default Build Descriptor.
Under Update default build descriptor options for project when runtime
data source is modified, select Always to update the build descriptor
options automatically, or select Prompt to give you the option. This
preference takes effect the next time you use the EGL Runtime Database
Connection window.

Lesson checkpoint
In this lesson, you set up a database connection for the project.

When you used the EGL Runtime Data Source page of the project's Properties
window, you first created a design-time connection to the database using the
workbench's data tools. Then, if you were using WebSphere Application Server,
EGL used the information in this design-time connection to create a matching
connection to be used at run time. In this case, the changes EGL made to your
projects include:
v EGL set the values of certain database-related build descriptor options, as

explained earlier in the lesson.
v EGL created a JNDI name to use as a name for the connection. By default, the

JNDI name created for your project is jdbc/EGLDerbyDB, based on the name of
the database.

v EGL added a resource reference to that JNDI name in the EGLWeb project's web
deployment descriptor, WebContent\WEB-INF\web.xml. Now the EGLWeb project
can use the data source defined in the EAR project, using the JNDI name. The
editor looks very different depending on the version of the application server
you use. The following example shows the editor for WebSphere Application
Server Version 8.

Introducing EGL 23

If you are using Tomcat, your project doesn't have an EAR project, so EGL added a
contexts file to the web project that gives the information for the connection. The
contexts file performs essentially the same task as the information in the
deployment descriptors: it associates the JNDI name with the location of the
database and other information that the server needs to connect to it. The
connection is valid only for this project.

Note: From this point forward, most of the steps are the same regardless of which
server you are using.

Lesson 4: Create parts to access a database
In this lesson, you will create the data and logic parts that allow you to access the
sample database.

The EGL Data Access Application wizard creates the EGL code necessary to access
a database. Although you can customize the code when the wizard runs, typically
the wizard creates the following EGL parts:
v For each table you select from the database, the wizard creates a record part

representing that table. This Record part is a series of fields, each representing
the columns in the table.

v For each table you select from the database, the wizard creates a library part.
This library contains EGL functions that you can use to read from or write to the
database.

v For each row in the database tables you select, the wizard creates a DataItem
part. These DataItem parts represent the columns in the database. The Record
parts created by the wizard are made of a sequence of these DataItems.

Create parts from the database connection

In the previous lesson, you created a connection to the database. From that
connection, EGL can create the necessary parts to access the database:

Show Me

24 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

1. Click File > New > Other. The New window opens.
2. Expand EGL and click Data Access Application.
3. Click Next.
4. In the Define project settings window, make sure EGLWeb is displayed in the

Project Name list.
5. In the Database Connection list, select the EGLDerbyDB connection that you

created in the previous lesson. You might be prompted for a User ID and
password for the database. If so, enter any name and password; the database
does not require a password, but the workbench data tools might expect a
password. You have established a connection to the database. All of the tables
in the database are listed under Table Name at the bottom of the wizard. You
will not create data parts for all of these tables because some contain only
metadata.

6. Under Select Tables, select the check boxes next to the following tables only:
v EGL.CUSTOMER
v EGL.ITEM
v EGL.ORDERITEM
v EGL.ORDERS
v EGL.SITEUSER
v EGL.STATETABLE

The EGL Data Access Application wizard looks like this:

Introducing EGL 25

7. Make sure the Create web pages check box is clear. If this check box is
selected, EGL creates web pages directly from the database tables. This feature
can save time by creating a simple web data access application for you, but
that would defeat the purpose of this tutorial.

Note: Do not click Finish yet. You must change one more setting in this
wizard.

8. Click Next to move to the Define the Fields page. This page lets you add key
fields to the database tables. Don't change any settings on this page; the
database already has a key field in each table.

9. Click Next again to move to the Define project creation options page.
10. On the Define project creation options page, select the Qualify table names

with schema check box.
11. Click Finish.

Lesson checkpoint
The Data Access Application wizard has created several EGL artifacts in your
EGLWeb project.

First of all, there are several new EGL packages in the EGLSource folder of your
EGLWeb project, including eglderbydb.data, eglderbydb.access, and

26 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

eglderbydb.primitivetypes.data. Packages work just like folders: they contain
your source code files and organize them into meaningful groups. In this case, the
eglderbydb.data package holds the records, the eglderbydb.access package holds
the libraries, and the eglderbydb.primitivetypes.data package holds the
DataItems.

