Updated for EGL version 8.5

IBM Informix 4GL to EGL Conversion
Utility User’s Guide

<||IH

Updated for EGL version 8.5

IBM Informix 4GL to EGL Conversion
Utility User’s Guide

..ll

Note:
FBefore using this information and the product it supports, read the information in|[“Notices” on page L-1)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2005, 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction

In This Introduction

About This Manual

Types of Users

Features of This Product
Platforms Supported .
Typographical Conventions.
Documentation . .
IBM Welcomes Your Comments .

Chapter 1. Overview of the Conversion Process
In This Chapter. .
Introduction to the I4GL to EGL Converswn .
Conversion Benefits .
I4GL to EGL Conversion Overv1ew .
Pre-Conversion Stage .
Conversion Stage .
Post-Conversion Stage
Reconversion Stage
Conversion Limitations . .
C Interface Support and L1m1tat1ons
Report Support and Limitations
Screen Forms Support

Chapter 2. Preparing for Conversion
In This Chapter. .
Overview of Pre-Converswn Tasks
Conversion Limitations and Workarounds .
4GL Source Conversion .
C Code Functionality .
Reports .
Identify Existing I4GL Components Pr0]ect
Generate 14GL Source Files . . .
Compile your I14GL Application
Identify the Client Locale .
Identify and Separate the Shared L1brar1es
Modifying C Code Used with Rapid Development System (RDS)
Identify User-Defined Message Files .
Identify Informix Database Schema Informatlon
Identify an EGL Destination Directory .
Prepare the I4GL Source File Directory .

Chapter 3. Conversion Tasks .
In This Chapter. .

Conversion Utility Stages .
Informix Database Schema Extractlon

Conversion Utility Processing for Informix Database Schema Extractlon .

I4GL Shared Libraries Conversion .
Conversion Utility Processing for I4GL Shared lerarles .

I4GL Application Conversion . . .o
Conversion Utility Processing for I4GL Apphcatlon Conversmn

Conversion Utility Command Line Mode .

The Conversion Log .

Chapter 4. Post-Conversion Tasks

© Copyright IBM Corp. 2005, 2012

. Vii
. vii
. Vil
. vil
. vii
. viii
. Viil
. viii

. 141
141
C1-1
11
S1-2
S1-2

. 13
.13
. 1-3
.14

: 1-5
. 21

. 2-1
.22

.22
. 2-3
.24
.24

. 2-5
. 2-5
.25
. 2-6
. 2-6
. 2-6
.27

. 3-1
. 3-1
. 3-1
.31
. 33
. 33
. 35
. 3-6

. 3-8
. 39

. 4-1

iii

In This Chapter.

Post-Conversion Tasks . .

Changes Made During the Conversron .

Artifacts Generated During the Conversion
Configuration File .

Manifest File.

Source File Conversion Mappmg

Command Line Conversion: Importing Pro]ects mto the Workspace

Correcting Conversion Errors .

Conversion Log Contents .

Using C Shared Libraries with the EGL Program
EGL Native Library e
Function Table . .

Creating the Application Level Shared L1brary

Properties Files .

Validating and Compiling Converted EGL Flles

Generating EGL to Java. .o

Understanding Error Message Converswn

Understanding Report Conversion .

EGL Report Driver Functions .
I4GL Report Sections
Understanding your EGL Pro]ects, Packages and Flles
EGL Project.
Package .
EGL Files
Recommendations
The Information Center Help System and EGL Tutor1a1

Chapter 5. Reconversion Process and Tasks .
In This Chapter. .

When to Reconvert Your I4GL Shared lerarles .

How to Reconvert Your I4GL Shared Libraries

Conversion Wizard Reconversion .

Command Line Reconversion
Reasons and Workarounds for Unsuccessful Reconverswns .

Appendix A. 14GL to EGL Syntax Mapping .

Appendix B. 14GL Report Conversion Code Example

Appendix C. I14GL Form Code to EGL Form Code Example .

Appendix D. Configuration File Templates .
Appendix E. Manifest File Examples.
Appendix F. DTD Examples

Appendix G. Conversion Log Examples .
Appendix H. EGL Build Descriptor Example
Appendix I. EGL Reserved Words .
Glossary

Error Messages

iV IBM Informix 4GL to EGL Conversion Utility User’s Guide

.41

. 42
. 43
. 4-4
. 4-5
. 4-5
. 4-6
. 4-6
. 47

. 49
. .49
. 4-10
. 4-11
. 4-12
. 413
. 4-14
. 4-14
. 4-15
. 4-16
. 4-28
. 4-28
. 4-29
. 4-30
. 4-30
. 4-31

. 5-1
. 51
. 51
. 51

.52
.52

. A-1

. B-1

. J-1

. K-1

Notices &« & v & it e L1

[Te 1= &

Contents V

vi IBM Informix 4GL to EGL Conversion Utility User’s Guide

Introduction

In This Introductiono il
About This Manual Lo v
Types of Userso oo il
Features of This Productol
Platforms Supported .vii
Typographical Conventions. .vii
Documentation. L L ..o Lo i
IBM Welcomes Your Comments Lux

In This Introduction

This introduction provides an overview of the information in this manual and
describes the conventions it uses.

About This Manual

This manual provides information on how to convert IBM® Informix® 4GL (I4GL)
applications into Enterprise Generation Language (EGL) applications. Used in
Rational® Business Developer Extension, EGL is a development technology that lets
you quickly write full-function applications that run in a Java" environment and
on z/0S°.

Types of Users

This manual is written for I4GL application developers who want to have the
flexibility of creating web applications, want to extend the usability of their
applications containing forms, want to use the new EGL reporting capability, want
to use Message Queues with their EGL program, and want to use the full range of
EGL functionality.

This manual assumes that you have [4GL programming experience, including
experience with compiling I4GL code. In addition, if you use C code with your
I4GL program, you must know C language programming.

Features of This Product

Information in this section covers both the I4GL to EGL Conversion Utility product
and extended 14GL-like functionality within EGL.

The I4GL to EGL Conversion Utility converts your shared libraries and 14GL
applications into EGL packages and programs. After the conversion of your shared
libraries and I4GL applications, you can link your C functions with your converted
EGL code.

EGL provides the following I4GL-like functionality:

Screen Forms. The Conversion Utility converts your existing I4GL screen forms
into the EGL-equivalent Console User Interface.

Calling C functions. C functions can be invoked from an I4GL program. Similarly,
EGL can invoke C functions.

© Copyright IBM Corp. 2005, 2012 vii

Reports. The Conversion Utility converts your 14GL report files into equivalent
EGL and JasperReports files.

Note: This product includes software developed by Teodor Danciu
(http:/ /jasperreports.sourceforge.net).

Platforms Supported

To successfully convert your 14GL Programs to EGL Packages, you must have
access to one of the following development environment platforms:

o AIX®
« HP-UX

e 32-bit Linux

e Solaris

* 32-bit Windows platforms

* 64-bit Windows platforms

In addition, you must have sufficient system access and permissions to the source
code and directory structure to allow the creation of shared libraries and new .egl

source files.

Typographical Conventions

This section describes the typographical conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes in
the documentation set.

Convention

Meaning

KEYWORD

All primary elements in a programming language statement (keywords)
appear in uppercase letters in a serif font.

italics

Within text, new terms and emphasized words appear in italics. Within
syntax and code examples, variable values that you are to specify
appear in italics.

boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface elements (such
as icons, menu items, and buttons) appear in boldface.

monospace

Information that the product displays and information that you enter
appear in a monospace typeface.

KEYSTROKE

Keys that you are to press appear in uppercase letters in a sans serif
font.

This symbol indicates a menu item. For example, “Choose Tools >
Options” means choose the Options item from the Tools menu.

Documentation

viii

This section discusses the documentation you can use to assist with the I4GL
conversion and to learn more about how to use EGL.

This IBM Informix 4GL to EGL Conversion User’s Guide (User’s Guide) leads 14GL
users through the Conversion Path to EGL, and has the following chapters:

e This introduction

IBM Informix 4GL to EGL Conversion Utility User’s Guide

* |Chapter 1, “Overview of the Conversion Process,”| which introduces the benefits
and limitations of the I4GL to EGL conversion process and provides an overview
of the pre-conversion, conversion, post-conversion, and reconversion stages.

¢ |Chapter 2, “Preparing for Conversion,”| which describes the tasks users need to
complete before using the Conversion Wizard. These tasks include identifying
the components of your database schema and I4GL application, creating C
shared libraries, and understanding your report font specifications.

Chapter 3, “Conversion Tasks,”|which provides details on how to use the
Conversion Wizard to extract your Informix database schema and convert your
I4GL shared libraries and applications.

Chapter 4, “Post-Conversion Tasks,”| which describes the changes made by the
Conversion Utility to your I[4GL application, the artifacts generated during the
conversion, how to correct conversion errors, and how to use the C shared
libraries with your EGL application. This chapter also provides information on
how to use the EGL Information Center online help system.

* |Chapter 5, “Reconversion Process and Tasks,”| which describes when and how to
reconvert your I4GL shared libraries.

+ |Appendix A, “I4GL to EGL Syntax Mapping,” on page A-1]which provides the
mapping between I4GL and EGL syntax.

* |Appendix B, “I4GL Report Conversion Code Example,” on page B-1} which
provides an example of 14GL report code and the comparable examples of the
EGL driver functions.

+ |Appendix C, “I4GL Form Code to EGL Form Code Example,” on page C-1
which provides an example of [4GL form code and the comparable EGL code.

« [Appendix D, “Configuration File Templates,” on page D-1|which provides
template configuration files for Database Schema Extraction, Library, and
Application projects.

* |Appendix E, “Manifest File Examples,” on page E-1|which provides examples of
manifest files for Database Schema Extraction, Library, and Application projects.

* [Appendix F, “DTD Examples,” on page F-1|which provides examples of the
DTD used for configuration and manifest files for Database Schema Extraction,
Library, and Application projects.

* [Appendix G, “Conversion Log Examples,” on page G-1|which provides
examples of conversion logs in .txt format.

* [Appendix H, “EGL Build Descriptor Example,” on page H-1] which provides
examples of EGL build descriptor file generated by the Conversion Utility.

* |Appendix I, “EGL Reserved Words,” on page I-1] which lists the EGL reserved
words.

* A glossary of relevant terms and an Error Messages section follow the chapters.
* A Notices appendix describes IBM products, features, and services.
* An index directs you to areas of particular interest.

You should read this book in its entirety before attempting to convert your 14GL
application and you should refer to this book when converting your 14GL
applications. The IBM Redbook Transitioning: Informix 4GL to Enterprise Generation
Language (EGL) also provides information and insight on how to convert your 4GL
applications. The Redbook can accessed online at{www.redbooks.ibm.com /|
fredbooks.nsf /redbooks /|

Introduction 1X

www.redbooks.ibm.com/redbooks.nsf/redbooks/
www.redbooks.ibm.com/redbooks.nsf/redbooks/

Your Rational product includes a readme.html file. The readme.html file contains
the latest information on any product limitations or changes to documentation for
your Rational product. This file is located in the top directory of your Rational
product.

In addition, the Conversion Utility includes a readme004FGL.html file. The
readme004FGL.html file contains information on Conversion Utility limitations
and changes to documentation since the completion of this User’s Guide. You
should review the contents of the readme004FGL.html file before converting your
I4GL applications. The file is located in the top directory of the Conversion Utility
plugin.

When using the conversion wizard, you can activate the help for the specific panel
you are using by pressing F1. Each panel of the Conversion Wizard has a
dedicated help topic associated with it. Each help topic explains what information
is required by the wizard panel. To activate the help topic, with your cursor on the
wizard panel, press the F1 key.

Information on how to use your converted EGL code is located in the following
places:

e The Rational online information center. The information center is accessible from
the main menu by selecting Help > Rational Help.

+ The EGL home page and forum on IBM developerWorks®. The EGL home page
provides documents on a variety of topics about EGL. The EGL home page is
located at [www.ibm.com/developerworks/rational /products/egl/| You can
access the EGL forum through the developerWorks community at
[www.ibm.com /developerworks /forums/dw_rforums.jsp}

* The EGL Tutorial teaches you how to build a simple dynamic Web site using
EGL. The tutorial is accessible from the main menu by selecting Help >
Tutorials Gallery. More information about the Tutorial is available in |”The|
[Information Center Help System and EGL Tutorial” on page 4-31)

IBM Welcomes Your Comments

X

We want to know about any corrections or clarifications that you would find
useful in our manuals, which will help us improve future versions. Include the
following information:

¢ The name and version of the manual that you are using
* Section and page number

* Your suggestions about the manual

Send your comments to us at the following email address:

ldocinf@us.ibm.com|

This email address is reserved for reporting errors and omissions in our
documentation. For immediate help with a technical problem, contact IBM
Technical Support.

We appreciate your suggestions.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

www.ibm.com/developerworks/rational/products/egl/
www.ibm.com/developerworks/forums/dw_rforums.jsp
mailto:docinf@us.ibm.com

Chapter 1. Overview of the Conversion Process

In This Chapter. . . OO £ |
Introduction to the I4GL to EGL Conversmn OO £ |
Conversion Benefits . . . O £ |
I14GL to EGL Conversion OverV1ew O A
Pre-Conversion Stage .12
Conversion Stage L. .12
Post-Conversion Stage13
Reconversion Stage13
Conversion Limitations . . . O £ C)
C Interface Support and leltatlons e R
Report Support and Limitations .14
Screen Forms Support15

In This Chapter

This chapter introduces you to the benefits and limitations of the I4GL to EGL
conversion process and provides an overview of the pre-conversion, conversion,
post-conversion, and reconversion stages.

Introduction to the 14GL to EGL Conversion

The IBM Informix 4GL to EGL Conversion Utility (Conversion Utility) enables
applications written in the Informix 4GL (I4GL) language to be converted to the
Enterprise Generation Language (EGL). EGL lets you quickly write full-function
applications that run in a Java" environment. EGL gives you the ability to deliver
enterprise data to browsers, even if you have minimal experience with Web
technologies. You can use EGL to code a Web service that can be accessed by other
Internet-based programs.

The Conversion Utility converts an I4GL program connecting to a specific IBM
Informix Dynamic Server (IDS) database into an equivalent EGL program
connecting to the same IDS database. The Conversion Utility converts [4GL
language syntax and builds artifacts (like I4GL shared libraries) into equivalent
EGL components. At runtime, the EGL build generates a Java executable program.
EGL applications can work with IDS databases. Currently, EGL applications are not
supported on IBM Informix XPS, Online, or SE databases.

The Conversion Utility offers you the ability to convert a program in one session,
begin a conversion and finish when desired, or reconvert a shared library as
necessary.

Conversion Benefits

I4GL users who convert their applications to EGL will be able to:

* Use the new EGL code exactly as I4GL was used, including the I4GL Forms
interface (called Console User Interface in EGL). EGL code will also be able to
call C functions and, with restrictions, call ESQL/C functions. Finally, EGL users
will be able to generate I4GL-like reports.

¢ Use the new EGL code to create web applications.

© Copyright IBM Corp. 2005, 2012 1-1

14GL to EGL Conversion Overview

1-2

Conversion Stage

A successful I4GL to EGL conversion has three successive stages, each of which is
introduced below:

1. Pre-Conversion Stage
2. Conversion Utility Stage
3. Post-Conversion Stage

Note: Occasionally, you will need to reconvert your 14GL shared libraries. The
Reconversion Stage is also introduced below.

Pre-Conversion Stage

Prior to initiating the conversion, you need to identify the components of your
I4GL program and database schema and prepare your I4GL program files and
libraries. This information is detailed in [Chapter 2, “Preparing for Conversion,” on|

The conversion of I4GL applications is accomplished with the Conversion Utility
Wizard. The Wizard screens prompt you to insert the information you organized
during the pre-conversion stage. Information on how to use the Wizard is detailed
in |[Chapter 3, “Conversion Tasks,” on page 3-1)

Converting an [4GL program is a multi-tiered process as shown in

This figure summarizes the types of I4GL files that are converted, the

order in which the files are converted, and the resultant converted file types; it also
shows that .c files are not converted.

The components of your I4GL program must be extracted or converted in the
following order:

* Database schema information
* I4GL shared library or libraries
* I4GL application

Note: C shared libraries do not need to be converted in order to be used by EGL,
and they do not pass through the Wizard.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

14GL Program

Files
Agl

Msg

per - |

- C Shared Library Conversion H

14GL Conversion Utility Wizard EGL Program

Files
1. Database Schema Extraction .egl

2. 14GL Shared Library Conversion .
properties

3. 14GL Application Conversion

Figure 1-1. How an I4GL program converts to an EGL program

Post-Conversion Stage

A conversion log will identify whether or not your conversion was completely

successful. If no errors are identified in the conversion log, the conversion was

successful, and you can compile your EGL source files and use your converted

application. If errors are identified in the conversion log, you must rectify those
errors before using your EGL files. This information is detailed in

[‘Post-Conversion Tasks,” on page 4-1

Reconversion Stage

When shared libraries are converted in the wrong order, or reference the functions
of another shared library, some function references assumed to be C functions are
later defined in EGL. Any shared libraries generated with an incorrect assumption
must be reconverted. In addition, shared libraries within applications containing
multiple shared libraries may occasionally need to be re-converted. For more
information on reconverting your shared libraries, see [Chapter 5, “Reconversion|
[Process and Tasks,” on page 5-1)

Conversion Limitations

The I4GL to EGL Conversion Utility, Version 7.1 has the following limitations:
1. C functions that call [4GL functions are not supported.

2. Global variables defined in I4GL modules cannot be accessed from C source
code.

3. Database connection sharing between ESQL/C or C shared libraries and
migrated EGL Applications or Packages is not supported.

4. Dynamic 4GL is not supported.

5. You must use a third-party report design product to re-design converted
reports or design new reports.

6. I4GL Reports converted to EGL can only be generated to Java; they cannot be
generated to COBOL.

7. The performance of 14GL applications converted to EGL will be somewhat
reduced.

Chapter 1. Overview of the Conversion Process 1-3

8. Conversion of 14GL auxiliary products like Ace Reports and ISQL are not
supported.

9. EGL does not support both global and local cursor scope in the same
application or shared library. For example, you cannot convert a library with
local scope and an application with global scope.

10. The I4GL Program database syspgm4gl is not supported during the
conversion process.

11. In I4GL, a function can return different numbers and types of values; in EGL,
a function can return only a single value. An EGL function can have one or
more OUT parameters, which can be used to simulate returning multiple
values. In all cases, however, the type is fixed in EGL and once I4GL has been
converted to EGL, a user should not, for example, use "return 5;" in one place

and "return "foo";" in another place. In addition, a user should not return from
a function with (1) in one spot and (1, "foo") in another.

Note: Task-oriented information about conversion limitations and their
workarounds is detailed in [“Conversion Limitations and Workarounds” onl

C Interface Support and Limitations

Many I4GL users have I4GL programs that call C functions. With little or no
modification, you will be able to use your existing C code in your [4GL converted
code. For specific information on the tasks necessary to prepare your C code prior
to using the Conversion Ultility, see|“Modifying C Code Used with Rapid|
[Development System (RDS)” on page 2-5.[For details on how to link the C shared
library with the converted EGL application, see [“Using C Shared Libraries with thel
[EGL Program” on page 4-9) For details on how to use C functionality in EGL, see
the online information center.

Report Support and Limitations

1-4

The Conversion Utility converts I4GL Reports files into EGL files for the drivers
and ReportHandler, and into JasperReports files for the design values. With the
creation of these new files, EGL users are able to use a report designer or text
editor of their choice to design the layout of their reports.

Note: Your Rational product does not contain any third-party report design
software. If you want third-party report design software, you will need to
purchase this separately. For more information, see the EGL reports overview
help topic.

shows how I4GL reports convert to EGL. First, you define the properties
of the existing I14GL report program and enter it into the Conversion Utility
Wizard. In turn, the Utility Wizard produces the following output: JasperReport
XML design documents; EGL report driver functionality; and an EGL report
handler.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

User Input

14GL report
program

» Conversion

Wizard Output

14GL to EGL Jasper XML documents

» EGL program with report driver functionality
EGL report handler program

Utility Wizard

Figure 1-2. How I4GL Reports Converted to EGL

For information on how to prepare your I14GL reports for conversion to EGL, see
|”Conversion Limitations and Workarounds” on page 2-2.| For information on how
to understand your reports conversion, see|“Understanding Report Conversion” on|
To review the syntax mapping between 14GL Reports, EGL and
JasperReports, see |[Appendix A, “I4GL to EGL Syntax Mapping,” on page A-1.|For
information on how to use the EGL Reports feature in EGL, see the EGL reports
overview help topic.

Screen Forms Support

While the conversion of I4GL to EGL provides users with an opportunity to
implement web-based applications with graphical user interfaces, the Conversion
Utility also enables users to retain the appearance and functionality of their [4GL
screen forms, or text-based user interfaces. During the conversion of your I14GL
application, I4GL screen forms will be converted into EGL Console User Interfaces
(CUI). The CUI will have exactly the same functionality as the screen forms. In
addition to running your converted CUI, you can also develop new CUIs.

To review the syntax mapping between 14GL forms and the CUI, see [“I4GL Form
fto EGL Console User Interface” on page A-9)For details on how to use the
Console User Interface in EGL applications, see the Console user interface help topic.

Chapter 1. Overview of the Conversion Process 1-5

1-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Chapter 2. Preparing for Conversion

In This Chapter. . . . N |
Overview of Pre—Conversmn Tasks C 24
Conversion Limitations and Workarounds .22
4GL Source Conversion L L L L L Lo 22

C Code Functionality22
Reports . . . Ce e 28
Identify Existing I4GL Components Pro]ect S 24
Generate I4GL Source Files e s s 24
Compile your I4GL Application .24
Identify the Client Locale . . C e o255
Identify and Separate the Shared lerarles .o)
Modifying C Code Used with Rapid Development System (RDS))
Identify User-Defined Message Files. . . e 2-6
Identify Informix Database Schema Informatlon)
Identify an EGL Destination Directory .26
Prepare the I4GL Source File Directory .27

In This Chapter

This chapter describes the tasks you need to complete before using the Conversion
Wizard. These tasks include identifying the components of your database schema
and I4GL application, creating C shared libraries, and understanding your report
font specifications.

Overview of Pre-Conversion Tasks

For a successful conversion from I4GL to EGL, the Conversion Utility Wizard
requires specific information about your I4GL application. The pre-conversion steps
listed below will help you prepare your files for conversion and collect the
information required by the Wizard.

The following steps are detailed in this chapter:
1. Understand the conversion limitations.

2. Identify the I4GL project you want to convert, and record the names and
source file locations of each of the I4GL applications within the project.
Identify and record the names and locations of all dependent I4GL shared
libraries and C shared libraries linked with the I4GL application. As necessary,
you will need to list the shared libraries from already-converted EGL
packages.

3. As needed, generate .4gl and .per files.

4. Verify that all I4GL source files compile successfully using the 14GL 7.32
compiler.

5. If any of your I4GL programs are compiled on non-English locales, identify
the client locale.

6. Identify whether or not the I4GL build environment for a shared library
contains both .4gl and .c source files. If it does, segregate the .4gl files and
convert them as an I4GL shared library project. Compile the .c files into a
shared library.

7. ldentify user-defined message files and the code pages in which the messages
are encoded.

© Copyright IBM Corp. 2005, 2012 2-1

8. Start an IBM Informix database instance, create the database schema used by
I4GL modules, and record the following database connection information:
Database name, Server name, Host name, Port Number, Client Locale and
Database Locale. During conversion, you will also need to know your user
name and password.

9. Identify a destination directory for your EGL files.

10. Move your I4GL source files into the I4GL staging directory on the machine
on which you want to run the Conversion Utility.

Conversion Limitations and Workarounds

2-2

The conversion limitations, with workarounds as possible, are listed below:

4GL Source Conversion

In 4GL, the DATABASE statement creates the default database connection and can
be located in either the GLOBALS or the MAIN file. However, in EGL the
connect() statement must be used at the start of the program. When the GLOBALS
file exists in the same project as the Application or Shared Library conversion
project, the Conversion Utility can extract the DATABASE statement from the
GLOBALS file and generate the connect() statement. However, if the GLOBALS file
is converted as a separate conversion project, the DATABASE statement
information is lost, and the Conversion Utility does not have enough information
to generate the connect() statement while converting the application project. If this
later scenario occurs, a runtime error is generated.

To prevent this, you should edit the Application project file that contains MAIN
program file and insert the DATABASE statement as found in the GLOBALS file.
This workaround enables the Conversion Utility to use the 4GL DATABASE
databasename statement information to generate the EGL connect() statement.

C Code Functionality

In the I4GL language, C code has two implementations:

¢ C functions can be called by I4GL programs, and then using push and pop
external functions, the C functions can call an I4GL function.

e C programs can call I4GL functions by using the fgl_start(), fgl_call(),
fgl_exitfm(), and fgl_end() macros.

In the EGL language, an EGL function can call a C function, but a C function
cannot call an EGL function. Prior to converting your I4GL application to EGL, you
must remove from your code all instances of C functions calling I4GL functions. In
addition, you must remove the push functions used to pass values to the 14GL
function and the pop functions used to retrieve values returned by the I4GL
function.

Global variables defined in EGL cannot be used by the C code. Prior to conversion,
you must modify your I4GL and C code to explicitly pass such global variables to
the C code and then reset the values upon return from the C call.

Because EGL is converted into Java at runtime, an additional layer of JNI (Java
Native Interface) is involved when calling C functions. Therefore, the performance
of EGL applications calling C functions may be slower than the performance of
I4GL applications calling C functions.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Reports
The Conversion Utility converts your I4GL report logic into two types of files:
¢ Multiple EGL (.egl) files for the ReportHandler and the ReportDriver functions
* A JasperReports (.jrxml) file for the report design

The Utility requires font format specifications to create the .jrxml file. During the
conversion of your I4GL application, the Wizard Cursor Scope and Report Font
File screen will prompt you to accept the default font specifications or to designate
alternate font specifications.

The default font specifications are:

locale name = en_us
name = Courier New

size = 10
height = 12
width = 6

pdfFont = Courier
encoding = CP1252

In addition, the FontInfo.xml file located in the productinstallationeclipse\
plugins\com.ibm.etools.i4gl.conversion_version\etc\examples\FontSpecification
directory also lists these default values. To designate alternative non-default font
settings when using the Wizard, you must edit the FontInfo.xml file to include
your preferred font information.

The following is an example of the default FontInfo.xml file:

<locale name="en_us">
<name>Courier New</name>
<size>10</size>
<height>12</height>
<width>6</width>
<pdfFont>Courier</pdfFont>
<encoding>CP1252</encoding>

</locale>

Define the following .xml fields in your file:

* locale name: the language and country identified with the font. Each locale is
limited to one font specification. However, you can include multiple different
locale specifications in the same .xml file.

* name: the name of the font.

* size: the size of the font, which must be an integer literal, such as "10".

* height: the height of the font in pixels, which must be an integer literal, such as
"12".
The height value is used to calculate report elements requiring vertical

positioning, including static text field, text field, band and page height, and top
and bottom margin size.

* width: the width of the font in pixels, which must be an integer literal, such as
"6". To ensure that your EGL report output produces output similar to your I[4GL
report, the font must have a fixed width.

Chapter 2. Preparing for Conversion 2-3

The width value is used to calculate any report elements requiring horizontal
positioning, including static text field, text field, page and column width, and
left and right margin width.

* pdfFont: the name of the font to use if a report is exported to Adobe PDF
format.

* encoding: the alphanumeric code that designates the code pages in Java.

If for any reason, your designated font specification is corrupted, the conversion
tool will map the default information into your .jrxml file.

Note: The Conversion Utility does not attempt to verify the availability of your
selected font name, font size, PDF Font or encoding on your system. These
values will be transferred as specified from the font specification file to the
JasperReport Design (.jrxml) file. Incorrect font information can result in
EGL compilation or runtime errors.

You should follow these font specification selection guidelines:

* Use a font that has both fixed width and fixed height.

* Use a similar font for the general report export options and the PDF export
option.

* The font height and font width should reflect the number of pixels dimensions
of the given font type and size.

* Verify that the encoding string accurately reflects the locale.

Identify Existing 14GL Components Project

Once you have selected the I4GL program to convert, you must:

1. Identify and record the I4GL source modules and locations for each of your
I4GL applications.

2. Identify and record the file names and locations of each of the [4GL and C
shared libraries linked to the I4GL applications

3. As applicable, you must list the names and location of the manifest file from
already-converted 14GL shared libraries.

Note: You will be required to recompile the C shared libraries later during the
Pre-Conversion stage.

Generate 14GL Source Files

As needed, generate .4gl and .per source files.

Any pre-processing required to generate the 14GL source files from the 14GL
modules must be completed at this time.

Compile your 14GL Application

2-4

Compile your I4GL application code as appropriate and verify that it compiles
successfully. If your I[4GL application code does not compile successfully, your
I4GL to EGL conversion will fail. Repair any code that does not compile
successfully. Do not attempt an I4GL to EGL conversion until all I4GL application
code compiles successfully.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Identify the Client Locale

The Conversion Wizard uses the English designation of en_US.8859-1 as the
default locale for message files. If your message files are not in English, you must
identify the correct locale for your message files and have that information
available to insert into the Wizard.

Identify and Separate the Shared Libraries

If your I4GL program has shared libraries, you must review each library to identify
whether it was compiled from .4gl, .c, or both types of source files.

1. A shared library compiled from only .4gl source files does not require further
conversion preparation. It should be converted as an I14GL shared library
project.

2. A shared library compiled from only .c source files does not require further

conversion preparation. It should be linked when creating the application level
shared library.

3. A shared library compiled from both .4gl and .c source files requires the
following modifications:

a. The .4gl files must be segregated and converted as an 14GL shared library
project.

b. The .c files must be compiled into a shared library. This shared library
should be linked when creating the application level shared library. For
instructions on how to link the shared library, see[“Using C Shared Libraries|
[with the EGL Program” on page 4-9.|

After your I4GL application is converted, you will create an application level
shared library and link your C shared libraries to it. This application level shared
library will be used with your new EGL application. For more information, see
[‘Using C Shared Libraries with the EGL Program” on page 4-9.|

Note: If your program uses pre-existing static libraries consisting of object files
compiled from .c source files, these static libraries should also be linked
when creating the application level shared library.

Modifying C Code Used with Rapid Development System

(RDS)

Because RDS uses a customized runner to call C functions from I4GL programs,
I4GL developers who use RDS must modify their C code as detailed below.

Note: A customized runner is an executable program that users create to run I4GL
programs that call C functions.

The customized runner is created with the cfglgo command, as shown in the
following syntax:

A\
A

»»—cfglgo—fgiusr.c——cfile ii.ecj o newfglgo

Chapter 2. Preparing for Conversion 2-5

Table 2-1. cfglgo elements

Element Description

fgiusr.c the name of the file in which the C and ESQL/C functions are
declared.

cfile .ecl.cl.o the name of the source file containing the C or ESQL/C functions to

be compiled and linked with the new runner, or the name of an
object file previously compiled from a .c or an .ec file.

newfglgo the name of the customized runner.

If you use RDS, you must compile all .o, .c or .ec files into a shared library. If any
.ec files are compiled in the library, you must use ESQL/C shared libraries when
compiling the library. This shared library should be linked when creating the
application level shared library. For more information, see|“Using C Shared|
[Libraries with the EGL Program” on page 4-9.|

For more information about the cfglgo command, see Chapter 1 of the IBM
Informix 4GL Reference Manual.

Identify User-Defined Message Files

Identify all user-defined message files and the code pages in which the messages
are encoded.

Identify Informix Database Schema Information

The first step in the conversion process is to extract the database schema for your
conversion application.

1. Create an instance of the database for your I4GL program
2. Locate and open the schema file
3. Record the following information:

¢ Database name

e Server name

* Host name

e Port name

¢ User name

* Password

* Database Locale

By default, the Conversion Utility ignores system tables. However, if the [4GL
applications using the database refer to any Informix system tables, you have the
option of the extracting the schema for all system tables in the database.

Identify an EGL Destination Directory

The Conversion Utility uses the EGL destination directory to organize the
converted EGL source files, message files, and project-specific files required by the
Rational IDE.

Based on the information provided to the Wizard, the Conversion Utility creates an

EGL destination directory for you. For example, if your identified EGL destination
directory is C:\egl\src, and your project name is MyProject, within the EGL

2-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

destination directory, the Conversion Utility creates a new sub-directory structure
of projectname\EGLSource\projectname Following the example parameters above,
the new directory structure is C:\egl\src\MyProject\EGLSource\MyProject.

The first instance of project name hosts the .classpath, .eglPath, and .project
Rational IDE-specific files, and serves as the project contents directory for
importing the converted project into the IDE.

The EGLSource sub-directory serves as the placeholder for all converted EGL
source files, and contains the projectname sub-directory, which represents the root
package name for all converted EGL files. The directory hierarchy of the converted
EGL files is identical to the I4GL source directory hierarchy, and resides within the
projectname sub-directory.

The Conversion Utility creates the follow directories within the EGL destination
directory:

* projectname\EGLSource\projectname. Hosts all converted EGL source files.

 projectname\MessageSource. Hosts all converted EGL Message files based on
message file locale.

* project name\JavaSource. Hosts all generated Java Source files from EGL source
in IDE.

Note: If the same directory is identified for both your existing I4GL source files
and your new EGL source files, the conversion utility creates the new
directory structure before initiating the conversion.

The Conversion Utility stops the conversion if your system does not have write
permissions or enough disk space in the EGL destination directory. For a successful
conversion, you should have disk space at least equivalent to your existing 14GL
directory.

Prepare the 14GL Source File Directory

Prior to launching the Conversion Wizard, you must ensure that all of your 14GL
source files, shared libraries, and message files are located together in a directory.
This I4GL directory can be located within your Rational product workspace or in a
location entirely outside of your Rational product.

In addition, you can designate the same directory for both the storage of the I4GL
program source files and as the destination directory for the EGL project files. With
this option, the integrity of the I4GL source files is retained during conversion, and
results in a directory of I4GL and EGL source files.

Note: Although the Conversion Utility allows you to locate all of your I4GL
projects within, and to convert your I4GL projects from, one single directory,
you should locate your I4GL projects within individual directories. This
reduces the changes of complications arising from multiple similar files.

Chapter 2. Preparing for Conversion 2-7

2-8 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Chapter 3. Conversion Tasks

In This Chapter. L3
Conversion Utility Stages . . . e
Informix Database Schema Extractlon oL G N |

Conversion Utility Processing for Informix Database Schema Extractlon G e
I4GL Shared Libraries Conversion . . G 6]

Conversion Utility Processing for 14GL Shared lerarles G o)
I4GL Application Conversion . . . e A

Conversion Utility Processing for I4GL Apphcatlon Conversmn G o]
Conversion Utility Command Line Mode .38
The Conversion Log ..o 03

In This Chapter

This chapter provides details on how to use the Conversion Wizard to extract your
Informix database schema and convert your I4GL shared libraries and applications.
This chapter also describes how to use the Conversion Utility command line
option, and introduces the Conversion Log.

Conversion Utility Stages

The I4GL Conversion Utility is a Wizard that prompts you for the information you
were required to collect and identify in [Chapter 2, “Preparing for Conversion.”|

To complete the conversion, the components of your 14GL program must pass
through the Wizard multiple times. In addition, your information must pass
through the Wizard in the following order:

1. Informix Database Schema

2. I4GL Shared Libraries

3. T4GL Application

Since C shared libraries are not converted to EGL, they do not pass through the
Wizard. For complete information on the processing of your C shared libraries, see
[‘Using C Shared Libraries with the EGL Program” on page 4-9.|

As mentioned in [“Documentation” on page viii|each panel of the Wizard has a
help topic associated with it. Access this help topic by pressing F1.

Informix Database Schema Extraction

The first step in the conversion process is to extract the project database schema.

Note: To limit the number of imports generated for your converted files, you
should extract each database as a separate project. Each database in a
Database Schema Extraction project will be a separate package, but all
databases are listed in the single manifest file generated for the Database
Schema Extraction project. The Conversion Utility inserts imports for all
packages listed in the manifest file even if they are not referenced by the
I4GL files.

To start the Utility and extract the Informix Database Schema:

© Copyright IBM Corp. 2005, 2012 3-1

3-2

From within the EGL Perspective in your Rational product, select File > New >
Other > Informix 4GL to EGL Conversion > Informix Database Schema
Extraction.

In the Database Schema Extraction screen, insert the following information:
* Project Name. For example, Mydbschema.

Note: The project names for database schema extraction and for shared
library and application conversion should be different.

* New Project. A database schema extraction is considered New if it does not
have an existing configuration file. For Location, you can browse to locate
the appropriate directory or you can create a new directory.

* Open Project. A database schema extraction is considered Open if it has an
existing configuration file. If you select this option, you must provide the
location of the existing configuration file. You can browse to locate the file.

* Conversion Artifacts. The Conversion Utility generates a number of artifacts
related to the conversion, including Configuration, manifest and Conversion
Log files. By default, the conversion artifacts will be located in the
EGLDestinationDirectory/ConversionArtifacts directory. You can also
designate to create the conversion artifacts in an external directory. You may
browse to an appropriate directory, but cannot create a new directory at this
time.

Database Connection Details. Add, delete, or edit information required to

connect to your Informix database server instance, including

* Database

* Server Name

* Host Name

* Port Number

e User Name

» Password

* Client Locale

* Database Locale

* System Tables. If the I4GL application requires extraction of the Informix
system tables, select Yes.

Conversion Project Details. You can review the configuration file, an .xml
document that coordinates all of the project details entered in the previous
screens. At this stage of the conversion process, the manifest file and the
Conversion Report screens are not populated with information.

Click Finish to initiate the database schema extraction.
Click Yes to confirm and start the database schema extraction.

The Schema Extraction Status screen confirms whether or not the extraction
was successful. If the extraction was successful, you can review the
now-populated manifest file, which contains column and table information for
the database selected. The Wizard refers to the manifest file during the
conversion of any I4GL shared library or application containing a DATABASE
statement. Continue as appropriate to [“I4GL Shared Libraries Conversion” on|

below or to [“I4GL Application Conversion” on page 3-6]

A conversion log file identifying the detailed status of the converted project is
created.

If the Schema Extraction Status message is not successful, you must repeat this
Database Schema Extraction process from the beginning and correct any

IBM Informix 4GL to EGL Conversion Utility User’s Guide

erroneous information that you might have entered. For more information why
the database schema extraction might be unsuccessful, see
[Conversion Errors” on page 4-6.

8. Click Cancel to close the Wizard.

Conversion Utility Processing for Informix Database Schema
Extraction
The Database Schema Extraction stage initiates the following:

1. The Conversion Utility creates an individual EGL package for each of the
databases used in the I4GL program. Each of these EGL packages has an .egl
file relating to the database. The file has an SQLRecord definition mapping to
the table and dataitems associated with each column.

2. For each table in the database, a corresponding EGL source file is generated.

3. The collected database schema becomes a separate EGL project which is referred
to from other EGL projects.

4. A configuration file and a manifest file are generated.

5. Only Informix data types supported within the IBM Informix 4GL 7.32 release
are extracted. Any other data types are ignored.

14GL Shared Libraries Conversion

If your I4GL application uses shared libraries, you must convert the shared
libraries after extracting the Informix Database Schema and before converting the
I4GL application. If your I4GL application has multiple shared libraries, you must
use the Conversion Utility to convert each shared library separately. In essence,
each shared library becomes a separate conversion project.

