<|ll

IBM Rational COBOL Runtime Guide for

zSeries

Version 6.0.1

111111111111

<|ll

IBM Rational COBOL Runtime Guide for

zSeries

Version 6.0.1

111111111111

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 233

Second Edition (March 2008)

This edition applies to Version 6.0.1 of IBM Rational COBOL Runtime for zSeries (product number 5655-R29) and to
all subsequent releases and modifications until otherwise indicated in new editions.

You can order publications through your IBM representative or the IBM branch office serving your locality.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Document .
Who Should Use This Document .
Terminology Used in This Document

. Vil
. vii
. viii

Part 1. Preparing to Install.

Chapter 1. Preparing for the Installation

of Rational COBOL Runtime . .3
Chapter 2. Storage Requirements for
Rational COBOL Runtime . .5
Virtual Storage Requirements . .5
Rational COBOL Runtime Load Module Storage .5
Load Module Storage e .5
COBOL Dynamic Storage . . . 6
Rational COBOL Runtime Dynamic Storage . .7
Storage Requirements for CICS . . . 8
Disk Storage Requirements for Rational COBOL
Runtime . . 8
Work Database Space For Segmented Programs .8
Chapter 3. Installation Considerations 11
z/0S Batch Considerations . 11
DL/I Considerations 11
DB2 Considerations. 11
CICS Installation Cons1derat10ns .11
DL/I Considerations 11
DB2 Considerations .12
Security Considerations .12
Monitoring and Tuning .12
CICS Utilities. . .12
Client / Server Processmg Consrderatlons . .12
Using the data Build Descriptor Option . .13
Modifying CICS Resource Definitions .13
IMS Installation Considerations. . .14
IMS/ESA Exploitation . .14
DB2 Considerations .14
Security Considerations .14
Monitoring and Tuning .14
IMS System Definition. .15
IMS Control Region .15
Work Database . . 15
Chapter 4. Customizing Rational
COBOL Runtime . .17
General Customization Consrderatlons for z/ OS .17
Customizing Rational COBOL Runtime . .17
Security Considerations .17
Performance Considerations . .17
Customizing Build Scripts .18
Modifying the Language Env1ronment Runtlme
Option . .18

Using Generated Programs w1th PL / I Programs

© Copyright IBM Corp. 1994, 2006

18

Installation and Language-Dependent Options for
z/OS18

Part 2. Administering on z/0S
Systems25

Chapter 5. General System
Considerations for z/OS Systems . . . 27

Considerations that Affect Performance27
Build Descriptor and Compiler Options 27
Modules in Memory28
Files and Databases. . . . 28

Defining and Loading VSAM Program Data Flles . 28
Defining VSAM Data Sets28
Loading Data in the Files.30

Support for DBCS terminals 31

Extended Addressing Considerations for Ratlonal

COBOL Runtime31

DB2 Considerations32
Preparing Programs . . . N V)
Checking Access Authorlzatlon N 72

Backing Up Data . . . B 72

Customizing Rational COBOL Runtrme o032

Chapter 6. System Considerations for
cics.33

Required File Descriptions33
Segmented and Nonsegmented Processmg .. L34
Using Transient Data Queues for Printing in z/OS
cies ... G
z/0S CICS termrnal prrntlng . . .35

Special Parameter Group for the FZETPRT

Program36

CICS Entries for FZETPRT (DBCS only) .. .38
Using the New Copy Function39
Specifying Recovery Options in the CICS Tables .. 39
Considerations that Affect Performance 40

Residency (Modules in Memory) Consrderatrons 40
Work Database Temporary Storage Queue

Considerations . . . T ¥ |
Terminal Printing . . |
Using and Allocating Data Flles in CICS oL 42
Defining and Loading VSAM Data Files. . . .42
Using Remote Files. . . . B)
Defining Transient Data Queues48
Considerations for Using DB2 in CICS45

Associating DB2 Databases with CICS
Transactions 45
Recovery and Database Integrlty Consrderatrons 45
Considerations for Using DL/Iin CICS45
Recovery and Database Integrity Considerations 45
Setting up the National Language46
iii

Chapter 7. System Considerations for
z/OSBatch.47

Required File Descriptions . . . 47
Using VSAM Program Data Frles inz / OS Batch . 48
Considerations for Using DB2 in z/OS Batch . . . 48

Recovery and Database Integrity Considerations 48
Considerations for Using DL/Iin z/OS Batch. . . 48

Defining the Program Specification Block (PSB) 48
Recovery and Database Integrity Considerations 49
Performance Considerations for z/OS Batch . . . 49
RuntimeJCL49

Chapter 8. System Considerations for

IMS -1
Required File Descrrptrons .o . .51
Defining the Program Specrfrcatron Block (PSB) . .52
Processing Modes53
Printing Considerations for IMS e . .53
Recovery and Database Integrity Con51derat10ns . .54
Considerations that Affect Performance 54
Residency Considerations and the IMS Preload
Function . . .
Database Performance56
Limiting MFS Control Blocks56
Monitoring and Tuning the IMS System Y4
Considerations for Using DB2 inIMS.57
Recovery and Database Integrity Considerations 57
Checking Authorization . . - 4
Considerations for Using DL/I in IMSb8
Recovery and Database Integrity Considerations 58
Maintaining the Work Database in IMS58
Deleting Old Records from the Work Database . 58
Expanding the Work Database60
Supporting Multiple Work Databases. . . . 63

Considerations for Message Format Services in IMS 64

Part 3. Preparing and Running
Generated Applications 69

Chapter 9. Output of Program
Generation on z/0S Systems 71

Allocating Preparation Data Sets71
List of Program Preparation Steps after Program
Generation . . V)
Deploying generated code to USS73
Output of Generation74
Objects Generated for Programs ()
Link Edit File.77
CICS Entries78
Objects Generated for Data Tables L. . .78
Objects Generated for Form Groups78

Chapter 10. zOS Builds 81

z/0OS Build Server . . . B - 4
Starting a z/OS Build Server B . 7
Starting a USS Build Server87
Stopping servers. . . B . 4
Configuring a build server87

Working with Build Scripts87

iV IBM Rational COBOL Runtime Guide for zSeries

Working with z/OS Build Scripts87
Converting JCL to Pseudo-JCL89

Chapter 11. Preparing and Running a
Generated PrograminCICS 93

Modifying CICS Resource Definitions93
Program Entries.93
Transaction Entries9
Destination Control Table Entrres (DCT) oo .9
File Control Table Entries (FCT)95
Resource Control Table Entry (RCT)95
Using Remote Programs, Transactions, or Files . 95

Modifying CICS Startup JCL.9

Making New Modules Available in the CICS

Environment . . . P o)

Making Programs Res1dent9%

Running Programs under CICS.96
Starting the Transaction in CICS 96
Controlling Diagnostic Information in the CICS
Environment9
Printing Diagnostic Messages in the CICS
Environment P V4

Chapter 12. Creating or Modifying
Runtime JCL on z/OS Systems 99

Tailoring JCL before Generation99
Modifying Runtime JCL.100

Chapter 13. Preparing and Running
Generated Programs in z/0S Batch. . 103

Running Main Programs under z/OS Batch . . . 103
Examples of Runtime JCL for z/OS Batch
Programs. 103
Running a Mam Basrc Program wrth No
Database Access 104
Running a Main Basic Program w1th DB2
Access. 104

Running Main Basrc Program wrth DL / I Access 104

Running a Main Basic Program with DB2 and

DL/I Access.105
Recovery and Restart for z / OS Batch Programs 106

Chapter 14. Preparing and Running
Generated Programs in IMS/VS and

IMSBMP 107
Modifying the IMS System Defrnrtron Parameters 107
Defining an Interactive Program 107
Defining Parameters for a Main Basic Program
as an MPP 108
Defining Parameters for a Batch Orrented BMP
Program 109
Defining Parameters for a Transactlon-Orlented
BMP Program . . . (0]
Creating MFS Control Blocks 109
Making New Modules Available in the IMS
Environment 110
Preloading Program, Prmt Servrces and Data Table
Modules 1o
Running Programs under IMS B v |

Starting a Main Program Directly. . . . 111
Starting a Main Transaction Program Using the

/FORMAT Command11
Running Transaction Programs as IMS MPPs 111
Running Main Basic Programs as MPPs . . . 113

Running a Main Basic Program under IMS BMP 113
Examples of Runtime JCL for IMS BMP Programs 114
Running a Main Basic Program as an IMS BMP

Program . . . 114

Running a Mam Ba51c Program as an IMS BMP

Program with DB2 Access 115
Recovery and Restart for IMS BMP Programs .. 116

Chapter 15. Moving Prepared
Programs to Other Systems from z/0S

Systems 117
Moving Prepared Programs To Another z / OS
System . . T b V4

Maintaining Backup Coples of Productlon L1brar1es 118

Part 4. Utilities 119

Chapter 16. Using Rational COBOL
Runtime Utilities for z/0S CICS

Systems . . . e ... 121
Using the CICS Ut111t1es Menu B A |
New Copy . . oo 122
Diagnostic Message Prmtmg Ut111ty ... 124
Diagnostic Control Options for z/OS CICS
Systems . . . 125
Using the Parameter Group Ut111ty for z / OS CICS
Systems . . . oo 129

Chapter 17. Using Rational COBOL
Runtime Utilities for IMS Systems . . 135
IMS Diagnostic Message Print Utility 135

Part 5. Diagnosing Problems . . . 137

Chapter 18. Diagnosing Problems for
Rational COBOL Runtime on z/0S

Systems139
Detecting Errors139
Reporting Errors . . L. ... 139
Controlling Error Reportmg o139
Error Reporting Summary . . . 141
Using the Rational COBOL Runtlme Error Panel 144
Printing Diagnostic Information for IMS 144
errorDestination Message Queue 144
IMS Log Format . . B %)
Running the Diagnostic Prmt Ut111ty 146
Printing Diagnostic Information for CICS 147
CICS Diagnostic Message Layout. 147
Running the Diagnostic Print Utility. 148
Analyzing Errors Detected while Running a
Program148

Chapter 19. Finding Information in

Dumps 151
Rational COBOL Runtlme ABEND Dumps .. . 151
COBOL or Subsystem ABEND Dumps 151
Information in the Rational COBOL Runtime

Control Block 152
Information in a Program, Prmt Serv1ces or

DataTable Profile Block 152
How to Find the Current Position in a Program at

Time of Error153

Chapter 20. Rational COBOL Runtime

Trace Facility 155
Enabling EGL Program Source- Level Tracmg w1th

Build Descriptor Options 155
Activating a Trace. . . . 155

Activating a Trace Sessmn for CICS or IMS / VS 156
Activating a Trace Session for z/OS Batch or

IMS BMP. I £
Deactivating a Trace Sess1on B G |
Printing Trace Output . . B 7

Printing the Trace Output in CICS . Y

Printing the Trace Output in IMS/VS 161

Printing the Trace Output in z/OS Batch or IMS

BMP16l

Reporting Problems for Rational COBOL Runtime 161

Chapter 21. Common Messages
during Preparation for z/OS Systems . 163

Common Abend Codes during Preparation . . . 163
MEFS Generation Messages163
DB2 Precompiler and Bind Messages 1le4
COBOL Compilation Messages 164

Chapter 22. Common System Error
Codes for z/0S Systems 167

Common Return Codes167
System Error Code Formats for
sysVarerrorCode B (74
Common System Error Codes in
sysVarerrorCode169
EGL ErrorCodes170
Common SQL Codes.177
Common DL/I Status Codes179
Common VSAM Status Codes. 180
OPEN request type180
CLOSE request type . . . 180
GET/PUT/POINT/ERASE / CHECK / ENDREQ
request types . . B <1
COBOL Status Key Values e k1

Chapter 23. Rational COBOL Runtime
Return Codes, Abend Codes, and
ExceptionCodes. 183

Return Codes183
ABEND Codes183
CICS Environments 183
IMS, IMS BMP, and z/0S Batch Env1ronments 185
Exception Codes186

Contents V

Chapter 24. Codes from Other

Products for z/0OS Systems . 187
Common System Abend Codes for All

Environments e . 187
LE Runtime Messages 188
Common COBOL Abend Code . 189
Common IMS Runtime Messages. . 189
Common IMS Runtime Abend Codes . 190
Common CICS Runtime Messages . 191
Common CICS Abend Codes . . 191
COBOL Abends under CICS . 192
Part 6. Appendixes . . 193

vi IBM Rational COBOL Runtime Guide for zSeries

Appendix. Rational COBOL Runtime
Messages .

Message Format

ELA Messages .

FZE messages .

PRM messages .

Notices .
Trademarks .

Index .

. 195
. 195
. 196
. 229
. 231

. 233
. 235

. 237

About This Document

This manual provides information about customizing and administering Rational
COBOL Runtime in the following environments:

* z/0S UNIX System Services (USS)
e z/0S Batch

- z/0S® CICS®

« IMS/VS

+ IMS" BMP

It also provides information to enable you to prepare EGL programs for running in
the z/OS environments.

For information about Java ' generation and runtimes for USS, refer to the EGL
Generation Guide.

Note: Hereafter in this book, IBM® Rational COBOL Runtime for zSeries is referred
to simply as “Rational COBOL Runtime.”

Who Should Use This Document

This manual is intended for system administrators and system programmers
responsible for installing, maintaining, and administering Rational COBOL
Runtime. It provides information to complete the following tasks:

* Manage system requirements

* Manage file utilization and conflicts

This manual is also intended for use by the programmers responsible for preparing
and running EGL-generated programs. It provides information on the following
items:

* Output of the generation process

* How to prepare generated programs for running

* Error codes

* How to use Rational COBOL Runtime utilities

* How to diagnose and report problems

— Attention IBM VisualAge® Generator Users
Rational COBOL Runtime provides the required components to support
development and execution of programs generated by Enterprise Generation
Language (EGL) or VisualAge Generator Developer.

To understand how VisualAge Generator Developer is used with the Rational
COBOL Runtime, refer to your VisualAge Generator documentation for
information regarding the MVS™ environment. The VAGen MVS information
also applies to the Rational COBOL Runtime when it is used in the z/OS
environment.

© Copyright IBM Corp. 1994, 2006 vii

— Attention CICS Users
Refer to the CICS documentation for the level of CICS installed on your
system for detailed information regarding CICS functions and operations.

— Attention IMS Users
Refer to the IMS documentation for the level of IMS installed on your system
for detailed information regarding IMS functions and operations.

— Attention: Accessing EGL help
To access EGL help in the development workbench, click Help ~Help
Contents from the menu bar. When the help window appears, click EGL
documentation »Developing >Enterprise Generation Language.

Terminology Used in This Document

Unless otherwise noted in this publication, the following references apply:
* EGL refers to Enterprise Generation Language.
* CICS applies to Customer Information Control System.

* ELA.V6ROMI1 represents the high-level qualifier used when Rational COBOL
Runtime is installed.

* “Region” or “CICS region” corresponds to CICS Transaction Server region.

e IMS/VS applies to Information Management System (IMS) and IMS Transaction
Manager systems.

* IMS applies to IMS and IMS Transaction Manager, and to message processing
program (MPP), IMS Fast Path (IFP), and batch message processing (BMP)
regions. IMS/VS is used to distinguish MPP and IFP regions from the IMS BMP
target environment.

* LE refers to Language Environment®.
* Workstation applies to a personal computer, not an AIX workstation.

viii IBM Rational COBOL Runtime Guide for zSeries

Part 1. Preparing to Install

Chapter 1. Preparing for the Installation of
Rational COBOL Runtime

Chapter 2. Storage Requirements for Rational

COBOL Runtime.

Virtual Storage Requlrements

Rational COBOL Runtime Load Module Storage

Load Module Storage e

COBOL Dynamic Storage . .

Rational COBOL Runtime Dynamic Storage .

Storage Requirements for CICS . .

Disk Storage Requirements for Rational COBOL

Runtime . .
Work Database Space For Segmented Programs.

Chapter 3. Installation Considerations.
z/0S Batch Considerations .
DL/I Considerations
DB2 Considerations.
CICS Installation Consrderatrons
DL/I Considerations
DB2 Considerations
Security Considerations
Monitoring and Tuning
CICS Utilities. .
Client / Server Processmg Consrderatlons .
Using the data Build Descriptor Option .
Modifying CICS Resource Definitions
Using Spool Files
Terminal Considerations .
Temporary Storage .
IMS Installation Considerations.
IMS/ESA Exploitation .
DB2 Considerations
Security Considerations
Monitoring and Tuning
IMS System Definition.
IMS Control Region
Work Database .
DL /I Work Database Con51derat10ns .
DB2 Work Database Considerations

Chapter 4. Customizing Rational COBOL

Runtime .

General Customlzatron Con51deratlons for z / OS
Customizing Rational COBOL Runtime .
Security Considerations
Performance Considerations .

Customizing Build Scripts

Modifying the Language Envrronment Runtrme
Option .

Using Generated Programs w1th PL / I Programs

Installation and Language Dependent Options for
e .18

z/0S

© Copyright IBM Corp. 1994, 2006

@ N3 o U1 U1 U1 O

o]

.1
11
11
.11
11
.11
.12
.12
.12
.12
.12
.13
.13
.13
.13
.13
.14
.14
.14
.14
.14
.15
.15
.15
.15
.15

.17
.17
.17
.17
.17
.18

.18

18

2 IBM Rational COBOL Runtime Guide for zSeries

Chapter 1. Preparing for the Installation of Rational COBOL

Runtime

After selecting the production environments, do the following to prepare for the
installation of the Rational COBOL Runtime:

Obtain a copy of the Program Directory for Rational COBOL Runtime for zSeries
(GI10-3377-00) (shipped with the product’s installation materials).

Determine the hardware, software, and storage requirements for the production
environments selected.

Install the hardware and software required by the Rational COBOL Runtime.
Collect information before customization.

Understand specific environment considerations before defining applications.

Before continuing with the current document, access the product Web site for
details on product updates and prerequisites:

http:/ /www-306.ibm.com/software/awdtools/developer/business/

Copies of documents are also available from the IBM Publications Center:

http:/ /www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

© Copyright IBM Corp. 1994, 2006

4 IBM Rational COBOL Runtime Guide for zSeries

Chapter 2. Storage Requirements for Rational COBOL
Runtime

The following sections give approximate estimates of Rational COBOL Runtime
storage use by type of storage.

Virtual Storage Requirements

A program requires virtual storage for the following:
* Rational COBOL Runtime load modules

* Application load modules

* COBOL dynamic area

* Rational COBOL Runtime dynamic area

CICS programs also use specialized CICS storage facilities.

Rational COBOL Runtime Load Module Storage

Most of the modules in the runtime function are not linked with the generated
programs. Only one copy of these modules needs to be available for use by all
programs generated with Enterprise Generation Language (EGL).

For z/0OS, these modules can be in a library (STEPLIB or DFHRPL), or placed in
the link pack area (LPA). For CICS, you might want to make the modules resident.
For IMS, you might want to preload the modules. Refer to the Rational COBOL
Runtime program directory for a list of LPA eligible load modules.

Table 1. Rational COBOL Runtime Reentrant Load Module Storage Estimates

Function Size RMODE
CICS base services 240 KB ANY
CICS base services, 24-bit addressing mode 8 KB 24
IMS/VS, IMS BMP, z/OS batch base services 255 KB ANY
IMS/VS, IMS BMP, z/OS batch base services, 24-bit 10 KB 24
addressing mode

Double-byte language ASCII/EBCDIC code Chinese - 50 KB ANY

conversion tables

Load Module Storage

Load module storage is the storage required for generated COBOL programs. The
load modules are created by link-editing the generated COBOL programs produced
by EGL’s COBOL generation facility. The size of the load module can be
determined from the linkage editor module map. The size varies depending on the
functions utilized with the programs.

The load module storage includes all generated programs, data table programs,

form group format modules, and print services programs used by a batch job step
or transaction. The size of a load module also includes the small Rational COBOL
Runtime programs that are statically linked with the programs. The load modules

© Copyright IBM Corp. 1994, 2006 5

produced by link-editing the generated programs are reentrant. Each module can
be linked with RMODE(ANY) so that the load module can reside in extended
storage.

The size of the Rational COBOL Runtime modules linked with each generated
program, print services program, or data table program is shown in These
estimates should be added to the application load module size to determine the
overall load module size.

Table 2. Rational COBOL Runtime Statically Linked Module Storage Estimates

Print service Data table
Environment Application program program
CICS 2.5 KB 1 KB 1 KB
IMS/VS 1 KB 1 KB 1 KB
z/0S batch and IMS BMP 1.3 KB 1 KB 1 KB

Note: Rational COBOL Runtime modules are not statically linked with a form group format
module.

shows the storage estimates for external data structures.

Table 3. Storage estimates for external data structures

Function Storage Required
Rational COBOL Runtime control block 1 KB
Environment is IMS/VS or IMS BMP 32 KB

IMS conversational processing SPA size plus 18 bytes
File type SEQ, VSAM, GSAM, SMSGQ, MMSGQ), or printer 96 bytes/file

that is SEQ or GSAM

COBOL Dynamic Storage

6

Application load modules acquire dynamic storage while they are running. The
COBOL runtime library requires this storage for application data structures such as
records, forms, and data tables. The storage includes both the internal and external
data structures.

The COBOL data build descriptor option determines whether to acquire storage
below the 16 MB line. The procedures shipped with the Rational COBOL Runtime
enable data build descriptor option to control the value for the COBOL DATA
compiler option. The default value of that build descriptor option is 31. Set data to
24 if an application calls another application or program that is linked as
AMODE(24). Data table program and print services programs must also use
data=24 if any program being used is linked AMODE(24).

When you generate z/OS batch or CICS programs with dynamic storage
requirements greater than 64 KB, the value data=31 is required.

The amount of storage required for internal data structures is listed in the compile
listing of the COBOL application when the MAP, OFFSET, or LIST compiler
options are used.

Applications that run outside of CICS use COBOL external data structures to share
information between applications in the same run unit. The following table shows

IBM Rational COBOL Runtime Guide for zSeries

the storage estimates for external data structures.

Table 4. COBOL External Storage Utilization in Non-CICS Environments

Function Storage Required
Rational COBOL Runtime control block 1KB
Environment is IMS/VS or IMS BMP 32 KB
IMS conversational processing SPA size plus 18

bytes
File type SEQ, VSAM, GSAM, SMSGQ, MMSGQ or EZEPRINT SEQ, 96 bytes/file

GSAM

Rational COBOL Runtime Dynamic Storage

When applications are running, Rational COBOL Runtime allocates storage as
shown in . The initial program of the run unit determines where the shared
storage between Rational COBOL Runtime and the generated COBOL program is
allocated. If the initial program is generated with the data build descriptor option
set to 24 or is link-edited with AMODE(24), this storage is allocated below the 16
MB line. Otherwise, the storage is allocated with 31-bit addresses as shown in the

following table:
Table 5. Rational COBOL Runtime Dynamic Storage Utilization

24- or 31-bit

Function Storage Required Addressing mode
Persistent dynamic storage pool. The pool is 32 KB increment 31
extended as needed in 32 KB increments.
Most transactions or jobs require only the
initial allocation. Segmented transactions in
CICS or using a DB2® work database in IMS
might require an extension.
CICS - service program dynamic storage 48 KB 31
stack
CICS with DL/I - DL/I buffers 64 KB 31
IMS/VS, IMS BMP, z/OS batch - service 48 KB 24
program dynamic storage stack
IMS VS - DL/I buffers for path calls and 64 KB based on data build
DL/I work database descriptor option
IMS BMP - DL/I buffers for path calls and 96 KB based on data build
checkpoint input descriptor option
z/0S batch - DL/I buffers for path calls 64 KB based on data build

descriptor option
z/0OS batch 64 KB 24

Chapter 2. Storage Requirements for Rational COBOL Runtime 7

Storage Requirements for CICS
Generated COBOL applications use the following CICS storage facilities:
Table 6. Rational COBOL Runtime Use of CICS Storage Areas

Type of Storage Function Size
Transaction Work Area Rational COBOL Runtime 1 KB
(TWA) Control Block. Offset in TWA

is specified in twaOffset
build descriptor option.

COMMAREA Calls using COMMPTR 4 times the number of
parameters
COMMAREA Calls using COMMDATA Total length of all parameters
COMMAREA Remote calls Total length of all parameters,
plus 12
COMMAREA transfer to program that Length of record passed
passes a record
COMMAREA transfer to transaction or Length of record passed plus
show statement that passes a 10
record
Shared storage Shared data table contents, For each table, length of data

Shared data table control blockable contents plus:

* 16 bytes for a message
table

* 8 bytes for other tables

Also, one 50-byte record per
shared data table.

Temporary storage queue Save information during 6 KB plus the length of all
(main or auxiliary) converse or show statement records and forms

Disk Storage Requirements for Rational COBOL Runtime

The auxiliary disk storage space required to install files for the Rational COBOL
Runtime is approximately 2 MB. Additional disk space for user programs can vary.

Work Database Space For Segmented Programs

The space required for saving program status across a terminal I/O operation in
CICS is the sum of all data areas (maps and records) for all segmented programs
plus 6 KB per program. In CICS, disk space is used only if auxiliary temporary
storage is specified as the work database during program generation.

The space required for saving program status across a terminal I/O operation in
IMS/VS is the sum of the data areas (forms and records) for all segmented
programs plus 4 KB per program.

For example, suppose that program A has the following;:
* Two 4 KB records

e Two 512-byte forms

* 1 KB of working storage

* 100 terminals running application A in segmented mode

8 IBM Rational COBOL Runtime Guide for zSeries

For CICS, the approximate required disk space is as follows:

(2x 409 +2x512 + 1024 + 6 144) x 100 = 1 638 400

For IMS/VS, the approximate required disk space is

(2 x 409 + 2 x 512 +1 024 + 4 09) x 100 = 1 433 600

If you are using a DL/I work database with IMS/VS, the storage required per
terminal is inserted in 56 KB increments to localize access for all segments accessed
on a single-path call. An additional 56 KB increment is required when help forms

or extended error screens are used. A good estimate for work database size is 112
KB per active terminal.

Chapter 2. Storage Requirements for Rational COBOL Runtime 9

10 IBM Rational COBOL Runtime Guide for zSeries

Chapter 3. Installation Considerations

The following sections describe installation considerations for the Rational COBOL
Runtime.

z/OS Batch Considerations

This section discusses some general considerations when installing EGL-generated
programs in the z/OS batch environment.

DL/I Considerations
If the installation has programs that use DL/I databases, follow these steps:

1. Install the correct version of IMS. For more information on the correct version
of IMS, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Define databases and PSBs to IMS as described in the IMS utilities reference
document.

3. Follow the optional DL/I-related steps for Rational COBOL Runtime
installation as described in the Program Directory for Rational COBOL Runtime for
zSeries.

DB2 Considerations
If the installation has programs that use relational databases, do the following:

1. Install the correct version of DB2. For more information on the correct version
of DB2, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the programs will access.

3. Follow the optional DB2-related steps for Rational COBOL Runtime installation
as described in the Program Directory for Rational COBOL Runtime for zSeries.

4. Define DB2 plans or packages as described in the DB2 installation and
operation guides.

CICS Installation Considerations

This section discusses some general considerations when installing EGL-generated
programs in the CICS environment.

DL/l Considerations

If the installation has programs that gain access to DL/I databases, you must do

the following:

1. Install the correct version of IMS. For more information on the correct version
of IMS, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

© Copyright IBM Corp. 1994, 2006 11

12

2. Define databases and PSBs to IMS as described in the IMS utilities reference
document.

3. Follow the optional DL/I-related steps for Rational COBOL Runtime
installation as described in the Program Directory for Rational COBOL Runtime for
zSeries.

4. Add DL/I support to CICS and define databases and PSBs to CICS as
described in the resource definition and installation and operation guides or in
the IMS database control guide.

DB2 Considerations

If the installation has programs that gain access to relational databases, do the

following:

1. Install the correct version of DB2. For more information on the correct version
of DB2, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the programs use.

3. Follow the optional DB2-related steps for Rational COBOL Runtime installation
as described in the Program Directory for Rational COBOL Runtime for zSeries.

4. Add DB2 support to CICS and define DB2 plans or packages to CICS as
described in the DB2 system administration guides.

Security Considerations

CICS provides access control to resources (such as data files and programs) and
transactions. This access can be controlled by the user or by the terminal.

CICS resources (such as data files, programs, destinations, journals, and temporary
storage) can be assigned a security lock value. CICS users are assigned one or
more key values. If a user is running a CICS transaction that is defined for
resource security checking, the user’s keys are checked every time a resource is
requested. If the user does not have a key that matches the lock, access is denied
by ending the transaction with an AEY7 ABEND code.

Monitoring and Tuning

Use CICS monitoring facilities to get information about CICS tasks.

Refer to the performance guide for your release of CICS for more information.

CICS Utilities

In the CICS environment, the Rational COBOL Runtime includes a set of utilities to
assist in managing the error diagnosis and control facilities of the Rational COBOL
Runtime environment. These utilities are EGL COBOL programs. See
ICICS Utilities Menu” on page 121| for more information about these utilities.

Client / Server Processing Considerations

EGL programs can use the benefits of client / server processing in the CICS
environment. Client / server programs are developed like any other EGL program.
Client / server processing is built on the call, sysLib.startTransaction(), and file
I/0 statements. You can define a program so that it calls a program on a remote
CICS system. In addition, if the runtime environment is CICS, you can define a
program so that it starts an asynchronous transaction on a remote CICS system or

IBM Rational COBOL Runtime Guide for zSeries

gains access to a file on a remote CICS system. Refer to the callLink, asynchLink,
and fileLink elements of linkage options part in the EGL Generation Guide for
additional information about remote calls, remote asynchronous transactions, and
remote file access.

Using the data Build Descriptor Option

Set the data build descriptor option to 24 on generated COBOL programs to enable
calls from the generated program to programs using 24-bit addresses, as long as
the length of the COBOL dynamic storage (as defined in the COBOL
working-storage section) required for the application is less than 64 KB. Programs
whose dynamic storage requirements are greater than 64 KB must be compiled
with the data build descriptor option set to 31. Otherwise, COBOL ends the
program with a 1009 ABEND code.

Note: The build scripts and procedures shipped with the Rational COBOL
Runtime enables the data build descriptor option to control the value for the
COBOL DATA compiler option. The data build descriptor option is set to 31
as the default for the CICS environment.

Modifying CICS Resource Definitions

CICS uses resource definitions to identify startup parameters, transactions,
programs, files, databases, transient data destinations, and system locations for
proper operation. The application developer must add or modify these definitions
to correctly identify all objects to be used in the new or changed application.

To generate model resource definition online (RDO) program and transaction
definitions, specify the cicEntiries build descriptor option with a value of RDO.

The CICS system initialization table needs to include EXEC=YES.

Add any transaction that invokes a program that uses DB2 to the resource control
table (RCT) with the appropriate plan name. You can also use a resource definition.

Using Spool Files
To use the spool files, include the SPOOL=YES parameter in the System
Initialization Table (SIT).

Terminal Considerations

Terminals used with EGL must have their alternate screen size either specified
correctly in the alternate screen parameter of the TYPETERM definition, or omitted
so the default of the primary screen size is used. An alternate screen size
specification of (0,0) is not valid.

Any terminal defined as UCTRAN=YES in the TYPETERM definition and used for
running pseudoconversational transactions might give different results than a
terminal that is defined without UCTRAN=YES.

Any terminal used in a program that is the target of a transfer to transaction
statement must have ATI=YES and TTI=YES specified in the TYPETERM
definition.

Temporary Storage
Temporary storage queues used by the Rational COBOL Runtime must be defined
as nonrecoverable. These queues start with X'EE".

Chapter 3. Installation Considerations 13

IMS Installation Considerations

14

This section discusses some general considerations when installing EGL-generated
programs in the IMS environment.

IMS/ESA Exploitation

The procedures shipped with the Rational COBOL Runtime cause the generated
COBOL programs to be compiled with the data="31" build descriptor option and
linked in AMODE(31) and RMODE(ANY). If the program calls another program
that is linked with AMODE(24), then the data="24" build descriptor option is
required.

You can link the generated COBOL program to run below the 24-bit line. However,
if AMODE(24) is used to link the program, you must use the data="24" build
descriptor option for the following situations:

* For a program that calls another program that is linked as AMODE(24)

* For the first program in the run unit, if any generated program in the run unit is
linked as AMODE(24) or if a non-EGL program that uses DL/I is linked as
AMODE(24)

* For a table or form services program, if any program being used is linked as
AMODE(24)

DB2 Considerations

If the installation has programs that gain access to relational databases, do the

following:

1. Install the correct version of DB2. For more information on the correct version
of DB2, see Program Directory for Rational COBOL Runtime for zSeries. This
publication comes with the product or can be accessed from the IBM
Publications Center at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi.

2. Create the tables in the relational database that the programs will access.

3. Follow the optional DB2-related steps for Rational COBOL Runtime installation
as described in the Program Directory for Rational COBOL Runtime for zSeries.

4. Add DB2 support to IMS and define DB2 plans or packages to IMS as
described in the DB2 system administration guide.

Security Considerations

Resource Access Control Facility (RACF®) can be used to control users authority to
each transaction.

Monitoring and Tuning

Potential performance problems can be tracked before they occur by checking
processing statistics on a regular basis. The following are some of the statistics to
monitor:

* Use the IMS monitor facilities to check transaction utilization. Consider
preloading applications or groups of applications that are frequently used.

* Use the IMS database monitor facilities to check how effectively the databases
are performing and using space.

Refer to the IMS system administration document and the database administration
guide for the release of IMS for additional information on monitoring the IMS
online system and DL/I databases.

IBM Rational COBOL Runtime Guide for zSeries

IMS System Definition

If you plan to use IMS, define all PSBs and transactions in the IMS system
definition. In addition, define DL/I application databases.

IMS Control Region

You might need to review the values for the following:

* PSB work area pool (PSBW parameter)

* FORMAT pool (FBP parameter)

e MEFS test area (MFS parameter)

¢ Communications input/output area (TPDP parameter)

In addition, if a DL/I work database is used, the work database must be added to
either the control region JCL or to the dynamic allocation table.

Work Database

The work database is used to save the status of an EGL program during a
converse statement, and to pass information during certain types of
program-to-program message switches. The work database can be either a DL/I
database or a DB2 table. The application developer specifies the workDBType
build descriptor option when generating a program to determine which type of
database is to be used. A DL/I or DB2 work database is used only for Rational
COBOL transaction applications that are generated for the IMS/VS target
environment. In general, a DL/I work database performs better than a DB/2 work
database.

Multiple DL/I or DB2 work databases can be installed. Use separate databases for
each application system to improve performance or data availability.

DL/l Work Database Considerations

If you plan to use a DL/I implementation for the work database, you might need
to tailor the database description (DBD) before running the job that creates and
initializes the DL/I work database.

DB2 Work Database Considerations

If you plan to use a DB2 implementation for the work database, review the
database definition before running the job that initializes the DB2 work database. A
DB2 synonym needs to be created for each user and program gaining access to the
DB2 work database.

The DB2 work database requires a 32 KB page size. If a DB2 work database is
used, you might need to increase the allocation of the 32 KB buffers. To increase
the allocation of buffers, modify and assemble the DB2 parameter module (default
is DSNZPARM). Refer to the DB2 documents for the system for additional
information.

If you select DB2, a DB2 plan for each transaction is needed even if the EGL
program itself does not require DB2.

If you select DB2 and if the Rational COBOL Runtime needs maintenance applied
to the module that handles the DB2 work database access, bind the DB2 plans
again for all transactions that use this database.

There are also considerations with the DB2 authorization used by the IMS program
that is gaining access to the DB2 work database. For example, authorization needs
to be granted to LTERM and a synonym needs to be created.

Chapter 3. Installation Considerations 15

16 IBM Rational COBOL Runtime Guide for zSeries

Chapter 4. Customizing Rational COBOL Runtime

Before starting the customization process, determine the following:

* The target environments that application developers specify during generation
* Whether the programs use relational databases, hierarchical databases, or both.
e The IMS work database and terminal types

* The national language support requirements

General Customization Considerations for z/OS

The following sections discuss some general considerations for running
EGL-generated programs in the supported z/OS environments.

Customizing Rational COBOL Runtime

Customizing Rational COBOL Runtime consists of performing some of the same
procedures used to install the product on the system. These procedures are
described in the Program Directory for Rational COBOL Runtime for zSeries.

Security Considerations

The Rational COBOL Runtime does not provide security services. Standard system
or database manager security functions can be used with generated COBOL
programs in the same way that they are used with customer-developed COBOL
programs.

For example, if the EGL programs use DB2, define DB2 plans and give run
authority to those users that are authorized to use the programs associated with
the plan. The Resource Access Control Facility (RACF) can also be used to grant
users authority to read or update files.

Performance Considerations

Other chapters in this book provide detailed information on considerations that
affect performance. See the following chapters for information on these
performance-related topics and others:

Performance Topic Where to Find Info

Build descriptor options + [Chapter 5, “General System Considerations|
for z/0S Systems,” on page 27|

Placing Rational COBOL Runtime product « [Chapter 5, “General System Considerations|
and generated application modules in for z/0OS Systems,” on page 27]
memory

Residency and work-database considerations |, [Chapter 6, “System Considerations for]

ICICS,” on page 33

+ [Chapter 8, “System Considerations for|
IMS,” on page 51|

Monitoring and tuning tools + [Chapter 6, “System Considerations for|
ICICS,” on page 33

+ [Chapter 8, “System Considerations for|
IMS,” on page 51

© Copyright IBM Corp. 1994, 2006 17

Customizing Build Scripts

The Rational COBOL Runtime includes build scripts used for preparing generated
programs for running. These build scripts can be customized to meet any data set
naming conventions. Refer to the EGL Generation Guide for additional information.

Modifying the Language Environment Runtime Option

In the non-CICS environments, generated COBOL programs rely on COBOL
working storage being initialized to binary zeros to determine whether COBOL
Runtime is initialized. For Language Environment (LE), this is done by specifying
STORAGE=((00)) in the CEEDOPT CSECT.

The modified runtime options modules must be in a library allocated to the
STEPLIB or placed in the link pack area or in a library managed by the Virtual
Lookaside Facility and Library Lookaside features of z/OS for each non-CICS
z/0S environment. If those modules are in a separate library, the library must
precede the library that contains the unmodified modules.

Alternatively, these options can be set for each program by creating a CEEUOPT
load module with these options set as listed above and link-editing this modoule
with each generated COBOL program. Refer to the Language Environment
documentation for more information on creating and using a CEEUOPT module to
set runtime options.

Using Generated Programs with PL/I Programs

If PL/I programs are used with generated COBOL programs in a non-CICS
environment, you must generate the COBOL program to invoke the PL/I program
using a static COBOL call. This requires the PL/I programs to be linked with the
COBOL program in the same load module.

If PL/I programs are used with generated COBOL programs in the CICS
environment, you must generate the COBOL program to call the PL/I program
using the CICS LINK command. This is the default linkage for the CICS
environment. The calling and called programs must not be linked together for the
CICS environment.

Refer to the EGL Generation Guide for additional information.

Installation and Language-Dependent Options for z/0S

The following are the installation options required for z/OS. To change the
defaults, use the steps outlined in the Program Directory for Rational COBOL
Runtime for zSeries (GI10-3377-00) to specify new settings. This document also
provides instructions on customizing the Runtime Default Options and Language
Dependent Options.

Table 7. Installation options for z/OS

Question Default Your Selection
Rational COBOL Runtime Default

Options

Default language code ENU

Bypass date edit on EOF NO

Rational COBOL Runtime trace buffer 64
size

18 IBM Rational COBOL Runtime Guide for zSeries

Table 7. Installation options for z/OS (continued)

Question

Default

Your Selection

CICS! temporary storage control 16

interval size

The next table lists the national languages that are supported for these purposes:

* To present Rational COBOL Runtime messages on zSeries

* To present program-specific user messages based on the EGL msgTablePrefix

property.

The code page for the language you specify must be loaded on your target

platform.

Table 8. National language codes

Code Languages

CHS Simplified Chinese
CHT Traditional Chinese
DES Swiss German
DEU German

ENP Uppercase English
ENU US English

ESP Spanish

FRA French

ITA Ttalian

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

The following are the language-dependent options required for z/OS. One code is

needed for each national language you install. The default values vary for each

language.

Table 9. Rational COBOL Runtime National Language Dependent options for z/OS

Question Default Your Selection
National language code (US English) ENU

Long Gregorian date format MM/DD/YYYY

Short Gregorian date format MM/DD/YY

Long Julian date format YYYY-DDD

Short Julian date format YY-DDD

Conversion table name ELACNENU

Positive response character string YES

Negative response character string NO

Decimal point character

Chapter 4. Customizing Rational COBOL Runtime

19

Table 9. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection
Numeric separator character ,

Currency symbol $

SQL host variable indicator

SQL host column indicator !

National language code (Simplified Chinese) CHS

Long Gregorian date format YYYY-MM-DD
Short Gregorian date format YY-MM-DD
Long Julian date format YYYY-DDD
Short Julian date format YY-DDD
Conversion table name ELACNCHS
Positive response character string YES

Negative response character string NO

Decimal point character

Numeric separator character ,

Currency symbol $

SQL host variable indicator

SQL host column indicator !

National language code (Traditional Chinese) CHT

Long Gregorian date format YYYY-MM-DD
Short Gregorian date format YY/MM/DD
Long Julian date format YYYY-DDD
Short Julian date format YY-DDD
Conversion table name ELACNCHT
Positive response character string YES

Negative response character string NO

Decimal point character

Numeric separator character ’

Currency symbol $

SQL host variable indicator

SQL host column indicator !

National language code (Swiss German) DES

Long Gregorian date format DD.MM.YYYY
Short Gregorian date format DD.MM.YY
Long Julian date format YYYY.DDD

20 IBM Rational COBOL Runtime Guide for zSeries

Table 9. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection
Short Julian date format YY.DDD
Conversion table name ELACNDES
Positive response character string YES
Negative response character string NO

Decimal point character ,

Numeric separator character

Currency symbol $

SQL host variable indicator

SQL host column indicator !

National language code (German) DEU

Long Gregorian date format DD.MM.YYYY
Short Gregorian date format DD.MM.YY
Long Julian date format DDD/YYYY
Short Julian date format DDD/YY
Conversion table name ELACNDEU
Positive response character string YES
Negative response character string NO

Decimal point character ,

Numeric separator character

Currency symbol $

SQL host variable indicator

SQL host column indicator !

National language code (Spanish) ESP

Long Gregorian date format DD/MM/YYYY
Short Gregorian date format DD/MM/YY
Long Julian date format DDD/YYY
Short Julian date format DDD/YY
Conversion table name ELACNESP
Positive response character string SI

Negative response character string NO

Decimal point character ,

Numeric separator character

Currency symbol $

SQL host variable indicator

Chapter 4. Customizing Rational COBOL Runtime

21

Table 9. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection
SQL host column indicator !

National language code (French) FRA

Long Gregorian date format MM/DD/YYYY
Short Gregorian date format MM/DD/YY
Long Julian date format DDD/YYYY
Short Julian date format DDD/YY
Conversion table name ELACNFRA
Positive response character string OUI
Negative response character string NAN
Decimal point character ,

Numeric separator character

Currency symbol $

SQL host variable indicator

SQL host column indicator !

National language code (Italian) ITA

Long Gregorian date format MM/DD/YYYY
Short Gregorian date format MM/DD/YY
Long Julian date format DDD/YYYY
Short Julian date format DDD/YY
Conversion table name ELACNITA
Positive response character string SI

Negative response character string NO

Decimal point character ,

Numeric separator character

Currency symbol $

SQL host variable indicator

SQL host column indicator !

National language code (Japanese) JPN

Long Gregorian date format YYY-MM-DD
Short Gregorian date format YY-MM-DD
Long Julian date format YYYY-DDD
Short Julian date format YY-DDD
Conversion table name ELACN]JPN
Positive response character string YES

22 IBM Rational COBOL Runtime Guide for zSeries

Table 9. Rational COBOL Runtime National Language Dependent options for z/OS (continued)

Question Default Your Selection
Negative response character string NO

Decimal point character

Numeric separator character ,

Currency symbol $

SQL host variable indicator

SQL host column indicator !

National language code (Korean) KOR

Long Gregorian date format MM/DD/YYYY
Short Gregorian date format MM/DD/YY
Long Julian date format DDD/YYYY
Short Julian date format DDD/YY
Conversion table name ELACNKOR
Positive response character string YES
Negative response character string NO

Decimal point character

Numeric separator character ’

Currency symbol $

SQL host variable indicator

SQL host column indicator !

National language code (Brazilian Portuguese) PTB

Long Gregorian date format DD/MM/YYYY
Short Gregorian date format DD/MM/YY
Long Julian date format DDD/YYYY
Short Julian date format DDD/YY
Conversion table name ELACNPTB
Positive response character string SIM
Negative response character string NAO
Decimal point character ,

Numeric separator character

Currency symbol $

SQL host variable indicator

SQL host column indicator

Chapter 4. Customizing Rational COBOL Runtime

23

Upper case English (ENP) is also supported. It has the same defaults as ENU,
except the conversion table name is ELACNENP.

24 IBM Rational COBOL Runtime Guide for zSeries

Part 2. Administering on z/OS Systems

Chapter 5. General System Considerations for
z/0S Systems .
Considerations that Affect Performance .
Build Descriptor and Compiler Options .
Modules in Memory .
Files and Databases.
Defining and Loading VSAM Program Data Frles
Defining VSAM Data Sets S
Defining an Alternate Index .
Loading Data in the Files.
Support for DBCS terminals . .
Extended Addressing Considerations for Rat1onal
COBOL Runtime
DB2 Considerations
Preparing Programs .
Checking Access Authorlzat10n
Backing Up Data . .
Customizing Rational COBOL Runtrme .

Chapter 6. System Considerations for CICS
Required File Descriptions .
Segmented and Nonsegmented Processmg

Using Transient Data Queues for Printing in z/OS
CICS

z/0S CICS termmal prmtmg .

Special Parameter Group for the FZETPRT

Program . o
PRTBUF Parameter
PRTMPP Parameter.

PRTTYP Parameter .
FORMEFD Parameter .

CICS Entries for FZETPRT (DBCS only)

Using the New Copy Function . .
Specifying Recovery Options in the CICS Tables .
Considerations that Affect Performance .

Residency (Modules in Memory) Consrderatmns
Virtual Storage Considerations and Residency

Work Database Temporary Storage Queue

Considerations e

Terminal Printing

Using and Allocating Data Frles in CICS

Defining and Loading VSAM Data Files .
Adding the Job Control Statements
Adding the File Name to the CICS File
Control Table . e

Using Remote Files . .

Defining Transient Data Queues .
Defining Intrapartition Transient Data
Defining Extrapartition Transient Data

Considerations for Using DB2 in CICS

Associating DB2 Databases with CICS

Transactions . .

Recovery and Database lntegrrty Consrderatrons

Considerations for Using DL/I in CICS .
Recovery and Database Integrity Considerations
Setting up the National Language .

© Copyright IBM Corp. 1994, 2006

.27
. 27
. 27
. 28
. 28
. 28
.28
. 29
. 30
. 31

.31
.32
.32
.32
.32
. 32

. 33
. 33
. 34

. 35
. 35

. 36
. 37
. 37
. 38
. 38
. 38
. 39
. 39
. 40

40

.41
.41
.42
.42
.42

.42
. 43
. 43
. 44
. 44
. 45

. 45

45

. 45

45

. 46

Chapter 7. System Considerations for z/0S
Batch . e
Required File Descrrptrons
Using VSAM Program Data F1les inz / OS Batch
Considerations for Using DB2 in z/OS Batch .
Recovery and Database Integrity Considerations
Considerations for Using DL/I in z/OS Batch .
Defining the Program Specification Block (PSB)
Recovery and Database Integrity Considerations
Performance Considerations for z/OS Batch
Runtime JCL .

Chapter 8. System Considerations for IMS .
Required File Descriptions
Defining the Program Specrfrcat1on Block (PSB)
Processing Modes e
Printing Considerations for IMS . .
Recovery and Database Integrity Consrderatmns .
Considerations that Affect Performance .
Residency Considerations and the IMS Preload
Function .
Preloading Ratronal COBOL Runtlme Modules
Loading Rational COBOL Runtime Modules
into the Link Pack Area e
Preloading Generated Programs
Database Performance . .
Limiting MFS Control Blocks .
Monitoring and Tuning the IMS System
Considerations for Using DB2 in IMS. .
Recovery and Database Integrity Considerations
Checking Authorization
Considerations for Using DL/I in IMS .
Recovery and Database Integrity Considerations
Maintaining the Work Database in IMS . .
Deleting Old Records from the Work Database
DL/I Work Database e
DB2 Work Database .
Expanding the Work Database .
DL/I Work Database
DB2 Work Database
Supporting Multiple Work Databases
DL /I Work Databases . .
DB2 Work Databases
Considerations for Message Format Serv1ces in IMS

. 47
. 47
. 48
. 48

. 48

48

.49
. 49

. 51
. 51
. 52
. 53
. 53
. 54
. 54

. 54

. 55
. 56
. 56
. 56
. 57
. 57

57

. 57
. 58

58

. 58
. 58
. 59
. 59
. 60
. 60
. 61
. 63
. 63
. 63

64

25

26 IBM Rational COBOL Runtime Guide for zSeries

Chapter 5. General System Considerations for Z/OS Systems

This chapter describes the system requirements and considerations for
administering the Rational COBOL Runtime in all of the supported z/OS
environments.

This chapter contains the following topics:

* Considerations that affect performance

* Defining and loading VSAM program data files

¢ Support for DBCS terminals

¢ Extended addressing considerations for Rational COBOL Runtime
* DB2 considerations

* Backing up data

* Customizing Rational COBOL Runtime

Considerations that Affect Performance

Specifying certain build descriptor and compiler options and making reentrant
programs resident in memory can affect the performance of EGL-generated
programs.

Build Descriptor and Compiler Options

Setting the following build descriptor options may improve runtime performance:
e checkNumericOverflow="NO"
* fillWithNulls="NO"

* initlORecords="NO"

* initNonIOData="NO"

* leftAlign="NO"

¢ math="COBOL"

* setFormItemFull="NO"

* spacesZero="NO"

* sqlErrorTrace="NO"

* sqlIOErrorTrace="NO"

* statementTrace="NO"

* validateMixedItems="NO"
 validateOnlyIfModified="YES"

Specifying the following compiler options also may improve runtime performance:
+ NOFDUMP

* NOSSRANGE

* NOTEST

* OPT

Note: Refer to the Enterprise COBOL for z/OS documentation for details on these
compiler options.

Setting the following build descriptor options may improve generation
performance:

* sqlStatements="YES"

* debugTrace="NO"

© Copyright IBM Corp. 1994, 2006 27

Modules in Memory

Placing load modules in memory can improve performance by reducing the
number of I/O operations (EXCPs). Load modules can be placed in memory by
using the features of z/OS or the features of the environment in which you are
running. Refer to the appropriate performance consideration sections for more
detailed information about improving performance in a particular runtime
environment.

General z/OS* methods to place load modules in memory are listed below:

* Place modules in the link pack area (LPA). Some of the modules that are
shipped with the Rational COBOL Runtime are reentrant and can be placed in
the LPA. Refer to the Program Directory for Rational COBOL Runtime for zSeries
(GI10-3241-00) for information about modules that are reentrant and LPA
eligible.

Generated programs, online print-service programs, form group format modules,
and shared data tables are also reentrant and can be included in the LPA.

* Manage the Rational COBOL Runtime data sets and the data sets containing the
generated programs, online print services programs, form group format
modules, and shared data tables. Use the Virtual Lookaside Facility (VLF) and
the Library Lookaside (LLA) features of z/OS. Those features can place both the
load modules and the partitioned data set (PDS) directories in memory.

Note: The STEPLIB library is searched first. For the z/OS methods, the load
module (for LPA) or the data set (for VLF/LLA) cannot be contained in the
STEPLIB concatenation list.

Files and Databases

Standard tuning techniques (such as buffering) can be used with files and
databases used by generated COBOL programs.

Defining and Loading VSAM Program Data Files

28

This section describes how to define and load VSAM data sets for use as program
data files in the CICS, IMS BMP, or z/OS batch environment. The section contains
the following information:

* Defining VSAM data sets

* Defining an alternate index

* Loading data into the files

Defining VSAM Data Sets

VSAM data files can be serial (ESDS), relative (RRDS), or indexed (KSDS) files. Use
the IDCAMS program to define a user VSAM data file.|Figure 1 on page 29 shows
example JCL that can be used to define the VSAM files.

IBM Rational COBOL Runtime Guide for zSeries

//DEFVSAM JOB ...

//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD =*

/* THE FOLLOWING SAMPLE DEFINES A =/
/* VSAM INDEXED FILE */

DEFINE CLUSTER (NAME(ELA1.USER.KSDS) -
VOL (xXXXXX) -
CYLINDERS (pp ss) -
KEYS(1 d) -
RECORDSIZE (aaa mmm) -
INDEXED)

/* THE FOLLOWING SAMPLE DEFINES A VSAM =/
/* NUMBERED RELATIVE RECORD FILE */

DEFINE CLUSTER (NAME(ELA1.USER.RRDS) -
VOL (xxxxxX) -
CYLINDERS (pp ss) -
RECORDSIZE (aaa mmm) -
NUMBERED)

/* THE FOLLOWING SAMPLE DEFINES A VSAM =/
/* ESDS FILE */

DEFINE CLUSTER (NAME(ELA1.USER.ESDS) -
VOL (XXXXXX) -
CYLINDERS (pp ss) -
RECORDSIZE (aaa mmm) -
NONINDEXED)

where:

xxxxxx Specifies a valid volume serial number

pr Specifies the primary number of cylinders to be allocated
ss Specifies the secondary number of cylinders to be allocated
1 Specifies the length of the key

d Specifies the offset of the key

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 1. Defining VSAM Data Files

Defining an Alternate Index

An alternate index provides you with another way of gaining access to the records
in a given KSDS file. Using a secondary key eliminates the need for you to keep
several copies of the same information organized in different ways for different
programs.

To gain access from an alternate index to the file through its prime index (base
cluster), you must define a path to it. The path sets up an association between the
alternate index and the base cluster, allowing the records in the data set to be
available to you in different sequences. The alternate index is built after the base
cluster is defined.

Chapter 5. General System Considerations for z/OS Systems 29

30

shows example IDCAMS definition commands for the base cluster and the
alternate index cluster for an indexed file.

DEFINE CLUSTER (NAME(VSAM.KSDS.BASE.FILE) -
VOLUMES (xxxxxx) -
CYLINDERS (pp ss) -
KEYS(1 d) -
RECORDSIZE (aaa mmm) -
INDEXED)

DEFINE ALTERNATEINDEX (NAME(VSAM.KSDS.ALT.INDEX) -
KEYS(1 d) -
CYLINDERS (pp ss) -
RELATE (VSAM.KSDS.BASE.FILE) -
VOLUMES (xxxxxx))

DEFINE PATH(NAME (VSAM.KSDS.ALT.INDEX.PATH) -
PATHENTRY (VSAM.KSDS.ALT.INDEX))

BLDINDEX INDATASET(VSAM.KSDS.BASE.FILE) -
OUTDATASET (VSAM.KSDS.ALT.INDEX)

where:

xxxxxx Specifies a valid volume serial number

PP Specifies the primary number of cylinders to be allocated
ss Specifies the secondary number of cylinders to be allocated
1 Specifies the key length

d Specifies the key displacement

aaa Specifies the desired average record length

mmm Specifies the maximum record length

Figure 2. Defining the Base Cluster and the Alternate Index Cluster

Loading Data in the Files

If you are using a VSAM indexed file (KSDS) and you want to open it for input
only, initialize the file with at least one record. The file must have at least one
record because a VSAM restriction prevents a file from being opened for input if
the file is empty. While an empty file might be opened for output or both input
and output, it must contain data to be opened for input.

There are several ways that you can put data into a file. One way is to create an
EGL program that uses an add statement to add records to an empty serial file.
Once the program ends, you can use the IDCAMS REPRO command to copy the
serial file into an indexed file.

Another way is to write a program that uses an add statement to add records to an
empty indexed file. You must close the file in order to make the new records
accessible.

Another way to initialize a VSAM KSDS file is to use a utility program shipped
with the Rational COBOL Runtime product. This utility can be used to initialize
the key of a VSAM KSDS file. [Figure 3 on page 31| shows how to initialize a VSAM
KSDS file by setting the key to hexadecimal zeros.

IBM Rational COBOL Runtime Guide for zSeries

//LOAD JOB...

//JOBLIB DD DSN=ELA.VXRXMO.SELALMD,DISP=SHR

//INITK EXEC PGM=FZEZREBO,PARM="I,KSDS'

//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,BLKSIZE=121,RECFM=FB)

//KSDS DD DSN=USER.KSDS,DISP=SHR
//SYSIN DD DUMMY

Figure 3. Initializing a VSAM KSDS File

You can also use the IDCAMS utility to load initial data into an indexed file.
shows an example of loading data into a VSAM KSDS file. The data
contained in the USER.KSDS.INPUT file is loaded into the USER.KSDS data set.

//JOB KSDSLOAD
//LOAD EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
REPRO INDATASET('USER.KSDS.INPUT') OUTDATASET('USER.KSDS')
/*
//

Figure 4. Loading a VSAM KSDS File

Support for DBCS terminals

Rational COBOL Runtime provides support for the IBM Personal System/55 and
the IBM 5550 family of terminals (emulating an IBM 3270 device). In addition to
the basic hardware, this support uses character set F8 and four hardware attributes
for double-byte character set (DBCS). The extended attributes are shift-out (5O)
and shift-in (SI) enable, field outlining, color, and extended highlighting.

For the CICS environment, Rational COBOL Runtime sends hardware attributes to
the terminal only if the terminal supports them. The attributes are ignored if the
terminal does not support them.

The IMS environments use the Message Format Services (MFS) to support terminal
and printer maps. During generation, you can use the mfsDevice ,
mfsExtendedAttr, and mfsIgnore build descriptor options to specify device
characteristics for all devices that use a form group. Refer to the EGL Generation
Guide for more details. Unpredictable results can occur if attributes are used that
are not supported by the hardware. See [“Considerations for Message Format]
Services in IMS” on page 64 for additional information concerning the message
format services options.

Extended Addressing Considerations for Rational COBOL Runtime

Some of the code provided with Rational COBOL Runtime can run in extended
addressing mode. This section describes considerations for using the extended
addressing mode.

Most of the code shipped with Rational COBOL Runtime runs in 31-bit addressing
mode and resides above the 16MB line.

Most of the storage acquired by Rational COBOL Runtime is above the 16MB line
unless the first EGL program in the run unit is link-edited with AMODE(24) or
generated with the data build descriptor option set to 24. The AMODE(24)
program attribute specifies that the program runs in 24-bit addressing mode.

Chapter 5. General System Considerations for z/OS Systems 31

DB2 Considerations

This section discusses preparing programs and checking access authorization to
database resources when using DB2 on z/OS systems.

Preparing Programs

Before running a program, the SQL* statements need to be analyzed and prepared.
If you use DB2, you also need to bind the DB2 program plan.

Note: Both of the above tasks are performed by the Rational COBOL Runtime
build process.

If your programs run in the z/OS batch or IMS BMP environments, you might also
need to tailor the runtime JCL templates. Refer to the EGL Generation Guide for
additional information on tailoring runtime JCL templates.

Checking Access Authorization

The database manager checks whether program users have the authority to access
tables or run programs. The type of checking done varies depending on your
system and the processing mode.

When accessing DB2 in generated COBOL programs, program users must be
authorized to run the corresponding DB2 program plan and package.

DB2 requires an authorization identifier to ensure that program users have the DB2

authority to perform operations on the database and tables. The type of

authorization checking done depends on whether the processing mode is static or

dynamic. The authorization identifier of the program developer performing the

BIND command is used for static SQL statements; the authorization identifier of

the program user is used for dynamic SQL statements. Generated COBOL

programs use dynamic SQL statements in either of two cases:

* The SQL statement is in an EGL prepare statement

¢ The EGL statement uses an SQL record, and a host variable identifies the SQL
table name associated with that record

Any other SQL statements in the program are static statements. Refer to the DB2
administration manual for more information on the various ways the authorization
identifier value is set.

Backing Up Data

You should regularly back up your data. This includes all files related to Rational
COBOL Runtime, private libraries, user-created data files, and user load libraries.
System services are provided to back up and restore user libraries.

Customizing Rational COBOL Runtime

32

Customizing Rational COBOL Runtime consists of performing some of the same
procedures used to install the product on the system. These procedures are
described in the Program Directory for Rational COBOL Runtime for zSeries®
(GI10-3377-00). The program directory contains information on changing system
options

IBM Rational COBOL Runtime Guide for zSeries

Chapter 6. System Considerations for CICS

This chapter provides additional system requirements and considerations for
administering Rational COBOL Runtime in the CICS environment.

The following information is discussed:

* Required file descriptions

* Segmented and nonsegmented processing
* Using transient data queues for printing

* z/0S CICS terminal printing

* Using the new copy function

* Specifying recovery options in th eCIC tables
* Considerations that affect performance

* Using and allocating data files

* Considerations for using DB2

* Considerations for using DL/I

* Setting up the National Language

Required File Descriptions

Rational COBOL Runtime requires the following files:

File Name
Description

ELAD This transient data queue is the default destination for Rational COBOL
Runtime error messages. Rational COBOL Runtime produces error
messages when it detects an error that prevents a program from
continuing.

The ELAD transient data queue is defined when Rational COBOL Runtime
is installed. If you want to direct error messages for different transactions
to different queues, define the other queues with the same characteristics
as ELAD. Use the error diagnostic utility ELAC to direct error messages to
the required queue. See the description of the utility in|“Diagnostic Control|
Options for z/OS CICS Systems” on page 125 for more information.

ELACFIL
This is the error diagnostic control file. This file is created during
customization.

ELAT This transient data queue is the destination for Rational COBOL Runtime
trace records.