Here are some of the files that will be useful for this tutorial:

eglderbydb.primitivetypes.data.DataDefinitions.egl
This file lists all of the DataItems that make up the Record parts in the
other files. For example, the customer ID number given to each customer
record in the database is represented by a DataItem named
CUSTOMER_ID:
dataitem CustomerId INT end

In this case, the ID number field is based on the integer primitive type.
The DataItem can have other properties to specify details like its valid
range of values and how it should be formatted in the UI.

eglderbydb.data.Customer.egl
This file contains one of the records created from the database tables, in
this case the Customer table. This record contains fields to hold
information about a customer, such as the customer's first name, last name,
address, telephone number, and ID number. The record definition looks
like this:
record Customer type sqlRecord {

tablenames=[["EGL.CUSTOMER"]],
fieldsMatchColumns = yes,
keyItems=[CUSTOMERID]

}

CUSTOMERID CUSTOMERID {column="CUSTOMERID"};
FIRSTNAME FIRSTNAME {column="FIRSTNAME", sqlVariableLen=yes, maxLen=30, isSqlNullable=yes};
LASTNAME LASTNAME {column="LASTNAME", sqlVariableLen=yes, maxLen=30, isSqlNullable=yes};
...

end

eglderbydb.access.CustomerLib.egl
This file contains an automatically-generated library of functions that you
can use to access the Customers table of the database. For example, the
first function is AddCustomer, which adds a new customer record to the
database. There are other functions in this library that retrieve, update, and
delete records in the database, and each table has similar functions in a
separate library. You will use these functions later in the tutorial.

Lesson 5: Create a web page
In this lesson, you will create a web page in the form of a Faces JSP file. In the
next lesson, you will add data to this page using the data parts and functions you
created in the previous lesson. When the page is finished, it will show a list of
every record in the database.

This tutorial uses JavaServer Faces (JSF) technology. JSF offers a framework for
developing user interfaces for web applications. The web pages in JSF are
JavaServer pages (JSPs). JSPs contain JavaServer controls that you can use to
embed Java code into the page, providing dynamic content.

Introducing EGL 27

Create the JSP file from a template

Show Me
1. In the Enterprise Explorer view, right-click the WebContent folder in the

EGLWeb project, then click New > Web page. It is important to select the
place where you want to put new files; otherwise the new files might not
appear in the place you expect them to. The New Web Page window opens.

2. In the File Name field, type this file name, including the extension:
allcustomers.jsp

3. Make sure that the Folder field lists the /EGLWeb/WebContent folder.
4. In the Template list, expand Sample Templates and click Family A (no

navigation). The simple web page templates in this category are shown in the
Preview box.

5. In the Preview box, click the A_gray.htpl template.
6. Make sure the Link page to template check box is selected.

The New Web Page window looks like this:

7. Click Finish. The new Faces JSP file opens in the editor.
8. Click Design to display the design view in the full editor window. You might

see the JSF Trace view to the right of the editor window. Eclipse creates this
view by default, sharing space with the Palette view and others. You do not
need the JSF Trace view for this tutorial. You can close it by clicking the X in
the tab.

28 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

Typically, you want to display the Palette in this view. You might need to click
the small double arrow and select the Palette view from a menu:

9. In the new allcustomers.jsp file, remove the default text that says "Place
your page content here" and replace it with the following text:
List of all customers

10. Press Enter three times to insert blank lines. These lines leave room for you to
add content to this page in the next lesson.
The page looks like this:

Introducing EGL 29

11. Save the file.

Preview the web page on the server

No data from the database is on the web page yet, but you can run the JSP file on
the web application server and see how the page looks so far. This is an important
step; it ensures you have the application server working properly before the page
becomes complicated.
1. Make sure your application server is started. The server name should be visible

in the Servers view (located by default under the Editor view). The server
should show the words Started and Synchronized in brackets after the name.
If not, right-click the server name and click Start. The start process might take a
few minutes.

2. In the Enterprise Explorer view, expand the EGLWeb/WebContent folder if
necessary. Right-click the allcustomers.jsp file and click Run As > Run on
Server. The Define a new server window opens.

3. In the Define a New Server window, select your server.
4. Select the Always use this server when running this project check box.