Because of the dependencies between the converted shared libraries and the I4GL
application, the I4GL application can only be converted after all [4GL shared
libraries have been converted.

Note: This I4GL Shared Library stage is not used for C Shared Libraries. For
information on the post-conversion processing of your C shared libraries,
see|"Using C Shared Libraries with the EGL Program” on page 4-9)

To convert I4GL Shared Libraries:

1. From within the EGL Perspective in your Rational product, select File > New
> Other > Informix 4GL to EGL Conversion > I4GL Shared Library
Conversion.

2. In the I4GL Shared Library Conversion Project screen, insert the following
information:

* Project Name. For example, Mysharedlibrary.

Note: The project names for database schema extraction and shared library
and application conversion should all be different.
* Project Details. Options include:

— New Project. A shared library project is considered New if it does not
have an existing configuration file. Selecting this option requires you to
provide the I4GL Source Directory and the EGL Source Directory. You
can browse to locate these directories.

Chapter 3. Conversion Tasks 3-3

3-4

— Open Project. A shared library project is considered Open if it has an
existing configuration file. Selecting this option requires you to provide
the location of the existing configuration file. You can browse to locate
the file.

— Reconversion Project. A shared library project is considered a
Reconversion if you previously completed an I4GL shared library
project, but the I4GL application conversion determines that a
reconversion of your shared library files is necessary. Selecting this
option requires you to provide the location of the existing configuration
file and manifest files. You can browse to locate the file.

Note: For information on when reconversion is necessary, see |”When tal
[Reconvert Your I4GL Shared Libraries” on page 5-1/

* Conversion Artifacts. The Conversion Utility generates a number of
artifacts related to the conversion, including configuration, manifest and
conversion log files. By default, the Conversion Artifacts will be located in
the EGLDestinationDirectory/ConversionArtifacts directory. You can
designate to create the conversion artifacts in an external directory. You can
browse to an appropriate directory, but you cannot create a new directory at
this time.

3. Click Next to continue.
4. The I4GL Conversion Project Files screen presents following information:

* Client Locale displays the information you provided during the database
schema extraction stage and is used to correctly convert message files. You
can not change your locale at this time.

* Project Files displays the folders, sub-folders and files located within the
I4GL source directory you entered in the previous I4GL Application
Conversion Project screen. You have the following options:

— Filter types. You can limit the files selected in the Project Files screen.
The Select Types dialog box provides a list of file types that are
currently supported in your Rational product. The .4gl, .per and .msg
files are selected by default. Enter message file extensions other than
*.msg in the Other Extensions text box.

— Select all will select all files within the root directory displayed on the
screen.

— Deselect all will deselect all folders, sub-folders and files within Project
Files.

e Click the boxes associated with the I4GL folders and files to be converted.
e Click Next to continue.

5. The Locale for Message Files screen displays only if you selected message
files in the previous Project Files screen. The Locale for Message Files screen
displays your selected message files.

* Click Next to continue.

6. The Report Type and Cursor Scope screen confirms the status of the database
cursor scope and the target reporting engine for any I4GL report. For report
type, choose Text Reports. The Jasper Reports option is maintained for legacy
conversions and not recommended for new conversions. The default for
Database Cursor Scope is local. Select the Set SQL cursor scope for
conversion check box if you want to change the cursor scope to global.

e Click Next to continue.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

7. The Database Schema Details screen confirms the existence of the database
schema needed for the conversion and the manifest file containing the schema
information. If your I4GL library does not contain a DATABASE statement, no
action is necessary for this screen.

This screen requires the following actions:

* Click the Dependent Database Schema box if you successfully completed
the database schema extraction stage.

* Enter the name of the Default Server.
¢ Click Add to display the Add Manifest File from Dependent Project box.

* Enter the location of the database schema Manifest File. This file is located
in the ConversionArtifacts directory that you created during the database
schema extraction stage.

¢ Select OK to continue.

* The Project Name and the Database Schema Extraction Manifest File
location now display on the screen. You can add to, delete or edit this
information by clicking the Add, Delete or Edit buttons.

e Click Next to continue.

8. The Conversion Project Dependencies screen identifies all EGL packages
(former I4GL shared libraries) upon which the converted application depends.

As appropriate, select the box for:
* Dependent I4GL Shared Library Projects

— Click Add to display the Add Manifest File from Dependent Project
box.

— Enter the location of the database schema Manifest File. It is located in
the ConversionArtifacts directory that you created during the I4GL
shared library conversion stage.

— Select OK to continue.

— The I4GL Shared Library Project Name and manifest file location now

display on the screen. You can add to, delete or edit this information by
clicking the Add, Delete or Edit buttons.

9. Click Next.

10. Conversion Project Details. If your project is a New Project, you can review
the configuration file, an .xml document that coordinates all of the project
details entered in the previous screens. At this stage of the conversion process,
the manifest file and the Conversion Report screens are not populated with
information. If your project is an Open or a Reconversion Project, this screen
displays the populated manifest file and conversion report.

11. Click Finish to initiate the conversion.
12. Click Yes to launch the [4GL2EGL conversion program.

Conversion Utility Processing for 14GL Shared Libraries

At the I4GL Shared Libraries stage, the launch of the I4GL2EGL conversion utility
initiates the following:

1. The Conversion Utility creates an individual EGL package for each of the I4GL
shared libraries.

2. The entire group of EGL packages are generated into an EGL project which can
then be referred to by other EGL applications.

3. Manifest files are generated for the EGL Project.

Chapter 3. Conversion Tasks 3-5

Note: I4GL shared libraries can also be converted using a command line mode.
However, this option is recommended for reconversion efforts only. For
instructions on how to use the command line mode, see [“How to Reconvert]
[Your I4GL Shared Libraries” on page 5-1]

14GL Application Conversion

3-6

Your I4GL application can be converted after the Informix database schema has
been extracted and all I4GL shared libraries have been converted.

To convert your I4GL application:

1. From within the EGL Perspective in your Rational product, select File > New
> Other > Informix 4GL to EGL Conversion > [4GL Application Conversion.

2. In the I4GL Application Conversion Project screen, insert the following
information:

* Project Name For example, Myapplication.

Note: The project names for database schema extraction and shared library
and application conversion should all be different.

— New Project. A project is considered New if it does not have an existing
configuration file. Selecting this option requires you to provide the 14GL
source directory and the EGL source directory. You can browse to locate
these directories.

— Open Project. A project is considered Open if it has an existing
configuration file. Selecting this option requires you to provide the
location of the existing configuration file. You can browse to locate the
file.

Note: Although you can reconvert your shared libraries, you cannot
reconvert your I14GL application. If the conversion of your I[4GL
application fails, you must resolve the errors as noted in the
Conversion Log and convert your I14GL application as a New or
Open project.

* Conversion Artifacts. The Conversion Utility generates a number of
artifacts related to the conversion, including configuration, manifest and
conversion log files. By default, the conversion artifacts are located in the
EGLDestinationDirectory/ConversionArtifacts directory. You can also
designate to create the conversion artifacts in an external directory. You can
browse to an appropriate directory, but you cannot create a new directory at
this time.

3. Click Next to continue.
4. The I4GL Conversion Project Files screen presents following information:

* Client Locale displays the information you provided during the database
schema extraction stage and is used to correctly convert message files. You
can not change your locale at this time.

* Project Files displays the folders, sub-folders and files located within the
I4GL source directory you entered in the previous I4GL Application
Conversion Project screen. You have the following options:

— Filter types. You can limit the files selected in the Project Files screen.
The Select Types dialog box provides a list of file types that are
currently supported in your Rational product. The .4gl, .per and .msg
files are selected by default. Enter message file extensions other than
*.msg in the Other Extensions text box.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

— Select all will select all files within the root directory displayed on the
screen.

— Deselect all will deselect all folders, sub-folders and files within Project
Files.

e Click the boxes associated with the I4GL folders and files to be converted.
e Click Next to continue.

5. The Locale for Message Files screen displays only if you selected message
files in the previous Project Files screen. The Locale for Message Files screen
displays your selected message files.

¢ Click Next to continue.

6. The Report Type and Cursor Scope screen confirms the status of the database
cursor scope and the target reporting engine for any I4GL report. For report
type, choose Text Reports. The Jasper Reports option is maintained for legacy
conversions and not recommended for new conversions. The default for
Database Cursor Scope is local. Select the Set SQL cursor scope for
conversion check box if you want to change the cursor scope to global.

¢ Click Next to continue.

7. The Database Schema Details screen confirms the existence of the database
schema needed for the conversion and the manifest file containing the schema
information. If your I4GL program does not contain a DATABASE statement,
no action is necessary for this screen.

This screen requires the following actions:

* Click the Dependent Database Schema box if you successfully completed
the database schema extraction stage.

* Enter the name of the Default Server.
¢ Click Add to display the Add Manifest File from Dependent Project box.

* Enter the location of the database schema Manifest File. This file is located
in the ConversionArtifacts directory that you created during the database
schema extraction stage.

¢ Select OK to continue.

* The Project Name and the Database Schema Extraction Manifest File
location now display on the screen. You can add to, delete or edit this
information by clicking the Add, Delete or Edit buttons.

e (Click Next to continue.

8. The Conversion Project Dependencies screen identifies all EGL packages
(former I4GL shared libraries) upon which the converted application depends.

As appropriate, select the box for:
¢ Dependent [4GL Shared Library Projects

— Click Add to display the Add Manifest File from Dependent Project
box.

— Enter the location of the database schema Manifest File. It is located in
the ConversionArtifacts directory that you created during the I4GL
shared library conversion stage.

— Select OK to continue.

— The I4GL Shared Library Project Name and manifest file location now
display on the screen. You can add to, delete or edit this information by
clicking the Add, Delete or Edit buttons.

9. Click Next.
10. Conversion Project Details. If your project is a New Project, you can review
the configuration file, an .xml document that coordinates all of the project

Chapter 3. Conversion Tasks ~ 3-7

1.

12.

details entered in the previous screens. At this stage of the conversion process,
the manifest file and the Conversion Report screens are not populated with
information. If your project is an Open or a Reconversion Project, this screen
displays the populated manifest file and conversion report.

Click Finish to initiate the conversion.
Click Yes to launch the I4GL2EGL conversion program.

Conversion Utility Processing for 14GL Application Conversion

At the I4GL application stage, the launch of the I4GL2EGL conversion utility
initiates the following;:

1.
2.

10.

11.
12.

The parser converts the selected I14GL application source files.

A manifest file containing function calls, function arguments, global variables
and other information is created.

The converted 14GL shared libraries and the 14GL source code manifest files
from dependent shared library projects are reviewed for consistency and
possible errors.

Each message file is read and converted to the appropriate .properties file
using the equivalent Java code page.

If the current project defines an EGL function with a name previously
assumed to be an external function, the conversion program updates and
modifies the dependent I4GL shared library project manifest file, terminates
the conversion, and reports the error in the conversion error log. At this point,
you must reconvert the I4GL shared library using the updated manifest file.

All 4gl, .per, .msg, and any customized error messages files are converted to
EGL.

Any I4GL errors are identified, and the conversion program generates an .err
file within the EGL destination directory and updates the log file with the
error information.

If the conversion is successful, a default EGL build descriptor file is generated
in EGLdestinationdirectory/project name/EGLSource. This file is named project
name.eglbld. If a file by this name already exists in the EGL destination
directory, the Conversion Utility does not create a new file to override the
existing file.

If the program being converted has C library dependencies, the conversion
utility identifies each C function call and generates a function table. The
function table is named NativeFuncTab.c and is located in the
ConversionArtifacts/NativeLibrary directory. For more information on the
function table, see [‘Function Table” on page 4-9.

The conversion log is created and populated with conversion statistics and
details.

The conversion log file automatically opens for viewing.
Click Cancel to terminate the Wizard.

Conversion Utility Command Line Mode

3-8

Instead of using the Conversion Utility Wizard to convert your I4GL applications
to EGL, you can use the Conversion Utility command line mode. However, since
using the command line mode for the initial conversion process requires you to
manually create a configuration file, you might find it easier to use the command
line mode primarily for shared library reconversion, when an existing
configuration file can be used.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

The command line option is invoked through a script named e4gl, which is located
in the productinstallation/bin directory.

Prior to using the command line script, you must create a configuration file for
your conversion project. Your configuration file must be in .xml format and follow
exactly the Data Type Definition (DTD) provided in the sample configuration file.
You should not create a configuration file without using the sample file as a
template.

To create a configuration file:
1. Locate the sample configuration file in the following directory:
plugins/com.ibm.etools.i4gl.conversion_version/etc/dtd/Configuration

2. Open the file in an .xml editor, rename the file, and save it to the preferred
directory.

3. Your new file contains a DTD which provides intuitive .xml tags. Use these
tags to insert your information into the file.

4. Save the file.

To use the command line option:

1. From the command line, enter the following, where configurationfile is the name
of your newly-created configuration file:

edgl configurationfile

If your configuration file does not reside in the current working directory, you
must qualify it with an absolute directory path.

For information on how to use the command line utility to convert an 14GL
application, see [“Command Line Reconversion” on page 5-2.|

Note: If the script is moved from the default productinstallation/bin directory, the
RAD_HOME environment variable (which is used by the script to locate the
conversion .jar files) must be set to point to the root directory of your
Rational IDE product installation.

The Conversion Log

At the end of the I4GL to EGL conversion, the conversion log opens for display.
The log contains conversion details, including information about warnings, fatal
errors, shared libraries and source file conversion status. The conversion log is
primarily used to identify conversion errors. For more information on how to use
the conversion log to resolve conversion errors, see|”Correcting Conversion Errors’|

Chapter 3. Conversion Tasks 3-9

3-10 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Chapter 4. Post-Conversion Tasks

In This Chapter. .41
Post-Conversion Tasks . .42
Changes Made During the Conversmn . .42
Artifacts Generated During the Conversion .43
Configuration File . . 4-4
Manifest File. . . 4-5
Source File Conversion Mapping . . 4-5
Command Line Conversion: Importing Pro]ects 1nto the Workspace . 4-6
Correcting Conversion Errors . . 4-6
Conversion Log Contents .47
Using C Shared Libraries with the EGL Program . 49
EGL Native Library e .49
Function Table . . .49
Creating the Application Level Shared L1brary . 4-10
Properties Files . . 4-11
Validating and Compiling Converted EGL Flles . 4-12
Generating EGL to Java. e . 4-13
Understanding Error Message Conversion . 4-14
Understanding Report Conversion . . 4-14
EGL Report Driver Functions . . 4-15
I4GL Report Sections . 4-16
I4GL DEFINE Section . 4-16
I4GL OUTPUT Section . . 4-18
I4GL ORDER BY Section . 4-19
I4GL FORMAT Section . . 4-19
Understanding your EGL Pro]ects Packages and Flles . 4-28
EGL Project. . Lo . 4-28
EGL source folder . 4-28
EGL build path . . 4-29
Default build descriptors . 4-29
Package . . . 4-29
EGL Files . 4-30
Source file . . 4-30
Build File . 4-30
Recommendations . 4-30
For build descriptors . 4-30
For packages . 4-31
Part assignment . 4-31
The Information Center Help System and EGL Tutorlal . 4-31
In This Chapter
This chapter describes the changes made by the Conversion Utility to your 14GL
application, the artifacts generated during the conversion, how to correct
conversion errors, and how to use the C shared libraries with your EGL
application. This chapter also provides information on how to use the EGL
information center online help system.
© Copyright IBM Corp. 2005, 2012 4-1

Post-Conversion Tasks

Before using your converted EGL program, you should review or implement the
following tasks and information as appropriate:

“Changes Made During the Conversion.”|

“ Artifacts Generated During the Conversion” on page 4-3

“Source File Conversion Mapping” on page 4-5

“Command Line Conversion: Importing Projects into the Workspace” on page]
4-6.
“Correcting Conversion Errors” on page 4-6

[‘Using C Shared Libraries with the EGL Program” on page 4-9|

"’Properties Files” on page 4-11

[“Validating and Compiling Converted EGL Files” on page 4-12|

"’Generating EGL to Java” on page 4-13

“Understanding Error Message Conversion” on page 4-14]

[“Understanding Report Conversion” on page 4-14|

[“Understanding your EGL Projects, Packages and Files” on page 4-2§

[“The Information Center Help System and EGL Tutorial” on page 4-31|

Changes Made During the Conversion

4-2

During the three stages of the I4GL to EGL conversion, the following changes
occur:

The Conversion Utility creates a new root directory structure to host the
converted EGL source files in the EGL destination directory. A workspace
resource folder was also created, which by default, has the following
subdirectory: EGLDestinationDirectory/ProjectName/EGLSource/ProjectName.

If the converted application is dependent upon any C shared libraries, EGL
native libraries and a function table are generated. For information about how to
use the EGL native library and the function table to create the link between your
C shared libraries and EGL program, see ["Using C Shared Libraries with the]
[EGL Program” on page 4-9.|

An EGL project build descriptor file is created and used to build the converted
.egl files in the EGL Perspective.

I4GL syntax constructs are mapped to EGL syntax. For a complete mapping
between I4GL and EGL, see |[Appendix A, “I4GL to EGL Syntax Mapping,” on|

All .4gl source files are converted into .egl source files.

All I4GL .per form specification files are converted into .egl Console User
Interface specification files.

Note: In EGL, all files are .egl files. For a complete mapping between 14GL and
EGL files, see [“Source File Conversion Mapping” on page 4-5.|

I4GL customized error message files are migrated to EGL. For information about
those error message files, see|[Understanding Error Message Conversion” on|
I4GL report logic is converted into equivalent EGL and JasperReports format.
For information on your converted reports, see [“Understanding Report]
Conversion” on page 4-14)To review a mapping between I4GL and EGL, see
“4GL Report Execution Statements” on page A-11|and [“I4GL Report Driver|
Statements” on page A-12

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Note: If your I4GL program did not contain report functionality, you can still
add that functionality to your converted program. For information on
how to create new reports in your EGL project, see the EGL Report help
topics in the information center.

Artifacts Generated During the Conversion

The Conversion Utility generates two broad categories of conversion artifacts:

* Project-specific artifacts, such as configuration and manifest files.

* Error files, which are generated from the syntax errors in I4GL input files.

The error files are placed into the same directory used by the input I4GL file. By
default, all other conversion artifacts are placed in the EGLDestinationDirectory/
ConversionArtifacts directory. You may designate a different directory location
during the database schema extraction or I4GL shared library conversion stage of
the Conversion Utility.

The Conversion Artifacts directory contains the following sub-directories:

1. /config. Placeholder for the Conversion Utility to generate a configuration file

for New projects.

2. /manifest. Placeholder for the Conversion Utility to generate a manifest file for
the current conversion projects.

3. /log. Placeholder for the Conversion Utility to generate conversion log files for
the current conversion project.

4. /NativeLibary. Placeholder for the Conversion Utility to generate the function

table used to link C shared libraries to EGL.

The Conversion Utility generates the following artifacts:

Table 4-1. Artifacts (Documents) generated by the Conversion Utility

Artifact

File name

Description

Configuration file

ProjectNameProjectType
Config.xml

For example,
MyDatabaseSchema
Config.xml

Contains project, database schema,
directory, and file information.

For more information, see
[“Configuration File” on page 4-4)|

Conversion log

ProjectNameProjectType
Log.txt
ProjectNameProjectType
Log.html

Contains project information,
including conversion errors and
warnings, lists of dependent
libraries, and the source file
conversion status. This log is the
primary source of information for
unsuccessful conversions. Unless a
fatal error stops the conversion
process, this log is generated for
both successful and unsuccessful
conversions. For complete
information, see |”Correcting|

|Conversion Errors” on page 4-6.|

EGL Native Library

See|“EGL Native Library” on|

hgage 4—9]

Contains the prototypes for the C
functions encountered during the
conversion of an I4GL shared
library or application.

Chapter 4. Post-Conversion Tasks ~ 4-3

Table 4-1. Artifacts (Documents) generated by the Conversion Utility (continued)

Artifact File name Description
ERR file sourcefilename.err Identifies errors found during the
sourcefilenameForm.err conversion of I4GL source syntax
to EGL.
Function Table See|“Function Table” on page| | Contains the names of all of the C
functions encountered during the
conversion of an I4GL application.
Manifest file ProjectNameProjectType Contains the project-specific
Manifest.xml information required to resolve

dependencies. For a Database
Schema Extraction project, the
manifest file contains
table/column information. For a
Shared Library or 14GL
Application project, the manifest
file contains function calls and
return types, global variables, form
names, record types, package
names, and other information. For
more information, see f’ManifesEl
[File” on page 4-5.

Note: The Conversion Utility generates file names as presented in the table above.
If, during conversion, the Conversion Utility encounters these filenames in
the Conversion Artifacts directory, it renames the existing file as
filename.bak.num where num is a sequentially-increasing number starting
with 1. The Conversion Utility names the new file as described in
above.

Configuration File

During each of the three Conversion Utility stages, the utility compiles specific
project, database schema, directory, and file information into the individual
configuration file. Therefore, the configuration file stores all of the critical
information about your conversion and should be referred to as necessary.

Each file is named after the utility stage that generates it. If, for example, you call
your Database Schema Extraction project MyDB, the configuration file for that
stage of the Conversion Utility is named MyDBSchemaConfig.xml.

If you prefer to convert your 14GL project outside the Rational environment, you
can manually create a configuration file. A sample configuration file and the DTD
are included in the product. If you manually create the configuration file, you must
ensure that it conforms to the product configuration file DTD.

The sample configuration file is named conversionsample.xml and the DTD is
named conversionconfig.dtd. Both are located in the following directory:

productinstallation/egl/eclipse/plugins/com.ibm.etools.i4gl.conversion_version/
etc/dtd

Sample configuration files for the Database Schema Extraction project and the I4GL
Application project are located in the following directory:

productinstallation/egl/eclipse/plugins/com.ibm.etools.i4gl.conversion_version/
etc/examples/Configuration

4-4 1BM Informix 4GL to EGL Conversion Utility User’s Guide

Note: When you use the Conversion Utility Wizard, the Conversion Utility

automatically generates a configuration file.

The sample configuration files

listed in the etc directory are template files that can be modified to your

project specification. If you use the template files, you must ensure that you
follow the DTD and create well-formed and valid XML documents. When a
manually-edited configuration file that does not meet XML specifications is

provided, the conversion terminates.

For an example of a configuration file template, see [Appendix D, “Configuration|
IFile Templates.”| For an example of the DTD used for configuration and manifest

files, see|Appendix F, “DTD Examples.”|

Manifest File

A stage-specific manifest file is generated during all three conversion stages.

The manifest file generated during extraction of the database schema contains
information about all of the tables, columns and data types of the selected
database. This file is used by the conversion utility to resolve column names and

data types between 14GL and EGL.

The manifest file generated during conversion of the I4GL shared library contains a
list of I4GL and assumed C function calls used in the I4GL converting project. This
file is used during the I4GL application conversion stage to validate all function
calls used in dependent EGL Packages and I4GL source code.

Note: The Conversion Utility also generates a manifest file for I4GL application
conversion projects. However, the application manifest file is generated for
reference only, and provides a list of the technical details of the project.

For an example of a manifest file, see[Appendix E,

“Manifest File Examples.”|

Source File Conversion Mapping

During the conversion process, your 14GL program files were mapped to
able 4-2

equivalent EGL project files.
Table 4-2. How I4GL Files Convert into EGL Files

provides the mapping between those files.

File and library type I4GL file extension

EGL file extension

Source files Agl

.egl

Form specification files |.per

For an example of how

I4GL form files convert to
EGL, see|Appendix C, “14GL|
Form Code to EGL Form|

Code ExamEle."|

.egl

The constant string Form is added
to all converted form specification
file names; for example, an 14GL
file named someFile.per is named
someFileForm.egl in EGL.

Report files A4gl

.egl

Note: I4GL report design logic
converts into a JasperReports .jrxml
file. For more information on
report file conversion, see

‘Understanding Report|

Conversion” on page 4-14

Customized Help and |.msg or any other extension
Error Message files

.properties

Chapter 4. Post-Conversion Tasks ~ 4-5

Table 4-2. How I4GL Files Convert into EGL Files (continued)

File and library type I4GL file extension EGL file extension

Shared library created |.so or other platform EGL Packages

from I4GL source files |equivalent extension

Build utility files makefile .eglbld, the EGL build descriptor
file

Command Line Conversion: Importing Projects into the Workspace

The Conversion Utility Wizard automatically imports your converted project into
the workspace within the EGL Projects category. If you used the command line
option to convert your project, you must import your project into EGL Projects
manually. You must import your Database Schema, Shared Library and Application
projects individually.

To import your Database Schema, Shared Library, or Application project:

1. In the EGL perspective, right-click anywhere in the Project Explorer workspace.
2. From the menu, select Import.

3. From the Import Wizard, select Existing Project into Workspace. Select Next.

4

. In the Project Contents text box of the Import Project from File System
window, select Browse.

5. In the Browse For Folder window, select the EGL destination directory of your
converted project. Select OK to exit the Browse For Folder window. Select
Finish to exit the Import Project from File System window.

Note: The Conversion Utility creates .project, .eglPath, and .classpath files in
the EGL destination directory. These files are used by your Rational
product to identify the project. If these files are missing, the project
cannot be imported into the workspace.

6. Your selected directory now displays in the Import Wizard within Project
Contents. The project name displays in Project Name.

Note: If your Rational product does not locate the .project file in your selected
directory, an error is returned. You must verify that your directory has
that file before you can continue.

7. Click Finish. Your project should now be visible in the workspace.

Correcting Conversion Errors

The Conversion Utility generates a conversion log to help you understand the
status of your conversion project and assist you in correcting any conversion
errors. The Conversion Utility saves this conversion log to your designated
artifacts directory log sub-folder. This file can be identified by the name
ProjectNameProjectTypeLog.html, where ProjectType can be Schema, Library or
Application. In addition to the .html file, a .txt file is generated.

Your conversion project can be classified as either PASSED or FAILED. The
PASSED classification means that the conversion was successful and your EGL

code is available for use.

The project is classified as FAILED when one or more EGL source files cannot be
generated. Your project might fail for any of the following reasons:

4-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

¢ The Conversion Utility did not have permission to write to the identified EGL
source directory or conversion artifacts directory.

¢ The XML configuration file or the dependent manifest file contain errors.

* For a Database Schema Extraction project, the JDBC driver terminates the
process if you do not have connection permission to the database, provide an
incorrect password, or if any other exception is noted.

* For a Shared Library or [4GL Application project, the conversion terminates if
any source file listed in the configuration file does not have read permission or
is missing.

¢ The I4GL syntax could not be converted into EGL syntax.

If your project fails during the validation stage, the conversion terminates. The
validation stage includes validation of the XML configuration file, manifest file,
source files, JDBC connection, and write and read permissions. If your project fails
due to syntax errors in I4GL source files, the conversion continues, but the project
is marked FAILED. If your project fails during any other stage, the conversion
continues. In both of these cases, a conversion log is generated. A FAILED project
must be converted from the beginning again.

After correcting all conversion errors, all FAILED projects must go through the
conversion process again. If you use the Conversion Wizard for this process, you
should select the Open Project option, which enables you to use your existing
configuration file.

Note: Converting a FAILED project is not the same as reconverting a Shared
Library. With a FAILED project, you must follow the three-stage Conversion
Wizard path: Database Schema Extraction, Shared Libraries Conversion, and
I4GL Application Conversion. When a shared library needs reconversion,
you need only use the Shared Libraries path.

In addition, individual files can be classified as one of the following;:
¢ PASSED. Confirms the file converted correctly; no user action necessary.

* ERROR. Identifies that the entire conversion failed and often explicitly identifies
how it failed; you must reconvert the I4GL program using the Conversion
Wizard.

* FIXME. Identifies that one or more stages of the conversion failed, but that
conversion through the Conversion Wizard is not necessary. The information
from this classification provides you with enough information to fix the problem
with the converted files manually while in the EGL Perspective. Within your
EGL code, each FIXME is identified with a FIXME tag, for example: //FIXME:. In
addition, each FIXME and TODO includes a line and column reference to the
original I4GL file.

In addition to identifying a FIXME in the EGL code, each FIXME is listed within
the EGL Tasks view. Use the information for each FIXME to correct your code.

* TODO. Identifies that the conversion passed, but with warnings; you can ignore
the warnings or address each one manually while in the EGL Perspective. You
should verify each of these warnings.

Conversion Log Contents
The conversion log contains the following information:
* Conversion Status. This section includes:
— Project status

Chapter 4. Post-Conversion Tasks 4-7

4-8

— Conversion date
— User name
— Host

OS version

* Project Details. This section includes:
— Project name
— Directory information
— Conversion type
— Default Informix server instance

¢ Conversion Artifacts. This section includes the file names of the conversion
artifacts.

* I4GL Source File Conversion Summary. This section lists the number of I4GL
source files provided as input and the number of files converted into EGL as
output. Occasionally, the number of EGL files exceeds the number of I4GL files.

* Source File Conversion Details. This section is present only for Shared Library
and Application projects, and identifies the following:

— Names of the input I4GL source files and the output EGL source files.
— Conversion status of each file.
— As appropriate, the location of the ERR file.

* Exceptions. This optional section identifies any conversion problems, including
unsupported syntax warnings, fatal and non-fatal errors, and possible
Conversion Utility internal functional failure exceptions. This section can record
the reconversion requirements identified during your Application project
manifest file consistency check.

* Database Connection Details. This section is present only for Database Schema
Extraction projects, and identifies the following:

— Server name
— Database name
— Table name

— Corresponding EGL source file extracted for this table

Note: For both the database extraction and the source file conversion details
section above, the .html version of the conversion log has hyperlinks to the
input and output files and directories.

Once the conversion has completed, the log file is displayed in the Report Tab. If a
default browser is located on the system, the Conversion Utility automatically
opens the browser and the conversion log for viewing. You should review the
contents of the log file soon after the conversion completes. You must understand
the contents of the log file to correct any conversion errors or warnings.

If you use the command line mode, the conversion status is displayed in the
console or shell window where the Conversion Utility is invoked. The log files are
generated in the EGLDestinationDirectory/ConversionArtifacts/log directory. You
must open this file for viewing.

Note: The conversion log also displays errors returned by your JDBC driver. If
your driver provides an error description, that description is extracted from
the driver and appears in the conversion log; if your driver does not
provide an error description, only the error number provided by the JDBC
driver displays in the conversion log.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

In addition to the file information contained within the conversion log, the
Conversion Utility also generates an ERR file to identify the I4GL syntax
statements that did not convert successfully to EGL. With the ERR file information,
you can correct the syntax errors in your I4GL code, and then reconvert your 14GL
application. For .4gl files, the ERR file is named sourcefile.err. For .per files, the
ERR file is named sourcefileForm.err.

For an example of a conversion log, see|{Appendix G, “Conversion Log Examples.”|
To review a list of Conversion Utility error messages, see [Error Messages|

Using C Shared Libraries with the EGL Program

If your I4GL program had shared libraries, one of your pre-conversion tasks was to
review each library to identify whether it was compiled from .4gl source files, .c
source files, or both. For a shared library compiled from both .4gl and .c source
files, you segregated the .c files and compiled them into a C shared library. In
addition, you might have identified some shared libraries that were originally
compiled from only .c source files, or some pre-existing static libraries consisting of
object files compiled from .c source files. This section explains how an application
level shared library is created and linked with the variety of C libraries that you
have identified.

During the conversion of an I4GL shared library or application, prototypes of the C
functions encountered in that project were defined in an EGL native library created
for that project. At the end of the I4GL application conversion, a function table
identifying all the C functions was generated. These components are also explained
in this section.

EGL Native Library

During the conversion of an I4GL shared library or application, prototypes of the C
functions encountered in that conversion project are defined in an EGL native
library created for that project. This library consists of function prototypes with no
function body. The C functions are defined inside the C libraries, and the EGL
native library is used to avoid validation errors in the EGL IDE. The name of the
native library is CExternals, and it is created in the EGLDestinationDirectory/
ProjectName/EGLSource/CExternals directory.

For complete information about the EGL native library, see the Library part of type
nativeLibrary help topic.

Function Table

The function table is generated at the end of the I4GL application conversion stage.
It is a C source file that includes the names of all C functions called from the EGL
program. The function table is named NativeFuncTab.c and is located in the
EGLDestinationDirectory/ConversionArtifacts/NativeLibrary directory.

In the following function table example, ¢_funl and ¢_fun2 are names of the C
functions.

#include <stdio.h>
struct func_table {

char *fun_name;
int (*fptr)(int);
bs

extern int c_funl(int);

Chapter 4. Post-Conversion Tasks ~ 4-9

extern int c_fun2(int);
/* Similar prototypes for other functions =/

struct func_table ftab[] =
{
"c_funl", c_funl,
"c_fun2", c_fun2,
/* Similarly for other functions =/
IIII’ NULL
}s

You must modify both the function table and the EGL application code if the
following occur:

1. The name of an existing C function is changed. In addition to changing the
function invocation statement in your EGL code, you must also change the
following:

e the name of the C function in the function table.

* the function prototype must be defined in the EGL native library
corresponding to each of the projects from which the function is invoked.

2. A new C function is added. Change both of the following:
e the name of the new C function must be added to the function table

* the function prototype defined in the EGL native library corresponding to
each of the projects from which the function is involved.

Note: If two C functions share the same name, the actual function call depends
upon the shared library linking sequence.

Creating the Application Level Shared Library

This section explains how to create an application level shared library and how to
link it with the C libraries that have been identified or created during
pre-conversion.

There are two parts to creating the application level shared library:

1. Install the EGL runtime code and find the stack library and application object
file.

2. Compile the function table and the appropriate platform-specific application
object file into an application level shared library, and link this shared library
with the appropriate platform-specific stack library and the C libraries
identified or created during pre-conversion.

To retrieve the files of interest:

1. The stack library is used to pass or return values between the EGL code and
the C code. The pop and return APIs used in the C code are resolved in the
stack library. The application object file acts as an interface between the EGL
program and the C code. Note that both the stack library and the application
object file are platform-specific components.

a. Follow the directions in the help topic named "Installing the EGL runtime
code."

b. Find the files of interest.
For the platform-specific stack libraries:
* AIX 32-bit: EGLRuntimes/Aix/bin/libstack.so
* AIX 64-bit: EGLRuntimes/Aix64/bin/libstack.so
* Linux 32-bit: EGLRuntimes/Linux/bin/libstack.so

4-10 1BM Informix 4GL to EGL Conversion Utility User’s Guide

* 32-bit Windows platforms:
— EGLRuntimes/Win32/bin/stack.dll
— EGLRuntimes/Win32/bin/stack.lib
¢ Solaris 32-bit: EGLRuntimes/Solaris/bin/libstack.so
* Solaris 64-bit: EGLRuntimes/Solaris64/bin/libstack.so
¢ HPUX 32-bit: EGLRuntimes/HPUX/bin/libstack.sl
e HPUX 64-bit: EGLRuntimes/HPUX64/bin/libstack.sl
For the platform-specific application object files:
* AIX: EGLRuntimes/Aix/bin/application.o
* AIX 64-bit: EGLRuntimes/Aix64/bin/application.o
* Linux 32-bit: EGLRuntimes/Linux/bin/application.o
¢ 32-bit Windows platforms: EGLRuntimes/Win32/bin/application.obj
* Solaris 32-bit: EGLRuntimes/Solaris/bin/application.o
* Solaris 64-bit: EGLRuntimes/Solaris64/bin/application.o
* HPUX 32-bit: EGLRuntimes/HPUX/bin/application.o
* HPUX 64-bit: EGLRuntimes/HPUX64/bin/application.o

To create the application level shared library:

1. The following two artifacts must be compiled into the application level shared
library and linked with the stack library and the libraries identified or created
during pre-conversion:

* the function table created by the Conversion Utility
* the application object file

2. Compile the new shared library using the following example, where
NativeFuncTab.c is the name of the function table, 1ib1/1ib2 and so forth are
the names of the C libraries identified or created during pre-conversion and
lib_dir1/lib_dir2 and so forth are the respective directory locations of those
libraries.

* On AIX:

cc -c NativeFuncTab.c

1d -G -b32 -bexpall -bnoentry -brtl NativeFuncTab.o application.o
-Lstack_1ib_dir -Istack -L1ib_dirl -11ibl -L1ib_dir2 -11ib2 -0
app_lib_name -1c

* On Linux:

cc -c NativeFuncTab.c
gcc -shared NativeFuncTab.o application.o -Lstack_1ib_dir -lstack
-LTib_dirl -11ibl -L1ib_dir2 -11ib2 -0 app_lib_name

* On Windows platforms:

cl /c NativeFuncTab.c

1ink /DLL NativeFuncTab.obj application.obj /LIBPATH:stack 1ib_dir
/DEFAULTLIB:stack.1ib /LIBPATH:1ib_dirl /DEFAULTLIB:1ibl.1ib
/LIBPATH:1ib_dir2 /DEFAULTLIB:1ib2.1ib /OUT:app_Lib_name

When running the EGL application, this application level shared library is specified
using the vgj.defaultl4GLNativeLibrary Java runtime property.

Properties Files

The properties of your converted EGL project are defined in one of three files, each
of which have a .properties file extension. You must enter your [4GL environment
variables into one of the following files as appropriate:

Chapter 4. Post-Conversion Tasks 4-11

* user.properties, located in your home directory. This file identifies user-specific
data like user and password.

* programname.properties, located in the CLASSPATH. Each converted I14GL
project can have a file with this name. Properties and values in this file are
customized to include values for all users.

* rununit.properties, located in the CLASSPATH. This file identifies information
which is needed at runtime.

If a same-named property is set in any one of the files, the property in the file
user.properties is used. The search order for properties is user.properties,
programname.properties, and rununit.properties.

For a mapping of I4GL environment variables, EGL properties, and JDBC
properties, see [“Environment Variables” on page A-20.|

The values bulleted below should be defined in at least one of the .properties files.
The values in the example assume that the EGL application references a database
named stores7, that it supports switching servers based on INFORMIXSERVER
values, and that the server connection is enabled without a password through
.thosts, and that the application and the database server are not running on the
same UNIX host.

* INFORMIXSERVER=myserver
* DEFAULT_USER=id
* DEFAULT_PASSWORD=pw

¢ stores7@myserver=jdbc:informix-sqli:/ /host:port/
database:INFORMIXSERVER=myserver;DBDATE=MDY4/

If the application and the database server are running on the same host,
DEFAULT_USER or DEFAULT_PASSWORD are not required.

If the application and the database server are operating on different UNIX hosts,
you can specify the application host in the .rhosts file of the database server host.

You do not need to specify the DEFAULT_USER and DEFAULT_PASSWORD
values.

If the application does not require a value for INFORMIXSERVER,
INFORMIXSERVER can be omitted as a separate value. If the application directly
supplies userid and password values through the CONNECT statement, the
DEFAULT_USER and DEFAULT_PASSWORD values can remain unspecified.

For more information on .properties files, see the genProperties and Java runtime
properties help topics. For more information on specifying JDBC URLS for your
IBM Informix DBMS server, review the IBM Informix JDBC documentation
available at |http: / /www.ibm.com /software/data/informix/pubs/library /|.

Validating and Compiling Converted EGL Files

4-12

Your converted EGL source files must be validated and compiled. These steps are
only required for I4GL Application and Shared Library projects and are not
necessary for Database Schema Extraction projects. You must have the IBM
Informix JDBC driver installed in your system before attempting this process.

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

http://www.ibm.com/software/data/informix/pubs/library/

Note: The Conversion Utility generates a template build descriptor file for each
converted project. This file is located in the EGLSource directory and
follows the naming convention of Projectname.eglbld.

