
Create a mortgage application with EGL
Rich UI

���

ii Create a mortgage application with EGL Rich UI

Contents

Create a mortgage application with EGL
Rich UI 1
Introduction 1
Lesson 1: Plan the mortgage application 4

Sketch the interface 4
Identify the application structure 4
Lesson checkpoint 5

Lesson 2: Set up the workspace 5
Create an EGL service project 6
Create an EGL Rich UI project 8
Import the EGL Dojo widgets sample. 10
Change your build path for MortgageUIProject 11
Lesson checkpoint 12

Lesson 3: Create the mortgage calculation service. . 12
Create a Service part 12
Create a Record part 14
Lesson checkpoint 15

Lesson 4: Create the user interface for the calculator 15
Create a Rich UI handler 16
Construct the user interface 17
Lesson checkpoint 27

Lesson 5: Add code to the mortgage calculator
handler 27

Create an EGL library 28
Change the code in the handler. 29
Complete the inputRec_form_Submit function . . 30
Add the showProcessImage function 30
Add the hideProcessImage function 31
Add the calculateMortgage function 31
Add the displayResults function 31
Write the exception handler 32
Test the calculator 32
Lesson checkpoint 33

Lesson 6: Create the calculation results handler . . 34
Publish the service results 34
Create the CalculationResultsHandler handler . . 35
Test the pie chart 37
Lesson checkpoint 37

Lesson 7: Create the main Rich UI handler 38
Create the MainHandler handler 38
Test the portal 40
Lesson checkpoint 42

Lesson 8: Create the calculation history handler . . 42
Create the handler 42
Lesson checkpoint 47

Lesson 9: Embed the calculation history handler in
the application 47

Change the results portlet 47
Change the main portal 47
Test the portal 48

Lesson checkpoint 51
Lesson 10: Create the map locator handler 52

Create records for the Interface file 52
Create the Local Search Interface 54
Create the MapLocatorHandler handler 55
Lesson checkpoint 58

Lesson 11: Add code to the map locator handler . . 58
Finish the source code for
MapLocatorHandler.egl 59
Test the new portlet 61
Lesson checkpoint 63

Lesson 12: Embed the map locator handler in the
application 63

Change the main portal 63
Test the portal 63
Lesson checkpoint 64

Lesson 13: Install Apache Tomcat 64
Download and access the server 64
Lesson checkpoint 66

Lesson 14: Deploy and test the mortgage application 67
Edit the deployment descriptor 67
Deploy the Rich UI application 69
Run the generated code 70
Lesson checkpoint 73

Summary 73
Resources 73

Finished code for MortgageCalculationService.egl
after Lesson 3 74
Finished code for MortgageCalculatorHandler.egl
after Lesson 4 74
Finished code for MortgageCalculatorHandler.egl
after Lesson 5 77
Finished code for CalculationResultsHandler.egl
after Lesson 6 80
Finished code for MainHandler.egl after Lesson 7 80
Finished code for CalculationHistoryHandler.egl
after Lesson 8 81
Finished code for MainHandler.egl after Lesson 9 82
Finished code for GooglePlaceRecords.egl after
Lesson 10 83
Finished code for GooglePlacesService.egl after
Lesson 10 84
Finished code for MapLocatorHandler.egl after
Lesson 10 84
Finished code for MapLocatorHandler.egl after
Lesson 11 85
Finished code for MainHandler.egl after Lesson
12 86

Index 89

iii

iv Create a mortgage application with EGL Rich UI

Create a mortgage application with EGL Rich UI

Create a Rich UI application so that the user can do the following tasks: calculate
monthly mortgage payments, given a loan amount and interest rate; display a pie
chart that tells the interest and principal for the life of the mortgage; retrieve any
of the payment calculations that were provided earlier to the same user; and
display a map of the mortgage lenders who have offices in one or another U.S. zip
code.

Learning objectives

In this tutorial, you will complete these tasks:
v Plan the application and design the interface.
v Import a widget to control the different sections of the interface.
v Write a service to calculate mortgage payments.
v Request output from the service and display the results.
v Create a pie chart.
v Pass data between sections of the interface.
v Create an internal table that lists all calculations.
v Access an existing service to find mortgage lenders and to map their locations.
v Install and configure the Apache Tomcat web server.
v Deploy the web page to the web server and test the application.

Time required

90 minutes
The tutorial in HTML format:

“Create a mortgage application with EGL Rich UI” at http://
wilson.boulder.ibm.com/infocenter/rbdhelp/v8r0m0

Introduction

The following image shows the application that you will create:

© Copyright IBM Corporation 2000, 2013 1

http://wilson.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.richui.mortgage.tutorial.doc/topics/egl_richui_mortgage_abstract.html
http://wilson.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.richui.mortgage.tutorial.doc/topics/egl_richui_mortgage_abstract.html

At run time, the user interacts with the Rich UI application. It was deployed to a
server, was transmitted to the user's browser, and is running in that browser. From
the browser, the Rich UI application accesses services, each of which runs remotely
on a server and returns data to the application.

The use of different kinds of logic helps to provide a main benefit of Rich
UI: Users can interact with a responsive, local-running web application even as the
services do background work such as calculating mortgage payments.

In general, a web service is deployed as a SOAP service or REST service. For
further details on the distinction between the two, see “Architectural styles in web
services” at http:/publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0.

In this tutorial, you access two services:
v A remote SOAP service finds addresses of mortgage lenders and identifies the

locations on a map.
v A second service is written by you and is deployed along with the Rich UI

application. This kind of service is called an EGL dedicated service, and in this
case it calculates the mortgage payments.
In general, you can use a dedicated service to do tasks that other EGL-generated
Java™ services can do, such as accessing a database or file system. However, the
dedicated service is not available to other code unless you redeploy it as an
EGL-generated web service.
The benefit of a dedicated service results from its shared deployment with the
Rich UI application. If a Rich UI application accesses a web service, your
deployment of the application typically requires that you specify the service

2 Create a mortgage application with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_serv_access_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_serv_access_overview.html

location. However, if a Rich UI application accesses a dedicated service, your
deployment of the application does not require the location detail. Instead, the
service will be available wherever you deploy the Rich UI application.

You can run the Rich UI application and access the service even before you deploy
the application internally to a web project. That internal deployment creates the
HTML file and embeds that file with others in a web archive (WAR) file, which is
a compressed resource like a .zip file. After the Rich UI application and the
dedicated service are deployed internally in this way, you deploy them to a server.

Note: Invocation of a dedicated service is slow in the Rich UI editor, but access is
much faster when the application and services are deployed to a server.

Learning objectives

The learning objectives are as described in “Create a mortgage application with
EGL Rich UI,” on page 1.

Time required

This tutorial takes about 2 hours to finish. If you explore other concepts related to
this tutorial, it might take longer to complete.

You can create the EGL files you need for this application in one of the following
ways:
v Line by line (most helpful): Complete the individual lessons to explore the code

in small, manageable chunks, learning important keywords and concepts. This
method also requires the greatest time commitment.

v Finished code files: At the end of each lesson in which you create a file, you
can link to the completed code, which you can copy into the Rich UI editor.

Skill level

Introductory

Audience

This tutorial is designed for people who know the basic concepts of programming
and want experience with EGL Rich UI.

System requirements

To complete this tutorial, you must have the following tools and components
installed on your computer:
v Rational® Business Developer Version 8.0.1.2 or higher.
v A working Internet connection.

Prerequisites

You do not need any experience with EGL to complete this tutorial.

Expected results

You will create a working Rich UI application that calculates mortgages and finds
mortgage lenders in a specified area of the United States.

Create a mortgage application with EGL Rich UI 3

Lesson 1: Plan the mortgage application
Design your application on paper before you begin coding.

When you plan an application, do as follows:
v List your objectives, as this tutorial did earlier.
v Sketch the interface.
v Identify the application structure.

Sketch the interface
Use this sketch as a guide when you create the components of the interface:

Identify the application structure
When you write a complex Rich UI application, you write code in several Rich UI
handlers, each of which corresponds to a web page or to a section of a web page.
As noted earlier, the handlers can access services, some of which you might
develop by using an EGL Service part.

Whenever possible, use preexisting resources. For one example, your Rich UI
application will access a service hosted by Google to retrieve a list of mortgage
lenders within a specified zip code. For a second example, you will use the
following EGL projects that are provided with the product:

com.ibm.egl.rui.dojo.samples
Provides the following kinds of code and more:
v Widgets that divide the interface into sections, for flexibility at

development time
v Logic that creates the dialog boxes with which you notify the user who

provides invalid data
v Google map widgets

com.ibm.egl.rui.dojo.widgets
Provides the following widget types for this tutorial:
v DojoButton
v DojoComboBox
v DojoCurrencyTextBox

4 Create a mortgage application with EGL Rich UI

v DojoPieChart
v DojoTextField
v PieChartData

All those widget types are based on Dojo, as are many other widgets that
are available to you. For background details on that technology, see Dojo
toolkit (http://dojotoolkit.org).

com.ibm.egl.rui
Provides the EGL Infobus, which provides communication between the
Rich UI handlers that contribute to the interface. The project also provides
the following widget types for this tutorial:
v Box
v DataGrid
v GridLayout
v HyperLink
v Image
v TextField
v TextLabel

You will develop the following logic:

MortgageCalculationService
A dedicated service that calculates monthly payments

MortgageLib
A library that provides code to several handlers

MainHandler
A handler that declares other handlers, each of which either controls a
section of the web page or does other work in the background

MortgageCalculatorHandler
A handler that calculates monthly payments

CalculationHistoryHandler
A handler that displays an interactive list of previous payment calculations

CalculationResultsHandler
A handler that displays a pie chart of interest payments and principal

MapLocatorHandler
A handler that displays the locations of mortgage lenders

Lesson checkpoint

In this lesson, you completed the following tasks:
v Sketched the application interface
v Identified the application structure

In the next lesson, you import the Dojo samples project and create two EGL
projects to hold your code.

Lesson 2: Set up the workspace
Before you write your logic, create two EGL projects and import the Dojo samples.

Create a mortgage application with EGL Rich UI 5

http://dojotoolkit.org
http://dojotoolkit.org

An EGL application is organized in one or more projects, each of which is a
physical folder in the workspace. A project contains an EGL source folder that is
provided for you, and that folder contains one or more packages, which in turn
contain EGL source files. This hierarchy is basic to your work in EGL: a project,
then an EGL source folder, then a package with EGL source files.

The EGL source files include EGL parts, which are type definitions that you create.
For example, a Service part contains logic, and a Record part can be the basis of a
variable that you declare in your Service part.

Packages are important because they separate parts into different contexts, or
namespaces:
v A part name might be duplicated in two different packages, and any EGL source

code can reference each part precisely. The main benefit of namespaces is that
different teams can develop different EGL parts without causing name collisions.

v Each part name in a given package is unique within that package:
– A part in one package can easily reference another part in the same package

by specifying the part name. For example, here is a declaration of a record
that is based on the Record part MyRecordPart:
myRecord MyRecordPart{};

– A part in one package can also reference a part in a second package by giving
the package name and part name, or by a shortcut that involves importing
the part. This tutorial gives examples.

One project can reference the parts in a second project, but only if the EGL build
path of the referencing project identifies the referenced project. Again, this tutorial
gives examples. However, in all cases, avoid using the same package name in
different projects, as that usage can cause problems in name resolution.

Your next task in this tutorial is to create the following projects:

MortgageServiceProject
Holds an EGL Service part and related definitions

MortgageUIProject
Holds the Rich UI handlers and related definitions

You can include all your code in a single project, but the separation shown here
lets you easily deploy the two kinds of code in different ways.

Create an EGL service project
1. If you are in a workbench perspective other than EGL, change to the EGL

perspective by clicking Window > Open Perspective > Other > EGL. The
perspective icon is in the upper-right corner of the workbench.

6 Create a mortgage application with EGL Rich UI

2. Click File > New > EGL Project, or click the New EGL Project icon on the
menu bar.

3. In the EGL Project window, enter the following information:
a. In the Project name field, type the following name:

MortgageServiceProject

b. In the EGL Project Types section, click General Project.

c. Click Next.
4. In the second EGL Project window, the defaults that EGL provides should be

correct. Verify the following information:

Create a mortgage application with EGL Rich UI 7

a. The Target runtime platform is Java. This setting indicates that EGL
generates Java source code from your EGL Service part.

b. Under Build descriptor options, the Create a build descriptor radio button
is selected. Build descriptors control the generation process. Because you are
creating a separate project for your service, you can use the default build
descriptor that EGL creates for you.