30 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

5. Click Finish.

The web page opens in a web browser inside the workbench. The page looks like
this:

Introducing EGL 31

If you see an HTTP 404 error message (page not found), restart the server and
refresh the browser window.

If you prefer to use an external web browser, you can copy the URL from the web
browser inside the workbench and paste that URL into the external browser's
address field.

Eclipse may again display the JSF Trace view. You can permanently remove the
view by scrolling down until you find a link that says Do not open it again and
clicking that link.

32 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

This page does not have any data on it yet. In the next lesson, you will add data to
this page using EGL.

Lesson 6: Add data to the page
In this exercise, you will add data from the database included with this tutorial
onto the web page that you created in the previous exercise.

This task has the following parts:
v You add fields to the Page Data view, associating those fields with the web page.
v You place fields from the Page Data view onto the related web page.
v You add a variable (in this case, an array of records) to an EGL JSF handler,

which you can think of as the code that stands behind the runtime process. The
JSF handler is an example of page code because it can do any of these tasks:
– Assign data values for submission to the JSP file. Those values are ultimately

displayed on the web page.
– Manipulate the data returned from the user or from a called program.
– Forward control to another JSP file.

In this lesson you will also use the EGL content assist feature, a tool that you can
use to complete programming statements without having to type the entire
statement.

Add a record array to the Page Data view and the JSF Handler

Show Me
1. If the allcustomers.jsp file is not open, open it by double-clicking it in the

Enterprise Explorer view.

Introducing EGL 33

2. Find the Page Data view, which is usually at the bottom left of the
workbench. You can reveal the Page Data view by using the tabs, but if you
can't find it, click Window > Show View > Page Data.

3. Find the Palette view, which is usually at the right side of the workbench. If
you cannot find that view, click Window > Show View > Basic > Palette.

4. In the Palette view, click the EGL drawer to open it.
5. Drag the New Variable icon from the Palette view to the allcustomers.jsp

page in the editor. The Create a New EGL Data Variable window opens.
6. Under Type Selection, click Record.
7. Under Record Type, click Customer. In this way, you select the Record part

on which each of the array elements will be based.
8. In the Enter the name of the field field, type this text:

customers

9. Under Array Properties, select the Array check box. Leave the Size field
blank.

10. Clear the Add controls to display the EGL element on the web page check
box.
The Create a New EGL Data Variable window looks like this:

11. Click OK. Nothing appears on the JSP where you dragged the variable. The
reason is that EGL created the variable in a separate file, called the JSF
Handler, which contains code to respond to events in the JSP. An item
representing the new variable appears in the Page Data view under JSF
Handler > Data.

34 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

12. Expand JSF Handler > Data and then expand customers - Customer[]. There
are 12 icons beneath customers, representing the 12 fields in this database
record.

The Page Data view looks like this:

By adding entries to the Page Data view, you have also added an array of records
to the JSF handler. In the next section, you will create the related fields on the web
page.

Display the data on the web page

Data that is listed in the Page Data view can be added to the web page.
1. From the Page Data view, drag the customers - Customer[] array variable onto

the file allcustomers.jsp, releasing it below the List of All Customers text, in the
blank lines you added in the previous exercise.
The Insert List Control window opens. This window lists all of the fields in the
database record. You can use this window to choose which fields to display on
the page.

2. Under Data control to create, leave the default value, a Multi-Column Data
Table.

3. Under Create controls for, click Displaying an existing record (read-only).
With this option selected, the data on the page is displayed in read-only output
fields. If you choose Updating an existing record, the fields on the page are
input fields that you are able to type into, and beneath the fields will be
buttons for you to bind actions to. You'll create this type of field on another
page. For our purposes, the Creating a new record option is the same as
Updating an existing record except that the default buttons are different.

4. Under Columns to display, click the None button. You have deselected all of
the fields.

5. Select the check boxes next to these fields:

Introducing EGL 35

v CUSTOMERID
v FIRSTNAME
v LASTNAME
The Insert List Control window looks like this:

6. Click Finish. A data table is created on your page with three columns for the
three fields you selected in the Insert List Control window.

7. Save the page.

The page looks like this example:

36 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

The columns in the data table have headings based on the names of the fields in
the database. You can change these headings by clicking them, opening the
Properties view, and changing the Value field.