If requested, Rational COBOL Runtime can create trace records for selected
runtime operations. The ELAT transient data queue is defined when

Rational COBOL Runtime is installed. For details, see [Chapter 20, “Rational|
ICOBOL Runtime Trace Facility,” on page 155.|

ELATOUT
This file is associated with the ELAT transient data queue at installation
time. The output of the Rational COBOL Runtime trace facility is sent to
this data set. The attributes of this data set are DSORG=PS, LRECL=133,
BLKSIZE=1330, RECFM=FBA.

EZEPRINT
The file that you associate to the Rational COBOL file name PRINTER at

© Copyright IBM Corp. 1994, 2006 33

resource association will be used when printing from a program that
displays print forms. This file can be defined with a file type of SPOOL or
TRANSIENT. This file is normally associated with the transient data queue
PRIN.

If you installed Rational COBOL Runtime as described in the Rational
COBOL Runtime program directory, PRIN is defined as an indirect
destination associated with the system printer. The maximum record length
that a generated program writes to the system printer is 650 bytes for
double-byte character set (DBCS) print forms and 133 bytes for single-byte
character set (SBCS) print forms. The first byte is an American National
Standards printer control character. The DBCS record length is longer than
the physical printer line length because the print record can contain
outlining and shift-out/shift-in (SO/SI) control characters that do not
appear on the device.

If you are using Rational COBOL Runtime to print to a file destination
other than PRIN, the characteristics of that file should be the same as
PRINTER.

EZEPRMG
This VSAM indexed file (KSDS) contains the parameter group records used
for print control options for the Rational COBOL Runtime terminal printer
utility, FZETPRT. The FZETPRT program reads this file searching for the
parameter group matching the transaction name that started FZETPRT.

See [“Special Parameter Group for the FZETPRT Program” on page 36|for a
description of the print parameters. See [“Using the Parameter Group|
[Utility for z/OS CICS Systems” on page 129 for more information about
maintaining this special parameter group.

Segmented and Nonsegmented Processing

34

Generated EGL textUI programs can issue a converse statement in either
nonsegmented (CICS conversational) or segmented (CICS pseudoconversational)
mode. When a converse statement is run in segmented mode or when a show
statement is run, the current transaction ends and the program status is saved in a
temporary storage queue until the terminal input is received. The build descriptor
option workDBType specifies whether a main or auxiliary temporary storage
queue is used. The temporary storage queues are deleted at the end of the run
unit. The storage queue names have the following format:

xyyytttt

where:

X Specifies a byte with the hex value X'EE'

yyy Specifies WRK (program working storage) or MSG (current form saved
across help or error display)

tttt Specifies the terminal ID associated with the transaction

For details on segmentation, refer to the EGL help system.

IBM Rational COBOL Runtime Guide for zSeries

Using Transient Data Queues for Printing in z/OS CICS

Printed output destined for a transient data queue is accumulated in temporary
storage. The temporary storage queue name has the following format:

ttttnnnn

where:
tttt Is the transient data queue name
nnnn Is the EXEC Interface Block (EIB) task number

When a program ends, or a close statement is issued for a print map, or a
segmentation break occurs, Rational COBOL Runtime enqueues on a transient data
queue to prevent interspersed printing from other transactions. Rational COBOL
Runtime copies the printed output onto the transient data queue. The printed
output is in line character format with an American National Standards
printer-control character.

The default print destination for z/OS CICS is a transient data queue named PRIN.
If you installed Rational COBOL Runtime as described in the Rational COBOL
Runtime program directory, PRIN is an indirect destination associated with the
system printer. During program generation, this destination can be changed to any
4-character transient data queue name. The destination control table (DCT) entry
for the queue determines the actual destination. The destination can be the system
printer, a data set, or a terminal printer.

You can override the default destination at generation time by specifying the
alternate destination as the system resource name for the printer file. You can
change the print destination at run time by using the
converseVar.printerAssociation system variable. Refer to the EGL help system for
additional information on the converseVar.printerAssociation system variable.

EGL also provides a way of starting an asynchronous print task from a program
and controlling the print destination from the program starting the asynchronous
task. To do this, define the print task as a main basic program and generate it with
the printDestination="TERMINALID" build descriptor option. Use the
sysLib.startTransaction() system function to start the main basic program,
specifying the print destination in the sysLib.startTransaction() parameters. The
main basic program ignores the generated print destination and uses the
destination specified in the sysLib.startTransaction() system function. Refer to the
EGL help system for more information on the sysLib.startTransaction() system
function.

z/OS CICS terminal printing

The program called FZETPRT supports terminal printing. This program runs as a
CICS transaction that starts automatically when records are written to the transient
data queue. If Rational COBOL Runtime was installed as described in the Rational
COBOL Runtime program directory, the transaction name is EZEZ for IBM
5550-type printers and PRIN for all other printers. To send printed output to the
terminal, you must include a TYPE=INTRA for the transient data queue in the
CICS destination control table (DCT). Specify PRIN or EZEZ for the transaction ID
in the DCT entry. Unless you specify a terminal name in the DCT entry, the queue
identifier must be the same as the terminal printer identifier. The trigger level in
that entry must be set to 1 to ensure proper output. See [‘Printing Transient Data af]
la Terminal Device” on page 44| for a sample DCT entry.

Chapter 6. System Considerations for CICS 35

36

When the FZETPRT program is initiated, it reads a line from the transient data
queue, converts the American National Standards printer-control character to NL
EOM format, and writes to the terminal printer specified in the DCT entry. The
FZETPRT program buffers multiple print lines into a single CICS SEND command
to improve performance.

When using terminal printing with Rational COBOL Runtime, you should be
aware of potential problems regarding form-feed orders and page alignment. When
the FZETPRT program is triggered, a form-feed order is issued to the printer to
ensure that it begins printing at the top of a page. If a second form is sent to the
queue before it is emptied by the FZETPRT program, a form-feed order is not
issued before the second form is printed. Page alignment can vary depending on
the timing with which successive forms are sent to the queue.

Another potential problem can occur when printing successive forms. If one of the
forms in the series is defined with lines equal to, or one line fewer than, the
lines-per-page setting on the printer, a blank page occurs between the printed
forms. To avoid this, define the form size as 2 lines fewer than the lines-per-page
setting on the printer. Because the FZETPRT program inserts a newline order to
ensure that printing begins in column 1, the first line of the form to be printed is
actually printed on the second line of the page. The second line must be allowed
because a newline order is added after the last line of the form, which advances
the print head to the beginning of the next line. If this happens to be the first line
of the following page, the next form-feed order causes the page to be skipped
before printing resumes.

Another thing to consider is that although Rational COBOL Runtime sometimes
causes successive, stand-alone form-feed orders (“1”), the FZETPRT program
suppresses all but one of these in converting them to NL EOM format.

If these form-feed considerations are too restrictive for your needs, consider using
the FORMFD=NO parameter.

Special Parameter Group for the FZETPRT Program

You can provide terminal printing parameters to the FZETPRT program to vary the
printed output by using a special parameter group file.

The FZETPRT program attempts to read a file named EZEPRMG for a parameter
group that has the same name as the transaction used to start the FZETPRT
program. For example, if the print transaction that starts the FZETPRT program is
named PRIN, then FZETPRT tries to find the parameter group named PRIN. If the
parameter group is not located in a file named EZEPRMG, or if EZEPRMG does
not exist, then the FZETPRT program reads the DCAPRMG file to find the
parameter group associated with this transaction.

When the transaction starts, the FZETPRT program reads the parameter group and
varies the printer output according to the contents. If you need to use the terminal
printing parameters, create a parameter group using the Rational COBOL Runtime
utility provided for this purpose. See [‘Using the Parameter Group Utility for z/OY
ICICS Systems” on page 129 for more information about maintaining this special
parameter group

For this parameter group, you can specify the following four parameters:
¢ PRTBUF=xxx
¢ PRTMPP=nnn

IBM Rational COBOL Runtime Guide for zSeries

e PRITYP=D
* FORMFD=NO

Note: Do not include blanks between keywords and their associated values.

PRTBUF Parameter

Use the PRTBUF parameter to set the size of the printer buffer. The number of
SEND commands sent to the terminal printer depends on the size of the printer
buffer. The following example shows how to specify the buffer size using the
PRTBUF parameter:

PRTBUF=xxx

where:

XXX Is the size in bytes of the printer buffer

The FZETPRT program uses a default buffer size if any of the following conditions

occur:

¢ The parameter is not specified in the parameter group.

* There is no parameter group associated with the transaction.

¢ The parameter keyword is misspelled.

* The value specified is not valid (values greater than 8K bytes, smaller than 480
bytes, or not numeric).

e The EZEPRMG or DCAPRMG file does not exist or is not available.

The default buffer size is 2KB (where KB equals 1024 bytes) for the standard
character set printers and 480 bytes for LU type 3 printers.

For double-byte character set (DBCS) users the default buffer size and the
maximum buffer size allowed is 1918 bytes. The default value is used if your
specified value exceeds the maximum number of bytes.

When the buffer size is larger than the default, usage of the PRTBUF parameter is
optional. However, using the PRTBUF parameter is recommended to reduce the
number of SEND commands sent to the terminal. If the printer buffer size is
smaller than the default, specify the real buffer size using this parameter. Not
specifying the real buffer size can cause unpredictable results.

PRTMPP Parameter

Use the PRTMPP parameter to set the maximum number of print positions. The
following example shows how to specify the number of print positions using the
PRTMPP parameter:

PRTMPP=nnn

where:

nnn s the physical length (maximum print position) of the printer line

The FZETPRT program assumes a default maximum print positions of 132 if any
of the following occurs:

¢ The parameter is not specified in the parameter group.

* There is no parameter group associated with the transaction.

e The parameter keyword is misspelled.

* The value specified is not valid (not numeric).

* The EZEPRMG or DCAPRMG file does not exist or is not available.

Chapter 6. System Considerations for CICS 37

38

Use caution when coding the value of this parameter. If the value entered is a
valid numeric, the FZETPRT program uses the value without validating it. If the
value is greater than the number of print positions available on the actual printer,
possible malfunctioning can take place causing more line skips than necessary.

Note: For DBCS users, this parameter must be specified unless the printer is
configured with MPP=132.

PRTTYP Parameter

Use the PRTTYP parameter if you use a DBCS printer. The following example
shows how to specify the use of a DBCS printer using the PRTTYP parameter:

PRTTYP=D

Note: This parameter must be used to specify that you are a DBCS user and your
output is being directed to an IBM 5550-family printer.

If you use multiple printers with different characteristics (namely different MPD,
different buffer size, or DBCS versus non-DBCS printers), you need as many
transaction IDs as there are printers, each one associated with the FZETPRT
program. For examples of table entries for two printers, see the CICS transaction
definitions provided with Rational COBOL Runtime for the PRIN (non-DBCS
printers) and EZEZ (DBCS printers) transactions.

FORMFD Parameter

Use the FORMFD parameter to control the form-feed orders that the FZETPRT
program issues. The following example shows the format of the FORMFD
parameter:

FORMFD=NO

The FZETPRT program defaults to inserting form-feed orders into the printer data
stream if any of the following occurs:

e The parameter is not specified in the parameter group.

* There is no parameter group associated with the transaction.

* The parameter does not appear as FORMFD=NO.

* The EZEPRMG or DCAPRMG file does not exist or is not available.

If the parameter is specified correctly, the FZETPRT program does not insert
form-feed orders for any reason. This includes using the converseLib.pageEject
system function, closing the printer, or the initial form feed that is normally done.
All forms control depends on the map size specified during map definition.

CICS Entries for FZETPRT (DBCS only)

If you are using an SCS-type printer and you use DBCS, ensure that your system
programmer has coded the destination control table (DCT) and the program
control table (PCT) entries for a transaction that runs FZETPRT with the following
option:

MSGPOPT=CCONTRL

The MSGPOPT option defines the optional facilities that a task can use. The
CCONTRL parameter indicates that the program can control the outbound
chaining of request units. Refer to the CICS manuals for more information.

IBM Rational COBOL Runtime Guide for zSeries

Using the New Copy Function

The new copy function (either the Rational COBOL Runtime new copy utility or
the CICS NEWCOPY command) causes a transaction to use a new copy of a
program, form group, or data table referenced in the transaction. The Rational
COBOL Runtime new copy utility is implemented as an EGL program in the CICS
environment. Active transactions continue to use the current version of a program,
form group, or data table until the transaction either completes or reaches the end
of a segment. A new copy of the program, form group, or data table is then made
available to the transaction by Rational COBOL Runtime. Use the new copy
function when programs, form groups, and data tables are modified and generated
again. This enables you to install new versions of programs, form groups, and data
tables onto your system without disrupting operation.

For programs and form groups you can use the CICS NEWCOPY command or the
Rational COBOL Runtime new copy utility to cause the new copy of the program
to be used the next time a load request is issued for the program.

The Rational COBOL Runtime new copy utility does a new copy for both the
online print services program and the form group format module when you
specify a part type of form group. If you use the CICS NEWCOPY command for a
form group, you must issue the NEWCOPY for both the online print services
program and the form group format module.

For data tables, you must use the Rational COBOL Runtime new copy utility to
cause a fresh copy of the data table to be used the next time a load request is
issued for the data table. Do not use the CICS NEWCOPY command for data
tables. The Rational COBOL Runtime new copy utility sets a flag indicating that
the new copy of the table is to be used the next time a program loads the table
contents.

For more information on the Rational COBOL Runtime new copy utility, see
Copy” on page 122

Specifying Recovery Options in the CICS Tables

EGL-generated programs can make use of all the z/OS CICS recovery and data
integrity features. For a description of those features, refer to the recovery and
restart information for your release of CICS.

The system initialization table (SIT) for CICS should specify DBP=XX, where XX is
not equal to NO. If the DBP value is not equal to NO it prevents ASPE abends
when generated programs issue CICS SYNCPOINT and CICS SYNCPOINT
ROLLBACK commands.

If DTB=YES is specified on the program control table (PCT) entries for the
transactions, the value specified for DBP is significant. CICS provides two dynamic
backout programs, one for systems that require DL/I support and the other for
systems that do not require DL/I support. These programs are provided by CICS if
an entry is included in the processing program table (PPT) that specifies
TYPE=GROUP and FN=BACKOUT.

Chapter 6. System Considerations for CICS 39

Considerations that Affect Performance

40

This section describes factors that affect system performance and suggestions on
how to improve performance. For information beyond what is stated in this
section, refer to the performance guide for your release of CICS.

Residency (Modules in Memory) Considerations

The performance of a program is affected by the number of times that a running

program requires access to a disk. Programs require access to disks for the

following reasons:

* Locating and loading Rational COBOL Runtime load modules

* Retrieving and storing user data

* Locating and loading application programs, form group format modules and
online print services programs, and data table programs

The Rational COBOL Runtime loads objects as they are needed. For example, the
Rational COBOL Runtime loads a program, online print services program, form
group format module, or data table when another program calls or references it. If
you make an object resident, then the object remains in storage after it is loaded by
the Rational COBOL Runtime. You can use the RES parameter or the program
definition to make any of these resident: a program, online print services program,
or form group format module.

For data tables, use the shared and resident properties in the data table part
definition to control residency for all programs that use the data table. In addition,
in VisualAge Generator Compatibility mode, you can use the deleteAfterUse
property on the program’s use declaration for the data table to affect how the
program manages the data table.

Virtual Storage Considerations and Residency

It is true that if a program, online print services program, form group module, or
data table program is resident, less I/O is required for multiple loads. However,
making these objects resident requires more virtual storage because the modules
accumulate in storage as they are loaded and are not deleted after they are used.

When deciding what to make resident, consider the following:

 Storage constraints

* Frequency of program use

* Long running programs versus programs that are started more frequently

Because most systems have virtual storage constraints, it is not possible to make
everything resident. You should establish priorities for deciding which objects you
want to make resident. These residency priorities reflect a trade-off between
program usage and storage constraints. Your priorities can dictate that some
components of a program (such as the online print services program or form group
format module) should be made resident, while other components (such as data
tables) should not.

In CICS, when a program component is made resident, it remains in storage from
the time it is loaded into storage until either CICS is shut down or the new copy
function is used. To aid in deciding which programs should be made resident, you
can use CICS shutdown statistics to determine how often a generated program or
other component is loaded into the region or partition.

IBM Rational COBOL Runtime Guide for zSeries

Generally, objects that are loaded more than once are prime candidates for
residency. Examples of this a data table that is used by more than one program or
a program that is called more than once.

Programs that are not frequently initiated or have long running time should not be
made resident.

If you plan to run a program in segmented mode (CICS pseudoconversational),
you should consider making all components of the program resident. In
pseudoconversational mode, the program and its components are deleted and are
loaded again at each segment break if they are not made resident, and these
actions degrade performance.

Work Database Temporary Storage Queue Considerations

When running in pseudoconversational mode (using a segmented converse
statement), the data and the status associated with the program must be saved
during user think time. You use the workDBType build descriptor option to
control whether this information is saved into the CICS main temporary storage or
auxiliary storage. Using main temporary storage can result in better performance
because the data is written to memory within the CICS address space instead of
writing the data to disk space.

Note: Use of main temporary storage can degrade system performance because the
increased address space that is referenced can increase the paging activity.
Also, CICS can experience a short-on-storage condition if the program data
to be saved exceeds the available CICS storage. Therefore, if you take
advantage of main temporary storage for programs requiring better
performance, you should monitor your system to ensure that virtual storage
problems do not occur.

The amount of data written or read on each request to CICS when saving program
data and status, can also affect performance. The installation options module,
ELARPIOP, specifies the largest size record Rational COBOL Runtime writes to
main or auxiliary temporary storage. The default size is 32KB (where KB equals
1024 bytes), which is the largest value allowed by CICS. Use a large value to
ensure that the least number of write requests are required, and, if using auxiliary
storage, to ensure that the least number of I/O operations are required. See the
Program Directory for Rational COBOL Runtime for zSeries for information on how to
change the value in the installation options module.

Note: If you are using auxiliary storage queues, you should ensure the control
interval size (CISIZE) of the VSAM data set used for auxiliary temporary
storage matches the size specified in the installation options file. If the
CISIZE for the data set is smaller, CICS splits the data written or read into
smaller pieces and does multiple I/O operations for each Rational COBOL
Runtime request. Also ensure that you have an adequate number of buffers
for the auxiliary temporary storage data set in order to reduce the number
of physical I/O operations.

Terminal Printing

The performance of terminal printing can be enhanced by specifying the PRTBUF
arameter for the FZETPRT program. See|“z/OS CICS terminal printing” on page|
for more information on terminal printing and the PRTBUF parameter

Chapter 6. System Considerations for CICS ~ 41

Using and Allocating Data Files in CICS

42

This section describes how to define data files for use in generated EGL-generated
programs in the CICS environment.

Defining and Loading VSAM Data Files

Before CICS programs can use VSAM data files, you must define and load them.
See [“Defining and Loading VSAM Program Data Files” on page 28 for information
on defining VSAM data sets, defining an alternate index, and loading a VSAM
data set.

Adding the Job Control Statements

After the data set has been defined and loaded, add the data set name to the CICS
startup JCL to allocate user files. You can also let CICS dynamically allocate the
data set to the file using the information specified in the file control table (FCT).
shows example allocation statements for an indexed, relative, and serial
file, and an alternate index.

//KSDSFILE DD DSN=ELA1.USER.KSDS,DISP=SHR
//RRDSFILE DD DSN=ELA1.USER.RRDS,DISP=SHR
//ESDSFILE DD DSN=ELA1.USER.ESDS,DISP=SHR
//KSDSAIX DD DSN=VSAM.KSDS.ALT.INDEX.PATH,DISP=SHR

Figure 5. Allocating User Files

Adding the File Name to the CICS File Control Table

After the data set has been defined, loaded, and added to the CICS startup JCL,
the FCT entry must be created for the file name for a CICS program to gain access
to the data set. Creating an FCT entry can be accomplished using online (RDO) or
macro definitions.

[Figure 6 on page 43| shows resource definitions that can be used to add a file name.
Rational COBOL Runtime uses the name on the FILE operand. The FILE operand
name must be the same as the DD name in the CICS startup JCL. All other
operands must be the same as when you add an indexed, relative, or serial file to
the FCT.

With CICS, make an entry to the FCT for every file used by a program. The CICS
files can be defined as remote FCT entries.

For further information, refer to the appropriate CICS resource definition guide for
your environment.

IBM Rational COBOL Runtime Guide for zSeries

KSDS

DEFINE FILE(KSDSFILE) GROUP (xxxxxx)
DSNAME (Indexed.DSName)
DISPOSITION (SHARE)
BROWSE(YES) DELETE(YES)
UPDATE (NO)
STRINGS (8)
RECOVERY (NONE)
INDEXBUFFERS (8)

Alternate Index

DEFINE FILE(KSDSAIX) GROUP(xxxxxx)

DSNAME (AlternateIndex.DSName)
DISPOSITION(SHARE)
NSRGROUP (GROUP1)
READ(YES)
RECORDFORMAT (F)
INDEXBUFFERS (5)

LSRPOOLID (NONE)
STRINGS (5)
BROWSE(YES) DELETE(NO)
ADD(NO) UPDATE (NO)
RECOVERY (NONE)
DATABUFFERS (6)

RSDS

DEFINE FILE(RSDSFILE) GROUP (xxxxxx)
DSNAME (Relative.DSName)
DISPOSITION(SHARE)
BROWSE (YES) DELETE(YES)
UPDATE (NO)
STRINGS(8)
RECOVERY (NONE)
INDEXBUFFERS (8)

ESDS

DEFINE FILE(ESDSFILE) GROUP(xxxxxx)

DSNAME (EntrySequenced.DSName)
ADD(YES)
READ(YES)
RECORDFORMAT (F)
LSRPOOLID(NONE)
NSRGROUP (GROUP1)
DATABUFFERS(9)

DISPOSITION (SHARE)
BROWSE (YES) DELETE(YES)
UPDATE (NO)
STRINGS (8)
RECOVERY (NONE)
INDEXBUFFERS (8)

Figure 6. Adding a File Resource Definition

Using Remote Files

ADD(YES)
READ(YES)
RECORDFORMAT (F)
LSRPOOLID (NONE)
NSRGROUP (GROUP1)
DATABUFFERS (9)

ADD(YES)
READ(YES)
RECORDFORMAT (F)
LSRPOOLID (NONE)
NSRGROUP (GROUP1)
DATABUFFERS (9)

EGL-generated programs can gain access to files that do not reside on your CICS

system.

Refer to the EGL online help for additional information on the fileLink element of

the linkage options part. Refer to the appropriate CICS manuals for information

about defining remote programs, transactions, or files.

Defining Transient Data Queues

Transient data queues are used in CICS for reading or writing data from tapes,
disks, or other sequential files. If you associated a serial file with a transient data

queue at generation, you must define a CICS destination control table (DCT) entry

for the queue.

Chapter 6. System Considerations for CICS

43

You can define the following types of transient data queues:
¢ Intrapartition (temporary data)
* Extrapartition (data that other non-CICS regions can use)

Intrapartition transient data files contain data that is not usable after it is read.

Defining Intrapartition Transient Data
The following two examples show how to define intrapartition transient data files.

Passing Transient Data between CICS Transactions: This is an example of a DCT
entry that can be used to pass data from one CICS transaction to another. The file
destination specified at generation in the resource association part should be
systemName="xxxx".
DFHDCT TYPE=INTRA, C
C

DESTID=xxxx,
DESTFAC=FILE

Printing Transient Data at a Terminal Device: This is an example of a DCT entry
that can be used for terminal printing in Rational COBOL Runtime. At generation
time, the resourceAssociation part specifies how you want to handle printer. The
default is the first four characters, for example, prin. (A DCT entry is supplied for
prin that sends the printed output to the system printer.) The program supplied for
printing, FZETPRT, reads records from the transient data queue and issues SEND
commands to the terminal in order to print the records.

In this sample DCT, the PRO1 terminal is to receive the printed output. PR01 is a
z/0S CICS printer terminal name. You specify the printer destination at generation
as PRO1. Rational COBOL Runtime writes the printed output to the transient data
queue, PRO1. The transaction PRIN starts and causes the program FZETPRT to run.
The data is read from the transient data queue and sent to the terminal, PRO1. The
RDO TRANSACTION entry for PRIN and the PROGRAM entry for FZETPRT are
supplied. You must supply the destination control table and the terminal control
table entries for the transient data and terminal.
DFHDCT TYPE=INTRA,
DESTID=PRO1,
DESTFAC=TERMINAL,

TRANSID=PRIN,
TRIGLEV=1

OO0

If the terminal printer is a DBCS printer, specify EZEZ as the TRANSID.

Defining Extrapartition Transient Data
Data to be read from tape or sent to a printer is contained in extrapartition
transient data queues.

To provide these definitions as RDO entries, see the CICS resource definition
guide.

The following example shows how to use extrapartition transient data queues.
These files can be used by non-CICS devices and by CICS.

Printing Transient Data: This is an example of a DCT entry specification that can
be used to print output on a high-speed system printer. The file destination
specified at generation in the resource association part should be
systemName="xxxx".

The following sample entry for the DCT is for printed output.

44 1BM Rational COBOL Runtime Guide for zSeries

DFHDCT TYPE=EXTRA,
DESTID=27717,
DSCNAME=PRINTER

DFHDCT TYPE=SDSCI,
DSCNAME=PRINTER,
RECFORM=VARBLKA,
RECSIZE=133,
BLKSIZE=1330,
TYPEFLE=OUTPUT

oo

OOOOO0

You also need to add the appropriate DD statement to the CICS runtime JCL to
assign a printer to the file name. The extrapartition destination data queue sample
shown above requires the following DD statement:

//PRINTER DD SYSOUT=+,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=1330)

Considerations for Using DB2 in CICS

This section presents considerations for programs that access DB2 databases, and
recovery and database integrity for DB2 programs running in the CICS
environment.

Associating DB2 Databases with CICS Transactions

If the programs running under a transaction access DB2 databases, then you must
define an entry in the CICS resource control table (RCT).

For information on the parameters you can specify when you define RCT entries,
refer to the chapter on connecting the CICS attachment facility in the DB2
installation manual for your version of DB2.

To provide these definitions as RDO entries, see the CICS resource definition
guide.

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features that
are provided by DB2 in the CICS environment.

Relational databases are recoverable resources. If your program makes changes to a
relational database, the changes are not committed to the database until the end of
a logical unit of work (LUW). If your program ends abnormally before the end of
an LUW, all changes that were made since the beginning of the LUW are backed
out. See [“Specifying Recovery Options in the CICS Tables” on page 39| for more
information about handling recovery in CICS. For information on when an LUW
ends, refer to the EGL help topic "Logical unit of work."

Considerations for Using DL/l in CICS

This section discusses recovery and database integrity considerations for DL/I
programs running in the CICS environment.

Refer to the EGL helps for additional information.

Recovery and Database Integrity Considerations

EGL-generated programs can make use of all the recovery and data integrity
features that are provided by DL/I in the z/OS CICS environment.

Chapter 6. System Considerations for CICS 45

DL/I databases are recoverable resources. If your program makes changes to a
DL/I database, the changes are not committed to the database until the end of a
logical unit of work (LUW). If your program ends abnormally before the end of an
LUW, all changes that were made since the beginning of the LUW are backed out.
See [“Specifying Recovery Options in the CICS Tables” on page 39| for more
information about handling recovery in CICS. For information on when an LUW
ends, refer to the EGL help topic "Logical unit of work."

Setting up the National Language

On CICS, the national language code used for the first program in the run unit
determines the language that is used for all messages for all programs in the run
unit.

46 1BM Rational COBOL Runtime Guide for zSeries

Chapter 7. System Considerations for zZ/OS Batch

This chapter presents system considerations for running EGL-generated programs
in the z/OS batch environment.

The following information is discussed:
* Required file descriptions

* Using VSAM program data files

* Considerations for using DB2

* Considerations for using DL/I

* Performance considerations

* Runtime JCL

Required File Descriptions

Rational COBOL Runtime requires the following files:

File Name

EZEPRINT

Description

This file is used when printing from a program that displays print
forms. EZEPRINT can be allocated to either a data set or to a
SYSOUT class. The file must have a VBA (variable-blocked ANSI)
record format.

The maximum record length that a generated program can write to
the print data set is 654 bytes for DBCS forms and 137 bytes for
SBCS forms. The record length includes 4 bytes for the variable
length record header, 1 byte for the American National Standards
printer-control character, and the print line for the print form. The
DBCS record length is longer than the print line length because the
print line can contain outlining control characters and shift-out
(SO) and shift-in (SI) characters that are not displayed on the
device. The logical record length defined for the data set must be
greater than or equal to the length of the longest line written by
the program, including the DBCS SO/SI characters.

If you are using Rational COBOL Runtime to print to a file
destination other than EZEPRINT, the characteristics of that file
should be the same as EZEPRINT.

SYSPRINT, SYSOUT, SYSABOUT, SYSUDUMP

ELAPRINT

ELATRACE

ELATOUT

© Copyright IBM Corp. 1994, 2006

These z/OS system files are used by EGL-generated programs. Do
not specify DCB parameters for these files.

This system output file is used by generated programs. Specify
ELAPRINT with RECFM=FBA and BLKSIZE=1330 DCB
parameters.

This file is the trace control file for the z/OS batch environment.
The attributes for this data set are LRECL=80, RECFM=FB, and
BLKSIZE=multiple of 80. The trace filters are specified in the
ELATRACE data set.

The output of the Rational COBOL Runtime trace facility is sent to
this data set in the z/OS batch environment. The attributes for this
data set are DSORG=PS, LRECL=133, BLKSIZE=1330, and
RECFM=FBA.

47

Using VSAM Program Data Files in z/0S Batch

VSAM program data files must be defined before your z/OS batch program can
use them. See ["Defining and Loading VSAM Program Data Files” on page 28| for
information on defining VSAM data sets, defining alternate indexes, and for
information on loading VSAM data sets.

The DD statements for user files are generated for you and placed in the sample
runtime JCL.

Considerations for Using DB2 in z/OS Batch

This section presents system considerations for database recovery and integrity for
DB2 programs.

For information on running DB2 programs in z/OS batch, see |Chapter 13,|
[“Preparing and Running Generated Programs in z/OS Batch,” on page 103.

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features
provided by DB2.

Relational databases are recoverable resources. If your program makes changes to a
relational database, the changes are not committed to the database until the end of
a logical unit of work (LUW). If your program ends abnormally before the end of
an LUW, all changes that were made since the beginning of the LUW are backed
out. For information on when an LUW ends, see the EGL help topic "Logical unit
of work."

Considerations for Using DL/l in z/OS Batch

48

This section presents the following information:
* Defining the program specification block (PSB)
* Recovery and database integrity considerations

For information on running DL/I programs in z/OS batch, see[Chapter 13)
[‘Preparing and Running Generated Programs in z/OS Batch,” on page 103/

Defining the Program Specification Block (PSB)

The following list shows considerations for defining a PSB that is used in the z/OS
batch environment:

e DL/I PSBs used in the z/OS batch environment must have CMPAT=YES
specified in the PSBGEN statement for the PSB. This enables you to use the
CHKP and ROLB functions with the PSB.

* The PSBGEN statement must include the parameter LANG=COBOL or
LANG=ASSEM.

* DL/I PSBs used in the z/OS batch environment must be defined with a
minimum of two PCBs of any type in the PSB. This enables the generated
COBOL program to test whether it is being started from the IMS region
controller or from an OS XCTL macro in a non-EGL program passing working
storage and dliLib.psbData as parameters.

* z/0S batch programs can implement serial files as GSAM databases. These
GSAM files are treated as a special type of database and require a PCB in the
PSB. The GSAM PCBs must follow all database PCBs.

IBM Rational COBOL Runtime Guide for zSeries

Recovery and Database Integrity Considerations

In z/OS batch DL/I programs, a commit point causes a DL/I basic CHKP
(checkpoint) call. The contents of dliLib.psbData are used as the checkpoint
identifier. After the CHKP call, dliVar.statusCode contains the status code returned
with the CHKP call.

If the program runs under the TSO terminal monitor program for SQL access,
calling the sysLib.rollback() system function results in an SQL ROLLBACK
WORK.

If the program runs as a DL/I batch job, and DL/I or SQL requests have been
issued, calling the sysLib.rollback() system function results in a DL/I ROLB call.
The IMS batch parameter BKO=Y must be specified when the batch job is started
in order for the ROLB call to be honored. The BKO parameter is specified in the
job step that calls the IMS control program DFSRRCO00. If BKO=N is specified,

DL /I returns status code AL for the ROLB call. Rational COBOL Runtime treats the
AL as a soft error, and no error message is issued.

Serial or print files associated with GSAM files and the sysLib.audit system
function result in DL/I requests and cause the DL/I ROLB call to be issued. For
information on when a commit point or rollback is issued, refer to the EGL help
topic "Logical unit of work."

Performance Considerations for z/OS Batch

See ["Modules in Memory” on page 2§ for information on performance
considerations and the methods used to place modules in memory. These methods
are particularly beneficial if the EGL program is being called repeatedly by a
non-EGL program.

If you are running generated programs in z/OS batch and are accessing indexed or
relative files, you do not need to use the forUpdate option on the I/O statement
prior to a delete or replace statement. Eliminating the forUpdate option allows for
better performance, as it eliminates a COBOL read. However, make sure that you
perform a get or get next before the delete or replace to ensure that the record is
available.

Runtime JCL

See [Chapter 13, “Preparing and Running Generated Programs in z/OS Batch,” on|
lpage 103 for examples of batch runtime JCL.

Chapter 7. System Considerations for z/OS Batch 49

50 IBM Rational COBOL Runtime Guide for zSeries

Chapter 8. System Considerations for IMS

This chapter provides additional administrative information that applies to the IMS
environments.

The following information is discussed:

* Required file descriptions

¢ Defining the program specification block

* Processing modes

* Printing considerations for IMS

¢ Recovery and database integrity considerations
* Considerations that affect performance

* Considerations for using DB2

* Considerations for using DL/I

* Maintaining the work database

* Consideration for Message Format Services

Required File Descriptions

Rational COBOL Runtime requires the following files:
File Name Description

ELASNAP This is an optional file that contains the snap dump listing when a
Rational COBOL Runtime error occurs and the ELASNAP DD
statement was included in the startup JCL. This file has a 125-byte
logical record length, a 882-record block size, and a VBA
(variable-blocked ANSI) record format. If this file is directed to the
SYSOUT system logical unit, define it with RECFM=VBA and
BLKSIZE=4096.

ELAPRINT This file is an optional output file for Rational COBOL Runtime
error messages. This file has a fixed block record format, a 133-byte
logical record length, and a block size of 1330. If this file is directed
to the system logical unit SYSOUT, define it with RECFM=FBA and
BLKSIZE=1330.

ELADIAG This is the default name for the optional message queue for
Rational COBOL Runtime error messages.

This message queue is defined in the IMS system definition during
Rational COBOL Runtime installation. See|“IMS Diagnostid|
[Message Print Utility” on page 135| for information about printing
the error messages contained in the ELADIAG message queue.

ELATRACE This is the trace control file for the IMS BMP environment. The
attributes for this data set are LRECL=80, DSORG=PS, and
BLKSIZE=multiple of 80. The trace filters are specified in the
ELATRACE data set.

ELATOUT The output of the Rational COBOL Runtime trace facility is sent to
this data set in the IMS BMP environment. The attributes for this
data set are LRECL=133, BLKSIZE=1330, and RECFM=FBA.

ELAT The output of the Rational COBOL Runtime trace facility is sent to
this output message queue in the IMS/VS environment. Use the
ELAMQJUD job to retrieve the trace.

© Copyright IBM Corp. 1994, 2006 51

EZEPRINT This is the default message queue (IMS/VS) or output file (IMS
BMP) for print output from generated programs. For IMS BMP
programs, the print records are variable length. For single-byte
languages, define EZEPRINT with LRECL=137, BLKSIZE=141, and
RECFM=VBA. For double-byte languages, define EZEPRINT with
LRECL=654, BLKSIZE=658, and RECFM=VBA. If the file is
directed to the system logical unit SYSOUT, define it with
RECFM=VBA and BLKSIZE=4096.

Defining the Program Specification Block (PSB)

52

You need to define both an IMS PSB and an EGL PSB record for your program.
The EGL PSB record contains a subset of the information from the IMS PSB and is
used to build default segment search arguments (SSAs) for the EGL I/0O
statements.

You need to generate an IMS PSB to correspond to the EGL PSB record. For
IMS/VS, the IMS PSB must have the same name as the load module for the
associated EGL program. A program control block (ACB) generation is also
required for the IMS/VS environment. For IMS BMP and DL/I batch, the IMS PSB
name does not have to match the program load module name.

When you define the PSBs for IMS programs, consider the following criteria:

* The PSBGEN statement must include the parameters CMPAT=YES, and
LANG=COBOL or LANG=ASSEM.

* The I/O PCB (program control block) is automatically supplied and does not
appear in the IMS PSB. You must include the I/O PCB in the EGL PSB record if
you specify the calllnterfaceType=CBLTDLI property in your EGL program.

* Alternate PCBs are used to route output to terminals other than the originating
terminal, or to other transactions. Alternate PCBs must appear before the
database PCBs both in the IMS PSB and in the PSB record.

* When an EGL program is generated for the IMS/VS or IMS BMP environment, a
modifiable alternate PCB and a modifiable express alternate PCB are required, in
that order, as the first two PCBs following the I/O PCB. Both of these PCBs
must have the parameters ALTRESP=NO and SAMETRM=NO. To avoid having
to edit your DL/I call modifications to adjust for the two required PCBs, include
these PCBs whenever you plan to generate a program for the IMS/VS or IMS
BMP target environments.

* IMS BMP programs can implement serial files as GSAM databases. These GSAM

files are treated as a special type of database and require a PCB in the PSB. The
GSAM PCBs must follow all database PCBs.

If a DL/I work database is used, the PCB for this database must be included in the
IMS PSB. This PCB can be created using the macro ELAPCB and concatenating
ELA.V6ROM1.ELASAMP as part of the SYSLIB in the PSBGEN procedure.

shows an example of the PCB expansion that occurs when ELAPCB is

used.

WORKDBD defaults to ELAWORK. The WORKDBD parameter must be used if the
DBD name is changed.

IBM Rational COBOL Runtime Guide for zSeries

ELAPCB [WORKDBD=customer-dbd-name]
--- expands into ---

PCB TYPE=DB,DBDNAME=customer-dbd-name,PROCOPT=AP,KEYLEN=19
SENSEG NAME=ELAWCNTL,PARENT=0

SENSEG NAME=WORKLVO1,PARENT=ELAWCNTL

SENSEG NAME=WORKLVG2,PARENT=WORKLVO1

SENSEG NAME=WORKLV14,PARENT=WORKLV13
SENSEG NAME=MSGLVO1,PARENT=ELAWCNTL
SENSEG NAME=MSGLVOZ2,PARENT=MSGLVO1

SENSEG NAME=MSGLV14,PARENT=MSGLV13

Figure 7. Generating the DL/I Work Database PCB

If you specity (or default to) the
callinterfaceType=DLICallInterfaceKind. AIBTDLI property for your program, the
EGL program refers to the PCBs in the PSB by name rather than by position. The
default PCB names are as follows:

* IOPCB (required by IMS for the I/O PCB)

* ELAALT (the EGL default name for the modifiable alternate PCB)

* ELAEXP (the EGL default name for the modifiable express alternate PCB)
* ELAWORK (the EGL default name for the DL/I work database PCB).

Processing Modes

IMS requires segmented mode. Refer to the EGL help system for additional
information on segmented mode.

The spaSize="xxxx"" build descriptor option determines whether a program runs as
IMS conversational (xxxx is greater than 0) or nonconversational (xxxx is 0). Refer
to the EGL Generation Guide for more information.

The work database is used for both conversational and nonconversational
processing to save information during a converse. In nonconversational mode, the
work database is also used to save information during a deferred
program-to-program message switch which results from a show statement. In
conversational mode, the scratch-pad area (SPA) is used to set the transaction
identifier and to save information during a program-to-program message switch.
Refer to the EGL help system for information on how the SPA is used for
program-to-program message switching.

Printing Considerations for IMS

From Rational COBOL Runtime, printing is initiated when a program processes a
print statement for an EGL printForm. Refer to the EGL help system for
information on defining forms for printers.

Printing is accomplished using MFS control blocks produced when the form group
is generated. The default print destination in IMS is a message queue named
EZEPRINT. The printer destination can be changed at generation time. You can
also change the print destination at run time by changing the
converseVar.printerAssociation. Refer to the EGL help system for additional
information.

Chapter 8. System Considerations for IMS 53

Recovery and Database Integrity Considerations

EGL programs can make use of all the IMS recovery and data integrity features.

If your program makes changes to a recoverable resource, the changes are not
committed until the end of a logical unit of work (LUW). If your program
abnormally ends before the end of an LUW, all changes that were made since the
beginning of the LUW are backed out. For information on when an LUW ends, see
the EGL help topic "Logical unit of work."

Considerations that Affect Performance

54

This section describes factors that affect system performance and suggestions on
how to improve performance.

Residency Considerations and the IMS Preload Function

The performance of a program is affected by the number of times a disk is

accessed while running the program. Programs require access to disks for the

following reasons:

* Locating and loading Rational COBOL Runtime load modules

* Retrieving and storing user data

* Locating and loading application, form group format modules, MFS print
services programs, and table load modules

Rational COBOL Runtime loads objects as they are needed. For example, Rational
COBOL Runtime loads an application, MFS print services program, form group
format module, or data table when another program calls or references it. The
overhead of locating and loading modules can be reduced by using the IMS
preload function. Preloading an object reduces the amount of 1/O required for
multiple loads. However, preloading generated programs requires more virtual
storage for your system because preloaded modules remain in storage until the
message region is shut down.

It is usually not possible for everything to be preloaded. Therefore, you should
establish priorities for deciding which objects you should preload. These
preloading priorities reflect a trade-off between your program usage and your
storage constraints. Because of individual considerations such as storage
constraints, environment, and types of programs, your priorities might dictate that
some components (such as MFS print services programs) for a program be
preloaded, while other components (such as data tables) should not be preloaded.
Make the decision on what modules to preload on an individual basis, according
to how the program uses them.

When deciding what to preload, consider the following:

* Storage constraints

¢ Frequency of program use

* Long-running programs as compared to programs that are started more
frequently

Generally, objects that are loaded more than once are prime candidates for
preloading. Examples of this are a data table that is used by more than one
program and a program that is called more than one time. The following are some
general rules for preloading:
* When deciding what to preload, consider the following objects:

— Called programs

— MEFS print services programs

IBM Rational COBOL Runtime Guide for zSeries

— Form group format modules
— Data tables
— Main programs

* Programs that are started or referenced frequently should be preloaded. In
addition to programs that are loaded by IMS when a transaction is scheduled,
this includes programs that are started by the EGL transfer to program or call
statements.

¢ Programs that are not frequently initiated should not be preloaded.

See [“Preloading Generated Programs” on page 56| for additional information.

Preloading Rational COBOL Runtime Modules

For best performance, use the preload option for the following Rational COBOL
Runtime modules:

* ELARPRTR, the Rational COBOL Runtime module that handles address mode
switching

 ELARPRTM, the Rational COBOL Runtime load module
* ELARPIODP, the installation options module

* ELARIccc (where ccc is the language code), the language-dependent options
module

¢ ELACNccc (where ccc is the language code), the conversion table

* ELANCccc (where ccc is the language code), the module for Rational COBOL
Runtime constants and the table that converts from lower case to upper case

* ELARSCNT, the configuration table
* ELA2SSQW, the module that supports the DB2 work database

* ELARSDCB, which is used for accessing Rational COBOL Runtime sequential
files

* ELA2SSQL, its alias ELA2SSQY, and ELA2SSQX

ELA2SSQL, its alias ELA2SSQY, and ELA25SSQX are used to gain access to the
DB2 work database, and they support commit and rollback processing for DB2
program databases. Preload these modules only if you are using programs that
were generated and bound using CSP/370RS V1R1.

The modules ELARSDCB and ELANCccc are loaded below the 16MB line.
ELARSDCB is used only in reporting errors detected by Rational COBOL Runtime.
Both can be omitted from the preload list if storage space below the 16MB line is
limited.

Note: You should also monitor the usage of the LE runtime modules. Because
many are used by the generated COBOL programs, these modules might
also be candidates for preloading.

Refer to the IMS documentation for your system for information on the preload
option. An alternative to preloading is to place modules in the link pack area.

Loading Rational COBOL Runtime Modules into the Link Pack
Area

Placing modules in the link pack area causes all regions to share a single copy of
the modules and saves storage space. Refer to the Rational COBOL Runtime
program directory for information about what modules can be put into the link
pack area.

Chapter 8. System Considerations for IMS 55

56

Only one version of CSP/370RS V2R1, CSP/370RS V1R1, VisualAge Generator
Server VIR2, Enterprise Developer Server or IBM Rational® COBOL Runtime
modules can be placed in the link pack area. If multiple releases are installed
concurrently on the same system, override the link pack area by defining the
correct library in the STEPLIB or JOBLIB DD statements for the region.

Preloading Generated Programs

You can reduce the overhead of searching the STEPLIB, JOBLIB, link pack area,
and link list by preloading generated programs (application programs, online print
services programs, form group format modules, and data table modules) that are
frequently used. However, in this case, virtual storage is still occupied by the
modules when they are not in use.

To improve response time, you might also preload any module associated with any
transaction that might require better performance, even though the module itself is
not frequently used.

To preload generated programs, do the following:
1. Put the module in a LNKLST library.

2. Include the module name in a preload member (DFSMPLxx, where xx is a
two-character ID that you select) in the IMS procedure library.

3. Indicate in the JCL for the IMS message region that the preload member is to
be included.

Database Performance

Database performance can be improved under IMS/ESA® by defining
HIPERSPACE* buffer usage for IMS in the DFSVSMxx member. This is the same as
defining many buffers for the files, but has the advantage that the HIPERSPACE
buffers all come from 31-bit storage, not from within the IMS/ESA region. The
tuning of database buffer pools is recommended. Refer to the IMS manuals for
details on the tuning of database buffer pools.

If you have IMS/ESA installed and use a DL/I work database, make the work
database nonrecoverable to reduce the amount of logging that occurs. Making the
work database nonrecoverable might help improve performance.

Limiting MFS Control Blocks

Limiting the size and number of message format service (MFS) control blocks
might help improve performance. MFES is used for form support in the IMS
environment. MFS control blocks are generated using MFS utility control
statements.

You can reduce the size and number of MFS control blocks that are generated by
doing the following:

* In form definition, only include the screenSizes values that are used for the
application system. For additional information about the valid screenSizes
values, refer to the EGL help system.

* Include in the mfsDevice build descriptor option only the combinations of the
height, width, and devStmtParms properties that your installation or
application system uses. For additional information about specifying the
mfsDevice build descriptor option, refer to the EGL Generation Guide.

IBM Rational COBOL Runtime Guide for zSeries

Monitoring and Tuning the IMS System

You can track potential performance problems before they occur by checking
processing statistics on a regular basis. The following are some of the statistics to
monitor:

* Use the IMS monitor facilities to check transaction utilization. Consider
preloading programs or groups of programs which are frequently used.

* Use the IMS database monitor facilities to check how effectively the databases
are performing and using space.

You can also use the following tools to monitor IMS performance:

* IMS Performance Monitor for z/OS (program number 5655-G50). This tool
provides real-time status monitoring and alerts for IMS subsystems, as well as
access to recent historical data and detailed statistical reports.

* IMS Performance Analyzer for z/OS (program number 5655-R03). This tool
provides comprehensive performance analysis and tuning assistance for IMS,
including end-to-end transit analysis for transaction workloads and availability
of important resources such as databases and message queues.

Refer to the system administration manuals and the database administration guide
for your release of IMS for detailed information about monitoring the IMS online
system and DL/I databases.

Considerations for Using DB2 in IMS

This section discusses considerations for recovery, database integrity, and security
issues for DB2 programs.

For information on designing and generating DB2 programs for the IMS
environment, refer to the EGL help system.

For information on preparing DB2 programs for running in the IMS environment,
see [Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS|
BMP,” on page 107

Recovery and Database Integrity Considerations

EGL-generated programs can use all the recovery and data integrity features that
are provided by DB2 in the IMS environment.

Relational databases are recoverable resources. If your program makes changes to a
relational database, the changes are not committed to the database until the end of
a logical unit of work (LUW). If your program ends abnormally before the end of
an LUW, all changes that were made since the beginning of the LUW are backed
out. For more information, refer to the EGL help system.

Checking Authorization

The database manager checks whether the program users have authority to gain
access to tables or to run programs. The type of checking done varies depending
on your system and the processing mode.

When using DB2 in generated COBOL programs, the program users must be

authorized to run the corresponding DB2 plan. For transaction-oriented regions,
the authorization ID depends on the type of IMS security being used:

Chapter 8. System Considerations for IMS 57

* If sign-on security is used, IMS provides the sign-on name as the authorization
ID.

* If sign-on security is not used, IMS provides the name of the originating
terminal as the authorization ID.

The DB2 plan used with a transaction has the same name as the program
associated with the transaction.

For batch-oriented regions, the authorization ID is the contents of the ASXBUSER
field, if valid, or the PSB name. The DB2 plan name is specified as one of the batch
program parameters.

For more information on IMS security mechanisms, refer to the appropriate IMS
manual.

Considerations for Using DL/I in IMS

This section discusses considerations for DL/I programs in the IMS environment.

See [“Defining the Program Specification Block (PSB)” on page 52| for information
on defining a PSB for DL/I programs.

For information on designing and generating DL/I programs for the IMS
environment, refer to the EGL help system.

For information on preparing DL /I programs for running in the IMS environment,
see [Chapter 14, “Preparing and Running Generated Programs in IMS/VS and IMS|

|§MP.’:]
Recovery and Database Integrity Considerations

EGL-generated programs can make use of all the recovery and data integrity
features that are provided for DL/I databases in the IMS environment.

DL/I databases are recoverable resources. If your program makes changes to a
DL/I database, the changes are not committed to the database until the end of a
logical unit of work (LUW). If your program ends abnormally before the end of an
LUW, all changes that were made since the beginning of the LUW are backed out.
For more information, refer to the EGL help system.

Maintaining the Work Database in IMS

You should monitor and tune the DL/I and DB2 work databases just as you would
any other DL/I database or DB2 table. You can use the normal database
administration utilities to monitor these databases and to determine when they
need to be reorganized to improve performance.

The activities involved in maintaining the work database are the following:
* Deleting old records from the work database

* Expanding the work database

* Supporting multiple DL/I or DB2 work databases

Deleting Old Records from the Work Database

The terminal ID is the key for the records in the work database. Each record
contains a time stamp that indicates the last time the record was updated.

58 IBM Rational COBOL Runtime Guide for zSeries

Deleting old records from the database reduces the amount of disk space required
in the work database. You probably want to delete records in the following
situations:

* Some users might run a generated program only infrequently, less than once a
day, for example. In this case, you might want to delete old records on a daily or
weekly basis.

* Sometimes terminal names are changed or users are moved to terminals with
different names. In this case, new records are created for the new terminals, but
the old records are not automatically deleted.

The utilities that delete records from the DL/I and DB2 work databases validate
the date and time to ensure that your request does not result in deletion of records
that are less than 24 hours old.

DL/l Work Database

shows the JCL used to remove old records from a DL/I work database.
The JCL is supplied as member ELAWK]JCD in the ELA.V6ROM1.ELAJCL file.
Specify the records you want to delete by entering the date (in Julian format) and
time prior to which all records are to be deleted.

//**
//** ELAWKJCD - JOBSTREAM TO CLEAN UP THE DLI WORK DATABASE

e FOR IBM RATIONAL COBOL RUNTIME.

//**

//** LICENSED MATERIALS - PROPERTY OF IBM

//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 2006

//** SEE COPYRIGHT INSTRUCTIONS

//**

//** STATUS = VERSION 6, RELEASE 0, LEVEL 1

//**

//*% TO TAILOR THIS JOBSTREAM:

/1% 1. COPY A JOBCARD.

[/** 2. REPLACE DATE AND TIME STAMP VALUE WITH DESIRED
/1% VALUE. ALL RECORDS WITH LESS THAN THAT DATE AND
[/ ** TIME WILL BE DELETED.

]/ **

//** RETURN CODES

/[%x 0 - SUCCESSFUL COMPLETION

[** 12 - FATAL ERROR. INVALID INPUT

/[%x 16 - FATAL ERROR. PROCESSING TERMINATED

]/ %%
//**
/1*

//DLIWORK EXEC IMSBATCH,MBR=ELAWKPCI,

// PSB=ELAWKPB1,RGN=4096K

//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6ROM1.SELALMD,DISP=SHR

//G.ELAPRINT DD SYSOUT=+
//G.SYSOUT DD SYSOUT=+
//G.SYSIN DD *
YYDDDHHMMSS

Figure 8. JCL to Remove Old Records from DL/I Work Database

DB2 Work Database

[Figure 9 on page 60| shows the JCL used to remove old records from a DB2 work
database. The JCL is supplied as member ELAWK]JC2 in the ELA.V6ROM1.ELAJCL
file. Specify the records you want to delete by entering the date (in Julian format)

Chapter 8. System Considerations for IMS 59

60

and time prior to which all records are to be deleted.

[] Fxkdkhkkdkhkkhkk ok kohkkhk ko k ok ok ok ok k ok ok k ok ok ok ok ok ok ok ok kKA sk ok e o o ok ke ke o ok ok ko ok ok ok o ok ok ok ok o ok
//** ELAWKJC2 - JOBSTREAM TO CLEAN UP THE DB2 WORK DATABASE

[** FOR IBM RATIONAL COBOL RUNTIME.

//**

//** LICENSED MATERIALS - PROPERTY OF IBM
//** 5648-B02 (C) COPYRIGHT IBM CORP. 1994, 2006
//** SEE COPYRIGHT INSTRUCTIONS

]/ **

//* STATUS = VERSION 6, RELEASE 0, LEVEL 1

[/**

//** TO TAILOR THIS JOBSTREAM:

/%% 1. COPY A JOBCARD.

e 2. REPLACE DATE AND TIME STAMP WITH THE DESIRED DATA.
/%% ALL ROWS WITH A DATE AND TIME LESS THAN THE

e SPECIFIED DATE/TIME WILL BE DELETED.

//**

//** RETURN CODES

//** 0 - SUCCESSFUL COMPLETION

/[** 12 - FATAL ERROR. INVALID INPUT

[/ ** 16 - FATAL ERROR. PROCESSING TERMINATED
//**

[[FHwrkkdkkkkkkk ko kk ko kkhkkkhkkkhkkkhhkkh ok Rk ok kkhhkkkh ko khhkkkhkkkhkkhhk*
/1%

//DB2WORK EXEC PGM=ELAWKPC2,REGION=4096K
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6ROM1.SELALMD,DISP=SHR
//SYSOUT DD SYSOUT=+

//SYSABOUT DD SYSOUT=+

//ELAPRINT DD SYSOQUT=x

//ELASNAP DD SYSOUT=+

//EZESPUFI DD DSN=&&TMP1,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK, (1,0)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)
//SYSIN DD =

YYDDDHHMMSS

/1%

//DB2SPUF EXEC PGM=IKJEFTO1,REGION=4096K,COND=(0,NE)
//STEPLIB DD DSN=DSN.RUNLIB.LOAD,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=x
//SYSTSPRT DD SYSOUT=+
//SYSPRINT DD SYSOUT=x
//SYSIN DD DSN=&&TMP1,UNIT=SYSDA,DISP=(OLD,DELETE)
/*
//SYSTSIN DD =*

DSN SYSTEM(DSN)

RUN PROGRAM(DSNTIAD) PLAN(DSNTIA??)

END

/*

Figure 9. JCL to Remove OIld Records from DB2 Work Database

Expanding the Work Database

At times, you need to expand the work database. For example, you need to
expand the database when you expand the usage of an existing program system to
a larger user set comprising a much larger number of terminals that gain access to
EGL-generated programs.

DL/I Work Database
To expand the DL/I work database, perform the following steps:

1. Stop the DL/I database.
2. Unload the database using the old database description (DBD).

IBM Rational COBOL Runtime Guide for zSeries

3. Change the DBD information and perform a DBD generation.

4. If you are having application control blocks (ACBs) prebuilt rather than built
dynamically, build the ACBs again.

5. Delete the space allocated for the old database and allocate space for the new
definition.

6. Load the database using the new DBD.

7. Make an image copy of the new database for back-up purposes as soon as it is
loaded.

Refer to the database administrator’s guide and the IMS utilities manual for
additional information.

DB2 Work Database

You might need to expand the table spaces containing the DB2 work database
because of degraded performance from too many secondary extents, or because the
application users receive a DB2 message DSNP0071 indicating that no more space
is available.

Ideally, when the size of a DB2 table space is increased, the primary extent should
be made large enough to accommodate all the data in the work database. In any
case, try to minimize the number of secondary extents required to store rows in the
database.

The method you use to expand the table space depends on the version of DB2 that
is installed and whether the table space is user-managed.

The procedure supplied with Rational COBOL Runtime that installs the work
database also installs the table space as user-managed table space (no associated
DB2 storage group).

Before attempting to change the size of the table space data set, you need to
estimate the space requirements for the table space. One factor in your estimate is
the amount of space currently used. If the space is currently DB2-managed
(resulting from an earlier change in space allocation), you can get this information
by first running the DB2 STOSPACE utility against the table space storage group,
and then running the following query:

SELECT SPACE

FROM SYSIBM.SYSTABLEPART
WHERE TSNAME='tsname' and DBNAME='dbname';

The result (SPACE) gives the number of kilobytes of storage currently allocated to
the table space.

If the space for the table space is user-managed, you can use the TSO LISTCAT
command to obtain the space information. You need to know the data set name of
the VSAM file used for table space. The data set name for the VSAM file has the
following format:

catname.DSNDBC.dbname.tsname.I0001.Annn

where:

catname Specifies the VSAM catalog name or alias
This is the same name or alias as in the USING VCAT clause of the
CREATE TABLESPACE statement.

dbname Specifies the DB2 database name

Chapter 8. System Considerations for IMS 61

This is the same as the database name in the CREATE
TABLESPACE statement.

tsname Specifies the table space name

This is the same as the table space name in the CREATE
TABLESPACE statement.

nnn Specifies the data set number

For partitioned table spaces, the number is 001 for the first
partition, 002 for the second, and so forth, up to the maximum of
64 partitions. For a simple or segmented table space, the number is
001 for the first data set. If the simple or segmented table space
exceeds 2 gigabytes, the second data set is 002, and so forth.

To expand table space do the following:

1. Stop the DB2 database by using the command -STOP DB (dbname).

2. Make an image copy of the table space. You can use the image copy to restore
the data set if the procedure is not successful.

3. Create a storage group for the table space. Do this only if the table space
currently is user-managed and a storage group is not already available.

4. Change the table space definition as follows:
* If the table space data sets are user-managed, use a DB2 statement as

follows:

ALTER TABLESPACE dbname.tsname
USING STOGROUP stogrp
PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

stogrp Specifies the name of the storage group

prPP Specifies new primary allocation size (in
kilobytes) for the expanded table space

$sSS Specifies new secondary allocation size (in

kilobytes) for the expanded table space

Note: This statement changes the table space from user-managed to
DB2-managed.

e If the table space data sets are already DB2-managed, use a DB2 statement as
follows:

ALTER TABLESPACE dbname.tsname
PRIQTY pppp SECQTY ssss

where:

dbname.tsname Specifies the name of the space

PPPP Specifies new primary allocation size (in
kilobytes) for the expanded table space

5SS Specifies new secondary allocation size (in

kilobytes) for the expanded table space

5. Move the table space data. Simply changing the table space definition does not
put the new size into effect. You need to move the table space to the newly
allocated space. You can, for example, reorganize the table space using the DB2
REORG utility.

62 IBM Rational COBOL Runtime Guide for zSeries

6.

Start the DB2 database. Enter the command -START DB (dbname).

Supporting Multiple Work Databases

You can use separate work databases for different application systems. For
example, you might want to use separate databases for payroll and shipping to
improve performance or to increase data availability. The work database is used to
pass information during certain types of program-to-program message switches
between applications. When this occurs, both the transferring application and the
transferred-to application must use the same physical work database.

DL/I Work Databases
To create an additional DL/I work database called ELAWORK?2, do the following;:

1.

Copy the ELAWORK DBD in the ELA.V6ROM1.ELASAMP file, and name it
ELAWORK2.

Change the NAME parameter on the DBD statement to ELAWORK2. Also
change the DD1 parameter on the DATASET statement to ELAWORK2. Make
any other changes to the block size, number of blocks, and randomizing routine
based on the application system requirements.

Make copies of the ELAWKLD and ELAWKPB1 program specification blocks
(PSBs) in the ELA.V6ROM1.ELASAMP file and give them new member names.
Change the NAME parameter on the program control block (PCB) statement
from ELAWORK to ELAWORK2.
Modify job ELACJWKD in the ELA.V6ROM1.ELAJCL file to refer to the new
database. This job does the DBD, PSB, and ACB generations needed for the
work database, allocates the database, and then initializes it. You need to
change the DD and data set names for the work database, and name the new
DBD and PSB.
Add the new database to the JCL for your IMS control region, and to your IMS
stage-1 system definition.
When you create IMS PSBs for applications that need to use this new database,
use the ELAPCB macro to create the PCB definition for the work database.
Enter the following command:

ELAPCB WORKDBD=ELAWORK2
If you specify (or default to) the
callInterfaceType=DLICallInterfaceKind.AIBTDLI property for your program,
specify the PCBName property for the ELAWORK database in your EGL PSB
record as follows:

ELAWORK DB_PCBRecord {@PCB {pchType = PBKind.DB, PCBName = "ELAWORK2"}};

DB2 Work Databases

To create an additional DB2 work database, do the following:

1.