5. Click Finish.

EGL creates a project named MortgageServiceProject. Note the folders inside the
directory:

EGLSource
Put your packages and source files here.

EGLGen/JavaSource
EGL places the Java files it generates here.

JavaSource
Put any custom Java source files here. These files are not overwritten
during the generation process.

JRE System Library
EGL uses this folder for JAR files that support the Java Runtime
Environment.

Related reference

“Default build descriptors” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

Create an EGL Rich UI project
1. Click the New EGL Project icon on the menu bar.
2. In the New EGL Project window, enter the following information:

a. In the Project name field, type the following name:

8 Create a mortgage application with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.gg.doc/topics/gegl_core_default_build_descriptors.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.gg.doc/topics/gegl_core_default_build_descriptors.html

MortgageUIProject

b. In the EGL Project Types section, click Rich UI Project.

c. Click Next.
3. In the second EGL Project window, the defaults that EGL provides should be

correct. Verify the following information:
a. Use the default location for the project is selected.
b. The Widget libraries list contains the following projects:

v EGL Rich UI widgets
v EGL Dojo widgets

c. In the EGL project features group, Create an EGL deployment descriptor is
selected.

4. Click Next.
5. On the EGL Settings page, select MortgageServiceProject. The service project

is added to the build path for the new project, so that the UI project can use
parts that are defined in the service project.

6. Click Finish.

Create a mortgage application with EGL Rich UI 9

EGL creates a project named MortgageUIProject and adds support projects to the
workspace for Rich UI, Dojo Widgets, and the Dojo runtime library. In addition to
the directories that EGL created for the General project, a Rich UI project includes
the following directory:

WebContent
Contains support files, such as cascading style sheets (CSS) and images.

Import the EGL Dojo widgets sample
1. From the top menu of the workbench, click Help > Help Contents.
2. In the Help contents, expand Samples > Technology samples > EGL and click

EGL Dojo widgets.

3. In the Content pane, click Get the sample.

10 Create a mortgage application with EGL Rich UI

4. In the Import window, the default values are correct. Click Finish.

The latest version of the com.ibm.egl.rui.dojo.samples project is added to your
workspace.

Change your build path for MortgageUIProject
The EGL build path determines the projects that EGL examines when trying to
resolve references in your logic. To add the project that you just imported:
1. In the Project Explorer view, right-click MortgageUIProject, and then click

Properties. On the left side of the Properties for MortgageUIProject window,
click EGL Build Path. EGL displays a list of the projects in your workspace.

2. Select the com.ibm.egl.dojo.samples project. You do not need to select the
com.ibm.egl.dojo.widgets project because it is already in the build path of the
com.ibm.egl.dojo.runtime.local project. The finished build path window should
look like the following image:

Create a mortgage application with EGL Rich UI 11

These selections mean that when you organize the import statements that
provide other details to your programs, EGL will look in all of the selected
projects to resolve references.

3. Click OK.
Related reference

“The EGL build path” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

Lesson checkpoint

In this lesson, you completed the following tasks:
v Created an EGL project for the mortgage service
v Created an EGL project for the Rich UI application
v Imported the EGL Dojo samples project
v Adjusted the EGL build path for the second project

In the next lesson, you create a dedicated service to calculate a monthly mortgage
payment.

Lesson 3: Create the mortgage calculation service
Create a dedicated service to calculate monthly payments.

In this lesson, you create an EGL Service part, which is a generatable part. You
must place each generatable part in a separate source file, and the name of the part
must be the same as the name of the file.

Create a Service part
1. In the Project Explorer window, right-click MortgageServiceProject, and then

click New > Service.
2. In the New EGL Service Part window, enter the following information:

a. In the Package field, enter the following name:
services

b. In the EGL source file name field, enter the following name:
MortgageCalculationService

12 Create a mortgage application with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_core_buildpath_cpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_core_buildpath_cpt.html

EGL adds the .egl file extension.
c. Verify that Create as web (SOAP) service and Create as web (REST)

service are cleared, and leave the Implements Interfaces field empty.

3. Click Finish. EGL opens the new Service part in the editor.
4. Remove the code from the file, leaving only the following lines:

package services;

service MortgageCalculationService

end

5. Add the following function before the end statement:
function amortize(inputData MortgageCalculationResult inOut)
amt MONEY = inputData.loanAmount;
// convert to monthly rate
rate DECIMAL(10, 8) = (1 + inputData.interestRate / 1200);
// convert to months
term INT = (inputData.term * 12);

// calculate monthly payment amount
pmt MONEY = (amt * (rate - 1) * Mathlib.pow(rate, term)) /

(MathLib.pow(rate, term) - 1);
totalInterest MONEY = (pmt * term) - amt;

// update result record
inputData.monthlyPayment = pmt;
inputData.interest = totalInterest;
end

When you paste code from these instructions, the formatting might change.
Press Ctrl+Shift+F to reformat the code. You can change the formatting rules by
clicking Window > Preferences > EGL > Editor > Formatter.

Create a mortgage application with EGL Rich UI 13

Note:

EGL marks any code errors with a red X in the left margin and a wavy red line
under the error. Move your cursor over the X to see an error message.

Because you have not yet defined a type named MortgageCalculationResult,
EGL cannot create the inputData variable based on that type. When you create
this Record type in the next exercise, EGL will remove the error markers from
the display.

6. Save the file by clicking File > Save.

Create a Record part
The amortize() function uses a MortgageCalculationResult record. You can define
this record in the same file as the Service.

To create the Record part:
1. Add the following code after the amortize() function in the

MortgageCalculationService.egl file. The Record is a part, so you define it
outside the Service part, after the final end statement in the file:
record MortgageCalculationResult
// user input
loanAmount MONEY;
interestRate DECIMAL(10,8);
term INT;

// calculated fields
monthlyPayment MONEY;
interest MONEY;
end

2. Save the file. EGL should not display error markers in the code. If you see
errors in your source file, compare your code to the file contents in “Finished
code for MortgageCalculationService.egl after Lesson 3” on page 74. As you

14 Create a mortgage application with EGL Rich UI

work through the tutorial, you might see red Xs next to the project or next to
one of the folders below it, yet not see any errors in the file itself. If you
encounter this situation, resolve it by clicking Project > Clean. In the Clean
window, click Clean projects selected below and then click the appropriate
project, such as MortgageServiceProject.

Click OK. EGL rebuilds the selected project and the red X is removed from the
Project Explorer view.

3. Close the file by clicking the X next to the file name in the tab at the top of the
editor or by clicking File > Close.

Lesson checkpoint

You learned how to complete the following tasks:
v Create an EGL Service part
v Create an EGL Record part and add it to the source file for the Service
v Check for errors in your code

In the next lesson, you create the user interface for the first application portlet.
Related reference

“Services: a top-level overview” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

Lesson 4: Create the user interface for the calculator
Start to build the calculator by using EGL wizards and then the Rich UI editor.

You can add widgets to a web page by dragging content to the Design surface of
the Rich UI editor. The drag-and-drop and subsequent interaction with the editor
updates the source code for the Rich UI handler that you are developing.

Create a mortgage application with EGL Rich UI 15

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_core_service_part_cpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_core_service_part_cpt.html

Two sources of drag-and-drop content are available:
v A palette of widget types
v The EGL Data view, which provides data-type definitions such as EGL Record

parts. You first drag content from this view and then choose from among the
widget types that can display the type of data you selected.

By default, the widget palette is at the right of the editor, and the Data view is at
the lower left of the workbench.

Create a Rich UI handler
1. In the MortgageUIProject project, select the EGLSource folder and click the

New Rich UI Handler button on the menu bar.

2. In the “New Rich UI Handler part” window, enter the following information:
a. In the Package field, enter the following name:

handlers

b. In the EGL source file name field, enter the following name:
MortgageCalculatorHandler

c. Click Finish.

The new Handler opens in Design view in the Rich UI editor. EGL creates the
handlers package for you in the EGLSource folder.

16 Create a mortgage application with EGL Rich UI

Construct the user interface
To construct the UI for the calculator:
1. Create a record variable.

a. The EGL Data view, which is located by default in the lower-left corner of
the workbench, lists all primitive and record variables for the handler that
is currently open in the editor. Right-click the empty space below the entry
for the MortgageCalculatorHandler handler. Click New > EGL Variable.

b. In the Create a new EGL Data Variable wizard, request a new record
variable based on the MortgageCalculationResult Record part:
v Make sure Type Selection is set to Record.
v Select the MortgageCalculationResult record. This should be the first

type in the list.
v In the Array Properties section, leave Array cleared.
v In the Enter the name of the field field, enter the following text:

inputRec

v Click Finish.

Create a mortgage application with EGL Rich UI 17

This process creates the following record declaration in the source code for the
handler:
inputRec MortgageCalculationResult;

The process also shows the new record variable in the EGL Data view so that
you can drag the variable onto the editor.

2. EGL automatically created a GridLayout widget for you as your initial UI. By
default, this widget has four rows and three columns. You can use different
mechanisms to vary the number of rows and columns, as demonstrated here:
a. Right-click the GridLayout widget to highlight a cell.
b. Click Delete > Row

c. Again, right-click the GridLayout widget to highlight a cell.
d. Click Delete > Column

e. Now go to the Properties view, which by default is one of the tabbed
pages below the editor pane.

18 Create a mortgage application with EGL Rich UI

f. On the General page, set the rows property to 1 and the columns property
to 1.

The modified GridLayout widget remains the initial UI for the web page, but
now has a single cell into which you will add other content.

3. Click the inputRec variable in the EGL Data view, and drag that variable from
the EGL Data view to the one cell of the GridLayout widget in the editor.
EGL displays the Configure data widgets page of the Insert Data wizard. Use

this page to configure the widgets that EGL creates based on the fields in the
record you dragged onto the editor.

4. On the Configure data widgets page, make the following changes:
a. In the Create Widgets for section, click Editable data. This option

determines the default widgets that EGL displays in the wizard, none of
which have the read-only restriction.

b. In the Widget Type column for the loanAmount field, click the current
value in the Widget Type column, click the down arrow, and select
DojoCurrencyTextBox. This widget provides formatting and validation for
money amounts.

c. Leave the default DojoTextField widget for the interestRate widget.
d. In the Widget Type column for the term field, click the current value in the

Widget Type column, click the down arrow, and select DojoComboBox.
e. Clear the check box for the monthlyPayment and interest fields. You will

add a widget for the monthly payment field later; the interest field is not
part of this user interface.

f. Change the values in the Label column as follows, including the colons:
v Change "loanAmount" to "Loan amount:"
v Change "interestRate" to "Interest rate:"
v Change "term" to "Term:"
You just customized the prompts for each of the first data-entry fields on
the form being built.

Create a mortgage application with EGL Rich UI 19

g. Ensure that Add support for formatting and validation is selected. This
option adds a label and controller for each widget, along with a form
manager and related functions that apply to all the content in the new grid
layout. Do not select Use error label to support error message. This option
provides an error label for any controller-specific error message, but this
tutorial uses other mechanisms to indicate that an error has occurred.

h. View the following image. When your page is essentially the same, click
Finish.

The Design view is displayed, including a new, inner grid layout that is
within the original grid layout and that contains the new content.

5. To save your work, press Ctrl+S.
6. Adjust the size of the second and third input fields for a more uniform

appearance:

20 Create a mortgage application with EGL Rich UI

a. Highlight the input field for the interest rate. The dotted line should
enclose only that field.

b. In the Properties view, on the Position page, enter the following value for
the width property:
100

This value is the same as the default width for the DojoCurrencyTextBox
widget that you used for the loan amount.

c. Repeat steps a and b for the Term field. Click the Display surface to see
the change.