The three text fields in the data table, which appear as {CUSTOMERID}, {FIRSTNAME},
and {LASTNAME}, represent the places where the database information will appear
on the page.

Call a function from the EGL library

The next step is to add code to this page that calls a function in the
CustomerLibrary.egl library. That function reads the data from the database and
makes it available to the page.

Show Me
1. Right-click anywhere in the free-form area of the file allcustomers.jsp.
2. From the popup menu, click Edit Page Code.

The allcustomers.egl file opens in the editor. This file holds a JSF Handler part.
In the next steps, you add code to this JSF Handler that retrieves data from the
database and puts it on the page.

3. In the allcustomers.egl file, find the line customers Customer[0];

This is the line of code that defines the record variable you created to display
on the page. You also need to define a record to store the success or failure
code of the SQL call.

4. On a blank line immediately after the line customers Customer[0];, add the
following code, exactly as written:
status StatusRec;

Notice the wavy red line under StatusRec, indicating that the type is not
known to the handler. You need to add an import statement that tells the
handler where to find the StatusRec record definition. You can do this

Introducing EGL 37

automatically by right-clicking the blank space in the editor window and
clicking Organize Imports.

The keyboard shortcut for this feature is Ctrl+Shift+O. EGL checks all files
visible to it, locates the necessary information, and adds an import statement at
the top of the file.
Now you have the record to be retrieved from the database and the SQL status
record. The final step in adding the data to your page is to pass these two
variables to the function that accesses the database. This function, named
GetCustomerListAll(), was created by the Data Access Application wizard in a
previous lesson.
Note the lines within braces that follow the handler declaration. These lines
assign values to properties of the JSF Handler. In EGL, properties are
name-value pairs that modify how a part behaves. Most types of EGL parts
have one or more properties, and each kind of part can have different
properties. In this case, the JSF Handler has four properties defined:

onConstructionFunction = onConstruction
The onConstructionFunction property specifies a function in the JSF
Handler that runs the first time the web page (JSP) associated with the
JSF Handler is displayed in a browser. In this case, the property
specifies a function named onConstruction, which is created by default
in the JSF Handler. You will not be working with this function in this
tutorial.

onPreRenderFunction = onPreRender
The onPreRenderFunction property specifies a function in the JSF
Handler that runs each time the associated JSP is displayed in the
browser, including when the user refreshes the page or returns to the
page after viewing another page. In this case, the property specifies a
function named onConstruction, which is created by default in the JSF
Handler. In the next few steps, you'll add code to this function to
retrieve current data from the database each time the page loads.

view = "allcustomers.jsp"
The view property specifies the web page associated with the JSF
Handler. By default, the web page and the JSF Handler have the same
name, minus the file extensions.

viewRootVar = viewRoot
You use the viewRoot variable to get access to the JSF component tree.
You will not use the viewRoot variable in this tutorial. For more about
JSF components and the viewRoot variable, see Component tree access.

38 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

5. Add the code to call the GetCustomerListAll() library function to the
onPreRender() function. This function retrieves the customer data from the
database. In this case, try using the content assist tool in the EGL editor:
a. Place the cursor on a blank line between function onPreRender() and end.
b. Type the following code:

cust

c. Press Ctrl+Spacebar. The code completion window opens with all of the
available EGL commands and resources beginning with cust.

d. From the content assist window, select the CustomerLib library either by
highlighting it with the keyboard and pressing Enter or by double-clicking
it with the mouse.
Now the new line of code reads CustomerLib.

e. Type a period after CustomerLib.
f. Press Ctrl+Spacebar again. The code completion window opens again.
g. From the code completion window, select the

GetCustomerListAll(customerArray Customer[], status StatusRec)
function either by highlighting it and pressing Enter or by double-clicking it
with the mouse. Be careful not to select the function
GetCustomerList(listSpec ListSpecification, listOut Customer[],
status StatusRec).
Now the new line of code reads
CustomerLib.GetCustomerListAll(customerArray, status) and the
customerArray argument is highlighted.

h. Change the default customerArray argument in the new line of code to the
name of your record variable: customers.

i. End the line of code with a semicolon.