Create an ELAWORK table using the ELACJWK2 job in the
ELA.V6ROM1.ELAJCL file. Perform " the following steps before running the job:

a. Add an authorization ID to the CREATE TABLE command in ELAWORK2
in the ELA.V6ROM1.ELASAMP file, for example:

CREATE PAYROLL.ELAWORK
b. Change the table space name and index in ELAWORK?2.

c. Change the DELETE and DEFINE CLUSTER statements to use the table
space name and index you specified in ELAWORK?2.

d. Comment out the WRKDROP step to avoid dropping the existing work
database.

Chapter 8. System Considerations for IMS 63

2. Each developer or system administrator using the payroll ELAWORK table
needs to create a SYNONYM for the table. The following example shows how
to use the CREATE SYNONYM command to create a synonym:

CREATE SYNONYM ELAWORK FOR PAYROLL.ELAWORK

The default BIND commands generated by EGL bind DBRMs for Rational
COBOL Runtime modules to the program being generated. The CREATE
SYNONYM command ensures that developers referencing the ELAWORK table
use the payroll version of the table.

Considerations for Message Format Services in IMS

64

EGL generates message format services (MES) source statements used for
conversing and printing forms in IMS environments. The generated MFS source
includes DEV statements, which identify the device types on which forms can be
displayed and the characteristics of those devices. The device types and
characteristics must be compatible with the device types and characteristics defined
in the TERMINAL and TYPE macros in your IMS system definition.

The information on the generated MFS DEV statements is controlled by the
mfsExtendedAttr, mfsIgnore, and mfsDevice build descriptor options. Review
your TERMINAL and TYPE definitions and then set the mfsExtendedAttr,
mfsIgnore, and mfsDevice build descriptor options to reflect your IMS system

definition.

The following build descriptor options affect the generated MFS source:

mfsExtendedAttr
Specifies whether EGL generation includes extended attributes for the MFS
DFLD statements if the information for the device size is not completely
specified in the mfsDevice build descriptor option. The following values
are valid:

NO

YES

NCD

NO specifies that extended attributes are not to be used. Specify
NO if most of your devices do not support color or extended
highlighting. NO specifies that EGL generation should omit the
EATTR parameter from the MFS DFLD statements unless
overridden by the mfsDevice build descriptor option for a specific
device.

YES specifies that you want the default handling for extended
attributes on the MFS DFLD statement. Specify YES if all of your
devices support extended attributes (for example, devices that
support color or extended highlighting), and you want EGL
generation to include the CD (color default) extended attribute
value when generating a form field that is defined with color =
mono (monchromatic). YES specifies that EGL generation should
include the EATTR parameter for MFS DFLD statements unless
overridden by the mfsDevice build descriptor option for a specific
device. YES is the default value.

NCD specifies that EGL generation should include the EATTR
parameter, but not include the CD extended attribute value for the
MFS DFLD statements when generating a form field that is defined
with color = mono.

The mfsExtendedAttr build descriptor option specifies how the DFLD
statements for a specific device are to be generated if the EATTR, NCD, or
NOEATTR parameter is not included in the mfsDevice build descriptor

IBM Rational COBOL Runtime Guide for zSeries

option for a particular device size. If EATTR, NCD, or NOEATTR is
specified for a particular device size in the mfsDevice build descriptor
option, the mfsExtendedAttr build descriptor option has no effect for that
device size.

mfsIgnore
Specifies the information EGL generation includes for the MFS MSG
statement for the message input descriptor (MID) and message output
descriptor (MOD). The following values are valid:

YES Specifies that you want EGL generation to include SOR= (...,
IGNORE) on the MFS MSG statement for the MID and the MOD.
Specify YES only if the mfsDevice option specifies FEAT=IGNORE
for all the devices used by the FormGroup you are generating.

NO Specifies that you do not want EGL generation to include the SOR
parameter on the MFS MSG statement for the MID and the MOD.
The default is NO.

mfsDevice
Specifies the information that EGL generation uses for the MFS DEV and
DFLD statements. This build descriptor option provides the
correspondence between the EGL device size information that a developer
specifies for a form and the device information that must be included for
the MFS DEV statements.

To specify the mfsDevice build descriptor option, edit your build
descriptor part using the EGL Build Parts Editor. In the upper right corner
of the EGL Build Parts Editor window, click the Show MFS Devices
Properties icon. The MFS Devices Properties editor appears. You can enter
the following information:

Height
The number of lines that can be displayed on the device (for
example, 24). This attribute is required.

Width The number of columns that can be displayed on the device (for
example, 80). This attribute is required.

Device Statement Parameters
A string that contains one or more parameters you want EGL to
include when generating the MFS DEV statement. Base this
information on the TERMINAL and TYPE macros in your IMS
system definition. This attribute is required.

Extended Attributes
Indicates whether the device supports extended attributes and
whether a color default (CD) extended attribute is generated for
form fields that are displayed on monochromatic devices. Your
choice affects the EGL-generated MFS DFLD statements. If you
specify this attribute, the value of build descriptor option
mfsExtendedAttr is ignored when you generate form information
for the device. Valid values are as follows:

YES (the default)
Extended attributes are supported, and a color default
extended attribute is generated.

NCD Extended attributes are supported, but a color default
extended attribute is not generated.

NO Extended attributes are not supported.

Chapter 8. System Considerations for IMS 65

Note:

* The combination of Height and Width must match the
values for the screenSizes property that developers
specify for textForms and the values for the formSize
property that developers specify for printForms.

* You can repeat the combination of Height and Width as
many times as necessary to provide the correspondence to
all your physical devices that match that device size. For
example, if for screenSize =[24,80] for a textForm, you use
both a 3270-A2 and a 3270-A3, you should include two
entries for Height=80, Width=24, one for each device that
you use.

If you do not specify the mfsDevice build descriptor option, the default
value is shown in the following table.

Table 10. Default values for mfsDevice build descriptor option

Extended
Height |Width Device Statement Parameters Attributes
80 24 TYPE=3270-A2,FEAT=(IGNORE) YES
80 24 TYPE=(3270-2), FEAT=(IGNORE) YES
132 255 TYPE=3270P,WIDTH=133,PAGE=(255DEFN),FEAI'¥ES

The following table shows the relationship between the mfsIgnore and mfsDevice
build descriptor options and the FEAT parameter for the TERMINAL and TYPE
macros in the IMS system definitions.

Table 11. Relationship between mfsignore, mfsDevice, and the IMS System Definition

MFS MSG IMS System
Statement for MID / | mfsDevice FEAT Definition FEAT
mfsIgnore MOD Parameter Parameter
YES SOR=(xxxx,IGNORE) | FEAT=IGNORE(1) FEAT=IGNORE or
FEAT=n
YES(2) FEAT=n(2)
SOR=xxxx FEAT=IGNORE(3) FEAT=IGNORE
SOR=xxxx FEAT=n(3) FEAT=n

Note:

1. The value for FEAT in the mfsDevice build descriptor option does not
need to match the value for FEAT in the IMS TERMINAL or TYPE
macro.

2. This combination of the mfsIgnore and mfsDevice build descriptor
options is not valid. Generation ignores any device that uses this
combination because the combination is not supported by MFS.

3. The value for FEAT in the mfsDevice build descriptor option must
exactly match the value specified for FEAT in the IMS TERMINAL or
TYPE macro.

The following table shows parameters from the TERMINAL and TYPE macros in
your IMS system definition that you can code for the Device Statement
Parameters in the mfsDevice build descriptor option. Do not code other MFS
parameters for the MFS DEV statement in the mfsDevice build descriptor option.

IBM Rational COBOL Runtime Guide for zSeries

Table 12.

Optional Device Statement
Description Device Statement Parameters Parameters
3270 Display or 5550 |(3270,1), (3270,2), 3270-An(1) FEAT
Display
3270 Printer 3270P FEAT, WIDTH(4), PAGE(3)
SCS1 Printer or 5550P |SCS1 FEAT, WIDTH(4), PAGE(3)
Printer
Note:

1. The n in 3270-An is any number from 1 through 15.

2. If WIDTH is coded, FEAT must be coded. WIDTH must be a value 1
greater than the width for the Width attribute for the device size because
the last column is used by MFS for carriage control. To have
compatibility for a 3270 printer, use FEAT=n (where n is a value from 1
through 10 and matches your IMS system definition), WIDTH=133,
PAGE=(255,DEEN).

3. If PAGE is coded and the second parameter is given, it must be DEFN.
DEFN is the default.

4. To have compatibility for a SCS1 printer, use the following settings:
* For a single-byte printer, use WIDTH=132, PAGE=(255,DEFN).

* For a double-byte printer (such as a 5550P), use WIDTH=158,
PAGE=(255,DEEFN).

For assistance in setting the values for the mfsExtendedAttr, mfsIgnore, and
mfsDevice build descriptor options, refer to the IMS system definition reference
manual for your release of IMS for additional information on the parameters for
the TERMINAL and TYPE macros. Also refer to the stage 1 system definition
macros for your IMS system to determine the parameters actually used for your
installation. Refer to the MFS manuals for your release of IMS for additional
information about the DEV statement.

If you have IMS systems that are not generated from EGL, you might also want to
look at some MFS source from those systems to see the parameters that you
specify on the MFS DEV statement.

Once you have determined the correct values for the mfsDevice, mfsExtendedAttr,
and mfsIgnore build descriptor options, code the default build descriptor options
in all the default build descriptor files that you use when generating for the IMS or
IMS BMP target environments.

The following table lists some example values that you might want to use for the
mfsDevice build descriptor option.

Table 13. Example values for mfsDevice build descriptor option

Extended
Height |Width Device Statement Parameters Attributes
80 24 TYPE=3270-A2,FEAT=(IGNORE) YES
80 24 TYPE=(3270-2), FEAT=(IGNORE) YES
80 24 TYPE=3270-A3,FEAT=(IGNORE) YES
80 43 TYPE=3270-A4,FEAT=(IGNORE) YES

Chapter 8. System Considerations for IMS 67

68

Table 13. Example values for mfsDevice build descriptor option (continued)

Extended
Height |Width Device Statement Parameters Attributes
132 27 TYPE=3270-A7 FEAT=(IGNORE) YES
132 255 TYPE=3270P,WIDTH=133,PAGE=(255,DEFN),FEA¥ES
132 255 TYPE=SCS1,WIDTH=132,PAGE=(255,DEFN) YES
132 255 TYPE=SCS1,WIDTH=158 PAGE=(255,DEFN) YES

IBM Rational COBOL Runtime Guide for zSeries

Part 3. Preparing and Running Generated Applications

Chapter 9. Output of Program Generation on
z/0S Systems . .
Allocating Preparation Data Sets .
List of Program Preparation Steps after Program
Generation
Deploying generated code to USS
Output of Generation .
Objects Generated for Programs
Application COBOL Program
Sample Runtime JCL
Bind Commands.
Link Edit File.
CICS Entries .
Objects Generated for Data Tables
Data Table COBOL Program.
Objects Generated for Form Groups .
Online Print Services Program .
Batch Print Services Program
Form Group Format Module
MEFS Print Services Program .
MFS Source
COBOL Copybook for MFS MID / MOD
Layout . . o

Chapter 10. z/0OS Builds.
z/0OS Build Server .
Starting a z/OS Build Server
Starting a USS Build Server .
Stopping servers.
Configuring a build server
Working with Build Scripts . .
Working with z/OS Build Scripts .
Writing a JCL build script .
File Name Conversions for z/OS .
Converting JCL to Pseudo-JCL .

Chapter 11. Preparing and Running a Generated
Program in CICS . .
Modifying CICS Resource Defm1t1or1s

Program Entries . o

Transaction Entries .

Destination Control Table Entrles (DCT)

File Control Table Entries (FCT)

Resource Control Table Entry (RCT) .

Using Remote Programs, Transactions, or Files
Modifying CICS Startup JCL. . .
Making New Modules Available in the CICS
Environment . . Lo
Making Programs Res1dent .

Running Programs under CICS.

Starting the Transaction in CICS

Controlling Diagnostic Information in the CICS

Environment . . .

Printing Diagnostic Messages in the CICS

Environment . o

© Copyright IBM Corp. 1994, 2006

.7
.71

.73
.73
.74
. 76
. 76
.77
.77
.77
.78
. 78
.78
.78
.78
.78
.78
.78
.79

.79

. 81
. 82
. 84
. 87
. 87
. 87
. 87
. 87
. 88
. 89
. 89

. 93
. 93
.93
. 94
. 94
. 95
.95
. 95
. 95

. 95
. 96
. 96
. 96
. 96

.97

Chapter 12. Creating or Modlfylng Runtime JCL
on z/0OS Systems . .
Tailoring JCL before Generatlon
Modifying Runtime JCL .

Chapter 13. Preparing and Running Generated
Programs in z/OS Batch . .
Running Main Programs under z/ OS Batch .
Examples of Runtime JCL for z/OS Batch
Programs.
Running a Mam Basrc Program w1th No
Database Access
Running a Main Basic Program w1th DBZ
Access.
Running Main Basrc Program w1th DL / 1 Access
Running a Main Basic Program with DB2 and
DL/I Access.
Recovery and Restart for z / OS Batch Programs

Chapter 14. Preparing and Running Generated
Programs in IMS/VS and IMS BMP
Modifying the IMS System Definition Parameters
Defining an Interactive Program .
Defining Parameters for a Main Basic Program
as an MPP
Defining Parameters for a Batch Orlented BMP
Program . .
Defining Parameters for a Transactlon—Orlented
BMP Program . .
Creating MFS Control Blocks . .
Making New Modules Available in the IMS
Environment .
Preloading Program, Prmt Serv1ces and Data Table
Modules . .
Running Programs under IMS
Starting a Main Program Directly .
Starting a Main Transaction Program Using the
/FORMAT Command .
Running Transaction Programs as IMS MPPs
IMS Commands
Keyboard Key Operatlon
DBCS Data on a Non-DBCS Termmal
Error Reporting. . .
Responding to IMS Error Messages .
Running Main Basic Programs as MPPs
Running a Main Basic Program under IMS BMP
Examples of Runtime JCL for IMS BMP Programs
Running a Main Basic Program as an IMS BMP
Program .
Running a Mam Bas1c Program as an IMS BMP
Program with DB2 Access . . .
Recovery and Restart for IMS BMP Programs

Chapter 15. Moving Prepared Programs to
Other Systems from z/OS Systems

. 99

. .99
. 100

. 103
. 103
. 103
. 104

. 104

104

. 105

106

. 107

107

. 107

. 108

. 109

. 109
. 109

. 110
. 110
111
111

111

111

. 111
. 112
. 112
. 112
. 112
. 113

113
114

. 114

. 115
. 116

. 17

69

Moving Prepared Programs To Another z/OS
System17
Maintaining Backup Copies of Production Libraries 118

70 IBM Rational COBOL Runtime Guide for zSeries

Chapter 9. Output of Program Generation on z/OS Systems

This chapter provides an overview of the files produced at generation time and of
the steps needed to prepare code for use at run time.

Output files are transferred to z/OS, where preparation steps include running
translators, precompilers, and compilers; doing link-edits; and defining control
tables for the target runtime environment.

For additional information on the output of program generation, refer to the EGL
Generation Guide in the online help.

Allocating Preparation Data Sets

The EGL COBOL generation creates and runs a build plan file. The build plan file
controls the transfer of generated objects to the z/OS host and the execution of
build scripts that are used to prepare the other output of generation.

The transferred objects are stored in partitioned data sets. You allocate the required
data sets using the ELACUSER CLIST shipped in the Rational COBOL Runtime
data set that has the low-level qualifier ELACLST. This CLIST was customized at
product installation to set keyword default values to settings appropriate for your
environment.

For you to use this CLIST, your customized data set must be placed before the
Rational COBOL Runtime data set that has the low-level qualifier SELACLST in
the SYSPROC concatenation list. Make sure that every COBOL generation user has
the required data sets allocated for every environment in which the product will be
used.

The following keyword parameters within CLIST ELACUSER may either be
customized within the CLIST or overridden when executing the CLIST:
Keyword Possible Values

ZOSBATCH

¢ Y = allocate user data sets for this environment
¢ N = do not allocate user data sets for this environment

ZOSCICS

* Y = allocate user data sets for this environment

* N = do not allocate user data sets for this environment
IMSBMP

* Y = allocate user data sets for this environment

* N = do not allocate user data sets for this environment
IMSVS

* Y = allocate user data sets for this environment

* N = do not allocate user data sets for this environment
VOL vvvvvv = serial number
UNIT uuuuu = valid unit name

© Copyright IBM Corp. 1994, 2006 71

HLQ
CLST

DB2

CBLK
LBLK

hhhhhhhh = high-level qualifier for user data sets

* FB = allocate a fixed blocked CLIST library
* VB = allocate a variable blocked CLIST library

* Y = DB2 databases will be used with this product

* N = DB2 databases will not be used with this product

ccccce = CLIST data set block size

11111 = load library data set block size

An example of the command syntax to execute the CLIST is as follows:

ex 'myRuntime.v5rOm0.elaclst(elacuser) zoscics(y) zosbatch(y)
vol(atl235) unit(sysda) hlq(tsouid) db2(y)"

describes the data sets that are allocated. The DD name in the table is the
DD name in the build scripts that are used by the build server. The meaning of
lower-case strings in the data set name is as follows:

chqlq The high-level qualifier specified for the hlq parameter in the ELACUSER

CLIST.

env The generation environment. One of these:

* ZOSBATCH (for z/OS batch)

« ZOSCICS (for z/OS CICS)
« IMSVS (for IMS/VS)
- IMSBMP (for IMS BMP)

Table 14. Program Preparation User Data Set Information

Target En-
DD Name Data Set Name Description DCB Information vironment
DBRMLIB cghlq.env.DBRMLIB Database request DSORG=PO, RECFM=FB, All z/OS, if
module library for BLKSIZE=6160, LRECL=80 DB2 used
DB2 programs
EZEBIND cghlq.env.EZEBIND Bind commands DSORG=PO, RECFM=FB, All z/OS, if
BLKSIZE=6160, LRECL=80 DB2 used
EZECOPY cghlq.env.EZECOPY Generated message DSORG=PO, RECFM=FB, IMSVS,
input descriptor BLKSIZE=6160, LRECL=80 IMSBMP
(MID) and message
output descriptor
(MOD) layout
copybooks.
EZEJCLX cghlq.env.EZEJCLX Basic program DSORG=PO, RECFM=FB, ZOSBATCH,
runtime job stream BLKSIZE=6160, LRECL=80 IMSBMP
EZEFOBJ chglq.env.EZEFOBJ Form group format DSORG=PO, RECFM=FB, ZOSCICS,
object modules BLKSIZE=3120, LRECL=80 IMSVS,
IMSBMP
EZEMFS cghlq.env.EZEMFS Generated message DSORG=PO, RECFM=FB, IMSVS,
format services BLKSIZE=6160, LRECL=80 IMSBMP
control block source
EZEOB] cghlq.env.OBJECT Object library DSORG=PO, RECFM=U, All z/OS

BLKSIZE=6144, LRECL=0

72 IBM Rational COBOL Runtime Guide for zSeries

Table 14. Program Preparation User Data Set Information (continued)

DD Name Data Set Name

Target En-

Description DCB Information vironment

EZESRC cghlq.env.EZESRC

COBOL source library DSORG=PO, RECFM=FB, All z/OS

BLKSIZE=6160, LRECL=80

SYSLMOD cghlq.env.LOAD

Load library DSORG=PO, RECFM=U, All z/OS

BLKSIZE=6144, LRECL=0

EZEPCT cghlq.env.EZEPCT CICS PCT entries or ~ DSORG=PO, RECFM=FB, Z0OSCICS
RDO TRANSACTION BLKSIZE=6160, LRECL=80
entries

EZEPPT cghlq.env.EZEPPT CICS PPT entries or DSORG=PO, RECFM=FB, ZOSCICS

RDO PROGRAM BLKSIZE=6160, LRECL=80

entries

List of Program Preparation Steps after Program Generation

Rational COBOL Runtime supports program preparation and installation in the
z/0S environments using build scripts shipped with Rational COBOL Runtime.
You must perform the steps listed in [Table 15| before you can run your program in

an z/0S target environment.

Table 15. Preparation Steps for z/OS Environments

Preparation Step

Environment

Transfer from workstation to the host All

DB2 precompile

DB2 use only

CICS translation CICS only

COBOL compile All

Link All

Bind DB2 use only. A bind is also required if the

first program in the run unit specifies a DB2
work database for IMS/VS

Additionally, for CICS and IMS environments, you must define your program and
transactions to the environment. For CICS, you do this using the program
properties table (PPT) and program control table (PCT) entries or the Resource
Definition Online (RDO) PROGRAM and TRANSACTION entries.

+ For information on CICS entries, see [Chapter 11, “Preparing and Running a|

[Generated Program in CICS.”|

* For IMS, define your program and transactions through the IMS system
definition. For information on the IMS system definition, see |Chapter 14,|

“Preparing and Running Generated Programs in IMS/VS and IMS BMP,” on|

[page 107.|

Deploying generated code to USS

The setup for deploying generated Java code in USS is the same as for Windows®.
Please see the EGL Generation Guide topic "Setting up the J2EE runtime
environment for EGL-generated code."

Chapter 9. Output of Program Generation on z/OS Systems 73

Output of Generation

74

After you generate a program, there are a number of objects that must be
transferred to the z/OS host system and then prepared before you can run the
program. During generation, EGL creates a build plan that controls the preparation
process through the use of build scripts. By default, the build scripts do the
following:

* Do not save the generated program source code or MFS source.

* Save the output of the preparation process (the DBRM, the object modules, and
the load modules) as members in PDS data sets on the z/OS host. You control
the high-level qualifier of the PDS data sets by setting the projectID build
descriptor option.

* Save the object modules, link edit file, and the bind control file because these
files are needed to recreate a load module without having to generate the
program again.

* Save the CICS entries because they are needed to install the program in CICS.

* Save the sample runtime JCL for z/OS Batch and IMS BMP programs.

You cannot save a load module in a workstation repository and then restore it to a
z/0OS host system. However, you can save the object deck, link edit file, and bind
control file and then relink and bind the object deck in a production z/OS
environment.

If you want to save the generated source code, you must modify the fdacl, fdabcl,
fdapcl, fdatcl, fdaptcl, and fdamfs build scripts. There are instructions in the build
scripts on how to do this by removing the comment tag from certain lines and
commenting others.

The following rules apply to using objects generated for one environment in a
different environment:

e Main programs cannot be generated for one environment and used in a
different environment.

* In general, FormGroup objects cannot be generated for one environment and
used in a different environment. However, if you generate a FormGroup for IMS
BMP or z/OS Batch and specify the formServicePgmType="ALL" build
descriptor option, you can use the formGroup output for the IMS/VS, IMS BMP,
and z/OS Batch environments because this causes generation of all the output
required to support MFS, GSAM, and SEQ print files. However, you must
ensure that the resource association information is identical for IMS/VS and IMS
BMP when using the MFS print forms and is identical for IMS BMP and z/0OS
Batch when using GSAM or SEQ print forms.

* Data tables generated and prepared in one environment (whether CICS, z/OS
Batch, or IMS) can be used in another environment on the same system.

[Table 16 on page 75| provides information about the types of files produced by

generation, including:

* Type of object produced

* Low-level qualifiers of the default PDS name to which the object is written if the
build scripts are customized to save the generated files

* How the member name is derived

* Runtime environments for which the object is produced

* Whether production is controlled by a COBOL build descriptor option

* Whether the object can be modified after generation is performed

IBM Rational COBOL Runtime Guide for zSeries

A description of each object begins on page

For additional information on generation output, refer to the EGL Generation Guide
in the help system.

You can specify an alias for a program, data table, or form group, and that alias is
used for generated output. If you do not specify an alias, the default value is the
name of the part truncated to the requirements of the target environment (8
characters, for z/OS).

The name given to the output includes the alias or the default name, as shown by
alias in the next table.

A bind control file is always generated and used in preparation for programs that
access an SQL database. You can specify your own bind control part to be used to
generate the bind control file using the bind build descriptor option, or you can
develop a bind control part with the same name as the program part. Otherwise, a
default bind control part is generated.

Table 16. Objects Generated for Programs and Transferred to the z/OS Host by the Build Scripts

PDS
Low-level PDS Member |File Name on |z/OS Runtime | Build Descriptor
File Type Qualifier Name Workstation Environment |Option Modifiable
COBOL EZESRC alias alias.cbl All None No
program
Sample runtime | EZEJCLX alias alias.jcl z/OS Batch | genRunFile Yes
JCL IMS BMP
Bind command |EZEBIND alias alias.bnd All bind Yes
Link Edit File EZELINK alias alias.led All linkEdit Yes
Build Plan Not applicable | Not applicable |aliasBuildPlan | All prep No
(see note xml
CICS Entry (See | EZEPPT alias alias.ppt CICS cicsEntries Review and
note » possible
Part specified modification
when required
generation was
requested
CICS Entry (See | EZEPCT Program alias | alias.pct CICS cicsEntries Review and
note startTransactionID) possible
restartTransaction]lhodification
required
Table 17. Objects Generated for Data Tables and Transferred to a z/OS Host by the Build Scripts
PDS Low-level PDS Member z/OS Runtime Build Descriptor
File Type Qualifier Name Environment Option Modifiable
Data table COBOL | EZESRC alias.cbl All genDataTables No
program

Chapter 9. Output of Program Generation on z/OS Systems 75

Table 18. Objects Generated for Form Groups and Transferred to a z/OS Host by the Build Scripts

PDS z/0S
Low-level | PDS Member |File Name on |Runtime

File Type Qualifier | Name Workstation Environment | Build Descriptor Option | Modifiable

Online print EZESRC | alias alias.cbl CICS genFormGroup, No

services genHelpFormGroup

program -

(See note

Batch print EZESRC |aliasP1 aliasP1.cbl z/0S batch, |genFormGroup, No

services IMS BMP genHelpFormGroup

program - formServicePgmType

(See note|[3)

Form group |EZEFOBJ |aliasFM aliasFM.fmt z/0S CICS, | genFormGroup, No

format IMS/VS genHelpFormGroup

module - (See formServicePgmType

note

MFS print EZESRC | alias alias.cbl IMS/VS genFormGroup No

services IMS BMP

COBOL

program

MEFS control |EZEMFS | alias alias.mfs IMS/VS formServicePgmType No

blocks IMS BMP genFormGroup
genHelpFormGroup

COBOL EZECOPY | alias alias.cpy IMS/VS formServicePgmType No

copybook for IMS BMP genFormGroup

MFS genHelpFormGroup

MID/MOD

layout

Notes:

1. Build plans are not transferred to the host. They define what needs to be sent
to the host. Specifically, the build plan includes the name of a build script that
runs on the build server. The build script also contains substitution variable
values that are used for substitution in the build script.

For additional details, refer to the EGL help system.

2. 1If you specify the cicsEntries="RDO" build descriptor option, the PROGRAM
entries are placed in alias.ppt. The TRANSACTION entries are placed in
alais.pct.

3. This object is produced only if the form group contains print forms.

4. This object is produced only if the form group contains text forms.

5. This object is produced for programs, form groups, and data tables.

76

Objects Generated for Programs

Application COBOL Program

The generated program is a COBOL program that contains the following:
* Program control logic

* Logic for functions and 1/O operations

* Data for both the program and program control

The program control logic performs the following functions for a program, as
needed:
* Initialization

IBM Rational COBOL Runtime Guide for zSeries

¢ Cleanup at end of program

* Error reporting

* Segmentation support, including saving data before and restoring after a
converse statement

* Transfer of control

Sample Runtime JCL

The generator produces sample runtime JCL for running programs in the z/OS
batch environments when the genRunFile build descriptor option is specified
during program generation. Each person using the JCL must provide a JOB
statement.

The JCL is produced from model JCL templates that can be modified to enforce
customer data set naming conventions. For more information about modifying the
sample templates, refer to the EGL Generation Guide.

The JCL might not be complete and should be reviewed and modified if necessary
before being used. For example, the JCL for the generated program does not
contain any DD statements for data sets used by other programs that can be
started by a call or transfer statement. Comments in the JCL indicate where DD
statements for these programs need to be added. To build the final JCL needed to
run a set of programs as a run unit, you should edit the program JCL and include
the DD statements for invoked programs with the JCL for the first main program.
You might need to add DD statements for files that are specified during run time
with the resourceAssociation record-specific variable or with the

converse Var.printerAssociation system variable.

Bind Commands

Bind commands are required for an SQL program. The bind commands either
reside in a bind control part that has the same name as the program or, you can
specify the bind control part using the bind build descriptor option.

You are not required to supply a bind control part. If one is not supplied, EGL
generates a default bind control part that may or may not meet the requirements of
the program.

The bind control part generated by default cannot be affected by users. However,
bind control parts provided by the user may contain references to symbolic
parameters which get substituted at generation time.

Link Edit File

Link edit files are required for each program, data table program, print services
program, and form group format module. For programs, the bind command either
reside in a link edit part that has the same name as the program or, you can
specify the link edit part using the linkEdit build descriptor option. For data
tables, print services programs, and form group format modules, EGL always
generates the link edit file.

You are not required to supply a link edit part for a program. If one is not
supplied, EGL generates a default link edit part that may or may not meet the
requirements of the program.

The link edit part generated by default cannot be affected by users. However, link

edit parts provided by the user may contain references to symbolic parameters
which get substituted at generation time.

Chapter 9. Output of Program Generation on z/OS Systems 77

78

CICS Entries

If you specify the cicsEntries build descriptor option, the PPT or RDO DEFINE
PROGRAM entries are generated for you for the following:

* Each program
* Each data table program
* The print services program and form group format module for each FormGroup

If you specify the cicsEntries build descriptor option, the PCT or RDO DEFINE
TRANSACTION commands are generated for you for main programs using the
transaction names from both the startTransactionID and restartTransactionID
build descriptor options.

Objects Generated for Data Tables

Data Table COBOL Program

The data table program is a COBOL program that contains the data table contents
defined in program working storage. This object is produced when you specify the
genDataTables build descriptor option. This allows data tables to be generated
independently of programs when the contents of a data table need to be changed.

Objects Generated for Form Groups

Online Print Services Program

The online print services program is a COBOL program that performs print 1/0,
output formatting, and SET operations for a generated online CICS program that
prints output. This object is produced when you specify the genFormGroup or
genHelpFormGroup build descriptor options during program generation.

Batch Print Services Program

The batch print services program is a COBOL program that formats data for line
printers and writes the data to either the printer output file (directly to the printer
or a QSAM file) or to a generalized sequential access method (GSAM) file. This
program is used with programs that run in the z/OS batch or IMS BMP
environments. This object is produced when you specify the genFormGroup or
genHelpFormGroup build descriptor options and also specify (or default to) the
formServicePgmType="ALL", formServicePgmType="SEQ", or
formServicePgmType="GSAM" build descriptor option.

Form Group Format Module

The form group format module is a generated structure that describes the layout
for text forms in the form group. The generator builds the structure as a z/OS
object module for the CICS IMS/VS and IMS BMP environments. This object is
produced when you specify the genFormGroup or genHelpFormGroup build
descriptor options.

MFS Print Services Program

The MEFS print service program is a COBOL program that performs print I/0O,
output formatting, and SET operations for a generated IMS/VS or IMS BMP
program that prints output using MFS control blocks. This object is produced
when you generate for the IMS/VS environment and specify the genFormGroup
or genHelpFormGroup build descriptor option. It is also produced when you
generate for the IMS BMP environment, specify the genFormGroup build
descriptor option, and also specify (or default to) the formServicePgmType="ALL"
or formServicePgmType="MFS" build descriptor option.

IBM Rational COBOL Runtime Guide for zSeries

MFS Source

In the IMS environment, an MFS source file is generated at the same time as the
form group format module. The build server automatically compiles this MFS
source to generate IMS format, input, and output messages for each device type
defined.

COBOL Copybook for MFS MID/MOD Layout

The COBOL copybook provides the equivalent COBOL definition of the MFS MID
and MOD layouts for text forms. You can use the COBOL copybook if you need to
transfer to a non-EGL program using a show statement or transfer from a non-EGL
program to an EGL program that specifies the inputForm property. If the
formGroup contains text forms, this object is produced when you generate for the
IMS/VS environment and specify the genFormGroup or genHelpFormGroup
build descriptor option. It is also produced when you generate for the IMS BMP
environment, specify the genFormGroup build descriptor option, and also specify
(or default to) the formServicePgmType="ALL" or formServicePgmType="MFS"
build descriptor option .

Chapter 9. Output of Program Generation on z/OS Systems 79

80 IBM Rational COBOL Runtime Guide for zSeries

Chapter 10. z/OS Builds

EGL generates the files needed to create an executable program. After creating
these files, the generation process communicates with the build server on z/OS to
transfer the files to the host and then initiate the appropriate builds (compiles,
link-edits, binds, and so on) for these programs.

To control the build process, the EGL generation process creates an XML file called
a build plan for each generated program. This build plan contains specific
information that the build server uses when building the generated program.

The type of information that the build plan contains includes:

¢ The name of the build script that the build server invokes to process the build

* The location on the client workstation where the server places listings and
diagnostics from the build tools (for example, the compiler or linkage editor)

* The generated program

+ A list of dependent files for the build process (for example, the name of the link
edit file or the bind file) containing information used by the build process

e A list of environment variables that are used to override the default VARS
values specified in the Pseudo-JCL build script

The environment variables defined in the build plan are set using build descriptor
options and symbolic parameters specified by the user during program generation.

Using the information in the build plan, the server invokes the build script
overriding any predefined defaults in the pseudo-JCL build script with the
appropriate values specified in the build plan.

Following the steps outlined in the build script, the build server transforms one set
of files into another by invoking tools such as compilers and linkers. For example,

using a build script, the build server might transform a COBOL source file into an

object file. Another build script might perform the database bind.

After the build is finished, the build server places the listings and diagnostics from
the build process in the location specified in the build plan or build script.

Prepared output are placed into PDSs on the build server machine. The high level

and middle qualifiers of the PDS are controlled by the projectID and system build
descriptor options. The low level qualifiers are controlled by the type of output.

© Copyright IBM Corp. 1994, 2006 81

Build Servers

EGL 1

Workstation Client
TCPIP .
i Socke;> Win
Java
WSED | Build command
Build
Build Command | Build command TCPP uss
Plan Processor | o ... y Sockel =
{XML} uld comman
Cobol
Source Socket TSO

Figure 10. z/OS Build Process

z/0OS Build Server

82

On z/0S, you can configure the build server to perform z/OS or USS builds. If
you need both builds, then you need to start two build servers, each listening on a
unique TCP/IP port for each type.

The Remote Build server performs the following tasks:
* Receives build requests and files.

* Performs character conversions.

* Runs builds within its environment.

e Optionally collects and returns results to the client.

In z/OS, the server load module CCUBLDS receives client build requests.
CCUBLDS triggers the JCL member CCUMVS, which executes the CCUBLDW
module. CCUBLDW processes your build scripts.

IBM Rational COBOL Runtime Guide for zSeries

CCUMAIN & IBNF 3 HACE
U=er M Walickaiom

P — | ccumins

TCRIP
Remole Build Clied l
—r
CCUMYS TCPAP
(L) Scssion
LW

Child Proeess

=

Seript
Proceasing

'y
5 ,fl

wi | SR

Figure 11. Processing a z/OS Build Request

For USS operations, the server load module CCUMAIN and CCUBLDS run in
z/0S. CCUBLDS triggers the JCL member CCUUSS, which starts the USS shell
script ccubldw. The ccubldw script starts the executable ccubldw, which processes
build requests.

Chapter 10. z/OS Builds 83

CCUMAIN e = |BM's RACF
Uaer I Validation

i
»—‘t__— CCUBLDS

TCPIP
Remote Build Client I
CCHUSS
(.JCL)
hWS 1I;
Uss TCPAP
Session
coubldw.sh
CCUBL W
Child Process
¥ 5
Script
Processin
\“'“-aq__p-"ff

Figure 12. Processing a USS Build Request

Starting a z/0S Build Server

The z/OS build server, CCUBLDS, is an z/OS load module that you can run as a
batch program.

84 IBM Rational COBOL Runtime Guide for zSeries

//CCUBLDS JOB (ACCT#),'TEST',REGION=0M,
// CLASS=0,MSGCLASS=T

//* PROGRAM:
//* JCL to start CCU z/0S Build Server

/1%

CCURUN

//* COPYRIGHT: Copyright (C) International Business
Corp. 2001

/1%
/1%

//* DISCLAIMER OF WARRANTIES:

//* The following enclosed code is sample code created
//* by IBM Corporation. This sample code is not part
//* any standard product and is provided to you solely
//* for the purpose of assisting you in the development
//* of your applications. The code is provide "AS IS",
//* without warranty of any kind. IBM shall not be

//* Tliable for any damages arising out of your use

//* of the sample code
gy
//* Some dataset names may need to be modified

//* according to your system's customization

//RUNPGM
// -p 4112
//STEPLIB
//CCUNJCL
//STDOUT
//STDERR
//CCUBLOG
//

EXEC PGM=CCUMAIN,DYNAMNBR=30,REGION=7400K, TIME=NOLIMIT,
2 -n3-q20-T20

DSN=CUST.UCCBLD. LOAD,DISP=SHR
DISP=SHR,DSN=CUST.UCCBLD.JCL(CCUMVS)

-a
DD
DD
DD
DD
DD

SYSOUT=+
SYSOUT=*
SYSOUT=+

Figure 13. An example of the JCL needed to start the build server for z0S

The CCUBLDS job initiates a new job for each build transaction. The sample JCL for
that job is in member CCUMVS.JCL of the installation data set whose low-level
qualifier is SELASAMP. The server is multi-threaded, so these jobs run
concurrently and are independent of each other. The number of concurrent jobs
running at any one time is limited by system resources (such as initiators).

The build server receives commands and files, performs character conversions, sets
up the environment, runs builds within this environment, collects the results and
returns the results.

See the program directory for Rational COBOL Runtime for additional information
on customizing the CCURUN, CCURUNU, CCUMVS, and CCUUSS JCL and the
ccubldw.sh script.

You start a build server by using z/OS JCL commands. The syntax for the
parameters line is as follows:

Syntax: // PARM= '-p <portno> [-V ...] [-a {2]|1]|0} [-n <n>] [-q <gq>] [-t] [-T <n>]"
where:

—p Specifies the port number (portno) to which the server listens to
communicate with the clients.

-V Specifies the verbosity level of the server. You may specify this parameter up
to three times (maximum verbosity).

For example, to increase the verbosity to the maximum, you specify -V -V
-V.

Chapter 10. z/OS Builds 85

86

—a

-n

-q

Specifies the authentication mode of the CCUBLDS server. The server state is

either "A” (APF authorized) or "U’ (not APF authorized).

2 Server state: A. The user submitting the build request must specify a valid
user ID and password when the user initiates a build by using the remote
build client. The server performs the build transaction under the access
and authority of this user ID. Mode 2 is the default.

1 Server state: A. The user submitting the build request can provide a valid
user ID and password. The server performs the build transaction under
the access and authority of this user. If the user does not provide a user
ID and password, the build transaction is performed under the access and
authority of the user ID assigned to the build server job.

0 Server state: A or U. If U, APF-authorized build programs will fail. If the
user submitting the build request specifies a TSO user ID and password,
the server ignores them and the build transaction is performed under the
access and authority of the user ID assigned to the build server job.

You can use modes 1 and 2 only if the server load modules are run from an
APF-authorized library.

Note: For additional information about installing code in an APF-authorized
library to allow users to run builds under the authority of their userid,
see the program directory for Rational COBOL Runtime.

Specifies the number of concurrent builds. The default is 1. Set n equal to the
number of concurrent builds you want to allow. Once there are n number of
concurrent builds running, the build server queues any additional requests
and submits them on a first come first served basis as builds are completed.

Specifies the size of the queue (q) for clients. The default is 10. Each queued
client uses a TCP/IP socket. Therefore setting this too high may require more
sockets than are available, causing unpredictable results. If the queue is full,
subsequent clients are rejected by the server. However, the build client
automatically retries the build in that case.

Starts tracing of this server job and writes output to STDOUT. This parameter
is normally used only for debugging.

Specifies the number of minutes the build server will wait for a started child
process (CCUBLDW) to complete. If the system is overloaded, increase this
value. The default is 5.

Note: See the program directory for Rational COBOL Runtime for information

about modifying the JCL necessary to start the USS and z/OS build servers

If you start the server on z/OS from an APF-authorized library (this is required in
modes 1 and 2 but is optional in mode 0), the server state is authorized ("A’) and
the build script can specify an APF authorized program as the executable.

For additional information about installing code in an APF-authorized library to
allow users to run builds under the authority of the person making a build
request, refer to the EGL program directory.

Note: In this case, the build script can also specify non-APF authorized programs.

However, in a multistep JCL script, an authorized program cannot be
executed after an unauthorized program.

IBM Rational COBOL Runtime Guide for zSeries

If the server is not started from an APF-authorized library, the server state is not
authorized ("U’) and the build script can specify only non-APF authorized
programs as executables.

Starting a USS Build Server

You start the USS build server the same way you start the z/OS build server,
except with a different dataset allocated by DD name CCUWJCL. This difference is
reflected in the CCURUN and CCURUNU JCL customized at installation. The
sample JCL CCURUNU needs to be modified just as CCURUN.

The CCUW]JCL DD name uses the JCL member CCUUSS. As found in the
installation data set whose low-level qualifier is SELASAMP, that member acts as a
template in submitting build requests to USS using the BPXBATCH utility to
submit the USS shell script ccubldw.sh.

The build server creates temporary datasets and directories in the directory where
the program is initiated. It is important that the ID that starts the server has the
appropriate authority to create these datasets and directories otherwise the server
will not initiate properly and all transactions will fail.

Stopping servers
To stop an z/OS server, cancel the job that was used to start it.

Configuring a build server

To configure a build server, you must modify members of the installation data set
whose low-level qualifier is SELASAMP. Those members contain JCL and are
named as follows:

* CCUMVS (for z/OS builds)
* CCUUSS (for USS builds)

Note: See the program directory for Rational COBOL Runtime for information
about configuring the USS and z/OS build servers.

Working with Build Scripts

There is a fundamental difference between build scripts on z/OS and build scripts
on USS. Build scripts on z/OS must be text files and must be written in
Pseudo-JCL. On USS, you can use any executable file as a build script and the file
can be either text or binary.

Working with z/0S Build Scripts

The build script processed by the z/OS server is always a text file written in
Pseudo-JCL. It is specified in one of two ways. If the build script is not specified as
part of the build command, then the server looks for it as a member of the PDS
specified by the ddname CCUPROC for the server job. This PDS must be of
RECFM=FB, LRECL=80.

The build script is parsed by the server. From the parsed results, the server
allocates the specified DD names and data sets; it then executes the programs

dynamically.

On z/0S, the server also uses the JCL to determine where to store the files
involved in an z/OS build.

Chapter 10. z/OS Builds 87

88

EGL uses and Rational COBOL Runtime provides build scripts in the PDS
specified by DD name CCUPROC in the CCUMVS JCL. These build scripts are the
defaults specified in the EGL generated build plans. The member names are
FDABCL, FDABIND, FDACL, FDALINK, FDAPCL, FDAPTCL, FDATCL, and
FDAMES.

These must be members in the PDS specified in the CCUPROC DD card in the JCL
used to invoke a build request (see the previous section). The members provide the
following functions:

FDABCL
Compile and link the generated z/OS batch and IMS BMP programs

FDABIND
Bind generated programs that contain DB2 statements

FDACL
Compile and link the generated COBOL programs, print services
programs, or data table programs that do not contain CICS or DB2
commands

FDALINK
Link the generated form group format module.

FDAMEFS
Invoke the MFS utilities to prepare MFS source for execution in IMS/VS or
IMS BMP environments.

FDAPCL
DB2 precompile, compile, and link the generated z/OS batch, IMS/VS, or
IMS BMP programs that contain DB2 statements.

FDAPTCL
DB2 precompile, CICS translation, compile, and link the generated CICS
COBOL programs that contain DB2 statements.

FDATCL
CICS translation, compile, and link the generated CICS COBOL programs
that do not contain DB2 statements.

To override the default build scripts, use the symbolic parameter
DISTBUILD_BUILD_SCRIPT. To identify the PDS from which to access build
scripts at build time, specify the PDS name in the symbolic parameter
BUILD_SCRIPT_LIBRARY.

Refer to the EGL Generation Guide in the EGL help system for more information on
how to use symbolic parameters during generation.

Writing a JCL build script

JCL build scripts must be written using Pseudo-JCL. The best starting point for a
JCL build script is an existing JCL fragment that is used for transforming inputs
into output. For example, suppose you want to create a build script that compiles a
COBOL source file into an OBJECT file using a z/OS compiler. You probably
already have JCL that can be submitted as a batch job that does this.

When you create a build script for the z/OS environment, you specify Pseudo-JCL
statements, as described in the following EGL help system topics:

* Pseudo-JCL syntax

* Pseudo-JCL substitution variables

IBM Rational COBOL Runtime Guide for zSeries

* Setting and including pseudo-JCL substitution variables
* Predefined pseudo-JCL substitution variables

For more information about JCL syntax, refer to the JCL User’s Guide and JCL
Reference for your version of z/OS.

File Name Conversions for z/0OS
Workstation file names are converted to z/OS host PDS names and member names
by the z/OS build server according to the following rules:

* The directory path of a file name is not used. The end of a directory path of a
file name is specified by a slash or left parenthesis ("/", "(", or "\"). All
characters of a file name up to and including the rightmost slash or left
parenthesis are discarded.

* Lowercase characters are converted to uppercase characters.

¢ The file extension is stripped from the right, up to and including the separating
period. The extension, minus the period, is used by the z/OS server to direct the
file to particular data sets according to user-specified syntax in the JCL build
scripts.

¢ The remaining name is truncated from the left, to a maximum of 8 characters.

* Names must contain characters that are valid in z/0S. z/OS allows the
following characters:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$@#
However, the name must begin with an alphabetic character.

* Underscore characters (_) in a file name are converted to at signs (@).

The following are examples of how a workstation name is converted:
* A file name of src\build\thbldobj.CBL is converted to FHBLDOB] on z/OS.
* A file name of src/build/fhbtruncate.cbl is converted to FHBTRUNC on z/OS.

In both of these examples, the .CBL or .cbl is removed. The z/OS server uses the

resulting extension to resolve and possibly allocate the z/OS data sets needed for
the build process. The extensions are required for files that participate in an z/OS
build.

Converting JCL to Pseudo-JCL
The following is a JCL procedure for a z/OS compile and link:

//**

//* JCL Procedure - COBOL COMPILE AND LINK-EDIT

//**

/1%

//ELACL PROC CGHLQ='USER',

// COBCOMP="SYS1.IGY.SIGYCOMP',

// COBLIB="SYS1.SCEELKED',

// ELA="'VGEN.HS.VIR2MO',

// DATA='31",

// ENV="'Z0SCICS',

// MBR=PGMA,

// RESLIB="SYS1.RESLIB',

// RGN=1024K,

// SOUT="+",

// WSPC=500 ,

/1%

//* PARAMETERS:

/1* CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER
/1% COBCOMP = COBOL COMPILER LIBRARY
/1% COBLIB = LE RUN TIME LIBRARY

Chapter 10. z/OS Builds 89

A ELA EGL SERVER HIGH LEVEL QUALIFIER

/1% DATA COMPILE OPTION FOR PLACING WORKING STORAGE

/1* ABOVE 16M LINE

//* ENV = COBOL GENERATION USER DATA SET ENVIRONMENT QUALIFIER
/1* (SHOULD BE EQUAL TO GENERATION TARGET ENVIRONMENT)

//* MBR = SOURCE NAME

/1% RESLIB = IMS RESLIB LIBRARY

/1* RGN = REGION SIZE

/1% SOUT = SYSOUT ASSIGNMENT

/1* WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION

/1%
//~k***
/1% COMPILE THE COBOL PROGRAM
//**
/1*

//C EXEC PGM=IGYCRCTL,REGION=&RGN,

// PARM=(NOSEQ,QUOTE,OFFSET, LIB,RENT,NODYNAM, DBCS,0PT,

// "TRUNC(BIN) "', 'NUMPROC (NOPFD) ' ,NOCMPR2, 'DATA (&DATA) ')

//STEPLIB DD DISP=SHR,DSN=&COBCOMP

//SYSIN DD DISP=SHR,DSN=&CGHLQ..&ENV..EZESRC(&MBR)
//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY

//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,UNIT=VIO,

// SPACE=(800, (&WSPC,&WSPC))

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300

//SYSUT1 DD SPACE=(800, (8&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT2 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT3 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT4 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT5 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT6 DD SPACE=(800, (8&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT7 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO

/1%

R R R R Y
/1% LINK-EDIT THE COBOL PROGRAM

/1% IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS

[[FHdk ke kok e kKK xR I IR KhKhhh kI hhh Kk kK ko k R R R R L LE.
/1%

//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,

// PARM="'RENT,REUS,LIST,XREF,MAP,AMODE (31) ,RMODE (ANY) '

//SYSLIB DD DISP=SHR,DSN=&COBLIB

// DD DISP=SHR,DSN=&RESLIB

//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD

//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET

1/ DD DDNAME=SYSIN

//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&ENV..LOAD (&MBR)
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUDUMP DD SYSOUT=&SOUT,DCB=BLKSIZE=13300
//SYSUT1 DD SPACE=(1024, (&WSPC,&WSPC)),UNIT=VIO

The first step in converting the JCL fragment is to recognize the intent for each of
the data sets and DD names. For this COBOL compiler example, the SYSIN DD
name needs to be associated with the source file, the SYSLIN DD name needs to be
associated with the object file, and so on.

In each of these cases, the build script must tell the server where to pick up the
input files before the execution of the specified program (PGM=IGYCRCTL) and
where to put the output files after the execution of the specified program.

Assume that your source files have the extension .cbl. You allocate a data set to the
SYSIN DD name to contain a source file with a .cbl extension. You specify the
DCB, UNIT, DISP, and SPACE attributes to dynamically create this data set every
time this build script is invoked. You add CCUEXT=CBL to indicate that the file
content comes from an input file with an extension of .cbl.

90 IBM Rational COBOL Runtime Guide for zSeries

For the SYSPRINT DD statement, use the CCUEXT parameter to tell the z/OS

build server what you want to have done with the COBOL compiler listing. In the

example, CCUEXT=&CCUEXTC so that the value is set from the default

Pseudo-]JCL build script parameter CCUEXTC. The value CCUOUT indicates that
you want the listing returned to the client as a file with a name based on the DD

name.

The following JCL build script is the result of converting the JCL procedure.

//**

//* BUILD SCRIPT - COBOL COMPILE AND LINK-EDIT

[] FHddk ke ke dkok ok dkok ok dk ok ok ok kh B R L R L E R e e Kk kkkkkkhkkkrhkkkkh kK
/1*

//DEFAULTS VARS CGHLQ=USER,

// COBCOMP=SYS1.IGY.V3RIMO.SIGYCOMP,

// COBLIB=SYS1.SCEELKED,

// COBLISTPARMS=0FFSET&COMMA .NOLIST&COMMA . MAP,

// ELA=ELA.V6ROMI,

// DATA=31,

// SYSTEM=Z0SCICS,

// MBR=PGMA,

// RGN=4096K

// CCUEXTC=CCUOUT,

// CCUEXTL=CCUOUT,

// SOUT=%,

// DBCS=&COMMA.DBCS

// WSPC=2500

/1%

//* PARAMETERS:

/] CGHLQ = COBOL GENERATION USER DATA SET HIGH LEVEL QUALIFIER
/1% COBCOMP = COBOL COMPILER LIBRARY

/1* COBLIB = LE RUN TIME LIBRARY

/1% COBLISTPARMS = LISTING OPTIONS FOR COBOL COMPILER

/1% ELA = RATIONAL COBOL RUNTIME HIGH LEVEL QUALIFIER

//* DATA = COMPILE OPTION FOR PLACING WORKING STORAGE

/1% ABOVE 16M LINE

/1* DBCS = COMPILE OPTION FOR INDICATING SOURCE CONTAINS DBCS
/1% CHARACTERS

/1* SYSTEM = SYSTEM GENERATING FOR. USED AS USER DATASET MIDDLE
/1% QUALIFIER

/1% MBR = SOURCE NAME

//* RGN = REGION SIZE

/1% CCUEXTC = CCUEXT VALUE FOR COMPILE PRINTOUTS RETURNED TO

/1* CLIENT.

/1% CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME
/1 CCUSTD=RETURN TO CLIENT AS STANDARD OUT

/1% CCUERR=RETURN TO CLIENT AS STANDARD ERROR

/1% CCUEXTL = CCUEXT VALUE FOR LINK PRINTOUTS RETURNED TO CLIENT
/1* CCUOUT=RETURN TO CLIENT AS FILE NAMED BY DDNAME
/1% CCUSTD=RETURN TO CLIENT AS STANDARD OUT

/1* CCUERR=RETURN TO CLIENT AS STANDARD ERROR

/1% SouT = SYSOUT ASSIGNMENT IF A SYSOUT FILE NOT RETURNED
/1% TO CLIENT

/1% WSPC = PRIMARY AND SECONDARY SPACE ALLOCATION

/1%
//**
/1% COMPILE THE COBOL PROGRAM
//**
/1%

//C EXEC PGM=IGYCRCTL,REGION=&RGN,

// PARM="NOSEQ,QUOTE,LIB,RENT,NODYNAM, OPT&DBCS,

// TRUNC (BIN) ,NUMPROC (NOPFD) , &COBLISTPARMS. ,DATA (&DATA) '

//STEPLIB DD DISP=SHR,DSN=8COBCOMP

//+ COBOL SOURCE CODE UPLOADED FROM CLIENT (&MBR.CBL)
//SYSIN DD CCUEXT=CBL,DISP=(NEW,DELETE),

// UNIT=SYSDA,SPACE=(TRK, (10,10)),

Chapter 10. z/OS Builds

91

92

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)

//SYSLIB DD DISP=SHR,DSN=&ELA..SELACOPY

//SYSLIN DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..OBJECT (&MBR) ,ENQ=YES
//* RETURN COMPILER LISTING TO CLIENT AS FILE &PREFIX.C.SYSPRINT
//SYSPRINT DD CCUEXT=&CCUEXTC,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(CYL, (5,5)),

// DCB=(RECFM=FB, LRECL=121,BLKSIZE=1210)

//SYSUTL DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT2 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT3 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT4 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT5 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT6 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND) ,UNIT=VIO
//SYSUT7 DD SPACE=(800, (&WSPC,&WSPC),, ,ROUND),UNIT=VIO

/1*

//*************** """"""""""" XKk *A*hhkhhhhhhhhhhhhhdhkhdhdhdhhdhdhkhdkdx*x
/% LINK-EDIT THE COBOL PROGRAM

//* IF THE RETURN CODE ON ALL PREVIOUS STEPS IS 4 OR LESS
//**
/1*

//L EXEC PGM=IEWL,COND=(5,LT,C),REGION=&RGN,

/] PARM="RENT,REUS, LIST,XREF ,MAP, AMODE (&DATA) , RMODE (ANY) '

//SYSLIB DD DISP=SHR,DSN=&COBLIB

//SELALMD DD DISP=SHR,DSN=&ELA..SELALMD

//O0BJLIB DD DISP=SHR,DSN=&CGHLQ..&SYSTEM..0BJECT

//* LINK EDIT CONTROL FILE UPLOADED FROM CLIENT (&MBR.LED)
//SYSLIN DD CCUEXT=LED,DISP=(NEW,DELETE),

// UNIT=SYSDA,SPACE=(TRK, (10,10)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSLMOD DD DISP=SHR,DSN=&CGHLQ..&SYSTEM. .LOAD(&MBR),ENQ=YES
//* RETURN LINK EDIT LISTING TO CLIENT AS FILE &PREFIX.L.SYSPRINT
//SYSPRINT DD CCUEXT=&CCUEXTL,DISP=(NEW,DELETE),

// UNIT=VIO,SPACE=(TRK, (30,10)),

// DCB=(RECFM=FB,LRECL=121,BLKSIZE=1210)

//SYSUT1 DD SPACE=(1024, (8&WSPC,&WSPC)),UNIT=VIO

//

IBM Rational COBOL Runtime Guide for zSeries

Chapter 11. Preparing and Running a Generated Program in
CICS

This chapter describes the unique steps required to prepare and run a generated
COBOL program in an CICS environment:

* Modifying CICS resource definitions

* Modifying CICS startup JCL

* Making new modules available

* Making programs resident

* Running programs

Modifying CICS Resource Definitions

The CICS environment uses resource definitions to identify startup parameters,
transactions, programs, files, databases, transient data destinations, and system
locations for proper operation. You must add to or modify these resource
definitions to correctly identify all objects to be used in the new or changed
program. When using CICS tables, the tables are compiled as assembler programs
and stored in a runtime library. Some tables can also be maintained through an
online facility as described in the resource definition online manual for your
version of CICS. CICS requires that the online facility be used for PROGRAM and
TRANSACTION entries.

Refer to the CICS resource definitions guide for additional information on
providing definitions.

You can either write your own RDO PROGRAM and TRANSACTION entries or
use the ones generated by EGL. You must handle DCT, FCT, and RCT entries
yourself.

Program Entries

The EGL COBOL generation process creates programs that must be defined, as a
resource definition online (RDO) PROGRAM entry or by using dynamic program
entries.

An entry is required for each EGLgenerated program. You can request that sample
PPT or RDO entries be generated for you by specifying the cicsEntries build
descriptor option at generation. However, the PPT entries are no longer supported
by CICS.

Either the batch program DFHCSDUP utility or the resource definition online
(RDO) CEDA DEFINE PROGRAM command can be used to define the server
program to CICS.

If you specify cicsEntries="RDO", CICS RDO DEFINE PROGRAM commands are
generated for you for each program that requires an RDO PROGRAM entry. The
build plan created during generation uploads the RDO command files to the z/OS
library specified at generation.

The following example shows how to define the program entries using the RDO
CEDA transaction DEFINE PROGRAM command.

CEDA DEF PROG(progname) L(LE370) REL(NO) RES(NO) S(ENABLED) GROUP(xxxx)

© Copyright IBM Corp. 1994, 2006 93

94

The values shown for REL, RES, and S keywords are the default values and can be
omitted from the command. RES(YES) might provide better performance for
frequently used programs.

Transaction Entries

A CICS TRANSACTION entry contains the control information used by CICS for
identifying and initializing a transaction. This entry is required by CICS to verify
incoming requests to start transactions, and to supply information about the
transaction such as the transaction priority, the security key, and the length of the
transaction work area (TWA).

A CICS RDO TRANSACTION entry is required for each transaction code used to
start an EGL generated program. If you specify cicsEntries="RDO", CICS RDO
DEFINE TRANSACTION commands are generated for you for main programs
using the transaction names from both the startTransactionID and the
restartTransactionID build descriptor options. The following example shows how
to define the TRANSACTION entries using the RDO CEDA transaction DEFINE
TRANSACTION:

CEDA DEF TR(tran) PROG(progname) I(BACKOUT) DU(NO) RES(NO) TW(1024)

EGL generated programs can be started by a remote procedure call from some
remote systems. The CICS supported mirror program DFHMIRS, normally invoked
by the CPMI transaction is used during this remote procedure call. It:

1. Determines which server program should be given control

2. Builds the COMMAREA

3. Links to the defined server program via CICS LINK

CPMLI is the CICS supplied default transaction code to invoke the CICS mirror
program DFHMIRS. When using CPMI to start EGL programs, you must change
the transaction definition for CPMI to specify a TWASIZE of at least 1024 bytes.

To avoid making changes to the CPMI definition in the CICS supplied group, it is
recommended that you copy the CICS supplied CPMI definitions to a new group
or create a unique transaction ID with the same characteristics as CPMI. The new
transaction or copy of CPMI should be changed and verified to ensure the
following values are set.

1. The twasize is 1024

2. The profile is DFHCICSA (CICS default would be DFHCICST (T for terminal))

3. The program invoked is DFHMIRS

Example:
DEFINE TRANSACTION(MYMI) PROGRAM(DFHMIRS) TWASIZE(1024) PROFILE(DFHCICSA)

Destination Control Table Entries (DCT)

A CICS destination control table (DCT) entry is required for each program file that
is assigned to a transient data queue. A DCT entry is also required for destinations
specified as error destination queue names using the Rational COBOL Runtime
diagnostic controller utility. The parameters for DCT entries depend on your
destination type. There are intrapartition, extrapartition, indirect, and remote
destinations. See|“Using and Allocating Data Files in CICS” on page 42| for
information about defining and managing program data files and .“Deﬁning

IBM Rational COBOL Runtime Guide for zSeries

[[ransient Data Queues” on page 43 for information about defining the DCT entry
for the error destination queue. Refer to appropriate CICS manuals for more
information on DCT entries.

To provide these definitions as RDO entries, see the CICS resource definition
guide.

File Control Table Entries (FCT)
A CICS file control table (FCT) entry is required for each program file that is

specified as file type VSAM. You must identify all FCT entries that might be
referenced at run time. Files can also be defined using RDO. See
|Allocating Data Files in CICS” on page 42| for more information on defining and
managing program data files in the CICS environment.

Resource Control Table Entry (RCT)

If the programs running under a transaction access DB2 databases, then you must
define an entry in the CICS resource control table (RCT) that associates the
transaction identifier with the program plan name.

The following example shows the minimum RCT entry required:
DSNCRCT TYPE=ENTRY TXID=tran PLAN=plan-name

For more information on the other parameters you can specify when you define
RCT entries, refer to the chapter on connecting the CICS attachment facility in the
DB2 installation manual for your version of DB2.

To provide these definitions as RDO entries, see the CICS resource definition
guide.

Using Remote Programs, Transactions, or Files

Refer to the appropriate CICS manuals for information about defining remote
programs, transactions, or files.

Modifying CICS Startup JCL

You must include the load library where your generated programs reside in the
DFHRPL DD concatenation. Your system administrator included the LE runtime
libraries and the Rational COBOL Runtime load library in the DFHRPL DD
concatenation when the Rational COBOL Runtime product was installed.