7. Set the valid values and the default value for the Dojo combo box:
a. With the Term field highlighted, click the General page of the Properties

view.
b. Next to the values property, click the ellipsis (...) to display the values

window.

c. Type the following number in the Add or remove strings from the list
field:
5

d. Click Add.
e. Type each of the following numbers, clicking Add after each addition:

10
15
30

Create a mortgage application with EGL Rich UI 21

The values window should look like this image:

f. Click OK.
8. To ensure that the initial display of the combo box includes the value 30, do

as follows:
a. Click the Source tab of the Rich UI editor.
b. Set a default value for the term. Go to the line where the inputRec record

is declared and add a set-values block to the declaration, as shown here:
inputRec MortgageCalculationResult {term = 30};

You are embedding the default value in the declaration, as is easiest.
However, you could have updated the start() function as follows, with
the same effect:
function start()

inputRec.term = 30;
end

9. While you are looking at the source code, review the following controller
declaration, which relates the inputRec.term variable with the Dojo combo
box:
inputRec_term_controller Controller

{ @MVC {model = inputRec.term, view = inputRec_term_comboBox as Widget}};

The controller declaration ensures that the value you assigned to the
inputRec.term variable will be used to initialize the combo box.

10. To save your work, press Ctrl+S.
11. Click the Rich UI editor Preview tab. The web page shows the runtime

display and should look like this image:

22 Create a mortgage application with EGL Rich UI

If you need to refresh the display, click the rightmost icon on the Rich UI
toolbar, which is on the upper right of the Preview page and is shown here:

12. Add new content to the inner GridLayout widget, which holds the record
detail:
a. Click the Design tab of the Rich UI editor.
b. Right-click the inner GridLayout widget, which is named inputRec_ui.

That name is displayed at the top of the Properties view.
c. On the General page of the Properties view, change the rows property to

the following value:
6

After you click the Design surface, the new rows are displayed underneath
the Term row.

13. Add a second inner GridLayout widget to hold a submit button.
a. From the Layout drawer of the palette, drag a GridLayout widget to the

first cell in the first blank row.

You will use the GridLayout widget to position the submit button and an
animated processing image. Give the widget the following name:
buttonLayout

b. Right-click the new widget to display the menu shown here.

Create a mortgage application with EGL Rich UI 23

c. Select Delete and then click Row. The General page of the Properties view
now indicates that the grid layout has 2 rows.

d. Use either the Properties view or the menu that you just used to modify
buttonLayout to have one column. If you make a mistake and want to
revert to an earlier display, press Ctrl+Z.

e. When buttonLayout is active, go to the Layout page of the Properties view.
Do as follows so that the layout is centered in an otherwise blank row:
v Change the horizontalAlignment property to CENTER.
v Change the horizontalSpan property to 2.

14. To save your work, press Ctrl+S.
15. Create a submit button and bind it to a stub function:

a. From the Display and Input drawer of the palette, drag a Dojo Button
onto the upper cell of buttonLayout.

24 Create a mortgage application with EGL Rich UI

b. Give the button the following name:
calculationButton

c. On the General page of the Properties view, change the text property to
the following label:
Calculate

Next, you must bind the button to a function that was created for you
when you dragged the inputRec variable onto the editor.

d. On the Events tab, select the row with the onClick event. Click the blank
space in the Function column to display an arrow button. Click the arrow
button and select inputRec_form_Submit. You will complete the code for
this function in the next lesson.
Note the plus sign in the last column of the row. You could have clicked

this button to create a new function to bind to the Calculate button. The
workbench would have brought you to the Source view and automatically
created a stub function, which is a function that has no code but is ready
for your input.

16. Add an animated image that indicates that a mortgage calculation is in
process.
a. From the Display and Input drawer of the palette, drag an Image widget

to the empty cell below the Calculate button.
b. In the New Variable window, give the image the following name:

processImage

c. In the Properties view, on the General page, assign a source for the image
in the src field:
tools/spinner.gif

The image is located in the com.ibm.egl.rui.dojo.samples/WebContent
folder. The development environment treats the WebContent folders of all of
the projects in your workspace as a single virtual folder.

d. Also in the Properties view, on the Appearance page, clear the visible
check box. The image remains hidden until the Calculate button is clicked.

Create a mortgage application with EGL Rich UI 25

e. Also in the Properties view, on the Layout page, set the
horizontalAlignment property to CENTER.

17. To save your work, press Ctrl+S.
18. Add a widget to display the results of the calculation.

a. Drag a TextLabel widget from the Display and Input drawer of the palette
to the first cell of the fifth row, which is below the new graphic. Assign the
widget the following name:
paymentLabel

You use a label widget here because the user does not change this field.
The application calculates and updates the contents.

b. In the Properties view, on the General page, enter the following value for
the text property (including the dollar sign):
$0.00

c. On the same page, set the fontSize property to 18.
d. Also in the Properties view, on the Layout page, set the following

properties:
v Set horizontalAlignment to CENTER.
v Set horizontalSpan to 2.

When you click the Design surface, the web page now looks like this
image:

19. Add an error field for general errors, such as problems connecting to the
service.
a. Drag a TextLabel widget from the Display and Input drawer of the palette

to the first cell of the last empty row and assign the following name:
errorLabel

b. Change the following properties for the TextLabel widget:
v On the General page, delete the default value of the text property that

reads "TextLabel".
v Also on the General page, click the blank button next to the color

property field, and then click Name format and scroll down the list and
select Red. Click OK. This sets the font color for any messages
displayed in the label.

v On the Position page, set the width property to 250.
v On the Layout page, change the horizontalSpan property to 2.

26 Create a mortgage application with EGL Rich UI

c. Click anywhere in the Design area and press Ctrl+S to save the handler.

The completed interface should look like the following image:

To review the source code, click the Source tab at the bottom of the editor pane.
The code should match the file contents in “Finished code for
MortgageCalculatorHandler.egl after Lesson 4” on page 74.

Related reference

“Rich UI overview” at http://publib.boulder.ibm.com/infocenter/rbdhelp/
v8r0m0

“Rich UI validation and formatting” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

Lesson checkpoint

You learned how to perform the following tasks:
v Create a Rich UI Handler.
v Create a variable in the EGL Data view.
v Update a user interface by dragging a record variable onto the Rich UI editor.
v Use the EGL Rich UI editor to change an interface.
v Use the Properties view to format the interface.

In the next lesson, you add code to support the interface that you just created.

Lesson 5: Add code to the mortgage calculator handler
Add functions to the handler that you created in the previous lesson.

In this lesson, you work directly with EGL source code, starting with an EGL
library that you write. A library can contain constants, variables, and functions,
any of which can be accessed by the different units of logic in your application. An
important characteristic of a library is that changes to a variable are available to
any unit of logic that accesses the library. However, the focus in this tutorial is on
functions, which you place in a library to avoid having to maintain the same,
widely used logic in multiple places.

Create a mortgage application with EGL Rich UI 27

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_richui_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.pg.doc/topics/pegl_richui_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_validation.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_validation.html

To handle some commonplace issues, you can use the EGL Model View Controller
(MVC) framework, which is provided by the com.ibm.egl.rui project. Although
the initials "MVC" typically describe the different components of an enterprise
application, the MVC framework in Rich UI concerns only the components of a
user interface. Here, the model is a variable or record field, the view is a widget,
and the controller is a declaration that oversees the transfer of data between the
model and view. That transfer of data is sometimes automatic and is sometimes a
response to a function invocation, as shown later.

The drag-and-drop actions of the previous lesson added not only controller
declarations, but a form manager, which is a declaration that lets you treat other
declarations as components of a single form. A form manager includes a set of
form fields, each of which can include a label, a controller, and an error field.

Create an EGL library
Create an EGL library to hold a function that provides U.S. currency formatting for
a MONEY variable. A more complex version might allow for local currency
symbols and separators and different input types. However, for this tutorial, a
simple version will suffice.
1. Select the MortgageUIProject in Project Explorer.

2. Click the New EGL Source File button.

3. In the New EGL part window, specify the package as follows:
libraries

4. Name the file as follows:
MortgageLib

5. Click Finish. The new source file opens in the EGL editor.
6. Remove the comment from the file and add the following code:

library MortgageLib
function formatMoney(amount STRING in) returns(STRING)

len int = strlib.characterLen(amount);
index int = len - 6; // 2 dec places + decimal + 3 chars before separator
while(index > 0)

amount = amount[1 : index] :: "," :: amount[index + 1 : len];
index -= 3;
len += 1;

end
return("$" :: amount);

end
end

28 Create a mortgage application with EGL Rich UI

As shown, you specify the library name and embed a new function,
formatMoney(), which adds commas and a dollar sign to an input string. The
assumption here is that the input field contains a money value with two
decimal places.

7. Save the file. The library is automatically generated once the file is saved.

The MortgageLib library is now ready to use.

Change the code in the handler
Before you add new functions, you must make a few minor changes:
1. Click the Source tab for MortgageCalculatorHandler.
2. Set default values for the Loan amount and Interest fields. Go to the line

where the inputRec record is declared and add the two assignments to the
declaration, as shown here:
inputRec MortgageCalculationResult

{term = 30, loanAmount=180000, interestRate = 5.2};

Save the file and click the Preview tab. The interface now shows the default
values, including the value that you specified in the previous lesson, for the
term field:

3. On the first line of the handler, before the declaration of the ui widget, declare
a variable that the code uses to access the dedicated service:
mortService MortgageCalculationService{@dedicatedService};

4. Hover your cursor over either the red x or the red underline to learn that the
cause of the error is as follows: “The type MortgageCalculationService cannot
be resolved.” The error might be puzzling, given that you earlier set the EGL

Create a mortgage application with EGL Rich UI 29

build path for the project in which you are working so that the project can
access the one that contains the service. The problem here is that the source file
is not importing the Service part.

5. To remove the error, type the following import statement after the other import
statements in the file:
import services.MortgageCalculationService;

After a few seconds, the error marks are removed even though you did not
save the file.

6. In many cases, the development environment can insert a missing import
statement for you. To see this convenience in action, remove the import
statement that you just typed. When you see the error marks return, type
Ctrl+Shift+O to reinsert the statement.

7. Save the file.

Complete the inputRec_form_Submit function
EGL created a stub inputRec_form_Submit function. The intent is for the function to
validate all the fields on the form and to “commit” them. The commit is part of the
MVC implementation and means that the inputRec record is updated with the
values in the widgets.

You will add code to call two other functions. The first function makes the
processImage image visible and in this way tells the user that the application is
working. The second function calls the service to calculate the mortgage payment.

To complete the inputRec_form_Submit function, update the if statement so that it
reads as follows:
if(inputRec_form.isValid())

inputRec_form.commit();
showProcessImage();
calculateMortgage();

else
errorLabel.text = "Input form validation failed.";

end

Do not worry about the code format; a later section handles the issue. Also, the
next sections remove the error marks that are shown here:

Add the showProcessImage function
You need the showProcessImage function to make the processImage image visible.
To code the function in the Rich UI editor, add the following lines before the final
end statement in the handler:

30 Create a mortgage application with EGL Rich UI

function showProcessImage()
processImage.visible = yes;

end

Note: The visible property is part of any Image widget. You changed the initial
value of this property in the previous lesson, when you cleared the visible check
box for the processImage image.

Add the hideProcessImage function
You need the hideProcessImage function to hide the image when necessary. Add
the following lines after the showProcessImage function:
function hideProcessImage()

processImage.visible = no;
end

Add the calculateMortgage function
The calculateMortgage function calls a service to do a mortgage calculation based
on the values displayed in the UI. To code the function in the Rich UI editor, add
the following lines after the hideProcessImage function and ignore the error marks:
function calculateMortgage()

call mortService.amortize(inputRec)
returning to displayResults
onException handleException;

end

Note:

1. The call statement in Rich UI is a variation used only to access services. The
runtime communication in this case is asynchronous, which means that the
user can continue to interact with the handler while the service is responding.

2. A service requester often passes a record to the service being accessed. In this
tutorial, the handler passes the global inputRec variable and receives, in the
same record, the value returned from the service.