Finally, the new line of code reads:
CustomerLib.GetCustomerListAll(customers, status);

Also note that there is a new import statement near the top of the file that
reads import eglderbydb.access.CustomerLib; This line imports the library so
you do not need to write out the complete path to the library in your code and
instead can refer to it directly.
The content assist added this import statement automatically. If you had not
used the content assist or the Organize Imports feature to create this import
statement, you would have to specify the explicit location of the library,
qualifying the library name with the following names:
eglderbydb.access.CustomerLib.

6. Save the file.

The allcustomers.egl file now looks like the following example:

Introducing EGL 39

If you see any errors marked by red X symbols in the editor, make sure your code
matches the code in this file: “Completed allcustomers.egl file after lesson 6” on
page 51.

Test the page

Now the page is ready to be run on the server. Follow these steps to test it and see
how the database data appears on the page.

Before proceeding, take the following precautions:
1. Save both the allcustomers.egl and allcustomers.jsp files if you have not already

done so, then close both files.
2. Make sure your application server is started and synchronized.
1. In the Enterprise Explorer view, right-click the EGLWeb project and then click

Generate.
2. In the Enterprise Explorer view, right-click the allcustomers.jsp file, not the

allcustomers.egl file.
3. From the popup menu, click Run As > Run on Server.

As in the previous lesson, the web page opens in a web browser inside the
workbench. This time, the dynamic data appears on the page. If you do not see
the dynamic data, click the refresh icon next to the address bar. The page looks
like this:

40 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

In the next lesson, you will create a detail page to show all the fields in an
individual customer record.

Lesson 7: Pass a parameter to another page
The file allcustomers.jsp lists every row in the database. In the next exercise, you
will create a second page that displays the details from one row in the database. In
this exercise, you will add a link on the file allcustomers.jsp that sends the user to
the detail page. That link also indicates which record to display on the detail page.

Add the link to allcustomers.jsp

Show Me
1. Open the allcustomers.jsp file
2. In the Palette view, click the Enhanced Faces Components drawer to open it.
3. From the Enhanced Faces Components drawer, click the Link control to select

it, not the Link - Request control.
4. With the Link control selected in the Palette view, click directly on the

{LASTNAME} text control. Do not drag the Link control onto the JSP. The
Configure URL window opens.

5. In the URL field of the Configure URL window, type the following file name
exactly as shown:
updatecustomer.faces

This is the name of the page you will create in the next lesson to show only
one row in the database, but with a faces extension instead of a jsp extension.
The faces extension tells EGL that the file is to be treated as a JavaServer Faces
file.

Introducing EGL 41

Leave the Label field blank. Without a label specified here, the link will use the
text of the last name field itself as the text for the link.

6. Click OK.
If you see a link next to the {lastName} control named Link label, you did not
place the link directly onto the {lastName} control. Click Edit > Undo and try
again. When the link is placed correctly, you see a chain link icon next to the
{LASTNAME} text control.

7. Save the page.

The page looks like this:

Add the parameter to the link

Next, you must specify which record will be displayed on the updatecustomer.jsp
page. To send this information to that page, you specify an HTTP request
parameter for the link you just added. HTTP request parameters are name-value
pairs of plain text that are sent over the Internet by way of the HTTP protocol.
Request parameters are an efficient way to send and receive simple data between
programs within an application.
1. Click directly on the link icon of the link control you just added to the

{LASTNAME} control.
The link icon itself, , not the text control, must be selected before you can
continue. You have the link selected correctly if it is lightly shaded and the
selection box is surrounding the link icon and the text control. Do not double
click the link icon.

2. Without moving the selection away from the link icon, open the Properties
view.

42 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

The Properties view is usually at the bottom of the workbench. If you can't
find the Properties view, click Window > Show View > Properties.

3. In the Properties view, click the Parameter tab, directly below the
hx:outputLinkEx tab.
If you can't find the Parameter tab, be sure you have clicked directly on the
icon to select it.

4. Click Add Parameter. A new parameter named Name0 is added to the list of
parameters.

5. Click the cell holding Name0 and replace the name with the following text as
the new name of the parameter:
CID

6. Click the cell holding Value0 to highlight it.

7. Click the Select Page Data Object button. The Select Page Data
Object window opens.

8. Under Data Objects, expand Data.
9. Expand customers - Customer[].

10. Click CUSTOMERID - CUSTOMERID.
The Select Page Data Object window looks like this:

11. Click OK.
12. Save and close the page.

Now, the value of the CID parameter for the link is bound to the value of the
customer_id field. When the user clicks the link, the runtime code invokes the file
updatecustomer.jsp and makes the customer ID number available to the
onPreRender function of the related JSF handler.