The CICS startup JCL might need to be modified to add or change allocations for
files used by EGL-generated programs. These include VSAM files and
extrapartition transient data destinations.

For VSAM data sets, it is not necessary to include allocations in the startup JCL if
you specify the data set name and disposition in the CICS FCT or RDO entry for
the file. CICS dynamically allocates the file at open time.

Making New Modules Available in the CICS Environment

After you generate a new version of a program, form group, or data table you
need to make the modules available to CICS.

Chapter 11. Preparing and Running a Generated Program in CICS 95

For programs and form groups, you can use the CICS NEWCOPY command or the
Rational COBOL Runtime new copy utility to cause the new copy of the program
to be used the next time a load request is issued for the program. If you use the
CICS NEWCOPY command for a form group, you must issue the NEWCOPY for
both the online print services program and the form group format module.

For data tables, you must use the Rational COBOL Runtime new copy utility to
cause a fresh copy of the table to be used the next time a load request is issued for
the table. Do not use the CICS NEWCOPY command for tables. The Rational
COBOL Runtime new copy utility sets a flag indicating that the new copy of the
table is to be used the next time a program loads the table contents.

For more information on the Rational COBOL Runtime new copy utility, see m
ICopy” on page 122.|

Making Programs Resident

You can make frequently used programs or programs with high performance
requirements resident to avoid the overhead of loading the programs when they
are used. To aid in deciding which programs should be made resident, you can use
CICS shutdown statistics to determine how often a generated program is loaded in
a CICS region.

To make a program or form group resident, specify the program as resident in the
RDO entry for the program. To make a data table program resident, set the
resident property to YES when you define the data table in EGL.

Running Programs under CICS

Either a main Text Ul program or a main basic program generated for the z/OS
CICS environment can be started with CICS facilities. Called programs can be
started by another EGL program, by a non-EGL program, or through the remote
CICS services.

Prior to running a generated program, the program user might be required to sign
on to the CICS environment. Refer to CICS documentation for information about
signing on.

Starting the Transaction in CICS

Any main program that is generated with a target environment of z/OS CICS can
be started by entering the transaction code associated with the main program from
a clear screen in CICS. Any main program that is started in any of the following
ways must have a unique transaction code assigned to it:

¢ Directly in CICS

* By a transfer to transaction statement from another program
* By a show statement from another program

* By a sysLib.startTransaction() system function

The transaction code must be defined with an RDO TRANSACTION entry and be
associated with the first program in the run unit.

Controlling Diagnostic Information in the CICS Environment

Rational COBOL Runtime provides a diagnostic controller utility for the CICS
environment. This utility allows you to control the type of dump, the name of the

96 IBM Rational COBOL Runtime Guide for zSeries

error destination queue and journal number for error messages, and whether the
transaction is disabled when a run unit error occurs. See ["Diagnostic Control|
Options for z/OS CICS Systems” on page 125 for more information about the
diagnostic controller utility.

Printing Diagnostic Messages in the CICS Environment

Rational COBOL Runtime provides a way to print diagnostic messages written to a
transient data queue. See ['Diagnostic Message Printing Utility” on page 124] for
more information.

Chapter 11. Preparing and Running a Generated Program in CICS 97

98 IBM Rational COBOL Runtime Guide for zSeries

Chapter 12. Creating or Modifying Runtime JCL on z/OS
Systems

This chapter contains the information you need to modify the sample runtime JCL
created during program generation. You might need to modify the sample runtime
JCL for the following reasons:

* EGL does not include DD statements in the JCL to allocate data sets accessed by
programs called by or transferred to from the generated program.

* The generator does not include DD statements to allocate data sets accessed
when the EGL program moves a value to the record-specific variable
resourceAssociation or to the system variable converseVar.printerAssociation.

¢ The generator does not create any recovery or restart JCL.

* The sample JCL is based on the initial program in the run unit.

You need to ensure that the load libraries containing the initial program and any
dynamically invoked programs are included in the STEPLIB concatenation unless
you are using methods to put the load modules in memory. This includes program
modules that are called dynamically or that receive control by a transfer and
includes print services programs, form group format modules, and data-table
programs.

Tailoring JCL before Generation

EGL creates sample runtime JCL for basic programs being generated for the z/OS
batch or IMS BMP environments. The sample runtime JCL is based on templates
that are installed in the MVStemplates subdirectory of the following plugin:

com.ibm.etools.egl.generators.cobol_version

version
The product version; for example, 6.0.0.

You can specify the location of site-specific templates by setting the templateDir
build descriptor option.

Some of the reasons to tailor the JCL templates are as follows:

* Implementing your installation’s data set naming conventions
* Adding DD statements to the STEPLIB concatenation

* Specifying a different DB2 subsystem

The sample JCL is shown in [Chapter 13, “Preparing and Running Generated|
Programs in z/OS Batch,” on page 103[and in|Chapter 14, “Preparing and Runningl
Generated Programs in IMS/VS and IMS BMP,” on page 107.|

The following table shows the relationship between the JCL templates used, the
target environments, and the types of databases being used by the program.

Table 19. Runtime JCL Templates Based on Environment and Databases

JCL Template Database Environment
FDA2MEBE None z/0S batch
FDA2MEBD DB2 z/0S batch

© Copyright IBM Corp. 1994, 2006 99

Table 19. Runtime JCL Templates Based on Environment and Databases (continued)

JCL Template Database Environment
FDA2MEBB DB2 and DL/1 z/0S batch

FDA2MEBC DL/I z/0S batch

FDA2MEIA DB2 IMS BMP

FDA2MEIB Without DB2 IMS BMP

FDA2MEBA Any, for called program z/0S batch or IMS BMP

shows the JCL templates that serve as models for DD statement
generation for program-dependent files and databases.

Table 20. Model DD Statement for Program-Dependent Files and Databases

JCL Template

Contents

FDA2MSDI

QSAM input file

FDA2MSDO

QSAM output file

FDA2MVSI

VSAM input file

FDA2MVSO

VSAM output file

FDA2MGSI

GSAM input file

FDA2MGSO

GSAM output file

FDA2MIMS

GSAM IMS dataset for IMS BMP

FDA2MCAL

Comment indicating where to insert DD statements for known
transferred-to and called programs

FDA2MEZA

Comment indicating where to insert DD statements for programs
transferred-to using the system variable sysVar.transferName

FDA2MEZD

Comment indicating where to insert DD statements for data sets
using the record-specific variable resourceAssociation or the system
variable converseVar.printerAssociation

FDA2MDLI

Comment indicating where to insert DD statements for DL/I
databases on z/OS batch

Modifying Runtime JCL

The sample runtime JCL for main basic programs contains EXEC statements to run
a program or a cataloged procedure. The JCL for main basic programs does not
include a JOB statement or the DD statements for data sets accessed by called or
transferred-to programs. Before you use the JCL to run the program, you must do

100

the following:

* Add a JOB statement.

* Insert missing DD statements as required. Comments in the generated JCL
indicate where to insert the DD statements.

The sample runtime JCL for a called program contains only the DD statements that
are required for the called program.

After generation, add the DD statements for any files required by called or
transferred-to programs (including those named with sysVar.transferName) to the
sample JCL for the main program. In addition, you must add DD statements for
any files accessed by moving a value to the record-specific variable

IBM Rational COBOL Runtime Guide for zSeries

resourceAssociation or to the system variable converseVar.printerAssociation .
You do not need to add DD statements for files that you access dynamically. You
can also customize the sample runtime JCL with respect to specific data set name
assignments, DCB information, output file space allocations, additional steps, and
other relevant data.

The type of runtime JCL generated for a main basic program varies based on the
types of databases used by the main program, as shown in [Table 19 on page 99
The generated runtime JCL does not consider the types of databases accessed by
called or transferred-to programs. If the main program does not use relational
databases, but it calls or transfers to programs that use relational databases, you
must modify the runtime JCL for the main program. This situation does not occur
for DL/I because the main program must have a PSB defined even if it does not
access DL/I databases.

For example, consider the following situation:

* Program A is a main basic program that does not use relational databases.
* Program B is main basic program that accesses relational databases.

* Programs A and B are generated for the z/OS batch environment.

e Program A transfers to program B

Because program A does not use DB2, the JCL generated for program A is for a

main basic program without DB2 access (as shown in [Figure 14 on page 104). This

JCL will not run correctly because program B requires DB2 to run. However, the

JCL generated for program B is for an z/OS batch job with DB2 access (as shown

in [Figure 15 on page 104). The runtime JCL for program B can serve as a starting

point for creating the JCL required to run program A. The following changes are

required to the runtime JCL for program B:

¢ Change RUN PROG(APPLB) to RUN PROG(APPLA).

* Add any DD statements for files required by program A or other programs in
the job step.

If program B is a called program and program A calls B rather than transferring to

B, the runtime JCL for program B consists only of DD statements. In this situation,

you need to create your own program JCL. Any one of the following can serve as a
starting point for the JCL:

* The runtime JCL for another main program that accesses relational databases.

¢ The JCL template for the appropriate combination of DL/I and DB2.

+ The examples shown in|Chapter 13, “Preparing and Running Generated)|
[Programs in z/OS Batch,” on page 103 for the appropriate combination of DL/I
and DB2.

You can avoid the modification just described if you include an I/O statement for
an SQL table in the initial main program.

If you get a JCL error for the runtime JCL, check the Generation Results view for
the programs involved for any error messages related to JCL generation. In
addition, ensure the tailoring that was done for the JCL templates is correct. Also
check any changes you made when you customized the sample runtime JCL.

Chapter 12. Creating or Modifying Runtime JCL on z/OS Systems 101

102 1BM Rational COBOL Runtime Guide for zSeries

Chapter 13. Preparing and Running Generated Programs in
z/OS Batch

This chapter describes the unique steps required to prepare a generated COBOL
program to run in a z/OS batch environment:

* Running main programs

* Examples of runtime JCL

¢ Recovery and restart

For general information on preparing your program for the runtime environment,
see [Chapter 9, “Output of Program Generation on z/OS Systems.”| For information
on modifying the JCL, see|Chapter 12, “Creating or Modifying Runtime JCL on|
z/OS Systems.”|

Running Main Programs under z/OS Batch

A main basic program generated for the z/OS batch environment can be started by
submitting JCL. Called programs can only be started by another EGL program or
by a non-EGL program.

The EGL COBOL generation process creates sample runtime JCL for running
programs in the z/OS batch environment. The generated JCL has same name as
the program. If you set the genRunFile build descriptor option to "YES”, sample
JCL is created specifically for the program during program generation. The build
plan uploads the sample runtime JCL to a z/OS partitioned data set (PDS).

The JCL might need to be modified to add data sets required by called or
transferred-to programs. You also need to modify the JCL to add any data sets that
are dynamically allocated with the recordName.resourceAssociation or
converseVar.printerAssociation system variables. See [Chapter 12, “Creating o1
Modifying Runtime JCL on z/OS Systems,” on page 99| for more information on
modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the Generation Results view for
the programs involved for any error messages related to JCL generation. In
addition, ensure the tailoring that was done for the JCL templates is correct. Also
check any changes you made when you customized the sample runtime JCL.

The following sections show JCL for different z/OS batch programs.

Examples of Runtime JCL for z/0S Batch Programs

The generated JCL in the following examples has these characteristics:

e The examples are based on the JCL templates shipped with EGL. Your actual
JCL templates might differ if your system administrator has tailored them for
your organization. Refer to the EGL Generation Guide in the EGL help system for
more information about tailoring JCL templates.

* Lowercase text appears in the examples where a generic example name has been
substituted for an actual program or data set name.

e EZEPRINT is always routed to SYSOUT=*.

© Copyright IBM Corp. 1994, 2006 103

If you route EZEPRINT to a data set, you must use the following DCB
attributes:

- LRECL=137, BLKSIZE=141, RECFM=VBA if the form group does not contain
any DBCS maps

— LRECL=654, BLKSIZE=658, RECFM=VBA if the form group contains any
DBCS maps

You cannot use form groups that do not have any DBCS forms with form
groups that do have DBCS forms in the same job step.

Running a Main Basic Program with No Database Access
shows the JCL used to start a main basic program.

//jobname JOB ,MSGCLASS=A

//stepnam EXEC PGM=appl-name, REGION=6M

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6ROM1.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR
//ELAPRINT DD SYSOUT=x,DCB=(RECFM=FBA,BLKSIZE=1330)
//ELASNAP DD SYSOUT=+,DCB=(RECFM=VBA,BLKSIZE=4096)
//EZEPRINT DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//SYSABOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//* Application specific DD statements
[/file-name-1 DD ...viiiriiinriiiiinieneennnnn.
//file-name-n DDvvvunnnineernnnnnaneennnnns

Figure 14. JCL for Main Basic Program Run as z/OS Batch without DB2 or DL/I Access

Running a Main Basic Program with DB2 Access

shows the JCL used to start a main basic program that gains access to
DB2 resources. The JCL must run the z/OS TSO terminal monitor program to run
the generated program.

//jobname JOB USER=userid,........
//stepname EXEC PGM=IKJEFTO1,DYNAMNBR=20,REGION=4M
//STEPLIB DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=ELA.V6ROM1.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR

//ELAPRINT DD SYSOUT=x,DCB=(RECFM=FBA,BLKSIZE=1330)
//ELASNAP DD SYSOUT=#,DCB=(RECFM=VBA,BLKSIZE=4096)
//EZEPRINT DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//SYSABOUT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSTSIN DD =*

DSN SYSTEM (ssid)

RUN PROG (appl-name) PLAN (plan-name) -

LIB ('cghlg.env.LOAD')

END
/*
//SYSTSPRT DD SYSOUT=*
//* Application specific DD statements
//file-name-1 DD ..vvvrnnineneennnnnnneeennnnnnnn
//file-name-n DD ..uiitiiiininiiii i

Figure 15. JCL for Main Basic Program Run as z/OS Batch with DB2 Access

Running Main Basic Program with DL/l Access

If a main basic program runs as a DL/I batch program, then all DL/I requests are
handled by a private IMS region. The JCL for the step that runs the program must

104 1BM Rational COBOL Runtime Guide for zSeries

include DD statements for the IMS log if databases are opened with update intent
or if the program uses the EGL sysLib.audit() system function. Also, a DD
statement must be included for each of the data sets associated with the DL/I
databases referenced in the IMS PSB. The IMS log DD statements (IEFRDER and
IEFRDER2) are normally included in the DLIBATCH procedure.

EGL COBOL generation uses the FDA2MDLI JCL template to build the DD
statements for program databases. This template has the DD statement commented
out because EGL does not collect the high-level program database qualifiers. You
need to provide the final tailoring of these DD statements in the sample runtime
JCL. Alternatively, depending on your naming conventions, your administrator
might be able to modify the FDA2MDLI template so that you can use the
symbolicParameter build descriptor option to set high-level qualifiers for
databases. Refer to the EGL Generation Guide in the EGL help system for
information about modifying templates and using the symbolicParameter build
descriptor option.

shows the sample JCL used to run a generated program as a DL/I batch
program.

//jobname JOBeiiiiiiiiiinnnn
//stepname EXEC DLIBATCH,DBRC=Y,

// MBR=app1-name,PSB=ims-psbh-name,BKO=Y, IRLM=N
//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6ROM1.SELALMD,DISP=SHR

/1 DD DSN=cghlq.env.LOAD,DISP=SHR

//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH
//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION
//G.DFSVSAMP DD DSN=ELA.V6ROMI1.ELASAMP (ELAVSAMP) ,DISP=SHR
//G.ELAPRINT DD SYSOUT=+,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=+,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=*,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements including DL/I DB DD statements
[/file-name-1 DD ...vvvirnnnnnnnennnnnennennnnns

[/file-name-n DD ...uurnniiit it

Figure 16. JCL for Main Basic Program Run as z/OS Batch with DL/I Access

Running a Main Basic Program with DB2 and DL/l Access

[Figure 17 on page 106 shows the JCL that enables a program to run as a
stand-alone DL/I batch processing program and to gain access to DB2 databases.
Special recovery considerations are required. Refer to the DB2 documentation for
your system for additional information.

The JCL for the step that runs the program must include DD statements for the
IMS log if databases are opened with update intent or if the program uses the EGL
sysLib.audit() system function. Also, a DD statement must be included for each of
the data sets associated with the DL/I databases referenced in the IMS PSB. The
IMS log DD statements (IEFRDER and IEFRDER2) are normally included in the
DLIBATCH procedure.

EGL COBOL generation uses the JCL template FDA2MDLI to build the DD
statements for DL/I program databases. This template has the DD statement
commented out because EGL does not collect the high-level program database
qualifiers. You need to provide the final tailoring of these DD statements in the

Chapter 13. Preparing and Running Generated Programs in z/OS Batch 105

sample runtime JCL. Alternatively, depending on your naming conventions, your
administrator might be able to modify the FDA2MDLI template so that you can
use the symbolicParameter build descriptor option to set high-level qualifiers for
databases. Refer to the EGL Generation Guide for information about modifying
templates and using the symbolicParameter build descriptor option.

//jobname JOB ...ttt
//stepname EXEC DLIBATCH,DBRC=Y,

// MBR=DSNMTVO1,PSB=ims-psb-name,BKO=Y, IRLM=N
//G.STEPLIB DD

// DD

// DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6ROM1.SELALMD,DISP=SHR

// DD DSN=cghlq.env.LOAD,DISP=SHR

//* DFSVSAMP IS REQUIRED IF VSAM DATABASES - REPLACE MEMBER WITH
//* ONE THAT HAS VALID BUFFER POOL SIZES FOR YOUR APPLICATION
//G.DFSVSAMP DD DSN=ELA.V6ROM1.ELASAMP (ELAVSAMP),DISP=SHR

/*

//G.DDOTVO2 DD DSN=&&TEMP1,

// DISP=(NEW,PASS,DELETE),

// SPACE=(CYL,(1,1),RLSE) ,UNIT=SYSDA,

// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)

//G.DDITVO2 DD =

ssid,SYS1,DSNMIN1O,,R,-,connection name,plan-name,appl-name
/*
//G.ELAPRINT DD SYSOUT=x,DCB=(RECFM=FBA,BLKSIZE=1330)
//G.ELASNAP DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*
//G.SYSOUT DD SYSOUT=*
//* Application specific DD statements including DL/I DB DD statements
J/file-name-1 DD tuuvrvrnneineneeneeneenennennns
[/fi1e-name-2 DD uuiiieiiiiiiiiii i
//*
//* Attempt to print out the DDOTVO2 data set created in previous step
//stepnam2 EXEC PGM=DFSERA10,COND=EVEN
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSNAME=R&TEMP1,
// DISP=(0LD,DELETE)
//SYSIN DD =*
CONTROL CNTL K=000,H=8000
OPTION PRINT
/*

Figure 17. JCL for Main Basic Program Run as z/OS Batch with DB2 and DL/I Access

Recovery and Restart for zZ/OS Batch Programs

106

For z/OS batch programs that use DL/I, the generated sample runtime JCL
includes the parameter BKO=Y. If the program updates databases or files, specify
BKO=Y in the runtime JCL in order to have rollback (ROLB) requests honored. If
you specify BKO=N, DL/I returns status code AL for the roll-back call. Rational
COBOL Runtime treats the AL status code as a soft error. No error message is
issued, and processing continues.

You should develop recovery procedures in the event of program or system errors.
Rational COBOL does not generate JCL to perform restart or recovery procedures.

IBM Rational COBOL Runtime Guide for zSeries

Chapter 14. Preparing and Running Generated Programs in
IMS/VS and IMS BMP

This chapter describes the steps required to prepare and run a generated COBOL
program in an IMS environment:

* Modify the IMS system definition parameters

* Create the MFS control blocks

* Precompile, compile, link, and bind the generated program

* Make the new modules and MFS control blocks available to IMS

* Create or modify runtime JCL (IMS BMP only)

For general information on preparing programs for the runtime environment, see
(Chapter 9, “Output of Program Generation on z/OS Systems,” on page 71.|For
information about modifying JCL, see [Chapter 12, “Creating or Modifying Runtime]
[CL on z/0S Systems,” on page 99|

Modifying the IMS System Definition Parameters

The following information describes the basic IMS system definition parameters
that are required to run EGL-generated programs. You should review the
performance options described in the IMS documentation for your system to
determine the most effective options.

An IMS TRANSACT macro is required for each transaction code used to start an
EGL main program in the IMS/VS environment and for each transaction-oriented
BMP program. This includes the following transactions:

 Started from a clear IMS screen
* Used as a sysVar.transactionID

* Used as the target of a transfer to transaction, show, or
sysLib.startTransaction() statement

* Transferred to by a non-EGL program

* Started as the result of an add statement that adds a transaction to a message
queue

* Started by other IMS facilities

The TRANSACT macro must follow the APPLCTN macro for the IMS PSB that is
to be used for the transaction.

Defining an Interactive Program

Each main transaction program must be defined as either an IMS message
processing program (MPP) or a fast-path program with an associated transaction
code, except when the program is started through a transfer statement of the form
transfer to a program from another program.

[Figure 18 on page 108 shows the system definition parameters that are required for
defining an interactive EGL program.

© Copyright IBM Corp. 1994, 2006 107

108

APPLCTN PGMTYPE=TP,PSB=ims-psh-name. 1

TRANSACT CODE=trancode, X2
INQUIRY=NO, X3
MODE=SNGL, X
MSGTYPE=(SNGLSEG, RESPONSE) , X4
EDIT=ULC, X5
SPA=(size, [DASD|CORE], [FIXED]) 6

Figure 18. IMS System Definition for an Interactive Transaction

1 The IMS PSB name and the EGL program name must match.

2 Multiple transactions can be associated with one program. If the program
changes the value of sysVar.transactionID before a converse, include a
TRANSACT macro for the original transaction code and a TRANSACT
macro for the sysVar.transactionID value.

3 INQUIRY=NO is the default for IMS. If DL/I is used for the work
database, INQUIRY=NO is required. The Rational COBOL Runtime work
database supports help forms and displays data again if an input error
occurs, as well as the converse process option. Therefore, even if the
program databases are inquiry only, INQUIRY=NO is necessary. If DB2 is
used for the work database and the program’s use of all DL/I databases is
inquiry only, then INQUIRY=YES can be used.

4 SNGLSEG is required. Either RESPONSE or NONRESPONSE can be used
with Rational COBOL Runtime, depending on whether you want the
keyboard to remain locked until the transaction completes. Even if
NONRESPONSE mode is used, multiple simultaneous transactions from a
single terminal are not supported.

5 Required for input in lowercase.

6 Include this parameter only if an IMS scratch pad area (SPA) is required.
The SPA size is the length of the IMS SPA header (14 bytes) plus the length
of the longest working storage record that might be received or sent during
a transfer to transaction or show statement. However, if you include the
spaStatusBytePosition and omit the spaADF build descriptor options, then
you must add an additional byte when calculating the size. The SPA size
must match the number specified for the spaSize build descriptor option
when the program is generated.

You can also include the FPATH=YES parameter on the TRANSACT macro if the
program might be run in an IMS Fast Path (IFP) region. If you include
FPATH=YES, be sure to include the imsFastPath="YES" build descriptor option
when you generate the program. Refer to the IMS manuals for your system for
additional information about using IFP regions.

Defining Parameters for a Main Basic Program as an MPP

An EGL main basic program can also run as an asynchronous MPP. For example,
an EGL main basic program can be used to process the information inserted to the
message queue by a sysLib.startTransaction() statement or an add statement in
another program. This type of program differs from one that runs as an IMS BMP
in that the MPP cannot access any GSAM, indexed, or relative files, and cannot
include any special restart logic. [Figure 19 on page 109 shows the system definition
parameters required for this case.

IBM Rational COBOL Runtime Guide for zSeries

APPLCTN PGMTYPE=TP,PSB=ims-psh-name 1
TRANSACT CODE=trancode, X 2
MODE=SNGL

Figure 19. IMS System Definition for an Asynchronous MPP Program

1 The IMS PSB name and the EGL program name must match.

2 Multiple transactions can be associated with one program.

You can also include the FPATH=YES parameter on the TRANSACT macro if the
program might be run in an IMS Fast Path (IFP) region. If you include
FPATH=YES, be sure to include the imsFastPath=YES build descriptor option
when you generate the program. Refer to the IMS manuals for your system for
additional information about using IFP regions.

Defining Parameters for a Batch-Oriented BMP Program
If an EGL main basic program is generated to run as an IMS BMP program and it
does not process an input message queue, it is a batch-oriented BMP program.

gure 20| shows the system definition parameters required for defining a main
basic program as a batch-oriented BMP program.

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name

Figure 20. IMS System Definition for a Main Basic Program Running as a Batch-Oriented
BMP Program

Defining Parameters for a Transaction-Oriented BMP Program
If an EGL main basic program is generated to run as an IMS BMP program and it

processes an input message queue created by MPP programs or by other BMP
programes, it is a transaction-oriented BMP program. shows the system
definition parameters that are required to define a main basic program as a
transaction-oriented BMP program.

APPLCTN PGMTYPE=BATCH,PSB=ims-psb-name

TRANSACT CODE=trancode, X 1
MODE=SNGL, X
WFI 2

Figure 21. IMS System Definition for a Main Basic Program Running as a
Transaction-Oriented BMP Program

1 Multiple transactions can be associated with one program.

2 Wait-for-input (WFI) is optional. If it is specified, the program remains
resident until the operator stops the transaction or shuts down the region.

Creating MFS Control Blocks

EGL generates message format services (MFES) control blocks when a formGroup is
generated for the IMS environment. The build script FDAMEFS is used. FDAMEFS
has functionality similar to that of the MFSUTL and the MFSTEST JCL procedures
that ship with the IMS product. When you generate the form group, you specify
the mfsUseTestLibrary build descriptor option to choose between the functionality
of MFSUTL and MFSTEST. YES indicates MFSTEST.

When you set mfsUseTestLibrary to YES, the variable MFSTEST is set to YES in

the build plan. The build script FDAMES uses this variable to determine which of
the JCL procedures (MFSUTL or MFSTEST) to follow. Refer to the message format

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 109

services documentation for your system for additional information about the MFS
control blocks. Refer to the EGL Generation Guide for more information about the
build descriptor options that control what is included in the MFS source.

If your program contains DBCS or mixed data, note that a long mixed constant
field that results in multiple lines of MFS source might contain unpaired shift-in
and shift-out characters. This occurs when the DBCS portion of the constant is split
into more than one line. The MFS still works correctly.

Making New Modules Available in the IMS Environment

Whenever you install a new version of a program, MFS print services program,
form group format module, or data table, you need to recycle the message region.

If you generated with mfsUseTestLibrary="YES", then the MFS control blocks
were placed in the MFS test library (the TFORMAT library). To use the new
version of the MFS control blocks, use the /TEST MFS command after you have
signed on your IMS system and before you attempt to run a transaction that uses
the new version of the forms.

If you generated with mfsUseTestLibrary="NO”, then the MFS control blocks were

placed in the MFS staging library (FORMAT library). To use the new version of the

MES control blocks, you must do the following:

1. Run the IMS online change utility (OLCUTL) to copy the new MFS control
blocks into the inactive format library.

2. Use the following IMS commands:

/MODIFY PREPARE FMTLIB
/MODIFY COMMIT

Note: If the MFS control blocks and the form group format module do not have
the same generation date and time, Rational COBOL Runtime issues an error
message.

Preloading Program, Print Services, and Data Table Modules

110

Preloading programs, MFS print services programs, form group format modules,
and data table modules that are frequently used might reduce the overhead of
searching the STEPLIB, JOBLIB, link pack area, and link list. However, if modules
are preloaded, they occupy virtual storage when they are not in use.

To improve response time, you might also preload modules associated with any
transaction that might require better performance, even though the module itself is
not frequently used.

To preload a program, MFS print services program, form group format module, or
data table program, have your system administrator do the following:

1. Put the module in a LNKLST library.

2. Include the module name in a preload member (DFSMPLxx, where xx is a
two-character ID that you select) in IMSVS.PROCLIB.

3. Indicate in the JCL for the IMS message region that the preload member is to
be included.

Refer to the IMS manuals for your system to get general information on preloading
modules.

IBM Rational COBOL Runtime Guide for zSeries

Running Programs under IMS

Prior to starting a generated program, the program user might be required to sign
on to the IMS environment with a /SIGN command. Refer to the IMS
documentation for information about the /SIGN command.

Starting a Main Program Directly

The simplest way for a program user to start an EGL program is by entering the
IMS transaction code from an unformatted screen. The transaction code can be up
to 8 characters. It is associated with the program in the IMS system definition
TRANSACT macro. The following is an example of starting a transaction:

MYTRANS

IMS requires the transaction code to be followed by at least one blank prior to
pressing the ENTER key.

Starting a Main Transaction Program Using the /FORMAT
Command

A program user can use the IMS /FORMAT command to display a formatted
screen to start a transaction if the inputForm specified for a program is defined
with the IMS transaction code for the program as an 8-byte constant with the
protect=YES and intensity=invisible properties. The attribute byte on the form
becomes the attribute byte in the generated MFS. The 8-byte constant contains the
name of the IMS transaction that is started when the form is processed.

The /FORMAT command directs IMS to display a screen format; however, the
command does not cause the program to be run. After the program user enters
data and presses the Enter key (or a function key), the message from the terminal
is sent to the generated program for processing.

The syntax of the /FORMAT command is as follows:

/FORMAT modname [formName]
or
/FOR modname [formName]

The modname operand is the form group name with an O suffix. The formName
operand is required if there is more than one form in the form group. It must be
the form name that was specified as the inputForm for the program.

Because the transaction code must be included in the form, and a transaction code
can only be associated with one program in the IMS system definition, only one
program using the form can be started using the /FORMAT command.

Running Transaction Programs as IMS MPPs

Running generated programs is similar to running non—EGL—generated programs in
the IMS MPP environment, with the following differences:

IMS Commands

The /HOLD command should be avoided. Rational COBOL Runtime uses the
logical terminal identifier as the key of the work database. The data in the work
database is destroyed if another generated program is run from the same terminal
prior to resuming the original conversation.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 111

Keyboard Key Operation

When the Clear key is pressed in IMS, IMS clears the screen, but does not notify
the program. No transaction is scheduled, so the form is not automatically
displayed again. If the program is conversational, the program user can enter the
IMS /HOLD command followed immediately by an IMS /RELEASE command to
display the form again.

When the EOF key is pressed in the first position of a field on a form, the data is
not blanked. To blank the data, the program user must enter at least one blank
before pressing the EOF key. Also, the program user should not use the DELETE
CHARACTER key to erase the entire field because this is equivalent to pressing
the EOF key in the first position of the field.

When typing over characters in a right-justified numeric field, any intervening
spaces between the new digits entered and the original digits in the field should be
deleted by pressing the DELETE CHARACTER key. Alternatively, the program
user can type in all the digits for the new value and then use the EOF key to erase
any remaining digits.

DBCS Data on a Non-DBCS Terminal

If a program inadvertently attempts to display a form with DBCS or mixed data on
a non-DBCS terminal or printer, the results are unpredictable. The terminal might
be logged off IMS and returned to the VTAM® sign-on screen without displaying
any warning or error messages. If this happens, review your use of DBCS. Also,
review your values for the mfsDevice , mfsExtendedAttr, and mfsIgnore build
descriptor options, and compare them to the IMS system definition for the terminal
that had the problem.

Error Reporting
In certain error situations, Rational COBOL Runtime displays its own panel to
explain the error to the program user. This occurs in the following situations:

* A message needs to be displayed, but the msgField form property is not
specified for the form. Form ELAMO1 in formGroup ELAxxx, where xxx is the
national language code, is used.

* An unexpected program error has occurred. Form ELAMO02 and (if necessary)
continuation form ELAMO3 are used to display the error messages. See
[the Rational COBOL Runtime Error Panel” on page 144 for an example of
ELAMO2.

If an error occurs information might have been written to the message queue
identified by the errorDestination build descriptor option for the first program in
the run unit. See [“IMS Diagnostic Message Print Utility” on page 135| for
information on printing diagnostic errors.

Responding to IMS Error Messages

If a DFS message is displayed on your screen, make a note of the message. Then,
depending on how your IMS system is set up, press either PA1 or PA2 to see if
Rational COBOL Runtime has queued an error form to the terminal with more
information. This can happen in the following situations:

e If Rational COBOL Runtime issues a ROLL call because of a run unit or
catastrophic error, IMS issues the message:

DFS5551 TRAN tttttttt ABEND S000,U0778 ; MSG IN PROCESS:
tttttttt mmmmmmmmMAP 53339date gtime rdate rtime

112 IBM Rational COBOL Runtime Guide for zSeries

Where tttttttt is the IMS transaction code, mmmmmmmm is the form name, gdate
and gtime are the date and time the form group was generated, and rdate and
rtime are the date and time of the abend.

The DFS5551 message is also used by IMS when other abends occur, including
the 1600, 1601, 1602, and 1606 abends from Rational COBOL Runtime.

* If Rational COBOL Runtime ends the run unit for a transaction program that
was generated with imsFastPath="YES" and is being run in an IMS fast-path
region, IMS issues the message:

DFS27661 PROCESS FAILED

¢ If Rational COBOL Runtime abnormally ends the logical unit of work (LUW) for
a transaction program that was generated with imsFastPath="YES", IMS might
issue the message:

DFS20821 RESPONSE MODE TRANSACTION TERMINATED WITHOUT REPLY

See [Chapter 18, “Diagnosing Problems for Rational COBOL Runtime on z/ OS|
Systems,” on page 139|for information on diagnosing errors.

Running Main Basic Programs as MPPs

An EGL main basic program can be generated to run in the IMS MPP
environment. In this situation, IMS automatically starts the transaction whenever a
message is written to the message queue associated with the transaction.

If an error occurs information might have been written to the message queue
identified by the errorDestination build descriptor option for the first program in
the run unit. See [“IMS Diagnostic Message Print Utility” on page 135| for
information on printing diagnostic errors.

Running a Main Basic Program under IMS BMP

A main basic program generated for the IMS BMP environment can be started by
submitting JCL. Called programs can only be started by another EGL program or
by a non-EGL program.

The EGL COBOL generation process creates sample runtime JCL for running
programs in the IMS BMP environment. The generated JCL has the same name as
the program. If you set the genRunFile build descriptor option to YES, sample JCL
is created specifically for the program during program generation. The build plan
uploads the sample runtime JCL to a z/OS partitioned data set (PDS).

The JCL might need to be modified to add data sets required by called or
transferred-to programs. You also need to modify the JCL to add any data sets that
are dynamically allocated with the recordName.resourceAssociation or
converseVar.printerAssociation system variables. See [Chapter 12, “Creating o

odifying Runtime JCL on z/OS Systems,” on page 99| for more information on
modifying the sample runtime JCL.

If you get a JCL error for the runtime JCL, check the Generation Results view for
the programs involved for any error messages related to JCL generation. In
addition, ensure the tailoring that was done for the JCL templates is correct. Also
check any changes you made when you customized the sample runtime JCL.

The following sections show JCL for different IMS BMP programs.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 113

Examples of Runtime JCL for IMS BMP Programs

114

The generated JCL in the following examples has these characteristics:

* The examples are based on the JCL templates shipped with EGL. Your actual
JCL templates might differ if your system administrator has tailored them for
your organization. Refer to the EGL Generation Guide for more information about
tailoring JCL templates.

* Lowercase text appears in the examples where a generic example name has been
substituted for an actual program or data set name.

* EZEPRINT is always routed to SYSOUT=*.

If you route EZEPRINT to a data set, you must use the following DCB

attributes:

- LRECL=137, BLKSIZE=141, RECFM=VBA if the form group does not contain
any DBCS forms

— LRECL=654, BLKSIZE=658, RECFM=VBA if the form group contains any
DBCS forms

You cannot use form groups that do not have any DBCS forms with form
groups that do have DBCS forms in a single job step.

The first library in the STEPLIB concatenation sequence must have the largest
block size, or BLKSIZE=32760 can be specified on the first STEPLIB DD statement
for the step.

Running a Main Basic Program as an IMS BMP Program

If a main basic program runs as an IMS BMP program, all DL/I requests are
passed to a central copy of IMS which coordinates updates to the databases across
multiple BMPs and MPPs. The DD statements for the IMS log and the program
databases are not required in the JCL for the BMP job step. These databases and
the IMS log are allocated to the IMS control region.

shows a sample set of JCL to run a generated program as a BMP
program.

//jobname JOBiviiiiiiiiiiennnn.

//stepname EXEC IMSBATCH,

// MBR=app1-name,PSB=ims-psb-name, IN=trans-name
//G.STEPLIB DD

// DD

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6ROM1.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR

//G.ELAPRINT DD SYSOUT=x,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=+,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=%

//G.SYSOUT DD SYSOUT=*

//* Application specific DD statements for files

//* No application specific DD statements for databases required
//file-name-1 DD ...uuiirnieineennnennneennnnnn

//file-name-n DDvvrunnnrneernnnnnaneennnnns

Figure 22. JCL for Main Basic Program as an IMS BMP Program

If you run a transaction-oriented BMP program, the trans-name must be set to the
name of the transaction for the message queue that the BMP program processes. If
not, trans-name should be a null value. The sample runtime JCL created by EGL
defaults trans-name to the program name for a transaction-oriented BMP program

IBM Rational COBOL Runtime Guide for zSeries

that uses get next to read the message queue. The sample runtime JCL created by
EGL defaults trans-name to null for batch-oriented BMP programs or for
transaction-oriented BMP programs that use VGLib.VGTDLI(), dliLib.AIBTDLI(),
or dliLib.EGLTDLI() to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in
the sample runtime JCL:

//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR

These DD statements are generated from the FDA2MIMS JCL template.

Running a Main Basic Program as an IMS BMP Program with
DB2 Access

shows a sample set of JCL to run a generated program that accesses DB2
resources as a BMP. The DD statements for the IMS log and the DL/I program
databases are not required in the JCL for the BMP job step. The DL/I databases
and the IMS log are allocated to the IMS control region.

//jobname JOBccoiiiiiiinnn.

//stepname EXEC IMSBATCH,

dliLib.// MBR=appl-name,PSB=ims-psh-name, IN=trans-name
//G.STEPLIB DD

// DD

// DD DSN=DSN.SDSNLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=ELA.V6ROM1.SELALMD,DISP=SHR
// DD DSN=cghlq.env.LOAD,DISP=SHR
//G.DFSESL DD DSN=IMS.RESLIB,DISP=SHR

// DD DSN=DSN.SDSNLOAD,DISP=SHR

//G.ELAPRINT DD SYSOUT=x,DCB=(RECFM=FBA,BLKSIZE=1330)

//G.ELASNAP DD SYSOUT=+,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.EZEPRINT DD SYSOUT=x,DCB=(RECFM=VBA,BLKSIZE=4096)
//G.SYSABOUT DD SYSOUT=*

//G.SYSOUT DD SYSOUT==

//* Application specific DD statements for files

//* No application specific DD statements for databases required
J/file-name-1 DD +.uvvrineennneennnennnenannennns

[/file-name-n DD ...oiiiiiiiiniiiiiiiineeeannn.

Figure 23. JCL for Main Basic Program as an IMS BMP Program with DB2

If you run a transaction-oriented BMP program, the trans-name must be set to the
name of the transaction for the message queue that the BMP program processes. If
not, trans-name should be a null value. The sample runtime JCL created by EGL
defaults trans-name to the program name for a transaction-oriented BMP program
that uses get next to read the message queue. The sample runtime JCL created by
EGL defaults trans-name to null for batch-oriented BMP programs or for
transaction-oriented BMP programs that use VGLib.VGTDLI(), dliLib.AIBTDLI(),
or dliLib.EGLTDLI() to read the message queue.

If the BMP program uses GSAM, the following DD statements are also included in
the sample runtime JCL:

//IMS DD DSN=IMS.PSBLIB,DISP=SHR

// DD DSN=IMS.DBDLIB,DISP=SHR

These DD statements are generated from the FDA2MIMS JCL template.

Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP 115

Recovery and Restart for IMS BMP Programs

You should develop recovery procedures in the event of program or system error.
Rational COBOL does not generate JCL to perform restart or recovery procedures.

If your IMS BMP program ends with a run unit or catastrophic error, all updates
after the last checkpoint are rolled back and the program ends. You should include
checkpoint and restart logic in the program if it is to run as an IMS BMP. Refer to
the IMS documentation for your system for additional information about
checkpoint and restart.

116 IBM Rational COBOL Runtime Guide for zSeries

Chapter 15. Moving Prepared Programs to Other Systems
from z/OS Systems

You might need to move a prepared program from one system to another. For
example you might have the compiler on one host development machine but want
to run the program on several production machines.

If you use DB2, the DB2 BIND must be done on the production system.
The COBOL and Rational COBOL Runtime products on the production machine

must be at the same maintenance level as, or a higher level than, on the
development machine.

Moving Prepared Programs To Another z/OS System

If a program has been completely prepared on one system and you want to move
the prepared program to another system, perform the following steps:

1. Copy the program-related parts (including the form group and data table parts)
to the production system. The names of the source libraries are shown with the
default naming convention used in the build scripts, where cghlq is the user or
project-related high level qualifier and env is the runtime environment code.

Table 21. Parts to Copy

Data Set Name Contents

cghlq.env.LOAD Application module, print services program,
form group format modules, and data table
modules.

cghlq.env.DBRMLIB DB2 database request modules (DBRMs) for
SQL programs

cghlq.env.EZEBIND BIND commands for SQL programs

cghlq.env.EZEMFS MEFS source for IMS/VS and IMS BMP form
groups

cghlq.env.EZEJCLX Runtime JCL for IMS BMP and z/OS batch
programs

Note:

The cghlq variable comes from the projectID build descriptor option. The env variable comes
from the system build descriptor option.

2. Provide your own JCL to build the plans for DB2 programs using the BIND
commands from the BIND library and the DBRMs from the DBRM library. You
need to edit the EZEBIND member, and make the appropriate changes such as
DB2 subsystem name or collection IDs to match the new system where you are
moving the program.

3. Provide your own JCL to assemble the MFS control blocks for IMS/VS and IMS
BMP. It is much easier to assemble the MFS source on the production system
than to try to locate the DIF/DOF and MID/MOD in the MFS format libraries.
However, if you have procedures in place to move the DIF/DOF and
MID/MOD to a different system, you can use these procedures instead of
moving the MFS source in the EZEMFS library.

© Copyright IBM Corp. 1994, 2006 117

4. Follow the procedures identified in this manual for defining programs to
CICSor IMS.

5. Define files and databases used by the program on the new system.

Maintaining Backup Copies of Production Libraries

Follow your installation-defined guidelines and procedures for making backup
copies of production libraries. Having backup copies of production libraries
enables you to return to the prior level of a program in case of errors. The

production libraries for which copies should be made are those listed in [Table 21
_

118 IBM Rational COBOL Runtime Guide for zSeries

Part 4. Utilities

Chapter 16. Using Rational COBOL Runtime
Utilities for z/0OS CICS Systems
Using the CICS Utilities Menu.
New Copy
Diagnostic Message Prmtmg Utlhty
Diagnostic Control Options for z/OS CICS
Systems . .
Change or V1ew D1agnost1c Control Optlons
for a Transaction
Change or View Default Dlagnostlc Control
Options
Using the Parameter Group Utlhty for z / OS CICS
Systems . .

Chapter 17. Using Rational COBOL Runtime

Utilities for IMS Systems . .
IMS Diagnostic Message Print Utlhty

© Copyright IBM Corp. 1994, 2006

121
. 121
. 122
. 124

. 125

. 126

. 128

. 129

. 135
. 135

119

120 1BM Rational COBOL Runtime Guide for zSeries

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS
CICS Systems

Rational COBOL Runtime provides a set of utilities in CICS to help manage the
error diagnosis and control facilities of the Rational COBOL Runtime runtime
environment. You can access these utilities from the CICS utilities menu.

Using the CICS Utilities Menu

To access the CICS utilities do the following:

1. Log on to CICS.

2. Type ELAM on a clear screen.

3. Press Enter. When the ELAM transaction is started, a copyright panel is
displayed.

4. Press Enter. The CICS Utilities Menu is displayed.

~
ELAM Rational COBOL Runtime
CICS Utilities Menu

Select one of the following utilities; then press Enter.

Action...._
_1. New Copy
_2. Diagnostic Message Printing
_3. Diagnostic Control Options

ENTER F1=HELP F3=EXIT Y

Figure 24. CICS Utilities Menu

Three functions are available from the CICS Utilities Menu panel (|Figure 24):

New Copy
This function causes a new copy of a program, form group, or data table to
be used by subsequent transactions. Use the new copy function when
programs, form groups, and data tables are modified and generated again.

For programs and form groups, you can use either the Rational COBOL
Runtime new copy utility or the CICS NEWCOPY command to cause the
new copy of the program to be used the next time a load request is issued
for the program.

The Rational COBOL Runtime new copy utility does a new copy for both
the online print services program and the form group format module when

© Copyright IBM Corp. 1994, 2006 121

122

you specify a part type of form group. If you use the CICS NEWCOPY
command for a form group, you must issue the NEWCOPY for both the
online print services program and the form group format module.

For a data table, you must use the Rational COBOL Runtime new copy
utility to cause a fresh copy of the data table to be used the next time a
load request is issued for the data table. Do not use the CICS NEWCOPY
command for data tables.

Diagnostic Message Printing
This function routes the diagnostic messages in an error destination
transient data queue to a spool file for printing or subsequent processing.

Diagnostic Control Options
This function lets you view or change the diagnostic control options set for
the installation or for individual transactions. The options include dump
control, error message routing to a transient data queue or the CICS
journal, and transaction disabling when serious problems occur.

New Copy

The Rational COBOL Runtime new copy utility causes a new copy of a program,
form group, or data table to be used by subsequent transactions. Transactions that
are in progress when this function was started continue to use the copy that was
current when the transaction began. Programs must end or reach a segment break
before the new copy is used.

The Rational COBOL Runtime new copy utility must be run separately for
programs, form groups, and data tables to replace the copy already in storage.

To gain access to the Rational COBOL Runtime new copy utility, do the following:
1. Select option 1, New Copy, on the CICS Utilities Menu panel (Figure 24).
2. Press Enter.

The New Copy panel (Figure 25 on page 123) is displayed.

Note: You can also gain access to the Rational COBOL Runtime new copy utility
by doing the following:
1. Type ELAN on a clear screen.
2. Press Enter. When the ELAN transaction is started, a copyright panel is
displayed.
3. Press Enter. The New Copy panel (Figure 25 on page 123) is displayed.

IBM Rational COBOL Runtime Guide for zSeries

Vs
ELAN Rational COBOL Runtime
New Copy

Type choices; then press Enter.

Part name...........

Part type...........
1. Program

2. Map Group or Form Group
3. Data Table

ENTER F1=HELP F3=EXIT

Figure 25. New Copy panel

Enter the following on the New Copy panel:

Part name
Specifies the name of the program, form group, or data table to be used as
a new copy in subsequent transactions

Part type
Specifies the type of part to be replaced

Note: Rational COBOL Runtime does not validate the part type. You must
specify the correct type because different processing is required for
programs, form groups, and data tables. If you have problems in
processing after using the Rational COBOL Runtime new copy
utility, try the Rational COBOL Runtime new copy utility again to
ensure you specified the part type correctly.

The correct type can be one of the following:

Program
This type causes the utility to issue a CICS SET PROGRAM(name)
NEWCOPY command to access a new copy of the program. This
command does not cause a new copy for called programs that are
statically linked with their caller.

Form Group
This type causes the utility to issue a CICS SET PROGRAM(name)
NEWCOPY command to access a new copy of the form group
format module and the online print services program associated
with the form group.

Data Table
This type causes the utility to issue a CICS SET PROGRAM(name)
NEWCOPY command to access a new copy of the data-table
program and sets a flag for Rational COBOL Runtime, indicating
that a new copy of the data table is to be used the next time a
program loads the data-table contents.

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 123

124

If the data table has been generated as a shared data table,
currently running transactions continue to use the old copy of the
data table while new transactions share the new copy of the data
table.

You can also access the new copy utility in batch mode. To invoke the batch new
copy utility, link to program ELABNEW:
EXEC CICS LINK PROGRAM("ELABNEW")

COMMAREA (passed-parms)
LENGTH(174)

where the passed-parms record has the following structure:

Field Length in Type of Data Description

Bytes
NLS code 3 Character NLS code identifying the language
Part name 8 Character Name of program, form group, or

data table to be used as a new
copy in subsequent transactions

Part type 1 Character Type of part to be replaced:
"1" Program
"2" Form group
"3" Data table

For more information, press F1 to
see the description for part type.

Return code 2 Binary Return code from new copy
Message 1 80 Character Message returned from new copy
Message 2 80 Character Message returned from new copy

The following fields must be provided by the user:
* NLS code

¢ Part name

 Part type

The other fields are filled in by the new copy utility.
Any nonzero return code means that the new copy operation was not successful. If
a nonzero value is returned in the return code field, check messages 1 and 2 for

details indicating what error occurred.

Note: Message 2 is not always filled in. It may be blank.

Diagnostic Message Printing Utility

Diagnostic message printing allows you to route diagnostic messages in an error
destination transient data queue to a JES spool file for printing.

To gain access to the diagnostic message print utility do the following:

1. Select option 2, Diagnostic Message Printing, from the CICS Utilities Menu
panel (Figure 24 on page 121).

2. Press Enter.

The Diagnostic Message Printing panel (Figure 26 on page 125) is displayed.

IBM Rational COBOL Runtime Guide for zSeries

Note: You can also access the diagnostic message print function by doing the
following:
1. Type ELAU on a clear screen.

2. Press Enter. When ELAU is started, a copyright panel is displayed.
3. Press Enter. The Diagnostic Message Printing panel (Figure 26) is

displayed.
4 . . N
ELAU Rational COBOL Runtime
Diagnostic Message Printing
Fi1l in the appropriate fields; then press Enter.
Error destination queue name....... ELAD
JES Spool File Information
&R0 00000000000000000000¢
UBEFIalo0000000000000000000
Cl&8S00000000000000000000¢ A
Clear destination queue............ Y Y=Yes, N=No
ENTER F1=HELP F3=EXIT
o J

Figure 26. Diagnostic Message Printing panel

You can enter information in the following fields on the Diagnostic Message
Printing panel:

Error destination queue name
This field specifies the name of an existing error destination.

Enter the 1 to 4 character DCT name of the error destination transient data
queue. The queue name is initiallf your IMS BMP program ends with a
run unit or catastrophic error, all updates after the last checkpoint are
rolled back and the program ends. You should include checkpoint and
restart logic in the program if it is to run as an IMS BMP. Refer to the IMS
documentation for your system for additional information about
checkpoint and restart.ized to the default error destination queue. The
default is ELAD. You can either leave the messages in the queue or clear
them after they have been printed.

JES Spool File Information
This field specifies the spool file where the messages are to be written. If

you do not specify anything in these fields, the system uses the default
values (shown in which route the report to the local spool
printer for your CICS system.

Clear destination queue
This field specifies whether to clear the error queue of all messages after
the messages are written to a spool file. The default is Y.

Diagnostic Control Options for z/0OS CICS Systems

The diagnostic control options utility enables you to alter the diagnostic action
options taken for a given transaction code that is assigned to a generated CICS

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 125

126

program. If multiple transaction codes are assigned to a program, each transaction
code is specified independently to the diagnostic control options utility.

You can also specify a default action to take place for transactions that are not
explicitly defined to the diagnostic control options utility.

To gain access to the diagnostic control options utility, do the following:

1. Select option 3, Diagnostic Control Options, from the CICS Utilities Menu
(]Figure 24 on page 121|).

2. Press Enter. The Diagnostic Control Options panel is displayed.

Note: You can also gain access to the diagnostic control options utility by doing
the following:
1. Type ELAC on a clear screen.
2. Press Enter. When ELAC is started, a copyright panel is displayed.
3. Press Enter. The Diagnostic Control Options panel is
displayed.

4]] N
ELACO1 Rational COBOL Runtime

Diagnostic Control Options

Select one of the following actions; then press Enter.

1. Change or View the Diagnostic Control Options for a Transaction
2. Change or View the Default Diagnostic Control Options

L ENTER F1=HELP F3=EXIT

Figure 27. Diagnostic Control Options panel

You can gain access to the following functions from the Diagnostic Control Options
panel:

Change or View the Diagnostic Control Options for a Transaction
This option enables you to change or view the diagnostic options for a
specific transaction code.

Change or View the Default Diagnostic Control Options
This option enables you to change or view the installation default
diagnostic options.

This affects transaction codes that are not specifically identified to the
diagnostic controller.

Change or View Diagnostic Control Options for a Transaction
This function enables you to change the Rational COBOL Runtime error diagnostic
and control options in effect for a specific CICS transaction.

IBM Rational COBOL Runtime Guide for zSeries

To start the function do the following:

1. Select option 1, Change or View the Diagnostic Control Options for a
Transaction, from the Diagnostic Control Options panel (Figure 27 on page 126).

2. Press Enter. The Change or View Diagnostic Control Options for a Transaction

panel ([Figure 28) is displayed.

Ve
ELACO2 Rational COBOL Runtime
Change or View Diagnostic Control Options for a Transaction

Fill in the appropriate fields; then press Enter.
Transaction ID......coovvuivennnnnn

Diagnostic Control Options
Transaction ABEND Dump 1. No Dump
2. Complete CICS dump
3. Task dump
Runtime Error Dump 1. No Dump
2. Complete CICS dump
3. Task dump
Error Destination Queue Name...
Journal Number................. __ blank,00-99
Journal Record Identifier...... -
Disable on Run Unit Failure.... _ Y=Yes, N=No
[EBUE@No000000000000000000000000000 3
1. Change diagnostic control options
2. Use default control options
3. View diagnostic control options

ENTER F1=HELP F3=EXIT

Figure 28. Change or View Diagnostic Control Options for a Transaction panel

The following fields can be entered on the Change or View Diagnostic Control
Options for a Transaction panel :

Transaction ID
Specifies the 1 to 4 character identifier of the transaction you want to
change the diagnostic options for

Diagnostic Control Options

Transaction ABEND Dump
Specifies the type of dump taken on a CICS transaction ABEND

The types of dumps are:

1. No Dump
2. Complete CICS dump
3. Task dump

Runtime Error Dump
Specifies the type of dump taken on a Rational COBOL
Runtime-detected error for which a dump is indicated in the error
message explanation

The types of dumps are:

1. No Dump
2. Complete CICS dump
3. Task dump

Error Destination Queue Name
Specifies the 1 to 4 character name of a transient data queue to
which Rational COBOL Runtime error diagnostic messages are
written whenever a transaction ends abnormally due to an error

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 127

128

If this field is blank, no messages are written to a queue.

Journal Number
Specifies the journal number of the CICS journal to which error
diagnostic messages are written whenever a transaction is not
successful due to an error

If this field is blank, no journal messages are written.

Journal Record Identifier
Specifies the 1 to 2 character record identifier used when messages
are written to the CICS journal

If this field is blank, the default identifier EZ is used.

Disable on Run Unit Failure
Specifies whether a transaction is disabled whenever an error is
detected that is likely to occur each time the transaction is run

Y Specifies that the transaction is disabled when these errors are
detected
N Specifies that the transaction is not be disabled

Action
Allows you to change the current options, view the current options, or
accept the default options

To change the options currently set for a transaction do the following;:
1. Specify the transaction identifier and any changes.

2. Select 1, Change diagnostic control options.

3. Press Enter.

To use the installation defaults for the transaction do the following:
1. Type the transaction identifier.

2. Select 2, Use default control options.

3. Press Enter.

To view the options currently set for a transaction do the following:
1. Type the transaction identifier.

2. Select 3, View diagnostic control options.

3. Press Enter.

Change or View Default Diagnostic Control Options

This function enables you to change or view the default diagnostic options for
transactions that are not identified to the diagnostic controller. If your default
options were not modified at installation, the default diagnostic options are set as
follows:

¢ Transaction ABEND and runtime errors both cause a task dump.

¢ The error destination queue name is ELAD.

* Diagnostic messages are not written to a CICS journal data set.

* Transactions are not disabled on a run unit error.

To start this function do the following:

1. Select 2, Change or View the Default Diagnostic Control Options, from the
Diagnostic Control Options panel ([Figure 27 on page 126).

2. Press Enter. The Change or View Default Diagnostic Control Options panel is
displayed:

IBM Rational COBOL Runtime Guide for zSeries

Vs
ELACO4 Rational COBOL Runtime
Change or View Default Diagnostic Control Options

Fill in the appropriate fields; then press Enter.

Default Diagnostic Control Options

Transaction ABEND Dump 3 1. No Dump
~ 2. Complete CICS dump
3. Task dump
Runtime Error Dump 3 1. No Dump
= 2. Complete CICS dump
3. Task dump
Error Destination Queue Name... ELAD
Journal Number................. —_ blank,00-99
Journal Record Identifier...... EZ
Disable on Run Unit Failure.... ﬂ_ Y=Yes, N=No

ENTER F1=HELP F3=EXIT

Figure 29. Change or View Default Diagnostic Control Options

The options on this panel are the same as those defined for changing or viewing
the diagnostic control options for a transaction. They are all defined following
[Figure 28 on page 127}

Using the Parameter Group Utility for z/OS CICS Systems

Use the parameter group utility to create and maintain the parameter groups in the
parameter group file. Each group contains parameters for controlling terminal
printer utility (FZETPRT) transactions.

See [“Special Parameter Group for the FZETPRT Program” on page 36| for a
description of the startup parameters that can be included in the parameter group
used with the FZETPRT program.

You can use the parameter group utility to perform the following operations:
* Display the contents of existing parameter groups

e View a list of existing parameter group names

* Add a new parameter group

* Change a parameter group

* Delete a parameter group

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 129

shows the steps used to define a parameter group file.
Table 22. Defining Parameter Group Files for z/OS CICS

Procedure

1. Define the parameter group file using the IDCAMS utility.

DEFINE CLUSTER (NAME(PARM.GROUP.FILE)-
RECORDS (100 100) KEYS(16 0) RECORDSIZE(272 272) INDEXED)

2. Initialize the parameter group file by using the IDCAMS REPRO function to insert a
dummy record into the file.

3. Specify the FCT for the parameter group file utility to have access to a user-defined
message file for CICS.

DFHFCT TYPE=DATASET,
DATASET=EZEPRMG,
ACCMETH=VSAM,
SERVREQ= (READ, UPDATE ,ADD, DELETE, BROWSE) ,
FILESTAT=(ENABLED,CLOSED),
RECFORM=FIXED

4. Allocate the file by adding the following statement to the z/OS CICS startup JCL:
//EZEPRMG DD DISP=SHR,DSN=PARM.GROUP.FILE

OOOOO0O

Note: The name that designates the parameter group file (EZEPRMG) is a reserved file
name and cannot be used as a data file by an EGL-generated program.

When the file has been created and allocated, you can access the parameter group
utility by doing the following:

1. Log on to CICS.

2. Type ELAP on a clear screen.

3. Press Enter.

The parameter group utility does not give message-specific tutorial help after a
message is displayed and PF1 is pressed.

After the parameter iroui utility has been started, the Parameter Group

Specification panel (Figure 3()) is displayed. You can specify the parameter group
name on this panel.

130 1BM Rational COBOL Runtime Guide for zSeries

/ N

PRGMOO PARAMETER GROUP UTILITY
ENTER = Continue PF1 = Help PF3 = Exit
........................ PARAMETER GROUP SPECIFICATION ...vvvvriivnniiinnnvnnnnnn

Specify Parameter Group Name =>

- J
Figure 30. Parameter Group Specification panel

The parameter group name can be from 1 to 4 alphanumeric characters and must
be the name of the transaction that was used to start the FZETPRT program. (The
utility does not verify this.)

You can enter a group name that already exists if you want to modify a parameter
group, or you can enter one that does not exist if you want to define a new
parameter group.

Entering a question mark (?) as the group name on the Parameter Group
Specification panel displays a list of previously-defined group names on the next
panel, the Parameter Group List Display panel . Entering some
characters followed by an asterisk (*) displays a list of parameter group names that
begin with the characters that you entered. Entering a specific parameter group
name displays the Parameter Group Definition panel (Figure 32 on page 132).

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 131

4 N

PRGMO1 PARAMETER GROUP UTILITY
ENTER = Continue PF3 = Exit PF4 = Refresh PF1l = Help
PF7 = Back PF8 = Forward
....................... PARAMETER GROUP LIST DISPLAY ..vuieriiniiiiinnrnnennenns
PRIN USRQ
o J

Figure 31. Parameter Group List Display panel

From the Parameter Group List Display panel, you can select a group name to edit
by typing an S in the selection field to the left of the group name. You can delete a
group by typing a D in the selection field to the left of the group name.

If the specified parameter group already exists, its contents are displayed on the
Parameter Group Definition panel. The parameter group can be altered. If the
specified parameter group does not exist, the Parameter Group Definition panel is
displayed without any data. You can define the new contents; up to 256 characters
of data can be entered for a parameter group.

/PRGMOZ PARAMETER GROUP UTILITY h

PA2 = Cancel PFl = Help PF3 = File and Exit
Parameter Group = CCCCCCCC

........................... PARAMETER GROUP DEFINITION.....ovvvvrrinininnneennnnn.

Parameter Group:

=>PRTBUF=2048 PRTMPP=132 PRTTYP=D FORMFD=NO

o J
Figure 32. Parameter Group Definition panel

132 IBM Rational COBOL Runtime Guide for zSeries

The parameter group utility does not validate or format the parameters that are
specified on the Parameter Group Definition panel. Any parameters that are not
valid are ignored when the FZETPRT program is started. For more information
about setting the parameters for terminal printing, see | Special Parameter Group|
ffor the FZETPRT Program” on page 36)

If you press PF3 on the Parameter Group Definition panel without entering any
parameters, a parameter group is stored without any associated parameters. You
can store an empty parameter group to reserve parameter group names.

Empty parameter groups do not affect the initialization of the FZETPRT program.

The parameter group utility left-justifies the parameter group name and pads it to
the right with blanks (X'40'). The parameter group utility uses this name as a key
to index the parameter group file.