To validate and compile the converted EGL source files:

Note: Steps 4, 5, and 6 are optional.
1. From within the Project Explorer view, select and right-click Projectname.
2. From the menu provided, select Properties.

3. In the left box of the Properties for Projectname window, select EGL Build
Path. In the tabbed Projects section, select all of listed dependent projects.

4. In the left box, select EGL Default Build Descriptors.
5. In the Target system build descriptor field of the EGL Default Build

Descriptors section, select the down arrow. This displays all of the EGL build
descriptor files available in the workspace.

6. Select your build descriptor, that is the file following the naming convention of
Projectname.eglbld. Select OK. The automatic EGL build process initiates.

7. If your project requires database connectivity for testing, in the left box, select
Java Build Path. Select the Libraries tab.

8. Select the Add External JARs... button. In the JAR Selection window, browse

through the file system and locate the appropriate JDBC driver JAR files. Click
OK. The selected JAR files appear in the Libraries tab.

Note: For an example of an EGL build descriptor, see [Appendix H, “EGL Build|
[Descriptor Example.”|

Generating EGL to Java

Before you generate your EGL files to Java, you must:

* Identify and resolve all TODO and FIXME messages. For more information,
sed”Correcting Conversion Errors” on page 4-6.|

* Identify and resolve any validation errors. You cannot generate your EGL files to
Java until all validation errors have been resolved.

* As appropriate, add your database connection information to the
Projectname.eglbld file.

To add your database connection information to the Projectname.eglbld file:
1. In the Project Explorer view, right-click on your Projectname.
2. Within the EGLSource directory, double-click on the Projectname.eglbld file.

3. The Projectname.eglbld file opens in a tabbed window. Check the Show only
specified options box.

&

As appropriate, click on the existing option Value and enter your connection
information for the following options:

* sqlDB
* sqllD
* sqlPassword
¢ sqlValidationConnectionURL
5. Close the window tab to accept the changes.

To generate EGL to Java:
1. In the Project Explorer view, right-click on your Projectname.

Chapter 4. Post-Conversion Tasks 4-13

2. From the menu, select Generate.

3. The Generating EGL Parts window displays, and closes when generation
completes.

To run the generated Java program with a database connection, you must create a
.property file as described in [“Properties Files” on page 4-11]

Your Java source files are located in the JavaSource folder in the project
workspace. For more information on generating your EGL files, see the Generating,
preparing and running EGL output help topic.

Understanding Error Message Conversion

The Conversion Utility converts I4GL error messages into Java properties files and
places all of the converted message files into the following directory:
EGLDestinationDirectory/MessageSource/locale/

A comparison between an I4GL error message file and the resultant Java properties

format is seen in [Table 4-3] below.

Table 4-3. Comparison of I4GL message to Java Properties file formats

I4GL message file format EGL message file format

. message-number message-text message-number=message-text

I4GL message files are converted into a Java .properties file and are organized into
a sub-directory with locale names. For example, an [4GL message file named
MyMessage.msg converts to the following:

In English:
EGLDestinationDirectory/MessageSource/en_us/8859-1/MyMessage.properties

In Chinese:

EGLDestinationDirectory/MessageSource/zh_tw/big5/MyMessage_zh.properties

Understanding Report Conversion

4-14

EGL Reports use the functionality of JasperReports, an open source reporting
library written in Java. Thus, during conversion to EGL, some I4GL code,
functions, and files are changed.

During the conversion of your I4GL application, the following changes occurred to
your I4GL report code:

* I4GL program files were converted into EGL program files. For example, the
I4GL file named myreport.4gl is now the EGL file myreport.egl.

* A single I4GL REPORT function was converted into four EGL functions. For
example, an I14GL report file named myreport.4gl with a REPORT function of
REPORT my4glReport(a, b, ¢) was converted into an EGL report file named
myreport.egl with the following functions calls:

— my4glReport_START()
- my4glReport_ OUTPUT(a, b, c)
— my4glReport_FINISH()

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

— my4glReport TERMINATE()
Together, these four EGL functions act as a single report driver function in EGL.

* The business logic in an I4GL report was converted and moved into an EGL
report handler file. The report handler is an EGL report component that
provides the logic for handling events occurring during the filling of the report.

If your I4GL report was named my4glreport, the EGL report handler file is
named my4glreport_handler.egl.

¢ The presentation logic in an I4GL report is converted and moved into a
JasperReports XML design file. This converted file contains the report layout

template converted from your I4GL report.

If your I4GL report is named my4glreport, the JasperReports XML file is named
my4glreport_XML.jrxml. If your I4gl report contains multiple looping constructs
containing output logic, each looping construct block is moved over to a
subsequent sub-report. The filename of each subsequent report is identified with
the word SUB and a sequence number. For example, the first subsequent report

is named my4glreport_ XML_SUB1.jrxml.

EGL Report Driver Functions

As mentioned above, during the I4GL to EGL conversion a single I4GL REPORT
function is replaced with four EGL functions. Information on how each of those
EGL functions map to I4GL syntax is included in [Table 4-4| below.

Table 4-4. EGL Report Driver behavior

EGL Function

Corresponding
I4GL statement

Behavior in EGL

reportname_START()

START REPORT

While the converted EGL program is
running, this function creates a
temporary table in the default or active
database of the EGL application.
Parameters received by the I4GL report
function are added as a column in the
temporary table. In addition, with the
exception of array variables, all global
variables used by the I4GL report are
added as a column to this temporary
table.

reportname_OUTPUT()
reportname_OUTPUT(a, b,
V]

OUTPUT TO
REPORT

This function collects all of the
arguments passed to it and any other
global variables used by the I4GL report
function for the report and adds their
current value as a row to the temporary
table. Typically, a number of calls must
be made to pass all of the report data.
Note: If the converting I4GL report does
not receive any arguments or does not
use global variables (other than array
variables), this function inserts a
placeholder row for the global variables
into the temporary table.

Chapter 4. Post-Conversion Tasks 4-15

4-16

Table 4-4. EGL Report Driver behavior (continued)

Corresponding
EGL Function I4GL statement Behavior in EGL

reportname_FINISH() FINISH REPORT This function does the following:
¢ Initializes the report library

* Passes a SELECT statement referring
the temporary table to the EGL report
library; the result set generated serves
as the datasource for the JasperReports
engine.

e Uses the EGL API to fill the
JasperReports.

* Uses the EGL JasperReports text
exporter to export the JasperReports to
text format.

After the report has been generated, this
function drops the temporary table
which was used to store the report data.

reportname_TERMINATE(| TERMINATE This function drops the temporary table
) REPORT and stop the report processing.

Note: When processing reports, the generated EGL report driver functions always
assume that an active database is available. If an active database is not
available, you must modify the report driver function code to use an EGL
dynamic array of records to collect and pass the data to the JasperReports
engine.

Since global array variables are not added to the temporary table, an I4GL report
code using global array variables might not produce the expected results when
converted to EGL. To achieve the expected results, you might need to modify your
EGL report.

While [4GL reports were processed on a line by line basis, in EGL all report data
were collected in a temporary table and then processed. Report data is only
processed when all data is collected in the temporary table and
reportname_FINISH() is called. Thus, if there is a dependency between the data
inside the report and I4GL report driving function, some reports do not produce
correct results.

I4GL Report Sections

This section explains the conversion to EGL of the following four I4GL report
sections:

* DEFINE

« OUTPUT
* ORDER BY
* FORMAT

14GL DEFINE Section

In I4GL, the DEFINE section declares a data type for each formal argument in the
REPORT prototype and for any additional local variables that can be referenced
only from within the REPORT program block.

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

Parameter conversion: All parameters declared in the DEFINE section are
converted to the XML design document as report fields, and then are declared as
variables in the EGL report handler. In addition, parameters are converted to part
of the report driver functions as columns of the temporary table, so that their value
at every iteration of an OUTPUT TO report call can be stored in the temporary
table. The values stored in the temporary table are used as the data source for the
report.

During conversion, the I4GL record type parameters are flattened to a single level
in JasperReports fields. The following example is original [4GL code:
Define rec Record
i, J Integer,
k, 1 Integer,
si Smallint,
End Record

This example is the equivalent code, flattened, in the XML design document:

rec_i
rec_j
rec_k
rec_1
rec_si

The Conversion Utility does not attempt to verify that the name of an I4GL record
parameter is unique, that is, that another flattened or declared JasperReports field
or variable does not have the same name. If, after conversion, you identify that
two flattened or declared JasperReports fields or variables have the same name,
you must change one of the names to ensure that each name is unique.

When converted to the EGL report handler, [4GL Report DEFINE section
parameters are declared as normal variables. The EGL report handler uses the
internal function init to process any business logic to initialize the locale variables
with the report field values. Although in I4GL it was possible to assign values to
the report fields or parameters received, it is not possible in EGL. Inconsistent
expressions can result in a report with incorrect results. To achieve your preferred
report results, you must manually modify your converted code.

The Conversion Utility converts [4GL variables to EGL Report Handler variables
and columns on the temporary table. The Conversion Utility reviews each variable
used by report statements and expressions, and treats global and non-array
variables the same as report parameters. The Conversion Utility attempts to
preserve the value of each variable at every iteration so that when EGL processes
the datasource generated from the temporary table, the values received are the
same as the I4GL values received. However, this method of passing values does
not always conform to I4GL program logic and can produce incorrect results. To
achieve your preferred report results, you must manually modify your converted
code.

Note: With one exception, a global array variable used by an I4GL report remains
global in nature. If your I14GL code has a global array variable with a value
that changes with the iteration of the OUTPUT TO Report statement, the
variable is not considered a global variable and it is not converted. To
achieve your preferred report results, you must manually modify your
converted code.

Local Variables Conversion: All DEFINE section local variables are converted to
EGL report handler variables.

Chapter 4. Post-Conversion Tasks 4-17

4-18

14GL OUTPUT Section

In I4GL, the OUTPUT section specifies the destination and dimensions for output
from the report and the page-eject sequence from the printer.

The original I4GL OUTPUT section clauses and how they convert to the XML
design document are identified in [Table 4-5below.

Table 4-5. 14GL Output clause conversion

I4GL OUTPUT

clause Converts to

Conversion specifics

PAGE LENGTH | XML Design

document

If the PAGE LENGTH clause is present during
conversion, the XML design document pageHeight
page attribute is set to:

pageHeight = (Font height for the Tocale) =
(value of PAGE LENGTH clause)

If the PAGE LENGTH clause is not present during
conversion, the value of PAGE LENGTH clause
defaults to 66, the I4GL default page size.

Before setting the pageHeight value, the Conversion
Utility verifies that the sum of the height of all the
bands and topMargin and bottomMargin fit within
the pageHeight value. As necessary, the Conversion
Utility adjusts the pageHeight to ensure the correct
fit.

BOTTOM
MARGIN

XML Design
document

If the BOTTOM MARGIN clause is present during
conversion, the XML design document
bottomMargin page attribute is set to:

bottomMargin = (Font height for the locale) =
(value of BOTTOM MARGIN)

If the BOTTOM MARGIN clause is not present
during conversion, the bottomMargin page attribute
is set to:

bottomMargin = (Font height for the locale) *
3 (default I4GL value for BOTTOM MARGIN)

LEFT MARGIN | XML Design

document

If the LEFT MARGIN clause is present during
conversion, the JasperReports XML design
leftMargin page attribute is set to:

leftMargin = (Font width for the locale) *
(value of LEFT MARGIN)

If the LEFT MARGIN clause is not present during
conversion, the leftMargin page attribute is set to:

leftMargin = (Font width for the locale) *
5 (default I4GL value for LEFT MARGIN)

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

Table 4-5. I14GL Output clause conversion (continued)

I4GL OUTPUT
clause Converts to Conversion specifics

RIGHT MARGIN | XML Design + If the RIGHT MARGIN clause is present during

document conversion, the XML design document pageWidth
attribute is set to:
pageWidth = (Font width for the locale) *
(value of right margin)

e If the RIGHT MARGIN clause is not present during
conversion, the pageWidth attribute is set to:

pageWidth = (Font width for the locale) *
132 (default I4GL value for RIGHT MARGIN)

TOP MARGIN | XML Design * If the TOP MARGIN clause is present during
document conversion, the XML design document topMargin
attribute is set to:

topMargin = (Font height for the locale) *
(value of TOP MARGIN)

¢ If the TOP MARGIN clause is not present during
conversion, the topMargin attribute is set to:

topMargin = (Font height for the locale) =
3 (default I4GL value for TOP MARGIN)

REPORT TO Does not » If REPORT TO FILE filename or REPORT TO filename
convert directly | (]ayses are present in the I4GL report, the
Conversion Utility saves the exported text output
with the given filename.

TOP OF PAGE | Does not In EGL, the character used by the EGL report text
convert directly | exporter.

14GL ORDER BY Section

In I4GL, the ORDER BY section specifies a sort list for the input records and
identifies the order in which groups are evaluated. The ORDER BY section
converts to an XML design document (with the extension .jrxml) and to EGL
Report driver functions.

Conversion of the ORDER BY to EGL provides:

¢ In the XML design document, group sections that follow the order established in
the I4GL ORDER BY section.

» If ORDER EXTERNAL BY is not used in the I4GL Report, the temporary table
maintains the order of ascending or descending columns as given, and records
are retrieved from the table in that sorted order.

14GL FORMAT Section

I4GL supports two types of FORMAT sections, both of which determine the
appearance of the output from the report looks. The simplest report contains only
the EVERY ROW keywords between the FORMAT and END REPORT keywords. A
more complex [4GL report has FORMAT sections that contain control blocks (such
as ON EVERY ROW or BEFORE GROUP OF) which contain statements to execute

Chapter 4. Post-Conversion Tasks 4-19

4-20

while the report is being processed. This section discusses both simple and
complex I4GL reports and how their components convert to EGL and
JasperReports.

Simple Reports: In I4GL, the FORMAT EVERY ROW statement produces a
default report for all of the data passed to the I4GL Report function. No other
format block statements are allowed with this statement.

In converting an 14GL simple report to the EGL equivalent, the Conversion Utility
compares the size of the report fields names with the size of the field values, and
uses whichever size is greater for the column widths. If the total row width is less
than the columnWidth attribute of the tag in the XML design document, the
Conversion Utility adds the following to the XML design document:

* one page group header section
* one detail section
In the header section, all of the field names are displayed on one row. The spacing

between the field names is determined according to the column widths determined
above. The following table provides an example of a header section.

Table 4-6. Header section example

FieldNamel FieldName2 FieldName3
Valuel LongValue2 Value3
Valuelb LongValue2b Value3b

If the total row width is greater than the columnWidth attribute in the XML design
document, the Conversion Utility produces one detail section in the XML design
document. The detail section shows report fields, one per line, and each field name
is followed by the data in the field. The following table provides an example of a
detail section.

Table 4-7. Detail section example

FieldNamel Valuel
FieldName2 LongValue2
FieldName3 Value3
FieldNamel Valuelb
FieldName2 LongValue2b
FieldName3 Value3b

I4GL simple report data values are converted to one of the following three EGL
Report Handler function string values:

* beforeDetailEvals. This JasperReports default method is called before processing
any detail band elements.
¢ init. This method copies all report field values to local variables.

* getPrintString. This method is used by the XML design document to retrieve
report field values out of the print string array.

Complex Reports: In I4GL, control blocks define the structure of a report by
specifying one or more statements to be executed when specific parts of the report
are processed. If no data records are sent as output to the report, none of the

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

statements in these blocks are executed. Essentially, [4GL complex reports have
multiple subsections within the FORMAT section.

Although an I4GL report contains business and presentation logic in one central
location, business and presentation logic are separate in EGL reports. The

Conversion Utility converts I4GL business logic into an EGL report handler
document and converts the I4GL presentation logic into an XML design document.

All of the I4GL FORMAT subsection data presentation statements are converted or
moved to a corresponding JasperReports band, a generic report section. The
mapping between the original [4GL FORMAT subsection data presentation
statement and the converted band is provided in below.

Table 4-8. Mapping of 14GL Data Presentation statements to JasperReports bands

Data presentation statement Band
First Page Header title
Page Header pageHeader

Before Group Of variable

groupHeader (of a group section for the given variable)

On Every Row

detail

After Group Of variable

groupFooter (of a group section for the given variable)

Page Trailer

pageFooter

On Last Row

summary

The mapping between the original [4GL FORMAT subsection data and the EGL
Report Handler method is provided in [Table 4-9 below.

Note: The JasperReports Method column heading identifies if a method is also a
default report event handling method.

Table 4-9. Mapping of I4GL FORMAT subsections to EGL and JasperReports

I4GL Report FORMAT EGL Report Handler

sub-section Method JasperReports Method
First Page Header firstPageHeader No

Page Header pageHeader No

Before Group Of variable beforeGroupOf variable No

On Every Row beforeDetailEval Yes

After Group Of variable afterGroupOf No

Page Trailer pageTrailer No

On Last Row onLastRow No

In addition to the methods listed in the table above, three additional methods are
defined in the EGL Report Handler:

* init. This Report Handler method is called from other methods to initialize the
local report handler variables with report field values. In addition, this method

initializes print flags and print strings associated with the designated band.

* getPrintString. This method is called from the XML design document to return
values to be displayed in the text field.

Chapter 4. Post-Conversion Tasks

4-21

4-22

* getPrintFlag. This method is called from the XML design document to determine
the print status of a static text or text field. This method returns the values of 1
(true) or O (false).

The following I4GL Report statements do not convert to EGL or JasperReports;
however, to maintain syntactically correct code, the Conversion Utility generates
redundant code in the report handler for these statements:

* EXIT REPORT

* NEED

* PAUSE

The following I4GL elements convert to EGL on a conditional basis:

* SKIP TO TOP OF PAGE. This statement converts only if it occurs within the
FORMAT section of a BEFORE GROUP OF sub-section. If SKIP TO TOP OF
PAGE occurs in any other instance, the statement will not convert, and as a
consequence, your report may produce data on an incorrect page.

* LINENO. EGL does not support conversion of the I[4GL LINENO operator.
However, the Conversion Utility does generate EGL report handler code which
simulates the LINENO operation by incrementing the local report handler
variable for every print statement executed through the business logic.

Note: If your converted report contains the elements listed above, you should
review your converted code and correct it as necessary.

I4GL PRINT Statement: In I4GL, the PRINT statement produces output from a
report definition. The Conversion Utility analyzes and collects data from all 14GL
report PRINT statements and converts most of the report presentation layout to the
XML design document. The Conversion Utility analyzes and collects the following
PRINT statement data:

1. The number of PRINT statements in a report.

2. The number of looping constructs containing PRINT statements, and the
number of PRINT statements in each looping construct.

3. The number of expressions in a PRINT statement and the attributes of each
expression.

4. The size of each PRINT statement. Size is calculated by adding the size of all
data returned by the PRINT statement expressions. If the size of the PRINT
statement is larger than the columnWidth, the pageWidth and columnWidth
are adjusted to fit all the print fields in the page.

Once the information above is collected, the Conversion Utility defines the
following for the EGL Report Handler or the XML design document:

1. The design band height for every I4GL FORMAT sub-section.

2. The number of EGL sub-reports required, and the structure of the static text
and text fields for each subreport.

3. The number of record arrays, and the structure necessary to hold subreport
data in the EGL Report Handler.

4. The number of print flags and print strings required in the EGL Report
Handler.

5. The number of text elements and whether they fit into a static text or a text
field.

6. Whether the given text field is right justified, and therefore, a numeric, field, or
left justified, and therefore, a non-numeric, field.

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

For every PRINT statement that does not occur in a loop, the Conversion Utility:

1. Adjusts the coordinates for the static text or the text field .xml tags and
generates the correct coordinates in the XML design document.

2. Associates one array index in egldgl_printFlag with the given PRINT
statement.

3. Generates code in the XML design document to get the associated
egldgl_printFlag value returned from EGL report handler program for the
printWhenExpression tag of every static text or text field in the XML design
document to determine if that element should appear in the report.

4. Generates the EGL report handler code that sets the appropriate value for
associated egldgl_printflag.

5. Associates one array index in egldgl printString with every expression in the
PRINT statement.

6. Adds code to the text fields in the XML design document to return string
values to be placed in the report from EGL report handler for a given array
index of egl4gl_printString.

7. Generates code in the EGL report handler to populate the egl4gl printString
array indexes with output string values taking into account PRINT attributes.

8. Increments the egldgl lineNumber variable by one; this increment parallels the
I4GL LINENO operator.

I4GL PRINT Statement Expressions: [4GL PRINT statement expressions return
one or more values that can be displayed as printable characters. The Conversion
Utility analyzes each expression and converts it into either a staticText field or into
one or more text fields in the XML design document. In addition, these print
expressions are used to determine the vertical placement and the size or width of
staticText or text fields in the XML design document. The width is determined by
the following parameters:

* The attribute of the print expression.
* The data size of the variable making the PRINT expression.

Note: When the I4GL SPACE or SPACES AND COLUMN operator have an integer
expression instead of an integer literal, the Conversion Ultility sets the value
of the expression to 1, the default. You might need to adjust the report
design and code to achieve the correct report layout.

I4GL PRINT Statement in looping constructs: Like other PRINT statements,
PRINT statements in looping constructs are converted to the equivalent number of
print expressions, each of which is added to the XML design document subreport.
In the EGL Report Handler, one record array is declared to accumulate all of the
data generated for output. For every PRINT statement with a looping construct,
the Conversion Utility:

1. Identifies all PRINT statement expressions.
2. Identifies the nesting structure of the loop.

3. Declares a record array structure which matches the nesting structure, print
strings, and the print flags for the PRINT statement.

4. Adds code in the EGL report handler to declare a record array, and populates
the record array fields with print string and print flag data.

5. Adds a subreport tag in the XML design document.

6. Generates another XML design document with one detail section containing all
of the fields from the record array. This detail section represents the template of
the PRINT statement as identified in the looping structure.

Chapter 4. Post-Conversion Tasks 4-23

4-24

Note: The Conversion Utility attempts to convert the I4GL LABEL and GOTO
looping structure statements into a looping structure. However,
identification and conversion of the LABEL and GOTO looping structures is
not always successful, and you might need to adjust the report design and
code to achieve the correct results.

I4GL PRINT statement terminating with a semicolon: An I4GL PRINT statement
terminating with a semicolon indicates that the next PRINT statement continues on
the same line. The Conversion Utility identifies each PRINT statement terminating
with a semi-colon and creates an XML design document with a similar layout.
However, PRINT statements terminating with a semicolon are not successful when
the following conditions occur:

1. An IF condition block is implemented before the next PRINT statement.

2. The PRINT statement is followed by a looping construct.

3. The PRINT statement is the last PRINT statement on the [4GL FORMAT
section.

I4GL Report Operators: Details about the conversion of I4GL report operators is
provided in [Table 4-10| below.

Table 4-10. Conversion of 14GL Report Operators

I4GL Report
Operator Conversion specifics

CLIPPED If a PRINT statement expression is followed by a PRINT statement
expression with an attribute of CLIPPED, in the XML design
document, the second PRINT statement is placed in the same text
field as the first statement. If the Conversion Utility identifies a
COLUMN print expression or an end of print statement, the
placement of two print expressions into one text field terminates.
The size of the text field into which the PRINT statement is placed
is the sum of all PRINT fields placed in the text field.

WORDWRAP To convert WORDWRAP, the Conversion Utility sets the XML
design document textField tag isStretchWithOverflow attribute to
true.

USING When creating the output egldgl_printString in the EGL report

handler program, the EGL formatting functions are called to the
return string, which is formatted similarly to the I4GL USING
attribute.

SPACE or SPACES The Conversion Utility analyzes the SPACE or SPACES operators as
quoted blank strings, and converts the operators into a staticText
field or a textField in the Jasper XML design document. If the
number of SPACES is defined by a non-integer literal, the
Conversion Utility assumes a SPACE of 1.

PAGENO The Conversion Utility converts the PAGENO operator to the
JasperReport PAGE_NUMBER variable. The EGL Report Handler
maintains the methods to access the PAGE_NUMBER variable.

LINENO There is no direct conversion mapping for the I4GL LINENO
operator. Instead, converted 14GL reports use a user-defined
variable egl4gl lineNumber to simulate LINENO.

Note: Because of the inability to maintain the correct value for
LINENO, you might need to adjust the report code to achieve the
expected report outcome.

FILE This operator does not convert to EGL. To achieve the results
generated by FILE, you must manually correct your converted code.

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

I4GL Aggregate Report Functions: In 14GL, the SUM, MAX, MIN, COUNT,
PERCENT, and AVG aggregate report functions were used to summarize data
from several records in a report. During the conversion of your I14GL report, each
usage of an aggregate report function is converted to one or more XML design
report variables and to one or more report handler functions. To ensure that the
calculation can be handled in the report handler function, the XML design report
variable calculation type is set to SYSTEM.

This section provides information on how each I4GL aggregate report function
converts to EGL. For all of the examples below, in the [4GL statements provided,
variable is a valid I4GL report identifier.

SUM: The [4GL SUM aggregate function generates one JasperReports XML
design variable and one report handler function. For example, the single I4GL
statement

PRINT SUM(variable)

converts to the following two elements in EGL:
1. the JasperReports XML design variable
variable_SUM_number

2. the EGL report handler function, which calculates the JasperReports XML
design variable

Function update variable_SUM_number

In the EGL Report handler function above, number is a running number which
distinguishes each occurrence of the I4GL SUM aggregate function, and is used to
create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call a report design variable using the
getReportVariableValue() report library API. Therefore, the PRINT SUM/variable)
statement above appears in EGL as:

egl4gl_printString[1] = getReportVariableValue("<variable> SUM_<number>");

MAX: The [4GL MAX aggregate function generates one XML design variable and
one report handler function. For example, the single 14GL statement

PRINT MAX(variable)

converts to the following two elements in EGL:
1. the XML design variable
variable_MAX_number

2. the EGL report handler function, which identifies the maximum value of the
variable

Function update variable_MAX_number
In the EGL report handler function above, number is a running number that
distinguishes each occurrence the I4GL MAX aggregate function and is used to

create a unique variable name.

Note: The variable name will change if it is a member of the record.

Chapter 4. Post-Conversion Tasks 4-25

4-26

During conversion, code is generated to call a XML design report variable using
the getReportVariableValue() report library API. Therefore, the I4GL PRINT
MAX(variable) statement above appears in EGL as:

egl4gl printString[1] = getReportVariableValue("variable MAX number");

MIN: The I4GL MIN aggregate function generates one XML design variable and
one report handler function. For example, the single I4GL statement

PRINT MIN(variable)

converts to the following two elements in EGL:
1. the JasperReports XML design variable
e variable_MIN_number

2. the EGL report handler function, which identifies the minimum value of the
JasperReports variable

e Function update variable MIN_number

In the EGL report handler function above, number is a running number that
distinguishes each occurrence the I4GL MIN aggregate function, and is used to
create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call a JasperReports XML design report
variable using the getReportVariableValue() report library API. Therefore, the I4GL
PRINT MIN(variable) statement above appears in EGL as:

egl4gl printString[1] = getReportVariableValue("variable MIN number");

COUNT: The I4GL COUNT aggregate function generates one JasperReports XML
design variable and one report handler function. For example, the single I4GL
statement

PRINT COUNT (*)

converts to the following two elements in EGL:
1. the JasperReports XML design variable
e COUNT_number

2. the EGL report handler function, which identifies the maximum value of the
JasperReports variable

e Function update variable_COUNT_number

In the EGL report handler function above, number is a running number which
distinguishes each occurrence the I4GL COUNT aggregate function, and is used to
create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call an XML design report variable using
the getReportVariableValue() report library API. Therefore, the I4GL PRINT
COUNT(*) statement above, appears in EGL as:

egl4gl printString[1] = getReportVariableValue("variable COUNT number");

PERCENT: The [4GL PERCENT aggregate function generates two JasperReports
XML design variables and two report handler functions. For example, the single
I4GL statement

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

PRINT PERCENT(variable)

converts to the following four elements in EGL:
1. two JasperReports XML design variables

e variable_PERCENT_number_ PART

e variable PERCENT number WHOLE

2. two EGL report handler functions, each of which identify the maximum value
of the JasperReports variable

* Function update variable_PERCENT_number_ PART
e Function update variable PERCENT number WHOLE

For both XML design variables and the EGL report handler functions, the
following applies:

e In Function update variable PERCENT_number_ PART

— wariable accumulates the value of all of the variables for which the conditional
clause is satisfied.

* In Function update variable_PERCENT_number_ WHOLE
— wariable accumulates the value of all the variables in the record set.

For both EGL report handler functions above, number is a running number which
distinguishes each occurrence of the I4GL PERCENT aggregate function, and is
used to create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call an XML design report variable using
the getReportVariableValue() report library API. Therefore, the I4GL PRINT
PERCENT (variable) statement above appears in EGL as:

egl4gl printString[1] =
getReportVariableValue("variable PERCENT number_PART") /
getReportVariableValue("variable PERCENT number WHOLE") * 100;

AVG: The I4GL AVG aggregate function generates two JasperReports XML design
variables and two report handler functions. For example, the single [4GL statement

PRINT AVG(variable)

converts to the following four elements in EGL:
1. two JasperReports XML design variables

* variable AVG_number SUM

e variable_AVG_number_COUNT

2. two EGL report handler functions, each of which identify the maximum value
of the JasperReports variable

* Function update variable AVG_number SUM
e Function update variable_AVG_number_COUNT

For both JasperReports XML design variables and the EGL report handler
functions, the following applies:

e In Function update variable_AVG_number_SUM

— wariable accumulates the value of all of the variables for which the conditional
clause is satisfied.

e In Function update variable AVG_number COUNT

Chapter 4. Post-Conversion Tasks 4-27

— wariable accumulates the value of all the variables in the record set.

For both EGL report handler functions above, number is a running number which
distinguishes each occurrence of the I4GL AVG aggregate function, and is used to
create a unique variable name.

Note: The variable name will change if it is a member of the record.

During conversion, code is generated to call an XML design report variable using
the getReportVariableValue() report library API. Therefore, the I4GL PRINT
AVG(variable) statement above appears in EGL as:

egl4gl printString[1] =

getReportVariableValue("variable_AVG_number_SUM") /
getReportVariableValue("variable AVG_number COUNT");

For information on how to implement your EGL reports or how to create new
reports, see the EGL Reports topics in the information center.

Understanding your EGL Projects, Packages and Files

4-28

An EGL project contains zero to many source folders, each of which contains zero
to many packages, each of which contains zero to many files. Each file contains
zero to many parts.

Note: The following information is also presented in your Rational product
information center, and provides cross-references to other information center
topics.

EGL Project

An EGL project is characterized by a set of properties. In the context of an EGL

project, EGL automatically performs validation and resolves part references when

you perform certain tasks; for example, when you save an EGL file or build file. In

addition, if you are working with page handler parts, EGL automatically generates

output only if:

* You set the automatic build process after selecting these options: Window >
Preferences > Workbench > Perform build automatically on resource
modification.

* You established a default build descriptor as a preference or property

An EGL project is formed by selecting EGL or EGL Web as the project type when
you create a new project. You assign properties while working through the steps of
project creation. To begin modifying your choices after you have completed those
steps, right-click the project name and when a context menu is displayed, click
Properties.

The EGL properties are described in the following sections.

EGL source folder

One or more project folders that are the roots for the project's packages, each of
which is a set of subdirectories. A source folder is useful for keeping EGL source
separate from Java files and for keeping EGL source files out of the Web
deployment directories. You should specify EGL source folders in all cases; but if a
source folder is not specified, the only source folder is the project directory.

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

The value of this property is stored in a file named .eglpath in the project directory
and is saved in the repository (if any) that you use to store EGL files.

The EGL project wizards each create one source folder named EGLSource.

EGL build path

The list of projects that are searched for any part that is not found in the current
project.

The value of this property is stored in a file named .eglpath in the project directory
and is saved in the repository (if any) that you use to store EGL files.

In the following example of an .eglpath file, EGLSource is a source folder in the
current project, and AnotherProject is a project in the EGL path:
<?xml version="1.0" encoding="UTF-8"?>
<eglpath>
<eglpathentry kind="src" path="EGLSource"/>
<eglpathentry kind="src" path="\AnotherProject"/>
</eglpath>

The source folders for AnotherProject are determined from the .eglpath file in that
project.

Default build descriptors
The build descriptors that allow you to generate output quickly, as described in
Generation in the workbench information center topic.

Package

A package is a named collection of related source parts.
They are not in use when you create build parts.

By convention, you achieve uniqueness in package names by making the initial
part of the package name an inversion of your organization's Internet domain
name. For example, the IBM Corporation domain name is ibm.com®, and the EGL
packages begin with "com.ibm". By using this convention, you gain some
assurance that the names of Web programs developed by your organization will
not duplicate the names of programs developed by another organization and can
be installed on the same server without possibility of a name collision.

The folders of a given package are identified by the package name, which is a
sequence of identifiers separated by periods (.), as in this example:

com.mycom.mypack

Each identifier corresponds to a subfolder under an EGL source folder. The
directory structure for com.mycom.mypack, for example, is \com\mycom\mypack,
and the source files are stored in the bottom-most folder; in this case, in mypack. If
the workspace is c:\myWorkspace, if the project is new.project, and if the source
folder is EGLSource, the path for that package is as follows:

c:\myWorkspace\new.project\EGLSource\com\mycom\mypack

The parts in an EGL file all belong to the same package. The file's package
statement, if any, specifies the name of that package. If you do not specify a
package statement, the parts are stored directly in the source folder and are said to
be in the default package. You should always specify a package statement because
files in the default package cannot be shared by parts in other packages or projects.

Chapter 4. Post-Conversion Tasks 4-29

4-30

Two parts with the same identifier may not be defined in the same package.

Note: You should not use the same package name under different projects or
different folders.

The package for generated Java output is the same as the EGL file package in most
cases.

EGL Files

Each EGL file belongs to one of these categories:

Source file

An EGL source file (extension .egl) contains logic, data, and user interface parts
and is written in EGL source format. Each of the following generatable parts can be
transformed into a compilable unit:

* DataTable

¢ FormGroup

* Handler (the basis of a report handler)
* Library

* PageHandler

¢ Program

Other parts are called subparts.

An EGL source file can include zero to many subparts but can include no more
than one generatable part. The generatable part (if any) must be at the top level of
the file and must have the same name as the file.

Build File

An EGL build file (extension .eglbld) contains any number of build parts and is
written in Extensible Markup Language (XML), in EGL build-file format. You can
review the related DTD, which is in the following directory:

installationDir\egl\eclipse\plugins\com.ibm.etools.egl_version

Recommendations

This section gives recommendations for setting up your development projects.

For build descriptors
Project teams should appoint one person as a build-descriptor developer. The tasks
for that person are as follows:

* Create the build descriptors for the source-code developers

* Put those build descriptors in a project separate from the source code projects;
and make that separate project available in the repository or by some other
means

* Ask the source-code developers to set the property default build descriptors in
their projects, so that the property references the appropriate build descriptors

* If a small subset of the build descriptor options (such as for user ID and
password) varies from one source-code developer to the next, ask each
source-code developer to do as follows:

— Code a personal build descriptor that uses the option nextBuildDescriptor to
point to a group build descriptor

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

— Ask the source-code developers to set the property default build descriptors
in their files, folders, or packages, so that the property references the personal
build descriptor. They do not specify the property at the project level because
the project-level property is under repository control, along with other project
information.

For additional information, see Build descriptor part.

For packages
For packages, recommendations are as follows:

¢ Do not use the same package name in different projects or source directories
* Do not use the default package

Part assignment

For parts, many of the recommendations refer to good practices, not hard
requirements. Fulfill even the optional recommendations unless you have good
reason to do otherwise:

* A requirement is that you put JSPs in the same project as their associated page
handlers.

* If a subpart (like a record part) is used only by one program, library, or page
handler, place the subpart in the same file as the part.

 If a part is referenced from different files in the same package, put that part in a
separate file in the package.

 If a part is shared across packages in a single project, place that part in a
separate package in that project.

* Put code for completely unrelated applications in different projects. The project
is the unit for transferring code between your local directory structure and the
repository. Design project structure so that developers can minimize the amount
of code they must have loaded into their development system.

* Name projects, packages, and files in a way that reflects the use of the parts they
contain.

* If your process emphasizes code ownership by a developer, do not assign parts
for different owners to the same file.

* Assign parts to packages with a clear understanding of the purpose of the
package; and group those parts by the closeness of the relationship between
them. The following distinction is important:

— Moving a part from file to file in the same package does not require that you
change import statements in other files.

— Moving a part from one package to another might require an import
statement to be added or changed in every file that references the moved
part.

The Information Center Help System and EGL Tutorial

The information center contains extensive documentation on how to use both EGL
and the full range of product features. Access the information center from the main
menu by selecting Help > Rational Help.

The EGL Tutorial teaches you how to build a simple dynamic Web site using EGL.
The tutorial is accessible from the main menu by selecting Help > Tutorials
Gallery and then selecting Do and Learn from the left pane of the gallery. The
tutorial assists you in learning how to:

* Set up and configure an EGL project

Chapter 4. Post-Conversion Tasks 4-31

4-32

Create EGL source code
Create two simple Web pages that access data in a relational database
Pass a parameter from one Web page to another

Configure a Web application server and run an application on that server

Exercises in the tutorial include:

Setting up EGL

Creating and configuring the EGL project

Starting and configuring WebSphere® Application Server
Creating EGL data parts

Creating an EGL library

Creating a Web page

Adding data to the page

Linking to another page

Creating an update page

IBM Informix 4GL to EGL Conversion Ultility User’s Guide

Chapter 5. Reconversion Process and Tasks

In This Chapter. o o |
When to Reconvert Your I4GL Shared Libraries .51
How to Reconvert Your I4GL Shared Libraries .b1
Conversion Wizard Reconversion. .b2
Command Line Reconversion .52
Reasons and Workarounds for Unsuccessful Reconversions52

In This Chapter

This chapter describes when and how to reconvert your 14GL shared libraries.

When to Reconvert Your 14GL Shared Libraries

During the conversion of your I4GL shared libraries, a library-specific manifest file
is generated in the following directory: EGLDestinationDirectory/
ConversionArtifacts/manifest. This manifest file has the following naming
convention: ProjectnameProjecttypeManifest.xml. For example, for a Shared
Library project named MyLibrary, the manifest file is named
MyLibraryLibraryManifest.xml. The manifest file identifies the functions, global
variables, and forms used in each library.

During an I4GL application conversion, the Conversion Utility compares the
function call references in the source files with the manifest file from the
dependent shared libraries. If the function call references in the source files and the
function references in the dependent manifest file are not consistent, both must be
reconciled. The dependent manifest file must be updated with the correct function
call references, and the shared library project must be reconverted using the
updated manifest file.

How to Reconvert Your 14GL Shared Libraries

During an I4GL application conversion, the Conversion Utility reconciles the
dependent shared library manifest file. This manifest file should be used for the
dependent shared library reconversion.

When Conversion Utility writes this reconciled manifest file, it backs up the
original dependent manifest file with the filename of filename.bak.num, and
replaces the given manifest file with the reconciled manifest file. You must ensure
that the correct manifest file is used for the dependent shared library reconversion.

You can reconvert your shared libraries in two modes:
* Through the conversion wizard
* Using the command line

Note: Since using the command line mode for the initial conversion process
requires users to manually create a configuration file, you might find it
easier to use the command line option only for reconversion, when an
existing configuration file can be used.

© Copyright IBM Corp. 2005, 2012 5-1

Conversion Wizard Reconversion

To reconvert your shared library:

1. From within the EGL Perspective in your Rational product, select File > New >
Other > Informix 4GL to EGL Conversion > Shared Library Conversion
Wizard.