Add the displayResults function
The displayResults function is a callback function, which runs immediately after
the service successfully returns business data to the Rich UI handler. To code the
function, add the following lines after the calculateMortgage function:
function displayResults(retResult MortgageCalculationResult in)

paymentLabel.text = MortgageLib.formatMoney(retResult.monthlyPayment as STRING);
inputRec_form.publish();
hideProcessImage();

end

Note:

v You use the formatMoney function from your new EGL Library part to add
commas and a dollar sign to the payment amount. Because you created the
paymentLabel variable without involving the MVC framework, you must handle
the formatting yourself.

v As noted earlier, a form manager includes form fields that in turn can include
controllers and other declarations. The publish function is available in any form
manager and invokes the controller-specific publish functions, one after the next,
to do as follows:
1. Retrieve the data from the variable that serves as the controller model.
2. Format that data.

Create a mortgage application with EGL Rich UI 31

3. Write the formatted data to the widget that serves as the controller view.
Given that sequence of events, the form-level publish function is often invoked
as it is here: in a callback function that receives data from a service.

Write the exception handler
If the service invocation results in an error, the usual callback function is not
invoked. However, if you arranged for the use of an exception handler, as in this
case, that function is invoked.

Do as follows:
1. After the displayResults function, add the following code:

// catch-all exception handler
private function handleException(ae AnyException in)
errorLabel.text = "Error calling service: " + ae.message;
end

Functions with the private modifier can only be called by the EGL part where
the function resides; in this case, by the embedding handler. The function
places text in the errorLabel widget that you created in the previous lesson.

2. Update the calculateMortgage function immediately before the call statement,
as follows:
errorLabel.text = "";

In this way, you clear the errorLabel field before you invoke the service that
does a mortgage calculation. If you do not add that code, an error such as the
temporary loss of service connection will display an error message, even after
the service is invoked successfully.

3. Right-click an empty space in the editor. Click Organize imports. EGL adds
import statements for all the undefined symbols that it can.

4. Save the file. If you see errors in your source file, compare your code to the file
contents in “Finished code for MortgageCalculatorHandler.egl after Lesson 5”
on page 77.

5. After you resolve any errors, reformat your input by pressing Ctrl+Shift+F and
save the file again.

Test the calculator
You are now ready to test the calculator.
1. Change to Preview view by clicking the Preview tab at the bottom of the

editor. You can fully test your application in the Preview view, including the
user interface and services. You can do your testing whether the services are
deployed on a server or are available only as EGL source code. EGL displays
the default values that you entered when you created the handler.

2. Click Calculate. EGL displays the monthly payment.

32 Create a mortgage application with EGL Rich UI

3. Type a letter in the first field. As is true of several EGL Dojo widgets, a red
mark is displayed as soon as an error occurs, and an error message is displayed
in an adjacent tooltip.

When the widget loses focus, the tooltip is hidden, and when the widget
regains focus, the tooltip is shown.

4. Change the values for any of the three fields and click Calculate again. The
Payment field changes accordingly.
Related reference

“Rich UI validation and formatting” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

“Form processing with Rich UI” at http://publib.boulder.ibm.com/
infocenter/rbdhelp/v8r0m0

Lesson checkpoint

You learned how to complete the following tasks:
v Work in the Rich UI editor Source tab
v Create an EGL Library part for reusable functions
v Use EGL Model-View-Controller framework
v Call an EGL Service from a function
v Catch and handle errors

Create a mortgage application with EGL Rich UI 33

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_validation.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_validation.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_forms.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_forms.html

In the next lesson, you create a pie chart to compare the total principal to the total
interest in a given calculation.

Lesson 6: Create the calculation results handler
The next handler that you create, CalculationResultsHandler, creates a pie chart to
illustrate details that are issued by the previously created logic,
MortgageCalculatorHandler.

The code that acts as an intermediary between the two handlers is an Infobus,
which is an EGL library in the com.ibm.egl.rui project.

The Infobus works as follows:
v A handler such as CalculationResultsHandler subscribes to an event of a

specified name. At the time of subscription, the handler also gives the name of a
function that will receive data when the specified event occurs. As a result of
this subscription, the Infobus registers the function, maintaining the detail
necessary to invoke the function later.

v At the right moment, the same or a different handler publishes the event. This
handler specifies both the event name and event-specific data and directs the
Infobus to invoke the registered function.

You begin this lesson by dealing with the second of those two steps. You update
the previously written MortgageCalculatorHandler handler to invoke the Infobus
publish function when a new calculation is returned from the remote service.
Then, you ensure that the CalculationResultsHandler handler has subscribed to the
event.

The publish-and-subscribe makes possible the pie-chart display.

Publish the service results
1. Find the displayResults() function that you created in the previous lesson.

Add the following line before the end statement:
InfoBus.publish("mortgageApplication.mortgageCalculated", retResult);

The first argument is the event name, and the second is the record being
passed to the functions that are registered for that event. Recall that the
structure of that record is as follows:
record MortgageCalculationResult

// user input
loanAmount money;
interestRate decimal(10, 8);
term int;

// calculated fields
monthlyPayment money;
interest money;

end

An error mark is displayed because the Infobus library is not being imported.
To add the required import statement, press Ctrl+Shift+O. To remove the error
mark, save the file.
The displayResults() function now looks as follows:

34 Create a mortgage application with EGL Rich UI

function displayResults(retResult MortgageCalculationResult in)
paymentLabel.text = MortgageLib.formatMoney(retResult.monthlyPayment as STRING);
inputRec_form.publish();
hideProcessImage();
InfoBus.publish("mortgageApplication.mortgageCalculated", retResult);

end

As before, this code shows the payment amount in the payment field and uses
the Rich UI MVC mechanism to publish the results of the calculation in the
retResult record. The new statement involves a different kind of publish,
making the record available to any widget that subscribes to the
mortgageApplication.mortgageCalculated event.

Note: The Infobus event names are case-sensitive. For example,
“mortgageApplication” is different from “MortgageApplication.”

2. Save and close the file.
Related reference

“Rich UI Infobus” at http://publib.boulder.ibm.com/infocenter/rbdhelp/
v8r0m0

Create the CalculationResultsHandler handler
1. In the MortgageUIProject project, right-click the handlers package and click

New > Rich UI handler. These actions ensure that the New EGL Rich UI
Handler page will reference the package.

2. Specify the source file name as CalculationResultsHandler and click Finish.
The handler opens in the Design view of the Rich UI editor.

3. As you did when you coded the calculator, reduce the size of the initial
GridLayout widget to a single cell. On the General page of the Properties
view, change the rows property to 1 and the columns property to 1.

4. Drag a PieChart widget from the Visualization drawer of the palette onto the
single cell of the grid layout and give the widget the following name:
interestPieChart

EGL displays a default pie chart.

Create a mortgage application with EGL Rich UI 35

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_infobus.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/index.jsp?topic=/com.ibm.egl.lr.doc/topics/regl_ui_richui_infobus.html

5. At the bottom of the editor, click the Source tab.
6. In the interestPieChart widget declaration, change the height property to

250.
7. You need only two sections in the pie chart. In the interestPieChart

declaration, in the data field, replace the four lines that declare PieChartData
records. Here is the new code:
new PieChartData{ y=1, text="Principal", color="#99ccbb"},
new PieChartData{ y=0, text="Interest", color="#888855"}

To calculate how much of the pie chart is taken by a given record, divide the
y-field value for that record by the sum of y-field values. In this case, the
division is 1/1, and the initial display shows the mortgage principal at 100%.
The display at development time is only a placeholder until the application
handles the first, default calculation at run time.

8. Subscribe to the Infobus event mentioned earlier by adding the following line
to the start function:
InfoBus.subscribe("mortgageApplication.mortgageCalculated", displayChart);

This code ensures that the Infobus invokes the displayChart function
whenever the specified event occurs. The next step will remove the error
marks.

9. After the start function, add the displayChart function as follows and then
organize the import statements by typing Ctrl+Shift+O:
function displayChart(eventName STRING in, dataObject ANY in)

localPieData PieChartData[2];

resultRecord MortgageCalculationResult =
dataObject as MortgageCalculationResult;

localPieData = interestPieChart.data;
localPieData[1].y = resultRecord.loanAmount;
localPieData[2].y = resultRecord.interest;
interestPieChart.data = localPieData;

end

36 Create a mortgage application with EGL Rich UI

When the event occurs, the displayChart function receives the input data into
the dataObject parameter. The use of ANY as the parameter type ensures that
you can use the Infobus mechanism to transfer any type of record.
Next, the function acts as follows:
v Creates the localPieData array, which is of type PieChartData[], as is

appropriate for the data property of the pie chart.
v Assigns the received value to a record of type MortgageCalculationResult,

in a statement that casts the second input parameter to the data type that is
appropriate to your use of the Infobus:
resultRecord MortgageCalculationResult =

dataObject as MortgageCalculationResult;

v Assigns the data property of the pie chart, including color detail, to the new
localPieData array.

v Assigns the received loan amount and interest value to that array.
v Forces the pie chart to refresh by updating its data property. Specifically,

you assign the localPieData array to that property.
10. Save the file. If you see errors in your source file, compare your code to the

file contents in “Finished code for CalculationResultsHandler.egl after Lesson
6” on page 80.

Test the pie chart
1. Change to Preview view. EGL displays a default pie chart showing 100%

principal.

2. Close the file.

Lesson checkpoint

You learned how to complete the following tasks:
v Use the InfoBus library to pass information between handlers.
v Create a pie chart.

Create a mortgage application with EGL Rich UI 37

In the next lesson, you create the main handler, which uses the others.

Lesson 7: Create the main Rich UI handler
The main page uses the EGL portal widget to manage communication between
different handlers.

As noted in an earlier lesson, Rich UI gives a new meaning to the long-standing
notion of Model View Controller (MVC), which is redefined specifically for logic
that runs in the browser. Similarly, Rich UI gives a new meaning to the words
portal and portlet.

In general, a portal is a web page that controls independent UI components called
portlets. In the traditional use of these terms, a portal is server-side code. The
portlets embedded by the portal are web-page snippets, each of which might be
stored in a different remote location. The web page is constructed on the server
where the portal code resides, and the completed web page is transferred from the
server to the browser.

In contrast, a Rich UI portal is a widget that runs in the browser and that
references a set of portlet widgets, each of which references a Rich UI handler. The
next sections demonstrate how to code a portal and portlets in Rich UI.

Create the MainHandler handler
1. Create a new Rich UI Handler in the handlers package of the

MortgageUIProject project, as you did in the previous lesson. The handler
name in this case is MainHandler. The Handler opens in the Design view of
the Rich UI editor.

2. If you do not see the Samples drawer in the Palette view, click the Refresh
palette button to the left of the Palette view.

3. Select the initial GridLayout widget that was created for the handler. Make
sure the entire widget is surrounded by the dotted line.

4. Press the Delete key to remove the widget.

38 Create a mortgage application with EGL Rich UI

5. From the Samples drawer of the palette, drag a portal widget onto the editor
and give it the following name:
mortgagePortal

6. At the bottom of the editor, click the Source tab.
7. In the mortgagePortal declaration, change the number of columns to 2, and set

the column widths to 350 and 650. The content of the file is as shown here:

8. After the mortgagePortal declaration, skip a line and add the following
declarations:
calculatorHandler MortgageCalculatorHandler{};
resultsHandler CalculationResultsHandler{};

These statements declare two variables, each of which is based on a Handler
part; in this case, a Handler part developed in this tutorial.

9. Skip a line and add the following code:
calculatorPortlet Portlet{children = [calculatorHandler.ui],

title = "Calculator"};
resultsPortlet Portlet{children = [resultsHandler.ui],

title = "Results", canMove = TRUE, canMinimize = TRUE};

Each new portlet variable is declared with a reference to the initial UI in the
embedded handler.

10. To remove error marks, press Ctrl+Shift+O.
11. Code the start function as follows:

function start()
mortgagePortal.addPortlet(calculatorPortlet, 1);
mortgagePortal.addPortlet(resultsPortlet, 1);

// Subscribe to calculation events
InfoBus.subscribe("mortgageApplication.mortgageCalculated", restorePortlets);

// Initial state is minimized
resultsPortlet.minimize();

end

The code acts as follows:
v Adds the previously declared portlets to the portal: one to show the

calculator, and another to show the pie chart.

Create a mortgage application with EGL Rich UI 39

v Ensures that the main handler is subscribed to the same event as
CalculationResultsHandler, in this case to ensure that the restorePortlets
function runs when the remote service returns a mortgage calculation.

v Minimizes the second portlet so that at run time, the pie chart is not visible
initially.