In the next lesson, you will create the web page for the file updatecustomer.jsp,
and later, you will set up the JSF handler to receive the parameter and to show
only the customer with that ID number.

Introducing EGL 43

Lesson 8: Create an update page
In this exercise, you will create the web page that allows users to update the
CUSTOMER table. This page will receive the parameter that the other page passed,
display only the record indicated by that parameter, and accept updated
information for the record.

Create the updatecustomer.jsp file

Show Me
1. In the Enterprise Explorer view, right-click the WebContent folder of the

EGLWeb project.
2. Click New > Web page.
3. In the File Name field, type this text as the name of the new file:

updatecustomer.jsp

4. Make sure that the Folder field lists the /EGLWeb/WebContent folder.
5. In the Template list, click My Templates.
6. In the Preview box, click the A_gray.htpl template.
7. Click Finish. The new page is created and opens in the editor.
8. Replace the default text with this text:

Update customer information

9. Press Enter three times to insert three blank lines.
10. Save the page.

The new updatecustomer.jsp page looks like this:

Add an EGL record and display it on the page

The next step is to add EGL data to this page. When you created the
allcustomers.jsp file, you added the data to the page in one step and then
displayed the data on the page by dragging it from the Page Data view in a
second step. This time, you will select the Add controls to display the EGL
element on the web page check box to add the data to the page and display it on
the page in one step.

44 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

1. Open the EGL drawer on the Palette view.
2. Drag the New Variable icon onto the page, below the text "Update Customer

Information." The Create a New EGL Data Variable window opens.
3. Under Type Selection, click Record.
4. Under Record Type, click Customer.
5. In the Enter the name of the field field, type the following text:

customer

6. Under Array Properties, clear the Array check box.
7. Select the Add controls to display the EGL element on the web page check

box.
8. Click OK. The new record appears in the Page Data view and the Insert

Control window opens.
9. In the Insert Control window, click Updating an existing record.

10. Click Options. The Options window opens.
11. Select the Submit button check box.
12. Clear the Delete button check box.
13. For the Label of the Submit button, type this text:

Update this record

14. Click OK.
15. Click Finish.
16. Save the page.

The data controls for updating the record are inserted on the web page. Note that
there is an {Error Messages} control on the page. This control does not mean that
your page has errors; the {Error Messages} control marks the place where run
time error messages will be displayed.

The page looks like this:

Introducing EGL 45

Retrieve the data

Now that there are fields for the data on the page, you need to add the code that
retrieves the data from the database. Recall from the previous lesson that you
added a link to pass the customer ID number in a parameter named CID. In these
steps, you will set up the handler for new web page to accept this parameter and
retrieve the appropriate record from the database to be displayed on the page.
1. Right-click anywhere in the free-form area of the updatecustomer.jsp file.
2. From the popup menu, click Edit Page Code. The updatecustomer.egl file

opens in the editor.
3. As in the previous JSF Handler you edited, you need to add a record to store

the success or failure code of the SQL call. Immediately after the line customer
Customer;, add the following code, exactly as written:
status StatusRec;

The next step in adding the data to the page is to configure the JSF handler to
accept the CID parameter that the link will pass to it.

4. Change the line function onPreRender() to the following code, exactly as
written:

46 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

function onPreRender(CID INT)

Now the JSF handler is configured to accept an integer parameter named CID.
5. On a blank line immediately after the function onPreRender(CID INT), add this

code, exactly as written:
customer.customerId = CID;

Now you have assigned the ID number to the customer record. The next step is
to retrieve the record with this ID number from the database

6. On the next line, add this code, exactly as written. You may want to use the
code completion feature you learned about in “Lesson 6: Add data to the page”
on page 33.
CustomerLib.GetCustomer(customer, status);

The GetCustomer function works just like the GetCustomerAll function you used
previously, but the GetCustomer function retrieves one record, while the
GetCustomerAll function retrieves an array of records. Now the customer record
contains the record with the ID passed to this JSF handler.
The new function looks like this:
function onPreRender(CID INT)
customer.CustomerId = CID;
CustomerLib.GetCustomer(customer, status);
end

7. Optimize imports and save the file.

The JSF handler looks like this:

Introducing EGL 47

Now when you click a link on the allcustomers.jsp page, the updatecustomer.jsp
page loads with details about that customer's record. Right now, you can change
the information in the fields on the web page, but there is no function to send
those updates to the database. In the next section, you will use the UpdateCustomer
function to make those updates to the database.