If you selected a parameter group from the Parameter Group List Display panel
(Figure 31 on page 132), after the Parameter Group Definition panel is processed,
the Parameter Group List Display panel is displayed again with the original
request replaced by an asterisk beside the group name that was processed. An
asterisk (*) is ignored as input on the Parameter Group Definition panel if more
processing is done.

Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems 133

134 1BM Rational COBOL Runtime Guide for zSeries

Chapter 17. Using Rational COBOL Runtime Utilities for IMS

Systems

Rational COBOL Runtime provides a utility in IMS to print diagnostic information.

IMS Diagnostic Message Print Utility

When a generated program ends abnormally due to an error condition in IMS
environments, diagnostic error messages are written to the message queue
identified by the errorDestination build descriptor option for the first program in

the run unit.

An IMS BMP program is provided to print the messages in the message queue.
The JCL needed to print the diagnostic information is supplied as member
ELAMQJUD of ELA.V6ROM1.ELAJCL (see [Figure 33).

The message queue identified by the IN parameter is the name of the queue that
was specified for errorDestination when the program was generated. The default
name is ELADIAG.

//**00000100

//** ELAMQJUD - JCL TO DRAIN AND PRINT THE ELADIAG MESSAGE QUEUE

//**
//**
[/ %%

F
.I.

OR IBM RATIONAL COBOL RUNTIME.
HIS PROGRAM RUNS AS A BMP.

//** LICENSED MATERIALS - PROPERTY OF IBM
//** 5648-B02 (C) COPYRIGHT IBM CORP. 2000, 2006
//** SEE COPYRIGHT INSTRUCTIONS

]/ **

//** STATUS = VERSION 6, RELEASE 0, LEVEL 1

//**

//** TO TAILOR THIS JOBSTREAM:

//**
]/ %%
//**
]/ **
]/ **
//**

1.
2.

3.

COPY A JOBCARD.

CHANGE IN= TO THE NAME OF YOUR ERROR DIAGNOSTIC
QUEUE.

MAKE SURE THAT THE TRANSACTION SPECIFIED BY IN=
AND THE ELAMPUTL PROGRAM ARE STARTED BY IMS.

//** RETURN CODES

/[*% O - SUCCESSFUL COMPLETION

//** 4 - NO MESSAGES ON QUEUE TO DRAIN.

e 16 - FATAL ERROR. PROCESSING TERMINATED
/[*% 20 - OPEN FAILED ON ELAPRINT

//**

00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400

[[FFFxk ke ko kkkkkkkk kR kk kR kk kR khh Rk h kR hh kR kh kR khhkkkkkrkkkrkkrxkxxxx%%%x00002500
//DRAINMQ EXEC IMSBATCH,MBR=ELAEPUTL,
// PSB=ELAMPUTL, IN=ELADIAG,RGN=4096K

//G.STEPLIB DD
// DD
// DD

// DD
//G.ELAPRINT DD
//G.SYSOUT DD
//G.SYSPRINT DD
/*

DSN=CEE.SCEERUN,DISP=SHR
DSN=ELA.V6ROM1.SELALMD,DISP=SHR
SYSOUT=+

SYSOUT=+

SYSOUT=+

Figure 33. ELAMQJUD

© Copyright IBM Corp. 1994, 2006

00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500

135

136 IBM Rational COBOL Runtime Guide for zSeries

Part 5. Diagnosing Problems

Chapter 18. Diagnosing Problems for Rational
COBOL Runtime on z/0S Systems
Detecting Errors
Reporting Errors
Controlling Error Reportmg
Controlling Error Reporting in CICS
Controlling Error Reporting in IMS
Environments .
Controlling Error Reportmg inz / OS Batch
Error Reporting Summary . o
Transaction Error .
Run Unit Error .
Catastrophic error . . .
Rational COBOL Runtime Error . .
Using the Rational COBOL Runtime Error Panel
Printing Diagnostic Information for IMS
errorDestination Message Queue .
IMS Log Format
Running the Diagnostic Prmt Ut1hty
Printing Diagnostic Information for CICS .
CICS Diagnostic Message Layout.
Running the Diagnostic Print Utility.
Analyzing Errors Detected while Running a
Program .

Chapter 19. Finding Information in Dumps.
Rational COBOL Runtime ABEND Dumps
COBOL or Subsystem ABEND Dumps . .
Information in the Rational COBOL Runtime
Control Block . .
Information in a Program, Prmt Serv1ces, or
DataTable Profile Block . .

How to Find the Current Position in a Program at
Time of Error

Chapter 20. Rational COBOL Runtime Trace
Facility . .
Enabling EGL Program Source—Level Tracmg w1th
Build Descriptor Options e
Activating a Trace .
Activating a Trace Sessmn for CICS or IMS / VS
Activating a Trace Session for z/OS Batch or
IMS BMP. .
Deactivating a Trace Sessmn
Printing Trace Output
Printing the Trace Output in CICS
Printing the Trace Output in IMS/VS
Printing the Trace Output in z/OS Batch or IMS
BMP L
Reporting Problems for Rational COBOL Runtime

Chapter 21. Common Messages during
Preparation for z/OS Systems . .
Common Abend Codes during Preparatlon
MES Generation Messages .

© Copyright IBM Corp. 1994, 2006

. 139
. 139
. 139
. 139
. 140

. 140

141

. 141
. 141
. 142
. 143

. 143
144

. 144
. 144
. 145
. 146
. 147
. 147
. 148

. 148
. 151
. 151
. 151
. 152
. 152

. 153

. 155

. 155
. 155

156

. 159
. 161
. 161
. 161
. 161

. 161

161

. 163
. 163
. 163

DB2 Precompiler and Bind Messages
COBOL Compilation Messages

Chapter 22. Common System Error Codes for
z/0OS Systems. .
Common Return Codes . .
System Error Code Formats for
sysVar.errorCode . . .
Common System Error Codes in
sysVar.errorCode .
EGL Error Codes .
Common SQL Codes .
Common DL/TI Status Codes
Common VSAM Status Codes.
OPEN request type
CLOSE request type . .
GET/PUT/POINT/ERASE/ CHECK / ENDREQ
request types .
COBOL Status Key Values .

Chapter 23. Rational COBOL Runtime Return
Codes, Abend Codes, and Exception Codes .
Return Codes
ABEND Codes .
CICS Environments .
IMS, IMS BMP, and z/OS Batch EnV1ronments
Exception Codes

Chapter 24. Codes from Other Products for
z/0S Systems.

Common System Abend Codes for All
Environments .

LE Runtime Messages . .
Common COBOL Abend Codes .
Common IMS Runtime Messages.
Common IMS Runtime Abend Codes
Common CICS Runtime Messages
Common CICS Abend Codes .
COBOL Abends under CICS

. 164
. 164

. 167
. 167

. 167

. 169
. 170
. 177
. 179
. 180
. 180

. 180

. 181
. 181

. 183
. 183
. 183
. 183

185

. 186

. 187

. 187
. 188
. 189
. 189
. 190
. 191
. 191
. 192

137

138 IBM Rational COBOL Runtime Guide for zSeries

Chapter 18. Diagnosing Problems for Rational COBOL
Runtime on z/OS Systems

The chapter contains diagnosis, modification, or tuning information. Use this
information to determine the source of the problem you encountered. Some
common program definition, database, and system errors that might cause
problems are described. This chapter also explains how to obtain error listings and
diagnose runtime errors.

Detecting Errors

You can find most logic errors by using the EGL debugger before you generate
your program.

During generation, a validation step checks your program for any remaining
syntax errors. In addition, validation also checks that your use of language
elements is consistent with both the runtime environment and the resource
association information you select for each file. For example, the sysLib.purge()
system function is only valid in a CICS environment.

When you run your generated program, different types of errors are detected by
Rational COBOL Runtime, COBOL, the subsystem (IMS or CICS), or z/OS. The

error handling varies depending on which product detects the error, the type of

error, and the runtime environment.

For diagnostic information of interest at development time, refer to the EGL online
help system. For information about how to control the error reporting at runtime,
see [‘Controlling Error Reporting.”| For information about how the various types of
errors are reported in the runtime environments, see [“Error Reporting Summary”|
En Eage 141

For those errors detected by Rational COBOL Runtime that result in a Run Unit
Error, error messages are written to the transient data queue specified through the
diagnostic control options. You can print those messages by using the diagnostic
printing utility (see [‘Diagnostic Message Printing Utility” on page 124) or by using
CICS utilities (for example, CEBR).

For more information, see ["Diagnostic Control Options for z/OS CICS Systems” on|

Reporting Errors

Rational COBOL Runtime provides functions that help you determine the cause of
a runtime problem. All runtime errors that Rational COBOL Runtime traps are
accompanied by error messages and supporting information to help diagnose the
problem. [Table 23 on page 141| through [Table 26 on page 144|show the error
diagnostic actions that can be taken based on the severity of the error and the
runtime environment.

Controlling Error Reporting

Controlling error reporting requires different actions in CICS, IMS, and z/0S
environments.

© Copyright IBM Corp. 1994, 2006 139

140

Controlling Error Reporting in CICS
In the CICS environment, error actions are controlled through the online diagnostic
controller utility installed as transaction ELAC.

The utility allows you to specify what type of dump is requested, the name of the
transient data queue to which Rational COBOL Runtime diagnostic messages are
written, the CICS journal number and identifier for error messages, and whether or
not a transaction is disabled when a run unit error is detected. The utility lets you
reset the default options for all transactions and override the default options for
individual transactions.

See [“Diagnostic Control Options for z/OS CICS Systems” on page 125 for more
details about the diagnostic controller utility.

Controlling Error Reporting in IMS Environments
The following error responses are controlled by build descriptor options for the
IMS/VS and IMS BMP environments:

* Write error messages to the error destination message queue. The destination is
determined by the errorDestination build descriptor option.

* Write error messages to the system log. The log ID is determined by the
imsLogID build descriptor option. If the imsLogID option does not appear in
the build descriptor file, error messages will not be written to the system log.

* Put the message that caused the problem for transaction-oriented IMS BMP
programs back on the message queue. restoreCurrentMsgOnError=YES
indicates that the message being processed when the error occurred should be
placed back on the message queue before the program ends.
restoreCurrentMsgOnError=NO indicates that the message being processed
should be deleted and not placed back on the message queue. This option is
applicable only to a run unit error when Rational COBOL Runtime detects the
error. It does not apply to transaction-oriented BMPs that use VGLib.VGTDLI(),
dliLib.AIBTDLI(), or dliLib.EGLTDLI() to read the message queue.

e Issue ROLL call or abend for a run unit error. imsFastPath=NO results in a
ROLL call. imsFastPath=YES results in a 1602 abend.

The actions controlled by the runtime JCL are as follows:

* Print message. This is done only if there is an ELAPRINT DD statement in the
runtime JCL.

e Snap dump. If the message indicates a snap dump is taken, the snap dump is
produced only if there is an ELASNAP DD statement in the runtime JCL.

* Abend 1602 or 1600. This creates a dump only if the runtime JCL contains a
SYSUDUMP or SYSABEND DD statement.

Abend code 1602 is the user code issued by Rational COBOL Runtime when it
ends the run unit for an imsFastPath="YES" program because of an error.

Abend code 1600 is the user code issued by Rational COBOL Runtime in all
other situations when it ends program processing because of an unrecoverable
€eITor.

IMS takes the following actions, based on the way Rational COBOL Runtime ends

the program:

* If a rollback (ROLB) call is issued, the database changes are backed out, the
logical unit of work ends, the next message is read from the message queue, and
processing continues.

IBM Rational COBOL Runtime Guide for zSeries

e If a ROLL call is issued, the database changes are backed out, the logical unit of
work ends, and IMS stops the program with a user 778 abend. The transaction
and PSB are not stopped and can be scheduled again without operator
intervention.

* If either a 1600 or a 1602 abend is issued, the database changes are backed out,
the logical unit of work ends, and IMS stops the program. The transaction and
PSB are also stopped, and they require operator intervention to start them again.

Use ELASNAP so that sufficient data is captured the first time an error occurs.

Controlling Error Reporting in z/0S Batch

The actions controlled by the runtime JCL are as follows:

* Print message. This is done only if there is an ELAPRINT DD statement in the
runtime JCL.

* Snap dump. If the message indicates a snap dump is taken, the snap dump is
produced only if there is an ELASNAP DD statement in the runtime JCL.

* Abend 1600. This creates a dump only if the runtime JCL contains a SYSUDUMP
or SYSABEND DD statement.

Error Reporting Summary

The following tables summarize the error processing actions for Rational COBOL
Runtime.

Transaction Error

This error affects only the current CICS task or current IMS/VS transaction. In
CICS, the transaction is still available to other end users. In IMS/VS, processing
continues with the next message.

Table 23. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

CICS * Write error messages to error destination (diagnostic controller option)

¢ Write error messages to CICS journal data set (diagnostic controller
option)

¢ CICS dump, dump code ELAD, as determined by message. The type of
dump issued for a particular transaction is a diagnostic control option.

* Issue a rollback request

 Display error messages on terminal, if possible

* Set return code to 693

IMS BMP See run unit error
IMS/VS See run unit error
(Initial

generated

program is a
main or called
basic program)
IMS/VS .
(Initial
generated
program is a
main Text UI ° Print messages (ELAPRINT DD statement)
program) * Snap dump determined by the message (ELASNAP DD statement)
* Display error messages on current LTERM
¢ Issue a rollback (ROLB) request

* Read next message from the queue

Write error messages to error destination (errorDestination build
descriptor option)

¢ Write error messages to system log (imsLogID build descriptor option)

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 141

142

Table 23. Error Processing Actions For Rational COBOL Runtime Detected
Errors (continued)

Environment Action

z/0S Batch See run unit error

Run Unit Error

The error is likely to occur for every user. In CICS, the transaction might be
disabled. In IMS/VS, a new copy of the program is used if there are additional
messages on the queue.

Table 24. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

CICS ¢ Write error messages to error destination (diagnostic control option), if

possible

* Write error messages to CICS journal data set (diagnostic control option),
if possible

¢ Disable transaction (diagnostic control option)

¢ CICS dump, dump code ELAD, as determined by message. The type of
dump issued for a particular transaction is a diagnostic control option.

¢ Issue a rollback request

 Display error messages on terminal, if possible

* Set return code to 693

* Return

IMS BMP .

Write error messages to error destination (errorDestination build
descriptor option)

* Write error messages to system log (imsLogID build descriptor option)
* Print messages (ELAPRINT DD statement)

* Snap dump determined by the message (ELASNAP DD statement)

¢ Issue a rollback (ROLB) request

¢ Insert message segment or segments into the queue again
(restoreCurrentMsgOnError build descriptor option set to YES)

* Set return code to 693

¢ Return
IM.S./ \E} * Write error messages to error destination (errorDestination build
(Initial descriptor option), if possible
generated

* Write error messages to system log (imsLogID build descriptor option), if

program 1s a possible

main or called
basic program) * Print messages (ELAPRINT DD statement), if possible

* Snap dump determined by the message (ELASNAP DD statement)
* Issue ROLL request if generated with build descriptor imsFastPath=NO
* Abend 1602 if generated with build descriptor imsFastPath=YES

IMS/VS * Write error messages to error destination (errorDestination build

(Initial descriptor option), if possible
generated

program is a
main Text Ul
program) * Print messages (ELAPRINT DD statement), if possible

* Snap dump determined by the message (ELASNAP DD statement)

* Display error messages on current LTERM

* Write error messages to system log (imsLogID build descriptor option), if
possible

¢ Issue ROLL request if generated with build descriptor imsFastPath=NO
* Abend 1602 if generated with build descriptor imsFastPath=YES

IBM Rational COBOL Runtime Guide for zSeries

Table 24. Error Processing Actions For Rational COBOL Runtime Detected
Errors (continued)

Environment Action

z/0OS Batch * Print message (ELAPRINT DD statement)
* Snap dump determined by the message (ELASNAP DD statement)
* Issue a rollback request if DL/I or DB2 databases were used
* Set return code to 693
* Return

Catastrophic error
This error indicates storage is corrupted or standard error reporting processing
ends abnormally.

Table 25. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

CICS ¢ Write error messages to error destination (diagnostic control option), if

possible

* Write error messages to CICS journal data set (diagnostic control option),
if possible

¢ Disable transaction (diagnostic control option)

* Display error messages on terminal, if possible

* ABEND ELAE. The type of dump issued for a particular transaction is a
diagnostic control option.

IMS BMP * Write error messages to error destination (errorDestination build
descriptor option), if possible

¢ Write error messages to system log (imsLogID build descriptor option), if
possible

¢ Print messages (ELAPRINT DD statement), if possible
* Issue a rollback (ROLB) request
* Abend 1600 (SYSUDUMP or SYSABEND DD statement)

IMS(&) * Write error messages to error destination (errorDestination build
(Initial descriptor option), if possible
generated

* Write error messages to system log (imsLogID build descriptor option), if

program is a possible

main or called
basic program) * Print messages (ELAPRINT DD statement), if possible

* Abend 1600 (SYSUDUMP or SYSABEND DD statement)

IMS(\E) * Write error messages to error destination (errorDestination build
(Initial 4 descriptor option), if possible
generate

* Write error messages to system log (imsLogID build descriptor option), if

program is a possible

main Text Ul
program) * Print messages (ELAPRINT DD statement), if possible

* Display error messages on current LTERM, if possible
* Abend 1600 (SYSUDUMP or SYSABEND DD statement)

z/0S Batch ¢ Print messages (ELAPRINT DD statement), if possible
* Abend 1600 (SYSUDUMP or SYSABEND, DD statement)

Rational COBOL Runtime Error

A Rational COBOL Runtime error occurs at a point where the standard error
reporting process is not active.

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 143

Table 26. Error Processing Actions For Rational COBOL Runtime Detected Errors

Environment Action

All e Abend, ABEND code indicates the reason for the error
environments

See [Table 30 on page 151| for information concerning the contents of the registers
when either a 1600, 1602, or an ELAE abend occurs.

Using the Rational COBOL Runtime Error Panel

When an error occurs, Rational COBOL Runtime attempts to display error
messages on the current terminal. The panels used in displaying error messages
are defined as form group ELAxxx where xxx is the language code.

The following figure shows the error panel (form ELAMO2 in the form group) as it
is shipped with the product. The panel shows the same diagnostic information that
is written to the error destination queue, system log or journal, or ELAPRINT file.
If there are more error messages than can fit on a single panel, the last line on the
panel prompts the user to press a key to display additional error messages.

4 N

Unexpected Program Failure

An unexpected input/output or program error occurred in the

program you were running. Please make a note of the program

name, date, time, and initial error messages and report them to your
system administrator.

Program name ... ART22
Date ...eveuennn 08/21/90
Time «..ovvunnnn 13:04:23

Error Messages:

ELAOOO93I An error occurred in program ART22, function ART229
ELAOO131P MSGQ error, file = UNKNOWN, function = CHG, status code = Al
ELA0OO66I DL/I I/0 area = UNKNOWN

EDDDDED4

45256650

- %
Figure 34. Panel ELAMO2 (example).

Printing Diagnostic Information for IMS

Diagnostic messages are sent either to a print file for batch jobs or to a message
queue for IMS BMPs or online transactions. A diagnostic utility is provided to
print messages written to a message queue. Optionally, based on the imsLogID
build descriptor option, the diagnostic information can be written to the IMS log.

errorDestination Message Queue

[Table 27 on page 145 shows the format of the information in the IMS message
queue when the errorDestination build descriptor option is used. the default
queue name is ELADIAG.

144 1BM Rational COBOL Runtime Guide for zSeries

Table 27. errorDestination IMS Message Queue

Field Length in Bytes Type of Data Description
Record length 2 Binary The length of the record.
Reserved 2 Binary A reserved field that must

contain binary zeros.

IMS transaction code 8 Character The name used to identify
the IMS message queue
that was specified with
the errorDestination build
descriptor option.

Date 8 Character Date of the transaction
from the I/O PCB
(MM/DD/YY).

Time 8 Character Time of the transaction
from the I/O PCB
(HH:MM:SS).

NLS 3 Character The value specified for the
targetNLS build
descriptor option

Message number 9 Character The message number:

Bytes 1-3
Message File
Identifier (ELA)

Byte 4 Application
Identifier (0)

Bytes 5-8
Message Number

Byte 9 Message Type. A
message type of
'C’ indicates this
record is a
continuation of
the specified
message from a
previous record
in the queue.

Message number 1 Character Byte 10 Blank

separator (reserved

position)

Message Text Variable Character The text from the message
file with specified message
inserts.

IMS Log Format
shows the format of the information in the IMS log.

Table 28. IMS Log Record

Field Length in Bytes Type of Data Description
Record length 2 Binary The length of the record.
Reserved 2 Binary A reserved field that must

contain binary zeros.

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 145

Table 28. IMS Log Record (continued)
Field Length in Bytes Type of Data Description

Log ID 1 Character The value specified with
the imsLogID build
descriptor option.

Date 8 Character Date of the transaction
from the I/0O PCB
(MM/DD/YY).

Time 8 Character Time of the transaction
from the I/0O PCB
(HH:MM:SS).

NLS 3 Character The value specified for the
targetNLS build
descriptor option

Message number 9 Character The message number:

Bytes 1-3
Message File
Identifier (ELA)

Byte 4 Application
Identifier (0)

Bytes 5-8
Message Number

Byte 9 Message Type. A
message type of
'C’ indicates this
record is a
continuation of
the specified
message from a
previous record

in the log.
Message number 1 Character Byte 10 Blank
separator (reserved
position)
Message Text Variable Character The text from the message
file with specified message
inserts.

Running the Diagnostic Print Utility

An IMS BMP program is provided to print diagnostic information that is written to
the message queue specified by the errorDestination build descriptor option. The
JCL needed to print the diagnostic information is supplied as member ELAMQJUD
of ELA.V6ROM1.ELA]JCL.

The message queue identified by the IN parameter is the name of the queue that
was specified in the errorDestination option when the application was generated.
See [“Diagnostic Message Printing Utility” on page 124| for more information.

146 1BM Rational COBOL Runtime Guide for zSeries

Printing Diagnostic Information for CICS

Diagnostic messages are sent to a transient data queue for CICS transactions. A
diagnostic print utility is provided to print messages written to a transient data
queue. Optionally, as specified by the diagnostic controller utility, the diagnostic
information can also be written to an CICS journal data set.

CICS Diagnostic Message Layout

shows the format of the information in each error message record written
to a transient data queue or CICS journal.

Table 29. Diagnostic Message Layout

Field Length in Bytes Type of Data Description

SYSID name 4 Character The name of the CICS
system that the error
message was created on.

TRANID name 4 Character The name of the CICS
transaction code that
started the logical
unit-of-work.

Task identifier 8 Character The task identifier
assigned by CICS to each
transaction instance that is
processed. This number is
reset to 0 when CICS is
cold-started. This is taken
from EIB field EIBTASKN.

ERRDEST name 4 Character The name of the CICS
transient data queue. This
field is blank if the record
is written to the CICS

journal.

Date 8 Character Date of the transaction
(MM/DD/YY)

Time 8 Character Time of the transaction
(HH:MM:SS)

NLS 3 Character The value specified for the

targetNLS build
descriptor option

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 147

Table 29. Diagnostic Message Layout (continued)

Field Length in Bytes Type of Data Description
Message number 9 Character The message number:
Bytes 1-3

Message File
Identifier (ELA)

Byte 4 Application
Identifier (0)

Bytes 5-8
Message Number

Byte 9 Message Type. A
message type of
’C’ indicates this
record is a
continuation of
the specified
message from a
previous record
in the queue.

Message number 1 Character Byte 10 Blank

separator (reserved

position)

Message text 110 Character The text from the message
file with specified message
inserts

Running the Diagnostic Print Utility

Use the ELAU transaction to print the messages routed to a transient data queue.
See ["'IMS Diagnostic Message Print Utility” on page 135| for more information
about running the CICS diagnostic print utility.

Analyzing Errors Detected while Running a Program

148

Use the error messages and diagnostic messages to determine the cause of the
problem. If the error is detected by another product (for example, COBOL), check
the information in |[Chapter 22, “Common System Error Codes for z/OS Systems”]
and [Chapter 24, “Codes from Other Products for z/0S Systems”|and the
documentation for the other product.

If you cannot determine the cause of the problem using this information and if the
problem can be created again in the test environment, use the EGL debugger to
isolate and debug the error before generating the program again.

For debugging in the runtime environment, you can use the runtime diagnostic
facility (EDF) for CICS programs or the batch terminal simulator (BTS II) for IMS
programs. In addition, if you use the TEST COBOL compile option, you can use
the COBOL debugging facilities.

Refer to the CICS, IMS, and COBOL manuals for your versions of these products
for additional information on their debugging facilities.

If you get a JCL error for the runtime JCL, check the generation output for the
programs involved for any error messages related to JCL generation. In addition,

IBM Rational COBOL Runtime Guide for zSeries

ensure the tailoring that was done on the runtime JCL templates is correct. Also
check any changes made to customize the sample runtime JCL.

When abends occur, the problem determination might require assistance from the
IBM Support Center. In this case, be prepared to provide IBM with the following
information:

* COBOL source file created using the commentLevel=1 build descriptor option.
* Formatted dump

* Rational COBOL Runtime diagnostic information written to either the error
diagnostic queue or listed in the printout for ELAPRINT

* CICS journal or IMS log, as appropriate
IBM requests a COBOL debugger trace listing only if the information is needed for

problem determination. IBM will give you the information on how to specify the
trace options if the information is necessary.

Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems 149

150 1BM Rational COBOL Runtime Guide for zSeries

Chapter 19. Finding Information in Dumps

Information about the problem program can be determined by finding the address
of the Rational COBOL Runtime control block in a dump.

Rational COBOL Runtime ABEND Dumps

If the dump code is 1600, 1602, or ELAE, the dump was initiated because Rational
COBOL Runtime detected an error. Register 2 at ABEND points to the Rational
COBOL Runtime control block. Register 4 points to a linked list of messages
formatted as shown in .

Table 30. Registers when a SNAP dump is taken or a Rational COBOL Runtime ABEND
occeurs.

Reg. Value

2 Points to Rational COBOL Runtime control block. At offset 272 (hexadecimal
offset 110) from the start of the Rational COBOL Runtime control block is the
address of the initial program profile block, which provides information about
the first EGL-generated program that was started. At offset 276 (hexadecimal
offset 114) from the start of the Rational COBOL Runtime control block is the
address of the current program profile block, which provides information about
the EGL-generated program that was running at the time of the abend.

4 Points to the message buffer that contains all messages.

The following diagram shows the format of the message buffer that contains all the
messages in the dump.

Register 4 ——» | Pointer to Next Message Message 1 Text

|

Pointer to Next Message Message 2 Text

.

Pointer to Next Message Message n Text

Il

Figure 35. Message Buffer Format

COBOL or Subsystem ABEND Dumps

If the dump is not a Rational COBOL Runtime abend, you can use the following
method to locate the Rational COBOL Runtime control block:

© Copyright IBM Corp. 1994, 2006 151

* On CICS systems, locate the CICS Task Work Area (TWA) in the dump. Locate
the string *EZERTS-CONTROL* in the TWA. This string is the identifier at the
start of the Rational COBOL Runtime control block. The * and - characters might
be converted to periods in a formatted dump.

* On other systems, locate the string ELARHAPP followed immediately by a
program name. ELARHAPP is the identifier at the start of a program profile
block. The four-byte address at hex offset 20 in the program profile block is the
Rational COBOL Runtime control block address. If 0, the program might not yet
be activated. Do a search for another ELARHAPP control block followed by a

program name.

For information in the program profile control Block, see [Table 32

Information in the Rational COBOL Runtime Control Block

The following information is in the Rational COBOL Runtime control block:

Table 31. Information in the Rational COBOL Runtime Control Block

Offset in hex Length in bytes

Contents

0 16 Control block identifier -
EZERTS-CONTROL

104 4 CICS EIB Pointer

110 4 Program profile address for current program

114 4 Program profile address for initial program

118 8 Terminal identifier

120 8 User identifier

128 8 Transaction identifier

150 12 DLILib.psbData

1CC 18 Current function

Information in a Program, Print Services, or DataTable Profile Block

152

Each generated COBOL program contains a profile control block in COBOL
working storage initialized with information about the program. The first eight
bytes contain an eye-catcher constant identifying whether the program was
generated from a program, form group or data table part. The second eight bytes
contain the program name. Other information in the profile block is shown in the

following table:

Table 32. Locator Format for Generated COBOL Program Dumps

Offset in hex Length in hex Contents

00 08 Program type identifier:
ELARHAPP — program
ELAAHMGC — print services program
ELARMTPP — data table program

08 08 Program name

10 08 Program generation date (MM/DD/YY)

18 08 Program generation time (HH:MM:SS)

20 04 Rational COBOL Runtime control block

address
24 02 Generator version

IBM Rational COBOL Runtime Guide for zSeries

Table 32. Locator Format for Generated COBOL Program Dumps (continued)

Offset in hex Length in hex Contents
26 02 Generator release
28 02 Generator modification level
2A 10 Reserved
34 08 Target runtime system

How to Find the Current Position in a Program at Time of Error

The Rational COBOL Runtime control block identifies the currently running
program and function at the time of the error ([Table 31 on page 152). Associated
error messages identify the EGL statement number for errors detected by Rational
COBOL Runtime that need statement identification to resolve the problem. For
performance reasons, the generated COBOL program does not keep track of the
EGL statement number for each generated statement. If a program exception
occurs in a generated program, you can determine the EGL statement number by
finding the COBOL statement that was not successful in a COBOL program listing
that contains the EGL statements generated as comments.

Chapter 19. Finding Information in Dumps 153

154 1BM Rational COBOL Runtime Guide for zSeries

Chapter 20. Rational COBOL Runtime Trace Facility

The Rational COBOL Runtime trace facility can be used by the IBM Support
Center to aid in problem determination, or by the program user to trace program
activity.

There are two levels of tracing available:
* EGL program source-level tracing
* Rational COBOL Runtime runtime level tracing

With source-level tracing, you can request traces of EGL statements, traces of the
data, and error codes after every SQL call in a program, except SQL calls made
with the SQLEXEC process option. Source-level tracing is enabled with the use of
the sqlIOTrace, sqlErrorTrace, and statementTrace build descriptor options.
Source-level tracing is activated in the runtime environment by specifying trace
filter criteria. See |[“Activating a Trace”|for more information on activating traces.

With runtime-level tracing, you can request a data stream trace, a Rational COBOL
Runtime internal dump trace, or a service routine trace. Runtime-level tracing does
not require the use of a build descriptor option. Runtime-level tracing is activated
in runtime environment by specifying trace filter criteria. See [‘Activating a Trace’]
for more information on activating traces.

Use these functions only with the assistance of the IBM Support Center. If you use
these functions without assistance, large amounts of trace output might be
produced based on trace option selection.

Enabling EGL Program Source-Level Tracing with Build Descriptor
Options

You must specify the sqlIOTrace, sqlErrorTrace, and statementTrace build
descriptor options in order to get source-level trace output. EGL generation creates
the necessary COBOL code to accomplish the type of tracing that you request.

The trace build descriptor options are ssqllOTrace, sqlErrorTrace, and
statementTrace. When using these options, you must specify a value of YES or
NO. Each of these build descriptor options tells the COBOL generator whether or
not to generate code to allow runtime tracing of a particular aspect of execution -
SQL 1/0, SQL Errors, and EGL statement execution path.

Note: These options are intended for the use of support personnel and should
only be used when a trace is requested as part of a support effort. Normal
application debugging should be done through the use of the EGL
Debugger.

Activating a Trace

Tracing is activated during run time either by using the ELAZ transaction in the
CICS or IMS/VS environments, or by specifying the ELATRACE DD name in the
runtime JCL for the z/OS batch or IMS BMP environments.

© Copyright IBM Corp. 1994, 2006 155

Activating a Trace Session for CICS or IMS/VS

A utility is supplied to activate tracing in the CICS or IMS/VS environments. To
start the utility, enter the utility transaction code, ELAZ. The utility transaction
must start prior to running the transaction to be traced.

The ELAZ transaction must run in the same region as the transactions to be traced.
In IMS, a message processing region can be altered to handle a unique class and
the ELAZ transaction and the transactions to be traced set to this class, in order to
ensure that the transactions run in the same region. In CICS, enter the ELAZ
transaction and the transaction to be traced from terminals attached to the same
CICS region.

shows the initial panel for the ELAZ transaction that enables you to
specify which transactions are to be traced. You use a secondary panel to specify
filter criteria for a specific transaction that control what information is traced for
that transaction.

Note: For IMS/VS, specify the name of the initial program instead of the initial
transaction.

Ve
ELAZO1 Rational COBOL Runtime
Trace Transaction Selection

Specify the transaction you want to trace; then press Enter.
To select specific programs and services for tracing, place the cursor

on a transaction name and press F4.

Transaction codes or initial program names

\ENTER F1=HELP F3=EXIT F4=FILTER F9=REFRESH F10=STOP TRACE

Figure 36. Rational COBOL Runtime Trace Transaction Selection Panel

Rational COBOL Runtime then presents the panel shown in [Figure 37 on page 157|
for trace filter selection:.

156 IBM Rational COBOL Runtime Guide for zSeries

ELAZ02 Rational COBOL Runtime
Trace Filter Selection

Transaction code or Initial Program

Fill in the appropriate fields, then press Enter.

3270 Data Stream....... N APP Statement Trace..... N

Terminal ID............ SQL/I0 Trace.....eeeen.. N

Trace to File.......... N SQL/ERR Trace........... N

IDUMP Trace.......oc... N

FILENAME ELATOUT NODE * USERID EZEUSRID CLASS A FORM =
Programs

Services

\ENTER F1=HELP F3=RETURN F9=REFRESH

Figure 37. Rational COBOL Runtime Trace Filter Selection Panel

The filter criteria include the following:

3270 Data Stream (Y or N)
Specifies whether to trace 3270 data streams

If yes (Y), the 3270 data streams built or received by EGL are traced. The
default is no (N). For IMS/VS environments, 3270 Data Stream Trace
option is not allowed.

Terminal ID
Specifies a terminal identifier

If specified, only transactions initiated from that terminal are traced. If not
specified, service requests from any terminal are traced.

Trace to File (Y or N)
Specifies whether the trace output goes to a file

If yes (Y), the trace output of Rational COBOL Runtime is sent to the ELAT
transient data queue in CICS and to an IMS/VS message queue for
transaction ELATOUT in IMS/VS. This trace is also written to an
in-storage wrap-around trace buffer.

If no (N), the trace output goes to an in-storage wrap-around trace buffer.
The size of this trace buffer is defined during customization of Rational
COBOL Runtime.

Y must be specified if you specify Y (yes) for the SQL/IO Trace or
SQL/ERR Trace options. All trace output for SQL/IO and error tracing is
sent to a file, not to the in-storage wrap-around trace buffer.

Note: For IMS/VS, you cannot trace to file if the tracing transaction uses
the modifiable express PCB (ELAEXP) because Rational COBOL
Runtime uses this PCB to write to the message queue. Unpredictable
results can occur.

IDUMP Trace (Y or N)
Specifies whether to dump Rational COBOL Runtime internal storage areas

Chapter 20. Rational COBOL Runtime Trace Facility 157

If yes (Y), the trace facility provides dumps of certain Rational COBOL
Runtime internal storage areas. The default is no (N), no internal storage
dumps.

APP Statement Trace (Y or N)
Specifies whether to trace EGL statements in a program

If yes (Y), the trace facility provides the function name and the statement
for each EGL statement that the program processes. Specify the
statementTrace=YES build descriptor option to enable this type of tracing.
The default is no (N).

SQL/IO Trace (Y or N)
Specifies whether to trace SQL/IO

If yes (Y), the trace facility provides traces of the data and error codes on
the return from the SQL call. The EGL function name, the I/O statement,
the I/O object, the SQL function name, and the EGL data item name,
length, type, and contents are given. Specify the sqlIOTrace=YES build
descriptor option to enable this type of tracing. The default is no (N).

SQL/ERR Trace (Y or N)
Specifies whether to trace SQL error information

If yes (Y), the trace facility provides traces of the error information that
comes back from SQL on every database call. The SQLCODE, SQLERRP,
SQLSTATE, SQLWARN, SQLERRD, SQLEXT, and SQLERRMC codes are
given. Specify sqlErrorTrace="YES" to enable this type of tracing. The
default is no (N).

FILENAME
The system resource name for the trace output. The default is ELATOUT.

NODE
1 to 8 characters that specify the system node ID. The default is the current
system node ID.

USERID
1 to 8 characters that specify the user ID. The default is the value of the
EZEUSRID sysVar.userID system variable special function word.

CLASS
A single character that specifies the print class. The default is A.

FORM
1 to 4 characters that specify the form number for print output. The default
is your location’s standard form.

Programs
Specifies whether to limit the trace to certain programs or print services
programs

If specified, only the requested programs are traced.

Services
Specifies whether to limit the trace to certain Rational COBOL Runtime
services

If specified, only the requested services are traced. Otherwise all service
numbers are traced if the other criteria are met.

158 IBM Rational COBOL Runtime Guide for zSeries

Note: The entry to ELARSINI (initialization service) and the exit from
ELARSTRM (cleanup service) are not traced. ELARSINI initializes
the trace facility. ELARSTRM ends the trace facility.

If you are running a trace to aid in problem determination, enter the filter criteria
as directed by the IBM support center.

Activating a Trace Session for z/OS Batch or IMS BMP

Tracing is activated by providing trace filters in a preallocated data set with the
DD name ELATRACE before starting the program or job to be traced. ELATRACE
contains control statements which control the programs and events to be traced.
The attributes for the data set are LRECL=80, DSORG=PS, and RECFM=FB. If the
ELATRACE data set is empty or allocated as DD DUMMY, all services are traced,
data streams are not traced, and SQL I/0O, SQL errors, and program statements are
not traced even if enabled through sqlIOTrace, sqlErrorTrace, or statementTrace
build descriptor options. shows the correct syntax for the trace control
statements.

:FILTER DATASTREAM=Y|N
:FILTER TRACETOFILE=Y]N
:FILTER APPSTMT=Y|N ~
:FILTER SQLIO=Y|N
:FILTER SQLERR=Y]N
:FILTER IDUMP=Y|N
:APPLS -

. [name]

:EAPPLS
:SERVICES

[service number]

:ESERVICES
:EFILTER

Figure 38. ELATRACE Data Set Entries

Notes:
1. Only one program name or service number can be entered on each line.

2. The :FILTER and :EFILTER tags are required if any other tags are included in
the ELATRACE data set.

3. More than one filter can be specified on a line. The filters must be separated by
0 or more blanks. The example below shows sample :FILTER statements that
are valid and equivalent:

:FILTER APPSTMT=Y
:FILTER SQLERR=Y

:FILTER APPSTMT=YSQLERR=Y

:FILTER APPSTMT=Y SQLERR=Y

:FILTER APPSTMT=Y SQLERR=Y
The filters cannot be continued on the next line. The statement shown below is
not valid:

Chapter 20. Rational COBOL Runtime Trace Facility 159

160

:FILTER APPSTMT=Y SQLERR=

Y

The control card tags and attributes that control filtering have the following

meaning;:

:FILTER

:APPLS

Options controlling what information is traced and where trace
data is written

The following attributes can be used with the :FILTER statement:

DATASTREAM=Y IN

If DATASTREAM=Y is specified, the 3270 data streams built or
received by Rational COBOL Runtime are traced. The default
value is N, no data stream tracing.

TRACETOFILE=Y IN

If TRACETOFILE=Y is specified, the trace output is directed to
the preallocated data set named ELATOUT in addition to being
directed to an in-storage wrap-around trace buffer.

If TRACETOFILE=N is specified, the trace output goes to an
in-storage wrap-around trace buffer. The size of this trace buffer

is defined during customization of Rational COBOL Runtime.
The default for the TRACETOFILE option is N.

TRACETOFILE=Y must be specified if SQLIO=Y or SQLERR=Y
are specified. All trace output for SQL I/O and SQL errors is
directed to the ELATOUT data set, not to the in-storage
wrap-around trace buffer.

APPSTMT=Y IN

If APPSTMT=Y is specified, the trace facility provides the
function name and the statement for each Rational COBOL
statement that the program processes. You must use the
statementTrace="YES" build descriptor option to enable this type
of tracing. The default for the APPSTMT option is N.
SQLIO=YIN

If SQLIO=Y is specified, the trace facility provides traces of the
data and error codes on the return from the SQL call. The EGL
function name, the I/0O statement, the I/O object, the SQL
function name, and the EGL data item name, length, type, and
contents are given. You must use the sqlIOTrace="YES" build

descriptor option to enable this type of tracing. The default for
the SQLIO option is N.

SQLERR=Y |N

If SQLERR=Y is specified, the trace facility provides traces of the
error information that comes back from SQL on every database
call. The SQLCODE, SQLERRP, SQLSTATE, SQLWARN,
SQLERRD, SQLEXT, and SQLERRMC codes are given. You must
use the sqlErrorTrace="YES" or the sqllOTrace="YES" build
descriptor option to enable this type of tracing. The default for
the SQLERR option is N.

IDUMP=Y IN

If IDUMP=Y is specified, the trace facility provides dumps of
certain Rational COBOL Runtime internal storage areas. The
default for the IDUMP option is N, no internal storage dumps.

Program names or print service program names

IBM Rational COBOL Runtime Guide for zSeries

If program names are specified, only the specified programs are
traced. Otherwise service requests from each generated program
are traced. Up to 16 program names can be specified.

:SERVICES Service numbers

If service numbers are specified, only those specific services are
traced. To trace all service numbers, 999 must be specified.
Otherwise, up to 32 service numbers can be specified.

Note: The entry to ELARSINI (initialization service) and the exit
from ELARSTRM (cleanup service) are not traced.
ELARSINI initializes the trace facility. ELARSTRM ends the
trace facility.

Deactivating a Trace Session

To stop all trace activity for CICS or IMS/VS, use the ELAZ transaction to delete
the transaction codes from the list of transactions to be traced by using the F10
function key. When a transaction ends and is subsequently restarted, tracing does
not start if the transaction code no longer appears in the transaction list.

To stop tracing in z/OS batch or IMS BMP, cancel the program and remove the
ELATRACE and ELATOUT DD cards from the runtime JCL.

Printing Trace Output

If the trace output is not directed to a file for the CICS or IMS/VS environments,
or the ELATOUT DD statement is not allocated for the z/OS batch or IMS BMP
jobs, the trace output is written to a wrap-around trace buffer in memory. The trace
output can be seen in dumps taken when programs end abnormally.

Printing the Trace Output in CICS

Trace output for CICS is routed to an extrapartition transient data queue which is
directed to a data set named ELATOUT if you direct the trace output to a file by
specifying yes (Y) on the ELAZ02 panel. The ELATOUT data set has the attributes
of LRECL=133, RECFM=FBA. The file can be printed as directed on the DD
statement for ELATOUT in the CICS startup JCL.

Printing the Trace Output in IMS/VS

The trace entries are written to an IMS message queue and can be printed with the
ELAEPUTL utility. The sample job stream shipped with Rational COBOL Runtime
is run in order to drain and print the trace output. The job stream must be tailored
to use the IN=ELATOUT parameter on the EXEC IMSBATCH statement.

Printing the Trace Output in z/0S Batch or IMS BMP

Trace output is directed to the ELATOUT DD statement and is printed as directed
on the DD statement.

Reporting Problems for Rational COBOL Runtime

For instructions on reporting problems, visit the following Web site, click Support,
and click Submit and track problems:

http:/ /www.ibm.com/software/awdtools/studioenterprisedev

Chapter 20. Rational COBOL Runtime Trace Facility 161

162 IBM Rational COBOL Runtime Guide for zSeries

Chapter 21. Common Messages during Preparation for z/OS

Systems

This chapter contains some error messages from other products. It is not a
complete list. For a complete explanation of product messages, refer to the
documentation provided with that product.

Common Abend Codes during Preparation

Only the most frequently occurring preparation abend codes are listed in this
section. If you receive any other abend code or need a more complete explanation
of one of the abend codes, refer to the documentation for that product.

System B37

The temporary work space is filling up. The WSPC parameter that is used
in the build scripts to prepare generation output specifies the amount of
temporary space allocated.

To resolve the abend, use a symbolic descriptor option named WSPC and

set it to a larger value.

System 213, or System 230

Two program developers tried to update the directory of a PDS at the
same time. Submit the job again.

This problem can also be prevented by specifying ENQ=YES for the DD
statement for the PDS for which the 213 occurred. However, this serializes
preparation of servers when their preparation output is placed in the same

PDS’s.
IMS 3022

The form group that was generated into MFS source resulted in one or
more MFS control blocks that exceeds the 32,748-byte limit. The form
group cannot be processed by MFES in its current form. Change the form
group definition to split the form group into two or more separate form
groups and then change your program as necessary.

MFS Generation Messages

Only the most frequently occurring MFS generation messages are listed in this
section. If you receive other error messages that start with DFS or if you need a
more complete explanation of one of the messages, refer to the IMS documentation

for your release of IMS.

DFS11411 name FMT DOES NOT DEFINE
DEVICE INPUT DESCRIPTION FOR
INPUT MESSAGE DESCRIPTION,

FMT NOT PROCESSED

Explanation: This message can occur when a form
group was originally defined and generated with both
text and print forms. Then the form group was
changed to have only print forms and generated again.
This results in a member in the IMS REFERRAL library
for the text forms and causes the MFS assemblies to
end with errors.

© Copyright IBM Corp. 1994, 2006

User response: Run the MFSRVC procedure that is
supplied with IMS and specify the SCRATCH function
to remove this member from the IMS REFERRAL
library. Refer to the MFS utilities documentation for
your release of IMS for additional information.

DFS11621 xxxxxxxx WARNING: ATTR=nn
SPECIFIED FOR DFLDNAME WHICH

HAD NO EATTR= SPECIFICATION.

Explanation: You specified the mfsExtended Attr=NO
build descriptor option or included the

163

extendedAttributes=NO parameter for one or more
devices in the mfsDevice build descriptor option.

User response: None, provided you wanted to specify
devices that do not support extended attributes.

DFS14281 SC=08 LTH=NN,NN EXCEEDS 4
SIGNIFICANT DIGITS. LAST 4

DIGITS USED.

Explanation: This message occurs if a form contains a
variable field longer than 8000 bytes for a print form or
longer than 1 less than the display size for a text form.

User response: Use form definition to split the
variable field into smaller fields. Change your program

to use the smaller fields and then generate the form
group and program again.

DFS15871 SC=04 EGCS FIELD SPECIFIED ON AN

EVEN COLUMN

Explanation: You defined a DBCS constant or variable
field that starts on an even column (in other words, the
data starts in an even column).

User response: If the device you are using is an IBM
Personal System/55* or is in the IBM 5550 family, you
can ignore this message. Otherwise, use form definition
to change the definition of the form.

DB2 Precompiler and Bind Messages

Only the most frequently occurring DB2 precompiler and bind messages are listed
in this section. If you receive other messages that start with DSN or if you need a
more complete explanation of one of the messages, refer to the documentation for

your release of DB2.

DSNX0391 S PRECOMPILER INTERNAL LIMIT

EXCEEDED

Explanation: A limit for the DB2 precompiler has been
exceeded. This can occur in programs that contain a
large number of SQL I/O functions

User response: Make one or more of the following
changes to the program:

* If some of the columns in your SQL tables are
defined as NOT NULL, remove the isNullable=yes
property from the corresponding field in the EGL
SQL record definitions. This reduces the number of
unique host variables which in turn reduces the
number of characters and lines for an SQL statement
and the total number of lines for the program. This
technique has the biggest impact for the least amount
of work and also has the potential of improving
performance.

* Review the use of default SQL statements. If the
default statements are retrieving more columns than

you actually need, modify the statements to specify
only the required columns.

* Shorten the name of the SQL record variable.

¢ Split the SQL statements into multiple statements.
For example, change one get statement into multiple
get statements and retrieve a subset of the columns
in each statement.

* Split the program into multiple programs

DSNX100I BIND SQL WARNING

Explanation: One or more DB2 tables have not been
created. The tables that do not exist will be identified in
an explanation associated with the message by:

xxxxxxx IS NOT DEFINED
where xxxxxxx is the table name.

User response: Create the necessary DB2 tables and
synonyms.

COBOL Compilation Messages

Only the most frequently occurring COBOL compilation messages are listed in this
section. If you receive other compilation messages that start with IGY or if you
need a more complete explanation of one of the messages, refer to the
documentation for your release of COBOL.

IGYPS20151 The paragraph or section prior to
paragraph or section
EZEMAIN-PROCESS did not contain
any statements.

IGYPS2023I Paragraphs prior to section
EZEMAIN-PROCESS were not
contained in a section

164 1BM Rational COBOL Runtime Guide for zSeries

Explanation: These two messages occur if your
program has been processed by the DB2 precompiler.

User response: They are normal messages that you
can ignore.

IGYOP3091W Code from "?" to "?” can never be
executed, and was therefore discarded.

IGYOP3093W The "PERFORM" statement at "?”
cannot reach its exit.

IGYOP3094W There may be a loop from the
"PERFORM" statement at "?" to itself.
"PERFORM" statement optimization was
not attempted.

Explanation: These messages occur if your program
has been processed using the OPTIMIZE compiler
option.

User response: These are normal messages that you
can ignore.

IGYPA3013W Data item "?” and "?" had overlapping
storage. An overlapping move will occur
at execution time.

Explanation: This message occurs if your program
attempts to assign the value of a data item to the same
data item.

User response: You might want to check that you
really intended to do this.

IGYPG3113W Truncation of high-order digit
positions may occur due to precision of
intermediate results exceeding 30.

Explanation: This message might occur if your
program was generated with the math="COBOL" build
descriptor option.

User response: You might want to change the
arithmetic expression identified in the message. For
example, you could split the expression into several
smaller ones.

If you do not change the expression, ensure that the
intermediate values will fall within the precision that
COBOL supports. Refer to the programming guide for
your release of COBOL for more information about the
precision of intermediate results.

IGYSC2025W "EZEPCB-?" or one of its subordinates
was referenced, but "EZEPCB-?" was a
"LINKAGE SECTION" item that did not
have addressability. This reference will
not be resolved successfully at
execution.

Explanation: This warning message occurs when PCBs
or any data structure is generated in the linkage
section, but is not used in a statement.

User response: Ignore the messages and the program
will work correctly.

Chapter 21. Common Messages during Preparation for z/OS Systems

165

166 IBM Rational COBOL Runtime Guide for zSeries

Chapter 22. Common System Error Codes for z/OS Systems

The information within this chapter is diagnosis, modification, or tuning
information.

Rational COBOL Runtime messages might include error codes from databases or
operating systems that are being used. This could include DB2, DL/I, z/OS VSAM,
or CICS EXEC Interface Block (EIB) codes.

This chapter contains only the most common errors that occur during file input
and output operations.

The error codes included in this chapter are for the following databases and
operating systems:

+ CICS

+ DB2

* DL/I

* VSAM

+ COBOL

Common Return Codes

The system variable sysVar.errorCode contains an error code indicating a reason
that a file I/O statement or a system function invocation is not successful. Codes
specific to the system or the access method are returned when the sysCodes build
descriptor option is set to YES.

If the sysCodes build descriptor option set to NO, the system error codes are
converted to EGL error codes. This allows applications developed previously under
Cross System Product or VisualAge Generator to receive the same error codes as
before.

System Error Code Formats for sysVar.errorCode
The following table shows the formats of sysVar.errorCode by specific

environment:
System Compatibility Considerations
CICS If sysVar.errorCode is in the form RSnnnnnn, look under nnnnnn in

[‘Common System Error Codes in sysVar.errorCode” on page 169.|
Otherwise, the first 2 characters of sysVar.errorCode contain the first
byte of the EIBFN from the CICS EXEC interface block (EIB). The
remaining 6 characters contain bytes 0-2 of the EIBRCODE, also from the
CICS EXEC interface block.

If all of the following are true, then the first 2 characters of
sysVar.errorCode contain the first byte of the EIBFN and the remaining
6 characters contain bytes 0-2 of the EIBRCODE:

* The program is running in VisualAge Generator compatibility mode
* VGVar.handleSysLibErrors is set to 1
* A call statement is implemented with the CICS LINK

Refer to the CICS application programmers’ guide for an explanation of
the EIB codes.

© Copyright IBM Corp. 1994, 2006 167

168

System

Compatibility Considerations

z/0S Batch

If sysVar.errorCode is in the form RSnnnnnn, look under nnnnnn in
[‘Common System Error Codes in sysVar.errorCode” on page 169

GSAM: sysVar.errorCode contains the DL/I status code after an I/O
statement. The last 6 characters of sysVar.errorCode are blanks.

SEQ: sysVar.errorCodee contains the COBOL status key value or values
in the first 2 characters. The remaining 6 characters are zeros.

SEQRS: The contents of sysVar.errorCode depend on the operation that
was not successful:

* If a dynamic allocation is not successful, the first 3 bytes of
sysVar.errorCode contain the value S99 (for SVC 99, dynamic
allocation), byte 4 is the SVC 99 return code in hexadecimal, and bytes
5-8 contain the error reason code in hexadecimal.

» If an OPEN is not successful, sysVar.errorCodee contains return code
8 (“00000008").

» If a READ end-of-file condition occurs, sysVar.errorCode contains
return code 4 (‘00000004").

» If a READ, WRITE, or CLOSE is not successful, sysVar.errorCode
contains return code 12 (‘00000012").

VSAM: sysVar.errorCode contains the COBOL status key value or
values in the first 2 characters followed by 2 characters for the COBOL
VSAM return code (VSAM feedback code), 1 character for the COBOL
VSAM function code (VSAM component code), and 3 characters for the
COBOL VSAM feedback code (VSAM reason code).

VSAMRS: The operation that is not successful determines the contents
of sysVar.errorCode:

* If a dynamic allocation is not successful the first 3 bytes of
sysVar.errorCode contain the value S99 (for SVC 99, dynamic
allocation), byte 4 is the SVC 99 return code in hexadecimal, and bytes
5-8 contain the error reason code in hexadecimal.

» If an OPEN or CLOSE is not successful, the first 2 bytes of
sysVar.errorCode contain the error code from the VSAM application
control block (ACB) in hexadecimal. The remaining 6 characters are
Z€eros.

 If an operation other than OPEN or CLOSE is not successful, the first
2 characters are zeros followed by 2 characters for the COBOL VSAM
return code (VSAM feedback code), 1 character for the COBOL VSAM
function code (VSAM component code), and 3 characters for the
COBOL VSAM feedback code (VSAM reason code).

™

For VSAM codes, refer to z/OS VIR7 DFSMS ™ Macro Instructions for Data
Sets (SC26-7408). For SVC 99 codes, refer to z/OS VIR7.0 MVS System
Codes (SA22-7626).

IMS/VS

The only files that can be used in this environment are serial files
associated with IMS message queues. sysVar.errorCode contains the
DL/I status code after an I/O statement to one of these files. The last 6
characters of sysVar.errorCode are blanks.

IMS BMP

IMS message queue: sysVar.errorCode contains the DL/I status code
after an I/0O statement. The last 6 characters of sysVar.errorCode are
blanks.

Otherwise, same as z/OS Batch in this table.

IBM Rational COBOL Runtime Guide for zSeries

Common System Error Codes in sysVar.errorCode

The following table gives an explanation of the most common values that you
receive in sysVar.errorCode when the sysCodes build descriptor option is set to
YES. If your error code is not listed here, or you would like more information,
refer to the table in[“System Error Code Formats for sysVar.errorCode” on pagel
and then the appropriate manuals for your environment.

Table 33. sysVar.errorCode error codes.

System
z/0S Batch

z/0S Batch

z/0S Batch
z/0S Batch
z/0S Batch
z/0OS Batch
z/0OS Batch
z/0OS Batch
z/0OS Batch
z/0S Batch
z/0S Batch
z/0S Batch

z/0S Batch
z/0OS Batch

z/0OS Batch
z/0OS Batch

Return code

A0000000
BC000000

59940210

59940440

599417**

00000004 on non-VSAM file
00000008 on non-VSAM file
00000012 on non-VSAM file
0008*004 for nonrelative

0008*004 for relative

0008*008 for an add statement
0008*016 if get next for an indexed
record

0008*016 if not using get next for an
indexed record

0008*028

0008*116

******74

Note: * represents any character.
Note: z/OS Batch in this table includes IMS BMP

CICS

CICS

CICS

CICS

CICS
CICS

CICS

CICS

CICS

CICS

ffrrrrrr Remote call or
sysLib.startTransaction()

0A010000 get next for a temporary
storage queue

0A010000 on direct I/O to a
temporary storage queue
0A080000 on temporary storage
queue

060F0000 on VSAM file
00000000 Remote call or
sysLib.startTransaction()
00000203 Remote
sysLib.startTransaction()
00000204 Remote call

00000207 Remote call or
sysLib.startTransaction()
00000208 Remote call

Meaning

VSAM open error - empty
indexed file

VSAM open error - file is not
in VSAM format

File not available

File not found

File not found

End of file

Error opening file

Error on I/0O or closing a file
End of file

No record found

Duplicate record

End of file

No record found

File full
No record found
No record found

Other CICS errors:

e ff = Hexadecimal
representation of EIBFN
byte 0

e rrrrrr = Hexadecimal
representation of
EIBRCODE bytes 0-2

End of file

No record found
File is full

End of file
Successful

Transaction identifier that is
not valid

Program name that is not
valid

System identifier that is not
valid

Link out of service or is not
valid

Chapter 22. Common System Error Codes for z/OS Systems 169

Table 33. sysVar.errorCode error codes. (continued)

System Return code Meaning

CICS 06810000 on VSAM file No record found

CICS 06820000 on VSAM file Duplicate record

CICS 06830000 on VSAM file File is full

CICS 08E10000 on transient data Format error

CICS 08010000 on a transient data queue End of file

CICS 08020000 on a transient data queue File not found

CICS 08080000 on transient data Transient data queue not
open

CICS 12320000 Queue is already in use

EGL Error Codes

The error codes list is sequenced by error code, with the alphabetic error codes (A
to Z) occurring before the numeric error codes (0 to 9). If you specified the
sysCodes=NO build descriptor option, sysVar.errorCode will contain error codes
that are compatible with the Cross System Product codes.

Table 34. Rational COBOL Runtime Error Codes

Error code Component

Probable Cause

Cnn File control/request

These error codes do not have an EGL
equivalent I/O error value. Either CICS
returned an IOERR error or VSAM
returned a return code of 12 on file
input/output. The nn is replaced by the
VSAM reason code from the feedback
field. For more information, refer to the
z/OS VIR7 DFSMS Macro Instructions for
Data Sets (5C26-7408) manual.

Fnn File control/request

These error codes are CICS EIBRCODES,
other than ILLOGIC, IOERR, and those
that have EGL equivalent I/O error
values. The nn is replaced by the
EIBRCODE (byte 0). For more
information, refer to the application
programming reference for your release of
CICS.

Note: All error codes, other than the ones
that have EGL equivalent I/O error
values, cause the program to end. An
error message is issued to inform you that
the program ended because of a

send /receive error. The error message
includes the error code.

FE1 File Control/request

Transient data queue - Queue length and
EGL record length do not match. The
invalidFormat EGL I/O error value is set.

F02 File Control/request

Transient data queue - File not found. The
fileNotFound EGL I/O error value is set.

FO8 File control/request

An attempt was made to gain access to an
extrapartition transient data queue, but
the queue has not been opened yet. Exit
and use CEMT to open the queue.

170 1BM Rational COBOL Runtime Guide for zSeries

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code

Component

Probable Cause

52

Terminal support

You attempted to run an EGL program
from an unsupported device (such as a
3278-52 terminal). This device is not
supported by EGL.

101

Message processing

The message was truncated.

102

Contents control

The module specified on a LOAD macro
is already in storage.

File control/request

The end of file was reached. The
endOfFile EGL I/O error value is set.
Note: endOfFile is set when a get next is
performed on an empty file.

Service request

An ITEMERR condition was received
from CICS because the maximum number
of records allowed in a temporary storage
queue (32767) was exceeded.

103

File control/request

You performed an operation on a record
that has a duplicate key, or a key in the
record for an alternate index is
duplicated. The I/O operation completed,
and the duplicate EGL I/O error value is
set.

104

File control/request

The end of file was reached. The
endOfFile EGL I/0 error value is set.

115

Service request

An EXEC CICS ENQ was not successful.

116

Service request

An EXEC CICS DEQ was not successful.

20B

Storage allocation

Operands that are not valid were
specified on either a GETMAIN or
FREEMAIN macro.

20C

Defined data set

The data set name specified on an issued
DEFDS command already exists in the
external work file.

Storage allocation

An error occurred while processing a
FREEMAIN macro.

200

Service request

An service request was issued that is not
valid. This is a system error. Contact the
IBM Support Center.

201

File open/connect

The connection already exists. The
possible cause is a file with the same
name is already in use. The
fileNotAvailable EGL 1/0 error value is
set.

Message processing

Variables were passed to be built into the
message, but the message contained no
variable fields; or, the message contained
variable fields, and no variables were
passed for them.

201- 206

Service request

Service request errors occurred while
processing a DEFDS command. This is a
system error. Contact the IBM Support
Center.

Chapter 22. Common System Error Codes for z/OS Systems 171

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code

Component

Probable Cause

202

File control/request

Record not found. The noRecordFound
EGL I/0O error value is set.

Storage allocation

The ORIGIN specified on a FREEMAIN
macro does not match storage already in
use.

203

File control/request

The record was not found. The EGL I/0O
error value noRecordFound is set.

Storage allocation

Either the ORIGIN specified on a
FREEMAIN macro does not begin on a
doubleword boundary, or 0 LENGTH was
specified on a GETMAIN.

204

Storage allocation

An attempt has been made to free storage
that has not been allocated or that has
already been freed.

205

File control/request

The record was not found. The
noRecordFound EGL I/O error value is
set.

Note: The noRecordFound EGL I/O error
value is set when a get next or get
previous is preceded by a set record
position on an empty indexed file.

Storage allocation

The LENGTH specified on a FREEMAIN
macro is 0.