2. In the I4GL Shared Library Conversion Project screen, insert the following
information:
* Project Details.

— Reconversion Project. Select this option and provide the location of the
existing configuration file and the reconciled manifest file. You can browse
to locate the file.

¢ Conversion Artifacts. The Conversion Utility generates a number of artifacts
related to the conversion, including configuration, manifest and conversion
log files. By default, the conversion artifacts are located in the EGL
destination directory. You can also designate to create the conversion artifacts
in an external directory. You can browse to an appropriate directory, but
cannot create a new directory at this time.

3. Conversion Project Details. Review the project details, including the contents
of the configuration file and manifest file.

4. Click Finish to launch the reconversion.

Command Line Reconversion

You can reconvert your shared library from the command line.

To use the command line to reconvert a shared library:
1. Open a command line
2. At the prompt, enter the following, where configurationfile is the name of the
configuration file used for the earlier conversion and manifestfile is the name of
the updated manifest file created by the Conversion Utility:
a. For Windows:
edgl.bat configurationfile -reconversion manifestfile
b. For Linux:
e4gl.sh configurationfile -reconversion manifestfile

Note: For information on how to use the command line utility to convert an 14GL
application, see [‘Conversion Utility Command Line Mode” on page 3-8)

Reasons and Workarounds for Unsuccessful Reconversions

5-2

The shared library reconversion may fail for the reasons described in [Table 5-1
below.

Table 5-1. Reasons for Shared Library Reconversion Failure

Reason for Reconversion
Failure Workaround

Configuration file corruption Edit and correct the configuration file manually, or use
the Conversion Utility Wizard to regenerate a new,
uncorrupted configuration file.

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table 5-1. Reasons for Shared Library Reconversion Failure (continued)

Reason for Reconversion
Failure

Workaround

Manifest file corruption

Use the Conversion Utility Wizard to convert the shared
library as a New Project and produce a new manifest
file. Use the new manifest file to convert the application
project, and then use the Application project reconciled
manifest file to reconvert the shared library.

Inadequate disk space

Create enough disk space.

Absence of file system write
permissions

Obtain write permissions for the file system.

Inability to read the listed 14GL
source files

Verify the name and path of each source file.

Chapter 5. Reconversion Process and Tasks 5-3

5-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix A. I14GL to EGL Syntax Mapping

In This Appendix

This appendix identifes the correspondence between 14GL and EGL syntax
constructs, and includes the following tables:

* |“Data Types,"l below

» |“Special Data Casting” on page A-3|

* [“Definition and Declaration Statements” on page A-3|

* [‘Storage Manipulation Statements” on page A-5

* [“Program Flow Control Statements” on page A-5|

. "’Compiler Directives” on page A-7|
« |“I4GL Forms to EGL Console User Interface” on page A-9|
+ [“4GL Report Execution Statements” on page A-11|

* [“Built-in 4GL Functions, Variables, and Constants” on page A-12|

* |“Built-in and External SQL Functions and Procedures” on page A-13]

+ |[“Operators” on page A-14

- ["Keyword-Based Operators” on page A-14|

— [“Operators Represented by Non-Alphabetic Symbols” on page A-15|

+ |“SQL Cursor Manipulation Statements” on page A-16|
* [“SQL Data Definition Statements” on page A-16|
* [“SQL Data Manipulation Statements” on page A-17|

+ |“SQL Dynamic Management Statements” on page A-18|

* [“SQL Query Optimization Statements” on page A-18

* [“SQL Data Access Statements” on page A-18|

* [“SQL Data Integrity Statements” on page A-19

* [“SQL Stored Procedure Statements” on page A-19|

* |"SQL Client/Server Connection Statements” on page A-19|
* [“SQL Optical Subsystems Statements” on page A-2()

« |”"Environment Variables” on page A-20)

Data Types

All EGL primitive types are described and their behaviors explained in the
Primitive Types online help topic.

Note: RECORD definitions are appended to the end of the generated file and get
names based on the file and function containing the definition and the first
variable of that type.

© Copyright IBM Corp. 2005, 2012 A-1

A-2

Table A-1. How 4GL data types map to EGL primitive types

I14GL

EGL

ARRAY OF:
DEFINE x array[10] of integer

DEFINE myrec ARRAY[10,2]

x int[10];
Myrec recordtype_filename_myrec[10][2];

Record recordtype_filename_myrec type SqlRecord

of RECORD x Int;

INT x, y Int;

INT y End
END RECORD
BYTE BLOB
BIGINT BIGINT
CHAR (size) UNICODE (SIZE)
CHAR UNICODE (1)
CHARACTER UNICODE (1)
DATE DATE
DATETIME YEAR TO Timestamp ("'yyyyMMddhhmmssfff");
FRACTION(3) Timestamp ("yyyyMMddhh");
DATETIME YEAR TO HOUR
DEC DECIMAL
DECIMAL(p, s) DECIMAL(p, s)
DECIMAL(p) DECIMAL(p) for ANSI database
NUMERIC(p) DOUBLE for non-ANSI database

FLOAT for non-ANSI database

* ANSI database determined from value found in the
Database Schema Manifest File.

DOUBLE PRECISION FLOAT
DYNAMIC ARRAY myA xxx[][1[];
DEFINE myA DYNAMIC ARRAY

WITH 3 DIMENSIONS of xxxx

FLOAT FLOAT

INT INT
INTEGER INT

INT8 BIGINT

INTERVAL YEAR(9) TO MONTH
INTERVAL DAY(7) TO

Interval("yyyyyyyyyMM" /* YEAR(9) TO MONTH
*/)

FRACTION(3) Interval("dddddddhhmmssfff")
MONEY MONEY

NCHAR(size) UNICODE(size)
NVARCHAR(size) String(size)

REAL SMALLFLOAT

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-1. How 4GL data types map to EGL primitive types (continued)

I14GL

EGL

RECORD

DEFINE Var LIKE table.code;
DEFINE Recvar LIKE table.*;

/* RECORD is defined by the EGL file
during the database

schema extraction project. */

Package IfmxDatabaseSchema.Svrname.Dbname;
Dataitem like_tabname_code UNICODE(10)

{ ... properties ... };

Dataitem like_tabname_quantity INT

{ ... properties ... };

Record rec_like_tabname type SQLRecord

{ tablenames=|["table"]}

code like_tabname_code { column="code"}
quantity like_tabname_quantity

{ columnname="code"}

end

Import IfmxDatabaseSchema.Svrname.Dbname.*;
Var like_table_code;

Recvar rec_like_table;

SMALLFLOAT SMALLFLOAT

SMALLINT SMALLINT

TEXT CLOB

VARCHAR(size) String(size)
Special Data Casting

Table A-2. Special Data Casting

14GL EGL

DEFINE i INTEGER, d DATE;

LET i = d; i=d;

LET d = I; d = DateTimeLib.dateFromInt (i);;

DEFINE ¢ CHAR(80), d DATE;

LET ¢ = 4; C=4d

/* system creates formatted string for d
based on locale */

DEFINE ds DATETIME YEAR
TO SEC;
DISPLAY "now is", ds;

displayLineMode ("now is "+ds);
/* system creates formatted string for ds
based on locale */

DEFINE inv INTERVAL DAY
TO SEC;
DISPLAY '"remaining time is", inv;

displayLineMode ("remaining time is "+inv);
/* system creates formatted string for inv
based on locale */

Definition and Declaration Statements

Table A-3. How 4GL Definition and Declaration Statements map to EGL

I14GL EGL

DEFINE x INTEGER x int

Appendix A. 4GL to EGL Syntax Mapping ~ A-3

A-4

Table A-3. How 4GL Definition and Declaration Statements map to EGL (continued)

I14GL

EGL

FUNCTION fn1(a,b)
DEFINE a INTEGER
DEFINE b INTEGER
DEFINE ¢ INTEGER
// ..

RETURN ¢

END FUNCTION

function fnl (a INT in, b INT in)
returning (INT)
¢ int;

// ..
return (c);
end //function

Multiple returns:
FUNCTION fnl(a,b)
DEFINE a INTEGER
DEFINE b INTEGER

function fnl (a INT in, b INT in
$_retvarl INT out,
$_retvar2 INT out)

DEFINE ¢ INTEGER |c int;
DEFINE d INTEGER |d int;
RETURN c,d $_retvarl = ¢
END FUNCTION $_retvar2 = d;
return;
end/ /Function
DEFINE r RECORD Call:

i int, jj int
END RECORD

CALL foo() RETURNING r.%

FUNCTION foo()
DEFINE ¢, d INT
RETURN ¢, d

END FUNCTION

foo (/*returning*/
rrii, rrjj);

Function:

FUNCTION FOO (
/*returning*/
$_retvar_1 INT OUT,
$_retvar_2 INT OUT)

c INT;

d INT;

$ retvar_ 1 = ¢
$_retvar_2 =
return ;

END

[
&

Record.mem1 THRU
Record.mem?2:

FUNCTION fnl(r.a THRU r.c)
DEFINE r LIKE tabname.*;

END FUNCTION

// Expand member list to individual values
FUNCTION funl (a INT IN, b
UNICODE(20) IN, ¢ INT IN)

END // FUNCTION

GLOBALS ... END GLOBALS

DEFINE fvar INT;
GLOBALS DEFINE guvar INT;
END GLOBALS

GLOBALS filename

Variables defined at the top of the file but not

in the GLOBALS section will be private to
the file. Variables defined in the GLOBALS
section can be referenced by other files
and packages.

private fvar int;
gvar int;

import packageOfFilename.*;
// library declaration
use filename;

LABEL XXX:
LABEL xxx: Will be used along with GOTO statement
MAIN FUNCTION $_filename_main()

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-3. How 4GL Definition and Declaration Statements map to EGL (continued)

I14GL

EGL

REPORT

External tool

Storage Manipulation Statements

Table A-4. How 4GL Storage Manipulation Statements map to EGL

I14GL

EGL

DEFINE wvar BLOB, var2 TEXT;

LOCATE wvar, var, var2 IN MEMORY

LOCATE wvar, var2 IN FILE

LOCATE wvar, var2 IN FILE “filename”;

LOCATE wvar, var2 IN FILE filevar;

Var Blob; Var2 Clob;
//LOCATE var, var, var IN MEMORY;

attachBlobToTempFile(var);
attachBlobToTempFile(var2);

attachBlobToFile(var, "filename”);
attachBlobToFile(var2, "filename”);

attachBlobToFile(var, filevar);
attachBlobToFile(var2 filevar);

FREE preparedStatement
FREE Cursor

FreeSql (preparedStatement);
// free cursor - not required.

FREE bytevar FreeBlob(blobvar);
FREE textvar FreeClob(clobvar);
INITIALIZE SET

LET x = 10; x = 10;
VALIDATE Not supported.

VALIDATE LIKE

Program Flow Control Statements

Table A-5. How 4GL Program Flow Control Statements map to EGL

I14GL

EGL

/* In 14GL foreach does open,
fetch and close. */

DECLARE cursorname FOR stmt:
FOREACH cursorname USING a, b
INTO x,y,z

WITH REOPTIMIZE

END FOREACH

FOREACH
The EGL foreach statement does
the fetch and close:

//DECLARE cursorname for stmt
Open cursorname using a, b
Foreach (from cursorname into x,y,z)
/* REOPTIMIZE not supported */

End
CALL fnl(a,b) RETURNING c; ¢ = fnl(a,b);
LET ¢ = fnl(ab) ¢ = fnl(ab);
CALL fnl(a,b) RETURNING a a = fl(ab);

CALL fnl(a,b) RETURNING a,b

CALL fnI(rec.)
RETURNING rec2.%;

fnl(a,b, /* returning */ ab);

fnl(rec.fld1, rec.fld2, ...,
/*returning*/ rec2.fld1, rec2.fld2, ;

Appendix A. I4GL to EGL Syntax Mapping ~ A-5

Table A-5. How 4GL Program Flow Control Statements map to EGL (continued)

I14GL EGL
CASE SWITCH CASE ... CASE ... CASE
CONTINUE CONTINUE

DATABASE mydb@SERVER2;

DEFINE rec RECORD LIKE table.*

/*14GL internally puts a
$database statement in
the main function in the
.ec file.

This generates in MIN*/

/ /DATABASE mydb@SERVER2
import IfmxSchema.server2.mydb.*;

rec IfmxSchema.server2.mydb.rec_like_table;

DefineDatabaseAlias("DEFAULT" getProperty
("mydb@SERVER2"));

connect("DEFAULT",
getProperty("DEFAULT_USERID"),
getProperty("DEFAULT_PASSWORD"), typel,
explicit, repeatableRead, noAutoCommit);
// ANSI DB settings

EXIT CASE

EXIT CONSTRUCT
EXIT DISPLAY
EXIT FOR

EXIT FOREACH
EXIT INPUT

EXIT MENU

EXIT PROGRAM
EXIT REPORT
EXIT WHILE

Exit

Exit openUI

Exit openUI

Exit for

Exit foreach

Exit openUI

Exit openUI

Exit rununit

Call reportName_TERMINATE():
Exit while

FOR

FOR

GLOBALS filename

//GLOBALS "filename"

This statement is ignored. The required Imports
and Use statements are generated based on the
Database Schema and Library manifests
included in the Application conversion

project and the individual library references

to those external projects.

GOTO GOTO

IF IF

IF <cond> THEN if (<cond>)
ELSE else

END IF end

OUTPUT TO REPORT

Indirectly via external tool

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-5. How 4GL Program Flow Control Statements map to EGL (continued)

RETURN rec.col_a THRU rec.col_c;

14GL EGL
RETURN; RETURN:
RETURN g; RETURN (a);
RETURN rec.*; $_retvar_1 = rec.fldl;
$_retvar_2 = rec.fld2;
RETURN;
RETURN a4, b; $_retvarl = a; $_retvar2 = b; return;

function (

$_retvar_1 type OUT,
$_retvar_2 type OUT,
$_retvar_3 type OUT)

$_retvar_1 = rec.col_a;
$_retvar_2 = rec.col_b;
$_retvar_3 = rec.col_c;
return;

end

RUN "cmd" LINE
RUN "e¢md" FORM

RUN "emd" WITHOUT WAITING

RUN .. RETURNING x;

CallCmd("emd"”, Line);
CallCmd("emd", Form);

StartCmd("ecmd", Line);

CallCmd("emd",Line);
x = sysVarreturnCode;

SQL ... END SQL

execute #sql {...}

WHILE cond

END WHILE

while (cond)

end

Note: Mappings for the FINISH REPORT, OUTPUT TO REPORT, START REPORT
and TERMINATE REPORT 4GL Program Flow Control statements are

included in the [“4GL Report Execution Statements” on page A-11

Compiler Directives

Table A-6. How 4GL Compiler Directives map to EGL

I14GL EGL

DEFER INTERRUPT consoleLib.deferInterrupt=YES;
DEFER QUIT consoleLib.deferQuit=YES;
GLOBALS filename Import packageOfFilename.*;

Use filename; // library name.

SQL ... END SQL

EXECUTE #sql{ ... }
Note: Program variables must be identified by

the colon ":" prefix.

SQL ... END SQL
SQL ... END SQL

WHENEVER SQLERROR CONTINUE;

//WHENEVER SQLERROR CONTINUE;
Try EXECUTE #sql{ ... } onException end;
Try EXECUTE #sql{ ... } onException end;

Appendix A. I4GL to EGL Syntax Mapping

Table A-6. How 4GL Compiler Directives map to EGL (continued)

14GL EGL
WHENEVER SQLERROR CALL XYZ; //WHENEVER SQLERROR CALL;
SQL ... END SQL try EXECUTE #sql{ ... } onException
/* ERROR */ xzy()
end

SQL ... END SQL

try EXECUTE #sql{ ... } onException
/* ERROR */ xzy()
end

WHENEVER SQLERROR GOTO :ABC;

SQL ... END SQL
SQL ... END SQL

//WHENEVER SQLERROR GOTO;
try

execute #sql{ ... };

execute #sql(... };

onException

/* ERROR */ gotoABC;

end

WHENEVER SQLERROR GOTO :ABC
WHENEVER WARNING STOP

SQL ... END SQL

SQL ... END SQL

/*whenever sqlerror goto :ABC*/
/*whenever warning stop */;

try execute #sqlf ... };

if (SQLCODE > 0 && SQLCODE !=100)
then exit program;

end /* WARNING */

onException

/* ERROR */ gotoABC;

end

try execute #sql{ ...};

if (SQLCODE > 0 && SQLCODE !=100)
then exit program;

end /* WARNING */

onException
/* ERROR */ gotoABC;
end
WHENEVER ERROR CALL; //WHENEVER ERROR CALL abg;
SQL ... END SQL try Execute #sql{ ... } onException
call abce();
end
INPUT ... END INPUT try openUI ... End onException
call abc();
end
WHENEVER SQLWARNING CALL abc; |//WHENEVER SQLWARNING CALL abg;
SQL ... END SQL try Execute #sql{ ... } onException end

SQL ... END SQL

if sqlcode > 0 then
call abc();
end
try Execute #sql{ ... } onException end
if sqlcode > 0 then
call abc();
end

IBM Informix 4GL to EGL Conversion Utility User’s Guide

14GL Forms to EGL Console User Interface

Table A-7. How 4GL Form Statements map to EGL Console User Interface Statements

14GL EGL

CLEAR SCREEN activateWindow (consoleLib.screen);
—-Or—-
clearActiveWindow();

CLEAR WINDOW SCREEN

clearWindow(consolelib.screen);

CLEAR WINDOW clearWindow([windowObject]);
windowName --0r--

clearWindowByName({windowNarme})
CLEAR FORM clearActiveForm(),
CLEAR listOfFieldNames clearFields()

—-Or—-

clearConsoleFields(fieldName { , fieldName});
CLOSE FORM NA

CLOSE WINDOW windowName

closeWindow (windowQObject);
__Or__
closeWindowByName(windowName);

CONSTRUCT openUlI {isConstruct=yes} formObject end
CURRENT WINDOW IS activateWindow (windowObject);
windowName --or--

activateWindowByName(windowName)

CURRENT WINDOW IS
SCREEN

activateWindow(consoleLib.screen)

DEFER INTERRUPT consoleLib.deferInterrupt=yes;
DEFER QUIT consoleLib.deferQuit=yes;
DISPLAY displayLineMode()

DISPLAY AT x,y; displayAtPosition()

DISPLAY AT x; displayAtLine():

DISPLAY a, b TO field1, field2 | openUI

{displayOnly=yes, bindingbyName=no}
activeForm.field1, activeForm.field2 bind a,b end;

DISPLAY BY NAME fname,
Iname;

openUI
{displayOnly=yes, bindingbyName=yes}
activeForm bind fname, Iname end;

DISPLAY BY NAME Re.*

openUI
{displayOnly=yes, bindingbyName=yes}
activeForm bind <each rec element>;

DISPLAY ARRAY openUl {(displayOnly=yes} formArrayDictionary bind
programRecordArray end
DISPLAY FORM clearForm()
openUl {displayOnly=yes} consoleForm end
ERROR displayError (message);
INPUT openUI consoleForm bind program Variables end
__Or__
openUI consoleFieldList bind program Variables end
INPUT ARRAY openUl activeForm.arrayDictionary bind programRecordArray

end

Appendix A. 4GL to EGL Syntax Mapping ~ A-9

A-10

Table A-7. How 4GL Form Statements map to EGL Console User Interface

Statements (continued)

I14GL

EGL

MENU

openUI new Menu {

labelText="Menul",

menultems=[new Menultem {accelerators={"F1"],
name="Cmd1",

labelText="Command1"

}
/ /Repeat for other commands --separate each with a
comma

]
}
OnEvent
(MENU_ACTION:"Cmd1")
...egl statements...

end;

MESSAGE

displayMessage (message);

NEXT FIELD fieldName

gotoFieldByName(fieldIdentifier)

OPEN FORM formName from
fileName

formNameConsoleformType;

OPEN WINDOW windowName

the Window {name="theWindow", size=[rr,cc].
Position=[zz,yy]};

openWindow (theWindow);

__01‘__

openWindowByName("theWindow");

Migration Mapping:
openWindow(new Window/{
name="theWindow", size=[rr,cc],
position=[xx,yyl});

OPTIONS

Use consoleLib.property

PROMPT

openUI new Prompt
{message="Do you want to continue?", isChar=yes}
bind userAnswer end;

--Or--

myPrompt Prompt

{message="What is your name?"};
openUI myPrompt bind usersName
end;

For Line Mode operations, use promptLineMode():
userAnswer Char(1);

userAnswer=promptLineMode
("Continue (y/n)?");

SCROLL

scrollDownPage() -or-
scrollDownLines(integerCount) -or-
scrollUpPage() -or-

scrollUpLines (integerCount)

ARR_COUNT()

currentArrayCounty()

ARR_CURR()

currentArrayDataLine()

SCR_LINE()

currentArrayScreenLine()

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-7. How 4GL Form Statements map to EGL Console User Interface

Statements (continued)

I14GL EGL
FGL_DRAWBOX() drawBox()
——Or—-
drawBoxWithColor()
FGL_GETKEY() getKey/()
FGL_KEYVAL() getKeyCode()
NEXT OPTION fieldName gotoMenultem()
——Or—-
gotoMenultemByName()
INFIELD() isCurrentField()

__Or__
isFieldModifiedByName()

FIELD_TOUCHED()

isFieldModified()
__Or__
isFieldModifiedByName()

FGL_LASTKEY lastKeyTyped()
NEXT_FIELD nextField()
PREVIOUS_FIELD previousField()
FGL_SETCURRLINE setArrayLine()

FGL_SCR_SIZE()

syslib.size(screenArray)

SHOWHELP()

showHelp()

4GL Report Execution Statements

The Conversion Utility converts 14GL Reports files into both EGL (.egl) and
JasperReport (.jrxml) files. For specific information on how I4GL Report syntax
converts, see ["Understanding Report Conversion” on page 4-14

The following I4GL Report statements do not convert to EGL or JasperReports;
however, to maintain syntactically correct code, the Conversion Utility will
generate redundant code in the report handler for these statements:

* EXIT REPORT
* NEED
* PAUSE

Table A-8. How 4GL Report Execution Statements map to EGL/JasperReport

I4GL EGL / JasperReport
PRINT See ['T4GL FORMAT Section” on page 4-19]
SKIP Indirectly mapped via external tool.

Appendix A. I4GL to EGL Syntax Mapping A-11

14GL Report Driver Statements

I4GL report driver statements map to EGL functions. For an example of 14GL
report code and the comparable examples of the EGL driver functions, see
[Appendix B, “I4GL Report Conversion Code Example.”|

Table A-9. How 4GL Report Driver Statements map to EGL

I14GL EGL
FINISH REPORT reportname reportname_FINISH()
OUTPUT TO REPORT reportname reportname_OUTPUT ()

OUTPUT TO REPORT reportname (a, b, c¢) |reportname_OUTPUT (a, b, ¢)

START REPORT reportname report options reportname_START()

Note: START REPORT report options do not
map to EGL. In addition, the EGL function
call has no arguments and no return value.

TERMINATE REPORT reportname reportname_TERMINATE (')

Built-in 4GL Functions, Variables, and Constants

Table A-10. How 4GL Built-in functions, variables, and constants map to EGL

I4GL EGL

ARG_VAL (int-expr) getCmdLineArg(int-expr)

ARR_COUNT () currentArrayCount()

ASCII (int-expr) integer AsChar(int-expr)

COLUMN int-expr No direct mapping. Indirectly mapped
via external tool.

COLUMN int-const, PAGENO, LINENO

CURSOR_NAME ("Identifier") Not supported.

DATE(char) dateValue(char)

Date(integer) dateValue(integer)

DAY (dateval OrDatetime) dayOf(dateexpr);

DOWNSHIFT (char-expr) lowercase(charexpr)

ERR_PRINT (int-expr) displayError(err_get("number"));

ERR_QUIT (int-expr) displayError(err_get("number”));
exit program;

ERRORLOG (int-expr) errorLog()

EXTEND (value, qualifier) extend (value, qualifierpattern)

FALSE 0/*FALSE*/

FGL_DRAWBOX (nlines, ncols, begy, begx, drawBox(int, int, int, int)

color) drawBoxWithColor(int, int, int, int, colorKind)

FGL_GETENV (char-expr) getproperty(charexpr)

FGL_GETKEY () // INPUT KEYSTROKE getKey()

FGL_KEYVAL (char-expr) getKeyCode(String)

FGL_LASTKEY() //Doesn’t wait, lastKeyTyped()

FGL_SCR_SIZE (arrayname) syslib.size(activeForm[arrayname]);

FGL_SCR_SIZE ("arrayname”); syslib.size(activeForm." arrayname”);

A-12 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-10. How 4GL Built-in functions, variables, and constants map to EGL (continued)

I14GL

EGL

FGL_SETCURRLINE()

setArrayLine()

Intval UNITS dateTImeUnit

IntervalValueWithPattern(intval,
"UnitsString");

LENGTH (char-expr)

StrLeng(charexpr)

LET a = ERR_GET (SQLCODE) // Get
Message
LET a = ERR_GET (int-expr) // Get Message

err_get(SQLCODE);
err_get(int-expr);

MONTH (datevalOrDatetime)

monthOf(dateexpr);

MDY (intmonth, intdays, intyear)

MDY (intmonth, intdays, intyear)

NEXT FIELD

NEXT FIELD fieldname

nextField()

gotoFieldByName ('fieldname");

NEXT FIELD PREVIOUS

previousField()

NEXT OPTION name

gotoMenutltemByName("name");

NUM_ARGS () getCmdLineArgCount()
ORD (char-expr) characterAsInteger(char-expr)
SCR_LINE() currentArrayScreenLine()

SET_COUNT (int-expr)

setCurrentArrayCount()

SHOWHELP (int-expr)

showHelp(“int-expr”);

STARTLOG ("filename.filetype”)

startLog()

TIME timeStamp(“hhmmss”);
TIME (DateTimeValue) currentTime();
TODAY currentDate();

TRUE I/*TRUE*/

UPSHIFT (char-expr) uppercase(char-expr)
WEEKDAY (datevalOrDatetime) weekdayOf(datexpr);
YEAR (dateval OrDatetime) yearOf(dateexpr);

Table A-11. How 4GL Built-in and External SQL Functions and Procedures map to EGL

Built-in and External SQL Functions and Procedures

I14GL

EGL

CREATE FUNCTION

Execute #sql{ create function ... }

CREATE FUNCTION FROM

Not supported

CREATE PROCEDURE FROM

Not supported

CREATE ROUTINE FROM

Not supported

EXECUTE FUNCTION

Execute #sql{ execute function ... }

EXECUTE PROCEDURE

Execute #sql{ execute procedure ... }

Appendix A. I4GL to EGL Syntax Mapping

A-13

Operators

Keyword-Based Operators
Table A-12. How 4GL Keyword-Based Operators map to EGL

I14GL EGL

ASCII int-expr integerAsCharacter(int-expr)

AND &&

Value BETWEEN exprl AND expr2 Value >= exprl && Value <= expr2

char-expr CLIPPED Clip(char_expr)

CURRENT currentTimeStamp()

CURRENT qualifier extend (currentTimeStamp(),
"yyyMMddhhmmss";

FIELD_TOUCHED (field-list) isFieldModified(consoleField)
__Or__
isFieldModifiedByName(String)

GET_FLDBUF (field) activeForm.field

GET_FLDBUF (field-list) individual assignments with corresponding
field.Value

Note: The GET_FLDBUF (field) parameter
accepts these three forms:
table-reference.field, screen-record.field, or
screen-array.field. In addition, GET_FLDBUF
(field) also accepts the program record form,
which results in a conversion error.

For example, the I4GL code bb =
get_fldbuf(pr.aa) converts to the erroneous
EGL code bb = activeForm.pr.aa.value;
Following conversion you must manually
correct the EGL code by removing the pr.
field. In the conversion example above the
corrected code reads: bb =
activeForm.aa.value;

INFIELD (field) isCurrentField(ConsoleField)
isCurrentFieldByName(String)

INT_FLAG interruptRequested

Xyz IS NULL Xyz IS NULL

Xyz IS NOT NULL Xyz NOT NULL

LENGTH (char-expr) StrLen (char-expr)

LIKE like

x NOT LIKE y I(x like)

LINENO Indirectly supported by external tool

MATCHES expr matches

x NOT MATCHES y !(x matches v)

int-expr MOD int-expr Int-expr % int-expr

NOT !

NOT FOUND 100/*NOTFOUND*/

A-14 1BM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-12. How 4GL Keyword-Based Operators map to EGL (continued)

I14GL EGL

OR Il

PAGENO Indirectly supported by external tool
QUIT_FLAG quitRequested

int-expr SPACE

Spaces(int-expr)

int-expr SPACES

Spaces(int-expr)

STATUS SQLCODE

TIME See|”Built-in 4GL Functions, Variables, and|
|Constants” on page A-12|

TODAY See|“Built-in 4GL Functions, Variables, and]|

|Constants” on page A-12

int-expr UNITS time-keyword

See[“Built-in 4GL Functions, Variables, and|
[Constants” on page A-12

int-expr USING format-string

char-expr USING format-string

datetime USING format-string

Format(expression, formatString)
formatNumber(intval, "##HHHH")
formatDate(mydate, "mm/dd/yy")

format(char-exp, formatString)

formatDate(datetime, formatString)

char-expr WORDWRAP

Handled by JasperReports

Operators Represented by Non-Alphabetic Symbols

Table A-13. How Operators represented by Non-Alphabetic Symbols map to EGL

Alphabetic 4GL EGL
Addition + +
Comments -- Single-line comment // Single line comment

Single-line comment

{ multiple-line comment }

/* multiple-line comment */

Division / /
Exponentiation ** ok
Greater than > >
Greater than or equal to >= >=
Less than < <
Less than or equal to <= <=
Membership

Modulus MOD %
Multiplication * *
Not equal to = or <> 1=
Sub string [first, last] [first:1ast]
Subtraction - -

Appendix A. I4GL to EGL Syntax Mapping A-15

Table A-13. How Operators represented by Non-Alphabetic Symbols map to

EGL (continued)

Alphabetic 4GL

EGL

Unary negative -

Unary positive +

SQL Cursor Manipulation Statements

Table A-14. How 4GL Cursor Manipulation Statements map to EGL

14GL

EGL

CLOSE cursorname

try close cursorname; onException end

DECLARE ¢ CURSOR FOR stmt;
DECLARE C CURSOR FOR SELECT * FROM
SYSTABLES;

/* declare ¢ cursor for stmt */

try PREPARE $_STMT_C FROM

"SELECT * FROM SYSTABLES";
onException end

Note: The Scroll and Hold attributes from
DECLARE are now specified when the
cursor is opened.

// WHENEVER SQLERROR STOP;

FETCH ¢;

FETCH NEXT C;
FETCH PREVIOUS C;
FETCH RELATIVE 1 C;
FETCH RELATIVE -1 C;
FETCH FIRST C;
FETCH LAST C;

/* FYI: WHENEVER SQLERROR
STOP */

/

get next from c¢;

get next from C;

get previous from C

get relative(1) from C;

get relative(-1) from C;

get first from C;

get last from C;

FLUSH NO-OP
FREE freeSQL
OPEN OPEN

OPEN cursor WITH statementid;
OPEN cursor WITH statementid
USING param1,
param2;
OPEN cursor SCROLL WITH statementid;

OPEN ... WITH REOPTIMIZE

OPEN
/* REOPTIMIZE not supported */

PREPARE PREPARE

PUT EXECUTE

SET AUTOFREE NO-OP

SQL ... END execute #sql { ... }

SQL Data Definition Statements

Table A-15. How 4GL SQL Data Definition Statements map to EGL

A-16

I14GL EGL

ALTER INDEX

Execute #sql{ ... }

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-15. How 4GL SQL Data Definition Statements map to EGL (continued)

I14GL EGL

ALTER FRAGMENT Execute #sql{alter fragment ... }
ALTER TABLE Execute #sql{ ... }

CLOSE DATABASE Execute #sql{ close database }
CREATE DATABASE Execute #sql{ ...

CREATE EXTERNAL TABLE Execute #sql{ ...

CREATE INDEX Execute #sql{ ...

CREATE PROCEDURE FORM

CREATE ROLE

Execute #sql{ ...

CREATE SCHEMA

Execute #sql{ ...

CREATE SYNONYM

Execute #sql{ ...

CREATE TABLE

Execute #sql{ ...

CREATE TRIGGER

Execute #sql{ ...

CREATE VIEW

{
{
{
{...}
{1}
{..}
Execute #sql{ ... }
{..}
{..}
{..}
{..}
{..}
{..}

Execute #sql{ ...

RENAME COLUMN

Execute #sql{ ...

RENAME DATABASE

Execute #sql{ ...

CONNECT defineDatabaseHandle(getProperty(dbname));
connect(getProperty("DEFAULT_USER"),
getProperty("DEFAULT_PASSWORD"),
explicit,
autoCommit);
DATABASE
DROP DATABASE Execute #sql{ ... }
DROP INDEX Execute #sql{ ... }
DROP PROCEDURE Execute #sqlf{ ... }
DROP ROLE Execute #sql{ ... }
DROP SYNONYM Execute #sql{ ... }
DROP TABLE Execute #sql{ ... }
DROP TRIGGER Execute #sql{ ... }
DROP VIEW Execute #sql{ ... }
{..}
{.}
{..}

RENAME TABLE

Execute #sql{ ...

SQL Data Manipulation Statements

Table A-16. How 4GL Data Manipulation Statements map to EGL

I4GL EGL

INSERT Execute #sql{ INSERT ... }

DELETE Execute #sql{ DELETE ... }

LOAD loadTable(filename, sql, delimiter);
OUTPUT Indirectly by external tool

SELECT Execute #sql{ select } into ...
UNLOAD unloadTable(filename, sql, delimiter);

Appendix A. I4GL to EGL Syntax Mapping

A-17

Table A-16. How 4GL Data Manipulation Statements map to EGL (continued)

I14GL

EGL

UPDATE

Execute #sql{ UPDATE ... }

SQL Dynamic Management Statements

Table A-17. How 4GL SQL Dynamic Management Statements map to EGL

I4GL EGL

EXECUTE EXECUTE statement
EXECUTE IMMEDIATE Execute #SQL{ ... }
FREE FREE

PREPARE PREPARE

SET DEFERRED_PREPARE NO-OP

SQL Query Optimization Statements

Table A-18. How 4GL SQL Query Optimization Statements map to EGL

I14GL

EGL

SET OPTIMIZATION

Execute #sql{set optimization ...

}

SET EXPLAIN

Execute #sql{set explain ... }

SET PDQPRIORITY

Execute #sql{ ...

SET RESIDENCY

Execute #sql{ ...

SET SCHEDUE LEVEL

Execute #sql{ ...

UPDATE STATISTICS

{
{
{1}
{..}
{1}
{..}

Execute #sql{ ...

SQL Data Access Statements

Table A-19. How 4GL SQL Data Access Statements map to EGL

I4GL EGL

GRANT Execute #sql{ ...
GRANT FRAGMENT Execute #sql{ ...
LOCK TABLE Execute #sql{ ...
REVOKE Execute #sql{ ...

REVOKE FRAGMENT

Execute #sql{ ...

SET ISOLATION

Execute #sql{ ...

SET LOCK MODE

Execute #sql{ ...

SET ROLE

SET SESSION Execute #sql{ ...
SET TRANSACTION Execute #sql{ ...
UNLOCK TABLE Execute #sql{ ...

—_— | — |- — | — |~ | — |- | —
N

{

{

{
Execute #sql{ ...

{

{

{

A-18 IBM Informix 4GL to EGL Conversion Utility User’s Guide

SQL Data Integrity Statements

Table A-20. How 4GL SQL Data Integrity Statements map to EGL

14GL EGL

BEGIN WORK beginDatabaseTransaction();
COMMIT WORK commit()

ROLLBACK WORK rollback()

SET Database Object Mode Execute #sql{... }

SET LOG Execute #sql{... }

SET PLOAD FILE Execute #sql{... }

SET TRANSACTION MODE Execute #sqlf... }

START VIOLATIONS TABLE Execute #sqlf... }

STOP VIOLATIONS TABLE Execute #sqlf... }

SQL Stored Procedure Statements

Table A-21. How SQL Stored Procedure Statements map to EGL

I14GL

EGL

EXECUTE PROCEDURE

Execute #sql{ ... }

SET DEBUG FILE TO

Execute #sql{ ... }

SQL Client/Server Connection Statements

Table A-22. How 4GL Connection Statements map to EGL

I14GL

EGL

SET CONNECTION ’conname’;

SET CONNECTION convar;

setCurrentDatabase("conname");

setCurrentDatabase (convar)

SET CONNECTION dbname;
SET CONNECTION DEFAULT;

SET CONNECTION ... DORMANT

setCurrentDatabase("dbname")
setCurrentDatabase ("DEFAULT");

// set connection ... dormant

Appendix A. I4GL to EGL Syntax Mapping

A-19

Table A-22. How 4GL Connection Statements map to EGL (continued)

I14GL

EGL

CONNECT TO db@server

CONNECT TO db AS ’conname’

CONNECT TO DEFAULT

setDatabaseHandle(getProperty("db@server"));
connect(...);

setDatabaseHandle(getProperty("db@server"));
connect(...)

try try disconnect(); onException end

try DefineDatabaseAlias(
getProperty("@myserver"));
getProperty("DEFAULT_USERID"),
getProperty("DEFAULT_PASSWORD"),
typel, explicit, repeatableRead,
noAutoCommit);

onException end

onException end

DISCONNECT CURRENT
DISCONNECT DEFAULT
DISCONNECT ALL
DISCONNECT ’“conname’
DISCONNECT convar

disconnect()
disconnect("DEFAULT");
disconnectAll();
disconnect("conname");
disconnect(convar);

SQL Optical Subsystems Statements

Table A-23. How SQL Optical Subsystems Statements map to EGL

I14GL EGL

ALTER OPTICAL CLUSTER Execute #sql{ ... }
CREATE OPTICAL CLUSTER Execute #sqlf ... }
DROP OPTICAL CLUSTER Execute #sql{ ... }
RELEASE Execute #sqlf ... }
RESERVE Execute #sql{ ... }
SET MOUNTING TIMINOUT Execute #sqlf ... }

Environment Variables

Table A-24. How I4GL Environment Variables map to EGL and JDBC Properties

I4GL Environment Variables EGL Properties JDBC Properties
C4GLFLAGS NO-OP NO-OP
C4GLNOPARAMCHK NO-OP NO-OP

CC NO-OP NO-OP
COLUMNS NO-OP NO-OP
CLIENT_LOCALE CLIENT_LOCALE CLIENT_LOCALE
COLLCHAR NO-OP NO-OP
DBANSIWARN NO-OP NO-OP
DBCENTURY NO-OP DBCENTURY

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Table A-24. How I4GL Environment Variables map to EGL and JDBC Properties (continued)

I4GL Environment Variables

EGL Properties

JDBC Properties

DBDATE defaultDateFormat DBDATE
DBDELIMITER defaultDbDelimiterFormat | NO-OP
DBEDIT NO-OP NO-OP
DBESCWT NO-OP NO-OP
DBFORM NO-OP NO-OP
DBFORMAT NO-OP NO-OP
DBLANG NO-OP NO-OP
DBMONEY defaultMoneyFormat NO-OP
defaultNumericFormat
DBPATH NO-OP NO-OP
DBPRINT NO-OP NO-OP
DBREMOTECMD NO-OP NO-OP
DBSPACETEMP NO-OP DBSPACETEMP
DBSRC NO-OP NO-OP
DBTEMP NO-OP DBTEMP
DBTIME NO-OP NO-OP
DBUPSPACE NO-OP DBUPSPACE
DBAPICODE NO-OP NO-OP
DB_LOCALE DB_LOCALE DB_LOCALE
DBNLS NO-OP NO-OP
ENVIGNORE NO-OP NO-OP
FET_BUF_SIZE NO-OP FET_BUF_SIZE
FGLPCFLAGS NO-OP NO-OP
FGLSKIPNXTPG NO-OP NO-OP
GL_DATE defaultDateFormat NO-OP
GL_DATETIME defaultTimeStampFormat NO-OP
INFORMIXC NO-OP NO-OP
INFORMIXONRETRY NO-OP NO-OP
INFORMIXCONTINUE NO-OP NO-OP
INFORMIXDIR NO-OP NO-OP
INFORMIXSERVER INFORMIXSERVER INFORMIXSERVER
INFORMIXSHMBASE NO-OP NO-OP
INFORMIXTERM NO-OP NO-OP
IXOLDFLDSCOPE NO-OP NO-OP
LANG NO-OP NO-OP
LINES NO-OP NO-OP
ONCONFIG NO-OP NO-OP
PATH NO-OP NO-OP
PDQPRIORITY NO-OP PDQPRIORITY
PROGRAM_DESIGN_DBS NO-OP NO-OP

Appendix A. I4GL to EGL Syntax Mapping A-21

Table A-24. How I4GL Environment Variables map to EGL and JDBC Properties (continued)

I4GL Environment Variables EGL Properties JDBC Properties
PSORT_DBTEMP NO-OP PSORT_DBTEMP
PSORT_NPROCS NO-OP PSORT_NPROCS
SQLEXEC NO-OP NO-OP
SQLRM NO-OP NO-OP
SQLRMDIR NO-OP NO-OP
SUPOUTPIPEMSG NO-OP NO-OP
SERVER_LOCALE NO-OP NO-OP
TERM NO-OP NO-OP
TERMCAP NO-OP NO-OP
TERMINFO NO-OP NO-OP

A-22 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix B. 14GL Report Conversion Code Example

In This Appendix

This appendix provides an example of I4GL report code and the comparable
examples of the EGL driver functions.