Update the record in the database

In this section, you add a new EGL function in the JSF handler named
updateRecord. Then, you will bind this function to the button you created on the
web page. In this way, when you click the button on the web page, the
updateRecord function will run and call the UpdateCustomer function to update the
database record. Finally, the updateRecord function will forward the browser back
to the allcustomers.jsp page so you can see the changes you have made to the
record.
1. In the updatecustomer.egl file, immediately before the final End statement, add

the following function, exactly as shown. You might want to use code
completion or to paste the function from this page to make sure it is correct.
function updateRecord()

CustomerLib.UpdateCustomer(customer, status);
forward to "allcustomers";

end

48 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

2. Save and close the file.
The next step is to bind this function to the button on the web page.

3. Open the updatecustomer.jsp page in the editor. You may still have this page
open in the editor tabs. If you cannot find it there, double-click the
updatecustomer.jsp file in the Project Explorer view, in the folder
EGLWeb/WebContent.

4. In the Page Data view, expand JSF Handler > Actions. This folder lists all of
the functions in the JSF handler except the onPreRender() and
onConstruction() functions. In this case, this folder shows the updateRecord()
function that you just created.

5. Drag the updateRecord() function directly onto the button on the web page
labeled "Update this record". The appearance of the page does not change, but
now this function is bound to the button and will run when the button is
pressed.

6. Save the page.

Here is the complete code of the updatecustomer.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches the code in this
file: “Completed updatecustomer.egl file after lesson 8” on page 52

Introducing EGL 49

Test the finished site

Now the site is ready to test. You can now update and view any of the records in
the Customer table of the database.
1. In the Enterprise Explorer view, right-click the allcustomers.jsp file and then

click Run As > Run on Server. The related page opens in the web browser.
Now each customer last name in the list is a hyperlink to the web page
displayed by updatecustomer.jsp.

2. Click one of the customer last names. You are sent to the web page displayed
by updatecustomer.jsp, and that web page shows the row-specific information.

3. Type a new FIRST_NAME for the record.
4. Type new information for a few of the other fields on this page. Do not change

the CUSTOMER_ID field.
5. When you are finished typing new information, click the Update this record

button.

When you click the Update this record button, you return to the page
allcustomers.jsp. Note that the record has changed to show the new FIRST_NAME
you typed. You can click on the last name for that record again to see the new
information that was saved in the database.

You have completed the tutorial

In this tutorial you built a functioning file maintenance utility for a customer file,
using a sample Derby database. You can now build on this knowledge by
completing the Build a JSF search page with EGL tutorial.

Summary
This is the end of the Introducing EGL tutorial.

Lessons learned

By completing this tutorial, you learned how to do the following tasks:
v Create EGL source code
v Create two simple web pages that access data in a relational database
v Pass a parameter from one web page to another
v Configure a web application server test environment and run an application on

that test environment

You can continue learning by working with the tutorial application. Try adding
this functionality on your own:
v Add a button to the updatecustomer.jsp page that deletes the customer record.

You will need to add a button to the web page and then bind that button to a
function in the JSF handler that calls the deleteCustomer function.

v Add a button to the allcustomers.jsp page that creates a new customer record.
You will need to create a new web page similar to the updatecustomer.jsp page
that uses the createCustomer function.