206

File control/request

You attempted to store a record with a
duplicate key while using an index that
does not allow duplicate keys. The
duplicate EGL I/O error value is set.

207

File control/request

The record was not found. The
noRecordFound EGL I/0O error value is
set.

208

File control/request

An error occurred when you attempted to
connect or write to the log file on CICS. A
possible reason for the error is that no
TDQUEUE entry was found for the log
file.

Service request

The NDSNAME in an ALTDS request is
not valid. This is a system error. Contact
the IBM Support Center.

Storage allocation

The storage specified on a FREEMAIN
macro is already free.

209

Service request

The name specified by the NDSNAME on
an ALTDS command already exists in the
external work file. This is a system error.
Contact the IBM Support Center.

210- 211

Service request

Miscellaneous errors occurred on an
ALTDS request. This is a system error.
Contact the IBM Support Center.

212

Service request

An 1/0 error occurred while copying data
from the work file to the external work
file during an ALTDS service request.

172 IBM Rational COBOL Runtime Guide for zSeries

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code

Component

Probable Cause

213

Service request

The COPIES operand on a
SUBMIT.PRINT service request is not
valid. This is a system error. Contact the
IBM Support Center.

214

Service request

The data set on a SUBMIT.PRINT service
request cannot be found. This is a system
error. Contact the IBM Support Center.

215

File control/request

You attempted to store a record with a
duplicate key while using an index that
does not allow duplicate keys. The
duplicate EGL I/O error value is set.

216

File open/connect

A connection was attempted to an ESDS
file or transient data queue in direct
mode. The invalidFormat EGL I/O error
value is set.

Service request

The data set specified on a DEFDS
request matches a CONNECT already in
use. This is a system error. Contact the
IBM Support Center.

217

File open/connect

An attempt was made to subconnect to a
serial file. Check to see if a called
program is attempting to reference the
same serial file that has been referenced
by the calling program.

Service request

A PRINT error has occurred for one of the
following reasons:

* An error occurred while writing to the
transient data queue on CICS. The most
common errors are QIDERR, IOERR,
LENGERR, and NOSPACE.

* An error occurred while writing to the
EZEPRINT data definition name (DD
name) in z/OS Batch or IMS BMP. A
possible cause is that the printer file
(for example, EZEPRINT) has been
allocated incorrectly or has not been
allocated at all. For example, the data
set allocated for the print output has
the wrong record format (anything
other than VBA) or the wrong record
length (shorter than the print output
line length).

218

Service request

The file is not available. The
fileNotAvailable EGL 1/0 error value is
set.

22A

File control/request

The available storage space has been
exhausted. Try the operation again. If the
problem persists, contact your system
programmer.

Chapter 22. Common System Error Codes for z/OS Systems 173

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code

Component

Probable Cause

220

File open/connect

A format error occurred. Either the
characteristics of a file are not supported
by EGL, or they are incompatible with the
EGL record definition. The invalidFormat
EGL I/O error value is set. For example, a
serial file is trying to access a member of
a PDS data set, but the JCL for z/OS
Batch or IMS BMP does not specify a
member name

File control/request

The record length for a file is larger than
the maximum record length defined in
the system.

221

Service request

An ENQ was not successful while writing
to the transient data queue on CICS. This
is a system error. Contact the IBM
Support Center.

223

Service request

The attach of the print subtask was not
successful, or the print subtask abended.
This is a system error. Contact the IBM
Support Center.

225

Service request

The print subtask abended. This is a
system error. Contact the IBM Support
Center.

226

File control/request

An IO error occurred while reading or
writing from temporary storage on CICS.
This is a system error. Contact the IBM
Support Center.

25A

File control/request

The data set cannot be extended because
VSAM cannot allocate additional
direct-access storage space. Either not
enough space is left to make the
secondary allocation request, or you
attempted to increase the size of a data
set while processing with SHROPT=4 and
DISP=SHR. The full EGL I/0O error value
is set.

251

File open/connect

For CICS environments, the file control
table (FCT) entry was not found,
indicating a real file or transient data
queue was not properly defined or
generated. For z/OS batch or IMS BMP
environments, either the DD name has
not been allocated, or the data set for the
dynamic allocation does not exist.

280

File control/request

The data set that you are trying to
connect to is already in use. A probable
cause is that your program has a data set
associated with one record variable and
you are trying to use another record
variable with the same data set. You need
to issue a CLOSE on the first record
variable to free the data set before trying
to use it with another record variable.

174 1BM Rational COBOL Runtime Guide for zSeries

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code

Component

Probable Cause

291- 294

Service request

A mapping error occurred.

Terminal support

A mapping error occurred.

380

File control/request

A deadlock occurred. One transaction is
attempting to update a record that is
currently locked by another transaction.
The deadlock EGL I/O error value is set.

381

File control/request

The control interval for a record is already
held in exclusive control by another
requester. The deadlock EGL I/O error
value is set. For CICS, the returned code
is INVREQ. This is assumed to have
occurred due to one transaction’s attempt
to do two get forUpdate statements to the
same file. If this is not the case, see the
description of INVREQ in the application
programming reference for your release of
CICS.

389

File control/request

The resource control block could not be
found to process the request against. This
is a system error. Contact the IBM
Support Center.

399

File control/request

You attempted to store a record to a
temporary storage queue with a key that
exceeds 32767. The key is too large for
temporary storage queues, which cannot
have more than 32767 records.

4nn

File open/connect

For z/0OS batch or IMS BMP
environments only, the VSAM GENCB for
an ACB was not successful. The value of
nn is determined from VSAM return
codes. If register 15 contains 4, nn is
replaced by the contents of register 0. If
register 15 does not contain 4 (or 0), v is
replaced by 50 plus the contents of
register 15.

5nn

File open/connect

For z/0OS batch or IMS BMP
environments, an OPEN request is not
successful. For VSAM files in z/OS batch
or IMS BMP environments, a SHOWCB
for the ERROR field is done after the
problem with the OPEN request. The
value of the ERROR field replaces nn. For
non-VSAM sequential files in z/OS Batch
or IMS BMP environments (QSAM), nn is
replaced with a value of 0. For spool files
in a CICS environment, nn is also
replaced with 0.

5A0

File open/connect

An attempt was made to open a VSAM
data set for input, but the data set was

empty.

Chapter 22. Common System Error Codes for z/OS Systems 175

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code

Component

Probable Cause

6nn

File open/connect

The VSAM GENCB for an RPL was not
successful. For z/OS Batch and IMS BMP
environments, the value of nn is
determined from VSAM return codes. If
register 15 contains 4, nn is replaced by
the contents of register 0. If register 15
does not contain 4 (or 0), nn is replaced
by 50 plus the contents of register 15.

701

File open/connect

On CICS Version 2.1 or later, the file
cannot be opened or connected. The error
is not defined in the FCT flags.

702

File open/connect

The VSAM SHOWCB or MODCB macro
was not successful. This usually means
that the file is not open.

703

File open/connect

The VSAM TESTCB macro was not
successful.

705

File open/connect

For CICS only, a connection was
attempted to transient data or a
temporary storage queue, but a VSAM
file has the same name.

706

File open/connect

On CICS Version 2.1 or later, the file is
UNENABLED and cannot be opened or
connected.

707

File open/connect

On CICS Version 2.1 or later, the file is
DISABLED or DISABLING and cannot be
opened or connected.

708

File open/connect

On CICS Version 2.1 or later, the user is
not authorized to have access to the file.

709

File open/connect

On CICS Version 2.1 or later, an I/0O error
occurred on the SET data set Open
command.

768

File open/connect

The OPEN or connection was not
successful due to a GETMAIN error when
requesting storage for control blocks
associated with sequential files.

8nn

File control/request

These return codes do not have an EGL
equivalent I/O error value. Either CICS
returned an ILLOGIC error, or VSAM
returned a return code of 8 on file
input/output. The nn is replaced with the
VSAM error code. For more information,
see the z/OS VIR7 DFSMS Macro
Instructions for Data Sets (SC26-7408)
manual.

File open/connect

A storage allocation was not successful.

80C

Storage allocation

There is insufficient storage to satisfy a
GETMAIN request.

802

File open/connect

The resource is not associated.

Storage allocation

There is insufficient storage for allocation.

803

Contents control

The module specified on a LOAD macro
could not be located.

176 IBM Rational COBOL Runtime Guide for zSeries

Table 34. Rational COBOL Runtime Error Codes (continued)

Error code Component

Probable Cause

804

File control/request

This return code is received from CICS
and indicates that a QIDERR or ITEMERR
occurred while trying to gain access to a
temporary storage queue.

805

Contents control

The module specified on a LOAD macro
is damaged.

Message processing

An unsupported option was specified on
an INFORM macro.

806

Contents control

For z/0OS Batch or IMS BMP, the module
specified on a LOAD macro could not be
located.

807

Contents control

Insufficient storage is available to load the
specified module.

81C

File control/request

A temporary storage queue is full. The
full EGL I/O error value is set.

987

File control/request

For z/0OS Batch and IMS BMP, a branch
was made to the SYNAD routine as the
result of a GET to a non-VSAM serial file.
A possible reason is that the file is empty
or the blocking factor is wrong.

988

File control/request

For z/0OS Batch and IMS BMP, a branch
was made to the SYNAD routine as the
result of a PUT to a non-VSAM serial file.
A possible reason is that the file is empty
or the blocking factor is wrong. For CICS,
a WRITE request to a spool file was not
successful.

989

File control/request

An error occurred while trying to close a
file.

999

File control/request

An unsupported request was made for a
serial file. A probable cause is that the
EGL record associated with this file was
not defined as a serial record.

Common SQL Codes

After an SQL I/O statement, the SQL code is stored in the sysVar.sqlCode system
variable Only the most frequently occurring SQL codes are listed in this section. If
you receive other SQL codes or if you need a more complete explanation of one of
the SQL codes, refer to the documentation for your release of DB2.

100

No rows were found by SQL that meet the search criteria specified in the
WHERE clause of the SQL statement, or if processing a get next statement
in conjunction with an open or open forUpdate statement, the end of the
selected rows has been reached. The possible causes are the following:

* The key value(s) were not moved correctly to the host variable(s) used

in the WHERE clause.

* No rows meet the search criteria specified in the WHERE clause.

* Rational COBOL stripped trailing blanks for the character host variables
used in a LIKE predicate in the WHERE clause. You can use the
sqlIOTrace=YES build descriptor option to enable tracing of the data

Chapter 22. Common System Error Codes for z/OS Systems 177

178

sent to SQL and the data coming back from SQL. See [Chapter 20)
[“Rational COBOL Runtime Trace Facility,” on page 155| for more
information about using theRational COBOL Runtime trace facility.

-301, -302, -303, -304

-302

-805

-818

The EGL data item definition does not match the definition of the same
column in the DB2 table. This can be caused by defining a column as
variable length, but not defining the data item in EGL with a
variable-length SQL code. This can also be caused by specifying a different
length to EGL than what you defined in the DB2 table.

Make the necessary changes in the EGL data item definition to match the
DB2 table and generate the program again.

For the IMS/VS environment, you might have allocated the DB2 work
database with a 4KB page size instead of the required 32KB page size.
Refer to the Rational COBOL Runtime program directory for information
about installing a DB2 work database.

The DBRM for the current program was not bound as part of the current
DB2 plan. Possible causes are:

* The BIND process was never run for the program.
* An incorrect plan name was specified at startup.

* The plan name specified in the RCT on CICS did not match the plan
name used in the BIND process.

* All programs that run together under a single transaction or job step
must be bound into the same DB2 plan.

Look at the message inserts to see what DB2 returned as the program
name and plan name. If these are what you expect, review the steps used
for preparing the program.

The DB2 precompiler-generated time stamp in the load module is different
from the database request module (DBRM) used on the most recent BIND
for the PLAN being used. The load module and the DBRM from the
precompiler must match and one of them is not from the most recently-run
precompile. This typically happens when the precompile, link-edit, and
bind process is run more than once and either the DBRM library or the
load library used for the load module is changed. This creates the
opportunity to pick up the old load module at run time if the old load
library is first in the search sequence at run time. Alternatively, the BIND
process might be using an old DBRM library that contains an old copy of
that member.

Ensure that you are running with the most recent copy of the load module
and that you are using the same DBRM library on the precompile and
BIND steps. On CICS ensure that the latest copy of the load module has
been picked up by issuing an CICS NEWCOPY command or by using the
Rational COBOL Runtime new copy utility. On IMS/VS ensure that the
latest copy of the load module has been picked up by recycling the
message region.

-911,-913

A deadlock condition occurred. Possible causes are:

* The isolation level was set for repeatable read.

* There were long periods of time between commit points.

* In EGL, the program issued a get forUpdate statement, but failed to
issue a related replace statement. In VisualAge Generator, the program
issued an UPDATE without a REPLACE.

IBM Rational COBOL Runtime Guide for zSeries

-922

Note: The program should be coded to handle these conditions.

Connection authorization was not successful. The type of error is indicated
in the SQL error message. Some typical causes are not granting authority
for the DB2 plan or not creating a synonym for one or more of the DB2
tables.

Make the necessary changes to provide authorization to the DB2 plan and
then run the program again. You might also want to refer to the
documentation for your release of DB2 for additional causes of the
authorization error.

Common DL/l Status Codes

After a DL/I I/0O statement, the DL/I status code is stored in the
dliVar.statusCode system variable. Only the most frequently occurring DL/I status
codes are listed in this section. If you receive other DL/I status codes or if you
need a more complete explanation of one of the DL/I status codes, refer to the IMS
Messages and Codes Volume 1 manual for your release of IMS.

AD

Al

AJ

AK

AM

GA

GB

GD

GE

GK

GP

The function parameter on the call is not valid. If the function code is
correct, the status code can be from an I/O or alternate PCB for a database
call. You might have a mismatch between the EGL PSB record definition
and the IMS PSB definition.

A data management open error occurred. Either no DD statements were
supplied for logically related databases, or the DD name is not the same as
the name specified on the DATASET statement of the DBD. The segment
name area in the DB PCB has the DD name of the data set that could not
be opened.

The format of one of your SSAs is not valid. Either the SSA contains a
command code for the call that is not valid, or the SSA uses an R, S, W, or
M command code for a segment for which there are no subset pointers
defined in the DBD.

An SSA contains either a field name that is not valid or a name that is not
defined in the DBD, or the EGL dliFieldName property for the field in the
DL/I segment record does not match the name defined to DL/I.

The call function is not compatible with the processing option in the PCB,
the segment sensitivity, the transaction-code definition, or the program

type.

In trying to satisfy an unqualified GN or GNP call, DL/I crossed a
hierarchic boundary into a higher level.

In trying to satisfy a GN, DL/I reached the end of the database.

The program issued an ISRT that was not qualified for all levels above the
level of the segment being inserted. The segment might have been deleted
by a DLET using a different DB PCB.

DL/I is unable to find a segment that satisfies the segment described in a
get call.

DL/I has returned a different segment type at the same hierarchic level for
an unqualified GN or GNP.

The program issued a GNP when parentage is not established, or the
segment level specified in the GNP is not lower than the level of the
established parent.

Chapter 22. Common System Error Codes for z/OS Systems 179

II

The program issued an ISRT that tried to insert a segment that already
exists in the database.

Common VSAM Status Codes

Only the most frequently occurring VSAM codes are listed in this section. If you
receive other VSAM codes or if you need a more complete explanation of one of
these values, refer to the z/OS V1R7 DFSMS Macro Instructions for Data Sets
(5C26-7408) manual.

180

OPEN request type

Code
64

74

80

94

98

A0

A8

BC

Co
C4

Meaning

Warning message: OPEN encountered an empty alternate index that is part
of an upgrade set.

This is a warning message indicating the data set was not properly closed.
Either the implicit verify for the OPEN was unsuccessful, or the user
specified that the implicit verify should not be attempted for the OPEN. A
previous VSAM program might have ended abnormally. The VERIFY
command of Access Method Services can be used to properly close the
data set.

The DD statement for this access method control block is either missing or
not valid.

Either no record for the data set to be opened was found in the available
catalog or catalogs, or an unidentified error occurred while VSAM was
searching the catalog.

Security verification was not successful; the password specified in the
access method control block for a specified level of access does not match
the password in the catalog for that level of access.

The operands specified in the ACB or GENCB macro are inconsistent either
with each other or with the information in the catalog record. You might
have attempted to open an empty data set for input only (get next
statement).

The data set was not available for the type of processing you specified, or
an attempt was made to open a reusable data set with the reset option
while another user had the data set open.

The data set indicated by the access method control block is not a valid
type of data set for specification by an access method control block. You
might have used a sequential data set as the physical file, but specified
VSAM or VSAMRS as the file type for resource association when you
generated the program.

An unusable data set was opened for output.

Access to data was requested using an empty path.

CLOSE request type

Code
04
88

Meaning
The data set indicated by the access method control block is already closed.

Not enough virtual storage was available in the address space of your
program for the work area required by CLOSE.

IBM Rational COBOL Runtime Guide for zSeries

94 An unidentified error occurred while VSAM was searching the catalog.

GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

Note: The following occur when register 15=8(8).

Code
08

6C

70
Co

Meaning

An attempt is made to store a record with a duplicate key, or there
is a duplicate record for an alternate index with the unique key
option.

The RECLEN specified was one of the following:

* Larger than the maximum allowed

* Equal to 0

* Smaller than the sum of the length and the displacement of the
key field

* Not equal to the record(slot) size specified for a relative record
data set

The KEYLEN specified was too large or equal to 0.

A relative record number that is not valid was encountered.

COBOL Status Key Values

This shows the most frequently occurring COBOL status key values. If you receive
other status key values or if you need a more complete explanation for one of
these values, refer to the application programming language reference for your
release of COBOL.

Status Key
10
22

23

35

39

44

96

Explanation
The end of a file was reached.

An attempt was made to write a record with a key that duplicated
one that was already in the file.

Record not found. This can also be caused by an optional file not
being allocated.

No DD statement was included in the JCL. This can occur if the
program calls another program or transfers to another program
using a transfer to program statement, but the DD statements for
the second program have not been added to the sample runtime
JCL for the main program.

The physical file that you specified during resource association
does not match the file characteristics that you specified during
record definition. The file characteristics include file organization
(sequential, relative or indexed), the prime record key, the alternate
record keys, and the maximum record size.

A variable-length record was written that is not valid. This can
occur if the value in the numElementsItem field for the record is
larger than the maximum value, or the value in the lengthItem
field for the record is larger than the maximum length of the
record.

No DD statement was included in the JCL for a VSAM file. This
can occur if the program calls another program or transfers to
another program using a transfer to program statement, but the

Chapter 22. Common System Error Codes for z/OS Systems 181

DD statements for the second program have not been added to the
sample runtime JCL for the main program.

182 IBM Rational COBOL Runtime Guide for zSeries

Chapter 23. Rational COBOL Runtime Return Codes, Abend
Codes, and Exception Codes

The information within this chapter is diagnosis, modification, or tuning
information.

Only the most frequently occurring abend codes are listed in this section. If you
receive other abend codes or if you need a more complete explanation of one of
the codes, refer to the z/OS messages and codes manual for your release of z/OS.

Return Codes

This section contains a listing of codes set by Rational COBOL Runtime and
returned in the COBOL return code of a program.

If a generated program completes normally, the COBOL return code is set to the
value in the sysVar.returnCode. This code must be less than or equal to 512.
Return codes greater than 512 are reserved for Rational COBOL Runtime. The
return codes set by Rational COBOL Runtime are:

693 The program ended due to an error detected by Rational COBOL Runtime.
The error description is reported as described in|Chapter 18, “Diagnosing|
[Problems for Rational COBOL Runtime on z/0OS Systems.”]

4093 A program generated using EGL ended due to an error detected
byRational COBOL Runtime.

If LE detects an error and returns to the operating system, the LE return code
modifier (2000 - error, 3000 - severe error, or 4000 - critical error) is added to the
user or Rational COBOL Runtime return code.

ABEND Codes

Rational COBOL Runtime reports errors by error messages whenever possible.
Abend codes are issued only in situations where initialization has not progressed
to the point where messages can be issued or when the error messages cannot be
written to their normal destination.

CICS Environments

For CICS, you can control whether or not a core dump is taken by using the
diagnostic controller utility. If a core dump is taken, the dump code is ELAD. See
[“Controlling Error Reporting in CICS” on page 140| for information on the
diagnostic controller utility.

ELA1 This abend code should never be received. However, if register 1 in a
dump contains "ELA1", then a database manager or subsystem interface
module, such as ASMTDLI for DL/I access, was not linked with a Rational
COBOL Runtime program at product installation. Registers 3 and 4 in the
dump usually contain the name of the stub program. The load module
where the abend occurred is the module that was not linked correctly.

Refer to the Program Directory for Rational COBOL Runtime for zSeries for
information on correctly linking the abending load module.

© Copyright IBM Corp. 1994, 2006 183

184

ELA2

ELA3

ELA4

ELAS5

ELA6

ELA7

ELA9

ELAB

ELAC

ELAE

The Task Work Area (TWA) does not exist or is not long enough to be used
by Rational COBOL Runtime. The TWA length must be greater than or
equal to the sum of 1024 plus the twaOffset (TWA offset) build descriptor
option specified when the initial program in the transaction was generated.

Use the TWASIZE parameter in the transaction definition to define a TWA
with an adequate length for the transaction.

Load for module ELARSCNT was not successful. Rational COBOL
Runtime has not been installed correctly.

Ensure the CICS region can gain access to the Rational COBOL Runtime
library and that module ELARSCNT is defined in the program definition.

Load for module ELARPRTX was not successful. Rational COBOL Runtime
has not been installed correctly.

Ensure the CICS region can gain access to the Rational COBOL Runtime
library and that module ELARPRTRX is defined in the program definition.

Load for module ELARPRTC was not successful. Rational COBOL Runtime
has not been installed correctly.

Ensure the CICS region can gain access to the Rational COBOL Runtime
library and that module ELARPRTC is defined in the program definition.

The dynamic storage stack used for working storage for Rational COBOL
Runtime modules was exhausted and Rational COBOL Runtime could not
continue.

This problem should not occur. Report the problem to the IBM support
center.

A GETMAIN was not successful. There was not enough storage for the
program to complete.

Try the program again when the region is less busy or try it again in a
larger region.

Load or link for a Rational COBOL Runtime module was not successful.
Rational COBOL Runtime has not been installed correctly. Use CEDF to
determine the module name. Look for a PGMIDERR on a CICS LOAD or
CICS LINK command.

Ensure that the CICS region can gain access to the Rational COBOL
Runtime library and the module name being loaded is defined in the
program definitions.

A call was made to a main program, which is not allowed or a non-EGL
program was transferred to with a transfer to program statement and the
externallyDefined option was not specified either on the transfer to
program statement or as the linktype option in the transfer to program
entry in the linkage table part.

Rational COBOL Runtime has detected a FREEMAIN request that is not
valid. Collect the dump and contact the IBM Support Center for assistance.

A generated program has ended because of a serious error. This occurs for
one of the following reasons:

* Storage has been corrupted so that a dump is necessary to debug the
abend.

¢ Error handling was unable to write messages to the error destination
queue or to the user at the terminal. The dump is necessary to make the

IBM Rational COBOL Runtime Guide for zSeries

ELAF

ELAW

ELAX

diagnostic information available. The situation can occur if the error
destination queue specified for the transaction using the diagnostic
controller utility is not defined to CICS. In CICS, if the error destination
queue is defined as an intrapartition queue, this situation occurs when
there is no more space on the intrapartition queue and the error
messages cannot be written.

* A severe error has occurred. Refer to the error destination queue for the
corresponding error messages. The default name is ELAD. The queue
name can be changed using the diagnostic controller utility.

See ['Rational COBOL Runtime ABEND Dumps” on page 151|for
information on how to find error messages in the dump on an ELAE
abend.

ELATSRST has detected one of the following errors:

* ELATSRST was not initiated with a CICS XCTL command (for example,
the restart transaction ID was associated directly to ELATSRST).

* The COMMAREA length on entry was not 0 or 10.

¢ The Rational COBOL Runtime portion of the TWA had been initialized,
indicating that a converse was not in process or the non-EGL program

uses the TWA and the EGL program was not generated with the proper
TWA offset.

* Information in the COMMAREA was not valid, indicating that a
converse statement was not in process.

* Information in the COMMAREA indicates that ELATSRST was started
with a show statement or during the inputForm processing for the
program.

A program and its associated form groups or a form group and its
associated tables were generated using incompatible versions of COBOL
generators. For example, the form group might have been generated by
Cross System Product and the program generated by EGL.

An exception has been detected, or thrown by the user, in part of the CICS
EGL application or by a subsequently called application, that has not been
handled by an EGL languagetry ... onException block. As this unhandled
exception has made its way back to the main EGL program without being
handled, a CICS abend of ELAX is issued. To determine the cause of this
unhandled exception, the easiest way is to look in the ELAD queue under
CICS by using these two commands: CEBR, and then as a reponse to the
CEBR transaction, enter: GET ELAD. This will display the messages in the
ELAD queue. These messages are ordered chronologically, so look near or
at the bottom of the queue. There will be error messages about the type of
exception, the program it was in, and the line number where it occurred.
Alternatively, if the EGL statementTrace build descriptor option is set to
YES, then the statement trace spool file will also show where the exception
was thrown.

IMS, IMS BMP, and z/OS Batch Environments

1600

A generated program has ended because of a serious error. This occurs for
one of the following reasons:

* Storage has been corrupted so that a dump is necessary to debug the
abend.

* Error handling was unable to write messages to the error destination
queue or to the user at the terminal. The dump is necessary to make the

Chapter 23. Rational COBOL Runtime Return Codes, Abend Codes, and Exception Codes 185

1601

1602

1606

1608

diagnostic information available. In IMS, the situation can occur if the
error destination queue specified using the errorDestination build
descriptor option is not defined to IMS.

* A severe error has occurred. In IMS, refer to the error destination queue
specified using the errorDestination build descriptor option for the

corresponding error messages. In z/OS Batch, refer to the data set
ELAPRINT for the messages.

See [“Rational COBOL Runtime ABEND Dumps” on page 151|for
information on how to find error messages in the dump on a 1600 abend.

A database manager or subsystem interface module (for example,
ASMTDLI for DL/I access) was not linked with a Rational COBOL
Runtime program at product installation. Registers 3 and 4 in the dump
contain the name of the stub program. The abending load module is the
module that was not linked correctly.

Refer to the Program Directory for Rational COBOL Runtime for zSeries for
information on correctly linking the abending load module.

A program generated with the imsFastPath=YES build descriptor option
ended because of a run unit error. The abend is issued to prevent any
further scheduling of the program in error.

See [“Rational COBOL Runtime ABEND Dumps” on page 151|for
information on how to find error messages in the dump on a 1602 abend.
Depending on the build descriptor options specified for the program, the
message might also have been written to an error diagnostic message
queue, to the IMS log, or to an ELAPRINT file. See |Chapter 18,|
[“Diagnosing Problems for Rational COBOL Runtime on z/OS Systems”] for
more information on Rational COBOL Runtime error reporting.

The dynamic storage stack used for working storage for Rational COBOL
Runtime modules was exhausted and Rational COBOL Runtime could not
continue.

This problem should not occur. Report the problem to the IBM Support
Center.

Rational COBOL Runtime has detected a FREEMAIN request that is not
valid. Collect the dump and contact the IBM Support Center for assistance.

Exception Codes
The following exception codes are issued by the Rational COBOL Runtime:

9990
9992
9993
9994
9996
9997
9998
9999

File I/O exception

SQL exception

Service invocation exception
Service binding exception
Invocation exception

Null value exception

Index out of bounds exception

Type cast exception

186 IBM Rational COBOL Runtime Guide for zSeries

Chapter 24. Codes from Other Products for z/0OS Systems

The chapter contains lists of common system abend codes, COBOL runtime
messages, LE abend codes, and common runtime messages and abend codes from

IMS and CICS

Common System Abend Codes for All Environments

Only the most frequently occurring abend codes are listed in this section. If you
receive another abend code or if you need a more complete explanation of one of
the abend codes, refer to the System Codes manual for your release of z/OS.

System 0C4

System 0C7

System 806

© Copyright IBM Corp. 1994, 2006

This code can occur on a transfer to program statement if there is
a print services or table program with the same name as the
transferred-to program. This code can also occur when a print
services or table program is called but there is a different program
(for example, a non-EGL program or an EGL program) with the
same name. Using naming conventions can eliminate this problem.

This code can also occur if you add the validatorDataTable
property to a form in a form group that is shared by multiple
programs and do not generate all the programs again.

Data exception. The abend occurs when fields defined as NUM,
NUMC. DECIMAL, or PACF are retrieved from a database or file
and are found to contain data of a different format.

The abend can also occur if fields that are not initialized are used
in calculations or comparisons. This happens if the program
attempts to read a record from a database and the record is not
found, but the program uses fields in the record anyway. To ensure
that records are initialized, use a set record empty statement in the
program or specify initAdditional WS and initlORecords as build
descriptor options. Refer to the EGL online help system for
additional information on how to initialize records.

The abend can also occur when set record empty is used or when
initAdditional WS and initlORecords are used if one of the
following is true:

* There are redefined records with different data types or variable
field boundary alignments from the original record.

* The primary working storage record receives a transferred
record that contains different data types or variable-field
boundary alignments from the original record.

For initialization problems with NUM and NUMC fields, you
might be able to use the spacesZero="YES" build descriptor option
to help minimize the problem. However, be sure to consider the
performance implications first.

Module not found in a library. This can occur if a new version of a
module is put into a load library and is placed in secondary
extents. To avoid this when you allocate load libraries, specify a
large primary allocation and 0 for the secondary allocation. This
insures that if there is enough space for the load module it will be
placed in the primary extent. If there is not enough space, there

187

will be an abend (for example, a B37 abend for insufficient space)
when you link the module into the load library. Using this
technique detects the space problem during the preparation step
rather than at run time.

In IMS, this can occur if a program transfers to another program
using a transfer to transaction statement and the transaction named
on the statement is defined in the IMS system definition, but the
load module for the program is not in a library available to the
IMS message region.

In other environments, this can occur if the module is not in a
library defined in your link list, JOBLIB, or STEPLIB concatenation

sequence.

If the missing module name is ELACxxx, the NLS language code
identified by the last 3 characters of the module name is not
installed on the system. This language code was specified with the
targetNLS build descriptor option when the program was

generated.

If you try to run an EGL-generated program under Rational
COBOL Runtime and cannot load the module ELARSCNT, the
system abends with an 806.

LE Runtime Messages

Only the most frequently occurring LE runtime messages are listed in this section.
If you receive other runtime messages that start with IGZ or if you need a more
complete explanation of one of the messages, refer to the debugging manual for

your release of LE.

IGZ0033S An attempt was made to pass a
parameter address above 16 megabytes

to AMODE(24) program program-name.

Explanation: An attempt was made to pass a
parameter located above the 16-megabyte storage line
to a program in AMODE(24). The called program will
not be able to address the parameter.

Programmer response: If the calling program is
compiled with the RENT option, the DATA(24) option
may be used in the calling program to make sure that
its data is located in storage accessible to an
AMODE(24) program. If the calling program is
compiled with the NORENT option, the RMODE(24)
option may be used in the calling program to make
sure that its data is located in storage accessible to an
AMODE(24) program. Verify that no linkedit, binder or
genmod overrides are responsible for this error.

System action: The program was terminated

IGZ0064S A recursive call to active program
program-name in compilation unit

compilation-unit was attempted.

Explanation: COBOL does not allow reinvocation of
an internal program which has begun execution, but
has not yet terminated. For example, if internal

188 IBM Rational COBOL Runtime Guide for zSeries

programs A and B are siblings of a containing program,
and A calls B and B calls A, this message will be
issued.

Programmer response: Examine your program to
eliminate calls to active internal programs.

System action: The program was terminated.

IGZ0066S The length of external data record
data-record in program program-name
did not match the existing length of the

record.

Explanation: While processing External data records
during program initialization, it was determined that
an External data record was previously defined in
another program in the run unit, and the length of the
record as specified in the current program was not the
same as the previously defined length.

Programmer response: Examine the current file and
ensure the External data records are specified correctly.

System action: The program was terminated.

1GZ0075S Inconsistencies were found in
EXTERNAL file file-name in program
program-name. The following file
attributes did not match those of the
established external file: attribute-1
attribute-2 attribute-3 attribute-4

attribute-5 attribute-6 attribute-7

Explanation: One or more attributes of an external file

did not match between two programs that defined it.

Programmer response: Correct the external file. For a
summary of file attributes which must match between
definitions of the same external file, see IBM COBOL
Language Reference.

System action: The program was terminated.

Common COBOL Abend Codes

Only the most frequently occurring abend codes are listed in this section. If you
receive another abend code or if you need a more complete explanation of one of
the messages, refer to the debugging manual for your release of LE.

User 4087

This is an LE abend code. If reason code is 7, the error could be

due to the region size not being large enough to run the COBOL

program.

Common IMS Runtime Messages

Only the most frequently occurring IMS runtime messages are listed in this section.
If you receive another runtime message that starts with DES or if you need a more
complete explanation of one of the messages, refer to the IMS messages and codes

manual for your release of IMS.

DFS0571 REQUESTED BLOCK NOT
AVAILABLE: blockname RC = reason

code

Explanation: The blockname is either the MOD or the
DOF name. If it is the DOF name, the first 2 bytes of
the name are the device type and features printed in
hexadecimal. Refer to the message format services
manual for your release of IMS for an interpretation of
these 2 bytes. If it is a MOD name, it will be the name
of a form group.

User response: If a DOF name was specified, review
the values you specified for the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor
options, and compare them to the IMS system
definition for the terminal that had the problem.

If a MOD name was specified, ensure that you installed
the MFS control blocks into the correct library. If you
specified the mfsUseTestLibrary=YES build descriptor
option, ensure that you used the /TEST MFS
command. If you specified mfsUseTestLibrary=NO,
ensure that your system administrator has run the IMS
online change utility to copy in the new format
definitions.

DFS064 NO SUCH TRANSACTION CODE

Explanation: This message is sent to a terminal when
the transaction code requested by the user is not
defined to IMS. An example of a situation that results
in this message is when a program does ashow
statement to transfer to a transaction that is not defined
to IMS. The form specified in the show statement is

written to the terminal, but when the user enters data,
the transferred-to transaction cannot be scheduled
because it is not defined to IMS.

User response: Either ensure the transaction code is
defined to IMS or change the show statement in the
transferring program to reference the correct IMS
transaction code.

DFS182 INVALID OR MISSING PARAMETER

Explanation: An IMS reserved word (for example,
LTERM) was used as a form name in a /FORMAT
command.

User response: If you need to use the /FORMAT
command to display this form, you need to change the
form name and generate the form group and any
programs that use this form again.

DFS5551 TRAN tttttttt ABEND S000,Uaaaa; MSG
IN PROCESS: (up to 78 bytes of data)

time stamp

Explanation: This message indicates that the
transaction running in IMS has ended abnormally.
Typical abend codes are shown below:

0778 IMS user abend, indicating that a ROLL
request was issued.

1602 Rational COBOL Runtime abend because a
rununit error occurred in a program that was
generated with the imsFastPath=YES build
descriptor option .

Chapter 24. Codes from Other Products for z/OS Systems 189

1600 Rational COBOL Runtime abend because an
unrecoverable error occurred in situations
other than rununit errors for programs
generated with imsFastPath=YES.

User response: Press the PA1 or PA2 key to display
the error form that contains the error diagnostics that
describe the error.

User response: Press the PA1 or PA2 key to display
the error form that contains error diagnostics that
describe the error. See|Chapter 18, “Diagnosing|

Problems for Rational COBOL Runtime on z/OS|

DFS2082 RESPONSE MODE TRAN

TERMINATED WITHOUT REPLY

Explanation: Rational COBOL Runtime has ended the
logical unit of work for a program that was generated
with the imsFastPath="YES" build descriptor option.

User response: Press the PA1 key to display the error
form that contains the error diagnostics that describe
the error.

DFS27661 PROCESS FAILED

Explanation: IMS issues this message if Rational
COBOL Runtime ends the run unit for a transaction
program that was generated with imsFastPath="YES"
and run in an IMS fast-path region.

sttems”| for additional information.

(none) Logged off IMS and returned to the
VTAM sign-on screen without any
warning or error message being
displayed.

Explanation: One of the following might have
occurred:

¢ The program attempted to display a form with DBCS
or mixed data on a non-DBCS terminal or printer.

¢ The values specified for the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor
options do not match the IMS system definition for
the terminal that had the problem.

User response: Correct the program or build
descriptor options, generate the program and form
group again, and then run the program again.

Common IMS Runtime Abend Codes

Only the most frequently occurring IMS abend codes are listed in this section. If
you receive another abend code or if you need a more complete explanation of one
of the abend codes, refer to the messages and codes manual for your release of

IMS.
IMS 259

A program has been compiled with the DATA(31) compile option

and is being run in a non-IMS/ESA environment. The program
should be recompiled with the DATA(24) compile option.

IMS 462

A program was scheduled in a message region, but the program

ended without successfully issuing a get unique for an input
message. This can occur if Rational COBOL Runtime detects an
error that would prevent the program from processing properly.
Examples of these errors are:

* The IMS PSB does not match the EGL PSB record definition.
* The print services program is missing.

IMS 778

A ROLL call has been issued by Rational COBOL Runtime because

of a run unit error or a catastrophic error in the IMS/VS
environment. The ROLL is issued to prevent further scheduling of
the program in error. IMS displays message DFS555I indicating
that abend 778 has occurred. The Rational COBOL Runtime error
message panel can be displayed by pressing PA1.

Based on your build descriptor options and the JCL for your
message region, additional diagnostic information might be
provided on an error diagnostic message queue, in the IMS log, or
in ELAPRINT. See [“Controlling Error Reporting in IMY

[Environments” on page 14(] for additional information.

Note: Press PA2 if PA1 does not cause the Rational COBOL
Runtime error form to display.

190 1BM Rational COBOL Runtime Guide for zSeries

IMS 1008 A program that was running as a BMP and that obtained access to
fast-path databases did not issue a SYNC or CHKP call at the end

of the job step. You can force the CHKP call to occur by:

* Using the sysLib.commit() system function in a batch-oriented
BMP

* Ensuring that the transaction-oriented BMP ends with an
endOfFile (QC status) for the file being used for input from the
IMS message queue

Access to DB2 cannot be obtained. Possible causes of this are:

¢ The terminal ID is not defined to DB2.

* The DB2 plan is not valid or access to the DB2 plan cannot be
obtained.

IMS 3042

If the program was being run as a BMP, see [Figure 23 on page 115
for sample JCL.

Common CICS Runtime Messages

Only the most frequently occurring CICS runtime messages are listed in this
section. If you receive another CICS runtime message that starts with DFH or if
you need a more complete explanation of one of the messages, refer to the CICS
messages and codes manual for your release of CICS.

DFHAC2016 date time applied Transaction tranid
cannot run because program
program-name is not available.

Explanation: The transaction tranid cannot be run
because the initial program for the transaction is not
available. This could occur because the transaction is
defined, but the program is not defined or is not in a
library in the DFHRPL concatenation.

User response: Have your system administrator check
the RDO PROGRAM entries. Be sure the program is in
a library in the DFHRPL concatenation.

DFHAC2206 time applied Transaction tranid has
failed with abend abcode. Resource
backout was successful.

Explanation: The transaction tranid has ended
abnormally with abend code abcode. abcode is either
an CICS transaction abend code or a user abend code.

User response: If the user abend code starts with
ELA, see[“CICS Environments” on page 183]If it is an
CICS abend code, see|”Common CICS Abend Codes”|
to see if it is included there. If not, refer to the CICS
messages and codes manual for your release of CICS.

Common CICS Abend Codes

Only the most frequently occurring CICS abend codes are listed in this section. If
you receive another CICS abend or if you need a more complete explanation of
one of the abend codes, refer to the CICS messages and codes manual for your

release of CICS.

Depending on your diagnostic control options, information might be available on
an error destination queue or in an CICS journal. For more information, see

[“Controlling Error Reporting in CICS” on page 140,

ADCA

An error occurred while processing a DL/I request. In addition to

looking for the information provided by CICS, look for messages
or abends from DL/I.

ADLD

A program isolation deadlock occurred and a transaction was

selected for an abend. For information on using the
dliVar.cicsRestart system variable for information on designing
restartable transactions, refer to the EGL Language Reference.

AEY9 Access to DB2 cannot be obtained. This occurs if DB2 is not

running.

Chapter 24. Codes from Other Products for z/OS Systems 191

AFCY A transaction was purged when a deadlock occurred because a file
is defined with LSRPOOLID not equal to NONE in the FCT, and
one function within a program has performed a get next against a
file and another function requested an update or add to the same
file (or its alternate index) without ending the get next. Change the
LSRPOOLID to NONE, or change the program design to end the
get next before the update or add is requested.

APCT A requested module cannot be located in the program definitions
or in the program library.

ASRA A program check occurred. Some of the reasons this can occur for
an EGL program are as follows:
* Incorrectly linked Rational COBOL Runtime modules.
If register 1 contains ELA], see the information for ELA1 in

[“CICS Environments” on page 183
¢ Data not initialized or data initialized to incorrect values.

If the error occurred as a result of a data exception, see the
explanation for "System 0C7” in[“Common System Abend Codes|
[for All Environments” on page 187

ATDD The program attempted to process a transient data queue that is
disabled. This can occur for a program file associated with a
transient data queue or for the transient data queue used for error
diagnostic information.

AXFQ The most common cause is the result of INBFMH not being
specified equal to ALL in the profile associated with the CICS
mirror program (CPMI).

Note: CICS users that receive abend codes ADLD, ADCP, AKCT, or D106 might
see four question marks in place of the CICS abend code for the resulting
Rational COBOL Runtime message. The CSMT console log contains the true
CICS abend code that was issued.

COBOL Abends under CICS

192

1009 A program has a dynamic storage requirement greater than 64KB, but was
compiled with the DATA(24) compiler option. Compile the module again
with the DATA(31) compiler option.

1029 Either a PPT entry for a program attached through a COBOL dynamic call
is not found or the module being invoked cannot be found in the CICS
region program library search string. Additional information can be
retrieved by entering transaction CEBR on the terminal where the error
occurred.

IBM Rational COBOL Runtime Guide for zSeries

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2006 193

194 1BM Rational COBOL Runtime Guide for zSeries

Appendix. Rational COBOL Runtime Messages

This section describes a series of messages that are given by Rational COBOL
Runtime.

Message Format

Each message consists of a message identifier (for example, ELA00023P) and
message text. The text is a short phrase or sentence describing the error condition.

The message identifier consists of three fields: prefix, message number, and type
code. The format of the message identifier is xxxnnnnnt, where:

XXX

nnnn

Message prefix, as follows:

ELA These runtime messages can occur when your program stops, ends
with an error, or requires special attention.

FZE These runtime messages can occur when using the installation and
print utilities FZEZREBO and FZETPRT that are provided with
Rational COBOL Runtime

PRM These messages can occur when you are using the parameter
group utility.

Message number associated with the error condition that caused the
message to be displayed.

Type code, as follows:

I Information
Indicates a minor error, such as a move from a field that is not
initialized, or provides you with general information about the
process you are working on. Processing continues

A Action
Indicates that you must take some specific action before the
process can continue (for example, a YES or NO response might be
required). Processing continues after you complete the required
action.

P Problem Determination

Indicates that a problem condition exists that requires diagnosis.
Processing ends when this type of message is issued. If the
problem determination message text includes a return code, see
Chapter 22, “Common System Error Codes for z/OS Systems,” on|
[page 167] for an explanation of the return code:

S System Action
Indicates that a system error occurred requiring you to take some
action. These messages appear in English.

The message text might contain one or more inserts. When the message is
displayed an insert is used to fill in names, constants, return codes, and so forth.
The format of the message insert is %xxyzz, where:

XX

y

© Copyright IBM Corp. 1994, 2006

Number of the insert

C, D, or X. These letters represent the following:

195

C Characters (usually a name)

D Decimal numbers (usually a length, record count, or error count)
X Hexadecimal numbers (usually a return code)
zz Length of the insert

In this manual you see messages listed like this:
ELAOOO23P Call to data-table program %01C07 was not successful

If you receive this message on your system, the insert is automatically converted.
For example, if there is a problem with table program TABLNAM, the error is
displayed on your system like this:

ELAOOO23P Call to data-table program TABLNAM was not successful

TABLNAM is the first insert of the message (%01) and is in character format (C)

and is seven characters long (7).

ELA Messages

ELA00002P IBM Rational COBOL Runtime is
required for program %01C08

Explanation: The generated COBOL program is not
compatible with the installed version of Rational
COBOL Runtime.

Rational COBOL Runtime ends the program with a
user abend.

User response: Contact the system administrator.
Rational COBOL Runtime should be installed.

ELA00003P PCB %01D03 DL/I error, function =
%02C04, status code = %03C02

Explanation: The program control logic attempted a
DL/I call to a teleprocessing PCB and received an error
status code from IMS on the call. The message specifies
the PCB that was used on the call (0 is the I/O PCB, 1
is the modifiable alternate PCB, and 2 is the express
modifiable alternate PCB). The message also specifies
the function code and the status code. For ISRT calls,
the message is accompanied by message ELA00066I,
which displays the first 255 bytes of the DL/I I/O area.

The run unit ends. If the ELASNAP data set is
allocated, Rational COBOL Runtime issues a SNAP
dump for all status codes other than Al

User response: Look up the status code in the IMS
messages and codes documentation for your system.

ELAO00005A Date entered is not valid for defined
date format %01C10

Explanation: Data entered into a form field defined
with a dateFormat property either does not meet the
requirements of the format specification, or the month
or day of the month is not valid.

196 IBM Rational COBOL Runtime Guide for zSeries

It is not necessary to enter the separator characters
shown in the message, but if they are omitted, enter
leading zeros. For example, if the date format is
MM/DD/YY, you can enter 070491.

User response: Enter the date in the format shown in
the message.

ELAO00007P File OPEN error on file %01C08, file
status = %02C08

Explanation: The specified file did not open
successfully.

The format of the file status depends on the file type.

For SEQ files, the file status is the 2-character COBOL
status code followed by six zeros.

For VSAM files, the file status is composed of the
2-character COBOL status code followed by the VSAM
return code (two characters), VSAM function code (one
character), and the VSAM feedback code (three
characters). The VSAM codes could be blank if the file
OPEN was not completed.

For VSAMRS files, the file status is composed of the
2-character ACB (access control block) return code in
hexadecimal format followed by six zeros.

The run unit ends.

User response: First see the tables of common COBOL
and VSAM status codes in the|Chapter 22, “Common]|
[System Error Codes for z/OS Systems,” on page 167 If
the codes in the message are not listed in the tables,
refer to the COBOL programming language reference
and VSAM administration guide for your system for a
definition of other file status and VSAM codes. Also
look for system error messages pertaining to the
specified DD name or DLBL name. Correct the error
and run the program again.

ELA00008P File CLOSE error on file %01C08, file
status = %02C08

Explanation: The specified file did not close
successfully, and the run unit ends.

The format of the file status depends on the file type.

For SEQ files, the file status is the 2-character COBOL
status code followed by six zeros.

For VSAM files, the file status is composed of the
2-character COBOL status code followed by the VSAM
return code (two characters), VSAM function code (one
character), and the VSAM feedback code (three
characters).

For VSAMRS files, the file status is composed of the
2-character ACB (access control block) return code in
hexadecimal format followed by six zeros.

The run unit ends.

User response: First see the table of common COBOL
and VSAM status codes in the |[Chapter 22, “Common|
[System Error Codes for z/OS Systems,” on page 167] If
the codes in the message are not listed in the table,
refer to the COBOL programming language reference
and VSAM administration guide for your system for a
definition of other file status and VSAM codes. Also
look for system error messages pertaining to the DD
name. Correct the error and run the program again.

ELAO00009P Overflow occurred because the target
item is too short

Explanation: The target of a move or arithmetic
assignment statement is not large enough to hold the
result without truncating significant digits. If the
program logic does not handle the overflow exception
that occurred, then the program ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: Have the application developer do one
of the following;:

* Increase the number of significant digits in the target
data item

e If the program specifies the property
V60ExceptionCompatibility=YES, define the
program logic to handle the overflow condition by
using sysVar.handleOverflow and
sysVar.overflowIndicator.

* If the program specifies (or defaults to) the property
V60ExceptionCompatibility=NO, define the program
logic to include a try ... onException block that can
catch overflow exceptions.

ELA00014P A replace was attempted without a
preceding get for update on %01C18

Explanation: A replace was attempted for a record
that has not been successfully read by a get forUpdate
or an open forUpdate statement. The read for update
might have been lost as the result of a commit or
rollback or as the result of a converse statement in a
segmented program.

The run unit ends.

User response: Ensure that the replace statement and
the corresponding get forUpdate or open forUpdate
correctly use the same record variable name or
resultSetID.

Also make sure that the sequence of statements is
appropriate. To step through the program, you can use
the EGL debugger or (for CICS-based programs) CEDF.

ELA00015P READ/WRITE error for file %01C08, file
status = %02C08

Explanation: An I/O operation was not successful for
the specified file. Program processing ends on any
nonzero status code if the I/O statement is not in a try
block; and ends on a hard error if the I/O statement is
in a try block when vgVar.handleHardIOErrors is set
to 0.

The format of the file status depends on the file type.

For SEQ files, the file status is the 2-character COBOL
status code followed by six zeros.

For VSAM files, the file status is composed of the
2-character COBOL status code followed by the VSAM
return code (two characters), VSAM function code (one
character), and the VSAM feedback code (three
characters).

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: First see the tables of common COBOL
and VSAM status codes in the [Chapter 22, “Common|
[System Error Codes for z/OS Systems,” on page 167]1f
the codes in the message are not listed in the table,
refer to the COBOL programming language reference
and VSAM administration guide for your system for a
definition of the other file status and VSAM codes. Also
look for system error messages pertaining to the
specified DD name. Correct the error and run the
program again.

ELA00016P %01CO08 error for file %02C08, %03C44,

file status = %04C08

Explanation: An I/O operation was not successful for
the specified file. Program processing ends on any
nonzero status code if the I/O statement is not in a try

Appendix. Rational COBOL Runtime Messages 197

block; and ends on a hard error if the I/O statement is
in a try block when vgVar.handleHardIOErrors is set
to 0.

The message identifies the VSAM operation that was
not successful, the EGL file name associated with the
record, the system resource name, and the file status.
The file status is composed of two zeros followed by
the VSAM return code (two characters), VSAM function
code (one character), and the VSAM feedback code
(three characters).

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: First see the tables of common VSAM
status codes in the [Chapter 22, “Common System Error|
[Codes for z/OS Systems,” on page 167]If the codes in
the messages are not listed in the tables, refer to the
VSAM administration guide for your system for a
definition of other VSAM codes. Also look for system
error messages pertaining to the specified system
resource. Correct the error and run the program again.

ELA00021I An error occurred in program %01C08

on statement number %02D06

Explanation: An error occurred in the specified
program on the specified statement. The actual error
that occurred is identified in the messages following
this message.

User response: Refer to a listing of the program,
correct the statement, and generate the program again.

ELA00022P Form group format module %01C08
could not be loaded

Explanation: The specified form group format module
could not be loaded. The module is a generated object
module linked as a program that contains tables that
describe the format and constant fields for text forms in
a form group. The module name is the form group
alias (or a variation to conform with length and
character restrictions) followed by the characters FM.

If the format module name uses the format ELAxxxFM,
where xxx is the language code, the definitions for the
Rational COBOL Runtime error forms could not be
loaded.

The run unit ends.

User response: Make sure that the specified program
was generated, compiled, and linked into a library
defined in the library search order.

For z/0OS CICS, the search order includes the DFHRPL
data sets, and you should verify that the program has
been defined to the system.

For IMS/VS environments, the search order includes

198 1BM Rational COBOL Runtime Guide for zSeries

the STEPLIB and JOBLIB data sets

ELA00023P Call to data-table program %01C08 was
not successful

Explanation: A dynamic COBOL call to the specified
data-table program was not successful. The run unit
ends.

User response: Make sure that the specified program
was generated, compiled, and linked into a library
defined in the library search order.

For z/0OS CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was
generated with the data="31" build descriptor option.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

If the program named in the messages is ELACxxx or
ELAYYNx (wherexxx and x are the NLS identifiers),
verify that the customization JCL in job ELAC] xxx has
been run. Also verify that the appropriate language
(indicated by xxx or x) has been installed.

ELA00024P Conversion table %01C08 could not be
loaded

Explanation: Either the specified conversion table
program could not be loaded or the program that was
loaded is not a Rational COBOL Runtime conversion
table.

The run unit ends.

User response: Verify that the correct conversion table
name was specified in the generation-time linkage
options part; that a correct conversion table has been
moved into the system variable
sysVar.callConversionTable at run time; or that a
correct conversion table has been specified when using
the sysLib.convert() system function. For more
information, see "callConversionTable" in the EGL
online help system.

If the conversion table was properly specified in the
program, make sure that the table program was
generated, compiled, and linked into a library defined
in the library search order.

For z/0OS CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was
generated with the data="31" build descriptor option.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

If the conversion table program is defined in the load
library, verify that the program is using either a
conversion table shipped with Rational COBOL
Runtime or a table created using the conversion table
format.

ELA00026P A calculation caused a maximum-value
overflow

Explanation: The maximum value is based on the
definition of the target variable, which can be up to
either 18 or 31 significant digits based on the value of
the maxNumericDigits build descriptor option.
Maximum value overflow also occurs when division by
zero occurs. This error can only occur when you set the
checkNumericOverflow build descriptor option to YES.
If the program logic does not handle the overflow
exception that occurred, then the program ends.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Correct the program logic in one of the
following ways:

* Increase the number of significant digits in the target
data item

e If the program sets the V60ExceptionCompatibility
property to yes, define the program logic to handle
the overflow condition by using
VGVar.handleOverflow and
sysVar.overflowIndicator.

* If the program sets (or defaults) the
V60ExceptionCompatibility property to NO, define
the program logic to include a try ... onException
block that can catch overflow exceptions.

ELAO00027P The data on a character-to-numeric move
is not valid

Explanation: The statement in error involves a move
from a character to a numeric data item. The character
data item contains nonnumeric data.

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Change the program to ensure that the
source operand contains valid numeric data.

ELAO00029P Transfer to %01C08 was not successful

Explanation: The transfer to another program was not
successful. Usually, the program being transferred to
could not be found.

The run unit ends.

User response: Make sure that the program was
generated, compiled, and linked into a library defined
in the library search order.

For z/0S CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was
generated with the data="31" build descriptor option.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

ELA00031P Call to %01C08 was not successful

Explanation: A dynamic call to the specified program
failed, ending the run unit.

User response: Make sure that the program was
generated, compiled, and linked into a library defined
in the library search order.

For z/0OS CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was
generated with the data="31" build descriptor option.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

ELA00032P Called program %01C08 received a
parameter list that is not valid

Explanation: A call to the specified program was not

successful for one of the following reasons:

* The calling program passed too many or too few
parameters.

* Different values are in the linkage-options part,
callLink element, parmform property for the called
and calling programs.

* The parmform value COMMDATA was specified for
the call, and the COMMAREA passed has a different
length than the length expected by the called
program.

If the called program is a remote program, a CICS
abend occurs. Because the COMMAREA is too small,
the called program cannot notify the calling program of
the error.

In all other cases, the run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Verify that the argument list in the call
statement matches the parameter list for the program
being called, and then generate the called and calling
program with the same parmform value for the
callLink element of the linkage options part.

Appendix. Rational COBOL Runtime Messages 199

ELA00033P Call to program %01C08 returned
exception code %02D05.

Explanation: An exception code was returned on a
call to the specified program, indicating that one of the
arguments passed to the program was not valid. The
run unit ended because the call was not in a try block.

User response: Place the call statement in a try block
and make sure that all the passed arguments are valid.

ELAO00038A Table edit validity error - enter again

Explanation: The data in the first highlighted field
does not meet the validator data table requirement
defined for the variable field.

User response: Enter data that conforms to the
validator data table requirement requirement, or press a
validation bypass key to bypass the validation check. In
either situation, the program continues.

ELA00034P Program %01C08 was declared as a main
program and cannot be called

Explanation: The specified program was not declared
as a called program.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Declare the program as a called
program.

ELA00035A Data type error in input - enter again

Explanation: The data in the first highlighted field is
not valid numeric data. The field was defined as
numeric.

User response: Enter only numeric data in this field,
or press a validation bypass key to bypass the
validation check. In either situation, the program
continues.

ELA00036A Input minimum length error - enter
again

Explanation: The data in the first highlighted field
does not contain enough characters to meet the
required minimum length.

User response: Enter enough characters to meet the
required minimum length, or press a validation bypass
key to bypass the validation check. In either situation,
the program continues.

ELA00037A Input not within defined range - enter
again

Explanation: The data in the first highlighted field is

not within the range of valid data defined for this item.

User response: Enter data that conforms to the
required range, or press a validation bypass key to
bypass the validation check. In either situation, the
program continues.

200 1BM Rational COBOL Runtime Guide for zSeries

ELA00039A Modulus check error on input - enter
again

Explanation: The data in the first highlighted field
does not meet the modulus check defined for the
variable field.

User response: Enter data that conforms to the
modulus check requirements, or press a validation
bypass key to bypass the validation check. In either
situation, the program continues.

ELA00040A No input received for required field -
enter again

Explanation: No data was typed in the field
designated by the cursor. The field is required.

User response: Enter data in this field, or press a
validation bypass key to bypass the validation check.
Blanks or nulls will not satisfy the data input
requirement for any type of field. In addition, zeros
will not satisfy the data input requirement for numeric
fields. The program continues.

ELA00041P Property msgTablePrefix was not
specified for a program: Message
%01C04, NLS code %02C03

Explanation: The program tried to display a message
from the message table using the
converseLib.validationFailed() system function.
However, the program does not specify a value for the
msgTablePrefix property.

The run unit ends.

User response: Do any of the following:

* Assign a valid value to the msgTablePrefix property
and generate the program again.

* Change the program to avoid using the
converseLib.validationFailed() system function and
then generate the program again.

¢ Remove the user message number from the form
field message properties and generate the program
and form group again.

ELA00042P The expected number of inserts for
message %01C08, NLS code %02C03 was
not received

Explanation: The expected number of variable inserts
for an Rational COBOL Runtime message did not
match the number received. The message text is in the
language-dependent message data table program,
ELACxxx, where xxx is the language code.

The program is generated from a DataTable part that
might have been modified and generated specifically
for your installation.

The inserts show the original error message number
that occurred and the language code being used.
Message ELA00163P shows the original error message
number that occurred and the message inserts that
would have been displayed for that message.

The run unit ends.

User response: Correct the problem identified by the
original message.

If the language-dependent message data table was
modified, correct the modified message so that the
inserts are the same as the inserts defined in the default
message data table that was shipped with Rational
COBOL Runtime.

ELA00043P %01C08, %02C03

Explanation: The Rational COBOL Runtime message
data table program ELACxxx (where xxx is the
language code) did not contain a runtime message.

The program is generated from a data-table part that
might have been modified and generated specifically
for your installation.

The inserts show the original error message number
that occurred and the language code being used.
Message ELA00163P shows the original error message
number that occurred and the message inserts that
would have been displayed for that message.

The run unit ends.

User response: Correct the problem identified by the
original message.

If the language-dependent message data table was
modified, verify that the message numbers in the
modified data table match the message numbers in the
message data table as shipped in the product. Also,
verify that the program loaded is at the same
maintenance and release level as the default message
data table shipped with Rational COBOL Runtime.

ELA00044P Message %01C08, NLS code %02C03, not
found

Explanation: The Rational COBOL Runtime message
data table program ELANCxxx (where xxx is the NLS

code) did not contain a runtime message.

The program is generated from a data-table part that
might have been modified and generated specifically
for your installation.

The inserts show the original error message number
that occurred and the NLS language code that was
being used. The message is accompanied by message
ELA00163P, which shows the original error message
number that occurred and the message inserts that
would have been displayed for that message.

The original error message that occurred determines if
(and how) the program ends and if a SNAP dump is
issued.

User response: Correct the error identified by the first
message insert.

If the message data table was modified, check that the
message numbers in the modified data table match the
message numbers in the default message data table
shipped with Rational COBOL Runtime. Also, check
that the program loaded is at the same maintenance
and release level as the default message data table
shipped with Rational COBOL Runtime.

ELA00045P Error reading message %01C08, NLS
code %02C03, status %03C08

Explanation: The user message file or database did
not contain a user-defined message for the language
associated with the language code. Message files and
databases are used only in COBOL programs generated
using CSP/370 Runtime Services Version 1 Release 1.

The format of the message ID is as follows:
* Positions 1-3 = User message file
* Positions 4-8 = Message number

The status code varies depending on the type of user

message file or database being used:

» For VSAM, status is eight characters. The first two
bytes of code are either 08 (to specify a relative
message within a record is not used) or 12 (to specify
a record was not found in the VSAM file). The
remaining six bytes of the status code are the VSAM
return code (two characters), function (one character),
and feedback code (three characters), all in decimal
format. Refer to the VSAM administration guide for
your system for a definition of the VSAM codes.

e For DB2, status is the 4-character SQL code. Refer to
the DB2 manuals for your system for a description of
the SQL code.

e For DL/I, status is the 2-character DL/I status code.
Refer to the IMS messages and codes manual for
your system for a description of the specified status
code.

User response: Make sure that the message is defined
in the program message file in one of two ways:

Appendix. Rational COBOL Runtime Messages 201

¢ Convert the message file to an EGL message data
table. Generate the program and the message data
table again using EGL COBOL generation.

* If a message database is being used, add or replace
the message in the message database using the Cross
System Product/370 Runtime Services Version 1
Release 1 message database utility.

ELA00046P Call to print services program %01C08
was not successful

Explanation: A dynamic COBOL call to the specified
print services program was not successful.

The run unit ends.

User response: Make sure that the program was
generated, compiled, and linked into a library defined
in the library search order.