12. After the start function, add the function that will be invoked when the
service returns a calculation:
function restorePortlets(eventName STRING in, dataObject ANY in)

if(resultsPortlet.isMinimized())
resultsPortlet.restore();

end
end

The portlet-specific restore function causes the pie chart to be displayed.
13. To remove the error marks, press Ctrl+Shift+O, and save the file. If you see

errors in your source file, compare your code to the file contents in “Finished
code for MainHandler.egl after Lesson 7” on page 80.

Test the portal
Test the main portal to make sure that the results portlet receives changes from the
calculation portlet.
1. At the bottom of the editor, click Preview. EGL displays the main handler,

where the portal is declared. The handler displays the two subordinate portlets.

2. Click Calculate. The animated image indicates that processing is in progress.
When the calculation finishes, the pie chart is displayed.

40 Create a mortgage application with EGL Rich UI

3. Move your cursor over one of the pie chart sections for an expanded view.

Create a mortgage application with EGL Rich UI 41

4. Change any of the calculation values and click Calculate again. The pie chart
reflects the changes in the proportion of principal to interest.

5. Close the file.

Lesson checkpoint

You learned how to complete the following tasks:
v Create a portal widget.
v Add portlets to the portal and, in this way, make available the handlers that you

created in previous lessons.

In the next lesson, you add a portlet to list your mortgage calculations.

Lesson 8: Create the calculation history handler
Create a table in which you can click a row to display a previous calculation.

In this lesson, you use the DataGrid widget to create a table. The DataGrid widget
has advanced capabilities for interaction and visual presentation that make it
preferable to the GridLayout widget for displaying an array of records.

In lesson 4, you dragged a record variable onto the editor to create a GridLayout
widget. In this lesson, you drag an array of records onto the editor, which by
default creates a DataGrid widget.

Create the handler
1. In the handlers package, create a Rich UI handler named

CalculationHistoryHandler. The Handler opens in the Design view of the Rich
UI editor.

2. Delete the default GridLayout widget.
3. Create a variable to hold an array of MortgageCalculationResult records.

42 Create a mortgage application with EGL Rich UI

a. Right-click the background of EGL Data view, and then click New > EGL
Variable.

b. In the Create a new EGL Data Variable wizard, in the Type Creation
section, select the MortgageCalculationResult record, as you did in Lesson
4.

c. For Enter the name of the field, enter the following name:
historyResults

d. Under Array Properties, select the Array check box. Do not specify a size.

e. Click Finish.
4. Drag the new variable to the Display surface in the Rich UI editor. EGL

displays the Insert Data wizard. This wizard is the same wizard that you saw
in Lesson 4, though with different defaults because the variable that you
dragged onto the editor is a dynamic array.

5. Make the following changes in the Insert Data wizard:
a. Under Create Widgets for, leave the default value of Read-only data.
b. Clear the check box for the interest field.
c. Change the labels for the remaining fields as follows:

v Change loanAmount to Principal.
v Change interestRate to Rate.
v Change term to Years.

Create a mortgage application with EGL Rich UI 43

v Change monthlyPayment to Payment.

The wizard uses these labels as column headers for the grid.
d. Clear the Add support for formatting and validation check box. The

completed wizard looks like the following image:

e. Click Finish. The web page looks as follows.

You will code the remainder of the calculation history handler in Source view.
6. At the bottom of the editor, click the Source tab.
7. In the declaration for the historyResults_ui DataGrid widget, add the

following content before the columns property:
selectionMode = DataGridLib.SINGLE_SELECTION,

44 Create a mortgage application with EGL Rich UI

The specified value ensures that the user can select only one row of the grid
rather than multiple rows.

8. On the line after you set selectionMode, type the following code:
selectionListeners ::= cellClicked,

You just updated a listener property, which takes an array of functions that run
in array-element order. In particular, you appended a function to the array of
functions associated with the selectionListeners property. You will code the
new function later in this lesson.
The listener functions run in response to a user action, such as a click or, in
some cases, in response to a function call that selects or deselects a row or
that updates a check box.

9. Change the default widths of the columns so they will fit in the smaller
portlet window:
v Set the width of the Principal column to 80.
v Set the width of the Rate column to 80.
v Set the width of the Years column to 50.
v Set the width of the Payment column to 70.

10. After each of the width values you just specified, in the same set-values block
(the area with the curly brackets), set an alignment property to right-align the
numbers in each column:
, alignment = DataGridLib.ALIGN_RIGHT

For example, the declaration for the Principal column now looks like the
following code:
new DataGridColumn {name = "loanAmount", displayName = "Principal", width = 80,

alignment = DataGridLib.ALIGN_RIGHT},

11. Add the formatter property to three of the column declarations, as follows:
a. For the Principal column, reference the custom formatDollars function,

which you will write later in this lesson:
, formatters = [formatDollars]

The entire declaration now looks like the following code:
new DataGridColumn {name = "loanAmount", displayName = "Principal", width = 80,

alignment = DataGridLib.ALIGN_RIGHT, formatters = [formatDollars]},

b. Add the following code for the Rate column:
, formatters = [DataGridFormatters.percentage]

c. You do not need special formatting for the Years column.
d. Add the following code for the Payment column:

, formatters = [formatDollars]

The code now has the following content:

Create a mortgage application with EGL Rich UI 45

In general, the formatters property takes an array of function names. The
functions can be predefined, or you can write custom functions. For
example, the percentage function is provided in the DataGridFormatters
library that is included in the com.ibm.egl.rui.widgets project.

12. Add the following code to the start function:
InfoBus.subscribe("mortgageApplication.mortgageCalculated", addResultRecord);

As before, you use the InfoBus to invoke a function when the service returns a
new calculation.

13. Add the addResultRecord function after the start() function:
// Update the grid to include the latest mortgage calculation
function addResultRecord(eventName STRING in, dataObject ANY in)

resultRecord MortgageCalculationResult = dataObject as MortgageCalculationResult;
historyResults.appendElement(resultRecord);
historyResults_ui.data = historyResults as ANY[];

end

Here, you cast an incoming value to a MortgageCalculationResult record. You
then append the new results to array of results and update the data property.
That update causes the widget to refresh.

14. Add the following listener function:
// Publish an event to the InfoBus whenever the user selects an old calculation
function cellClicked(myGrid DataGrid in)

updateRec MortgageCalculationResult = myGrid.getSelection()[1]
as MortgageCalculationResult;

InfoBus.publish("mortgageApplication.mortgageResultSelected", updateRec);
end

The function retrieves the data-grid row selected by the user and provides
that row to the Infobus. The Infobus in turn invokes a function in any handler
that has subscribed to the event named
“mortgageApplication.mortgageResultSelected.”

15. Add the following function to format monetary amounts:
function formatDollars(class string, value string, rowData any in)

value = mortgageLib.formatMoney(value);
end

46 Create a mortgage application with EGL Rich UI

The value of the second parameter is available to the EGL runtime code
because the parameter modifier is InOut by default.
Note that you are reusing the formatMoney function from the mortgageLib
library.

16. Reformat the file by pressing Ctrl+Shift+F. Then, remove the error marks by
pressing Ctrl+Shift+O, and save the file. If you see errors in your source file,
compare your code to the file contents in “Finished code for
CalculationHistoryHandler.egl after Lesson 8” on page 81.

17. Close the file.

Lesson checkpoint

You learned how to complete the following tasks:
v Drag and drop an array of records to create a data grid.
v Trigger an event when a cell of the data grid is clicked.
v Format columns in the data grid.

In the next lesson, you integrate this handler with the rest of the application.

Lesson 9: Embed the calculation history handler in the application
To add the calculation history handler to your page, you must change the results
portlet and the main portal.

Change the results portlet
As of the end of the previous lesson, the CalculationResultsHandler handler
subscribes to a single event: mortgageApplication.mortgageCalculated. When that
event occurs, the handler updates and re-displays the pie chart. However, the user
might select a row in the history portlet and cause a different event to be
published: mortgageApplication.mortgageResultSelected. If
CalculationResultsHandler subscribes to that event, too, the handler can respond to
the user's selection in the same way, by updating and re-displaying the pie chart.
The simplest way to subscribe to both events is to use the asterisk (*), which is a
wildcard character that represents any event in a set of events. Do as follows:
1. In the Rich UI editor, open the CalculationResultsHandler.egl file and switch

to the Source view.
2. In the start() function, find the following line:

InfoBus.subscribe("mortgageApplication.mortgageCalculated", displayChart);

3. Replace the lowest-level qualifier in the event name with the asterisk:
InfoBus.subscribe("mortgageApplication.*", displayChart);

EGL now calls the displayChart function whenever an event occurs if the name
of the event begins with mortgageApplication..

4. Save and close the file.

Change the main portal
For the history portlet, add lines that are similar to the lines for the other two
portlets:
1. In the Rich UI editor, open the MainHandler.egl file and click the Source tab.
2. Immediately below the resultsHandler declaration, add a similar declaration for

historyHandler:

Create a mortgage application with EGL Rich UI 47

historyHandler CalculationHistoryHandler{};

3. Immediately below the resultsPortlet declaration, add a similar declaration for
historyPortlet:
historyPortlet Portlet{children = [historyHandler.historyResults_ui],

title = "History", canMove = TRUE, canMinimize = TRUE};

4. In the start function, below the existing calls to addPortlet, add the new
portlet to the portal:
mortgagePortal.addPortlet(historyPortlet, 1);

5. As you did with resultsPortlet, set historyPortlet to be minimized initially:
historyPortlet.minimize();

6. Add code for historyPortlet to the end of restorePortlets() function:
if(historyPortlet.isMinimized())
historyPortlet.restore();
end

7. Save the file. If you see errors in your source file, compare your code to the file
contents in “Finished code for MainHandler.egl after Lesson 9” on page 82.

Test the portal
Test the main portal to make sure that the new history portlet is displayed and
works correctly.
1. At the bottom of the editor, click Preview. EGL displays the main portal and

the three subsidiary portlets.
2. Click Calculate. An animated image indicates that work is in progress. When

the calculation finishes, the pie chart and history are displayed.

48 Create a mortgage application with EGL Rich UI

3. Change the term of the mortgage to 5 years and click Calculate again. A row is
added to the history list.

4. Click a cell in the first row of the history list.

Create a mortgage application with EGL Rich UI 49

5. The pie chart displays the values for the row selected in the history list.

50 Create a mortgage application with EGL Rich UI

Lesson checkpoint

You learned how to subscribe to multiple, similarly named events.

In the next lesson, you add a portlet to display a map of mortgage companies that
are in a specified area of the United States.

Create a mortgage application with EGL Rich UI 51

Lesson 10: Create the map locator handler
Begin to create a portlet where you can enter a mortgage code and see a list of
mortgage places and a map. Click the name of a place in the list, and the map
displays a location marker

This lesson relies on capabilities from two external web sites:
v The Google Places Service provides information about businesses in or near a

specific place.
v The Google Maps API provides a map that you can embed in your UI to show

the location of a business.

If now or later you would like to learn more about some technologies used in
lessons 10 and 11, see the following sources:
v “REST for the developer” at http://publib.boulder.ibm.com/infocenter/

rbdhelp/v9r0m0.
v “Correspondence between an XML string and an EGL variable” at

http://publib.boulder.ibm.com/infocenter/rbdhelp/9r0m0.
v Google Places API (https://developers.google.com/places/documentation/

details).
v “Understanding how browsers handle a Rich UI application” at

http://publib.boulder.ibm.com/infocenter/rbdhelp/v9r0m0.

Create records for the Interface file
To use the Google Places Service, you will create the following EGL parts:
v A set of Record parts. Each definition is the basis of a variable that will be used

to receive data from the service.
v An Interface part. This definition is the basis of a service-access variable, which

is used in the call statement that invokes the service.