4GL Report Code

REPORT r_invoice (c, x)
DEFINE c RECORD
customer_num int,

fname char(15),
Tname char(15),
company char(20),

address1 char(20),
address?2 char(20),

city char(15),

state char(2),

zipcode char(5),

phone char(18),
END RECORD

DEFINE x RECORD
order_num INT,

order_date date,
ship_instruct Char(40),
backlog char,
po_num char(10),

ship_date date,
ship_weight
ship_charge

decimal(8,2),
money (6,2)

item_num smallint,
stock_num smallint,

manu_code char(3),

quantity smallint,

total_price

money (8,2),

description char(15),
unit_price money (6,2),
unit char(4),
unit_descr char(15),
manu_name char(10)
END RECORD
END REPORT

EGL Driver Functions Generated from 4GL Code

Function r_invoice_START()
execute #sql {
create temp table r_invoice_report_table (

c_customer_num int ,
c_fname char (15),
c_Iname char (15) ,
c_company char (20) ,
c_addressl char (20) ,
c_address2 char (20) ,
c_city char (15) ,
c_state char (2) ,

© Copyright IBM Corp. 2005, 2012

c_zipcode char (5) ,
c_phone char (18) ,
x_order_num int ,
x_order_date date ,
x_ship_instruct char (40) ,
x_backlog char ,
X_po_num char (10) ,
x_ship_date date ,
x_ship_weight decimal (8, 2),
x_ship_charge money (6, 2),
x_item_num smallint ,
x_stock_num smallint ,
x_manu_code char (3) ,
x_quantity smallint ,
X_total _price money (6, 2),
x_description char (15) ,
x_unit_price money (6, 2),
x_unit char (4) ,
x_unit_descr char (15) ,
x_manu_name char (10)
)
1

end
Function r_invoice OUTPUT (c recordtype_v4 c IN, x recordtype_v4 x IN)

Prepare insert_stmt from "insert into r_invoice report_table +
"values(?,?,7,7,2,7,2,2,2,2,2,2,72,2,72,2,2,2,2,2,2,2,2,2,)";
Execute insert_stmt using (
c.customer_num,
.fname,
.ITname,
.company,
.addressl,
.address2,
.city,
.state,
.zipcode,
.phone,
.order_num,
.order_date,
.ship_instruct,
.backlog,
.po_num,
.ship_date,
.ship_weight,
.ship_charge,
.item_num,
.stock_num,
.manu_code,
.quantity,
.total_price,
.description,
.unit_price,
.unit,
.unit_descr,
.manu_name

X X X X X X X X X X X X X X XX XXO0O0000000o0

End

Function r_invoice FINISH()
egl4glReport Report;
egl4glReportData ReportData;

egl4glReport.reportDesignFile = "r_invoice_XML.jasper";
egl4glReport.reportDestinationFile = "r_invoice.jrprint";
egl4glReport.reportExportFile "r_invoice.txt";

B-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

End
Fun

End

END

END

egl4glReportData.sqlStatement = "Select * From" +

egl4glReport.reportData = egl4glReportData;

ReportLib.fil1Report(egl4gTReport, DATASOURCE_SQL_STATEMENT);

ReportLib.exportReport(egl4giReport, EXPORT TEXT);

Execute #SQL {
Drop Table r_invoice_report_table
}

ction r_invoice TERMINATE()
Execute #SQL {
Drop Table r_invoice report table
}

Record recordtype_v4 c type BasicRecord
customer_num INT;

fname UNICODE(15);
Tname UNICODE(15);
company UNICODE(20);
address1 UNICODE(20);
address?2 UNICODE(20);
city UNICODE(15);
state UNICODE(2);

zipcode UNICODE(5);

phone UNICODE(18);

RECORD recordtype_v4 x type BasicRecord
order_num INT;
order_date DATE;
ship_instruct UNICODE(40);
ship_instruct UNICODE(10;
backlog UNICODE(1);
po_num UNICODE(10);
ship_date DATE;
ship_weight DECIMAL;
ship_charge DECIMAL(6,2)
item_num smallint;
stock_num smallint;
manu_code UNICODE(3);
quantity smallint;
total_price DECIMAL(8,2);
description UNICODE(15);

unit_price DECIMAL(6, 2):
unit UNICODE(4);
unit_descr UNICODE(15);

manu_name UNICODE(10);

Appendix B. I4GL Report Conversion Code Example

r_invoice_report_table";

B-4 1BM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix C. 14GL Form Code to EGL Form Code Example

In This Appendix

This appendix provides an example of I4GL form code and the generated EGL
form code.

4GL Form Code

GLOBALS
DEFINE p_customer RECORD
customer_num int,

fname char(15),
Tname char(15),
company char(20),

addressl char(20),
address?2 char(20),

city char(15),

state char(2),

zipcode char(5),

phone char(18)
END RECORD

END GLOBALS
MAIN

DISPLAY "Starting form Customer "
SLEEP 2

CALL input_cust()
END MAIN
FUNCTION input_cust()

OPEN FORM customer FROM "customer"
DISPLAY FORM customer
ATTRIBUTE (BLUE)

DISPLAY "Press ESC to enter new customer data" AT 1,1
INPUT BY NAME p_customer.*
AFTER FIELD state
DISPLAY "In field state "
DISPLAY "Press ESC to enter new customer data", "" AT 1,1
ON KEY (F1, CONTROL-F)
DISPLAY "Control-F pressed"
ON KEY (F2, CONTROL-Y)
LET int_flag = TRUE
EXIT INPUT
END INPUT
IF int_flag
THEN
LET int_flag = FALSE
RETURN (FALSE)
END IF

DISPLAY BY NAME p_customer.fname ATTRIBUTE(MAGENTA)

END FUNCTION

© Copyright IBM Corp. 2005, 2012

C1

DATABASE FORMONLY

SCREEN
{
Customer Form
Number :[f000 1
Owner Name :[f001 10fe02 1
Company : [003]
Address :[fo04]
[f005]
City :[f006] State:[a0] Zipcode:[f007]
Telephone :[f008]
}
ATTRIBUTES

f000 = FORMONLY.customer_num TYPE INT, NOENTRY;

f001 = FORMONLY.fname TYPE CHAR, UPSHIFT ;

f002 = FORMONLY.Tname TYPE CHAR, COLOR=RED;

f003 = FORMONLY.company TYPE CHAR, COMMENTS="Company name",

COLOR=MAGENTA;

f004 = FORMONLY.addressl TYPE CHAR, AUTONEXT, COLOR=MAGENTA;
f005 = FORMONLY.address2 TYPE CHAR, COLOR=MAGENTA;

f006 = FORMONLY.city TYPE CHAR, REQUIRED;

a0 = FORMONLY.state TYPE CHAR, UPSHIFT;
f007 = FORMONLY.zipcode TYPE CHAR;
f008 = FORMONLY.phone TYPE CHAR, PICTURE = "###-###-#### XXXXX";

INSTRUCTIONS
SCREEN RECORD customer (FORMONLY.customer_num THRU FORMONLY.fname)

EGL Code

//Program
LIBRARY customer{localSQLScope=YES}

use typeconv.typeconvConversionGlobals;
p_customer recordtype_p_customer;

FUNCTION $§ customer_idglimain()
displayLineMode("Starting form Customer ");
wait(2);

input_cust();
END

FUNCTION input_cust()

returns (Int)

$_FORM_customer customerForm{ name="$_FORM_customer" };
$__open_form_name= "$§_FORM_customer";

$__open_form_name= "$ FORM_customer";
ConsolelLib.CurrentDisplayAttrs{ color=BLUE };

displayFormByName($__open_form name);

displayAtPosition("Press ESC to enter new customer data" , 1,1);

OpenUI{setInitial=YES, bindingByName=YES} activeForm

bind p_customer.customer_num, p_customer.fname, p_customer.lname,
p_customer.company, p_customer.addressl, p_customer.address2,
p_customer.city, p_customer.state, p_customer.zipcode,
p_customer.phone

C-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

onkEvent (AFTER_FIELD:"state")
displayLineMode("In field state ");
displayAtPosition("Press ESC to enter new customer data" + "" , 1,1);

onEvent (ON_KEY:"F1","CONTROL_F")
displayLineMode("Control-F pressed");

onEvent (ON_KEY:"F2","CONTROL_Y")
interruptRequested = YES;

EXIT OpenUI};

end;

IF ((YES == interruptRequested))
interruptRequested = NO;

return((0/*FALSEx/));

END

ConsoleLib.CurrentDisplayAttrs{ color=MAGENTA };

OpenUI { displayOnly=YES, bindingByName=YES } activeForm
bind p_customer.fname

End

END
END // PROGRAM

record recordtype_p_customer type SqlRecord
customer_num INT{isNullable=yes};
fname String(15){isNullable=yes};
Tname String(15){isNullable=yes};
company String(20){isNullable=yes};
address1 String(20){isNullable=yes};
address2 String(20){isNullable=yes};
city String(15){isNullable=yes};
state String(2){isNullable=yes};
zipcode String(5){isNullable=yes};
phone String(18){isNullable=yes};
END

Record customerForm type ConsoleForm { formSize = [12,60],
showBrackets = yes }

*xConsoleField { position = [2,26], value = "Customer Form" };

xConsoleField { position = [4,11], value = "Number :" };
*ConsoleField { position = [5,19], value = "Owner Name :" };
*ConsoleField { position = [6,19], value = "Company :" };

{
{
{
{ ;
*ConsoleField { position = [7,19], value = "Address :" };
*xConsoleField { position = [9,19], value = "City :" };
*ConsoleField { position = [9,33], value = "State:" };
*xConsoleField { position = [9,44], value = "Zipcode:" };
*xConsoleField { position = [10,19], value = "Telephone :" };
customer_num ConsoleField { position = [4,20], fieldLen = 5,
dataType = "int", protect = yes, name="customer_num" };
fname ConsoleField { position = [5,32], fieldlLen = 5,
dataType = "unicode", caseFormat = upper, name="fname" };
Tname ConsoleField { position = [5,39], fieldlLen = 5,
dataType = "unicode", color=RED, name="Tname" };
company ConsoleField { position = [6,29], fieldLen = 5,
dataType = "unicode", comment = "Company name", color=MAGENTA,
name="company" };
addressl1 ConsoleField { position = [7,29], fieldlLen = 5,
dataType = "unicode", autonext = yes, color=MAGENTA,
name="address1" };
address2 ConsoleField { position = [8,20], fieldlLen = 5,

Appendix C. I4GL Form Code to EGL Form Code Example

C-4

dataType = "unicode", color=MAGENTA, name="address2" };
city ConsoleField { position = [9,26], fieldLen = 5,
dataType = "unicode", inputRequired = yes, name="city" };
state ConsoleField { position = [9,40], fieldlLen = 2,
dataType = "unicode", caseFormat = upper, name="state" };
zipcode ConsoleField { position = [9,53], fieldlLen = 5,
dataType = "unicode", name="zipcode" };
phone ConsoleField { position = [10,31],fieldLen = 5, dataType
= "unicode", pattern = "###-###-#### XXXXX", name="phone" };

customer Dictionary { customer_num=customer_num, fname=fname};

end

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix D. Configuration File Templates

In This Appendix

This appendix provides template configuration files for Database Schema
Extraction, Shared Library, and 14GL Application projects.

Note: If you are creating a configuration file manually, do not use any characters

that would prevent the XML Parser from correctly differentiating values
from the XML reserved characters. To prevent the XML parser from a
possible misinterpretation, you should include the values for the XML
element in the <![CDATA[value]> tag .

Database Schema Extraction Project Configuration File Template

<?xml version="1.0" encoding="utf-8"?>
<!--Internal DTD for Configuration file-->
<IDOCTYPE conversion [
<IELEMENT conversion (rootdir,dbconnection=*)>
<!IATTLIST conversion project CDATA #REQUIRED >
<IATTLIST conversion type CDATA #FIXED "schema">
<IELEMENT rootdir (egldir,artifactsdir?)>
<!ELEMENT egldir (#PCDATA)>
<IELEMENT artifactsdir (#PCDATA)>
<!ELEMENT dbconnection (database,server,host,port,user,password)+>
<IATTLIST dbconnection extractSystemTables (yes|no) no" >
<IATTLIST dbconnection client_Tocale CDATA #IMPLIED >
<IATTLIST dbconnection db_locale CDATA #IMPLIED >
<!ELEMENT database (#PCDATA)>
<!ELEMENT server (#PCDATA)>
<!ELEMENT host (#PCDATA)>
<!ELEMENT port (#PCDATA)>
<!ELEMENT user (#PCDATA)>
<!ELEMENT password ANY>
1>

<conversion project="stores7" type="schema">

<rootdir>
<egldir>C:\egl\src\stores7</egldir>
<artifactsdir>C:\tmp\stores7\ConversionArtifacts</artifactsdir>
</rootdir>

<dbconnection extractSystemTables="no" client_Tocale="en_US.8859-1"
db_Tocale="en_US.8859-1">
<database><![CDATA[stores7]]></database>
<server><![CDATA[myserver]]></server>
<host>mymachine.location.company.com</host>
<port>1999</port>
<user>jdoe</user>
<password><![CDATA[password]]></password>
</dbconnection>
</conversion >

Shared Library Project Configuration File Template

<?xml version="1.0" encoding="utf-8"?>

<!--Internal DTD for Configuration file-->

<IDOCTYPE conversion [

<!IELEMENT conversion (rootdir, manifestfilesx, fglfiles?,

© Copyright IBM Corp. 2005, 2012

formfiles?, msgfiles*, fontconfigfile?)>
<IATTLIST conversion project CDATA #REQUIRED >
<IATTLIST conversion type CDATA #FIXED "Tibrary" >
<IATTLIST conversion Tocale CDATA #IMPLIED >
<IATTLIST conversion cursor (local | global) #IMPLIED>
<IATTLIST conversion defaultserver CDATA #IMPLIED>
<!IELEMENT rootdir (fgldir?,egldir,artifactsdir?)>
<!ELEMENT fgldir (#PCDATA)>
<!ELEMENT egldir (#PCDATA)>
<!ELEMENT artifactsdir (#PCDATA)>
<!ELEMENT manifestfiles (file)+>
<IATTLIST manifestfiles type (schema | library) #REQUIRED>
<IELEMENT fglfiles (file)*>
<IELEMENT formfiles (file)x>
<!ELEMENT fontconfigfile (file)x>
<IELEMENT file (#PCDATA)>
<IELEMENT msgfiles (file)+>
<IATTLIST msgfiles locale CDATA #IMPLIED >
1>
<conversion project="SharedLibraryProject" type="library"
Tocale="en_US.8859-1" cursor="Tlocal" defaultserver="demo_on">

<rootdir>
<fgldir>C:\i4g1\SharedLibraryProject\fgl<fgldir>
<egldir>C:\i4g1\SharedLibraryProject\egl</egldir>
<artifactsdir>C:\ConversionArtifacts</artifactsdir>
</rootdir>

<manifestfiles type="schema">
<file>C:\ConversionArtifacts\manifest\Stores7Manifest.xmi</file>
</manifestfiles>

<fglfiles>
<file>fg1\d4_cust.4gl</file>
<file>fg1\d4_demo.4gl</file>
<file>fg1\d4 globals.4gl</file>
</fglfiles>

<l--report font file, optional-->

<fontconfigfile>

<file><![CDATA[C:\Documents and Settings\myfont.xml]]</file>
</fontconfigfile>

</conversion>

Application Project Configuration File Template

<?xml version="1.0" encoding="utf-8"?>
<!--Internal DTD for Configuration file-->
<IDOCTYPE conversion [

<!ELEMENT conversion (rootdir, manifestfiles*, fglfiles?,
formfiles?, msgfiles* , fontconfigfile?)>
<IATTLIST conversion project CDATA #REQUIRED >
<IATTLIST conversion type CDATA #FIXED "application" >
<IATTLIST conversion Tocale CDATA #IMPLIED >
<IATTLIST conversion cursor (local | global) #IMPLIED>
<!ATTLIST conversion defaultserver CDATA #IMPLIED>
<!ELEMENT rootdir (fgldir?,egldir,artifactsdir?)>
<IELEMENT fgldir (#PCDATA)>
<!ELEMENT egldir (#PCDATA)>
<!ELEMENT artifactsdir (#PCDATA)>
<!ELEMENT manifestfiles (file)+>
<IATTLIST manifestfiles type (schema | library) #REQUIRED>
<IELEMENT fglfiles (file)*>
<!ELEMENT formfiles (file)x>
<!ELEMENT fontconfigfile (file)=>
<!ELEMENT file (#PCDATA)>

IBM Informix 4GL to EGL Conversion Utility User’s Guide

<!ELEMENT msgfiles (file)+>
<IATTLIST msgfiles locale CDATA #IMPLIED >
1>

<!--Sample Conversion configuration file for i4gldemo application conversion-->
<conversion project="i4gldemo" type="application"

locale="en_US.8859-1" defaultserver="egltest">
<rootdir>
<fgldir>C:\i4g1\src\idgldemo</fgldir>
<egldir>C:\egl\src\i4gldemo</egldir>
<artifactsdir></artifactsdir>
</rootdir>

<manifestfiles type="schema">
<file>C:\ConversionArtifacts/manifest/Stores7Manifest.xml</file>
<fglfiles>

<file>d4 cust.4gl</file>
<file>d4_demo.4g1</file>
<file>d4_globals.4gl</file>
<file>d4 load.4gl</file>
<file>d4_main.4gl</file>
<file>d4 orders.4gl</file>
<file>d4 report.4gl</file>
<file>d4 stock.4gl</file>
</fglfiles>

<formfiles>
<file>forms\cust.per</file>
<file>forms\custcur.per</file>
<file>forms\custform.per</file>
<file>forms\customer.per</file>
<file>forms\ordcur.per</file>
<file>forms\order.per</file>
<file>forms\orderform.per</file>
<file>forms\p_ordcur.per</file>
<file>forms\state_list.per</file>
<file>forms\stockl.per</file>
<file>forms\stock_sel.per</file>
</formfiles>

<l--example for converting UJIS message files-->
<msgfiles Tocale="ja_jp.UJIS">
<file>C:/i4g1/src/msg/jp/ujis/orders.msg</file>
<file>C:/i4g1/src/msg/jp/ujis/customer.msg</file>
</msgfile>

</conversion>

Appendix D. Configuration File Templates D-3

D-4 1BM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix E. Manifest File Examples

In This Appendix

This appendix provides template manifest files for Database Schema Extraction,
Shared Library, and I14GL Application projects.

Note: The examples below use the stores7 database.

Database Schema Extraction Project Manifest File Example

<?xml version="1.0" encoding="UTF-8"?>
<l--
Manifest file generated by I4GL to EGL Conversion Utility
Project Name : stores7
Generated on : Mon Dec 19 15:06:10 CST 2005
-
<IDOCTYPE manifest [
<!ELEMENT manifest (packagex)>
<!ATTLIST manifest project CDATA #REQUIRED >
<IATTLIST manifest type CDATA #FIXED "schema'>
<IATTLIST manifest path CDATA #REQUIRED>
<IATTLIST manifest version CDATA #REQUIRED >
<!ELEMENT package (table*)>
<IATTLIST package
name CDATA #REQUIRED
server CDATA #REQUIRED
database CDATA #REQUIRED
mode (ANSI) #IMPLIED
isolationLevel CDATA #REQUIRED
commitControl CDATA #REQUIRED>
<!ELEMENT table (columnx)>
<IATTLIST table
name CDATA #REQUIRED
egltype CDATA #REQUIRED
owner CDATA #IMPLIED>
<!ELEMENT column EMPTY>
<!ATTLIST column
name CDATA #REQUIRED
dataitem CDATA #REQUIRED
fgltype CDATA #REQUIRED
egltype CDATA #REQUIRED
size CDATA #IMPLIED
start CDATA #IMPLIED
end CDATA #IMPLIED
precision CDATA #IMPLIED
scale CDATA #IMPLIED>
1>
<manifest project ="stores7"
path="C:\tmp\SchemaProjects\stores7" type="schema" version="1.0.0">
<!-- Database : stores7 -->

<package name="stores7.myserver.stores7" server="myserver" database="stores7"
isolationLevel="readUnCommitted" commitControl="autoCommit" >
<table name ="sysaggregates" egltype ="rec_like_sysaggregates">
<column name ="name" dataitem ="dataitem_like_sysaggregates_name"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="owner" dataitem ="dataitem_like_sysaggregates_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="aggid" dataitem ="dataitem_like_sysaggregates_aggid"
fgltype ="serial" egltype ="int" />
<column name ="init_func"

© Copyright IBM Corp. 2005, 2012

dataitem ="dataitem_like_sysaggregates_init_func"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="iter_func"
dataitem ="dataitem_like_sysaggregates_iter_func"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="combine_func" dataitem
="dataitem_like_sysaggregates_combine_func"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="final_func" dataitem ="dataitem_like_sysaggregates_final_func"
fgltype ="varchar" egltype ="string(128)" size ="128" />
</table>
<table name ="sysams" egltype ="rec_like_sysams">
<column name ="am_name" dataitem ="dataitem_like_sysams_am name"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="am_owner" dataitem ="dataitem Tike_sysams_am_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="am_id" dataitem ="dataitem like_sysams_am_id"
fgltype ="int" egltype ="int" />
<column name ="am_type" dataitem ="dataitem_like_sysams_am_ type"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="am_sptype" dataitem ="dataitem_like_sysams_am_sptype"
fgltype ="char" egltype ="unicode(3)" size ="3" />
<column name ="am_defopclass" dataitem
="dataitem Tike sysams_am defopclass"
fgltype ="int" egltype ="int" />
<column name ="am_keyscan" dataitem ="dataitem_ like_sysams_am_keyscan"
fgltype ="int" egltype ="int" />
<column name ="am_unique" dataitem ="dataitem_like_sysams_am_unique"
fgltype ="int" egltype ="int" />
<column name ="am_cluster" dataitem ="dataitem_like_sysams_am_cluster"
fgltype ="int" egltype ="int" />
<column name ="am_rowids" dataitem ="dataitem_like_sysams_am rowids"
fgltype ="int" egltype ="int" />
<column name ="am_readwrite" dataitem ="dataitem_like_sysams_am_ readwrite"
fgltype ="int" egltype ="int" />
<column name ="am parallel" dataitem ="dataitem_ like_sysams_am parallel"
fgltype ="int" egltype ="int" />
<column name ="am costfactor" dataitem
="dataitem_like_sysams_am_costfactor"
fgltype ="smallfloat" egltype ="smallfloat" />
<column name ="am create" dataitem ="dataitem_like_sysams_am_create"
fgltype ="int" egltype ="int" />
<column name ="am drop" dataitem ="dataitem_like sysams_am drop"
fgltype ="int" egltype ="int" />
<column name ="am_open" dataitem ="dataitem_like_sysams_am open"
fgltype ="int" egltype ="int" />
<column name ="am_close" dataitem ="dataitem_like_sysams_am_close"
fgltype ="int" egltype ="int" />
<column name ="am_insert" dataitem ="dataitem_like_sysams_am_insert"
fgltype ="int" egltype ="int" />
<column name ="am_delete" dataitem ="dataitem_like_sysams_am_delete"
fgltype ="int" egltype ="int" />
<column name ="am_update" dataitem ="dataitem_like_sysams_am_update"
fgltype ="int" egltype ="int" />
<column name ="am stats" dataitem ="dataitem Tike_sysams_am stats"
fgltype ="int" egltype ="int" />
<column name ="am scancost" dataitem ="dataitem_ like_sysams_am_scancost"
fgltype ="int" egltype ="int" />
<column name ="am_check" dataitem ="dataitem_like_sysams_am_check"
fgltype ="int" egltype ="int" />
<column name ="am_beginscan" dataitem ="dataitem_like_sysams_am_beginscan"
fgltype ="int" egltype ="int" />
<column name ="am_endscan" dataitem ="dataitem_like_sysams_am_endscan"
fgltype ="int" egltype ="int" />
<column name ="am_rescan" dataitem ="dataitem_like_sysams_am_rescan"
fgltype ="int" egltype ="int" />
<column name ="am_getnext" dataitem ="dataitem_like_sysams_am_getnext"

E-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

fgltype ="int" egltype ="int" />
<column name ="am_getbyid" dataitem ="dataitem_like_sysams_am_getbyid"
fgltype ="int" egltype ="int" />
<column name ="am_build" dataitem ="dataitem_like_sysams_am build"
fgltype ="int" egltype ="int" />
<column name ="am_init" dataitem ="dataitem_like_sysams_am init"
fgltype ="int" egltype ="int" />
<column name ="am_truncate" dataitem ="dataitem_like_sysams_am_truncate"
fgltype ="int" egltype ="int" />
</table>
<table name ="sysattrtypes" egltype ="rec_like_sysattrtypes">
<column name ="extended_id" dataitem
="dataitem_Tike_sysattrtypes_extended_id"
fgltype ="int" egltype ="int" />
<column name ="seqno" dataitem ="dataitem_like_sysattrtypes_seqno"
fgltype ="smallint" egltype ="smallint" />
<column name ="levelno" dataitem ="dataitem_like sysattrtypes levelno"
fgltype ="smallint" egltype ="smallint" />
<column name ="parent_no" dataitem
="dataitem_like_sysattrtypes_parent_no"
fgltype ="smallint" egltype ="smallint" />
<column name ="fieldname" dataitem
="dataitem_like_sysattrtypes_fieldname"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="fieldno" dataitem ="dataitem_like_sysattrtypes_fieldno"
fgltype ="smallint" egltype ="smallint" />
<column name ="type" dataitem ="dataitem_Tike_sysattrtypes_type"
fgltype ="smallint" egltype ="smallint" />
<column name ="Tength" dataitem ="dataitem_like_sysattrtypes_length"
fgltype ="smallint" egltype ="smallint" />
<column name ="xtd _type id" dataitem
="dataitem_like_sysattrtypes_xtd_type_id"
fgltype ="int" egltype ="int" />
</table>
<table name ="sysblobs" egltype ="rec_like_sysblobs">
<column name ="spacename" dataitem ="dataitem Tike_sysblobs_spacename"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="type" dataitem ="dataitem Tike_ sysblobs_ type"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="tabid" dataitem ="dataitem_like_sysblobs_tabid"
fgltype ="int" egltype ="int" />
<column name ="colno" dataitem ="dataitem_like_sysblobs_colno"
fgltype ="smallint" egltype ="smallint" />
</table>
<table name ="syscasts" egltype ="rec_like_syscasts">
<column name ="owner" dataitem ="dataitem_like_syscasts_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="argument_type" dataitem
="dataitem_like_syscasts_argument_type"
fgltype ="smallint" egltype ="smallint" />
<column name ="argument_ xid" dataitem
="dataitem_like_syscasts_argument_xid"
fgltype ="int" egltype ="int" />
<column name ="result_type" dataitem ="dataitem_like_syscasts_result_type"
fgltype ="smallint" egltype ="smallint" />
<column name ="result_xid" dataitem ="dataitem_like_syscasts_result_xid"
fgltype ="int" egltype ="int" />
<column name ="routine_name" dataitem
="dataitem_like_syscasts_routine_name"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="routine_owner" dataitem
="dataitem Tike_syscasts_routine_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="class" dataitem ="dataitem Tike_syscasts_class"
fgltype ="char" egltype ="unicode(1)" size ="1" />
</table>
<table name ="syschecks" egltype ="rec_like_syschecks">

Appendix E. Manifest File Examples

E-4

<column name ="constrid" dataitem ="dataitem Tike_syschecks_constrid"
fgltype ="int" egltype ="int" />

<column name ="type" dataitem ="dataitem Tike_syschecks_ type"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="seqno" dataitem ="dataitem_like_syschecks_segno"
fgltype ="smallint" egltype ="smallint" />

<column name ="checktext" dataitem ="dataitem_like_syschecks_checktext"
fgltype ="char" egltype ="unicode(32)" size ="32" />

</table>

<table name ="syscolattribs" egltype ="rec_like_syscolattribs">

<column name ="tabid" dataitem ="dataitem_like_syscolattribs_tabid"
fgltype ="int" egltype ="int" />

<column name ="colno" dataitem ="dataitem_like_syscolattribs_colno"
fgltype ="smallint" egltype ="smallint" />

<column name ="extentsize" dataitem

="dataitem_like_syscolattribs_extentsize"

fgltype ="int" egltype ="int" />

<column name ="flags" dataitem ="dataitem_like_syscolattribs_flags"
fgltype ="int" egltype ="int" />

<column name ="flagsl" dataitem ="dataitem_like_syscolattribs_flagsl"
fgltype ="int" egltype ="int" />

<column name ="shspace" dataitem ="dataitem_like_syscolattribs_sbspace"
fgltype ="varchar" egltype ="string(128)" size ="128" />

</table>

<table name ="syscolauth" egltype ="rec_like_syscolauth">

<column name ="grantor" dataitem ="dataitem_like_syscolauth_grantor"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="grantee" dataitem ="dataitem_like_syscolauth_grantee"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="tabid" dataitem ="dataitem_like_syscolauth_tabid"
fgltype ="int" egltype ="int" />

<column name ="colno" dataitem ="dataitem_like_syscolauth_colno"
fgltype ="smallint" egltype ="smallint" />

<column name ="colauth" dataitem ="dataitem_like_syscolauth_colauth"
fgltype ="char" egltype ="unicode(3)" size ="3" />

</table>

<table name ="syscoldepend" egltype ="rec_like_syscoldepend">

<column name ="constrid" dataitem ="dataitem like syscoldepend constrid"
fgltype ="int" egltype ="int" />

<column name ="tabid" dataitem ="dataitem_like_syscoldepend_tabid"
fgltype ="int" egltype ="int" />

<column name ="colno" dataitem ="dataitem_like_syscoldepend_colno"
fgltype ="smallint" egltype ="smallint" />

</table>

<table name ="syscolumns" egltype ="rec_like_syscolumns">

<column name ="colname" dataitem ="dataitem_like_syscolumns_colname"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="tabid" dataitem ="dataitem_like_syscolumns_tabid"
fgltype ="int" egltype ="int" />

<column name ="colno" dataitem ="dataitem like_syscolumns _colno"
fgltype ="smallint" egltype ="smallint" />

<column name ="coltype" dataitem ="dataitem_like_syscolumns_coltype"
fgltype ="smallint" egltype ="smallint" />

<column name ="collength" dataitem ="dataitem_like_syscolumns_collength"
fgltype ="smallint" egltype ="smallint" />

<column name ="colmin" dataitem ="dataitem_like_syscolumns_colmin"
fgltype ="int" egltype ="int" />

<column name ="colmax" dataitem ="dataitem_like_syscolumns_colmax"
fgltype ="int" egltype ="int" />

<column name ="extended_id" dataitem

="dataitem_like_syscolumns_extended_id"

fgltype ="int" egltype ="int" />

</table>

<table name ="sysconstraints" egltype ="rec_like sysconstraints">

<column name ="constrid" dataitem ="dataitem_like_sysconstraints_constrid"
fgltype ="serial" egltype ="int" />

<column name ="constrname" dataitem

IBM Informix 4GL to EGL Conversion Utility User’s Guide

="dataitem_Tike_sysconstraints_constrname"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="owner" dataitem ="dataitem_like_sysconstraints_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="tabid" dataitem ="dataitem_like_sysconstraints_tabid"
fgltype ="int" egltype ="int" />
<column name ="constrtype" dataitem
="dataitem_like_sysconstraints_constrtype"
fgltype ="char" egltype ="unicode(1l)" size ="1" />
<column name ="idxname" dataitem ="dataitem_like_sysconstraints_idxname"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="collation" dataitem ="dataitem_like_sysconstraints_collation"
fgltype ="char" egltype ="unicode(36)" size ="36" />
</table>
<table name ="sysdefaults" egltype ="rec_Tlike_sysdefaults">
<column name ="tabid" dataitem ="dataitem_like_sysdefaults_tabid"
fgltype ="int" egltype ="int" />
<column name ="colno" dataitem ="dataitem_like_sysdefaults_colno"
fgltype ="smallint" egltype ="smallint" />
<column name ="type" dataitem ="dataitem Tike_sysdefaults_type"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="default" dataitem ="dataitem_like sysdefaults_default"
fgltype ="char" egltype ="unicode(256)" size ="256" />
<column name ="class" dataitem ="dataitem like_sysdefaults_class"
fgltype ="char" egltype ="unicode(1)" size ="1" />
</table>
<table name ="sysdepend" egltype ="rec_like_sysdepend">
<column name ="btabid" dataitem ="dataitem_like_sysdepend_btabid"
fgltype ="int" egltype ="int" />
<column name ="btype" dataitem ="dataitem_like_sysdepend_btype"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="dtabid" dataitem ="dataitem_like_sysdepend_dtabid"
fgltype ="int" egltype ="int" />
<column name ="dtype" dataitem ="dataitem_like_sysdepend_dtype"
fgltype ="char" egltype ="unicode(1)" size ="1" />
</table>
<table name ="sysdirectives" egltype ="rec_like_sysdirectives">
<column name ="id" dataitem ="dataitem_ like sysdirectives id"
fgltype ="serial" egltype ="int" />
<column name ="query" dataitem ="dataitem_like_sysdirectives_query"
fgltype ="text" egltype ="clob" />
<column name ="directive" dataitem ="dataitem_like_sysdirectives_directive"
fgltype ="text" egltype ="clob" />
<column name ="directivecode" dataitem
="dataitem_like_sysdirectives_directivecode"
fgltype ="byte" egltype ="blob" />
<column name ="active" dataitem ="dataitem_like_sysdirectives_active"
fgltype ="smallint" egltype ="smallint" />
<column name ="hashcode" dataitem ="dataitem_like_sysdirectives_hashcode"
fgltype ="int" egltype ="int" />
</table>
<table name ="sysdistrib" egltype ="rec_Tike_sysdistrib">
<column name ="tabid" dataitem ="dataitem_like_sysdistrib_tabid"
fgltype ="int" egltype ="int" />
<column name ="colno" dataitem ="dataitem like_sysdistrib_colno"
fgltype ="smallint" egltype ="smallint" />
<column name ="seqno" dataitem ="dataitem like_sysdistrib_seqno"
fgltype ="int" egltype ="int" />
<column name ="constructed" dataitem ="dataitem like_sysdistrib_constructed"
fgltype ="date" egltype ="date" />
<column name ="mode" dataitem ="dataitem_like_sysdistrib_mode"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="resolution" dataitem ="dataitem_like_sysdistrib_resolution"
fgltype ="smallfloat" egltype ="smallfloat" />
<column name ="confidence" dataitem ="dataitem_like_sysdistrib_confidence"
fgltype ="smallfloat" egltype ="smallfloat" />
<column name ="encdat" dataitem ="dataitem_like_sysdistrib_encdat"

Appendix E. Manifest File Examples

E-5

fgltype ="stat" egltype ="string(0)" size ="0" />

<column name ="type" dataitem ="dataitem_like_sysdistrib_type"
fgltype ="char" egltype ="unicode(1)" size ="1" />

</table>

<table name ="syserrors" egltype ="rec_like_syserrors">

<column name ="sqlstate" dataitem ="dataitem_Tike_syserrors_sqlstate"
fgltype ="char" egltype ="unicode(5)" size ="5" />

<column name ="locale" dataitem ="dataitem_like_syserrors _locale"
fgltype ="char" egltype ="unicode(36)" size ="36" />

<column name ="level" dataitem ="dataitem like_syserrors level"
fgltype ="smallint" egltype ="smallint" />

<column name ="seqno" dataitem ="dataitem_like_syserrors_segno"
fgltype ="smallint" egltype ="smallint" />

<column name ="message" dataitem ="dataitem_like_syserrors_message"
fgltype ="varchar" egltype ="string(255)" size ="255" />

</table>

<table name ="sysfragauth" egltype ="rec_Tike sysfragauth">

<column name ="grantor" dataitem ="dataitem_like_sysfragauth_grantor"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="grantee" dataitem ="dataitem_like_sysfragauth_grantee"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="tabid" dataitem ="dataitem_like_sysfragauth_tabid"
fgltype ="int" egltype ="int" />

<column name ="fragment" dataitem ="dataitem_ like sysfragauth fragment"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="fragauth" dataitem ="dataitem_like_sysfragauth_fragauth"
fgltype ="char" egltype ="unicode(6)" size ="6" />

</table>

<table name ="sysfragments" egltype ="rec_like_sysfragments">

<column name ="fragtype" dataitem ="dataitem_like_sysfragments_fragtype"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="tabid" dataitem ="dataitem_like_sysfragments_tabid"
fgltype ="int" egltype ="int" />

<column name ="indexname" dataitem ="dataitem Tike_sysfragments_indexname"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="colno" dataitem ="dataitem like_sysfragments_colno"
fgltype ="int" egltype ="int" />

<column name ="partn" dataitem ="dataitem like_sysfragments partn"
fgltype ="int" egltype ="int" />

<column name ="strategy" dataitem ="dataitem_like_sysfragments_strategy"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="location" dataitem ="dataitem_like_sysfragments_location"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="servername" dataitem ="dataitem_like_sysfragments_servername"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="evalpos" dataitem ="dataitem_like_sysfragments_evalpos"
fgltype ="int" egltype ="int" />

<column name ="exprtext" dataitem ="dataitem_like_sysfragments exprtext"
fgltype ="text" egltype ="clob" />

<column name ="exprbin" dataitem ="dataitem_like sysfragments exprbin"
fgltype ="byte" egltype ="blob" />