For z/0OS CICS, the search order includes the DFHRPL
data sets. Verify that the program has been defined to
the system. Also ensure that the program was
generated with the data="31" build descriptor option.
In addition, verify that the customization job,
ELACJCIC has been run.

For IMS/VS, IMS BMP, or z/OS batch, the search order
includes the STEPLIB and JOBLIB data sets.

ELA00047P Message %01D04 was not found in
message table program %02C07

Explanation: A user message could not be found in
the program message data table.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

The run unit ends.

User response: Either add the message to the data
table or modify the program to use a message that is
defined in the message data table.

ELAO0050A Significant digits for field exceeded -
enter again

Explanation: The user entered data into a numeric
field that was defined with decimal places, a sign,
currency symbol, or numeric separator edits. The
number of significant digits that can be displayed
within the formatting criteria was exceeded by the
input data; the number entered is too large. The
number of significant digits cannot exceed the field
length, minus the number of decimal places, minus the
places required for formatting characters.

User response: Enter a number with fewer significant
digits.

202 IBM Rational COBOL Runtime Guide for zSeries

ELA00051P Form %01C08 was not found in form
group %02C06

Explanation: The specified form name is not in the
form group.

The run unit ends.

User response: Generate the form group and the
program again.

ELA00057P Delete attempted without preceding
update on record %01C18

Explanation: This error occurs in these cases:

¢ A delete statement was issued against a record that
was not successfully read for update

* A delete statement is associated with a specific get
statement, but a different get statement was used to
select the record.

The read for update might have been cancelled as the
result of a converse statement in a segmented program.

The run unit ends.

User response: Make sure that in the get and delete
statements, the program correctly used record names or
a resultSetID.

Also make sure that the sequence of statements is
appropriate. To step through the program, you can use
the EGL debugger or (for CICS-based programs) CEDE.

ELA00061P DL/I error, function = %01C04, status
code = %02C02

Explanation: DL/I returned an error status code in
response to the DL/I call for the current I/O statement
and either of the following occurred:

* There was no error routine specified for the I/O
statement.

* Both VGVar.handleHardIOErrors and
dliVar.handleHard DLIErrors were set to 0 (this
indicates that the program should end on abnormal
DL/I conditions), and the status code specified either
an abnormal condition, or a condition that was not
expected.

The status code in the message comes from the DL/I
PCB used for the DL/I call.

The run unit ends.

In CICS environments Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

This is either a program error or a database definition
error.

User response: Do the following:

1. Locate the specified error code. Refer to the IMS
messages and codes manual for a description of the
specified status code.

Correct the error.

3. Generate the program again.

n

ELA00062P DL/I call overlaid storage area, record
%01C18

Explanation: A DL/I call read a block of data that was
larger than the record defined to hold the data. The
storage area immediately following the record buffer
was overlaid.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: This is a program error. Define the
record so that its length matches the length of the
segment it represents and generate the program again.

ELA000631 PCB DB %01C08, segment %02C08, level

%03D02, options %04C04

Explanation: This message provides additional
diagnostic information for a database I/O error. The
PCB passed in the DL/I call contained the specified
information.

For unsuccessful DL/I1/O call, the segment name field
contains the last segment along with the path to the
requested segment that satisfied the call. When a
program is initially scheduled, the name of the
database might be put in the segment name field if no
segment is satisfied.

User response: Refer to message ELA00061P.

to display all 255 bytes. The data is displayed as
character data in the message. The message is followed
by two lines that give the hexadecimal value under
each character.

User response: Refer to message ELA00061P.

ELA00066I DL/I I/O area = %01C255

Explanation: This message provides additional
diagnostic information for a hard DL/I I/O error. The
message displays the contents of the DL/I1/O area.

The first 255 bytes are displayed. If necessary, because
of the line and data lengths, the message wraps around
to display all 255 bytes. The data is displayed as
character data in the message. The message is followed
by two lines that give the hexadecimal value under
each character.

User response: This message is always accompanied
by another message (for example, ELA00003P or
ELAO00061P) that specifies the error. See the explanation
and user response of the accompanying message.

ELA00067I DL/I SSA %01D02: %02C255

Explanation: This message provides additional
diagnostic information for a DL/I I/O error. The
message displays the contents of a segment search
argument (SSA) for the DL/I call. The first message
insert gives the number of the SSA. The second insert
gives the first 255 bytes of the SSA.

If necessary, because of the line and data lengths, the
message wraps around to display all 255 bytes. The
data is displayed as character data in the message. The
message is followed by two lines that give the
hexadecimal value under each character.

This message is repeated once for each SSA used in the
DL/T call.

User response: Refer to message ELA00061P.

ELA000641 PCB key feedback area length %01D04

Explanation: This message provides additional
diagnostic information for a database I/O error. The
PCB passed in the DL/I call contained the specified
key feedback length. This is the length of the
concatenated key of the hierarchical database path.

User response: Refer to message ELA00061P.

ELA00065I PCB key feedback area = %01C255

Explanation: This message provides additional
diagnostic information for a database I/O error. The
PCB passed in the DL/I call contained the specified
key feedback area.

The first 255 bytes are displayed. If necessary, because
of the line and data lengths, the message wraps around

ELA00068P DL/I variable segment length is not
valid, segment %01C08

Explanation: A DL/I segment I/O area is shorter than
the segment returned in a DL/I retrieval, or the
computed segment length on an add or replace
statement is not valid.

In the case of a get, get forUpdate, or get next
statement, the BYTES parameter in the DBD is greater
than the length of the record defined to EGL.

In the case of an add or replace statement, the program
has erroneously set the length of the segment. If this
error occurs for a path call, the DL/I1/O area shown
in message ELA00061I contains only segments before
the segment with the error. Because the length is in
error, the segment with the error cannot be moved to
the DL/II/O area.

Appendix. Rational COBOL Runtime Messages 203

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: If the error occurred in a retrieval,
have the database administrator correct either the DBD
or the EGL record definition, and generate the program
again.

If the error occurred on an update, correct the logic
associated with calculating the length of the segment.
Generate the program again.

ELA00069P The value of an input variable is too
large for the target SQL column

Explanation: When running in VisualAge Generator
compatibility mode, a DECIMAL or PACEF field in an
SQL record is defined as requiring an even-numbered
length for SQL purposes, but has a value that is too
large to be contained within the even-numbered length.

In the IMS/VS environment, the transaction (logical
unit of work) ends and processing continues with the
next message.

In all other environments, the run unit ends

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: Modify the program to ensure that
values that overflow the even-numbered length of the
field are detected and rectified before executing any
1/0 statement that uses the SQL record, and that uses
the field as an input host variable in its SQL statement.

This condition is not detected in programs that have
the checkNumericOverflow=YES build descriptor
option; instead the high-order digit of the value of the
field is truncated before being used in the SQL
statement.

ELA00070P %01C04 error, status code %02C02

Explanation: DL/I returned a status code other than
QC or AL in response to a CHKP (checkpoint) or ROLB
(rollback) DL /T call.

CHKP and ROLB calls are issued for the following

reasons:

¢ The program invokes the sysLib.commit() or
sysLib.rollback() system functions.

* The program ends abnormally and a PSB is active.

204 1BM Rational COBOL Runtime Guide for zSeries

* The program causes a commit to be taken at a
converse statement, when reading an inputForm, or
because of the synchOnTrxTransfer=YES build
descriptor option.

The status code in the message is taken from the I/O
PCB used with the DL/I call.

The run unit ends.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: Make a note of the message and notify
the system programmer. On z/OS systems, refer to the
IMS messages and codes manual for a description of
the status code.

ELA00072P %01C18, set record position not
supported

Explanation: The set position indicator was on for a
DL/I segment record when a get next statement with a
user-modified SSA list was used with that record. The
set position indicator is not supported for DL/T calls
with modified SSA lists.

The run unit ends.

User response: Modify the program logic so that it
does not set the set position indicator for a segment
with a modified DL/I call.

ELA00073P SQL error, command = %01C08, SQL
code = %02D04

Explanation: The SQL database manager returned an

error code for an SQL I/O statement. Program

processing ends following an SQL request whenever

the SQLCODE in the SQL communications area

(SQLCA) is not 0, and either of the following is true:

¢ The I/O statement is not in a try block.

¢ The SQLCODE indicated a hard error and the system
variable vgVar.handleHardIOErrors was set to 0.

The message is followed by message ELA000741 which
displays the substitution variables associated with the
SQLCODE. (Those substitution variables are also
available to the program by way of the system variable
vgVar.sqlerrmc .)

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Determine the cause of the problem
from the SQL code and the SQL error information.

Either correct the program or the database definition.
Refer to the appropriate database manager messages
and codes manual for information on the SQL code and
SQL error information.

ELA00074I SQL error message: %01C70

Explanation: This message accompanies message
ELAQ00073P when an SQL error occurs. It displays the
relational database manager error information returned
in the SQLCA field SQLERRM and is repeated as many
times as necessary to display the complete description.

User response: Use the information from this message
and ELAQ0073P to correct the error.

ELA00076P Invalid data is used in a
character-to-hexadecimal assignment or
comparison

Explanation: The current statement involves either a
move from a character data item to a hexadecimal data
item, or a comparison between a character data item
and a hexadecimal data item. The characters in the
character data item all must occur in the following set
for the move or compare to complete successfully:

abcdefABCDEFO0123456789

One or more of the characters in the character data
item is not in this set. This condition causes a program
error.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Change the program to ensure that the
character data item contains valid data when the
character-to-hexadecimal move or compare operation
occurs. In text-form fields, you can use the isHexDigit
validation property to ensure that user input contains
only valid characters.

ELAO00080A Hexadecimal data is not valid

Explanation: The data in the variable field identified
by the cursor must be in hexadecimal format. One or
more of the characters you entered does not occur in

the following set:

abcdefABCDEFO0123456789

User response: Enter only hexadecimal characters in
the variable field. The characters are left-justified and

padded with the character zero. Embedded blanks are
not allowed.

ELA00086P %01C18 - No active open or get for
update is in effect

Explanation: One of these cases applies:

* A get next statement cannot run because a related
open statement did not run previously in the same
program; or

* A replace or delete statement cannot run because a
related open, get for update, or get next for update
did not run previously in the same program.

All rows selected for retrieval or update are released
when a called program returns to the calling program.

The run unit ends.

User response: Make sure that in the second
statement (get next, replace, or delete), the program
correctly used record names or resultSetID to match the
first statement (open or get).

Also make sure that the sequence of statements is
appropriate. To step through the program, you can use
the EGL debugger or (for CICS-based programs) CEDE.

ELA00093I An error occurred in program %01CO08,

function %02C18

Explanation: An error occurred in the specified
function for the specified program. Other information
about the error is given in the messages that follow this
message.

If a function is not active, the second insert contains the
name of a section in the generated initialization or
ending logic of the program.

User response: Refer to the error messages following
this message to determine the cause of the error.

ELA00096P A data operand of type MBCHAR is not
valid

Explanation: An operand in a move or assignment
statement contains mixed double-byte and single-byte
data that is not valid.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Verify that the data in MBCHAR
variables is valid before using the variable in a move or
assignment statement.

Appendix. Rational COBOL Runtime Messages 205

ELAO00105I Error occurred at terminal %01C08, date

%02C08, time %03C08, user %04C08

Explanation: An error occurred at the specified logical
terminal on the specified date and time. This message
precedes any error diagnostic information routed to an
alternate error destination.

For a program running in z/OS batch environment, the
first insert is ******** which indicates that the terminal
identifier is not known.

For a batch program running in the IMS BMP or
IMS/VS environments, the first variable insert is
weoeet if the input message queue has not yet been
accessed, indicating that the terminal identifier is not
known.

For the IMS BMP or z/0OS batch environments, the last
insert (user) is the job name from the JOB statement in
the JCL used to run the program.

For z/0OS CICS and IMS/VS environments, the last
insert is only provided if sign-on security is active on
or provided in the system.

User response: Examine all error messages that follow
this message and precede the next occurrence of this
message. Use the information from these messages to
diagnose and correct the error.

ELA00106P Program %01C08 PSB does not match
Enterprise Generation Language PSB
definition

Explanation: The PCBs passed to the program at
program initialization time did not match the EGL PSB
defined for the program. The number of PCBs passed
was less than the number of PCBs defined in the EGL
PSB definition.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, the Rational COBOL
Runtime issues a SNAP dump if the ELASNAP data set
is allocated.

User response: Either correct the EGL PSB definition
and generate the program again, or correct the IMS PSB
and generate it again.

ELA00109P Input form must be form %01C08 rather
than form %02C08, for program %03C08

Explanation: The form received by the program is not
the form specified as the value of the inputForm
program property . This error occurs when the program
starts.

For the CICS environment, when another program
transfers to this program using the show statement, the

206 IBM Rational COBOL Runtime Guide for zSeries

transferring program must specify the correct form
name on the show statement.

For the IMS/VS environment, the initial message
processed for the program must be the message input
descriptor (MID) for the first identified form. Instead,
the second identified form was received. Either another
program transferred to this program with the wrong
form, or the user did not use the /FORMAT command
to start the program.

The run unit ends.

User response: If the error occurred when the
program was started in the IMS environment, start the
program using the /FORMAT command. Otherwise,
ensure that the transferring program specifies the
correct form name on the show statement and that the
receiving program specifies the correct value for the
inputForm property.

ELAO00110P Shared data table %01C07 cannot be
updated

Explanation: The program modifies a data table that
was generated as a shared table. Shared data tables
cannot be updated.

The run unit ends.

User response: Either generate the data table as
non-shared or change the program to avoid modifying
the data table.

ELA00111P Length of input form %01C08 is not
valid

Explanation: The length of an input form received by
a program is not the length defined for the form in the
program.

The run unit ends.

User response: Use the same form definition when
generating both the program that receives the input
form and the program that issues the show statement.

ELA00114P A transfer to called program %01C08 is
not allowed

Explanation: A program cannot transfer to a called
program.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Replace the transfer to program
statement with a call statement.

ELA00115P Use of a transfer statement is invalid
because the receiving program (%01C08)
has an input form

Explanation: Only a show statement can transfer to a
program that requires an input form.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues

a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Do either of these actions:

e Use a show statement to invoke the receiving
program indirectly

* Remove the value in the inputForm property of the
receiving program. The program can converse the
form after receiving control.

ELA00118P Missing PSB for program %01C08

Explanation: An EGL PSB was specified for the
named program during definition. However, the
program ran as a z/OS batch job without specifying
the PSB parameter. This can happen if you do not use
the sample JCL created by EGL COBOL generation.

The run unit ends.

User response: If the program contains DL/I1/O or
other DL/I functions, change the runtime JCL to run
DL/I programs. If the program does not use DL/I,
remove the PSB name from the program definition.

ELA00119P Programs %01C07 and %02C07 are not
compatible

Explanation: A program started by a transfer to
program or call statement is not compatible with the
initial program in the transaction or job for one of the
following reasons:

* The program was generated for a different
environment.

* The program is a main Text UI program with a
different processing mode than the initial program
(IMS/VS only).

* The program is a main Text UI program, and the
initial program is a main basic program (IMS/VS
only).

¢ The programs are both main Text UI programs, but
the spaSize, spaADF, or spaStatusBytePosition
build descriptor options specified at generation are
different (IMS/VS only).

The run unit ends.

User response: Change one or both programs to

conform to the restrictions for a transfer to program or
call statement.

ELA00120P sysLib.startTransaction not successful,
logical LTERM = %01C08, status code =
%02C02

Explanation: Common IMS status codes are as
follows:

QH Unknown output destination

Al Unknown output destination

Both status codes indicate that the 8-character logical
terminal ID was not defined to the IMS system as
either a terminal or transaction.

The run unit ends.

User response: Do as follows:

1. Ensure that the transaction code field of the record
specified in sysLib.startTransaction() is defined to
the IMS system.

2. Review the program logic ensure that the
transaction code field is set correctly.

3. Refer to the IMS messages and codes manual for
your system for an explanation of status codes other
than the ones listed above.

ELAO00121P sysLib.audit was not successful, logical
LTERM = %01C08, status code=%02C04

Explanation: The status code is the 2-character status
from the I/O PCB.

The run unit ends.

User response: Refer to the IMS messages and codes
manual for your system.

ELA00122P PCB for dliLib.AIBTDLI,
dliLib.EGLTDLI, or VGLib.VGTDLI call
not available

Explanation: The meaning varies depending on the
system function as follows:

* If the system function is dliLib.AIBTDLI(), the EGL
PCB name is not associated with any PCB in the PSB
being used by the program.

* If the system function is dliLib.EGLTDLI(), the EGL
PCB name is associated with a PCB number that
either exceeds the number of PCBs in the PSB being
used by the program or references a PCB that was
not passed to the program in the called parameter
list.

* If the system function is VGLib.VGTDLI(), the EGL
PCB number either exceeds the number of PCBs in
the PSB being used by the program or references a
PCB that was not passed to the program in the called
parameter list.

Appendix. Rational COBOL Runtime Messages 207

The error can also occur in the CICS environment if the
EGL PCB refers to the I/O PCB, a TP PCB, or a GSAM
PCB, none of which are available in CICS.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Either modify the system function to
reference a valid PCB, or modify the PSB or called
parameter list definition to include the referenced PCB

ELA00123P Basic checkpoint used in
transaction-oriented BMP

Explanation: A program invoked the sysLib.commit()
system function while processing as a
transaction-oriented IMS BMP. The sysLib.commit()
system function is implemented as a basic checkpoint
(CHKP) function. In the transaction-oriented IMS BMP,
this resulted in a read of the message queue that
overlaid program storage. The updates to the database
have been committed.

This error can only occur if the program uses the
dliLib.AIBTDLI(), dliLib.EGLTDLI(), or
VGLib.VGTDLI() system functions to read the
message queue. The sysLib.commit() system function is
ignored if the program uses the get next statement to
read the message queue.

The run unit ends.

Rational COBOL Runtime issues a SNAP dump if the
ELASNAP data set is allocated.

User response: Do not run the program as a
transaction-oriented IMS BMP. Alternatively, either
remove the use of the sysLib.commit() system function
or change the dliLib.AIBTDLI(), dliLib.EGLTDLI(), or
VGLib.VGTDLI() system function that reads the
message queue to a get next statement for a serial
record and use the resource association to associate the
serial record with the message queue.

ELA00125P Error number %01D04 is not valid

Explanation: The error handler was called with an
error number that it did not recognize. This is a
product error.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime

208 IBM Rational COBOL Runtime Guide for zSeries

issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Ensure that the generated COBOL

program has not been modified by generating the

program again. Afterwards, run the program again. If

the problem persists, do as follows:

1. Record the message number

2. Obtain the dump

3. Record the scenario under which this message
occurs

4. Obtain the COBOL source for the problem program

5. Use your electronic link with IBM Service if one is
available, or contact the IBM Support Center

ELA00127P A requested function is not supported
for form %01CO08, form group %02C06

Explanation: A program requested a form function
that is not supported for the specified form and form
group. The form group was modified between the time
the form group was generated and the time the
program was generated. Some functions that were
included for the form or form group when the program
was generated were not specified for the form group
when the form group was generated. For example, a
helpForm or msgField might have been specified for
the form at the time the program was generated, but
were not present when the form group was generated.

The run unit ends.

User response: Check the form properties and the
program, then generate the program again with the
genFormGroup build descriptor option set to YES.

ELA00128P Incompatible attributes for file =
%01C08

Explanation: A program is attempting to use a GSAM
file that is already opened for another program. The file
characteristics (record organization, record length, fixed
or variable length records, or key specification) are
defined differently for the two programs and the
definitions are not compatible.

The run unit ends.

User response: Define the file characteristics to be the
same in both programs or use a different file name for
one of the programs.

ELA00129I Form %01C08 was received
Explanation: Related messages give further details.

User response: Refer to the related error messages.

ELA00130P GSAM error, file = %01C08, function =
%02C04, status code = %03C02

Explanation: An I/O error occurred on an add, get
next, or close statement for a file associated with a

GSAM database. Program processing ends on a hard
status code if vgVarhandleHardIOErrors is set to 0, or
on any error status code if there is no try block
surrounding the I/O statement.

This message can also occur on an implicit OPEN or
CLSE call to the GSAM database. An implicit OPEN or
CLSE call occurs as a result of an EGL add or get next
statement. Program processing ends on a hard status
code if vgVar.handleHardIOErrors is set to 0, or on any
error status code if there is no try block for the add or
get next statement that caused the implicit OPEN or
CLSE call.

An Al status code for an implicit OPEN might be
caused by specifying a file name during EGL resource
association that is different from the DD name specified
in the GSAM DBD.

For an add, message ELA00066] accompanies this
message and provides the DL/I I/O area that was used
for the call.

The run unit ends. If ELASNAP is allocated, the
Rational COBOL Runtime issues a SNAP dump.

User response: Determine the cause of the I/O error
from the DL/I status code and either correct the
program or the database definition. Refer to the IMS
messages and codes manual for your system for an
explanation of the DL/I status code.

ELA00131P MSGQ error, file = %01C08, function =
%02C04, status code = %03C02

Explanation: An error occurred on a get next or add
statement for a file or a print statement for a print form
when the file or printer is associated with an IMS
message queue (I/O or TP PCB). Program processing
ends on a hard status code if
VGVar.handleHardIOErrors is set to 0, or on any error
status code if there is no try block surrounding the I/O
statement.

Common status codes are:

QH Unknown output destination (add, print, or

converse)

Al Unknown output destination (add, print, or
converse)

A6 Output segment limit exceeded (add, print, or
converse)

FD Deadlock occurred (get next).

For an add, print, or converse, the listed status codes
specify that the 8-character system resource name
associated with the file or printer at generation or in
record.resourceAssociation or
converseVar.printerAssociation was not defined to the
IMS system as either a terminal or a transaction.

For an add, print, or converse statement, message
ELA00066I accompanies this message and shows the
DL/I 1/0O area that was used for the call.

The run unit ends. If ELASNAP is allocated, the
Rational COBOL Runtime issues a SNAP dump.

User response: If the output destination is not valid,
ensure that it is defined to the IMS system. Also review
the program logic to ensure that
record.resourceAssociation or
converseVar.printerAssociation, if used, are set
correctly. For an explanation of status codes other than
the ones listed above, refer to the IMS messages and
codes manual for your system.

ELAO00132P Variable length %01D02 is not valid for
record %02C18

Explanation: The variable length record being written
to a GSAM file or a message queue has a length that is
greater than the maximum length defined for the
record structure. Either the record length item contains
a value greater than the maximum record length or the
number of elements item contains a value that is
greater than the maximum number of occurrences
specified.

The first message insert provides the length field that
was being used. The length is the total length being
written as follows:

* For a GSAM file, the length includes the 2-byte
length field itself,

* For a message queue, the length includes the 12-byte
header (length, ZZ field, transaction code) itself.

The second message insert provides the name of a
serial record being routed to a GSAM file or a message
queue.

The run unit ends.

Rational COBOL Runtime issues a SNAP dump if the
ELASNAP data set is allocated.

User response: Modify the program to move a valid
value to the record length item or to the number of
elements item.

ELA00134P 1/O PCB conflict between programs
%01C08 and %02C08

Explanation: A program invoked using the call or
transfer to program statement accesses the I/O PCB as
a serial file. The initial program in the transaction is a
main Text Ul program and the current program
accesses the I/O PCB. The control logic for a main Text
UI program cannot operate correctly when a program
that it invokes using the call or transfer to program
statements also accesses the 1/O PCB.

The run unit ends.

Appendix. Rational COBOL Runtime Messages 209

User response: Modify the called or transferred-to
program so it does not access the I/O PCB.
Alternatively, call or transfer to the program from a
main basic program.

ELAO00135P The program is not expecting an input
form

Explanation: Another program issued a show
statement that specified a form, but the receiving
program does not specify the inputForm property.

The run unit ends.

User response: Either change the invoking program to
avoid sending a form or change the receiving program
to specify an input form.

ELA00136P DL/I error occurred in work database
operation

Explanation: An error occurred during use of the
work database when it was implemented using DL/I.
This message is accompanied by additional DL/I
diagnostic messages, including ELA00061P, that provide
additional information about the error. Message
ELAO00061P includes the DL/I function and status code.
Refer to the IMS messages and codes manual for your
system for a description of the status code.

The run unit ends.

If ELASNAP is allocated, the Rational COBOL Runtime
issues a SNAP dump.

User response: This is a database definition error or
an error in the definition of the work database PCB in
your IMS PSB. Record this information and any other
diagnostic messages, and notify the system
administrator.

ELA00137P SQL error occurred in work database
operation

Explanation: An error occurred during use of the
work database when it was implemented using SQL.
This message is accompanied by additional SQL
diagnostic messages, including ELA00073P, that provide
additional information about the error.

The run unit ends.

If ELASNAP is allocated, the Rational COBOL Runtime
issues a SNAP dump.

User response: Determine the cause of the problem
from the SQL code and the SQL error information in
related message ELA000741, and correct the database
definition.

210 IBM Rational COBOL Runtime Guide for zSeries

ELAO00138P %01C08 was replaced in the middle of a
conversation

Explanation: The program was running in segmented
mode and ran a converse statement. However, the
program was replaced in the load library during user
think time (the time between writing the form to the
terminal and receiving the user’s input).

The program conversation with the user started with
the original version of the program and cannot be
resumed.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

User response: Run the program again.

ELA00139P MFS map program %01C06 and MFS
map %02C08 have different versions

Explanation: An MFS form services program
attempted to process a message input descriptor for an
MFS form that was generated at a different time than
the MFS form services program. Both the MFS form
services program and the form it works with must be
built in the same generation step.

This is probably a problem with the installation of

either the program or the MFS form after generation of

a form group. One of the following might have

occurred:

¢ The MFS form services program might have been
compiled and linked without installing the MFS
forms, or vice versa.

¢ The MFS form might have been installed in an MFS
test library, but you did not enter an IMS /TEST
MFS command prior to starting the transaction.

¢ The MFS form might have been installed in the MFS
production library, and you entered a /TEST MFS
command prior to starting the transaction.

¢ The MFS form might have been used in a show
statement to transfer from another program. The
transfer-from program used a different form group,
but the form name on the show statement is the
same as the inputForm name for the transfer-to
program.

In the IMS/VS environment, the transaction (logical
unit of work) ends and processing continues with the
next message. In all other environments, the run unit
ends.

User response: Ensure that the same version of the
MFS form services program and the MFS control blocks
are installed in the correct libraries. If the show
statement and inputForm property are involved, ensure
that the transfer-from and transfer-to programs use the
same form group.

ELA00140P Segmentation storage size discrepancy
for %01C08

Explanation: The size of the segmentation storage
record is not valid for the specified program.

Possible causes for the error include:

¢ The program is replaced in the load library in the
middle of a program conversation with the user

* The program issues a show statement, but the
receiving program expects an input form that has
different characteristics

* The program is segmented and issues a converse
statement when sysVar.transactionID contains a
transaction code, but that transaction code is
associated with a program that has no relationship to
the issuing program. If the sysVar.transactionID is
used to switch transaction codes, the new transaction
must start either the same program that was started
by the old transaction or the program that issued the
converse statement.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Try the transaction again. If the
program works correctly, the error was caused by a
re-link in the middle of the conversation. If the error
still occurs, determine why there is a mismatch and
correct the situation that caused the error.

ELA00141P Data table %01C08 cannot be modified.
Delete %02D06 bytes.

Explanation: The program’s attempt to modify a
shared data table would cause an increase in data-table
size beyond the CICS limit, which is 65535 bytes.

The run unit ends.

User response: Either change the logic of the program
so that the data table is not modified or decrease the
size of the data-table content by the specified number
of bytes.

ELA00142P Form %01CO08 in group %02C06 not
supported on this device

Explanation: A form has been sent to a device using
IMS Message Format Services, but the device type does
not correspond to the list of screenSizes specified for
the form part or the combination of the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor
options that match the specified screen sizes

* A printer map was sent to a destination that is
defined as a terminal in the IMS System Generation.
The destination is the system resource name
specified for EZEPRINT at generation or an override
value loaded into the EZEDESTP special function
word at run time. The message appears at the
terminal where the printer map was directed, not at
the terminal that originated the transaction. Program
processing continues.

* A text form is defined in a form group that contains
multiple forms with different values for the
screenSizes property. The screen size to which the
form was directed was not included in the list of
screenSizes or the combination of the mfsDevice,
mfsExtendedAttr, and mfsIgnore build descriptor
options that match the specified screen sizes. The
message appears at the terminal that originated the
transaction as the result of a converse or show
statement. The program conversation with the user
at this terminal ends because there is no way for the
user to enter data. The program continues processing
with the next message on the message queue.

MFS does not notify the program that a problem has
occurred. Therefore, message ELA00142P is built into
the MFS source to provide a method of notifying you
when an error occurs. A SNAP dump is not issued.

User response: If the error occurred for a print form,
review the resource association information specified
during generation, the program logic used to set the
value of the converseVar.printerAssociation system
variable and the MFS build descriptor options
(mfsDevice, mfsExtendedAttr, and mfsIgnore) to
determine the appropriate corrections to make.
Depending on the corrections required, generate either
the program or form group again. In addition, if the
print form was sent to a terminal device, it might be
necessary for the system administrator to purge the
messages pending for the terminal using the IMS
/DEQ command.

If the error occurred for a text form, review the
screenSizes property specified for this form and the
MFS build descriptor options (mfsDevice,
mfsExtendedAttr, and mfsIgnore) to determine the
appropriate corrections to make. Generate the map
group again.

If the program using the text form is a
nonconversational program (spaSize="0" build
descriptor option), the user only needs to clear the
screen and type another transaction code to resume
work.

If the program that used the terminal map is a
conversational program (spaSize build descriptor
option greater than 0), the user must clear the screen,
type /EXIT to end the conversation and then type
another transaction code to resume work.

Appendix. Rational COBOL Runtime Messages 211

ELA00143P Data table %01C07 is not a message
table

Explanation: A message data table was specified for
the program. The data table specified is not a message
table.

The run unit ends.

User response: Either define the data table as a
message table and generate the data table again, or
correct the message data table name specified for the
program and generate the program again.

ELA00144P Segmentation storage error

Explanation: Segmentation storage has an internal
error mapping memory.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: This is an internal system error.
Contact the system administrator for assistance.

ELA00145A Form name required - enter /FOR
%01C060 form-name

Explanation: The form group has more than one form,
but a valid form name was not entered when the IMS
/FOR command was used to display the form.

User response: Enter the /FOR command again, using
the following format:

/FOR formGroupO formname

ELA00146P Segmentation status error

Explanation: The status byte for segmentation storage
management is lost and the program has no way to
recover.

This error occurs when a PA key is pressed prior to
pressing the ENTER key or a PF key for an IMS
conversational transaction.

If the program was generated with a spaSize build
descriptor option value greater than 0 and without
specifying the spaStatusBytePosition build descriptor
option, then there was no recovery feature generated
into the program.

If the program was generated with a spaSize build
descriptor option greater than 0 and also specified the
spaStatusBytePosition build descriptor option, then the
recovery feature was generated into the program, but
was bypassed. A bypass of the recovery feature occurs
when a deferred message switch comes from a

212 IBM Rational COBOL Runtime Guide for zSeries

non-EGL program or an EGL program that was not
generated with the same values for the spaSize,
spaADF, and spaStatusBytePosition build descriptor
options.

In the IMS/VS environment, the transaction (logical
unit of work) ends and processing continues with the
next message.

User response: Restart the transaction sequence and
avoid using PA keys while on an EGL generated screen.

Consider generating the EGL programs with a
combination of spaSize, spaADF, and
spaStatusBytePosition build descriptor options that
will allow recovery from pressing a PA key.

ELA00147A Key sequence is not valid. Last screen
will display - enter the data again

Explanation: A PA key was pressed prior to pressing
the ENTER key or a PF key. IMS has reserved the use
of the PA keys. All modifications on the previous screen
are lost.

User response: Enter the data again and avoid use of
PA keys while on an EGL generated screen.

ELA00149I %01C07 command ignored during

message database load

Explanation: The PSB for the message database
specifies that the database is being initially loaded.
Only ADD commands are supported during initial load
of a DL/I message database.

User response: Run the message utility again,
specifying the PSB for the database.

ELA00151P %01C07 of message record to/from
message database failed

Explanation: The message utility program
encountered an error inserting or deleting a message in
the message database. This message is accompanied by
either the DL/I or SQL diagnostic messages describing
the error.

If an ELASNAP DD statement is specified in the JCL,
Rational COBOL Runtime issues a snap dump. The run
unit ends.

User response: Review the diagnostic messages. Verify
that the database has been successfully defined by
checking either the DL/I or the DB2 message database
create job (ELAMSJL2) messages. Correct the problem
and run the job again.

ELA00152I Message file %01C03 has been added

Explanation: The indicated user message file has been
successfully added to the message database.

User response: Test the programs that use this user
message file.

ELAO00153P %01CO08 failed on file %02C08

Explanation: While running the message utility, an
attempt was made to access (open, close, read, or write)
the indicated file. The access failed and the message
utility ended. The first message insert indicates the type
of access that failed. The most common errors are a
missing DD statement for the file or DCB parameters
that are not correct.

User response: Refer to the job listing for system error
messages pertaining to the indicated DD name. Correct
the error and run the job again, starting with the
command that caused the error.

ELA001541 Message file %01C03 has been replaced

Explanation: The indicated user message file has been
successfully replaced in the message database.

User response: Test the programs that use this user
message file.

ELA001551 Message file %01C03 has been deleted

Explanation: The indicated user message file has been
successfully deleted from the message database.

User response: Change the program using this user
message file to use another message file and generate
the program again.

ELA001561 Replace on non-existent message file

%01C03, file was added

Explanation: A REPLACE command was issued for
the indicated message file, but the file did not exist in
the message database. The file was added instead.

User response: None, provided the file was added to
the correct message database.

ELA00157P %01C08 failed on file %02C08, file
status = %03C06

Explanation: While running of the message utility, an
attempt was made to access (open, close, read, or write)
the indicated VSAM file. The file identifies the DD
name. The file status consists of the VSAM return code
(2 characters), function (1 character), and feedback code
(3 characters). The access failed and the message utility
terminated. The first message insert indicates that type
of access that failed.

User response: Refer to the VSAM administration
guide for your system for a definition of the status
codes. Also look at the job listing for system error
messages pertaining to the indicated DD name. Correct
the error and run the job again, starting with the
command that caused the error.

ELA00158P Syntax error on command

Explanation: A command being processed by the
message utility did not follow the correct syntax. The
message utility ends.

User response: Correct the command and run the job
again, starting with the command that had the incorrect
syntax.

ELA00159P Message file %01C03 already exists in
the message database

Explanation: An attempt to add a user message file
failed because the message file already existed in the
message database for the language specified in the
current message utility command. The return code is
set to 08.

User response: Use the REPLACE command to
update the message file in the message database.

ELA00160P Message file %01C03 does not exist in
the message database

Explanation: An attempt to remove or list a user
message file failed because the message file does not
exist in the message database for the language specified
in the current message utility command. The return
code is set to 08. If the insert is an asterisk, you
attempted to list all messages in an empty message
database.

User response: Correct the message file ID in the
command and run the job again.

ELA00162P Message I/O error, type %01C04, file
%02C08, code %03C08

Explanation: An error occurred when a program
generated using Cross System Product/370 Runtime
Services Version 1 Release 1 attempted to open or close
a user message file. The type variable insert specifies
VSAM as the message file type. The file insert specifies
the DD name. The first two bytes of the code insert are
either 08 (to specify an OPEN) or 16 (to specify a
CLOSE). The next two bytes are the ACB (Access
control block) return code in hexadecimal format. The
remaining bytes in the code insert are zero.

The run unit ends.

User response: Have the administrator do one of the
following:

* Determine the cause of the problem from the VSAM
error code. First, see [Chapter 22, “Common System|
[Error Codes for z/OS Systems,” on page 167|for the
table of common VSAM codes. If the codes are not
listed in the table, refer to the VSAM administration
guide for your system for a definition of other
VSAM codes. Also verify that the user message file is
allocated correctly.

Appendix. Rational COBOL Runtime Messages 213

¢ Convert the message file to a message table and
generate the program again under EGL, VisualAge
Generator, or CSP/370AD Version 4 Release 1.

ELA00163P %01C08, %02C60

Explanation: This message is used when a Rational
COBOL Runtime message cannot be found in the
language-dependent message data table program
ELACxxx, where xxx is the language code.

The first variable insert in this message is the error
message number for the error that actually occurred.
The second insert in this message contains one of the
message inserts that is used by the error that actually
occurred. This message is repeated as many times as
necessary to report all inserts. The inserts are reported
in order by their number: %01, %02, and so on.

User response: See the message with the
corresponding message number in this manual. Take
the action appropriate for that message. Also, contact
the system administrator to determine why the
message could not be found in the Rational COBOL
Runtime language-dependent message data table
program.

ELA00164P %01CO08, %02C04, %03C02, %04X08

Explanation: The error handler was not successful in

using a DL/I call to write diagnostic information about

another error to normal destinations for error

information. The variable inserts contain the following

information:

* Destination from the terminal identifier field of the
PCB used in the call.

The destination can be the error destination specified
at program generation, the user terminal ID, or the
IMS log.

* DL/I function

* DL/I status code

e PCB Address

Rational COBOL Runtime ends the program with a
user abend.

User response: For information about locating the
diagnostic messages in the dump, see[Chapter 19)
[‘Finding Information in Dumps,” on page 151} These
messages relate to the original error that ended the
program. Also verify that the errorDestination value

specified in your build descriptor options is included in
the IMS system generation.

ELA00166P The recursion stack exceeds the
maximum size allowed

Explanation: The stack that contains information to
support recursion or segmentation has become too
large.

The run unit ends.

214 IBM Rational COBOL Runtime Guide for zSeries

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Check for an infinite loop that is
causing a large number of recursions. Either limit the
number of recursions, or reduce the number of
functions in the program.

ELA00167I The diagnostic message queue is empty

Explanation: The diagnostic print utility for IMS
ended without printing any diagnostic messages
because the queue was empty.

User response: None required.

ELA00168P %01C03

Explanation: The NLS language code in the file
allocated to ELAMSG as shown in the insert is not
valid. The Rational COBOL Runtime utility ends
because the language code for messages and report
headings cannot be determined.

User response: Correct the JCL so that the ELAMSG
DD statement references a sequential file or in-stream
data that contains a valid NLS code in columns 1
through 3 of the first record. See |“Installation andl
|[Language-Dependent Options for z/OS” on page 18|for
a list of the valid NLS codes.

ELA00169I Work database purged of %01D08
records older than day %02C06, time

%03C06

Explanation: The utility that purges obsolete records
from the work database has completed normally.

User response: None required.

ELA00170P Input is not valid

Explanation: Either the date or the time provided to
the utility that purges obsolete records from the work
database was nonnumeric or was not valid.

The run unit ends.

User response: Ensure that the date is in Julian format
(YYDDD - two positions for the year and three
positions for the day of the year). Ensure that the time
is in HHMMSS format (two positions for the hour, two
positions for the minutes, and two positions for the
seconds). The date and time specified must be at least
24 hours before the time that the purge program is run.

ELA00172I CICS error, system identifier %01C08

Explanation: An error occurred on a CICS function to
be performed on a remote system. The message
displays the CICS identifier for the remote system.

This message is always issued along with other
messages that identify the function being performed
and the CICS error return information.

User response: None required.

ELA00173P An error occurred in remote program
%01C08, date %02C08, time %03C08

Explanation: An error occurred in a remote program
that caused the remote program to stop running.
Diagnostic messages might have been logged at the
remote location giving information about the error. The
date and time stamp on this message can be used to
associate the messages logged at the remote system
with this error message.

The run unit ends.

User response: Report the error to the system
administrator.

ELA00174P %01CO08 cannot be used in called
programs on a remote system

Explanation: ThesysLib.commit() and
sysLib.rollback() system functions cannot be used in a
remote called basic program or in a program called by
a remote called basic program.

The run unit ends.

User response: Move the sysLib.commit() and
sysLib.rollback() system functions to the program that
called the remote program.

ELAO00179P An error occurred starting transaction
%01C08

Explanation: IMS or CICS indicates that an error
occurred when a program attempted to start the
specified transaction. A message following this message
gives the IMS or CICS error codes.

The run unit ends.

User response: Determine the cause of the error from
the following message and correct the error.

ELAO00180P Error recovery PCBs not passed to
program

Explanation: The program specifies calllnterface =
DLICallInterfaceKind.CBLTDLI and was called by a
non-EGL program. Two required PCBs (the I/O PCB
and the alternate express PCB) were not passed to the
program. The PCBs are required for issuing rollback
and commit functions, and reporting error conditions.

The error results in an abend with a dump because the
PCBs for reporting and recovering from the error are
not available.

The run unit ends.

User response: Modify the program to pass the I/O
PCB and the alternate express PCB to the program
using one of the following techniques:

* Specify the PCB name as a program parameter and
set the pcbParms program property.

* Specify psbData as a program parameter and set the
psbParm program property.

ELA00181P I/O PCB not passed to program %01C08

Explanation: The program specifies callInterface =
DLICallInterfaceKind.CBLTDLI and was called by a
non-EGL program. The I/O PCB was not passed to the
program. This PCB is required for issuing rollback and
commit functions and for reporting error conditions

The run unit ends.

User response: Modify the calling program to pass the
I/0 PCB to the EGL program. Modify the EGL
program to expect the I/O PCB in the parameter list
using one of the following techniques:

* Specify the PCB name as a program parameter and
set the pcbParms program property.

* Specify psbData as a program parameter and set the
psbParm program property.

ELA00183P SYNCPOINT not allowed with PCB
parameters

Explanation: The program invoked the
sysLib.commit() or sysLib.rollback() system functions.
Each of these functions results in an EXEC CICS
SYNCPOINT command, which ends the currently
scheduled PSB. Either this program or a program that
called this program included a PCB in the called
parameter list. The PCB address passed in the
parameter list is no longer valid because the PSB is not
active.

The run unit ends.

User response: Either modify the program so it does
not invoke the sysLib.commit() or sysLib.rollback()
system functions, or modify the program to receive the
PSB as a parameter rather than the individual PCBs.

ELA00184P Program %01C08 and form services
program %02C08 are not compatible

Explanation: The specified program and form services
program are generated for different systems.

The run unit ends.

User response: Generate the form services program
for the same environment as the program.

Appendix. Rational COBOL Runtime Messages 215

ELA00185P Length of %01D02 for record %02C18 is
not valid and conversion ended

Explanation: Conversion of a variable length record
between the workstation format and host format cannot
be performed because of one of the following
conditions:
* The record length for the current record indicates
that the record ends in one of the following:
— The middle of a numeric field
— The middle of a DBCHAR character
— The middle of an SO/SI string.
* The record is longer than the maximum length
defined for the record.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to set the record
length so that it ends on a valid field boundary.

ELA00186P An operand of type MBCHAR in a
conversion operation is not valid

Explanation: Conversion of an MBCHAR field from
EBCDIC to ASCII or from ASCII to EBCDIC cannot be
performed because a double-byte data value is not
valid.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to ensure that any
MBCHAR fields are valid in the records to be
converted.

ELA00187P Conversion table %01C08 does not
support double-byte character
conversion

Explanation: Conversion of an MBCHAR or DBCHAR
field from ASCII to EBCDIC or from EBCDIC to ASCII
cannot be performed because the specified conversion
table does not include conversion tables for double-byte
characters.

The run unit ends.

In CICS environments, Rational COBOL Runtime issues

216 IBM Rational COBOL Runtime Guide for zSeries

a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Modify the program to specify a
conversion table that contains the double-byte
conversion tables that are valid for DBCHAR and
MBCHAR data. For background information, refer to
the EGL help topic on data conversion.

ELA00188P Conversion Error. Function: %01C25,
Return Code: %02C05, Table: %03C08

Explanation: A system function was called to perform
code page conversion for data used in a client/server
program. The function failed.

Possible causes for the failure are:

* The code pages identified in the conversion table are
not supported by the conversion functions on your
system.

* For double-byte character conversion where the
source data is in ASCII format, the source data was
created under a different DBCS code page than the
code page that is currently in effect on the system.

User response: For background information, refer to
the EGL help topic on data conversion.

ELA00191I Program %01CO08, generation date

%02C08, time %03C08

Explanation: An error in the specified program has
occurred. The error is identified in other messages
preceding this message. The error might be caused by
changes to individually generated components of the
program.

User response: Verify the generation date and time of
the program with that of other generated components.

ELA00192I Print services program %01C08,

generation date %02C08, time %03C08

Explanation: An error in the specified print services
program has occurred. The error is identified in other
messages preceding this message. The error might be
caused by changes to individually generated
components of the controlling program.

User response: Verify the generation date and time of
the print services program with that of other generated
components in the program.

ELA00195I Form group format module %01C08,

generation date %02C08, time %03C08

Explanation: An error in the specified form group
format module has occurred. The error is identified in
other messages preceding this message. The error

might be caused by changes to individually generated
components of the controlling program.

User response: Verify the generation date and time of
the form group format module with that of other
generated components in the program.

ELA00201P z/OS %01CO08 error in service %02C08,
RC = %03D04

Explanation: Rational COBOL Runtime received an
error return from a z/OS macro. The inserts identify
the macro name, the Rational COBOL Runtime
program name, and the return code.

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Contact the system administrator.

ELA00202P The file name %01C65 is not valid in
the record-specific variable
resourceAssociation or in
converse Var.printerAssociation

Explanation: The value in either the
recordName.resourceAssociation or

converseVar.printerAssociation is not in a valid format.

This message can occur when a spool file name has a
format that is not valid.

User response: Refer to the EGL help system to
determine the valid syntax. Correct and generate the
program again.

ELA00203P CICS I/O error on file %01C08, resource
%02C08

Explanation: The current program has attempted to
gain access to a CICS file, and CICS returned a status
code that indicated an I/O error occurred. The file is
the logical file name specified in the record part
declaration. The resource is the CICS file control table
(FCT) or the TDQUEUE resource definition entry.

Possible causes of the error are the following;:

* The file does not exist on disk.

* The file is not defined in the CICS FCT or the
TDQUEUE resource definition entry.

¢ The file was specified to be opened when first
referenced.

* On z/0S CICS, the file was closed using the CSMT
or CEMT transactions.

* For z/0S CICS, the DD statement for the file in the
CICS startup JCL is missing, does not match the FCT
name, or is in error.

¢ The file has been changed or otherwise corrupted.

Message ELA00204I is also displayed with the
information from the EXEC interface block (EIB).

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Have the system administrator use the
CICS diagnostic information in this message and in
message ELA00204I to determine the cause of the error.
Correct the error and run the program again.

ELA002041 CICS EIBFN %01X04, RCODE %02X12,

RESP %03D04, RESP2 %04D04

Explanation: The current program has received an
error code for a CICS command.

The run unit ends.

User response: Refer to the CICS application
programmers’ guide for an explanation of the EXEC
interface block (EIB) codes. Correct the error and run
the program again.

ELA00205P A CICS %01C22 error occurred in
service %02C08

Explanation: Rational COBOL Runtime received an
error status code for a CICS command. This message
identifies the command and the service program that
issued the command. This message is accompanied by
message ELA002041, which contains the response codes
from the EXEC interface block (EIB).

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Have the CICS administrator use the
CICS diagnostic information in this message and in
message ELA00204I to determine the cause of the error.
Correct the error and run the program again.

ELA00206P Format of file %01C08 is not valid,
reason code %02C01, resource %03C56

Explanation: The attributes of the system resource
associated with the specified file name are not
compatible with the properties defined for the record in
the program. The reason code identifies the problematic
attribute, as follows:

1 Key offset

2 Key length

3 Access method
4 Record format
5 Record length

An access method mismatch occurs when the type of
data set allocated does not match what the program

Appendix. Rational COBOL Runtime Messages 217

expects. For example, a VSAM file is allocated as a
system sequential file or a partitioned data set is
allocated as a sequential file without specifying a
member name.

The run unit ends.

User response: Change the record part declaration, the
resource association part, or both, so that the record
properties match the system resource attributes.
Generate and test the affected programs again.

ELA00207P The attributes for file %01C08 are not
compatible, reason code %02C01

Explanation: A program has attempted to use a file
having file attributes that differ from another program
in the run unit. All programs in a run unit must use
the same attributes for a file. The reason code identifies
the problematic attribute, as follows:

Key offset
Key length
Access method

1

2

3

4 Record format
5 Record length
6

Using the sysVar.remoteSystemID system
variable to identify the location of a remote
file

The run unit ends.

User response: Change the Record part declarations,
the resource association part, or both, so that all
programs in the run unit have identical attributes for
the file. Generate and test the affected programs again.

ELA00208P Print services program %01C06 and form
group format module %02C08 were
generated separately

Explanation: The specified print services program
attempted to process a form that was generated at a
time different from the form group format module.
Both the print services program and the form group
format module must be generated at the same time.

The run unit ends.

User response: Make sure that the print services
program and the form group format module were
generated at the same time and are installed in the
correct libraries.

ELAO00210P Service number %01D04 is not valid

Explanation: An attempt was made to start a Rational
COBOL Runtime routine that does not exist or that is
not valid.

The run unit ends.

218 IBM Rational COBOL Runtime Guide for zSeries

In CICS environments, Rational COBOL Runtime issues
a dump based on options selected using the diagnostic
controller utility.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Generate and test the program again.

If the problem persists, do as follows:

1. Record the message number

2. Obtain the dump

3. Record the scenario under which this message
occurs

4. Obtain the COBOL source for the problem program

5. Use your electronic link with IBM Service if one is
available, or contact the IBM Support Center

ELA00212P Error encountered gaining access to file
%01C08, spool resource %02C65

Explanation: An error was received when attempting
to gain access to a spool file. The message is
accompanied by message ELA002041, which contains
response codes from the CICS EXEC interface block
(EIB).

If the function was a write spool request (EIBFN 5602)
and the spool resource name was specified as node ID
without being qualified by user ID, an error will occur
if the user did not log on using the CICS logon
procedure.

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: If the spool resource name specifies
node ID without specifying user ID, log on using the
CICS logon procedure before running the program
again. Otherwise, refer to the CICS customization
documentation for an explanation of the codes that are
returned by the spool interface; then, correct the
problem specified in the response codes.

Refer to the EGL help system for additional
information on the format of the system resource name.

ELA00215P PSB does not match Enterprise
Generation Language PSB definition

Explanation: The number of PCBs passed to the
program at program initialization time was less than
the number of PCBs in the EGL PSB record definition.
This message is accompanied by ELA002171.

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Do as follows:

* Correct the DL/I PSB; or

* Correct the EGL PSB record definition and generate
the program again

ELA00216P CICS DL/I error, function %01C04,
UIBFCTR %02X02, UIBDLTR %03X02

Explanation: CICS detected an error in a DL/I call.
The message variable inserts specify the function being
requested and the return codes from the CICS user
interface block (UIB). If the function code is PCB, the
program was attempting to schedule the program PSB.
The message is accompanied by message ELA002171.

Common return codes are as follows:

UIBFCTR UIBDLTR Description

08 00 Argument on DL/I call
not valid. This error can
occur if the IMSESA
installation option in
module ELARPIOP is
specified as YES, but the
IMS environment is not

IMS/ESA.

08 01 PSB not found. The PSB

must be defined to CICS.

08 03 The calling program has
already successfully issued
a scheduling (PCB) call
that has not been followed

by a TERM call.

08 05 PSB initialization was not

successful.

08 06 The PSB in the scheduling
call is not defined in the
program control table

(DLZACT).

08 07 A TERM call was issued
when the task had already

been terminated.

08 09 An MPS batch program
attempted to issue a PCB
call for a read-only PSB or
for a nonexclusive PSB if
program isolation was

active.

08 FF DL/I not active

0C 02

Intent scheduling conflict

The run unit ends.

User response: If the DL/I call is not valid, check the
definition of the call to the dliLib.AIBTDLI(),
dliLib.EGLTDLI(), or VGLib.VGTDLI() system
function. Otherwise, correct the problem specified by
the error code. For additional codes, refer to the CICS

application programmers’ guide for your system to
determine the meaning of the error codes.

ELA00217I Program %01C08, PSB name %02C08

Explanation: An error was detected in the specified
DL/I program. The message is accompanied by
messages ELA00215P or ELA00216P, which identify the
problem.

The run unit ends.

User response: Refer to the accompanying messages
for the problem cause.

ELA00218P Invocation of sysLib.audit not
successful, journal id = %01D05, journal
type = %02C02

Explanation: This message is accompanied by
ELA002041, which displays the contents of EIBRESP.

Common EIBRESP codes for CICS are as follows:
22 LENGERR

The computed length for the journal record
exceeds the total buffer space allocated for the
journal data set as specified in the journal
control table (JCT) entry for the data set

43 JIDERR
Occurs if the specified journal identifier does
not exist in the JCT

The run unit ends.

User response: Refer to the CICS resource definition
guide to define journal data sets, or contact the system
administrator.

ELA00219P %01C22 error for %02C06 file %03CO08,
%04C56

Explanation: An I/O operation was not successful for
the specified file.

Program processing ends on any nonzero status code if
the I/O statement is not in a try block; and ends on a
hard error if the I/O statement is in a try block when
vgVar.handleHardIOErrors is set to 0.

The message identifies the I/O statement, the file type,
the file name as specified in the record part, and the
system resource name associated with the file.

The run unit ends.

In all z/OS environments, Rational COBOL Runtime
issues a SNAP dump if the ELASNAP data set is
allocated.

User response: Check that the correct data set has
been allocated for this file.

Appendix. Rational COBOL Runtime Messages 219

ELA00220P Dynamic allocation was not successful,
file %01C08, return %02D04, error
reason code %03X04.

Explanation: Rational COBOL Runtime was not
successful on an attempt to perform dynamic allocation
for the specified file. The other inserts are the return
code in register 15 and the error reason code returned
by the SVC 99 instruction.

The most common cause is that the file was not
available. If you want your program to receive control
after getting the status fileNotAvailable, place the I/O
statement in a try block and set
vgVar.handleHardIOErrors to 1. If either condition is
not met, Rational COBOL Runtime ends the program.

The run unit ends.

User response: Contact the system administrator.
Refer to the MVS System Programming: System Macros
and Facilities manual for an explanation of the codes.

ELA00221P File %01C08, system resource name
%02C56, not found

Explanation: Rational COBOL Runtime attempted to
dynamically allocate the file with the system resource
name shown in the message. The file could not be
found.

If the system resource name is a 1- to 8-character DD
name, then there is no DD card for the file in the job
JCL. If the system resource name is a data set name,
then the data set either does not exist or is not
cataloged.

The run unit ends.

User response: If the name is a DD name, allocate a
file to the DD name in the JCL. If the name is a data
set name, ensure that the file exists and is cataloged.

ELA00222P Transaction %01C04 ended abnormally
with CICS abend code %02C04

Explanation: The specified CICS transaction ended
abnormally with the specified code.

On z/0S CICS systems, the following additional
information is provided:

¢ On CICS Version 2 systems, if the ABEND code is
ASRA or ASRB, this message is accompanied by the
message ELA00223P and the ABEND exit can
determine the module within which the error
occurred.

* On later CICS systems, if the abend code is ASRA or
ASRB, CICS message DFHAP0001 identifies the
offset in the module at which the error occurred. The
diagnostic control option specified for transaction
abends using the Rational COBOL Runtime
diagnostic control utility determines whether a dump
occurs.

220 IBM Rational COBOL Runtime Guide for zSeries

The Rational COBOL Runtime abend handler ends the
program by issuing another ABEND command using
the same code.

User response: See [Chapter 23, “Rational COBOL|
Runtime Return Codes, Abend Codes, and Exception|
Codes,” on page 183|for a description of abend codes
using the format ELAx. See [“Common CICS Abend|
[Codes” on page 191 for CICS or user program
documentation for an explanation of other abend codes.

ELA00223P Program %01C08 abended at offset
%02X08

Explanation: The specified program has abended with
an ASRA or ASRB abend code. This indicates that a
program check has occurred at the specified
hexadecimal offset.

Rational COBOL Runtime ends the program with a
user abend.

User response: If the program is a generated COBOL
program, use the compile listing to find the COBOL
verb that was running when the program ended
abnormally. The COBOL comments identify the EGL
statements associated with the COBOL verb. Determine
from the dump whether the problem was caused by
bad data passed to the program. If the generated
COBOL program is in error, use your electronic link
with IBM Service or contact the IBM Support Center.

ELA00225P Temporary storage queue name %01C08
is not valid

Explanation: The record-specific variable
recordName.resourceAssociation is set to a temporary
storage queue name that is not valid. The name
conflicts with a queue name that is reserved for
Rational COBOL Runtime. Names cannot begin with
EZE.

The run unit ends.

User response: Specify a valid temporary storage
queue name in the program.

ELA00228P The program attempted to use the
resource %01C65 with file %02C07 and
file %03C07

Explanation: The program attempted to associate the
same system resource with two different files. The
resource cannot be associated with two different files at
the same time.

The run unit ends.

User response: Examine the program and correct the
logic. Generate and test the affected programs again.

ELA00229P Invocation of sysVar.startTransaction
failed, transID = %01C04, terminal ID =
%02C08

Explanation: This message is accompanied by the
message ELA002041, which displays the contents of
EIBRESP.

Common codes are as follows:

11 TERMID error
The specified terminal ID is not known to
CICsS.

28 TRANSID error

The specified transaction ID is not known to
CICS.
The run unit ends.

User response: Have the system administrator define
the terminal or transaction to CICS.

ELA00230P An error was encountered accessing
CICS queue %01C08

Explanation: An error was received when attempting
to access a CICS queue. The queue can be a transient
data queue or temporary storage queue. This message
is accompanied by message ELA002041, which contains
response codes from the CICS EXEC interface block
(EIB).

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Refer to the CICS application
programmers’ guide for an explanation of the response
codes.

ELA00231P Error encountered retrieving data passed
to program %01C08

Explanation: An error was received when attempting
to retrieve data being passed to this program by a
transfer to transaction or show statement or by a
sysVar.startTransaction() system function. This message
is accompanied by message ELA00204I, which contains
response codes from the CICS EXEC interface block
(EIB).

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Refer to the CICS application
programmers’ guide for an explanation of the codes
that are returned.

ELA00232P Form %01C08 in form group %02C06 is
not declared or is not supported

Explanation: The specified form does not exist or is
not defined for the type of device being used.

The run unit ends.

User response: Specify the correct screenSizes
property for the form. Generate the form group again.

If you are running on a CICS system, have the system
administrator check that the alternate screen size for
your device type is specified in the PCT entry for your
transaction.

If the form group name uses the format ELAxxx,
wherexxx is the language code, the form group might
have been modified incorrectly. The ELAxxx form
group contains the Rational COBOL Runtime error
forms.

ELA00237P CICS TS Queue %01X16 error occurred
in work database operation for program
%02C08

Explanation: An error was received when attempting
to access a CICS temporary storage queue. This
message is accompanied by message ELA00204I, which
contains response codes from the CICS EXEC interface
block (EIB).

If the error is an INVREQ (EIBRESP=16), the problem
might be caused by Rational COBOL Runtime
attempting to write a record that is longer than the
control interval size for the VSAM data sets used for
the auxiliary storage queue. The maximum
segmentation record size written by Rational COBOL
Runtime is set by the TSQUE option in the installation
options module ELARPIOP. TSQUE specifies the
maximum size as the number of kilobytes; the default
value is 16 KB.

The run unit ends.

User response: Refer to the CICS application
programmers’ guide for an explanation of the codes.

If the control interval size is the problem, have the
system administrator assemble the installation module
again after setting the TSQUE value to a value less than
the control interval size.

Refer to the Rational COBOL Runtime program
directory for your system for more information.

ELA00239P Print services program %01C08 cannot
support print request from program
%02C08

Explanation: A program and a print services program
were generated with different values for the
formServicePgmType build descriptor option. The
print services program does not contain the type of
print support (GSAM or SEQ) required by the program.

Appendix. Rational COBOL Runtime Messages 221

The run unit ends.

User response: Generate the form group again with
the formServicePgmType build descriptor option
required by the program. Be sure to include all the
types of printing that are required for any program that
uses the form group.

ELA00249P Mapping services program %01C08
compiled with DATA(31) cannot be used
by program

Explanation: A form services program compiled with
the DATA(31) compiler option has been loaded for a
program link-edited as AMODE(24).

User response: Compile the form services program
again with the COBOL DATA(24) option; and make
sure that the data build descriptor option is set to 24
whenever the form group is generated.

ELA00250P Program cannot process data with 31-bit
addresses

Explanation: The initial program in the run unit was
compiled with DATA(31). The current program was
link-edited as AMODE(24). This is not compatible.
User response: Do one of the following:

* Compile the initial program in the run unit as
DATA(24).

* Link-edit the current program as AMODE(31).

ELA00251P Data table %01C08 compiled with
DATA(31) cannot be used by program

Explanation: A data table compiled with the
DATA(31) compiler option has been loaded for a
program link-edited as AMODE(24).

User response: Compile the data table program again
with the COBOL DATA(24) option. Also ensure the
data=24 build descriptor option is specified whenever
the data table is generated.

ELA00252P Error on file %01C08, queue name
%02C08, RC = %03C08

Explanation: An I/O logic error was detected by
Rational COBOL Runtime during processing of an I/O
statement for a CICS temporary storage queue.

Program processing ends on any nonzero status code if
the I/O statement is not in a try block; and ends on a
hard error if the I/O statement is in a try block when
vgVar.handleHardIOErrors is set to 0.

Because the error was detected by Rational COBOL
Runtime instead of the access method, the return code
value consists of the characters RS (for runtime
services) followed by a Rational COBOL return code
number.

222 IBM Rational COBOL Runtime Guide for zSeries

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: See [Chapter 22, “Common System|
[Error Codes for z/OS Systems,” on page 167| to
determine the meaning of the Rational COBOL return
code, and take the appropriate action.

ELA00253P Program %01C08 was not generated to
receive form %02C08

Explanation: The specified program received a form
as an input form, but the program does not contain
processing logic for handling segmented programs.
Either the wrong transaction name was specified when
the program was started, or the wrong program was
specified in the transaction definition.