You can create the Record parts in various ways, but in this lesson you will access
a REST service on the web and include, in the web address, the details necessary
to retrieve data from the service. The New EGL Record wizard will create the
Record parts that correspond to the data that is retrieved at development time.
Do as follows:
1. In the MortgageServiceProject project, in the EGLSource folder, right-click the

services package and click New > Record.
2. In the first page of the New EGL Record wizard, accept the details about the

source folder and package and type the following name for the new source file:
GooglePlaceRecords

3. Click Next.
4. In the Templates page, click Records from XML. Click Next.
5. In the Records from XML window, click Create from a URL and paste the

following URL into the URL field:
https://maps.googleapis.com/maps/api/place/search/xml?location=-33.8670522,151.1957362
&radius=1000&types=cafe&sensor=false&key=AIzaSyD_K9zveT6jhxgCApduywaOTuD5FiQFgpI&language=en

Combine the two lines into a single-line URL with no spaces.

52 Create a mortgage application with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v9r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_serv_rest_detail.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v9r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_serv_rest_detail.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_core_rest_service_xml.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_core_rest_service_xml.html
https://developers.google.com/places/documentation/details
https://developers.google.com/places/documentation/details
http://publib.boulder.ibm.com/infocenter/rbdhelp/v9r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_richui_background.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v9r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_richui_background.html

6. Click Next. The wizard displays a Summary page that previews the code it will
place in the new file.

Create a mortgage application with EGL Rich UI 53

Note: The Google API Service sometimes returns no data, in which case only
the ResultSet Record part is created. The lack of data is most likely on
Sundays. If the service is unavailable or does not return data, click Cancel and
wait for a later time to complete the tutorial.

7. Click Finish, which saves the file.
8. If you see errors in your source file, compare your code to the file contents in .
9. Close the file.

Create the Local Search Interface
When you use an external web service, you create an Interface part that identifies
the service operations that will be accessed. The Interface part is used by the
requesting code and is not a component of the service itself.
Do as follows:
1. Create a new Interface part by right-clicking MortgageUIProject and clicking

New > Interface.
2. In the New EGL Interface Part window, complete the following fields:

a. In the Package field, enter the following name:
interfaces

b. In the EGL source file name field, enter the following name:
GooglePlaceRecords

54 Create a mortgage application with EGL Rich UI

c. Click Finish.
3. Replace the contents of the file with the following code:

package interfaces;

// interface
interface GooglePlacesService
function getSearchResults(typeName string? in)
returns(PlaceSearchResponse)

{@GetRest{uriTemplate =
"https://maps.googleapis.com/maps/api/place/search/xml?location
=37.47,-122.26&radius=50000&sensor=false&key=AIzaSyD_K9zveT6jhx
gCApduywaOTuD5FiQFgpI&language=en&keyword={typeName}",

responseFormat = XML}}; end

After you paste the code, do as follows:
a. Remove extra lines so that the uriTemplate value is on a single line, without

spaces.
b. Press Ctrl-Shift-O to include the import statement necessary to resolve the

reference to the PlaceSearchResponse Record part.
c. Save the file.
The getSearchResults function prototype ensures that when the requester
invokes the service, the requester's type argument is used in place of the
bracketed elements in the uriTemplate value. The EGL runtime code uses the
completed URI to access the service. The URI specifies that the service is to
return 10 results, at most:
v The URI includes the keyword “mortgage,” which is used by the service to

search for data.
v The URI specifies that the service is to return 10 results, at most.

4. If you see errors in your source file, compare your code to the file contents in
“Finished code for GooglePlacesService.egl after Lesson 10” on page 84.

5. In the absence of errors, close the file.
Related tasks

“Creating an Interface part to access a REST service” at
http://publib.boulder.ibm.com/infocenter/rbdhelp/v9r0m0

Create the MapLocatorHandler handler
To create the MapLocatorHandler handler:
1. In the MortgageUIProject/EGLSource folder, in the handlers package, create a

Rich UI Handler part as you did in lesson 4. Give the handler the following
name:
MapLocatorHandler

The handler opens in the Design view of the Rich UI editor.
2. Click inside the grid layout, right click the cell you selected, and click Delete >

Row. The grid layout has three rows.
3. Create a line of introductory text:

a. From the Display and Input drawer of the palette, drag a TextLabel widget
to the first cell of the GridLayout widget and give it the following name:
introLabel

b. In the Properties view, make the following changes:
v On the General page, change the text property to the following phrase:

Search for places in San Francisco:

Create a mortgage application with EGL Rich UI 55

http://publib.boulder.ibm.com/infocenter/rbdhelp/v9r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_ui_richui_rest_interface_part.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v9r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_ui_richui_rest_interface_part.html

v On the Layout page, set the horizontalSpan property to 3.
v To save the file, press Ctrl-S.

4. Create a label for the type code input field:
a. Drag a TextLabel widget into the first cell of the second row and assign the

following name:
typeLabel

b. In the Properties view, set the text property as follows:
Type:

5. Create a text field where the user can enter a type code:
a. Drag a DojoCombolBox widget into the second cell of the second row and

assign the following name:
typeComboBox

b. In the Properties view, on the Position page, set the width property to 100.
c. On the Events page, click the row for the onChange event. Click the plus

sign (+) to add a function for the event. The New Event Handler dialog is
displayed.

d. 4. On the Properties page, click the “...” button around the values, and
assign below options to it in the popped dialog. ["bar", "food", "restaurant",
"cafe", "movie_theater", "mortgage", "bank", "atm"]

e. Enter the following name for the new function:
checkForEnter

f. Click OK. EGL switches to Source view and displays the checkForEnter
function. Notice two other recent additions:
v In the declaration of the typeComboBox widget, the onChange property is

set to checkForEnter.
v The following import statement resolves the reference to the

DojoComboBox widget type:
import dojo.widgets.DojoComboBox;

g. Click Design to return to the Design view. The checkForEnter function
name is now displayed next to the onChange event. The function is said to
be bound to the typeField field. You will add the code for this function in
the next lesson.

h. To save the file, press Ctrl-S.
6. Add a button to initiate the search for the specified type code:

a. Drag a Button (Dojo) widget from the Display and Input drawer of the
palette to the third cell in the second row. Assign the following name:
typeButton

b. In the Properties view, on the Events page, click the row for the onClick
event. Click the plus sign (+) to add a function for the event.

c. In the New Event Handler window, enter the following name for the new
function:
buttonClicked

d. Click OK. EGL switches to Source view and displays the buttonClicked
function.

e. Click Design to return to the Design view. The buttonClicked function
name is now displayed next to the onClick event. The function is bound to
the typeButton button. You will add the code for this function in the next
lesson.

56 Create a mortgage application with EGL Rich UI

f. On the General page, change the text property for the button to the
following name:
Search

g. To save the file, press Ctrl-S.
7. Create a box to contain the list of mortgage companies.

a. From the Layout drawer of the palette, drag a Box widget onto the first cell
of the third row and give it the following name:
listingBox

b. In the Properties view, on the General page, set the columns property to 1.
c. On the Position page, set the width property to 150.
d. On the Layout page, set the verticalAlignment property to TOP and the

horizontalSpan property to 2.

At this point, the UI looks like the following picture:

8. From the Samples drawer of the palette, drag a Google Map widget to the last
cell in the third row, next to the listingBox widget, and give it the following
name:
localMap

Refresh the Design view of the Rich UI editor by clicking the refresh button on
the upper right of the Design view, not the upper right of Project Explorer.

The Design surface looks as follows:

Create a mortgage application with EGL Rich UI 57

9. To save the file, press Ctrl-S.

You have finished working in Design view.

If you click the Source tab, you can see code that the EGL Rich UI editor created.

Lesson checkpoint

You learned how to complete the following tasks:
v Create Record definitions from the data retrieved from a service.
v Configure an Interface part with details that allow for service access.
v Create a user interface that includes a Google map.

In the next lesson, you add source code to complete the MapLocatorHandler
handler.

Lesson 11: Add code to the map locator handler
Complete the background code for the user interface that you created in the
previous lesson.

58 Create a mortgage application with EGL Rich UI

Finish the source code for MapLocatorHandler.egl
1. Make sure that the MapLocatorHandler.egl file is open in the Rich UI editor. If

you are in the Design view, click the Source tab.
2. Add a blank line just before the start function and declare a variable that is

based on the Interface part you created:
lookupService GooglePlacesService{@restbinding};

The @restbinding property indicates that service-access details are in your
code rather than in the EGL deployment descriptor. The decision is convenient
but inflexible. A change in the service location requires that you change the
source code. Lesson 14 introduces the EGL deployment descriptor, where you
are likely to put service-access details in most of your development work.

3. To resolve a reference to the Interface part, press Ctrl-Shift-O. The next steps
will add new red error marks, and you will not remove them until late in the
lesson.

4. Do not add content to the start function.
5. Complete the checkForEnter function as follows:

function checkForEnter(event Event in)
if(event.ch == 10)

search();
end

end

Consider the following background detail: The EGL runtime code invokes the
checkForEnter function and passes an event object, which is a memory
structure that includes details about the event. In this case, the event that
caused the invocation is onKeyDown, and the event object includes the ASCII
character that represents the user's keystroke. Specifically, the number 10 is the
decimal value for the Carriage Return (the ENTER key) in the ASCII table, as
noted here: ASCII table and description (http://www.asciitable.com).
The checkForEnter function is invoked only if the user presses a key such as
Tab or ENTER when the text field has focus. The function in turn invokes the
search function only if the key was ENTER. You will create the search
function soon.

6. Complete the buttonClicked() function:
function buttonClicked(event Event in)

search();
end

The buttonClicked function and its relationship to the button-specific onClick
property ensures that the user's clicking the Search button invokes the search
function.

7. To add the search function, place the following code at the end of the handler,
before the final end statement in the file:
function search()

localMap.zoom = 10;
localMap.removeAllMarkers();
// show an initial marker, as necessary to display the map at all
localMap.addMarker(new MapMarker{ latitude = "37.47", longitude = "-122.26",
address = "I am here!", description = "San Francisco"});

// Call the remote Google service, passing the type value
call lookupService.getSearchResults(typeComboBox.value) returning to showResults

onException displayError;
end

Note the following details:

Create a mortgage application with EGL Rich UI 59

http://www.asciitable.com/

v The EGL Google map widget includes the zoom property, which specifies
the scale of the map. Rather than specifying the large scale used for the
default map of North Carolina, where the zoom value was 8, set the zoom
value to 10, which produces a map that shows individual city.

v The EGL Google map widget also includes the addMarker function, which
accepts a record of type MapMarker and identifies the map location of an
input address.
In this initial display for a search result set, the only detail that you provide
to the localMap.addMarker() function is the city location marker.

8. Next, add the showResults function that is invoked if access of the Google
Places service succeeds without error. Place the following code after the
search function, before the last end statement in the file:
linkListing HyperLink[0];

for(i int from 1 to retResult.result.getSize() by 1)
newLink HyperLink{padding = 4, text = retResult.result[i].name, href = "#"};
newLink.setAttribute("title", retResult.result[i].vicinity);
newLink.setAttribute("lat",
retResult.result[i].geometry.location.lat);
newLink.setAttribute("lng",
retResult.result[i].geometry.location.lng);
newLink.onClick ::= mapAddress;
linkListing.appendElement(newLink);
end
listingBox.setChildren(linkListing);
end

Your call to the service returns an array of places details. Consider these
aspects of the showResults function:
v Each element comprises a “title” (that is, a place name).
v The showResults function creates an array of hyperlink widgets and reads

through the input array. For each element in the input array, the function
creates an element in the array of hyperlink widgets.

v As shown by the following declaration, each hyperlink widget has
displayable text and padding and includes a placeholder (#) instead of a
web address:
newLink HyperLink{padding = 4, text = retResult.result[i].title, href = "#"};

The hyperlink will cause the invocation of code rather than a web address.
However, the presence of the placeholder ensures that the hyperlink shows
text in a familiar way, with an underscore and in color, as if the user's
clicking the hyperlink opens a web site.

v The function invokes the setAttribute function to place a value in the DOM
tree, in an area of memory that is specific to the widget. In particular, the
function stores a latitude and longitude for retrieval by another function.

v In relation to each hyperlink widget, the showResults function sets up a
runtime behavior by assigning the mapAddress function to the onClick event.

v The complete array of hyperlink widgets is assigned as the only child of the
listing box.