50 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

Resources
This tutorial used the following resources:
v A sample Derby database, found at the following location:

shared_resources/plugins/com.ibm.etools.egl.tutorial0001.doc_version/
resources/eglderbydb.zip

shared_resources
The shared resources directory for your product, such as C:\Program
Files\IBM\SDP70Shared on a Windows system or /opt/IBM/SDP70Shared on a
Linux system. If you installed and kept a previous version of an IBM
product containing EGL before installing your current product, you may
need to specify the shared resources directory that was set up in the earlier
installation.

version
The installed version of the plugin. If more than one is present, use the one
with the most recent version number, unless you have a reason to use an
older version.

v “Completed allcustomers.egl file after lesson 6”
v “Completed updatecustomer.egl file after lesson 8” on page 52

Following are some links to the help system on topics covered in this tutorial:
v Enabling EGL capabilities
v Introduction to EGL
v JavaServer Faces
v Scope
v EGL projects, packages, and files

Completed allcustomers.egl file after lesson 6
This code is the completed version of the allcustomers.egl file. If you see any errors
marked by red X symbols in the file, make sure your code matches this code:
package jsfhandlers;

import eglderbydb.access.CustomerLib;
import eglderbydb.data.*;
import com.ibm.egl.jsf*;
import eglderbydb.StatusRec;

handler allcustomers type JSFHandler
{onConstructionFunction = onConstruction,
onPreRenderFunction = onPreRender,
view = "allcustomers.jsp",
viewRootVar = viewRoot}

viewRoot UIViewRoot;
customers Customer[0];
status StatusRec;

function onConstruction()
end
function onPrerender()
CustomerLib.GetCustomerListAll(customers, status);
end
end

Return to “Completed allcustomers.egl file after lesson 6.”

Introducing EGL 51

JavaScript:linkHelp('com.ibm.etools.egl.tutorial0001.doc.EGLCapabilitiesTopic')
JavaScript:linkHelp('com.ibm.etools.egl.tutorial0001.doc.EGLHelpTopic')
JavaScript:linkHelp('com.ibm.etools.egl.tutorial0001.doc.JSFHelpTopic')
JavaScript:linkHelp('com.ibm.etools.egl.tutorial0001.doc.EGLScope')
JavaScript:linkHelp('com.ibm.etools.egl.tutorial0001.doc.EGLProjectsPackagesAndFiles')

Completed updatecustomer.egl file after lesson 8
This code is the completed version of the updatecustomer.egl file. If you see any
errors marked by red X symbols in the file, make sure your code matches this
code:
package jsfhandlers;

import eglderbydb.access.CustomerLib;
import eglderbydb.data.*;
import com.ibm.egl.jsf.*;
import eglderbydb.StatusRec;

handler updatecustomer type JSFHandler
{onConstructionFunction = onConstruction,
onPrerenderFunction = onPrerender,
view = "updatecustomer.jsp",
viewRootVar = viewRoot}

viewRoot UIViewRoot;
customer Customer;
status StatusRec;

// Function Declarations
function onConstruction()
end

function onPrerender(CID INT)
customer.customerId = CID;
CustomerLib.GetCustomer(customer, status);
end

function updateRecord()
CustomerLib.UpdateCustomer(customer, status);
forward to "allcustomers";
end
end

Return to “Lesson 8: Create an update page” on page 44.

52 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2000, 2012 53

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
3600 Steeles Avenue East
Markham, ON Canada L3R 9Z7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

54 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at http://www.ibm.com/
legal/copytrade.html.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices 55

56 Rational Business Developer: Tutorial: Introducing EGL, a quick-start guide

����

Printed in USA

	Contents
	Introducing EGL
	Introduction
	Lesson 1: Setting up EGL
	Preparing your workspace

	Lesson 2: Create the projects and import the database
	Installing the server (WebSphere Application Server)
	Installing the server (Tomcat)
	Create the EGL web project (either server)
	Import the database
	Lesson checkpoint

	Lesson 3: Set up the database connection
	Creating the connection
	Lesson checkpoint

	Lesson 4: Create parts to access a database
	Create parts from the database connection
	Lesson checkpoint

	Lesson 5: Create a web page
	Create the JSP file from a template
	Preview the web page on the server

	Lesson 6: Add data to the page
	Add a record array to the Page Data view and the JSF Handler
	Display the data on the web page
	Call a function from the EGL library
	Test the page

	Lesson 7: Pass a parameter to another page
	Add the link to allcustomers.jsp
	Add the parameter to the link

	Lesson 8: Create an update page
	Create the updatecustomer.jsp file
	Add an EGL record and display it on the page
	Retrieve the data
	Update the record in the database
	Test the finished site
	You have completed the tutorial

	Summary
	Resources
	Completed allcustomers.egl file after lesson 6
	Completed updatecustomer.egl file after lesson 8

	Appendix. Notices
	Trademarks