The transaction ID contained in sysVar.transactionID
system variable before a segmented converse.

The program was started as a result of one of the
following:

* Specifying a new value for the sysVar.transactionID
system variable before issuing a converse statement
in a segmented Text Ul program instead of using the
original transaction code. After the user entered
input data, processing returned to the wrong
program because the new transaction code is not
associated with the program that issued the converse
statement.

¢ In IMS/VS, using the /FORMAT command for a
form that specifies the transaction code for the
program.

The program must specify either an inputForm
property or specify the segmented=YES property and
issue a converse statement for the form being received.

The run unit ends.

User response: Make sure that the following are
specified correctly:

* The transaction ID specified on the show statement
¢ The form name in the inputForm program property

* The transaction ID contained in sysVar.transactionID
system variable before a segmented converse

Generate the modified program again.

ELA00254P Invalid values for sysLib.audit, journal
ID = %01D05, type = %02C02, length =
%03D05

Explanation: A parameter in sysLib.audit() is not
valid:

* The journal ID must be between 1 and 99

¢ The third byte in the record must be in the range
X’AQ0" to X'FF’
¢ The record length must be between 28 and 32763

The run unit ends.

Rational COBOL Runtime issues a dump based on
information supplied for the transaction with the
diagnostic controller utility.

User response: Correct the error and generate the
program again.

ELA00255P Invalid values for sysLib.audit, type =
%01C02, length = %02D05

Explanation: A parameter in sysLib.audit() is not

valid:

¢ The third byte in the record must be in the range
X’A0" to X'FF

* The record length must be between 28 and 32767

The run unit ends.

User response: Correct the error and generate the
program again.

ELA00260E %01DO08 bytes of VGUI record do not fit
in %02D08 byte buffer

Explanation: The program issued a converse or show
statement for a VGUI record. There was not enough
room in the communications buffer for the record. The
buffer needs space for the record plus any message
information written using the sysLib.setError() system
function.

User response: Modify the program to reduce the size
of the VGUI record or write fewer or smaller error
messages.

ELA00261E sysLib.setError message information and
inserts do not fit in %01D08 byte buffer

Explanation: The program invoked the
sysLib.setError() system function one or more times to
write messages associated with a VGUI record. The
information associated with the last message written
does not fit into the buffer used by the program for
communicating with the user.

User response: Modify the program to write fewer or
smaller error messages.

ELA00262E VGWebTransaction program and VGUI
record bean %01C18 are incompatible

Explanation: A VGWebTransaction program was
started with information from a VGUI record bean that
is not known to the VGWebTransaction program or
whose definition is not compatible with the VGUI

record definition with which the program was
generated.

User response: Ensure that the specified VGUI record
is specified in the inputUIRecord property for the
program. Generate the program and the Java beans
using the same VGUI record definition.

ELA00263E Number of elements value %01C10 is
out of range for structured field array at
offset %02X08

Explanation: A VGWebTransaction program could not
write a VGUI record because the value in the number
of elements item for a structured field array in the
record was less than 0 or greater than the maximum
size defined for the array.

User response: Correct the program logic so that it
sets the value of the number of elements item to a
value within the allowed range.

ELA00264E Input data entered by the user does not
fit in the VGUI record

Explanation: A VGWebTransaction program received
input data from the Web server that does not fit in the
VGUI record. The VGWebTransaction program and the
Java bean associated with the VGUI record might have
been generated at different times with incompatible
VGUI record declarations.

User response: Generate the program and the Java
beans using the same VGUI record definition. Contact
IBM support if this does not correct the problem.

ELA00265E Segmented converse is not supported
when local variables or function
parameters are in the run-time stack

Explanation: The message indicates that a converse
statement is not valid because the EGL run time cannot
restore the values of function parameters or local
variables after the converse runs.

For more information, refer to the EGL help topic on
segmentation.

The runtime stack is a list of functions; specifically, the
current function plus the series of functions whose
running made possible the running of the current
function.

User response: Modify the program in one of two

ways:

* Ensure that the functions on the runtime stack have
neither parameters nor local variables

* Ensure that the converse is not segmented.

Appendix. Rational COBOL Runtime Messages 223

ELA00266E MQ function %01C08, Completion Code
%02C02, Reason Code %03C08.

Explanation: The MQ function did not complete
successfully, as indicated by the following completion
codes:

1 MQCC_WARNING
2 MQCC_FAILED
The reason for the completion code is set in the reason

code field by MQSeries®. Some common reason codes
are:

2009 Connection broken

2042 Object already open with conflicting options
2045 Options not valid for object type

2046) Options not valid or not consistent

2058 Queue manager name not valid or not known
) 2059 Queue manager not available for connection
2085 Unknown object name

2086 Unknown object queue manager

2087 Unknown remote queue manager

2152 Object name not valid

2153 Object queue-manager name not valid

2161 Queue manager quiescing

2162 Queue manager shutting down

2201 Not authorized for access

2203 Connection shutting down

The run unit ends.

User response: Refer to the MQSeries Application
Programming Reference for further information on
MQSeries completion and reason codes.

ELA00267E Queue Manager Name %01C48.

Explanation: This is the name of the queue manager
associated with the failing MQ function call listed in
message ELA00266. If the failing MQ function was
MQOPEN, MQCLOSE, MQGET, or MQPUT, the name
identifies the queue manager specified with the object
name when the queue was opened. Otherwise, the
name is the name of the queue manager to which the
program is connected (or trying to connect). If the
queue manager name is blank, the queue manager is
the default queue manager for your system.

The run unit ends.

User response: Refer to the MQSeries Application
Programming Reference for further information on the
MQSeries completion and reason codes that are listed
in message ELA00266.

224 IBM Rational COBOL Runtime Guide for zSeries

ELA00268E Queue Name %01C48.

Explanation: This is the name of the queue object
associated with the failing MQ function call listed in
message ELA00266.

The run unit ends.

User response: Refer to the MQSeries Application
Programming Reference for further information on
MQSeries completion and reason codes that are listed
in message ELA00266.

ELA00269E Array index value %01D07 out of range
for array %02C18 with size of %03D07

Explanation: The index specified for the dynamic
array is out of bounds.

User response: Specify an index between 1 and the
current number of elements in the array.

ELA00270E An attempt was made to exceed the
maximum size of array %01C18

Explanation: An attempt was made to add an element
to a dynamic array that already contains the maximum
allowed number of elements.

User response: Modify the program in either of two

ways:

¢ Increase the value of the dynamic array property
maxSize

* Change the logic so that the number of elements is
always less than or equal to the value of maxSize.

ELA00300I A new copy was requested for part

%01C08

Explanation: A new copy was requested for the
programs associated with the specified part. Newly
started transactions use the new copy of the program.

User response: None required.

ELA00301I The diagnostic control options were

changed

Explanation: The diagnostic control options were
changed after a user request from the Rational COBOL
Runtime Diagnostic Control utility.

User response: None required.

ELA00302I Error message queue sent to print

destination

Explanation: The contents of the transient data queue
containing the error messages were sent to the spooling
system after a user request from the Rational COBOL
Runtime Diagnostic Print utility.

User response: None required.

ELA00303I Error message queue sent to print

destination and deleted

Explanation: The contents of the transient data queue
containing the error messages were sent to the spooling
system after a user request from the Rational COBOL
Runtime Diagnostic Print utility. The contents of the
transient data queue were then deleted.

User response: None required.

ELA00304A Type a valid selection number, then
press Enter

Explanation: The selection number entered for a field
on one of the Rational COBOL Runtime utility panels is
not valid. The cursor is positioned at the field in error.

User response: Type a valid selection and press Enter.

ELA00305A Type a name, then press Enter

Explanation: A required field was left blank on one of
the Rational COBOL Runtime utility panels. The cursor
is positioned at the empty field.

User response: Type a valid name and press Enter.

ELA00306P CICS new copy was not successful for
program %01C08. Press F2.

Explanation: The CICS SET NEWCOPY command
was not successful for the specified part. The specified
part was requested on the Rational COBOL Runtime
New Copy panel.

User response: Press F2 to view message ELA00204I,
which contains the CICS response information from the
EXEC interface block (EIB). Verify that the part name is
correct. Refer to the CICS application programmers’
guide for an explanation of the EXEC interface block
(EIB) codes.

ELAO00308P I/O error on error message queue. Press
F2.

Explanation: A CICS error occurred when attempting
to gain access to the error destination queue identified
on the Rational COBOL Runtime Diagnostic Print
panel.

User response: Press F2 to view message ELA00204I,
which contains the CICS response information from the
EXEC interface block (EIB). Verify that the error
destination name is correct. Refer to the CICS
application programmers’ guide for an explanation of
the EXEC interface block (EIB) codes.

ELAO00309A Error message queue was not found

Explanation: The error destination queue identified on
the Rational COBOL Runtime Diagnostic Print panel
was not found.

User response: Specify the correct error destination
queue name on the panel.

ELA00310A Type a valid response, then press Enter.

Explanation: A value that was not recognized was
specified in the field where the cursor is positioned.
Valid values are shown following the field on the form.

User response: Type a valid value in the field and
press Enter.

ELA00313I Default options are in effect for this

transaction

Explanation: You made a request to view the
diagnostic control options in effect for a specific
transaction. The options currently in effect for the
transaction are the default options.

User response: To exit, press F3. To change the
options for this transaction do as follows:

1. Type the new options

2. Select action 1

3. Press Enter

ELA00314I Error message queue was empty

Explanation: A request was made to print an error
message queue that does not contain any messages.

User response: None required.

ELA00315I Trace transaction list was updated

successfully

Explanation: The list of transactions you specified to
be traced has been processed successfully.

User response: None required.

ELA00316I Trace filter criteria updated successfully

Explanation: The list of trace filter criteria you
specified has been processed successfully.

User response: None required.

ELA00317P Service number is not valid

Explanation: The trace filter criteria contains a service
number that is not valid. For z/OS Batch or IMS BMP,
if this error is detected during ELATRACE data set
parsing, the run unit ends.

User response: Do one of the following:

Appendix. Rational COBOL Runtime Messages 225

e For z/0OS Batch or IMS BMP, correct the service
number specification in the ELATRACE data set and
run the program again.

* For CICS or IMS/VS programs, correct the service
number.

ELA00318P Tag in %01C08 is not valid

Explanation: The filter criteria contains a tag that is
not valid. Valid tags are FILTER, EFILTER, APPLS,
EAPPLS, SERVICES, and ESERVICES.

The run unit ends.

User response: Correct the tag specification and run
the program again.

ELA00319P Missing or misplaced tag in %01C08

Explanation: The filter criteria contains a missing or
misplaced tag. The run unit ends.

User response: Correct the filter criteria and run the
program again.

ELA00320P Too many programs in %01C08

Explanation: The filter criteria contains too many
programs. The maximum number is 16. The run unit
ends.

User response: Reduce the number of programs or
remove all program filter criteria, then run the program
again.

ELA00321P Too many services in %01C08

Explanation: The filter criteria contains too many
services. The maximum number is 32. The run unit
ends.

User response: Reduce the number of services or
remove all service filter criteria, then run the program
again.

ELAO00322P One or more filters has a invalid value

Explanation: One or more codes entered for the
DATASTREAM, TRACETOFILE, APPSTMT, SQLIO,
SQLERR or IDUMP filters is not valid. The valid code
that is entered must be either Y (yes) or N (no).

For z/QOS batch or IMS BMP, the run unit ends.

If you are defining filters online on z/OS CICS or
IMS/VS, the filter containing the value that is not
correct is highlighted.

User response: Do one of the following:

* For z/0OS batch or IMS BMP, specify either Y or N
for these filters and run the program again.

226 IBM Rational COBOL Runtime Guide for zSeries

¢ For CICS or IMS/VS, type one of the valid values for
the highlighted filter as shown on the form, then
press Enter.

ELA00323P I/O error on storage queue %01C08.
Press F2.

Explanation: An error was received when attempting
to access a temporary storage queue in the diagnostic
message print utility. Press F2 to view message
ELAQ02041, which contains response codes from the
CICS EXEC interface block (EIB).

User response: Refer to the CICS application
programmers’ guide for an explanation of the codes.

ELA00324P Error reading trace control record. Press
F2.

Explanation: An error was encountered when
attempting to read or write to the trace control record
in CICS. Press F2 to view more information.

For z/OS CICS, message ELA00204I is displayed,
which contains response codes from the CICS EXEC
interface block (EIB).

User response: Review the accompanying error
messages.

ELA00325P Error opening %01C08

Explanation: An error was encountered when
attempting to open the specified data set.

User response: Make sure that the data set has the
correct attributes.

ELA00326P Error reading %01C08

Explanation: An error was encountered when
attempting to read the specified data set.

User response: Make sure that the data set has the
correct attributes.

ELA00342A The maximum number of copies already
exists for the data table

Explanation: The maximum number of copies of a
data table that can be used in a CICS region at one
time is 5. The request for a new copy of the data table
was rejected.

User response: Old copies of a data table that are in
use are freed when all the transactions that are using
the data table end. Retry the new copy request later.

ELA00363P An incompatible terminal configuration
change has been detected

Explanation: Rational COBOL Runtime detected a
change to a terminal that is different from the previous
terminal on which the program was running. Changing
terminal configurations while a program is running is
not supported.

The run unit ends.

User response: Restart the program.

ELA003641 Snap dump is in progress

Explanation: This is an informational message which
is displayed on the screen to inform you that a problem
has occurred and that a snap dump is being taken.

User response: The snap dump could take a while.
When the snap dump is complete, a Rational COBOL
Runtime error panel is generally displayed with
messages indicating what went wrong.

ELA03001I F3=EXIT F8=CONTINUE
Explanation: None.

User response: None required.

ELA03002I F3=EXIT
Explanation: None.

User response: None required.

ELA030031 CLEAR=EXIT
Explanation: None.

User response: None required.

ELA030041 PF3=EXIT PF8=FORWARD
Explanation: None.

User response: None required.

ELA030051 PF3=EXIT
Explanation: None.

User response: None required.

ELA03006I PA1=CONTINUE
Explanation: None.

User response: None required.

ELA03007I IBM Rational COBOL Runtime
Explanation: None.

User response: None required.

ELA09937E Function name %01C48

Explanation: This message provides the name of the
function in which a problem occurred. Other related
messages provide the information about the actual
cause of the error.

User response: None required.

ELA09942I Service property name %01C48

Explanation: This message provides the service
property name in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

ELA09943E Required service property does not exist
in service module %01C08

Explanation: The required service property does not
exist in the service module. Message ELA099421
provides the name of the service property that was
required.

User response: Make sure you are using the correct
service property name.

ELA099441 Entry point name %01C48

Explanation: This message provides the name of the
entry point in a service in which a problem occurred.

Other related messages provide the information about
the actual cause of the error.

User response: None required.

ELA(09945E Cannot find entry point in service
module %01C08

Explanation: The requested entry point does not exist
in the service module Message ELA09944I provides the
name of the entry point that was requested.

User response: Make sure you are using the correct
entry point name.

ELA09946E Reference target cannot be resolved in
service module %01C08

Explanation: The reference target does not exist in the
service module Message ELA09948I provides the name
of the reference target that was requested.

User response: Make sure you are using the correct
reference target name.

Appendix. Rational COBOL Runtime Messages 227

ELA09947E Component reference missing target in
service module %01C08

Explanation: The component reference does not exist
in the service module Message ELA099491 provides the
name of the component reference that was requested.

User response: Make sure you are using the correct
component reference name.

ELA099481 Reference name %01C48

Explanation: This message provides the reference
name in a service in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

ELA099491 Component name %01C48

Explanation: This message provides the component
name in a service in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

ELA099511 Service target name %01C48

Explanation: This message provides the service target
name in a service in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

ELA09952E Cannot find service target in service
module %01C08

Explanation: The service target does not exist in the
service module Message ELA099511 provides the name
of the service target that was requested.

User response: Make sure you are using the correct
service target name.

ELA09954E Type cast exception

Explanation: A type cast exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

228 IBM Rational COBOL Runtime Guide for zSeries

ELA09955E Index out of bounds exception

Explanation: An index out of bounds exception
occurred in the program. This message provides the
exception text. Other related messages provide the
program name, the function name, the EGL line
number, and the exception code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09956E Invocation exception

Explanation: A invocation exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09958E Service binding exception

Explanation: A service binding exception occurred in
the program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09959E Service invocation exception

Explanation: A service invocation exception occurred
in the program. This message provides the exception
text. Other related messages provide the program
name, the function name, the EGL line number, and the
exception code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09960E SQL exception

Explanation: An SQL exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09961E MQ I/O exception

Explanation: An MQ I/O exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09962E File I/O exception

Explanation: A file I/O exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09963E DL/I exception

Explanation: A DL/I exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09964E User thrown exception

Explanation: A user thrown exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA09972E Null value exception

Explanation: A null value exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

ELA099731 Condition code %01C04

Explanation: An exception occurred in the program.
This message provides the exception code. Other
messages provide the program name, the function
name, the EGL line number, and the exception text.

User response: None required.

ELA09974E Unhandled exception occurred. EGL
line: %01C06

Explanation: An exception occurred in the program.
This message provides the EGL line number within the
generated COBOL program. Other messages provide
the program name, the function name, the exception
code, and the exception text.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

FZE messages

Appendix. Rational COBOL Runtime Messages 229

FZE100141 ABEND %01C04 HAS OCCURRED,

TRAN= %02C04 %03C08 %04D05

Explanation: CICS has detected an abend in the
specified transaction. The time and date the abend was
detected is listed. This message appears in the CSMT
queue. If the abend is an ATNI, then the following
information will also appear:

DATASTREAM FROM LAST TD QUEUE RECORD R]glxi:)?

data in hex format... *data in character format*
DATASTREAM SENT TO THE DEVICE:
data in hex format... *data in character format*

The above information shows the last transient data
queue record read, as well as the data sent to the
device which caused the ATNI abend. The data appears
in both hex and character format, much like the data
would appear in a CICS transaction dump.

User response: The Rational COBOL Runtime print
transaction continues to run. Determine the cause of the
CICS abend and run the transaction again if desired.

PRINT TRANSACTION NOT
STARTED FROM TRANSIENT DATA

FZE100401

Explanation: The Rational COBOL Runtime print
transaction (program FZETPRT) received control for
other than a transient data queue trigger level. Probable
cause: XSPP entered at a terminal.

User response: Contact your system administrator.

FZE10060P PARAMETER ERROR

Explanation: One or more of the input parameters
was specified incorrectly.

User response: If you were initializing a file, check the
parameter list you specified. Correct it and try the
procedure again. This message should not occur during
the installation procedure. If this error occurs during
installation, contact the IBM Support Center for
assistance.

FZE10061P ERROR OPENING %01C08 REG
15=%02X03, ERR=%03X03

Explanation: An error occurred while attempting to
open the named VSAM file.

User response: Look up the return code in register 15
and the feedback (or reason) code in the appropriate
VSAM manual for your operating environment. Correct
the problem and try this procedure again.

230 IBM Rational COBOL Runtime Guide for zSeries

FZE10062P ERROR WRITING %01C08 REG
15=%02X03, ERR=%03X03

Explanation: An error occurred while attempting to
write to the specified VSAM file.

User response: Look up the return code in register 15
and the feedback (or reason) code in the appropriate
VSAM manual for your operating environment. Correct
roblem and try this procedure again.

FZE100641 SUCCESSFUL COMPLETION

Explanation: This step in the installation procedure
FZEZVCPO finished correctly.

User response: None required.

FZE100651 RECORDS READ: %01D08

Explanation: This shows the number of records read
from the source statement library or from the system
logical unit SYSIPT.

User response: None required

FZE100661 = RECORDS WRITTEN: %01D08

Explanation: The indicated number of records were
written to the VSAM output file.

User response: None required.

FZE100671 FILE %01C08 ALREADY LOADED

Explanation: The specified output file has already
been loaded or initialized. This message occurs when a
file is being initialized or conditionally loaded.

User response: None required.

FZE10068P SOURCE LIB I/O ERROR FOR FILE
%01C08

Explanation: There was an error reading from the
specified input file.

User response: Check the listings for the return codes
from the previous steps of the installation procedure to
determine if the source statement library installed
correctly. If the return code was not zero, correct the
problem and run the previous step again. Then run this
step again.

FZE10069P MISSING SOURCE MEMBER %01C08

Explanation: The specified source library member
necessary for input to this step in the installation
procedure is missing.

User response: Check the listings for the return codes
from the previous steps of the installation procedure to
determine if the source statement library installed
correctly. If the return code was not zero, correct the

problem and run the previous step again. Then run this
step again.

PRM messages

PRMO00001P Invalid parameter group name %01C08

Explanation: The parameter group name specified is
not valid. Parameter group names may be 1 through 8
alphanumeric characters.

User response: Correct the parameter group name and
retry the request.

PRMO00002I New parameter group being defined

Explanation: You have entered a parameter group
name which has not been previously defined. You may
enter the parameters for the new parameter group to
complete this definition. If you do not enter any
parameters and you press Enter to save the group, then
an empty group will be created.

User response: None required.

PRMO00003P Invalid selection character

Explanation: You are have entered a selection code
which is not valid. Valid selection codes are:

'S’ Select a parameter group for update.
"D’ Delete an existing parameter group.

User response: Correct the selection character and
retry the request.

PRMO00004P Already at top or bottom of list

Explanation: You attempted to do one of two things:
* Scroll forward on the last screen of the list

* Scroll backward on the first screen of the list.

No scrolling occurred.

User response: Do not attempt to scroll beyond the
start or the end of the list.

PRMO00005I Function key not supported

Explanation: You have used a function key that is not
supported by the facility. The keys which are available
are described in the top portion of the form.

User response: Check the description of what
functions are available, and use a different function key.

PRMO00006I Specified parameter group(s) not found

Explanation: You have requested to view a list of
parameter groups, and no parameter group exists for
the search conditions you have specified.

If you entered a question mark ("?’) to view a list of all

parameter groups, then your parameter group file is
empty.

User response: If you have made an error, then correct
the problem and retry the request.

PRMO00007P Unexpected I/O error occurred, RC =
%01C08

Explanation: You have attempted an operation against
the parameter group file and an I/O error has
occurred. The operation was not completed.

This error indicates some damage has occurred to the
parameter group file. This error should be corrected
before any further maintenance to your parameter
groups is attempted.

User response: Contact your Systems Programmer.

PRMO00008P File is full, parameter group cannot be
added

Explanation: You have attempted to add a parameter
group to your parameter group file, which is full. The
parameter group has not been added.

User response: Review your existing parameter
groups to determine if any of them can be deleted.
Deleting existing parameter groups will make room for
new groups that you want to add. If you are not able
to delete any existing parameter groups, then the
parameter group file must be redefined to allow more
entries.

PRMO00009I Operation(s) successfully completed
Explanation: You have successfully completed the
operation requested. The possible operations are:

* Addition of a new parameter group.

* Modification of an existing parameter group.

* Deletion of an existing parameter group.

User response: None required.

PRMO00010P Parameter group file EZEPRMG not
found

Explanation: Either the name was specified incorrectly
or the file is not properly defined to the system.

User response: Ensure the parameter group file is
defined and associated with EZEPRMG as the FCT
entry name on CICS systems.

PRMO0011P Unable to connect to parameter group
file EZEPRMG

Appendix. Rational COBOL Runtime Messages 231

Explanation: The Parameter Group Utility was unable
to connect to the parameter group file. The file must be
associated and defined to the system.

User response: Verify the file name specified has been
defined and associated with EZEPRMG as the FCT
entry name on CICS systems.

232 IBM Rational COBOL Runtime Guide for zSeries

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you. This
information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated
in new editions of the publication. IBM may make improvements and/or changes
in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1994, 2006 233

234

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

P.0. Box 12195, Dept. TL3B/B503/B313
3039 Cornwallis Rd.

Research Triangle Park, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming
interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows: 9999 (your company name) (year). Portions

IBM Rational COBOL Runtime Guide for zSeries

of this code are derived from IBM Corp. Sample Programs. 9999 Copyright IBM
Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

CICS
CICS/ESA®

DB2

IBM

IMS

Language Environment
RACF
VisualAge
WebSphere® Studio
WebSphere

z/OS

The following terms are trademarks of other companies:

Microsoft®, Windows, and Windows NT® are trademarks or registered trademarks
of Microsoft Corporation.

Notices 235

236 IBM Rational COBOL Runtime Guide for zSeries

Index

Special characters

/FORMAT command 111

/HOLD command 111

/MODIFY command 110

/WORKDBType build descriptor option
IMS 15

A

abend

ASPE
CICS 39

codes
CICS 183, 191
COBOL 189
IMS runtime 190
non-CICS environments 185
preparation 163

system 187
dumps
COBOL 151

Rational COBOL Runtime 151
recovery considerations
z/OS 45, 48, 49, 57, 58
activating trace sessions
CICS 156
adding
file name to the CICS file control table
z/OS 42
job control statements
z/0OS 42
addressing, extended 31
alternate index, defining 28
alternate PCB, using 52
American National Standards printer
control character
z/OS 33,35
AMODE 6,7
analyzing
detected errors 148
application
load module storage for Rational
COBOL Runtime 5
plan for DB2 15
applying maintenance to
Rational COBOL Runtime 3
ASA (see also American National
Standards printer control character) 35
ASPE abend, preventing 39
attributes for DBCS, hardware 31

backing up data 32
backup, maintaining copies of production
libraries 118
batch
print services program 78

© Copyright IBM Corp. 1994, 2006

BIND
command
data set 72
default 77

defining 77

DB2 programs 32

precompile messages 164

buffer size, printing
CICS 37
build descriptor
and compiler options that affect
performance 27

options
commentLevel 149
errorDestination 140, 145, 146
imsFastPath 140, 189, 190
imsLogID 140, 146
initAdditional WS 187
initlORecords 187
language code 145, 146, 147
mfsDevice 189, 190
mfsExtendedAttr 189, 190
mfslgnore 189, 190
mfsUseTestLibrary 189
performance considerations 27
restoreCurrentMsgOnError 140
spaSize 53, 108
targetNLS 188
trace 155

output files 74

C

catastrophic error 143
cautions
empty KSDS data set, VSAM
restriction 30
PRTMPP parameter, line skip
malfunction 37
CEDA transaction, RDO 93
change or view
defaults - ELAC04 128
options - ELAC02 127
checking
access authorization
z/0OS 32
database authorization
CICS 32
IMS 57
CICS
abend codes 191
activating trace sessions 156
database
recovery considerations 45
DB2 considerations 12, 45
destination control table (DCT)
printing, DBCS 38
sample entry 44
transient data queue name 35
diagnostic control options 126
DL/I considerations 11, 45

CICS (continued)
ELAC transaction 126
ELAM transaction 121
ELAN transaction 122
ELAU transaction 124
EZEZ transaction 35
file descriptions 33
installation considerations 11
mode, pseudoconversational,
residency consideration 41
monitoring and tuning 12
new modules 95
parameter group
print file 33
parameter group, creating and
maintaining 129
PCT (program control table), printing,
DBCS 38
performance
considerations 40
preparation 93
PRIN transaction 35
print destination, specifying in
DCT 44
printing
buffer size 37
DBCS (double-byte character
set) 35,38
DCT (destination control table) 35
destination control table
(DCT) 35,44
double-byte character set
(DBCS) 35
EZEZ transaction 35
file description 33
form-feed 35
FORMFD=NO parameter 35
FZETPRT program 36, 44
parameter, PRTTYP 38
PCT (program control table),
FZETPRT program 38
PRIN transaction 35
printer destination 44
program control table (PCT) 38,
44
PRTBUF parameter 36
PRTMPP parameter 36
PRTTYP parameter 36
SEND command 37
terminal control table (TCT),
entry 44
transient data queue 44
processing mode
types 34
program control table (PCT)
DTB=YES and DBP value 44
printing, DBCS 38
pseudoconversational
processing mode 41
programs and residency 41

237

CICS (continued)
residency
considerations 40, 41
general rules 40
resource tables 93
security considerations 12
spool files 13
startup JCL 95
storage facilities used by Rational
COBOL Runtime 8
system considerations 33
temporary storage queues for Rational
COBOL Runtime 13
terminal control table (TCT),
entry 44
terminal printing 35
transaction
EZEZ 35
PRO1 transient data queue 44
PRIN 35
transactions, passing transient data
between 44
transient data queue 35
utilities
(see also CICS, utilities) 121
diagnostic control facility,
ELAM 121
diagnostic control options,
ELAC 126
diagnostic message printing,
ELAU 124
menu 12
new copy utility, ELAN 122
CICS, PRGM transaction 131
CICS, utilities, change diagnostic control
options 126
CICS, utilities, default diagnostic control
options 128
CICS, utilities, parameter group utility,
PRGM 131
CICS, utilities, PRGM, parameter group
utility 131
CICS, utilities, view diagnostic control
options 126
CICS/ESA
monitoring and tuning 12
clearing records from databases 59
client/server 95
CLIST
modifying 99
templates 99
CMPAT parameter, IMS 52
COBOL
abend codes 189
abend dumps 151
abends under CICS 192
DATA compiler option 6,7, 13
status key values 181
WSCLEAR option 18
COBOL dynamic storage
for Rational COBOL Runtime 6
codes
abend, IMS 190
return
Rational COBOL Runtime 170
SQL 177
sysVar.errorCode 167, 169

238

common system return codes 167
compatibility considerations,
sysVar.returnCode 167
compiler options that affect
performance 27
considerations
batch
DB2 48
DL/I 48
program runtime support 48
system 47
customization 17
database integrity
DB2, CICS 45
DB2, IMS 57
IMS 54
database recovery
IMS 54
DB2
CICS 45
DB2 database recovery
CICS 45
IMS 57
DL/1
CICS 45
IMS 58
z/OS batch 48
DL/I database integrity and recovery
CICS 45
IMS 58
z/0OS batch 49
message format services 64
performance
CICS 40
compiler options 27
IMS 54, 56
link pack area 55
printing
IMS 53
recovery
IMS 54
residency
CICS 40
system
backing up data 32
CICS 33
DBCS 31
extended addressing 31
IMS 51
tuning IMS 57
z/OS/XA 31
control block 152
control character, American National
Standards, printer 33
control region in IMS 15
controlling error reporting
CICS 140
IMS 140
conversational processing mode,
CICS 34
creating
MFS control blocks 109
customizing
JCL procedures 18
Rational COBOL Runtime 17

IBM Rational COBOL Runtime Guide for zSeries

D

DATA compiler option 6, 7, 13, 14

data file
backing up 32
defining 42
program, defining 28
data queue
extrapartition 44
intrapartition 44
transient 43
data set
bind command 72
CICS
PCT entries 73
PPT entries 73
DB2 database request module
DBRMLIB 72
EZEBIND 72
EZEJCLX 72,117
EZEPCT 73
EZEPPT 73
EZEPRINT 47, 103, 114
EZESRC 73
load library 73
loading KSDS files 30
object library 72
SYSLIN 72
SYSLMOD 73
user 72
database
expanding 60
multiple
work 63
request module, DB2 72
work
clearing records 58
expanding 60
maintaining 58
database authorization
checking
IMS 57
z/0S 32
database integrity and recovery
considerations

DB2
CICS 45
IMS 57
DL/I
CICS 45
IMS 58
z/0OS batch 49
IMS 54
DB Tools product 57
DB2
checking authorization
IMS 57
z/OS 32
considerations
CICS 12,45
IMS 14
z/0S Batch 11
database

request module data set 72

table space 61, 62

database integrity and recovery

considerations
CICS 45

72

DB2 (continued)
database integrity and recovery
considerations (continued)
IMS 57
precompile
messages 164
program plan 15
programs
bind 32
work database
clearing records 59
expanding the table space 61
IMS 15
multiple 63
DBCS (double-byte character set)
data on a non-DBCS terminal 112
hardware attributes 31

printing
CICS 35, 38, 44
DBRMLIB 72

DCAPRMG file, parameter group for
FZETPRT 36
DCT (destination control table)
entries 94
printing, DBCS 38
sample entry 44
transient data queue 35
trigger level 35
DD statements by file type 100
deactivating a trace session 161
default
print destination, IMS 53
defining
alternate index 28
data files 42
ESDS (serial) data set 28
KSDS (indexed) data set 28
program data files 42
program specification block (PSB)
IMS 52
RRDS (relative) data set 28
transient data
extrapartition 44
intrapartition 44
transient data files
extrapartition 44
intrapartition 44
transient data queues
extrapartition 43, 44
intrapartition 43, 44
VSAM data files 28
deleting old records from the work
database 58
descriptions
CICS files 33
IMS files 51
destination control table (DCT)
entries 94
printing, DBCS 38
sample entry 44
transient data queue 35
trigger level 35
destination, default print, IMS 53
detecting errors 139
determining position in program 153
DFHAC2016 messages 191
DFHAC2206 messages 191

DFS0571 error message 189
DFS064 error message 189
DFS182 error message 189
DFS2082 error message 113, 190
DFES2766I error message 113, 190
DFS5551 error message 112, 189
diagnosing problems 139
diagnostic control
facility
CICS utilities 121
options
change or view defaults 128
change or view options 127
ELAC transaction 126
diagnostic message print utility,
ELAU 124
disk storage requirements
for Rational COBOL Runtime 8
DL/1
considerations
CICS 11,45
IMS 58
z/OS batch 48
z/OS Batch 11
integrity and recovery considerations
CICS 45
IMS 58
z/0OS batch 49
status codes 179
work database
clearing records 59
expanding the database 60
inIMS 15
multiple 63
double-byte character set (DBCS)
hardware attributes 31

printer 44
DSNX100I messages 164
dumps

snap, listing file on IMS 51
dynamic

interface plan 32
storage utilization in Rational COBOL
Runtime 7

E

ELA2SSQL module 55

ELA2SSQX module 55

ELA2SSQY module 55

ELAC, diagnostic control options 126

ELACO2 panel, change or view
options 127

ELACO04 panel, change or view
defaults 128

ELACJWKD member 63

ELADIAG file 51

ELAM, CICS utilities menu 121

ELAN, new copy utility 122

ELANCccc module 55

ELAPCB macro 52

ELAPRINT system output file 47, 51

ELARPRTM load module 55

ELARPRTR load module 55

ELARSDCB load module 55

ELASNAP file 51

ELAU, diagnostic message printing
utility 124
ELAWKJC2 member 59
ELAWKJCD member 59
ELAWORK work database PCB 52
ELAWORK2 DL/I work database 63
emulating IBM 3270 devices 31
error
detection 139
message
file 51
panel 144
reporting 139
IMS 140
in IMS 112
summary 141
errorDestination message queue 144
ESDS (serial) define cluster 28
expanding
the table space (DB2) 61
work database 60
express alternate PCB 52
extended addressing considerations
z/0S 31
external work file, backing up 32
extrapartition transient data, defining 44
EZEBIND data set 72
EZEDESTP special function word 47
EZEJCLX data set 72
EZEPCT data set 73
EZEPPT data set 73
EZEPRINT data set
IMS 53
specify as PRO1 44
EZEPRMG file
CICS 33
parameter group for FZETPRT 36
EZESRC data set 73
EZETRACE data set 47
EZEZ transaction 35, 44

F

FCT (file control table)
entries 95
user data file 42
file
control table (FCT)
described 95
default message queue, IMS 51
description
CICS 33
IMS 51
descriptions 33
error message 51
from generation 74
parameter group 33
snap dump listing, IMS 51
system output 47

trace 47
file control table (FCT)
entries 95
user data file 42
form feed

order (see American National
Standards printer control
character) 35

Index 239

form feed (continued)
printing 35
form group
format module 78
FORMFD parameter
option=NO, forms alignment 35
parameter group for PRIN or
EZEZ 38
used with FZETPRT program 36
function
new copy 39
preload, IMS 54
FZETPRT program 38
DBCS considerations 38
PRIN or EZEZ transaction 44
special parameter group 36
terminal printing support in CICS 35
FZEZREBO utility, initializing indexed
files 30

G

generated applications

with PL/I programs 18
generating

application control block 52

H

hardware attributes for DBCS 31

IBM 3270 device, emulating 31
IBM 5550 family of terminals 31
IDCAMS program
BLDINDEX command 28
DEFINE PATH command 28
loading indexed files 31
REPRO command 28, 30
IGYOP3091W error message 164
IGYOP3093W error message 165
IGYOP3094W error message 165
IGYPA3013W error message 165
IGYPG3113W error message 165
IGYPS2015I error message 164
IGYPS2023I error message 164
IGYSC2025W error message 165
improving
performance 56
library lookaside (LLA) 28
link pack area (LPA) 28
virtual lookaside facility (VLF) 28
response time 56
IMS
control region 15
database
authorization checking 57
integrity considerations 54
recovery considerations, DB2 57
recovery considerations, DL/I 54
DB2 considerations 14
default
message queue file 51
print destination 53
DL/I considerations 58

240

IMS (continued)

ELAPCB macro 52
error

controlling, generation

options 140

messages 112

reporting 112
file descriptions 51
HIPERSPACE buffer usage 56
installation considerations 14
integrity considerations, DB2 57
log format 145
logical unit of work 58
monitoring and tuning 14, 57
new modules 110
performance considerations 56
preload function 54
preloading

program modules 56

Rational COBOL Runtime

modules 55

preparation 107
processing modes 53
program specification block,

defining 52
residency considerations 54
runtime

abend codes 190
messages 189
security considerations 14
segmented mode 53
snap dump listing file 51
system considerations 51
system definition
batch program as an MPP 108
batch-oriented BMP program 109
general 15
interactive program 107
parameters 107
transaction-oriented BMP 109
system printing considerations 53
work database considerations
DB2 15
DL/I 15
IMS DC monitor facilities 14
IMS/ESA exploitation 14
IMS/VS, message format service (MFS)
Control Blocks 56
IMSPARS 57
indexed (KSDS) data set
define cluster 28
loading 30
installation considerations
preparing to install 3
integrity considerations, database
DB2
CICS 45
IMS 57
DL/I
CICS 45
IMS 58
z/0OS batch 49
IMS 54
intrapartition transient data
defining 44

IBM Rational COBOL Runtime Guide for zSeries

JCL
by environment 99
examples of runtime 104, 105, 106,
114, 115
modifying 99, 100
modifying runtime 100
tailoring before generation 99
templates 99
job stream data set
runtime 72

K

KSDS (indexed) define cluster 28

L

LE
runtime messages 188
library
backup 32
production copies, maintaining
backup 118
link pack area
loading 55
performance considerations 55
listing file
IMS, snap dump 51
load library data set 73
load module
preloading 55
storage for Rational COBOL
Runtime 5
storage for Rational COBOL Runtime
application 5
loading
modules into link pack area 55
logical unit of work (LUW)
IMS 57, 58

M

macro, ELAPCB 52
maintaining

backup copies of production

libraries 118

work database 58
maintenance, applying to

Rational COBOL Runtime 3
message

format services

considerations 64
description 31, 64

queue file, default, IMS 51

message format service (MFS) control
blocks in IMS 56

messages

DFHAC2016 191

DFHAC2206 191

DFS0571 189

DFS064 189

DFS182 189

DFS2082 113, 190

DFS27661 113, 190

messages (continued)
DFS5551 112, 189
DSNX100I 164
IGYOP3091W 164
IGYOP3093W 165
IGYOP3094W 165
IGYPA3013W 165
IGYPG3113W 165
IGYPS20151 164
IGYPS20231 164
IGYSC2025W 165
IMS runtime 189
preparation 163
runtime
IMS 189
z/OS 191
z/0OS runtime 191
MFS
control blocks 109
mode
CICS execution, performance
considerations 41
processing
CICS 34
IMS 53
models
JCL 99
modifying
IMS system definition
parameters 107
JCL or CLISTs 99
runtime
JCL 100
modules
CICS 95
IMS 110
in memory 28
loading into link pack area 55
preloading 56
monitoring and tuning
CICS 12
IMS system 14, 57
performance 57
moving prepared programs
z/OS 117
multiple work databases 63

N

new copy
function 39
new copy utility 122
new copy utility, ELAN 122
new modules
CICS 95
IMS 110
nonsegmented processing mode,
CICS 34

O

object library data set 72

objects generated
application COBOL program 76
batch print services program 78
BIND command 77

objects generated (continued)
form group format module 78
from generation 74
online print services program 78
runtime
JCL 77
table program 78
online print services program 78
option
preloading
program modules, IMS 56
Rational COBOL Runtime
modules, IMS 55
recovery 39
SPA 53
output of program generation 74

P

panels
Parameter Group Definition
(PRGM02) 132
Parameter Group Specification
(PRGMO00) 131
panels, Parameter Group List Display
(PRGMO1) 132
parameter
group associated with FZETPRT
program
DCAPRMG file 36
EZEPRMG file 36
resident 40
WORK in ELAPCB 52
Parameter Group Definition panel
(PRGMO02) 132

parameter group file, EZEPRMG data set,

CICS 33
Parameter Group List Display panel
(PRGMO1) 132
Parameter Group Specification panel
(PRGMO00) 131
passing transient data between CICS
transactions 44
PCT (program control table)
entries 94
FZETPRT program 38
performance
considerations 27
CICS 40
general 17,28
IMS 54, 56
IMS/ESA 56
z/OS batch 49

generation and compiler options 27

HIPERSPACE buffers for IMS 56
library lookaside (LLA) 28
limiting MFS control blocks 56
link pack area 28
monitoring and tuning

IMS 14,57
preload modules 110

RES(YES) parameter, RDO DEFINE

PROGRAM command 94
tuning IMS 57
virtual lookaside facility (VLF) 28
Performance Analysis and Reporting
System (PARS) 57

PL/I programs 18
plan, DB2 32
PPT (processing program table)
defining programs to CICS 73
entries 93
PRO1 transient data queue 44
precompile messages
BIND 164
DB2 164
preloading
objects, IMS 54
print services
description 110
module 55
program 56
program 110
program modules 55, 56
Rational COBOL Runtime modules,
IMS 55
service module 55
table modules 55, 110
preparation
abend codes 163
messages 163
preparing
and running programs
CICS 93
IMS 107
z/0OS batch 103
to install Rational COBOL Runtime 3
PRGMO0 (Parameter Group List Display
panel) 132
PRGMO0 (Parameter Group Specification
panel) 131
PRGMO2 (Parameter Group Definition
panel) 132
PRIN transaction 33, 35, 44
print destination
CICS, specifying in DCT 44
default
IMS 53
print file, utilities 33
print services program
object of generation 78
preloading 56
printing
buffer size 37
CICS
considerations 33
file descriptions 33
CICS, destination control table
(DCT) 35
considerations
IMS 53
DBCS (double-byte character set),
printer 44
DCT (destination control table)
transient data queue name 35
trigger level 35
default, print destination 35
destination control table (DCT)
transient data queue name 35
trigger level 35
destination, using
sysLib.startTransaction() system
function 35

Index 241

printing (continued)
diagnostic information
CICS 147
IMS 144
EZEZ transaction 35
file descriptions, CICS 33
form-feed 35
FORMFD=NO parameter 35, 38
FZETPRT program 36
parameter
FORMFD 36, 38
group associated with FZETPRT
program 36
PRTBUF 36
PRTMPP 36, 37
PRTTYP 36, 38
PCT (program control table),
FZETPRT program 38
PRO1 transient data queue 44
PRIN transaction 35
print destination, default 35
printer destination 44
program control table (PCT),
FZETPRT program 38
SEND command 37
sysLib.startTransaction() system
function for print destination 35
transient data
at a terminal device 44
transient data queue 35, 44
problem
diagnosis 139
processing
batch 47
processing mode
CICS
types 34
IMS 53
processing program table (PPT)
entries 93
production libraries, maintaining copies
for backup 118
profile block
program 152
program
bind DB2 32
data files, defining 28
entries 93
module, preloading 55
preloading 56
profile block 152
return codes 183
program communication block (PCB)
alternate 52
ELAPCB macro 52
program control table (PCT)
DTB=YES and DBP value 44
entries 94
FZETPRT program 38
program specification block (PSB)
defining 52
generation 52
PRTBUF parameter
specifying print buffer size 36

using with the FZETPRT program 36

PRTMPP parameter
specifying maximum print
positions 37
using with FZETPRT program 37
PRTTYP parameter
DBCS printing 38
using with the FZETPRT program 36
pseudoconversational
processing mode
CICS 34,41

R

Rational COBOL Runtime
abend dumps 151
application load module storage 5
applying maintenance 3
COBOL dynamic storage 6
COBOL external storage for non-CICS
environments 7
control block 152
control options by transaction 127
customizing JCL procedures 18
DB2 considerations
CICS 12
IMS 14
IMS work database 15
z/0S Batch 11
default control options 128
diagnostic control options 126
disk storage requirements 8
DL /I considerations
CICS 11
IMS work database 15
z/0OS Batch 11
dynamic storage 7
error 143
extended addressing 31
generated programs
using with PL/I programs 18
IMS/ESA exploitation 14
installation considerations
CICS 11
IMS 14
preparing to install 3
load module
reentrant 5
storage 5
storage estimates, statically
linked 6
new copy 122
performance considerations 17
security considerations
all systems 17
CICS 12
IMS 14
storage facilities for CICS, using 8
storage requirements 5
temporary storage queues 13
utilities
diagnostic control facility
(ELAM) 121
diagnostic control options
(ELAC) 126
diagnostic message printing utility
(ELAU) 124
for CICS 12

242 IBM Rational COBOL Runtime Guide for zSeries

Rational COBOL Runtime (continued)
utilities (continued)
new copy (ELAN) 122
virtual storage requirements 5
work database space for segmented
applications 8
WSCLEAR option for COBOL,
specifying 18
Rational COBOL Runtime, utilities,
parameter group utility, PRGM 131
Rational COBOL Runtime, utilities,
PRGM, parameter group utility 131
RCT 95
RDO (resource definition online),
generation output 75
RDO CEDA transaction 93
reading transient data from tape 44
recovery
options
specifying 39
recovery considerations
DB2
CICS 45
IMS 57
DL/1
CICS 45
IMS 58
z/0OS batch 49
IMS 54
reentrant code 28
reentrant load module storage estimates
for Rational COBOL Runtime 5
relative (RRDS) define cluster 28
reporting
errors 139
problems 161
request module, DB2 72
residency
considerations
CICS 40
IMS 54
general rules, CICS 40
resident
parameter 40
programs 96
resource
control table 95
tables for CICS 93
Resource Measurement Facility II 57
response time, improving 56
return codes
Rational COBOL Runtime 170
SQL 177
system 167
sysVar.errorCode 167, 169
RMF 57
RRDS, data set definition 28
running
main programs under z/OS
batch 103
programs under IMS 111
running under
CICS 96
IMS
BMP with DB2 115
main batch as BMP 114
main program under BMP 113

running under (continued)
z/0S batch
main batch with DL/I 104
main batch with no database 104
main batch with no DB2 104
runtime
JCL 77,100
job stream data set 72
messages
IMS 189
z/0S 191
messages, LE 188

S

sample JCL
BMP with DB2 115
IMS BMP program 114
RCT entry 95
z/0S Batch with DB2 Access 104
z/0S Batch with DB2 and DL/I 106
z/0OS batch with DL/I Access 105
z/0S batch without DB2 104
saving storage space 55
security considerations
CICS 12
general 17
IMS 14
segmented processing mode
CICS 34
IMS 53
SEND command, printing 37
serial (ESDS) define cluster 28
service module, preloading 55
services, message format 31
sharing modules 55
snap dump listing file, IMS 51
spaSize build descriptor option 53, 108
spool files, CICS 13
SQL
considerations 32
return codes 177
starting
IMS programs
/FORMAT command
(transaction) 111
directly (main) 111
MPPs (transactions) 111
startup JCL for CICS 95
statistics, performance 57
status 15
codes
DL/T 179
key values, COBOL 181
storage requirements
for Rational COBOL Runtime COBOL
dynamic storage 6
subsystem ABEND dumps 151
support for DBCS terminals 31
sysLib.startTransaction() system function,
print destination 35
SYSLIN 72
SYSLMOD 73
SYSOUT system output file 47
SYSPRINT system output file 47
system
abend codes 187

system (continued)
considerations
CICS 33
general 27
IMS 51
definition, IMS 15
output file 47
return codes 167
SYSUDUMP system output file 47
sysVar.errorCode 167
compatibility considerations 167
return codes 169

T

table
modules, preloading 55
preloading 56
program 78
space
expanding 61, 62
requirements 61
TCT (terminal control table) 44
templates
CLIST 99
JCL 99
temporary storage queues 13
terminal control table (TCT) 44
terminal printing
CICS 35
trace facility 155
trace file 47
tracing
activating 155
deactivating 161
transaction
entries 94
transient data
defining extrapartition 44
printing 44
queue
defining 43
printing, CICS 35
TYPE=INTRA entry in DCT 35
reading from tape 44
tuning
IMS 14, 57

U

unit of work, logical

IMS 57,58
user data set 72
using

data build descriptor option 13

generated applications with PL/I
programs 18

multiple work databases 63

remote files, CICS 43

using spool files 13

utilities

diagnostic control options
(ELAC) 121,126

diagnostic message printing
(ELAU) 124

utilities (continued)
for CICS with Rational COBOL
Runtime 12
IMS diagnostic message print 135
new copy (ELAN) 122
utilities, diagnostic, message print utility,
CICS 124
utilities, parameter group utility,
PRGM 131

\'}

virtual storage
considerations and residency 40
requirements
Rational COBOL Runtime 5
VSAM
data set definition 28
defining an alternate index 28
file loading 30
indexed (KSDS) data set 28
relative (RRDS) data set 28
serial (ESDS) data set 28
status codes 180

w

warnings
empty KSDS data set, VSAM
restriction 30
PRTMPP parameter, line skip
malfunction 37
work database
clearing records 58
deleting old records 58
ELAPCB macro 52
expanding 60
IMS 15
maintaining 58
multiple 63
space for segmented applications 8
WORK parameter in ELAPCB 52
WSCLEAR option for COBOL 18

V4

z/0S
DB2 considerations for Rational
COBOL Runtime 11
DL/I considerations 11
DL/I considerations for Rational
COBOL Runtime 11
installation considerations 3
preparation 103
runtime messages 191
z/0S batch
DL/I considerations 48
z/0OS/XA considerations 31

Index 243

244 1BM Rational COBOL Runtime Guide for zSeries

Program Number: 5655-R29

Printed in USA

SC31-6951-02

	Contents
	About This Document
	Who Should Use This Document
	Terminology Used in This Document

	Part 1. Preparing to Install
	Chapter 1. Preparing for the Installation of Rational COBOL Runtime
	Chapter 2. Storage Requirements for Rational COBOL Runtime
	Virtual Storage Requirements
	Rational COBOL Runtime Load Module Storage
	Load Module Storage
	COBOL Dynamic Storage
	Rational COBOL Runtime Dynamic Storage
	Storage Requirements for CICS
	Disk Storage Requirements for Rational COBOL Runtime
	Work Database Space For Segmented Programs

	Chapter 3. Installation Considerations
	z/OS Batch Considerations
	DL/I Considerations
	DB2 Considerations

	CICS Installation Considerations
	DL/I Considerations
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	CICS Utilities
	Client / Server Processing Considerations
	Using the data Build Descriptor Option
	Modifying CICS Resource Definitions
	Using Spool Files
	Terminal Considerations
	Temporary Storage

	IMS Installation Considerations
	IMS/ESA Exploitation
	DB2 Considerations
	Security Considerations
	Monitoring and Tuning
	IMS System Definition
	IMS Control Region
	Work Database
	DL/I Work Database Considerations
	DB2 Work Database Considerations

	Chapter 4. Customizing Rational COBOL Runtime
	General Customization Considerations for z/OS
	Customizing Rational COBOL Runtime
	Security Considerations
	Performance Considerations
	Customizing Build Scripts
	Modifying the Language Environment Runtime Option
	Using Generated Programs with PL/I Programs
	Installation and Language-Dependent Options for z/OS

	Part 2. Administering on z/OS Systems
	Chapter 5. General System Considerations for z/OS Systems
	Considerations that Affect Performance
	Build Descriptor and Compiler Options
	Modules in Memory
	Files and Databases

	Defining and Loading VSAM Program Data Files
	Defining VSAM Data Sets
	Defining an Alternate Index

	Loading Data in the Files

	Support for DBCS terminals
	Extended Addressing Considerations for Rational COBOL Runtime
	DB2 Considerations
	Preparing Programs
	Checking Access Authorization

	Backing Up Data
	Customizing Rational COBOL Runtime

	Chapter 6. System Considerations for CICS
	Required File Descriptions
	Segmented and Nonsegmented Processing
	Using Transient Data Queues for Printing in z/OS CICS
	z/OS CICS terminal printing
	Special Parameter Group for the FZETPRT Program
	PRTBUF Parameter
	PRTMPP Parameter
	PRTTYP Parameter
	FORMFD Parameter

	CICS Entries for FZETPRT (DBCS only)

	Using the New Copy Function
	Specifying Recovery Options in the CICS Tables
	Considerations that Affect Performance
	Residency (Modules in Memory) Considerations
	Virtual Storage Considerations and Residency

	Work Database Temporary Storage Queue Considerations
	Terminal Printing

	Using and Allocating Data Files in CICS
	Defining and Loading VSAM Data Files
	Adding the Job Control Statements
	Adding the File Name to the CICS File Control Table

	Using Remote Files
	Defining Transient Data Queues
	Defining Intrapartition Transient Data
	Defining Extrapartition Transient Data

	Considerations for Using DB2 in CICS
	Associating DB2 Databases with CICS Transactions
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in CICS
	Recovery and Database Integrity Considerations

	Setting up the National Language

	Chapter 7. System Considerations for z/OS Batch
	Required File Descriptions
	Using VSAM Program Data Files in z/OS Batch
	Considerations for Using DB2 in z/OS Batch
	Recovery and Database Integrity Considerations

	Considerations for Using DL/I in z/OS Batch
	Defining the Program Specification Block (PSB)
	Recovery and Database Integrity Considerations

	Performance Considerations for z/OS Batch
	Runtime JCL

	Chapter 8. System Considerations for IMS
	Required File Descriptions
	Defining the Program Specification Block (PSB)
	Processing Modes
	Printing Considerations for IMS
	Recovery and Database Integrity Considerations
	Considerations that Affect Performance
	Residency Considerations and the IMS Preload Function
	Preloading Rational COBOL Runtime Modules
	Loading Rational COBOL Runtime Modules into the Link Pack Area
	Preloading Generated Programs

	Database Performance
	Limiting MFS Control Blocks
	Monitoring and Tuning the IMS System

	Considerations for Using DB2 in IMS
	Recovery and Database Integrity Considerations
	Checking Authorization

	Considerations for Using DL/I in IMS
	Recovery and Database Integrity Considerations

	Maintaining the Work Database in IMS
	Deleting Old Records from the Work Database
	DL/I Work Database
	DB2 Work Database

	Expanding the Work Database
	DL/I Work Database
	DB2 Work Database

	Supporting Multiple Work Databases
	DL/I Work Databases
	DB2 Work Databases

	Considerations for Message Format Services in IMS

	Part 3. Preparing and Running Generated Applications
	Chapter 9. Output of Program Generation on z/OS Systems
	Allocating Preparation Data Sets
	List of Program Preparation Steps after Program Generation
	Deploying generated code to USS

	Output of Generation
	Objects Generated for Programs
	Application COBOL Program
	Sample Runtime JCL
	Bind Commands

	Link Edit File
	CICS Entries
	Objects Generated for Data Tables
	Data Table COBOL Program

	Objects Generated for Form Groups
	Online Print Services Program
	Batch Print Services Program
	Form Group Format Module
	MFS Print Services Program
	MFS Source
	COBOL Copybook for MFS MID/MOD Layout

	Chapter 10. z/OS Builds
	z/OS Build Server
	Starting a z/OS Build Server
	Starting a USS Build Server
	Stopping servers
	Configuring a build server

	Working with Build Scripts
	Working with z/OS Build Scripts
	Writing a JCL build script
	File Name Conversions for z/OS

	Converting JCL to Pseudo-JCL

	Chapter 11. Preparing and Running a Generated Program in CICS
	Modifying CICS Resource Definitions
	Program Entries
	Transaction Entries
	Destination Control Table Entries (DCT)
	File Control Table Entries (FCT)
	Resource Control Table Entry (RCT)
	Using Remote Programs, Transactions, or Files

	Modifying CICS Startup JCL
	Making New Modules Available in the CICS Environment
	Making Programs Resident
	Running Programs under CICS
	Starting the Transaction in CICS
	Controlling Diagnostic Information in the CICS Environment
	Printing Diagnostic Messages in the CICS Environment

	Chapter 12. Creating or Modifying Runtime JCL on z/OS Systems
	Tailoring JCL before Generation
	Modifying Runtime JCL

	Chapter 13. Preparing and Running Generated Programs in z/OS Batch
	Running Main Programs under z/OS Batch
	Examples of Runtime JCL for z/OS Batch Programs
	Running a Main Basic Program with No Database Access
	Running a Main Basic Program with DB2 Access
	Running Main Basic Program with DL/I Access
	Running a Main Basic Program with DB2 and DL/I Access

	Recovery and Restart for z/OS Batch Programs

	Chapter 14. Preparing and Running Generated Programs in IMS/VS and IMS BMP
	Modifying the IMS System Definition Parameters
	Defining an Interactive Program
	Defining Parameters for a Main Basic Program as an MPP
	Defining Parameters for a Batch-Oriented BMP Program
	Defining Parameters for a Transaction-Oriented BMP Program

	Creating MFS Control Blocks
	Making New Modules Available in the IMS Environment
	Preloading Program, Print Services, and Data Table Modules
	Running Programs under IMS
	Starting a Main Program Directly
	Starting a Main Transaction Program Using the /FORMAT Command
	Running Transaction Programs as IMS MPPs
	IMS Commands
	Keyboard Key Operation
	DBCS Data on a Non-DBCS Terminal
	Error Reporting
	Responding to IMS Error Messages

	Running Main Basic Programs as MPPs

	Running a Main Basic Program under IMS BMP
	Examples of Runtime JCL for IMS BMP Programs
	Running a Main Basic Program as an IMS BMP Program
	Running a Main Basic Program as an IMS BMP Program with DB2 Access

	Recovery and Restart for IMS BMP Programs

	Chapter 15. Moving Prepared Programs to Other Systems from z/OS Systems
	Moving Prepared Programs To Another z/OS System
	Maintaining Backup Copies of Production Libraries

	Part 4. Utilities
	Chapter 16. Using Rational COBOL Runtime Utilities for z/OS CICS Systems
	Using the CICS Utilities Menu
	New Copy
	Diagnostic Message Printing Utility
	Diagnostic Control Options for z/OS CICS Systems
	Change or View Diagnostic Control Options for a Transaction
	Change or View Default Diagnostic Control Options

	Using the Parameter Group Utility for z/OS CICS Systems

	Chapter 17. Using Rational COBOL Runtime Utilities for IMS Systems
	IMS Diagnostic Message Print Utility

	Part 5. Diagnosing Problems
	Chapter 18. Diagnosing Problems for Rational COBOL Runtime on z/OS Systems
	Detecting Errors
	Reporting Errors
	Controlling Error Reporting
	Controlling Error Reporting in CICS
	Controlling Error Reporting in IMS Environments
	Controlling Error Reporting in z/OS Batch

	Error Reporting Summary
	Transaction Error
	Run Unit Error
	Catastrophic error
	Rational COBOL Runtime Error

	Using the Rational COBOL Runtime Error Panel

	Printing Diagnostic Information for IMS
	errorDestination Message Queue
	IMS Log Format
	Running the Diagnostic Print Utility

	Printing Diagnostic Information for CICS
	CICS Diagnostic Message Layout
	Running the Diagnostic Print Utility

	Analyzing Errors Detected while Running a Program

	Chapter 19. Finding Information in Dumps
	Rational COBOL Runtime ABEND Dumps
	COBOL or Subsystem ABEND Dumps
	Information in the Rational COBOL Runtime Control Block
	Information in a Program, Print Services, or DataTable Profile Block
	How to Find the Current Position in a Program at Time of Error

	Chapter 20. Rational COBOL Runtime Trace Facility
	Enabling EGL Program Source-Level Tracing with Build Descriptor Options
	Activating a Trace
	Activating a Trace Session for CICS or IMS/VS
	Activating a Trace Session for z/OS Batch or IMS BMP

	Deactivating a Trace Session
	Printing Trace Output
	Printing the Trace Output in CICS
	Printing the Trace Output in IMS/VS
	Printing the Trace Output in z/OS Batch or IMS BMP

	Reporting Problems for Rational COBOL Runtime

	Chapter 21. Common Messages during Preparation for z/OS Systems
	Common Abend Codes during Preparation
	MFS Generation Messages
	DB2 Precompiler and Bind Messages
	COBOL Compilation Messages

	Chapter 22. Common System Error Codes for z/OS Systems
	Common Return Codes
	System Error Code Formats for sysVar.errorCode
	Common System Error Codes in sysVar.errorCode
	EGL Error Codes

	Common SQL Codes
	Common DL/I Status Codes
	Common VSAM Status Codes
	OPEN request type
	CLOSE request type
	GET/PUT/POINT/ERASE/CHECK/ENDREQ request types

	COBOL Status Key Values

	Chapter 23. Rational COBOL Runtime Return Codes, Abend Codes, and Exception Codes
	Return Codes
	ABEND Codes
	CICS Environments
	IMS, IMS BMP, and z/OS Batch Environments
	Exception Codes

	Chapter 24. Codes from Other Products for z/OS Systems
	Common System Abend Codes for All Environments
	LE Runtime Messages
	Common COBOL Abend Codes
	Common IMS Runtime Messages
	Common IMS Runtime Abend Codes
	Common CICS Runtime Messages
	Common CICS Abend Codes
	COBOL Abends under CICS

	Part 6. Appendixes
	Appendix. Rational COBOL Runtime Messages
	Message Format
	ELA Messages
	FZE messages
	PRM messages

	Notices
	Trademarks

	Index