9. Place the following function after the showResults function:
function mapAddress(e Event in)

// Show the marker when the user clicks the link
businessAddress string = e.widget.getAttribute("address") as string;
businessName string = e.widget.getAttribute("title") as string;
lat string = e.widget.getAttribute("lat") as string;

60 Create a mortgage application with EGL Rich UI

lng string = e.widget.getAttribute("lng") as string;
localMap.addMarker(new MapMarker{ latitude = lat,

longitude = lng, address = businessAddress, description = businessName});
End

When the user clicks the hyperlink at run time, the mapAddress function
retrieves the attributes that were set in the showResults function and sets a
marker on the displayed map.

10. You now add the exception handler that receives data if access of the Google
Places service fails. Place the following code after the mapAddress function,
before the last end statement in the file:
function displayError(ex AnyException in)

DojoDialogLib.showError("Google Service",
"Cannot invoke Google Places service: " + ex.message, null);

end

DojoDialogLib is a Library part in the com.ibm.egl.rui.dojo.samples project
that you added to your workspace in Lesson 2. The showError function in that
library displays information in a dialog. The function invocation includes a
string named message, which is in the exception record that the EGL runtime
code passes to the displayError function.

11. Format your code by pressing Ctrl-Shift-F, resolve the references by pressing
Ctrl+Shift+O, and save the file. If you see errors in your source file, compare
your code to the file contents in “Finished code for MapLocatorHandler.egl
after Lesson 11” on page 85.

Related concepts

“Understanding how browsers handle a Rich UI application"
Related reference

“Event handling in Rich UI” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

“The Exception stereotype” at http://publib.boulder.ibm.com/infocenter/
rbdhelp/v8r0m0

Test the new portlet
Because this portlet works independently, you can test it separately.
1. Make sure to save the file, and then click Preview. EGL displays the entry form

with the default North Carolina map.
2. Select mortgage in the selection list for type.
3. Press the Enter key or click the Search button. A list of mortgage places is

displayed down the left side of the screen. On the right is a map of San
Francisco.

Create a mortgage application with EGL Rich UI 61

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_richui_background.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_ui_richui_event_handling.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_ui_richui_event_handling.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_core_except_stereo.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_core_except_stereo.html

Note: Note: The Google Places Search Service sometimes returns no data, in
which case an error message is displayed because of a “null exception.” If the
service is unavailable or does not return data, click Cancel and wait for a later
time to complete the tutorial.

4. Click any of the names in the left column. The map displays a marker that
shows the location of the business. If you hover over the marker, the name of
the name is displayed.

5. Redo the same search or search on a nearby cafe. The markers that you placed
on the map remain there.

6. If you want to remove all markers before each search, click the Source tab and
add the following line at the top of the showResults function:
localMap.removeAllMarkers();

7. Test your work in the Preview tab.
8. Close the file.

62 Create a mortgage application with EGL Rich UI

Lesson checkpoint

You learned how to complete the following tasks:
v Create and use a variable that is based on the Local Search service.
v Respond to user keystrokes.
v Use the DOM tree to pass values from one function to another.
v Begin to use a map widget.

In the next lesson, you embed the new handler in the application.

Lesson 12: Embed the map locator handler in the application
Add a new portlet to the main portal.

Change the main portal
Add lines for the map portlet that are similar to the lines for the other three:
1. In the Rich UI editor, open the MainHandler.egl file and click the Source tab.
2. Immediately below the historyHandler declaration, add a similar declaration

for mapHandler:
mapHandler MapLocatorHandler{};

3. Immediately below the historyPortlet declaration, add a similar declaration for
mapPortlet:
mapPortlet Portlet{children = [mapHandler.ui],

title = "Map", canMove = FALSE, canMinimize = TRUE};

4. In the start() function, below the existing calls to addPortlet(), add the new
portlet to the portal:
mortgagePortal.addPortlet(mapPortlet, 2);

In this case, you are adding the map portlet to the second, wider column.
5. Save the file. If you see errors in your source file, compare your code to the file

contents in “Finished code for MainHandler.egl after Lesson 12” on page 86.

Test the portal
Test the main portal to make sure that the new Map portlet is displayed and that
all portlets work correctly.
1. At the bottom of the editor, click Preview. EGL displays the main portal and

the four subsidiary portlets.
2. Calculate at least two different mortgages and search for mortgages in the Map

portlet.

Create a mortgage application with EGL Rich UI 63

3. Close the file.

Lesson checkpoint

There were no new tasks in this lesson.

In the next lesson, you install Apache Tomcat on your system so that you can run
your application on an application server.

Lesson 13: Install Apache Tomcat
You can use Apache Tomcat to display the web page and to run the EGL-generated
service.

Download and access the server
If you have IBM® WebSphere® Application Server installed, you can skip to the
next lesson. In any case, you can download Apache Tomcat, if necessary, and make
it available in the workbench.

To gain access to server:
1. Locate the Servers view, which is by default at the lower right of the

workbench. EGL created an AJAX Test Server by default. Right-click the empty
space and click New > Server.

64 Create a mortgage application with EGL Rich UI

2. In the Define a New Server window, expand Apache and click Tomcat v6.0
Server with EGL debugging support. Accept the default values for the other
fields. Click Next.

3. In the Tomcat Server window, access the open-source software either by using
the Browse to find an existing installation directory (for example,
apache-tomcat-6.0.26) on your machine; or click Download and Install. If you
found an existing installation directory, click Finish and continue the lesson at
step 5 on page 66.

Create a mortgage application with EGL Rich UI 65

Accept the terms of the license agreement. Browse to a directory for the
application files, such as C:\Program Files\Apache. While the workbench
completes the installation, the Define a New Server window is displayed with
the installation directory specified. Progress is shown at the lower right of the
workbench.

4. When the installation is completed, click Finish.
5. Start the server by highlighting the server name and clicking the green Start

icon at the top of the Server view.

Lesson checkpoint

In this lesson, you completed the following tasks:
v Downloaded Apache Tomcat, if necessary
v Started the server.

In the next lesson, you deploy the application to a server and run it there.

66 Create a mortgage application with EGL Rich UI

Lesson 14: Deploy and test the mortgage application
During the deployment process, EGL creates HTML files and server-specific code
to match your target environment.

Deployment is a two stage process:
1. Internal deployment, when you deploy your handlers to a web project.
2. External deployment, when you deploy the web project to an application

server.

After you deploy the tutorial application internally, you can run it on an
application server in the workbench.

Edit the deployment descriptor
The EGL deployment descriptor manages the internal deployment and is created
automatically in each EGLSource folder. The main handler is in the
MortgageUIProject, and you use the EGL deployment descriptor in the
MortgageUIProject/EGLSource folder.

To edit the EGL deployment descriptor:
1. In the EGLSource folder, double-click the MortgageUIProject.egldd file. The

EGL deployment descriptor opens in the Deployment Descriptor editor. EGL
automatically added the embedded handlers to the list of Rich UI Handlers to
deploy.

2. Because you are using a dedicated service for one service, and provided
service-binding details in the code for another, you do not need to add
information to the Service Bindings Configuration section. The list is empty.

3. Under Deployment Target, next to the Target project field, click New.
The Dynamic Web Project wizard opens.

4. In the Project Name field, enter the following name:

Create a mortgage application with EGL Rich UI 67

MortgageWeb

Any web project is acceptable. You are creating a simple one for the purposes
of this tutorial.

5. For the Target runtime, select one of the following options from the list:
v Apache Tomcat v6.0

v WebSphere Application Server vn.n

The value of the Configuration field changes automatically to match the new
runtime environment.

6. If you are deploying to a WebSphere Application Server runtime, select Add
project to an EAR, which is underneath EAR membership. If you add the
project to an EAR, accept the default name that the wizard displays. For
Apache Tomcat, ensure that the Add project to an EAR check box is clear.

68 Create a mortgage application with EGL Rich UI

7. Click Finish. EGL creates the web project and re-displays the deployment
descriptor.

8. Save and close the deployment descriptor.

Deploy the Rich UI application
After you set the target project in the deployment descriptor, you can launch the
deployment process:
1. In the EGLSource folder, right-click the MortgageUIProject.egldd file.

Create a mortgage application with EGL Rich UI 69

2. Click Deploy EGL Descriptor. The deployment process requires no further
action on your part. The process copies many files and might take several
minutes.

3. If the Tomcat server shows a status of “Restart”, consider that statement a
directive: restart the server by clicking the green Start icon in the upper right of

the Servers view . Alternatively, you can right-click the server name and
click Restart.
When the server has restarted, the status is “Started, Synchronized”.

4. If the Tomcat server shows a status of “Stopped”, start the server by clicking

the green Start icon in the upper right of the Servers view . Alternatively,
you can right-click the server name and click Start.
When the server has started, the status is “Started, Synchronized”.

Run the generated code
1. To run the internally deployed code, focus your attention on the target project,

MortgageWeb. In the MortgageWeb/WebContent folder, find MainHandler-
en_US.html.

2. Right-click the file name and click Run As > Run on Server

The Run On Server window opens.
3. In the Run On Server window, select the appropriate server and click Always

use this server when running this project. Click Finish.

70 Create a mortgage application with EGL Rich UI

Create a mortgage application with EGL Rich UI 71

4. If you are using Tomcat and see a page not found error (404), check if the
server is showing a Restart status. If so, restart the server and refresh the page.
The page opens.

5. Test the application by calculating mortgages that are based on different rates,
amounts, and terms. Verify that clicking a row in the history portlet displays

72 Create a mortgage application with EGL Rich UI

the appropriate information in the results portlet. Change the zip code in the
map portlet and make sure the links cause the map to update.
Related concepts

“Introduction to EGL generation and deployment” at http://
publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0

Lesson checkpoint

You learned how to complete the following tasks:
v Edit a deployment descriptor to deploy a Rich UI handler
v Run the application on an application server

Summary
You have completed the Create a mortgage application with EGL Rich UI tutorial.

You practiced the following skills:
v Designing a complex Rich UI application.
v Creating and deploying a service.
v Creating a Rich UI web page by dragging variables and widget types and by

writing source code.
v Accessing a service you wrote as well as services from other providers.

Resources
A variety of resources are available.
v Completed tutorial code is here:

– “Finished code for MortgageCalculationService.egl after Lesson 3” on page 74
– “Finished code for MortgageCalculatorHandler.egl after Lesson 4” on page 74
– “Finished code for MortgageCalculatorHandler.egl after Lesson 5” on page 77
– “Finished code for CalculationResultsHandler.egl after Lesson 6” on page 80
– “Finished code for MainHandler.egl after Lesson 7” on page 80
– “Finished code for CalculationHistoryHandler.egl after Lesson 8” on page 81
– “Finished code for MainHandler.egl after Lesson 9” on page 82
– “Finished code for GooglePlaceRecords.egl after Lesson 10” on page 83
– “Finished code for GooglePlacesService.egl after Lesson 10” on page 84
– “Finished code for MapLocatorHandler.egl after Lesson 10” on page 84
– “Finished code for MapLocatorHandler.egl after Lesson 11” on page 85
– “Finished code for MainHandler.egl after Lesson 12” on page 86

v The following help topics are of particular interest, and each has additional
links:
– “Overview of EGL Rich UI” at http://publib.boulder.ibm.com/infocenter/

rbdhelp/v8r0m0
– “Services: a top-level overview” at http://publib.boulder.ibm.com/

infocenter/rbdhelp/v8r0m0
– “Introduction to EGL generation and deployment” at http://

publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0
– “Correspondence between an XML string and an EGL variable” at

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0

Create a mortgage application with EGL Rich UI 73

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.gg.doc/topics/gegl_core_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.gg.doc/topics/gegl_core_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_richui_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_richui_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_core_service_part_cpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_core_service_part_cpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.gg.doc/topics/gegl_core_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.gg.doc/topics/gegl_core_overview.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_core_rest_service_xml.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.lr.doc/topics/regl_core_rest_service_xml.html

– “The EGL build path” at http://publib.boulder.ibm.com/infocenter/rbdhelp/
v8r0m0

EGL Rich UI follows the Visual Formatting Model of the World Wide Web
Consortium (W3C). For details, go to the W3C web site (http://www.w3.org) and
search for “Visual formatting model.”