<column name ="exprarr" dataitem ="dataitem_like_sysfragments_exprarr"
fgltype ="byte" egltype ="blob" />

<column name ="flags" dataitem ="dataitem_like_sysfragments_flags"
fgltype ="int" egltype ="int" />

<column name ="dbspace" dataitem ="dataitem_like_sysfragments_dbspace"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="levels" dataitem ="dataitem_like_sysfragments_levels"
fgltype ="smallint" egltype ="smallint" />

<column name ="npused" dataitem ="dataitem_like_sysfragments npused"
fgltype ="int" egltype ="int" />

<column name ="nrows" dataitem ="dataitem_like_sysfragments_nrows"
fgltype ="int" egltype ="int" />

<column name ="clust" dataitem ="dataitem like_sysfragments clust"
fgltype ="int" egltype ="int" />

<column name ="partition" dataitem ="dataitem_like_sysfragments_partition"
fgltype ="varchar" egltype ="string(128)" size ="128" />

E-6 1BM Informix 4GL to EGL Conversion Utility User’s Guide

</table>

<table name ="sysindices" egltype ="rec_like_sysindices">

<column name ="idxname" dataitem ="dataitem_like sysindices_idxname"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="owner" dataitem ="dataitem_like_sysindices_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="tabid" dataitem ="dataitem_like_sysindices_tabid"
fgltype ="int" egltype ="int" />

<column name ="idxtype" dataitem ="dataitem_like_sysindices_idxtype"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="clustered" dataitem ="dataitem_Tike_sysindices_clustered"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="levels" dataitem ="dataitem_like_sysindices_Tevels"
fgltype ="smallint" egltype ="smallint" />

<column name ="Teaves" dataitem ="dataitem_like_sysindices_Teaves"
fgltype ="int" egltype ="int" />

<column name ="nunique" dataitem ="dataitem_like sysindices_nunique"
fgltype ="int" egltype ="int" />

<column name ="clust" dataitem ="dataitem_like_sysindices_clust"
fgltype ="int" egltype ="int" />

<column name ="nrows" dataitem ="dataitem_like_sysindices_nrows"
fgltype ="float" egltype ="float" />

<column name ="indexkeys" dataitem ="dataitem_like_sysindices_indexkeys"
fgltype ="indexkeyarray" egltype ="string(0)" size ="0" />

<column name ="amid" dataitem ="dataitem_like_sysindices_amid"
fgltype ="int" egltype ="int" />

<column name ="amparam" dataitem ="dataitem_like_sysindices_amparam"
fgltype ="lvarchar" egltype ="string" size ="2048" />

<column name ="collation" dataitem ="dataitem Tike sysindices_collation"
fgltype ="char" egltype ="unicode(36)" size ="36" />

<column name ="pagesize" dataitem ="dataitem Tike sysindices pagesize"
fgltype ="int" egltype ="int" />

</table>

<table name ="sysinherits" egltype ="rec_like_sysinherits">

<column name ="child" dataitem ="dataitem_like_sysinherits_child"
fgltype ="int" egltype ="int" />

<column name ="parent" dataitem ="dataitem_like_sysinherits_parent"
fgltype ="int" egltype ="int" />

<column name ="class" dataitem ="dataitem_like_sysinherits_class"
fgltype ="char" egltype ="unicode(1)" size ="1" />

</table>

<table name ="syslangauth" egltype ="rec_like_syslangauth">

<column name ="grantor" dataitem ="dataitem_like syslangauth grantor"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="grantee" dataitem ="dataitem_like_syslangauth_grantee"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="langid" dataitem ="dataitem_like_syslangauth_langid"
fgltype ="int" egltype ="int" />

<column name ="Tangauth" dataitem ="dataitem_like_syslangauth_langauth"
fgltype ="char" egltype ="unicode(1)" size ="1" />

</table>

<table name ="syslogmap" egltype ="rec_Tlike_syslogmap">

<column name ="tabloc" dataitem ="dataitem_like_syslogmap_tabloc"
fgltype ="int" egltype ="int" />

<column name ="tabid" dataitem ="dataitem_like_syslogmap_tabid"
fgltype ="int" egltype ="int" />

<column name ="fragid" dataitem ="dataitem_like_syslogmap fragid"
fgltype ="int" egltype ="int" />

<column name ="flags" dataitem ="dataitem_Tike_syslogmap_flags"
fgltype ="int" egltype ="int" />

</table>

<table name ="sysobjstate" egltype ="rec_Tlike_sysobjstate">

<column name ="objtype" dataitem ="dataitem_like_sysobjstate_objtype"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="owner" dataitem ="dataitem_like_sysobjstate_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="name" dataitem ="dataitem_Tike_sysobjstate_name"

Appendix E. Manifest File Examples

E-7

fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="tabid" dataitem ="dataitem_like_sysobjstate_tabid"
fgltype ="int" egltype ="int" />

<column name ="state" dataitem ="dataitem_like_sysobjstate_state"
fgltype ="char" egltype ="unicode(1)" size ="1" />

</table>

<table name ="sysopclasses" egltype ="rec_like_sysopclasses">

<column name ="opclassname" dataitem ="dataitem_like_sysopclasses_opclassname
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="owner" dataitem ="dataitem like_sysopclasses_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="amid" dataitem ="dataitem_Tike_sysopclasses_amid"
fgltype ="int" egltype ="int" />

<column name ="opclassid" dataitem ="dataitem_like_sysopclasses_opclassid"
fgltype ="serial" egltype ="int" />

<column name ="ops" dataitem ="dataitem_like_sysopclasses_ops"
fgltype ="lvarchar" egltype ="string" size ="2048" />

<column name ="support" dataitem ="dataitem_like_sysopclasses_support"
fgltype ="1varchar" egltype ="string" size ="2048" />

</table>

<table name ="sysopclstr" egltype ="rec_like_sysopclstr">

<column name ="owner" dataitem ="dataitem_like_sysopclstr_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="clstrname" dataitem ="dataitem Tike sysopclstr_clstrname"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="clstrsize" dataitem ="dataitem_like_sysopclstr_clstrsize"
fgltype ="int" egltype ="int" />

<column name ="tabid" dataitem ="dataitem_like_sysopclstr_tabid"
fgltype ="int" egltype ="int" />

<column name ="blobcoll" dataitem ="dataitem_like_sysopclstr_blobcoll"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol2" dataitem ="dataitem_like_sysopclstr_blobcol2"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol3" dataitem ="dataitem_Tike_sysopclstr_blobcol3"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol4" dataitem ="dataitem Tike_ sysopclstr_blobcol4"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol5" dataitem ="dataitem Tike sysopclstr_blobcol5"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol6" dataitem ="dataitem_like_sysopclstr_blobcol6"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol7" dataitem ="dataitem_like_sysopclstr_blobcol7"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol18" dataitem ="dataitem_like_sysopclstr_blobcol8"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol19" dataitem ="dataitem_Tike_sysopclstr_blobcol9"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol110" dataitem ="dataitem Tike sysopclstr_blobcol10"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcolll" dataitem ="dataitem Tike sysopclstr_blobcolll"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol12" dataitem ="dataitem_like_sysopclstr_blobcol12"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol13" dataitem ="dataitem_like_sysopclstr_blobcol13"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol14" dataitem ="dataitem_like_sysopclstr_blobcol14"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol15" dataitem ="dataitem_Tike_sysopclstr_blobcol15"
fgltype ="smallint" egltype ="smallint" />

<column name ="blobcol16" dataitem ="dataitem Tike_sysopclstr_blobcol16"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkeyl" dataitem ="dataitem Tike sysopclstr_clstrkeyl"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkey2" dataitem ="dataitem Tike sysopclstr_clstrkey2"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkey3" dataitem ="dataitem_like_sysopclstr_clstrkey3"
fgltype ="smallint" egltype ="smallint" />

E-8 IBM Informix 4GL to EGL Conversion Utility User’s Guide

<column name ="clstrkey4" dataitem ="dataitem Tike_ sysopclstr_clstrkey4"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkey5" dataitem ="dataitem Tike sysopclstr_clstrkey5"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkey6" dataitem ="dataitem_like_sysopclstr_clstrkey6"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkey7" dataitem ="dataitem_like_sysopclstr_clstrkey7"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkey8" dataitem ="dataitem_like_sysopclstr_clstrkey8"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkey9" dataitem ="dataitem_Tike_sysopclstr_clstrkey9"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkeylQ" dataitem ="dataitem_like_sysopclstr_clstrkeyl0"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkeyll" dataitem ="dataitem like_sysopclstr clstrkeyll"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkeyl2" dataitem ="dataitem like_sysopclstr clstrkeyl2"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkeyl3" dataitem ="dataitem_like_sysopclstr_clstrkeyl3"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkeyl4" dataitem ="dataitem_like_sysopclstr_clstrkeyl4"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkeyl5" dataitem ="dataitem_like_sysopclstr_clstrkeyl5"
fgltype ="smallint" egltype ="smallint" />

<column name ="clstrkeyl6" dataitem ="dataitem_like_sysopclstr_clstrkeyl6"
fgltype ="smallint" egltype ="smallint" />

</table>

<table name ="sysprocauth" egltype ="rec_like_sysprocauth">

<column name ="grantor" dataitem ="dataitem_like_sysprocauth_grantor"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="grantee" dataitem ="dataitem_like sysprocauth grantee"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="procid" dataitem ="dataitem_like_sysprocauth_procid"
fgltype ="int" egltype ="int" />

<column name ="procauth" dataitem ="dataitem_like_sysprocauth_procauth"
fgltype ="char" egltype ="unicode(1)" size ="1" />

</table>

<table name ="sysprocbody" egltype ="rec_Tike sysprocbody">

<column name ="procid" dataitem ="dataitem_like_sysprocbody procid"
fgltype ="int" egltype ="int" />

<column name ="datakey" dataitem ="dataitem_like_sysprocbody datakey"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="seqno" dataitem ="dataitem_like_sysprocbody seqno"
fgltype ="int" egltype ="int" />

<column name ="data" dataitem ="dataitem Tike_sysprocbody data"
fgltype ="char" egltype ="unicode(256)" size ="256" />

</table>

<table name ="sysprocedures" egltype ="rec_like_sysprocedures">

<column name ="procname" dataitem ="dataitem_like_sysprocedures_procname"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="owner" dataitem ="dataitem_like_sysprocedures_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="procid" dataitem ="dataitem_like_sysprocedures_procid"
fgltype ="serial" egltype ="int" />

<column name ="mode" dataitem ="dataitem Tike_sysprocedures_mode"
fgltype ="char" egltype ="unicode(1l)" size ="1" />

<column name ="retsize" dataitem ="dataitem_like_sysprocedures retsize"
fgltype ="int" egltype ="int" />

<column name ="symsize" dataitem ="dataitem_like_sysprocedures_symsize"
fgltype ="int" egltype ="int" />

<column name ="datasize" dataitem ="dataitem_like_sysprocedures_datasize"
fgltype ="int" egltype ="int" />

<column name ="codesize" dataitem ="dataitem_like_sysprocedures_codesize"
fgltype ="int" egltype ="int" />

<column name ="numargs" dataitem ="dataitem_like_sysprocedures_numargs"
fgltype ="int" egltype ="int" />

<column name ="isproc" dataitem ="dataitem_like_sysprocedures_isproc"

Appendix E. Manifest File Examples

fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="specificname" dataitem
="dataitem_Tike_sysprocedures_specificname"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="externalname" dataitem
="dataitem_like_sysprocedures_externalname"
fgltype ="varchar" egltype ="string(255)" size ="255" />
<column name ="paramstyle" dataitem
="dataitem_like_sysprocedures_paramstyle"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="langid" dataitem ="dataitem_like_sysprocedures_langid"
fgltype ="int" egltype ="int" />
<column name ="paramtypes" dataitem
="dataitem_like_sysprocedures_paramtypes"
fgltype ="rtnparamtypes" egltype ="string(0)" size ="0" />
<column name ="percallcost" dataitem
="dataitem Tike_sysprocedures_percallcost"
fgltype ="int" egltype ="int" />
<column name ="commutator" dataitem ="dataitem_ like_sysprocedures_commutator"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="negator" dataitem ="dataitem_like_sysprocedures_negator"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="selfunc" dataitem ="dataitem_like_sysprocedures_selfunc"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="class" dataitem ="dataitem_like_sysprocedures_class"
fgltype ="char" egltype ="unicode(18)" size ="18" />
<column name ="stack" dataitem ="dataitem_like_sysprocedures_stack"
fgltype ="int" egltype ="int" />
<column name ="costfunc" dataitem ="dataitem like_sysprocedures_costfunc"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="selconst" dataitem ="dataitem like sysprocedures_selconst"
fgltype ="smallfloat" egltype ="smallfloat" />
<column name ="collation" dataitem ="dataitem_like_sysprocedures_collation"
fgltype ="char" egltype ="unicode(36)" size ="36" />
</table>
<table name ="sysprocplan" egltype ="rec_Tike sysprocplan">
<column name ="procid" dataitem ="dataitem_like_sysprocplan_procid"
fgltype ="int" egltype ="int" />
<column name ="planid" dataitem ="dataitem_like_sysprocplan_planid"
fgltype ="int" egltype ="int" />
<column name ="datakey" dataitem ="dataitem_like _sysprocplan_datakey"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="seqno" dataitem ="dataitem_like_sysprocplan_seqno"
fgltype ="int" egltype ="int" />
<column name ="created" dataitem ="dataitem_like_sysprocplan_created"
fgltype ="date" egltype ="date" />
<column name ="datasize" dataitem ="dataitem_like_sysprocplan_datasize"
fgltype ="int" egltype ="int" />
<column name ="data" dataitem ="dataitem_Tike_sysprocplan_data"
fgltype ="char" egltype ="unicode(256)" size ="256" />
</table>
<table name ="sysreferences" egltype ="rec_like_sysreferences">
<column name ="constrid" dataitem ="dataitem_like_sysreferences_constrid"
fgltype ="int" egltype ="int" />
<column name ="primary" dataitem ="dataitem_like_sysreferences_primary"
fgltype ="int" egltype ="int" />
<column name ="ptabid" dataitem ="dataitem_like_sysreferences ptabid"
fgltype ="int" egltype ="int" />
<column name ="updrule" dataitem ="dataitem_like_sysreferences_updrule"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="delrule" dataitem ="dataitem_like_sysreferences_delrule"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="matchtype" dataitem ="dataitem_like_sysreferences_matchtype"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="pendant" dataitem ="dataitem_like_sysreferences_pendant"
fgltype ="char" egltype ="unicode(1)" size ="1" />
</table>

E-10 IBM Informix 4GL to EGL Conversion Utility User’s Guide

<table name ="sysroleauth" egltype ="rec_Tlike_sysroleauth">
<column name ="rolename" dataitem ="dataitem_like_sysroleauth_rolename"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="grantee" dataitem ="dataitem_like_sysroleauth_grantee"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="is_grantable" dataitem
="dataitem_like_sysroleauth_is_grantable"
fgltype ="char" egltype ="unicode(1)" size ="1" />
</table>
<table name ="sysroutinelangs" egltype ="rec_Tike_sysroutinelangs">
<column name ="langid" dataitem ="dataitem_like_sysroutinelangs_langid"
fgltype ="serial" egltype ="int" />
<column name ="Tangname" dataitem ="dataitem_like_sysroutinelangs_langname"
fgltype ="char" egltype ="unicode(30)" size ="30" />
<column name ="Tanginitfunc" dataitem
="dataitem_like_sysroutinelangs_langinitfunc"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="Tangpath" dataitem ="dataitem_like_sysroutinelangs_langpath"
fgltype ="char" egltype ="unicode(255)" size ="255" />

<column name ="langclass" dataitem ="dataitem Tike_sysroutinelangs_langclass"

fgltype ="char" egltype ="unicode(18)" size ="18" />
</table>
<table name ="syssequences" egltype ="rec_like_syssequences">
<column name ="seqid" dataitem ="dataitem like_syssequences_seqid"
fgltype ="serial" egltype ="int" />
<column name ="tabid" dataitem ="dataitem_Tike_syssequences_tabid"
fgltype ="int" egltype ="int" />
<column name ="start_val" dataitem ="dataitem_like_syssequences_start_val"
fgltype ="int8" egltype ="bigint" />
<column name ="inc_val" dataitem ="dataitem_like_syssequences_inc_val"
fgltype ="int8" egltype ="bigint" />
<column name ="min_val" dataitem ="dataitem_like_syssequences_min_val"
fgltype ="int8" egltype ="bigint" />
<column name ="max_val" dataitem ="dataitem_like_syssequences_max_val"
fgltype ="int8" egltype ="bigint" />
<column name ="cycle" dataitem ="dataitem like_syssequences _cycle"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="restart val" dataitem
="dataitem_like_syssequences_restart_val"
fgltype ="int8" egltype ="bigint" />
<column name ="cache" dataitem ="dataitem_like_syssequences_cache"
fgltype ="int" egltype ="int" />
<column name ="order" dataitem ="dataitem like_syssequences_order"
fgltype ="char" egltype ="unicode(1)" size ="1" />
</table>
<table name ="syssynonyms" egltype ="rec_like_syssynonyms">
<column name ="owner" dataitem ="dataitem_like_syssynonyms_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="synname" dataitem ="dataitem_like_syssynonyms_synname"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="created" dataitem ="dataitem_like_syssynonyms created"
fgltype ="date" egltype ="date" />
<column name ="tabid" dataitem ="dataitem_like_syssynonyms_tabid"
fgltype ="int" egltype ="int" />
</table>
<table name ="syssyntable" egltype ="rec_like_syssyntable">
<column name ="tabid" dataitem ="dataitem like_syssyntable tabid"
fgltype ="int" egltype ="int" />
<column name ="servername" dataitem
="dataitem_like_syssyntable_servername"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="dbname" dataitem ="dataitem_like_syssyntable_dbname"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="owner" dataitem ="dataitem like_syssyntable_ owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="tabname" dataitem ="dataitem_like_syssyntable_tabname"
fgltype ="varchar" egltype ="string(128)" size ="128" />

Appendix E. Manifest File Examples

E-11

E-12

<column name ="btabid" dataitem ="dataitem_like_syssyntable btabid"
fgltype ="int" egltype ="int" />
</table>
<table name ="systabamdata" egltype ="rec_like_systabamdata">
<column name ="tabid" dataitem ="dataitem_like_systabamdata_tabid"
fgltype ="int" egltype ="int" />
<column name ="am_param" dataitem ="dataitem_like_systabamdata_am_param"
fgltype ="char" egltype ="unicode(256)" size ="256" />
<column name ="am_space" dataitem ="dataitem_like_systabamdata_am_space"
fgltype ="varchar" egltype ="string(128)" size ="128" />
</table>
<table name ="systabauth" egltype ="rec_Tlike_systabauth">
<column name ="grantor" dataitem ="dataitem_like_systabauth_grantor"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="grantee" dataitem ="dataitem_like_systabauth_grantee"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="tabid" dataitem ="dataitem like_systabauth tabid"
fgltype ="int" egltype ="int" />
<column name ="tabauth" dataitem ="dataitem_like_systabauth_tabauth"
fgltype ="char" egltype ="unicode(9)" size ="9" />
</table>
<table name ="systables" egltype ="rec_like _systables">
<column name ="tabname" dataitem ="dataitem_like_systables_tabname"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="owner" dataitem ="dataitem_like_systables_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="partnum" dataitem ="dataitem_like_systables_partnum"
fgltype ="int" egltype ="int" />
<column name ="tabid" dataitem ="dataitem_like_systables tabid"
fgltype ="serial" egltype ="int" />
<column name ="rowsize" dataitem ="dataitem like systables rowsize"
fgltype ="smallint" egltype ="smallint" />
<column name ="ncols" dataitem ="dataitem_like_systables ncols"
fgltype ="smallint" egltype ="smallint" />
<column name ="nindexes" dataitem ="dataitem_like_systables_nindexes"
fgltype ="smallint" egltype ="smallint" />
<column name ="nrows" dataitem ="dataitem_like_systables_nrows"
fgltype ="int" egltype ="int" />
<column name ="created" dataitem ="dataitem_like_systables_created"
fgltype ="date" egltype ="date" />
<column name ="version" dataitem ="dataitem_like systables_version"
fgltype ="int" egltype ="int" />
<column name ="tabtype" dataitem ="dataitem_like systables_tabtype"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="locklevel" dataitem ="dataitem_like_systables_Tocklevel"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="npused" dataitem ="dataitem_like_systables_npused"
fgltype ="int" egltype ="int" />
<column name ="fextsize" dataitem ="dataitem_like_systables_fextsize"
fgltype ="int" egltype ="int" />
<column name ="nextsize" dataitem ="dataitem_like_systables_nextsize"
fgltype ="int" egltype ="int" />
<column name ="flags" dataitem ="dataitem_like_systables flags"
fgltype ="smallint" egltype ="smallint" />
<column name ="site" dataitem ="dataitem Tike_systables_site"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="dbname" dataitem ="dataitem_like_systables_dbname"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="type xid" dataitem ="dataitem_like_systables_type xid"
fgltype ="int" egltype ="int" />
<column name ="am_id" dataitem ="dataitem_like_systables_am_id"
fgltype ="int" egltype ="int" />
<column name ="pagesize" dataitem ="dataitem_like_systables_pagesize"
fgltype ="int" egltype ="int" />
</table>
<table name ="systraceclasses" egltype ="rec_like_systraceclasses">
<column name ="name" dataitem ="dataitem_Tike_systraceclasses_name"

IBM Informix 4GL to EGL Conversion Utility User’s Guide

fgltype ="char" egltype ="unicode(18)" size ="18" />
<column name ="classid" dataitem ="dataitem_like_systraceclasses_classid"
fgltype ="serial" egltype ="int" />
</table>
<table name ="systracemsgs" egltype ="rec_like_systracemsgs">
<column name ="name" dataitem ="dataitem_Tike_systracemsgs_name"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="msgid" dataitem ="dataitem_like_systracemsgs_msgid"
fgltype ="serial" egltype ="int" />
<column name ="locale" dataitem ="dataitem_like_systracemsgs locale"
fgltype ="char" egltype ="unicode(36)" size ="36" />
<column name ="seqno" dataitem ="dataitem_like_systracemsgs_seqno"
fgltype ="smallint" egltype ="smallint" />
<column name ="message" dataitem ="dataitem_like_systracemsgs_message"
fgltype ="varchar" egltype ="string(255)" size ="255" />
</table>
<table name ="systrigbody" egltype ="rec_Tlike_systrigbody">
<column name ="trigid" dataitem ="dataitem_like_systrigbody_ trigid"
fgltype ="int" egltype ="int" />
<column name ="datakey" dataitem ="dataitem_like_systrigbody datakey"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="seqno" dataitem ="dataitem_like_systrigbody seqno"
fgltype ="int" egltype ="int" />
<column name ="data" dataitem ="dataitem Tike_ systrigbody data"
fgltype ="char" egltype ="unicode(256)" size ="256" />
</table>
<table name ="systriggers" egltype ="rec_like_systriggers">
<column name ="trigid" dataitem ="dataitem_like_systriggers_trigid"
fgltype ="serial" egltype ="int" />
<column name ="trigname" dataitem ="dataitem_like_systriggers_trigname"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="owner" dataitem ="dataitem_like_systriggers_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="tabid" dataitem ="dataitem_like_systriggers_tabid"
fgltype ="int" egltype ="int" />
<column name ="event" dataitem ="dataitem like_systriggers_event"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="old" dataitem ="dataitem like systriggers old"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="new" dataitem ="dataitem_like_systriggers new"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="mode" dataitem ="dataitem_like_systriggers_mode"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="collation" dataitem ="dataitem_Tike_systriggers _collation"
fgltype ="char" egltype ="unicode(36)" size ="36" />
</table>
<table name ="sysusers" egltype ="rec_like_sysusers">
<column name ="username" dataitem ="dataitem like_sysusers_username"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="usertype" dataitem ="dataitem Tike_ sysusers_usertype"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="priority" dataitem ="dataitem_like_sysusers_priority"
fgltype ="smallint" egltype ="smallint" />
<column name ="password" dataitem ="dataitem_like_sysusers_password"
fgltype ="char" egltype ="unicode(16)" size ="16" />
<column name ="defrole" dataitem ="dataitem_like_sysusers_defrole"
fgltype ="char" egltype ="unicode(32)" size ="32" />
</table>
<table name ="sysviews" egltype ="rec_like_sysviews">
<column name ="tabid" dataitem ="dataitem_like_sysviews_tabid"
fgltype ="int" egltype ="int" />
<column name ="seqno" dataitem ="dataitem_like_sysviews_segno"
fgltype ="smallint" egltype ="smallint" />
<column name ="viewtext" dataitem ="dataitem Tike sysviews_viewtext"
fgltype ="char" egltype ="unicode(64)" size ="64" />
</table>
<table name ="sysviolations" egltype ="rec_like_sysviolations">

Appendix E. Manifest File Examples

E-13

E-14

<column name ="targettid" dataitem ="dataitem Tike_sysviolations_targettid"
fgltype ="int" egltype ="int" />
<column name ="viotid" dataitem ="dataitem_like_sysviolations viotid"
fgltype ="int" egltype ="int" />
<column name ="diatid" dataitem ="dataitem_like_sysviolations_diatid"
fgltype ="int" egltype ="int" />
<column name ="maxrows" dataitem ="dataitem_like_sysviolations_maxrows"
fgltype ="int" egltype ="int" />
</table>
<table name ="sysxadatasources" egltype ="rec_like_sysxadatasources">
<column name ="xa_datasrc_owner" dataitem
="dataitem_like_sysxadatasources_xa_datasrc_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="xa_datasrc_name" dataitem
="dataitem Tike_sysxadatasources_xa_datasrc_name"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="xa_datasrc_rmid" dataitem
="dataitem_Tike_sysxadatasources_xa_datasrc_rmid"
fgltype ="serial" egltype ="int" />
<column name ="xa_source_typeid" dataitem
="dataitem_like_sysxadatasources_xa_source_typeid"
fgltype ="int" egltype ="int" />
</table>
<table name ="sysxasourcetypes" egltype ="rec_like_sysxasourcetypes">
<column name ="xa_source_typeid" dataitem
="dataitem_like_sysxasourcetypes_xa_source_typeid"
fgltype ="serial" egltype ="int" />
<column name ="xa_source_owner" dataitem
="dataitem_Tike_sysxasourcetypes_xa_source_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="xa_source_name" dataitem
="dataitem_Tlike_sysxasourcetypes_xa_source_name"
fgltype ="varchar" egltype ="string(128)" size ="128" />
<column name ="xa_flags" dataitem
="dataitem_like_sysxasourcetypes_xa_flags"
fgltype ="int" egltype ="int" />
<column name ="xa_version" dataitem
="dataitem Tike sysxasourcetypes xa version"
fgltype ="int" egltype ="int" />
<column name ="xa_open" dataitem
="dataitem_Tike_sysxasourcetypes xa_open"
fgltype ="int" egltype ="int" />
<column name ="xa_close" dataitem ="dataitem like_ sysxasourcetypes xa close"
fgltype ="int" egltype ="int" />
<column name ="xa_start" dataitem
="dataitem_like_sysxasourcetypes_xa_start"
fgltype ="int" egltype ="int" />
<column name ="xa_end" dataitem
="dataitem_like_sysxasourcetypes_xa_end"
fgltype ="int" egltype ="int" />
<column name ="xa_rollback" dataitem
="dataitem_like_sysxasourcetypes_xa_rollback"
fgltype ="int" egltype ="int" />
<column name ="xa_prepare" dataitem
="dataitem_Tike_sysxasourcetypes xa_prepare"
fgltype ="int" egltype ="int" />
<column name ="xa_commit" dataitem
="dataitem_Tlike_sysxasourcetypes xa_commit"
fgltype ="int" egltype ="int" />
<column name ="xa_recover" dataitem
="dataitem_like_sysxasourcetypes xa_recover"
fgltype ="int" egltype ="int" />
<column name ="xa_forget" dataitem
="dataitem Tike_sysxasourcetypes xa forget"
fgltype ="int" egltype ="int" />
<column name ="xa_complete" dataitem
="dataitem_Tike_sysxasourcetypes_xa_complete

IBM Informix 4GL to EGL Conversion Utility User’s Guide

fgltype ="int" egltype ="int" />
</table>
<table name ="sysxtddesc" egltype ="rec_like sysxtddesc">

<column name ="extended_id" dataitem ="dataitem_ like_sysxtddesc_extended_id"

fgltype ="int" egltype ="int" />
<column name ="seqno" dataitem ="dataitem_like_sysxtddesc_seqno"
fgltype ="smallint" egltype ="smallint" />

<column name ="description" dataitem ="dataitem_like_sysxtddesc_description"

fgltype ="char" egltype ="unicode(256)" size ="256" />

</table>

<table name ="sysxtdtypeauth" egltype ="rec_like_sysxtdtypeauth">

<column name ="grantor" dataitem ="dataitem_like_sysxtdtypeauth_grantor"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="grantee" dataitem ="dataitem_like_sysxtdtypeauth_grantee"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="type" dataitem ="dataitem Tike_ sysxtdtypeauth type"
fgltype ="int" egltype ="int" />

<column name ="auth" dataitem ="dataitem_Tike_sysxtdtypeauth_auth"
fgltype ="char" egltype ="unicode(2)" size ="2" />

</table>

<table name ="sysxtdtypes" egltype ="rec_Tike_sysxtdtypes">

<column name ="extended_id" dataitem ="dataitem_like_sysxtdtypes_extended_id"

fgltype ="serial" egltype ="int" />

<column name ="domain" dataitem ="dataitem_like_sysxtdtypes_domain"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="mode" dataitem ="dataitem_Tike_sysxtdtypes_mode"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="owner" dataitem ="dataitem_like_sysxtdtypes_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="name" dataitem ="dataitem Tike sysxtdtypes name"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="type" dataitem ="dataitem_like_sysxtdtypes_type"
fgltype ="smallint" egltype ="smallint" />

<column name ="source" dataitem ="dataitem_like_sysxtdtypes_source"
fgltype ="int" egltype ="int" />

<column name ="maxlen" dataitem ="dataitem_like_sysxtdtypes_maxlen"
fgltype ="int" egltype ="int" />

<column name ="Tength" dataitem ="dataitem_like_sysxtdtypes_length"
fgltype ="int" egltype ="int" />

<column name ="byvalue" dataitem ="dataitem_like sysxtdtypes byvalue"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="cannothash" dataitem ="dataitem like_sysxtdtypes_cannothash"

fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="align" dataitem ="dataitem_like_sysxtdtypes_align"
fgltype ="smallint" egltype ="smallint" />

<column name ="locator" dataitem ="dataitem_like_sysxtdtypes_locator"
fgltype ="int" egltype ="int" />

</table>

<table name ="call_type" egltype ="rec_like call_type">

<column name ="call_code" dataitem ="dataitem_Tike_call_type_call_code"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="code_descr" dataitem ="dataitem_like_call_type_code_descr"
fgltype ="char" egltype ="unicode(30)" size ="30" />

</table>

<table name ="catalog" egltype ="rec_like_catalog">

<column name ="catalog num" dataitem ="dataitem like_catalog_catalog_num"
fgltype ="serial" egltype ="int" />

<column name ="stock_num" dataitem ="dataitem_like_catalog_stock_num"
fgltype ="smallint" egltype ="smallint" />

<column name ="manu_code" dataitem ="dataitem_like_catalog_manu_code"
fgltype ="char" egltype ="unicode(3)" size ="3" />

<column name ="cat_descr" dataitem ="dataitem_like_catalog_cat_descr"
fgltype ="text" egltype ="clob" />

<column name ="cat_picture" dataitem ="dataitem_like_catalog_cat_picture"
fgltype ="byte" egltype ="blob" />

<column name ="cat_advert" dataitem ="dataitem_like_catalog_cat_advert"

Appendix E. Manifest File Examples

E-15

fgltype ="varchar" egltype ="string(255)" size ="255" />
</table>
<table name ="cust_calls" egltype ="rec_like cust calls">
<column name ="customer_num" dataitem ="dataitem_like_cust_calls_customer_num"
fgltype ="int" egltype ="int" />
<column name ="call_dtime" dataitem ="dataitem_like_cust_calls_call_dtime"
fgltype ="datetime year to minute"
egltype ="timestamp("yyyyMMddhhmm")"
start ="year" end ="minute" />
<column name ="user_id" dataitem ="dataitem_like cust calls_user_id"
fgltype ="char" egltype ="unicode(32)" size ="32" />
<column name ="call_code" dataitem ="dataitem_like_cust _calls_call_code"
fgltype ="char" egltype ="unicode(1)" size ="1" />
<column name ="call_descr" dataitem ="dataitem_like_cust_calls_call_descr"
fgltype ="char" egltype ="unicode(240)" size ="240" />
<column name ="res_dtime" dataitem ="dataitem_like_cust_calls_res_dtime"
fgltype ="datetime year to minute"
egltype ="timestamp("yyyyMMddhhmm")"
start ="year" end ="minute" />
<column name ="res_descr" dataitem ="dataitem Tike cust_calls_res_descr"
fgltype ="char" egltype ="unicode(240)" size ="240" />
</table>
<table name ="customer" egltype ="rec_like_customer">
<column name ="customer_num" dataitem ="dataitem_like customer_customer_num"
fgltype ="serial" egltype ="int" />
<column name ="fname" dataitem ="dataitem_like_customer_fname"
fgltype ="char" egltype ="unicode(15)" size ="15" />
<column name ="Tname" dataitem ="dataitem_like_customer_Iname"
fgltype ="char" egltype ="unicode(15)" size ="15" />
<column name ="company" dataitem ="dataitem_like_customer_company"
fgltype ="char" egltype ="unicode(20)" size ="20" />
<column name ="addressl" dataitem ="dataitem_like_customer_addressl"
fgltype ="char" egltype ="unicode(20)" size ="20" />
<column name ="address2" dataitem ="dataitem_Tike_customer_address2"
fgltype ="char" egltype ="unicode(20)" size ="20" />
<column name ="city" dataitem ="dataitem Tike_ customer city"
fgltype ="char" egltype ="unicode(15)" size ="15" />
<column name ="state" dataitem ="dataitem like customer_state"
fgltype ="char" egltype ="unicode(2)" size ="2" />
<column name ="zipcode" dataitem ="dataitem_like_customer_zipcode"
fgltype ="char" egltype ="unicode(5)" size ="5" />
<column name ="phone" dataitem ="dataitem_like_customer_phone"
fgltype ="char" egltype ="unicode(18)" size ="18" />
</table>
<table name ="items" egltype ="rec_like_items">
<column name ="item num" dataitem ="dataitem_like_items_item_num"
fgltype ="smallint" egltype ="smallint" />
<column name ="order_num" dataitem ="dataitem like_items_order_num"
fgltype ="int" egltype ="int" />
<column name ="stock num" dataitem ="dataitem Tike items_stock num"
fgltype ="smallint" egltype ="smallint" />
<column name ="manu_code" dataitem ="dataitem_like_items_manu_code"
fgltype ="char" egltype ="unicode(3)" size ="3" />
<column name ="quantity" dataitem ="dataitem_like_items_quantity"
fgltype ="smallint" egltype ="smallint" />
<column name ="total_price" dataitem ="dataitem_like_items_total_price"
fgltype ="money" egltype ="money(8,2)" scale ="2" precision ="8" />
</table>
<table name ="manufact" egltype ="rec_like_manufact">
<column name ="manu_code" dataitem ="dataitem_like_manufact_manu_code"
fgltype ="char" egltype ="unicode(3)" size ="3" />
<column name ="manu_name" dataitem ="dataitem_like _manufact_manu_name"
fgltype ="char" egltype ="unicode(15)" size ="15" />
<column name ="lead time" dataitem ="dataitem Tike manufact lead time"
fgltype ="interval day(3) to day" egltype ="interval("ddd")"
precision ="3" start ="day" end ="day" />
</table>

E-16 IBM Informix 4GL to EGL Conversion Utility User’s Guide

<table name ="msgs" egltype ="rec_like_msgs">

<column name ="lang" dataitem ="dataitem_like_msgs_Tlang"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="number" dataitem ="dataitem_like_msgs_number"
fgltype ="int" egltype ="int" />

<column name ="message" dataitem ="dataitem_like_msgs_message"
fgltype ="nchar" egltype ="unicode(255)" size ="255" />

</table>

<table name ="orders" egltype ="rec_like_orders">

<column name ="order num" dataitem ="dataitem like_orders_order_ num"
fgltype ="serial" egltype ="int" />

<column name ="order_date" dataitem ="dataitem_like_orders_order_date"
fgltype ="date" egltype ="date" />

<column name ="customer_num" dataitem ="dataitem_like_orders_customer_num"
fgltype ="int" egltype ="int" />

<column name ="ship_instruct" dataitem ="dataitem_like_orders_ship_instruct"
fgltype ="char" egltype ="unicode(40)" size ="40" />

<column name ="backlog" dataitem ="dataitem_like_orders_backlog"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="po_num" dataitem ="dataitem_like_orders_po_num"
fgltype ="char" egltype ="unicode(10)" size ="10" />

<column name ="ship_date" dataitem ="dataitem_like_orders_ship_date"
fgltype ="date" egltype ="date" />

<column name ="ship_weight" dataitem ="dataitem_like_orders_ship weight"
fgltype ="decimal" egltype ="decimal(8,2)" scale ="2" precision ="8" />

<column name ="ship_charge" dataitem ="dataitem_like_orders_ship_charge"
fgltype ="money" egltype ="money(6,2)" scale ="2" precision ="6" />

<column name ="paid_date" dataitem ="dataitem_like_orders_paid_date"
fgltype ="date" egltype ="date" />

</table>

<table name ="state" egltype ="rec_like state">

<column name ="code" dataitem ="dataitem_like_state_code"
fgltype ="char" egltype ="unicode(2)" size ="2" />

<column name ="sname" dataitem ="dataitem_like_state_sname"
fgltype ="char" egltype ="unicode(15)" size ="15" />

</table>

<table name ="stock" egltype ="rec_like_stock">

<column name ="stock num" dataitem ="dataitem Tike stock stock num"
fgltype ="smallint" egltype ="smallint" />

<column name ="manu_code" dataitem ="dataitem_like_stock_manu_code"
fgltype ="char" egltype ="unicode(3)" size ="3" />

<column name ="description" dataitem ="dataitem_like_stock_description"
fgltype ="char" egltype ="unicode(15)" size ="15" />

<column name ="unit_price" dataitem ="dataitem_like_stock _unit_price"
fgltype ="money" egltype ="money(6,2)" scale ="2" precision ="6" />

<column name ="unit" dataitem ="dataitem_like_stock_unit"
fgltype ="char" egltype ="unicode(4)" size ="4" />

<column name ="unit_descr" dataitem ="dataitem_like_stock unit_descr"
fgltype ="char" egltype ="unicode(15)" size ="15" />

</table>

<table name ="sysdomains" egltype ="rec_like_sysdomains">

<column name ="id" dataitem ="dataitem_ like_sysdomains_id"
fgltype ="serial" egltype ="int" />

<column name ="owner" dataitem ="dataitem_like_sysdomains_owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="name" dataitem ="dataitem_like_sysdomains_name"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="type" dataitem ="dataitem_like_sysdomains_type"
fgltype ="smallint" egltype ="smallint" />

</table>

<table name ="sysindexes" egltype ="rec_like_sysindexes">

<column name ="idxname" dataitem ="dataitem_like_sysindexes_idxname"
fgltype ="varchar" egltype ="string(128)" size ="128" />

<column name ="owner" dataitem ="dataitem like_sysindexes owner"
fgltype ="char" egltype ="unicode(32)" size ="32" />

<column name ="tabid" dataitem ="dataitem_like_sysindexes_tabid"
fgltype ="int" egltype ="int" />

Appendix E. Manifest File Examples E-17

<column name ="idxtype" dataitem ="dataitem_like_ sysindexes_idxtype"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="clustered" dataitem ="dataitem Tike sysindexes clustered"
fgltype ="char" egltype ="unicode(1)" size ="1" />

<column name ="partl" dataitem ="dataitem_like_sysindexes_partl"
fgltype ="smallint" egltype ="smallint" />

<column name ="part2" dataitem ="dataitem_like_sysindexes_part2"
fgltype ="smallint" egltype ="smallint" />

<column name ="part3" dataitem ="dataitem_like_sysindexes_part3"
fgltype ="smallint" egltype ="smallint" />

<column name ="part4" dataitem ="dataitem_like_sysindexes_part4"
fgltype ="smallint" egltype ="smallint" />

<column name ="part5" dataitem ="dataitem_like_sysindexes_part5"
fgltype ="smallint" egltype ="smallint" />

<column name ="part6" dataitem ="dataitem_like_sysindexes part6"
fgltype ="smallint" egltype ="smallint" />

<column name ="part7" dataitem ="dataitem like_sysindexes part7"
fgltype ="smallint" egltype ="smallint" />

<column name ="part8" dataitem ="dataitem_like_sysindexes_part8"
fgltype ="smallint" egltype ="smallint" />

<column name ="part9" dataitem ="dataitem_like_sysindexes_part9"
fgltype ="smallint" egltype ="smallint" />

<column name ="partl0" dataitem ="dataitem_like_sysindexes_part10"
fgltype ="smallint" egltype ="smallint" />

<column name ="partll" dataitem ="dataitem_like_sysindexes_partl1l"
fgltype ="smallint" egltype ="smallint" />

<column name ="partl2" dataitem ="dataitem_like_sysindexes_partl2"
fgltype ="smallint" egltype ="smallint" />

<column name ="partl3" dataitem ="dataitem_like_sysindexes_part13"
fgltype ="smallint" egltype ="smallint" />

<column name ="partl4" dataitem ="dataitem like_sysindexes partl14"
fgltype ="smallint" egltype ="smallint" />

<column name ="partl5" dataitem ="dataitem_like_sysindexes_partl15"
fgltype ="smallint" egltype ="smallint" />

<column name ="partl6" dataitem ="dataitem_like_sysindexes_partl6"
fgltype ="smallint" egltype ="smallint" />

<column name ="levels" dataitem ="dataitem_like_sysindexes_levels"
fgltype ="smallint" egltype ="smallint" />

<column name ="leaves" dataitem ="dataitem_like_sysindexes_leaves"
fgltype ="int" egltype ="int" />

<column name ="nunique" dataitem ="dataitem_like_sysindexes_nunique"
fgltype ="int" egltype ="int" />

<column name ="clust" dataitem ="dataitem like_sysindexes clust"
fgltype ="int" egltype ="int" />

</table>

</package>
</manifest>

Shared Library or Application Project Manifest File Example

This example shows a shared library manifest file. Shared library and application
projects have identical manifest files, with the following exception:

* in the shared library project manifest file, the attribute type equals library.
* in the application project manifest file, the attribute type equals application.
<?xml version="1.0" encoding="utf-8"?>

<l--
Manifest file generated by I4GL to EGL Conversion Utility
Project Name :I4gldemoSharedLibrary
Generated on :Fri Jan 28 14:01:36 CST 2005

-

<!--DTD for Manifest file-->
<IDOCTYPE manifest [
<!ELEMENT manifest (package)>
<IATTLIST manifest project CDATA #REQUIRED>

E-18 IBM Informix 4GL to EGL Conversion Utility User’s Guide

<IATTLIST manifest type CDATA #FIXED "Tibrary">
<!ELEMENT package (rectypex, variablesx,
functionx,cfunc*,cursorx,
preparedStatements*)>
<IATTLIST package name CDATA #REQUIRED>
<IELEMENT function (parameters*,return*)>
<IATTLIST function name CDATA #REQUIRED>
<IATTLIST function package CDATA #IMPLIED>
<IATTLIST function library CDATA #REQUIRED>
<IATTLIST function type CDATA #REQUIRED>
<!ELEMENT parameter EMPTY>
<IATTLIST parameter name CDATA #REQUIRED>
<IATTLIST parameter egltype CDATA #REQUIRED>
<IATTLIST parameter fgltype CDATA #IMPLIED>
<IATTLIST parameter size CDATA #IMPLIED>
<IATTLIST parameter precision CDATA #IMPLIED>
<IATTLIST parameter scale CDATA #IMPLIED>
<IATTLIST parameter start CDATA #IMPLIED>
<IATTLIST parameter end CDATA #IMPLIED>
<IATTLIST parameter isrectype (t|f) "f">
<IATTLIST parameter library CDATA #REQUIRED>
<!ELEMENT return EMPTY>
<IATTLIST return name CDATA #REQUIRED>
<IATTLIST return egltype CDATA #REQUIRED>
<IATTLIST return fgltype CDATA #IMPLIED>
<IATTLIST return size CDATA #IMPLIED>
<IATTLIST return precision CDATA #IMPLIED>
<IATTLIST return scale CDATA #IMPLIED>
<IATTLIST return start CDATA #IMPLIED>
<IATTLIST return end CDATA #IMPLIED>
<IATTLIST return isrectype (t|f) "f" >
<IATTLIST return library CDATA #REQUIRED>
<!ELEMENT cfunc (dependentPackage*) >
<IATTLIST cfunc name CDATA #REQUIRED>
<IATTLIST cfunc package CDATA #REQUIRED>
<IATTLIST cfunc library CDATA #REQUIRED>
<IATTLIST cfunc argcount CDATA #REQUIRED>
<IATTLIST cfunc retcount CDATA #REQUIRED>
<!ELEMENT dependentPackage EMPTY>
<IATTLIST dependentPackage package CDATA #REQUIRED>
<!ELEMENT cursor EMPTY>
<IATTLIST cursor name CDATA #REQUIRED>
<IATTLIST cursor ishold (t|f) "f" >
<IATTLIST cursor isscrolling (t|f) "f" >
<IATTLIST cursor library CDATA #REQUIRED>
<!ELEMENT variables (variablex)>
<!ELEMENT variable EMPTY>
<IATTLIST variable name CDATA #REQUIRED>
<IATTLIST variable egltype CDATA #REQUIRED>
<IATTLIST variable fgltype CDATA #IMPLIED>
<IATTLIST variable size CDATA #IMPLIED>
<IATTLIST variable precision CDATA #IMPLIED>
<IATTLIST variable scale CDATA #IMPLIED>
<IATTLIST variable start CDATA #IMPLIED>
<IATTLIST variable end CDATA #IMPLIED>
<IATTLIST variable isrectype (t|f) "f" >
<IATTLIST variable library CDATA #REQUIRED>
<IELEMENT rectype (field*)>
<IATTLIST rectype name CDATA #REQUIRED>
<IATTLIST rectype Tibrary CDATA #REQUIRED>
<!ELEMENT field EMPTY>
<IATTLIST field name CDATA #REQUIRED>
<IATTLIST field egltype CDATA #REQUIRED>
<IATTLIST field fgltype CDATA #IMPLIED>
<IATTLIST field size CDATA #IMPLIED>
<IATTLIST field precision CDATA #IMPLIED>
<IATTLIST field scale CDATA #IMPLIED>

Appendix E. Manifest File Examples

E-19

<IATTLIST field start CDATA #IMPLIED>

<IATTLIST field end CDATA #IMPLIED>

<IATTLIST field isrectype (t|f) "f" >

<IATTLIST field library CDATA #REQUIRED>
<!ELEMENT preparedStatements (statementx)>
<!ELEMENT statement EMPTY>

<IATTLIST statement name CDATA #REQUIRED>

<IATTLIST statement Tibrary CDATA #REQUIRED>
1>

<manifest project="I4gldemoSharedLibrary" type="Tlibrary" >
<package name="I4gldemoSharedLibrary">
<!--Record Declarations-->
<rectype name="recordtype_d4_orders_invoice_x_invoice"
library="d4 orders">
<field name="order_num" Tibrary="d4_orders" egltype="int"
fgltype="serial" isrectype="f" />
<field name="order_date" library="d4 orders" egltype="date"
fgltype="date" isrectype="f" />
<field name="ship_instruct" Tibrary="d4 orders"
egltype="unicode(40)"
fgltype="char" size="40" isrectype="f" />
<field name="backlog" library="d4 orders" egltype="unicode(1)"
fgltype="char" size="1" isrectype="f" />
<field name="po_num" library="d4 orders" egltype="unicode(10)"
fgltype="char" size="10" isrectype="f" />
<field name="ship_date" Tibrary="d4 orders" egltype="date"
fgltype="date" isrectype="f" />
<field name="ship_weight" library="d4 orders"
egltype="decimal(8,2)" fgltype="decimal" precision="8"
scale="2" isrectype="f" />
<field name="ship_charge" library="d4 orders"
egltype="money(6,2)" fgltype="money" precision="6"
scale="2" isrectype="f" />
<field name="item_num" Tibrary="d4 orders" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="stock_num" Tibrary="d4_orders" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="manu_code" library="d4 orders" egltype="unicode(3)"
fgltype="char" size="3" isrectype="f" />
<field name="quantity" Tibrary="d4 orders" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="total price" library="d4 orders" egltype="money(8,2)"
fgltype="money" precision="8" scale="2" isrectype="f" />
<field name="description" library="d4 orders" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="unit_price" library="d4 orders" egltype="money(6,2)"
fgltype="money" precision="6" scale="2" isrectype="f" />
<field name="unit" library="d4 orders" egltype="unicode(4)"
fgltype="char" size="4" isrectype="f" />
<field name="unit_descr" library="d4 orders" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="manu_name" library="d4 orders" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
</rectype>
<rectype name="recordtype_d4_orders_x" library="d4_orders">
<field name="order_num" Tibrary="d4 orders" egltype="int"
fgltype="serial" isrectype="f" />
<field name="order_date" library="d4 orders" egltype="date"
fgltype="date" isrectype="f" />
<field name="ship_instruct" library="d4 orders"
egltype="unicode(40)" fgltype="char" size="40" isrectype="f" />
<field name="backlog" library="d4 orders" egltype="unicode(1)"
fgltype="char" size="1" isrectype="f" />
<field name="po_num" library="d4 orders" egltype="unicode(10)"
fgltype="char" size="10" isrectype="f" />
<field name="ship_date" Tibrary="d4 orders" egltype="date"

E-20 IBM Informix 4GL to EGL Conversion Utility User’s Guide

fgltype="date" isrectype="f" />
<field name="ship_weight" library="d4 orders" egltype="decimal(8,2)"
fgltype="decimal" precision="8" scale="2" isrectype="f" />
<field name="ship_charge" library="d4 orders" egltype="money(6,2)"
fgltype="money" precision="6" scale="2" isrectype="f" />
<field name="item_num" Tibrary="d4 orders" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="stock num" Tibrary="d4 orders" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="manu_code" library="d4 orders" egltype="unicode(3)"
fgltype="char" size="3" isrectype="f" />
<field name="quantity" Tibrary="d4 orders" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="total price" library="d4 orders" egltype="money(8,2)"
fgltype="money" precision="8" scale="2" isrectype="f" />
<field name="description" library="d4 orders" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="unit_price" library="d4 orders" egltype="money(6,2)"
fgltype="money" precision="6" scale="2" isrectype="f" />
<field name="unit" library="d4 orders" egltype="unicode(4)"
fgltype="char" size="4" isrectype="f" />
<field name="unit_descr" library="d4 orders" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="manu_name" library="d4 orders" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
</rectype>
<rectype name="recordtype_d4 report_print_ar_r" library="d4 report">
<field name="customer_num" Tlibrary="d4 report" egltype="int"
fgltype="serial" isrectype="f" />
<field name="fname" library="d4 report" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="Tname" library="d4 report" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="company" library="d4 report" egltype="unicode(20)"
fgltype="char" size="20" isrectype="f" />
<field name="order_num" Tibrary="d4 report" egltype="int"
fgltype="serial" isrectype="f" />
<field name="order date" library="d4 report" egltype="date"
fgltype="date" isrectype="f" />
<field name="ship_date" Tibrary="d4 report" egltype="date"
fgltype="date" isrectype="f" />
<field name="paid_date" Tibrary="d4 report" egltype="date"
fgltype="date" isrectype="f" />
<field name="total_price" library="d4 report" egltype="money(8,2)"
fgltype="money" precision="8" scale="2" isrectype="f" />
</rectype>
<rectype name="recordtype_d4 report_r" library="d4 report">
<field name="customer_num" Tlibrary="d4 report" egltype="int"
fgltype="serial" isrectype="f" />
<field name="fname" library="d4 report" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="Tname" 1ibrary="d4 report" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="company" Tibrary="d4 report" egltype="unicode(20)"
fgltype="char" size="20" isrectype="f" />
<field name="order_num" Tibrary="d4 report" egltype="int"
fgltype="serial" isrectype="f" />
<field name="order_date" library="d4 report" egltype="date"
fgltype="date" isrectype="f" />
<field name="ship_date" Tibrary="d4 report" egltype="date"
fgltype="date" isrectype="f" />
<field name="paid_date" Tibrary="d4 report" egltype="date"
fgltype="date" isrectype="f" />
<field name="total price" library="d4 report" egltype="money(8,2)"
fgltype="money" precision="8" scale="2" isrectype="f" />
</rectype>
<rectype name="recordtype p_items" library="d4 globals">

Appendix E. Manifest File Examples

E-21

<field name="item num" Tibrary="d4 globals" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="stock num" Tibrary="d4 globals" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="manu_code" Tibrary="d4 globals" egltype="unicode(3)"
fgltype="char" size="3" isrectype="f" />
<field name="description" library="d4 globals" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="quantity" Tibrary="d4_globals" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="unit_price" library="d4 globals" egltype="money(6,2)"
fgltype="money" precision="6" scale="2" isrectype="f" />
<field name="total price" library="d4 globals" egltype="money(8,2)"
fgltype="money" precision="8" scale="2" isrectype="f" />
</rectype>
<rectype name="recordtype_p_orders" library="d4_globals">
<field name="order_num" Tibrary="d4 globals" egltype="int"
fgltype="serial" isrectype="f" />
<field name="order_date" library="d4 globals" egltype="date"
fgltype="date" isrectype="f" />
<field name="po_num" Tibrary="d4 globals" egltype="unicode(10)"
fgltype="char" size="10" isrectype="f" />
<field name="ship_instruct" library="d4_globals"
egltype="unicode(40)" fgltype="char" size="40" isrectype="f" />
</rectype>
<rectype name="recordtype _p_stock" library="d4 globals">
<field name="stock_num" Tibrary="d4 globals" egltype="smallint"
fgltype="smallint" isrectype="f" />
<field name="manu_code" library="d4 globals" egltype="unicode(3)"
fgltype="char" size="3" isrectype="f" />
<field name="manu_name" library="d4 globals" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="description" library="d4 globals" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
<field name="unit_price" library="d4 globals" egltype="money(6,2)"
fgltype="money" precision="6" scale="2" isrectype="f" />
<field name="unit_descr" library="d4_globals" egltype="unicode(15)"
fgltype="char" size="15" isrectype="f" />
</rectype>

<!l--GTobal Variable Declarations-->
<variables>

<variable name="p_customer" Tibrary="d4 globals"
egltype="rec_like_customer" isrectype="t" />

<variable name="p_items" library="d4 globals"
egltype="recordtype p_items" isrectype="t" />

<variable name="p_orders" library="d4_globals"
egltype="recordtype p orders" isrectype="t" />

<variable name="p_state" library="d4 globals"
egltype="rec_like_state" isrectype="t" />

<variable name="p_stock" library="d4 globals"
egltype="recordtype_p_stock" isrectype="t" />

<variable name="print_option" library="d4 globals"
egltype="UNICODE(1)" fgltype="CHAR(1)" size="1"
isrectype="f" />

<variable name="state_cnt" library="d4_globals" egltype="INT"
fgltype="INTEGER" isrectype="f" />

<variable name="stock_cnt" Tibrary="d4_globals" egltype="INT"
fgltype="INTEGER" isrectype="f" />
</variables>

<!--Function Declarations-->
<function name="add_customer" package="i4gldemo" library="d4 cust"
type="void" >

<parameter name="repeat" library="d4 cust" egltype="INT"
fgltype="INTEGER" size="" start="" end="" precision="" scale=""

E-22 IBM Informix 4GL to EGL Conversion Utility User’s Guide

isrectype="f" />
</function>

<function name="add_order" package="i4gldemo" Tibrary="d4 orders"
type="void" >
</function>

<function name="add_stock" package="i4gldemo" Tibrary="d4 stock"
type="void" >
</function>

<function name="bang" package="i4gldemo" Tibrary="d4 main"
type="void" >
</function>

<function name="clear_menu" package="i4gldemo" library="d4 main"
type="void" >
</function>

<function name="customer" package="i4gldemo" Tibrary="d4 cust"
type="void" >
</function>

<function name="customer_help" package="i4gldemo" 1
ibrary="d4 cust"

type="void" >

</function>

<function name="delete_customer" package="i4gldemo"
library="d4_cust" type="void" >
</function>

<function name="delete_order" package="i4gldemo"
library="d4_orders" type="void" >
</function>

<function name="delete_stock" package="i4gldemo"
Tibrary="d4 stock"
type="void" > </function>

<function name="demo" package="i4gldemo"
library="d4_demo" type="void" >
</function>

<function name="get_item" package="i4gldemo" library="d4 orders"
type="void" >
</function>

<function name="get_order" package="i4gldemo" library="d4 orders"
type="void" >
</function>

<function name="get_ states" package="i4gldemo" library="d4 main"
type="void" >
</function>

<function name="get stock" package="i4gldemo" Tibrary="d4 orders"
type="void" >

<return name="stock_num" egltype="smallint"
Tibrary="d4_globals" fgltype="smallint" size="" start="" end=""
precision="" scale="" isrectype="f" />

<return name="manu_code" egltype="unicode(3)"
library="d4_globals" fgltype="char" size="3" start=""
end="" precision="" scale="" isrectype="f" />

<return name="description" egltype="unicode(15)"
Tibrary="d4 globals" fgltype="char" size="15" start=""
end="" precision=""scale="" isrectype="f" />

Appendix E. Manifest File Examples

E-23

<return name="unit_price" egltype="money(6,2)"
library="d4_globals" fgltype="money" size="" start=""
end="" precision="6" scale="2" isrectype="f" />
</function>

<function name="get stocks" package="i4gldemo" library="d4 main"
type="void" >
</function>

<function name="input_cust" package="i4gldemo" library="d4 cust"
type="Int" >

<return name="" egltype="Int" Tibrary="" fgltype="Int" size="1"
start="TRUE" end="TRUE" precision="" scale="" isrectype="f" />
</function>

<function name="insert_items" package="i4gldemo" library="d4_orders"
type="Int" >

<return name="" egltype="Int" Tibrary="" fgltype="Int" size="1"
start="TRUE" end="TRUE" precision="" scale="" isrectype="f" />
</function>

<function name="invoice" package="i4gldemo" library="d4 orders"
type="void" >

<parameter name="file name" Tibrary="d4 orders"
egltype="UNICODE(20)" fgltype="CHAR(20)" size="20" start=""
end="" precision="" scale="" isrectype="f" />
</function>

<function name="item_total" package="i4gldemo" library="d4 orders"
type="void" >
</function>

<function name="MAIN" package="i4gldemo" Tibrary="d4 main"
type="void" >
</function>

<function name="mess" package="i4gldemo" Tibrary="d4 _main"
type="void" > <parameter name="str" library="d4 main"
egltype="UNICODE(80)" fgltype="CHAR(80)" size="80" start=""
end="" precision="" scale="" isrectype="f" />

<parameter name="mrow" Tibrary="d4 main" egltype="SMALLINT"
fgltype="SMALLINT" size="" start="" end="" precision=""
scale="" isrectype="f" />
</function>

<function name="order_total" package="i4gldemo" library="d4 orders"
type="void" >
</function>

<function name="orders" package="i4gldemo" library="d4 orders"
type="void" >
</function>

<function name="print_ar" package="i4gldemo" library="d4 report"
type="void" >
</function>

<function name="print_backlog" package="i4gldemo" Tibrary="d4 report"
type="void" >
</function>

<function name="print_labels" package="i4gldemo" T1ibrary="d4 report"
type="void" >
</function>

<function name="print_stock" package="i4gldemo" library="d4 report"
type="void" >

E-24 IBM Informix 4GL to EGL Conversion Utility User’s Guide

</function>

<function name="query customer" package="i4gldemo" Tibrary="d4 cust"
type="Int" >

<parameter name="mrow" Tibrary="d4 cust" egltype="SMALLINT"
fgltype="SMALLINT" size="" start="" end="" precision="" scale=""
isrectype="f" />

<return name="" egltype="Int" Tibrary="" fgltype="Int" size="1"
start="TRUE" end="TRUE" precision="" scale="" isrectype="f" />
</function>

<function name="query_stock" package="i4gldemo" library="d4 stock"
type="void" >
</function>

<function name="renum_items" package="i4gldemo" library="d4 orders"
type="void" >
</function>

<function name="REPORT" package="i4gldemo" library="d4 report"
type="void" >
<parameter name="r" Tibrary="d4 report" egltype="recordtype_d4 report r"

fgltype="RECORD customer_num LIKE customer.customer_num, fname LIKE

customer.fname, 1name LIKE customer.lname,

company LIKE customer.company, order_num LIKE orders.order_num,
order_date LIKE orders.order _date, ship_date LIKE orders.ship_date,
paid_date LIKE orders.paid_date,

total_price LIKE items.total_price END RECORD" size="" start=""
end="" precision="" scale="" isrectype="t" />
</function>

<function name="reports" package="i4gldemo" library="d4 report"
type="void" >
</function>

<function name="ring_menu" package="i4gldemo" Tibrary="d4 main"
type="void" >
</function>

<function name="statehelp" package="i4gldemo" library="d4 cust"
type="void" >
</function>

<function name="stock" package="i4gldemo" Tibrary="d4 stock"
type="void" >
</function>

<function name="unring_menu" package="i4gldemo" library="d4 main"
type="void" >
</function>

<function name="update_customer" package="i4gldemo"
Tibrary="d4_cust" type="void" > </function>

<function name="update_options" package="i4gldemo" Tibrary="d4 report"
type="void" >
</function>

<function name="update_order" package="i4gldemo" library="d4 orders"
type="void" >
</function>

<function name="update_stock" package="i4gldemo" library="d4_stock"
type="void" >

</function>

</package>

<forms>

Appendix E. Manifest File Examples

E-25

E-26

<form
<form
<form
<form
<form
<form
<form
<form
<form
<form
<form
</forms>

name="custForm.eg1" package="1i4gldemo.forms" />
name="custcurForm.eg1" package="i4gldemo.forms" />
name="custformForm.eg1" package="i4gldemo.forms" />
name="customerForm.eg1" package="i4gldemo.forms" />
name="ordcurForm.eg1" package="1i4gldemo.forms" />
name="orderForm.eg1" package="i4gldemo.forms" />
name="orderformForm.eg1" package="i4gldemo.forms" />
name="p_ordcurForm.eg1" package="i4gldemo.forms" />
name="state_listForm.egl" package="i4gldemo.forms" />
name="stocklForm.egl" package="1i4gldemo.forms" />
name="stock_selForm.egl" package="i4gldemo.forms" />

</manifest>

IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix F. DTD Examples

In This Appendix

This appendix provides examples of the DTD used for configuration and manifest

files for Database Schema Extraction, Shared Library, and Application projects.

DTD Example Overview

The DTD used in these examples is specific to the Informix 4GL to EGL
Conversion Utility Version 7.1. These examples are located in the following

directory: plugininstallation/etc/dtd.

DTD examples are provided for the following:

* Configuration file

— Schema

— Library

— Application
e Manifest file
— Schema

— Library

— Application

Configuration File

Database Schema Extraction Project

In the following example, the Artifacts Directory specified by element artifactsdir

is optional. If no value is provided, the directory will default to the

egldir/ConversionArtifacts directory. In addition, the client_locale and db_locale
attributes are Informix-specific locales which default to English and en_US.8859-1.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT

conversion (rootdir,dbconnectionx)>

<IATTLIST conversion project CDATA #REQUIRED >
<IATTLIST conversion type CDATA #FIXED "schema" >

<!ELEMENT

rootdir (egldir,artifactsdir?)>

<!ELEMENT egldir (#PCDATA)>
<!ELEMENT artifactsdir (#PCDATA)>

<!ELEMENT

dbconnection (database,server,host,port,user,password)+>

<IATTLIST dbconnection extractSystemTables (yes|no) "no" >
<IATTLIST dbconnection client_locale CDATA #IMPLIED >
<!IATTLIST dbconnection db_locale CDATA #IMPLIED >

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

© Copyright IBM Corp. 2005, 2012

database (#PCDATA)>
server (#PCDATA)>
host (#PCDATA)>
port (#PCDATA)>
user (#PCDATA)>
password ANY>

F-1

Shared Library Project

In the following example, the locale attribute used in the conversion and msgfiles
elements both default to en_US.8859-1. If the Library Project is dependent on
database schema then the defaultserver attribute should contain the name of the
server as specified in the dependent manifest file given in element manifestfiles of
type schema.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT conversion (rootdir, manifestfilesx, fglfiles?,
formfiles?, msgfiles*,fontconfigfile?)>
<!ATTLIST conversion project CDATA #REQUIRED >
<!ATTLIST conversion type CDATA #FIXED "Tibrary" >
<!ATTLIST conversion locale CDATA #IMPLIED >
<IATTLIST conversion cursor (local | global) #IMPLIED>
<IATTLIST conversion defaultserver CDATA #IMPLIED>

<!IELEMENT rootdir (fgldir?,egldir,artifactsdir?)>
<!ELEMENT fgldir (#PCDATA)>

<!ELEMENT egldir (#PCDATA)>

<!ELEMENT artifactsdir (#PCDATA)>

<!ELEMENT manifestfiles (file)+>
<IATTLIST manifestfiles type (schema | library) #REQUIRED>

<IELEMENT fglfiles (file)+>

<!ELEMENT formfiles (file)+>

<!ELEMENT fontconfigfile (file)>
<!ELEMENT file (#PCDATA)>

<!ELEMENT msgfiles (file)+>
<IATTLIST msgfiles locale CDATA #IMPLIED >
<!ATTLIST msgfiles encoding CDATA #IMPLIED >

Application Project

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT conversion (rootdir, manifestfilesx, fglfiles?,
formfiles?, msgfiles*,fontconfigfile?)>
<!ATTLIST conversion project CDATA #REQUIRED >
<IATTLIST conversion type CDATA #FIXED "application" >
<IATTLIST conversion locale CDATA #IMPLIED >
<IATTLIST conversion cursor (local | global) #IMPLIED>
<IATTLIST conversion defaultserver CDATA #IMPLIED>

<!ELEMENT rootdir (fgldir?,egldir,artifactsdir?)>
<!ELEMENT fgldir (#PCDATA)>

<!ELEMENT egldir (#PCDATA)>

<!ELEMENT artifactsdir (#PCDATA)>

<!ELEMENT manifestfiles (file)+>
<IATTLIST manifestfiles type (schema | library) #REQUIRED>
<IELEMENT fglfiles (file)+>
<!ELEMENT formfiles (file)+>
<!ELEMENT fontconfigfile (file)>
<IELEMENT file (#PCDATA)>

<!ELEMENT msgfiles (file)+>

<IATTLIST msgfiles locale CDATA #IMPLIED >
<IATTLIST msgfiles encoding CDATA #IMPLIED >

F-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Manifest File

Database Schema Extraction Project

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE manifest [
<!ELEMENT manifest (packagex)>
<IATTLIST manifest project CDATA #REQUIRED >
<IATTLIST manifest type CDATA #FIXED "schema'>
<IATTLIST manifest path CDATA #REQUIRED>
<IATTLIST manifest version CDATA #REQUIRED >
<!ELEMENT package (tablex)>
<IATTLIST package
name CDATA #REQUIRED
server CDATA #REQUIRED
database CDATA #REQUIRED
mode (ANSI) #IMPLIED
isolationlLevel CDATA #REQUIRED
commitControl CDATA #REQUIRED>
<!ELEMENT table (columnx)>
<IATTLIST table
name CDATA #REQUIRED
egltype CDATA #REQUIRED
owner CDATA #IMPLIED>
<!ELEMENT column EMPTY>
<IATTLIST column
name CDATA #REQUIRED
dataitem CDATA #REQUIRED
fgltype CDATA #REQUIRED
egltype CDATA #REQUIRED
size CDATA #IMPLIED
start CDATA #IMPLIED
end CDATA #IMPLIED
precision CDATA #IMPLIED
scale CDATA #IMPLIED>

Library Project

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT manifest (package,forms*)>
<IATTLIST manifest project CDATA #REQUIRED>
<IATTLIST manifest type CDATA #FIXED "Tibrary">

<IELEMENT package (rectypex, variables* ,functionx,
cfunc*,cursor*,preparedStatements=)>
<!ATTLIST package name CDATA #REQUIRED>

<!ELEMENT function (parameterx,returnx)>
<!IATTLIST function name CDATA #REQUIRED>
<IATTLIST function Tibrary CDATA #REQUIRED>
<IATTLIST function type CDATA #REQUIRED>

<!ELEMENT parameter EMPTY>
<IATTLIST parameter name CDATA #REQUIRED>
<IATTLIST parameter egltype CDATA #REQUIRED>
<!ATTLIST parameter fgltype CDATA #IMPLIED>
<IATTLIST parameter size CDATA #IMPLIED>
<IATTLIST parameter precision CDATA #IMPLIED>
<IATTLIST parameter scale CDATA #IMPLIED>
<IATTLIST parameter start CDATA #IMPLIED>
<IATTLIST parameter end CDATA #IMPLIED>
<IATTLIST parameter isrectype (t|f) "f">
<IATTLIST parameter Tibrary CDATA #REQUIRED>

Appendix E. DTD Examples

<!ELEMENT return EMPTY>

<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<!ATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST

return
return
return
return
return
return
return
return
return
return

name CDATA #REQUIRED>
egltype CDATA #REQUIRED>
fgltype CDATA #IMPLIED>
size CDATA #IMPLIED>
precision CDATA #IMPLIED>
scale CDATA #IMPLIED>
start CDATA #IMPLIED>

end CDATA #IMPLIED>
isrectype (t|f) "f" >
library CDATA #REQUIRED>

<!ELEMENT cfunc EMPTY>
<!ATTLIST cfunc name CDATA #REQUIRED>
<IATTLIST cfunc library CDATA #REQUIRED>
<IATTLIST cfunc argcount CDATA #REQUIRED>
<!ATTLIST cfunc retcount CDATA #REQUIRED>

<!ELEMENT cursor EMPTY>

<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST

cursor
cursor
cursor
cursor

<IELEMENT variables

name CDATA #REQUIRED>
ishold (t|f) "f" >
isscrolling (t|f) "f" >
library CDATA #REQUIRED>

(variablex)>

<!ELEMENT variable EMPTY>

<IATTLIST
<IATTLIST
<!ATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<!ATTLIST
<IATTLIST

variab
variab
variab
variab
variab
variab
variab
variab
variab
variab
variab

le name CDATA #REQUIRED>

le egltype CDATA #REQUIRED>
le fgltype CDATA #IMPLIED>
le size CDATA #IMPLIED>

le precision CDATA #IMPLIED>
le scale CDATA #IMPLIED>

le start CDATA #IMPLIED>

le end CDATA #IMPLIED>

Te isrectype (t|f) "f" >

le Tibrary CDATA #REQUIRED>

le numsubscripts CDATA #IMPLIED>

<!ELEMENT rectype (field*)>
<!ATTLIST rectype name CDATA #REQUIRED>
<IATTLIST rectype library CDATA #REQUIRED>

<!IELEMENT field EMPTY>

<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<!ATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST

field
field
field
field
field
field
field
field
field
field
field

name CDATA #REQUIRED>
egltype CDATA #REQUIRED>
fgltype CDATA #IMPLIED>
size CDATA #IMPLIED>
precision CDATA #IMPLIED>
scale CDATA #IMPLIED>
start CDATA #IMPLIED>

end CDATA #IMPLIED>
isrectype (t|f) "f" >
library CDATA #REQUIRED>
numsubscripts CDATA #IMPLIED>

<!ELEMENT preparedStatements (statementx)>
<!ELEMENT statement EMPTY>
<IATTLIST statement name CDATA #REQUIRED>
<IATTLIST statement Tibrary CDATA #REQUIRED>

<!ELEMENT forms (formx)>

F-4 1BM Informix 4GL to EGL Conversion Utility User’s Guide

<!ELEMENT form EMPTY>
<!ATTLIST form name CDATA #REQUIRED>
<IATTLIST form package CDATA #REQUIRED>

Application Project

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT manifest (package, forms*)>
<IATTLIST manifest project CDATA #REQUIRED>
<IATTLIST manifest type CDATA #FIXED "application">

<!ELEMENT package (rectype*, variablesx ,functionx,
cfunc*,cursor*,preparedStatements=*)>
<IATTLIST package name CDATA #REQUIRED>

<!ELEMENT function (parameterx,returnx)>
<IATTLIST function name CDATA #REQUIRED>
<IATTLIST function Tibrary CDATA #REQUIRED>
<IATTLIST function type CDATA #REQUIRED>

<IELEMENT parameter EMPTY>
<IATTLIST parameter name CDATA #REQUIRED>
<!ATTLIST parameter egltype CDATA #REQUIRED>
<!ATTLIST parameter fgltype CDATA #IMPLIED>
<IATTLIST parameter size CDATA #IMPLIED>
<IATTLIST parameter precision CDATA #IMPLIED>
<IATTLIST parameter scale CDATA #IMPLIED>
<IATTLIST parameter start CDATA #IMPLIED>
<IATTLIST parameter end CDATA #IMPLIED>
<IATTLIST parameter isrectype (t|f) "f">
<IATTLIST parameter Tibrary CDATA #REQUIRED>

<!ELEMENT return EMPTY>
<IATTLIST return name CDATA #REQUIRED>
<IATTLIST return egltype CDATA #REQUIRED>
<IATTLIST return fgltype CDATA #IMPLIED>
<IATTLIST return size CDATA #IMPLIED>
<IATTLIST return precision CDATA #IMPLIED>
<IATTLIST return scale CDATA #IMPLIED>
<!ATTLIST return start CDATA #IMPLIED>
<IATTLIST return end CDATA #IMPLIED>
<IATTLIST return isrectype (t|f) "f" >
<IATTLIST return Tibrary CDATA #REQUIRED>

<!ELEMENT cfunc EMPTY>
<IATTLIST cfunc name CDATA #REQUIRED>
<IATTLIST cfunc library CDATA #REQUIRED>
<IATTLIST cfunc argcount CDATA #REQUIRED>
<IATTLIST cfunc retcount CDATA #REQUIRED>

<!ELEMENT cursor EMPTY>
<!ATTLIST cursor name CDATA #REQUIRED>
<IATTLIST cursor ishold (t|f) "f" >
<IATTLIST cursor isscrolling (t|f) "f" >
<IATTLIST cursor library CDATA #REQUIRED>

<!ELEMENT variables (variablex)>

<!ELEMENT variable EMPTY>
<IATTLIST variable name CDATA #REQUIRED>

Appendix E. DTD Examples

F-6

<!ATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<!ATTLIST
<IATTLIST
<IATTLIST

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

egltype CDATA #REQUIRED>
fgltype CDATA #IMPLIED>
size CDATA #IMPLIED>
precision CDATA #IMPLIED>
scale CDATA #IMPLIED>
start CDATA #IMPLIED>

end CDATA #IMPLIED>
isrectype (t|f) "f" >
Tibrary CDATA #REQUIRED>

<!ELEMENT rectype (field*)>
<IATTLIST rectype name CDATA #REQUIRED>
<IATTLIST rectype Tibrary CDATA #REQUIRED>

<!ELEMENT field EMPTY>

<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<!ATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<!ATTLIST
<IATTLIST

field
field
field
field
field
field
field
field
field
field
field

name CDATA #REQUIRED>
egltype CDATA #REQUIRED>
fgltype CDATA #IMPLIED>
size CDATA #IMPLIED>
precision CDATA #IMPLIED>
scale CDATA #IMPLIED>
start CDATA #IMPLIED>

end CDATA #IMPLIED>
isrectype (t|f) "f" >
library CDATA #REQUIRED>
numsubscripts CDATA #IMPLIED>

<!ELEMENT preparedStatements (statementx)>
<!ELEMENT statement EMPTY>
<IATTLIST statement name CDATA #REQUIRED>
<IATTLIST statement library CDATA #REQUIRED>

<IELEMENT forms (formx)>

<!ELEMENT form EMPTY>

<!ATTLIST form name CDATA #REQUIRED>
<IATTLIST form package CDATA #REQUIRED>

IBM Informix 4GL to EGL Conversion Utility User’s Guide

numsubscripts CDATA #IMPLIED>

Appendix G. Conversion Log Examples

In This Appendix

This appendix provides examples of conversion logs in .txt format.

Application Project: PASSED Example

Project Status : PASSED

Conversion date : Wed Feb 02 22:22:53 CST 2005
User : jdoe

Host : boom

0S version : Windows XP

Project Details:

Project Name : idgldemo

Conversion Type : application

4GL root directory : C:\i4g1\idgldemo

EGL destination directory : C:\workspace\idgldemo

Conversion artifacts directory : C:\temp\idgldemo\ConversionArtifacts
Configuration file : C:\i4gl\config\idgldemoConfig.xml
Default Informix server instance: myserver

Informix cursor scope : local

Conversion Artifacts:

Manifest File Generated : C:\temp\idgldemo\ConversionArtifacts\manifest\
idgldemoApplicationManifest.xml

EGL Build descriptor file: C:\temp\idgldemo\i4gldemo\EGLSource\i4gldemo.eglbld

I14GL Source File Conversion Summary:
Total number of I4GL files given: 19
Total number of files converted successfully: 19

d4_cust.4gl -> PASSED
d4_demo.4g1 -> PASSED

d4 globals.4gl -> PASSED
d4_Toad.4g1 -> PASSED
d4_main.4gl -> PASSED
d4_orders.4gl -> PASSED
d4_report.4gl -> PASSED
d4_stock.4g1l -> PASSED
cust.per -> PASSED
custcur.per -> PASSED
custform.per -> PASSED
customer.per -> PASSED
ordcur.per -> PASSED
order.per -> PASSED
orderform.per -> PASSED
p_ordcur.per -> PASSED
state Tist.per -> PASSED
stockl.per -> PASSED
stock_sel.per -> PASSED

© Copyright IBM Corp. 2005, 2012

G-2

Source File Conversion Details:

4GL source
EGL source
Status

4GL source
EGL source
Status

4GL source
EGL source
Status

4GL source
EGL source

Status

4GL source
EGL source

Status

4GL source
EGL source

Status

4GL source
EGL source

Statu

4GL source
EGL source
Status

4GL source
EGL source
Status

4GL source
EGL source
Status

4GL source
EGL source
Status

4GL source
EGL source
Status

4GL source
EGL source
Status

4GL source
EGL source
Status

IBM Informix 4GL to EGL Conversion Utility User’s Guide

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

file given
file generated

: C:\idg1\idgldemo\fgl\d4 cust.4qgl
: C:\workspace\i4gldemo\d4_cust.egl
. PASSED

: C:\i4g1\idgldemo\fg1\d4_demo.4gl
: C:\workspace\i4gldemo\d4_demo.eg]
: PASSED

: C:\i4g1\idgldemo\fgli\d4_globals.4g]l
: C:\workspace\i4gldemo\d4_globals.egl
: PASSED

: C:\idg1\i4gldemo\fgl\d4 load.4ql

: C:\workspace\idgldemo\d4 Toad.eg]

: C:\workspace\idgldemo\d4 Toad program.eg]
: PASSED

: C:\i4g1\i4gldemo\fgi\d4_main.4g]
: C:\workspace\i4gldemo\d4 main.egl

: C:\workspace\i4gldemo\d4_main_program.egl
: PASSED

: C:\i4g1\i4gldemo\fg1\d4_orders.4gl

: C:\workspace\i4gldemo\d4_orders.egl

: C:\workspace\i4gldemo\r_invoice_handler.egl
: C:\workspace\i4gldemo\r_invoice XML.jrxml

: PASSED

: C:\i4gl\idgldemo\fgi\d4_report.4gl

: C:\workspace\i4dgldemo\d4 report.egl

: C:\workspace\i4gldemo\labels_report_handler.egl
: C:\workspace\i4gldemo\labels_report XML.jrxml

: C:\workspace\idgldemo\ar_report_handler.egl

: C:\workspace\i4gldemo\ar_report XML.jrxml

: PASSED

: C:\i4g1\i4gldemo\fg1\d4_stock.4g]
: C:\workspace\i4gldemo\d4_stock.egl
: PASSED

: C:\i4gl\idgldemo\fgl\forms\cust.per
: C:\workspace\idgldemo\forms\custForm.egl
: PASSED

: C:\i4gl\idgldemo\fgl\forms\custcur.per
: C:\workspace\i4gldemo\forms\custcurForm.egl
. PASSED

: C:\idgl\i4gldemo\fgl\forms\custform.per
: C:\workspace\i4gldemo\forms\custformForm.egl
. PASSED

: C:\idgl\idgldemo\fgl\forms\customer.per
: C:\workspace\idgldemo\forms\customerForm.eg]l
: PASSED

: C:\i4g1\idgldemo\fgl\forms\ordcur.per
: C:\workspace\idgldemo\forms\ordcurForm.egl
. PASSED

: C:\idgl\idgldemo\fgl\forms\order.per
: C:\workspace\i4gldemo\forms\orderForm.egl
: PASSED

4GL source file given : C:\i4g1\idgldemo\fgl\forms\orderform.per

EGL source file generated : C:\workspace\idgldemo\forms\orderformForm.egl
Status : PASSED

4GL source file given : C:\i4gl\idgldemo\fgl\forms\p_ordcur.per

EGL source file generated : C:\workspace\i4gldemo\forms\p_ordcurForm.egl
Status : PASSED

4GL source file given : C:\i4g1\idgldemo\fgl\forms\state_list.per

EGL source file generated : C:\workspace\i4gldemo\forms\state T1istForm.egl
Status : PASSED

4GL source file given : C:\idgl\idgldemo\fgl\forms\stockl.per

EGL source file generated : C:\workspace\i4gldemo\forms\stocklForm.egl
Status : PASSED

4GL source file given : C:\i4g1\i4gldemo\fgl\forms\stock sel.per

EGL source file generated : C:\workspace\i4gldemo\forms\stock_selForm.egl
Status : PASSED

Application Project: FAILED Example

Project Status . FAILED

Conversion date : Wed Feb 02 22:22:53 CST 2005
User : jdoe

Host : boom

0S version : Windows XP

Project Details:

Project Name : i4gldemo

Conversion Type : application

4GL root directory : C:\i4g1\idgldemo

EGL destination directory : C:\workspace\i4gldemo

Conversion artifacts directory : C:\temp\idgldemo\ConversionArtifacts
Configuration file : C:\i4gl\config\i4gldemoConfig.xml
Default Informix server instance : myserver

Informix cursor scope : Tocal

I4GL Source File Conversion Summary:

Total number of I4GL files given: 1
Total number of files converted successfully: 0

d4 cust.4gl -> FAILED

Source File Conversion Details:

4GL source file given : C:\i4g1\i4gldemo\fg1\d4 cust.4gl
EGL source file generated : C:\workspace\i4gldemo\d4_cust.egl
Status : FAILED

Database Schema Extraction Project: FAILED Example

Appendix G. Conversion Log Examples G-3

Conversion Status :

Project Status . FAILED

Conversion date : Thu Feb 03 11:25:33 CST 2005
User : jdoe

Host : boom

0S version : Windows XP

Project Details :

Project Name : Stores?7

Conversion Type : schema

EGL destination directory : C:\workspace\stores?
Conversion artifacts directory : C:\workspace\stores7\
ConversionArtifacts

Configuration file : C:\workspace\stores7\

convers1onArt1facts\conf1g\Stores7SchemaConf1g xml

Database Connection details:

Database : stores?7

Server : myserver

Host : boom.antartica.world.com

Port : 2005

User : jdoe

CLIENT_LOCALE : en_us.8859-1

DB_LOCALE : en_us.8859-1
Exceptions:
ERROR : Server : "myserver" Database : "stores7"

Informix JDBC Exception :
java.sql.SQLException: User (com.informix.asf.IfxASFRemoteException jdoe)'s
password is not correct for the database server.

G-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix H. EGL Build Descriptor Example

In This Appendix

This appendix provides examples of EGL build descriptor files generated by the
Conversion Utility.

EGL Build Descriptor Overview

The Conversion Utility generates a build descriptor file for each converted project.
The generated file provides values for only the properties that are relevant to
converted I4GL files.

Database Schema Extraction Project

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE EGL PUBLIC "-//IBM Corporation, Inc.//DTD EGL Build Parts
6.0//EN" n ||>
<EGL>
<BuildDescriptor
name="Stores7JavaBuildOptions"
genProject="Stores7"
genDirectory="C:\temp\Stores7\EGLSource\Stores7"
system="WIN"
J2EE="NO"
sqlCommitControl="AUTOCOMMIT"
itemsNulTable="YES"
genProperties="GLOBAL"
genDataTables="YES"
dbms="INFORMIX"
sqlValidationConnectionURL="jdbc:informix-sqli://
mymachine.loc.comp.com:2005/stores7:
INFORMIXSERVER=myserver;"
sq1JDBCDriverClass="com.informix.jdbc.IfxDriver" sqlID="jdoe"
sqlPassword="password" sql1DB="jdbc:informix-sqli://
mymachine.loc.comp.com:2005/stores7:
INFORMIXSERVER=myserver;" >
</BuildDescriptor>
</EGL>

Library or Application Project

The Conversion Utility does not have access to the user name or password values
for Library or Application projects. For these two project types, the Conversion
Utility generates a placeholder connection URL in the build descriptor file. This
connection URL must be edited before using the build file. In addition, you must
also edit the sqlID and sqlPassword values.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE EGL PUBLIC "-//IBM Corporation, Inc.//DTD EGL Build Parts
6.0//EN" "">
<EGL>
<BuildDescriptor
name="i4gldemoJavaBuildOptions"
genProject="i4gTldemo"
genDirectory="C:\temp\i4gldemo\i4gldemo\EGLSource\i4gldemo"
system="WIN"
J2EE="NO"
sqlCommitControl="AUTOCOMMIT"
itemsNullable="YES"

© Copyright IBM Corp. 2005, 2012 H-1

genProperties="GLOBAL"
genDataTables="YES"
dbms="INFORMIX"
sqlValidationConnectionURL="jdbc:informix-sqli://host:port/
database: INFORMIXSERVER=server;"
sq1JDBCDriverClass="com.informix.jdbc.IfxDriver" sqlID="user"
sqlPassword="password" sql1DB="jdbc:informix-sqli://host:port/
database:INFORMIXSERVER=server;" >
</BuildDescriptor>
</EGL>

H-2 1BM Informix 4GL to EGL Conversion Utility User’s Guide

Appendix I. EGL Reserved Words

In This Appendix

This appendix lists the EGL reserved words for Version 7.1. For the most recent list
of EGL reserved words see the EGL Reserved Words online help topics.

EGL Reserved Words

The following words are reserved in EGL:

absolute, add, all, any, as
bigInt, bin, bind, blob, boolean, by, byName, byPosition
call, case, char, clob, close, const, constructor, continue, converse, current

dataltem, dataTable, date, dbChar, decimal, decrement, delegate, delete, display,
dliCall

else, embed, end, enumeration, escape, execute, exit, extends, externallyDefined,
externalType

false, field, first, float, for, forEach, form, formGroup, forUpdate, forward,
freeSql, from, function

get, goto
handler, hex, hold

if, import, implements, in, inOut, inparent, insert, int, interface, interval, into, is,
isa

label, languageBundle, last, library, like

matches, mathlib, mbChar, money, move

new, next, nil, no, noRefresh, not, null, nullable, num, number, numc
onEvent, onException, open, openUl, otherwise, out

pacf, package, pageHandler, passing, prepare, previous, print, private, program,
psb

record, ref, relative, replace, report, return, returning, returns, rununit

scroll, self, service, serviceReferences, set, show, singleRow, smallFloat, smalllnt,
sql, sqlCondition, stack, static, string, strlib, syslib, sysvar

this, time, timeStamp, to, transaction, transfer, true, try, type
unicode, update, url, use, using, usingKeys, usingPCB
when, while, with, withinParent

yes

© Copyright IBM Corp. 2005, 2012 I-1

I-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Glossary
C

Command line conversion. A command line
equivalent to the Conversion Utility Wizard. Running
this program requires you to manually create the
configuration file and then run the e4GL script. The
command line conversion is recommended primarily
for reconversion efforts.

Configuration file. Located in the
EGLDestinationDirectory/ConversionArtifacts/
config directory, this file provides details about your
configuration.

Console User Interface (CUI). The EGL equivalent to
4GL Formes.

Conversion artifacts. The configuration, manifest, and
conversion log files generated during the conversion.

Conversion log. Located in the
EGLDestinationDirectory/ConversionArtifacts
Nlog directory and named ProjectName.log, the
conversion log identifies the conversion errors,
warnings and file disposition. This file is used to
identify how to correct conversion errors.

Conversion Utility Wizard. This wizard collects your
database schema, shared library and 14GL application
information and launches the conversion process.

ConversionArtifacts directory. Located in
EGLDestinationDirectory, this directory contains the
sub-directories for the configuration, manifest, and log
files.

E

E4GL. This is the script program for the command
line conversion of I4GL files to EGL. E4AGL activates the
I4GL2EGL Conversion Utility.

EGL. A high-level language that allows developers to
focus on business logic as they create complex business
applications for deployment in any of several
environments, including the Web. The language
simplifies database and message-queue access, as well
as the use of J2EE.

EGL package. An EGL package is a named collection
of related source parts, and is comparable to a I4GL
Project. During I14GL to EGL conversion, I4GL Project
components are converted into EGL Package parts.

EGL project. An EGL project includes zero to many
source folders, each of which includes zero to many

© Copyright IBM Corp. 2005, 2012

packages, each of which includes zero to many files.
Each file contains zero to many parts.

I4GL2EGL. The program that converts I4GL source
files into EGL source files.

Information Center. The online help that provides
detailed information about your Rational product, and
EGL. Access the information center by selecting Help >
Rational Help.

J

JasperReports. An open source reporting library
written in Java and used by EGL to produce reports.
Your I4GL reports convert to both .egl and
JasperReport .jrxml files.

M

Manifest file. Located in the
EGLDestinationDirectory/ConversionArtifacts
/manifest directory, a manifest file is generated for each
conversion stage. The database schema manifest file
contains information about all of the tables, columns
and data types of the selected database. The shared
library manifest file lists the I4GL and assumed C
function calls used in the I4GL converting project. The
application manifest file provides a list of the technical
details of the project.

R

readme.html. Located in the top directory of your
Rational product, the readme.html file contains
information on product limitations.

readme004FGL.html. Located in the Conversion
Utility plugin directory, the readme004FGL.html file
contains information on Conversion Utility limitations
and procedures, and changes to documentation since
the completion of this User’s Guide.

Reconversion. Occasionally shared libraries do not
convert successfully and must be reconverted, either
through the Conversion Utility Wizard or by command
line.

w

Wizard. The Conversion Utility Wizard guides you
through the steps necessary to convert your 14GL

J-1

application. Access the Wizard by selecting File > New
> Other > Informix 4GL to EGL Conversion.

Workspace. In Rational products, the workspace is the
central hub for data files. A workspace's resources are
organized in a tree structure, with projects at the top,
and folders and files underneath.

J-Z IBM Informix 4GL to EGL Conversion Utility User’s Guide

Error Messages

This error messages section provides explanatory notes and user responses for
Conversion Utility and FGL Parser error messages.

Occasionally, the Conversion Utility terminates because of problems with your JRE
or Rational product. In such a case, the conversion terminates without producing
any error message or log file. Once you have resolved the problem with your JRE
or Rational product, you must start the conversion process from the beginning.

Conversion Utility Error Messages

The name of the configuration file is not provided.

Explanation: The name of the configuration file was
not entered or was incorrectly entered in the wizard or
the command line.

User response: Enter the correct name of the
configuration file.

The configuration file cannot be read or has an
invalid format.

Explanation: The configuration file cannot be read or
has an invalid format.

User response: Correct the format of the configuration
file.

The manifest file cannot be read or has an invalid
format.

Explanation: The manifest file cannot be read or has
an invalid format.

User response: Correct the format of the manifest file.

The conversion artifacts directory cannot be created.

Explanation: The conversion artifacts directory cannot
be created.

User response: Check the write permission in the file
system to create the artifacts directory.

The I4GL root directory does not exist or cannot be
read.

Explanation: The I4GL root directory does not exist or
cannot be read.

User response: Provide the correct I4GL root directory.

The I4GL source file does not exist or cannot be read.

Explanation: The I4GL source file does not exist or
cannot be read.

© Copyright IBM Corp. 2005, 2012

User response: Check the path and the read
permission of the I4GL source file.

The I4GL form file does not exist or cannot be read.

Explanation: The I4GL form file does not exist or
cannot be read.

User response: Check the path and the read
permission of the I4GL form file.

The I4GL message file does not exist or cannot be
read.

Explanation: The I4GL message file does not exist or
cannot be read.

User response: Check the path and the read
permission of the I4GL message file.

The EGL destination directory cannot be created.

Explanation: The EGL destination directory cannot be
created.

User response: Verify that you have enough disc
space and have write permission.

No database connection information is found in the
configuration file.

Explanation: The configuration file does not contain
information on how to connect to your Informix
database.

User response: Verify that the configuration file
contains database connection information. The Database
section of the configuration file must have valid XML
elements that conform to the DTD.

The EGL source file cannot be created.
Explanation: The EGL source file cannot be created.

User response: Check the write permission and disk
space of the EGL destination directory.

K-1

The manifest file cannot be created.
Explanation: The manifest file cannot be created.

User response: Check the path and write permission
of the ConversionArtifacts/manifest directory.

A syntax error was found in the I4GL form file.

Explanation: A syntax error was found in the 14GL
form file.

User response: Verify that the error file created for the
line and column number information where the syntax
error was found. This file must be a valid I4GL form
file. Compile the form file with the I4GL form4gl form
compiler to identify error message details.

The conversion log file cannot be created.

Explanation: The conversion log file cannot be
created.

User response: Check the path and write permission
of the ConversionArtifacts/log subdirectory.

The directory does not exist or has no write
permissions.

Explanation: The directory does not exist or has no
write permissions.

User response: Check the path and the write
permissions of the directory.

FGL Parser Messages

Found IDENTIFIER in array dimension. May need to
be defined.

Explanation: I4GL does not allow variables in array
dimension declarations. Therefore, the I4GL file must
use a preprocessor directive to resolve this problem,
which occurs when the I4GL compiler converts it to C.

User response: The IDENTIFER must be created as a
final INT variable in EGL and a value must be assigned
to it.

Return type unknown.

Explanation: The function returns a value, but the
value could not be determined.

User response: Correct the declared return type for
the function in EGL.

Explanation: The statement at the specified line is not
supported during I4GL to EGL conversion, or by the
EGL language.

User response: Conversion is not possible. Rewrite the
functionality in EGL if still required.

C-compiler directive encountered.

Explanation: I4GL allows you to embed C compiler
directives in the I4GL file, which is included in the
intermediate ESQL/C files evaluated by the C compiler.
These C compiler directives are not supported during
I4GL to EGL conversion and are not typically
supported by EGL.

User response: The conversion ignored the C-compiler
directive. Verify and correct the generated code relating
to the directive.

Cursor declaration not located.

Explanation: The cursor name was opened, but the
declaration could not be found to associate the cursor
with the prepared statement and the HOLD/SCROLL
attributes.

User response: Determine the HOLD/SCROLL
characteristics of the cursor from the I4GL program,
and if either is specified, add the attributes on the EGL
open statement.

Dynamic specification of Form is not supported.

Explanation: A Form cannot be loaded dynamically.
The Local/Global instance of the Form must be
declared. The statements referencing the Form through
the variable work if there is an existing instance of a
Form with a name equal to the value of the variable.

User response: Declare the Local/Global instance.

Error Unsupported statement.

K-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Assumed C-compiler directive encountered but not at
start of line.

Explanation: I4GL allows you to embed C compiler
directives in the I4GL file, which is included in the
intermediate files sent to the C compiler. These C
compiler directives are not supported during I4GL to
EGL conversion, and are not typically supported by
EGL. The directives must usually start in column 1 but
in this instance they do not.

User response: The conversion ignored the C-compiler
directive. Verify and correct the generated code relating
to the directive.

Undefined variable "{0}".

Explanation: A definition for the named variable
could not be found, thus preventing the proper
generation of the code that references the variable
when the type information is required.

User response: Check the variable name generated to
determine if it was mapped from a reserved word or

an I4GL variable, or if it was a global variable. Correct
the Conversion Project definition to include the
required global libraries or missing files.

"WITH REOPTIMIZATION" is not supported.

Explanation: The 4GL/ESQL/C allowed specifying
‘WITH REOPTIMIZATION' when opening a cursor.
JDBC does not support this, so the option is ignored.
SQL statements with host variable parameters are
typically reoptimized by the server with each open.

User response: Consider the possible performance
impact with your target server. If the impact is
significant, rewriting the code to re-prepare the
statement will reoptimize the execution.

"With Concurrent Transactions" is the only supported
mode.

Explanation: JDBC does not limit the ability to have
concurrent transactions. No errors are generated at run
time if the application with a pending transaction starts
a new transaction on a different connection.

User response: If this situation must be prevented,
write additional checks into the program to prevent
switching connections with transactions pending. The
disconnect() function will return an exception if a
transaction is pending.

NOT IMPLEMENTED.

Explanation: The options at the specified location in
the statement are not supported during 14GL to EGL
conversion or by the EGL language.

User response: Rewrite the code using EGL
capabilities.

Duplicate Function: "{0}" defined locally and in
external project "{1}".

Explanation: The function name specified was already
defined in an imported project. A possible cause for
this error is that 14GL files were incorrectly combined
into the same conversion project or that a shared
library manifest file was included unnecessarily.

User response: Verify that I4GL files were not
incorrectly combined into the same conversion project
and that a shared library manifest file was not included
unnecessarily. You should also rename the function or
remove the use statement specifying the library
containing the duplicate function.

Function "{0}" referenced in another project before
defined. Reconversion required for project "{1}".

Explanation: A previously undefined function
referenced in an imported project was defined here.

User response: Reconvert he imported project to

ensure correct code generation.

Undefined type "{0}" for variable "{1}"

Explanation: The specified record type was not found
in any SCHEMA manifests and is needed by the
specified variable. This can happen when the
application is using an ANSI database, and the source
is written assuming that the current user is the owner
of the ANSI tables.

User response: Either add the owner names to the
table references or remove the owner names from the
SCHEMA manifest and reattempt the conversion.

ERROR: Invalid manifest type.

Explanation: The manifest type does not match or
identify a known DTD definition for the manifest.

User response: Regenerate the associate library to
recreate the manifest file, or attempt to correct the DTD
reference.

ERROR: Manifest file reconversion failed.

Explanation: An internal exception occurred updating
the dependent project files.

User response: Correct the external cause and rerun
the conversion. If the external cause cannot be
corrected, contact IBM support.

ERROR: Project {0} needs to be reconverted, Manifest
{1} has been updated.

Explanation: The specified project references functions
defined in the current project.

User response: Reconvert the specified project to
ensure proper code generation.

ERROR: Manifest file generation failed.

Explanation: An exception occurred while trying to
save the project manifest.

User response: Correct the external cause and rerun
the conversion. If the external cause cannot be
corrected, contact IBM support.

ERROR: Cannot Generate Native Library

Explanation: An exception occurred while trying to
write the C native library code.

User response: Correct the external cause and rerun
the conversion. If the external cause cannot be
corrected, contact IBM support.

Error Messages K-3

K-4 1BM Informix 4GL to EGL Conversion Utility User’s Guide

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005, 2012 L-1

L-2

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

5 Technology Park Drive

Westford, MA 01886

US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to

IBM Informix 4GL to EGL Conversion Utility User’s Guide

IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All
rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at the following site:
http:/ /www.ibm.com/legal /copytrade.html.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Windows, Windows NT, and Excel are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.

Notices L-3

L-4 1BM Informix 4GL to EGL Conversion Utility User’s Guide

Index

Special characters

_FINISH()

EGL behavior 4-16
_OUTPUT()

EGL behavior 4-15
_OUTPUT(a, b, ¢)

EGL behavior 4-15
_START()

EGL behavior 4-15
eglbld 4-6
.properties 4-11

Numerics
4GL
built-in functions
EGL equivalent A-12
built-in SQL functions and procedures
EGL equivalent A-13
compiler directives
EGL equivalent A-7
data types
EGL equivalent A-1
definition and declaration statements
EGL equivalent A-3
environment variables
EGL properties equivalent A-20
JDBC properties equivalent A-20
external SQL functions and procedures
EGL equivalent A-13
forms
EGL equivalent A-9
functions, built-in
EGL equivalent A-12
functions, built-in SQL
EGL equivalent A-13
functions, external SQL
EGL equivalent A-13
operators
EGL equivalent A-14
key-word based A-14
non-alphabetic symbols A-15
procedures, built-in SQL
EGL equivalent A-13
procedures, external SQL
EGL equivalent A-13
program flow control statements
EGL equivalent A-5
report driver statements
EGL equivalent A-12
report execution statements
EGL equivalent A-11
special data casting
EGL equivalent A-3
SQL client/server connection statements
EGL equivalent A-19
SQL cursor manipulation statements
EGL equivalent A-16
SQL data access statements
EGL equivalent A-18

© Copyright IBM Corp. 2005, 2012

4GL (continued)
SQL data definition statements
EGL equivalent A-16
SQL data integrity statements
EGL equivalent A-19
SQL data manipulation statements
EGL equivalent A-17
SQL dynamic management statements
EGL equivalent A-18
SQL optical subsystems statements
EGL equivalent A-20
SQL query optimization statements
EGL equivalent A-18
SQL stored procedure statements
EGL equivalent A-19
storage manipulation statements
EGL equivalent A-5
4GL equivalent 4-6
4GL file extensions
mapped to EGL 4-5

A

After Group Of
conversion of 4-21
afterGroup
Report handler method 4-21
Aggregate report functions
conversion
AVG 4-27
COUNT 4-26
MAX 4-25
MIN 4-26
PERCENT 4-26
SUM 4-25
Application conversion
command line mode 3-8
conversion utility processing 3-8
steps 3-6, 3-8
Application level shared library
creating 4-10, 4-11
Artifacts
conversion
default directory 4-3
generated during conversion 4-3
AVG aggregate report function
conversion 4-27

Before Group Of

conversion of 4-21
beforeDetailEval

Report handler method 4-21
beforeGroupOf

Report handler method 4-21
Boldface type viii
BOTTOM MARGIN

conversion of 4-18

X-1

Built-in functions
EGL equivalent A-12

Built-in SQL functions and procedures
EGL equivalent A-13

Business logic
report conversion 4-15

C

C functions
function call sequence 4-10
C libraries
connecting to EGL
EGL native library 4-9
Function table 4-9, 4-10
Function table example 4-9
linking to EGL 4-9, 4-11
CLIPPED
conversion of 4-24
Command line
application conversion 3-8
shared library reconversion 5-2
Compiler directives
EGL equivalent A-7
Complex reports
conversion 4-20, 4-22
Configuration file
corruption of
workaround = 5-2
creating manually 4-4
description 4-4
DID 4-4
location after conversion 4-3
manually creating a 3-9
naming conventions 4-4
sample 4-4
template examples D-1
Console user interface
code example C-1
statements A-9
Contact information x
Conventions
typographical viii
Conversion
application
command line mode 3-8
steps 3-6, 3-8
artifacts 4-3
configuration file name 4-3
conversion log file name 4-3
default directory 4-3

EGL native library file name 4-3

ERR file 4-4, 4-9
function table location 4-4
manifest file 4-4
changes
overview 4-2
code example 4-17, B-1
code example, report B-1
errors, correcting 4-6, 4-9
limitations and workarounds 2-2
order 3-1
order of conversion 3-1
shared library
steps 3-3
Conversion log 3-9
contents 4-7

X-2 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Conversion log (continued)
correcting errors 4-6, 4-9
description 4-3
examples G-1
files classification

ERROR 4-7
FIXME 4-7
PASSED 4-7
TODO 4-7
how to use 4-6
JDBC driver errors 4-7, 4-8
location 4-6
location after conversion 4-3

Conversion project
FAILED 4-6
PASSED 4-6
reasons for failure 4-6

JDBC driver error 4-7
write permissions 4-7
report conversion 4-14

Conversion Utility
documentation viii
error messages K-1
features vii
platforms supported viii
PRINT statement analysis 4-22
processing

application conversion 3-8

database schema extraction 3-3

shared library conversion 3-5
Wizard

overview 3-1

Conversion Utility Wizard
documentation x

conversionconfig.dtd 4-4

conversionsample.xml 4-4

Correcting conversion errors 4-6, 4-9

COUNT aggregate report function
conversion 4-26

Creating a configuration file 3-9

Creating the application level shared library 4-10, 4-11

D

Data Type Definition 3-9
Data types
EGL equivalent A-1
Database schema extraction
conversion utility processing 3-3
manifest file
contents 4-5
steps 3-1, 3-3
Database, active

assumptions with report driver functions

DEFINE Section
conversion 4-16, 4-17
local variables conversion 4-17
parameter conversion 4-17
Definition and declaration statements
EGL equivalent A-3
Directory
default
conversion artifacts 4-3
Documentation
Conversion Utility Wizard x
EGL x
online help x

Documentation (continued)
EGL tutorial
overview 4-31
information center
overview 4-31
DTD 3-9
examples F-1

E

EGL
documentation x
EGL Reference Guide x
online help x
EGL Reference Guide x
primitive types A-1
Tutorial x
website x
EGL build descriptor
examples H-1
file 4-6
EGL equivalent
4GL built-in functions A-12
4GL compiler directives A-7
4GL cursor manipulation statements A-16
4GL data types A-1
4GL definition and declaration statements A-3
4GL environment variables A-20
4GL external SQL functions A-13
4GL forms A-9
4GL key-word based operators A-14
4GL non-alphabetic based operators A-15
4GL operators A-14
4GL operators, key-word based A-14
4GL operators, non-alphabetic based A-15
4GL program flow control statements A-5
4GL report driver statements A-12
4GL report execution statements A-11
4GL SQL client/server connection statements A-19
4GL SQL data access statements A-18
4GL SQL data definition statements A-16
4GL SQL data integrity statements A-19
4GL SQL data manipulation statements A-17
4GL SQL dynamic management statements A-18
4GL SQL optical subsystems statements A-20
4GL SQL query optimization statements A-18
4GL SQL stored procedure statements A-19
4GL storage manipulation statements A-5
built-in SQL functions A-13
special data casting A-3
EGL file extensions
mapped to 4GL 4-5
EGL files
build file 4-30
overview 4-30
source file 4-30
EGL message file format 4-14
EGL native library 4-9
description 4-3
location after conversion 4-3
EGL packages
overview 4-29
EGL projects
overview 4-28
recommendations 4-30, 4-31
EGL properties 4-28
EGL Reference Guide x

EGL report driver functions 4-15
_FINISH() 4-16
_OUTPUT() 4-15
_OUTPUT(a, b, c) 4-15
_START() 4-15
TERMINATE() 4-16
EGL report function calls 4-14
EGL reserved words I-1
EGL tutorial
overview 4-31
Environment variables viii, A-20
ERR file
description 4-4, 4-9
file name 4-4, 4-9
ERROR
converted file classification 4-7
Error messages
Conversion Utility K-1
file conversion 4-14
Errors
conversion
conversion log 4-6, 4-9
correcting 4-6, 4-9
Extraction, database schema
conversion utility processing 3-3
steps 3-1, 3-3

F

FAILED
conversion project 4-6
FILE
conversion of 4-24
First Page Header
conversion of 4-21
firstPageHeader
Report handler method 4-21
FIXME
converted file classification 4-7
FORMAT Section
complex reports
conversion 4-20, 4-22
conversion 4-19, 4-25
PRINT statement
conversion 4-22, 4-24
simple reports
conversion 4-20
FORMAT sub-sections
After Group Of 4-21
Before Group Of 4-21
converted to JasperReports bands 4-21
First Page Header 4-21
On Every Row 4-21
On Last Row 4-21
Page Header 4-21
Page Trailer 4-21
Forms
code example C-1
conversion to EGL C-1
EGL equivalent A-9
Function table 4-9
description 4-4
example 4-9
file name 4-4
modifications to 4-10
Functions
EGL report driver 4-15

Index

X-3

Functions (continued)
report driver 4-15
_FINISH() 4-16
_OUTPUT() 4-15
_OUTPUT(a, b, c) 4-15
_START() 4-15
TERMINATE() 4-16
Functions, built-in
EGL Equivalent A-12

G

getPrintFlag
Report handler method 4-22
getPrintString
Report handler method 4-21
Global array variables
conversion of 4-17
conversion restrictions 4-16

Information center
overview 4-31
Informix database
schema extraction
conversion utility processing 3-3
steps 3-1, 3-3
init
Report handler method 4-21

J

JasperReports

bands 4-21

conversion code example 4-17
Java properties files

error message conversion 4-14
JDBC driver errors 4-7, 4-8

K

Key-word based operators
EGL equivalent A-14

L

LEFT MARGIN
conversion of 4-18
LINENO
conversion 4-22
conversion of 4-24
Linking C libraries to EGL 4-9, 4-11
Local variables conversion
DEFINE section 4-17
Log, conversion
See Conversion log.

M

Manifest file
corruption of
workaround 5-3

X-4 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Manifest file (continued)
database schema extraction
contents 4-5
description 4-4
examples E-1
file name 4-4
shared library conversion
contents 4-5
MAX aggregate report function
conversion 4-25
MIN aggregate report function
conversion 4-26

N

New Project
definition
application conversion 3-6
database schema extraction 3-2
shared library conversion 3-3
Non-alphabetic based operators
EGL equivalent A-15

()

On Every Row
conversion of 4-21
On Last Row
conversion of 4-21
onLastRow
Report handler method 4-21
Open Project
definition
application conversion 3-6
shared library conversion 3-4
Operators
EGL equivalent A-14
key-word based
EGL equivalent A-14
non-alphabetic symbols
EGL equivalent A-15
ORDER BY Section
conversion 4-19
ORDER EXTERNAL BY
conversion 4-19
Order of 4GL conversion 3-1
OUTPUT section
conversion 4-18, 4-19
conversion of
BOTTOM MARGIN 4-18
LEFT MARGIN 4-18
PAGE LENGTH 4-18
REPORT TO 4-19
RIGHT MARGIN 4-19
TOP MARGIN 4-19
TOP OF PAGE 4-19

P

Page Header
conversion of 4-21

PAGE LENGTH
conversion of 4-18

Page Trailer
conversion of 4-21

pageHeader
Report handler method 4-21
PAGENO
conversion of 4-24
pageTrailer
Report handler method 4-21
Parameter conversion
DEFINE section 4-17
PASSED
conversion project 4-6
converted file classification 4-7
PERCENT aggregate report function
conversion 4-26
Post-conversion
overview 4-1
task list 4-1
Pre-conversion
overview 2-1
task list 2-1
Presentation logic
report conversion 4-15
PRINT statement
conversion of 4-22, 4-24
expressions
conversion 4-23
in looping constructs 4-23
terminating with a semi-colon
conversion of 4-24
Procedures, built-in SQL
EGL equivalent A-13
Procedures, external SQL
EGL equivalent A-13
Product features vii
Program flow control statements
EGL equivalent A-5
Project conversion
4GL to EGL file mapping
error message files 4-5, 4-6
form specification files 4-5
overview 4-5
report files 4-5
shared library files 4-6
source files 4-5
error message files 4-14
Properties files
Files
properties 4-11

R

Reconversion of shared library
command line mode 5-2
Conversion Wizard reconversion 5-2
how to reconvert 5-1
options 5-1
overview 5-1
process 5-1
reasons for failure 5-2
when to reconvert 5-1
workarounds 5-2

Reconversion Project
definition

shared library conversion 3-4

Report

conversion
DEFINE Section 4-16, 4-17
DEFINE Section local variables conversion 4-17

Report (continued)
conversion (continued)
DEFINE Section parameter conversion 4-17
FORMAT Section 4-19, 4-20, 4-22, 4-24, 4-25
I4GL aggregate report functions 4-25, 4-28
I4GL Report Sections 4-16
LINENO 4-22
ORDER BY Section 4-19
ORDER EXTERNAL BY 4-19
OUTPUT section 4-18, 4-19
report operators 4-24
SKIP TO TOP OF PAGE 4-22
conversion to EGL 4-14
changes to I4GL code 4-14
example B-1
conversion to JasperReports 4-17
EGL function calls 4-14
EGL processing 4-16
global array variable restrictions 4-16
Report conversion
business logic conversion 4-15
EGL report driver functions 4-15
filename conversion
business logic 4-15
presentation logic 4-15
sub-reports 4-15
multiple looping constructs 4-15
presentation logic conversion 4-15
sub-reports 4-15
Report driver statements
EGL equivalent A-12
Report execution statements
EGL equivalent A-11
Report handler methods
afterGroup 4-21
beforeDetailEval 4-21
beforeGroupOf 4-21
firstPageHeader 4-21
getPrintFlag 4-22
getPrintString 4-21
init 4-21
onLastRow 4-21
pageHeader 4-21
pageTrailer 4-21
Report operators
conversion of
CLIPPED 4-24
FILE 4-24
LINENO 4-24
PAGENO 4-24
SPACE 4-24
SPACES 4-24
USING 4-24
WORDWRAP 4-24
REPORT TO
conversion of 4-19
RIGHT MARGIN
conversion of 4-19

S

Shared library
conversion
conversion utility processing 3-5
steps 3-3
reconversion
command line mode 5-2

Index

Shared library (continued)
reconversion (continued)
Conversion Wizard reconversion 5-2
how to reconvert 5-1
options 5-1
overview 5-1
process 5-1
reasons for failure 5-2
when to reconvert 5-1
workarounds 5-2
Shared library conversion
manifest file
contents 4-5
Simple reports
conversion 4-20
SKIP TO TOP OF PAGE
conversion 4-22
SPACE
conversion of 4-24
SPACES
conversion of 4-24
Special data casting
EGL equivalent A-3
Storage manipulation statements
EGL equivalent A-5
SUM aggregate report function
conversion 4-25

—~

Tasks, overview of pre-conversion 2-1
TERMINATE()
EGL behavior 4-16
TODO
converted file classification 4-7
TOP MARGIN
conversion of 4-19
TOP OF PAGE
conversion of 4-19
Tutorial
EGL x, 4-31
Typographical conventions viii

U

Users, types of vii
USING
conversion of 4-24

W

Wizard, conversion utility
overview 3-1
WORDWRAP
conversion of 4-24
Workarounds
shared library reconversion 5-2
Write permissions
lack of 4-7

X-6 IBM Informix 4GL to EGL Conversion Utility User’s Guide

Printed in USA

6229-6339-02

	Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Features of This Product
	Platforms Supported
	Typographical Conventions
	Documentation
	IBM Welcomes Your Comments

	Chapter 1. Overview of the Conversion Process
	In This Chapter
	Introduction to the I4GL to EGL Conversion
	Conversion Benefits
	I4GL to EGL Conversion Overview
	Pre-Conversion Stage
	Conversion Stage
	Post-Conversion Stage
	Reconversion Stage

	Conversion Limitations
	C Interface Support and Limitations
	Report Support and Limitations
	Screen Forms Support

	Chapter 2. Preparing for Conversion
	In This Chapter
	Overview of Pre-Conversion Tasks
	Conversion Limitations and Workarounds
	4GL Source Conversion
	C Code Functionality
	Reports

	Identify Existing I4GL Components Project
	Generate I4GL Source Files
	Compile your I4GL Application
	Identify the Client Locale
	Identify and Separate the Shared Libraries
	Modifying C Code Used with Rapid Development System (RDS)

	Identify User-Defined Message Files
	Identify Informix Database Schema Information
	Identify an EGL Destination Directory
	Prepare the I4GL Source File Directory

	Chapter 3. Conversion Tasks
	In This Chapter
	Conversion Utility Stages
	Informix Database Schema Extraction
	Conversion Utility Processing for Informix Database Schema Extraction

	I4GL Shared Libraries Conversion
	Conversion Utility Processing for I4GL Shared Libraries

	I4GL Application Conversion
	Conversion Utility Processing for I4GL Application Conversion

	Conversion Utility Command Line Mode
	The Conversion Log

	Chapter 4. Post-Conversion Tasks
	In This Chapter
	Post-Conversion Tasks
	Changes Made During the Conversion
	Artifacts Generated During the Conversion
	Configuration File
	Manifest File

	Source File Conversion Mapping
	Command Line Conversion: Importing Projects into the Workspace
	Correcting Conversion Errors
	Conversion Log Contents

	Using C Shared Libraries with the EGL Program
	EGL Native Library
	Function Table
	Creating the Application Level Shared Library

	Properties Files
	Validating and Compiling Converted EGL Files
	Generating EGL to Java
	Understanding Error Message Conversion
	Understanding Report Conversion
	EGL Report Driver Functions
	I4GL Report Sections
	I4GL DEFINE Section
	I4GL OUTPUT Section
	I4GL ORDER BY Section
	I4GL FORMAT Section

	Understanding your EGL Projects, Packages and Files
	EGL Project
	EGL source folder
	EGL build path
	Default build descriptors

	Package
	EGL Files
	Source file
	Build File

	Recommendations
	For build descriptors
	For packages
	Part assignment

	The Information Center Help System and EGL Tutorial

	Chapter 5. Reconversion Process and Tasks
	In This Chapter
	When to Reconvert Your I4GL Shared Libraries
	How to Reconvert Your I4GL Shared Libraries
	Conversion Wizard Reconversion
	Command Line Reconversion
	Reasons and Workarounds for Unsuccessful Reconversions

	Appendix A. I4GL to EGL Syntax Mapping
	Appendix B. I4GL Report Conversion Code Example
	Appendix C. I4GL Form Code to EGL Form Code Example
	Appendix D. Configuration File Templates
	Appendix E. Manifest File Examples
	Appendix F. DTD Examples
	Appendix G. Conversion Log Examples
	Appendix H. EGL Build Descriptor Example
	Appendix I. EGL Reserved Words
	Glossary
	Error Messages
	Notices
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