Finished code for MortgageCalculationService.egl after
Lesson 3

The following code is the text of the MortgageCalculationService.egl file at the
end of Lesson 3.
package services;

service MortgageCalculationService

function amortize(inputData MortgageCalculationResult inOut)
amt MONEY = inputData.loanAmount;

// convert to monthly rate
rate DECIMAL(10, 8) = (1 + inputData.interestRate / 1200);

// convert to months
term INT = (inputData.term * 12);

// calculate monthly payment amount
pmt MONEY = (amt * (rate - 1) * Mathlib.pow(rate, term))

/ (MathLib.pow(rate, term) - 1);
totalInterest MONEY = (pmt * term) - amt;

// update result record
inputData.monthlyPayment = pmt;
inputData.interest = totalInterest;

end
end

record MortgageCalculationResult

// user input
loanAmount MONEY;
interestRate DECIMAL(10,8);
term INT;

// calculated fields
monthlyPayment MONEY;
interest MONEY;

end

Related tasks

“Lesson 3: Create the mortgage calculation service” on page 12

Finished code for MortgageCalculatorHandler.egl after Lesson
4

The following code is the text of the MortgageCalculatorHandler.egl file after
Lesson 4.
package handlers;

import com.ibm.egl.rui.widgets.GridLayout;
import services.MortgageCalculationResult;
import com.ibm.egl.rui.widgets.GridLayoutData;
import com.ibm.egl.rui.widgets.TextLabel;
import dojo.widgets.DojoCurrencyTextBox;

74 Create a mortgage application with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_core_buildpath_cpt.html
http://publib.boulder.ibm.com/infocenter/rbdhelp/v8r0m0/topic/com.ibm.egl.pg.doc/topics/pegl_core_buildpath_cpt.html
http://www.w3.org

import com.ibm.egl.rui.mvc.Controller;
import com.ibm.egl.rui.mvc.MVC;
import com.ibm.egl.rui.mvc.FormField;
import dojo.widgets.DojoTextField;
import dojo.widgets.DojoComboBox;
import com.ibm.egl.rui.mvc.FormManager;
import com.ibm.egl.rui.widgets.GridLayoutLib;
import dojo.widgets.DojoButton;
import com.ibm.egl.rui.widgets.Image;

handler MortgageCalculatorHandler type RUIhandler {
initialUI = [ui], onConstructionFunction = start,
cssFile="css/MortgageUIProject.css", title="MortgageCalculatorHandler"}

ui GridLayout{ columns = 1, rows = 1,
cellPadding = 4, children = [inputRec_ui] };

inputRec MortgageCalculationResult {term = 30};

inputRec_ui GridLayout {
layoutData = new GridLayoutData{ row = 1, column = 1 },
rows = 6, columns = 2, cellPadding = 4,
children = [

errorLabel, paymentLabel, buttonLayout, inputRec_loanAmount_nameLabel,
inputRec_loanAmount_textBox,inputRec_interestRate_nameLabel,
inputRec_interestRate_field,inputRec_term_nameLabel,inputRec_term_comboBox] };

inputRec_loanAmount_nameLabel TextLabel {
text="Loan amount:" , layoutData = new GridLayoutData { row = 1, column = 1} };

inputRec_loanAmount_textBox DojoCurrencyTextBox {
currency = "USD", value = inputRec.loanAmount, width ="100",
errorMessage="Amount is not valid." ,
layoutData = new GridLayoutData { row = 1, column = 2} };

inputRec_loanAmount_controller Controller {
@MVC {model = inputRec.loanAmount,

view = inputRec_loanAmount_textBox as Widget},
validStateSetter = handleValidStateChange_inputRec};

inputRec_loanAmount_formField FormField {
controller = inputRec_loanAmount_controller,
nameLabel = inputRec_loanAmount_nameLabel};

inputRec_interestRate_nameLabel TextLabel {
text="Interest rate:" ,
layoutData = new GridLayoutData { row = 2, column = 1} };

inputRec_interestRate_field DojoTextField {
layoutData = new GridLayoutData { row = 2, column = 2}, width = "100" };

inputRec_interestRate_controller Controller {
@MVC {model = inputRec.interestRate,

view = inputRec_interestRate_field as Widget},
validStateSetter = handleValidStateChange_inputRec};

inputRec_interestRate_formField FormField {
controller = inputRec_interestRate_controller,
nameLabel = inputRec_interestRate_nameLabel};

inputRec_term_nameLabel TextLabel {
text="Term:" , layoutData = new GridLayoutData { row = 3, column = 1} };

inputRec_term_comboBox DojoComboBox {
values = ["5","10","15","30"] ,
layoutData = new GridLayoutData { row = 3, column = 2}, width = "100" };

Create a mortgage application with EGL Rich UI 75

inputRec_term_controller Controller {
@MVC {model = inputRec.term,

view = inputRec_term_comboBox as Widget},
validStateSetter = handleValidStateChange_inputRec};

inputRec_term_formField FormField {
controller = inputRec_term_controller, nameLabel = inputRec_term_nameLabel};

inputRec_form FormManager {
entries = [inputRec_loanAmount_formField,

inputRec_interestRate_formField,
inputRec_term_formField] };

buttonLayout GridLayout{
layoutData = new GridLayoutData{

row = 4, column = 1,
horizontalAlignment = GridLayoutLib.ALIGN_CENTER,
horizontalSpan = 2 },

cellPadding = 4, rows = 2, columns = 1,
children = [processImage, calculationButton] };

calculationButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 1 },
text = "Calculate", onClick ::= inputRec_form_Submit };

processImage Image{
layoutData = new GridLayoutData{

row = 2, column = 1,
horizontalAlignment = GridLayoutLib.ALIGN_CENTER },

src = "tools/spinner.gif",
visible = false};

paymentLabel TextLabel{
layoutData = new GridLayoutData{

row = 5, column = 1,
horizontalAlignment = GridLayoutLib.ALIGN_CENTER,
horizontalSpan = 2 },

text = "$0.00", fontSize = "18" };

errorLabel TextLabel{ layoutData = new GridLayoutData{
row = 6, column = 1,
horizontalSpan = 2 },
color = "Red", width = "250" };

function start()
end

function inputRec_form_Submit(event Event in)
if(inputRec_form.isValid())

inputRec_form.commit();
end

end

function inputRec_form_Publish(event Event in)
inputRec_form.publish();
inputRec_form_Validate();

end

function inputRec_form_Validate()
inputRec_form.isValid();

end

function handleValidStateChange_inputRec(view Widget in, valid boolean in)
for (n int from inputRec_form.entries.getSize() to 1 decrement by 1)

entry FormField = inputRec_form.entries[n];
if (entry.controller.view == view)

76 Create a mortgage application with EGL Rich UI

if(valid)
// TODO: handle valid value
else

msg String? = entry.controller.getErrorMessage();
// TODO: handle invalid value

end
end

end
end

end

Related tasks

“Lesson 4: Create the user interface for the calculator” on page 15

Finished code for MortgageCalculatorHandler.egl after Lesson
5

The following code is the text of the MortgageCalculatorHandler.egl file after
Lesson 5.
package handlers;

import com.ibm.egl.rui.widgets.GridLayout;
import services.MortgageCalculationResult;
import com.ibm.egl.rui.widgets.GridLayoutData;
import com.ibm.egl.rui.widgets.TextLabel;
import dojo.widgets.DojoCurrencyTextBox;
import com.ibm.egl.rui.mvc.Controller;
import com.ibm.egl.rui.mvc.MVC;
import com.ibm.egl.rui.mvc.FormField;
import dojo.widgets.DojoTextField;
import dojo.widgets.DojoComboBox;
import com.ibm.egl.rui.mvc.FormManager;
import com.ibm.egl.rui.widgets.GridLayoutLib;
import dojo.widgets.DojoButton;
import com.ibm.egl.rui.widgets.Image;
import services.MortgageCalculationService;
import libraries.MortgageLib;

handler MortgageCalculatorHandler type RUIhandler {
initialUI = [ui], onConstructionFunction = start,
cssFile="css/MortgageUIProject.css", title="MortgageCalculatorHandler"}

mortService MortgageCalculationService{@dedicatedService};

ui GridLayout{ columns = 1, rows = 1,
cellPadding = 4, children = [inputRec_ui] };

inputRec MortgageCalculationResult{
term = 30, loanAmount=180000, interestRate = 5.2};

inputRec_ui GridLayout{
layoutData = new GridLayoutData{ row = 1, column = 1 },
rows = 6, columns = 2, cellPadding = 4,
children = [

errorLabel, paymentLabel, buttonLayout, inputRec_loanAmount_nameLabel,
inputRec_loanAmount_textBox,inputRec_interestRate_nameLabel,
inputRec_interestRate_field,inputRec_term_nameLabel,inputRec_term_comboBox] };

inputRec_loanAmount_nameLabel TextLabel {
text="Loan amount:" , layoutData = new GridLayoutData { row = 1, column = 1} };

inputRec_loanAmount_textBox DojoCurrencyTextBox {
currency = "USD", value = inputRec.loanAmount, width ="100",
errorMessage="Amount is not valid." ,
layoutData = new GridLayoutData { row = 1, column = 2} };

Create a mortgage application with EGL Rich UI 77

inputRec_loanAmount_controller Controller {
@MVC {model = inputRec.loanAmount,

view = inputRec_loanAmount_textBox as Widget},
validStateSetter = handleValidStateChange_inputRec};

inputRec_loanAmount_formField FormField {
controller = inputRec_loanAmount_controller,
nameLabel = inputRec_loanAmount_nameLabel};

inputRec_interestRate_nameLabel TextLabel {
text="Interest rate:" ,
layoutData = new GridLayoutData { row = 2, column = 1} };

inputRec_interestRate_field DojoTextField {
layoutData = new GridLayoutData { row = 2, column = 2}, width = "100" };

inputRec_interestRate_controller Controller {
@MVC {model = inputRec.interestRate,

view = inputRec_interestRate_field as Widget},
validStateSetter = handleValidStateChange_inputRec};

inputRec_interestRate_formField FormField {
controller = inputRec_interestRate_controller,
nameLabel = inputRec_interestRate_nameLabel};

inputRec_term_nameLabel TextLabel {
text="Term:" , layoutData = new GridLayoutData { row = 3, column = 1} };

inputRec_term_comboBox DojoComboBox {
values = ["5","10","15","30"] ,
layoutData = new GridLayoutData { row = 3, column = 2}, width = "100" };

inputRec_term_controller Controller {
@MVC {model = inputRec.term,

view = inputRec_term_comboBox as Widget},
validStateSetter = handleValidStateChange_inputRec};

inputRec_term_formField FormField {
controller = inputRec_term_controller, nameLabel = inputRec_term_nameLabel};

inputRec_form FormManager {
entries = [inputRec_loanAmount_formField,

inputRec_interestRate_formField,
inputRec_term_formField] };

buttonLayout GridLayout{
layoutData = new GridLayoutData{

row = 4, column = 1,
horizontalAlignment = GridLayoutLib.ALIGN_CENTER,
horizontalSpan = 2 },

cellPadding = 4, rows = 2, columns = 1,
children = [processImage, calculationButton] };

calculationButton DojoButton{
layoutData = new GridLayoutData{ row = 1, column = 1 },
text = "Calculate", onClick ::= inputRec_form_Submit };

processImage Image{
layoutData = new GridLayoutData{

row = 2, column = 1,
horizontalAlignment = GridLayoutLib.ALIGN_CENTER },

src = "tools/spinner.gif",
visible = false};

paymentLabel TextLabel{
layoutData = new GridLayoutData{

row = 5, column = 1,

78 Create a mortgage application with EGL Rich UI

horizontalAlignment = GridLayoutLib.ALIGN_CENTER,
horizontalSpan = 2 },

text = "$0.00", fontSize = "18" };

errorLabel TextLabel{ layoutData = new GridLayoutData{
row = 6, column = 1,
horizontalSpan = 2 },
color = "Red", width = "250" };

function start()
end

function inputRec_form_Submit(event Event in)
if(inputRec_form.isValid())

inputRec_form.commit();
showProcessImage();
calculateMortgage();

else
errorLabel.text = "Input form validation failed.";

end
end

function inputRec_form_Publish(event Event in)
inputRec_form.publish();
inputRec_form_Validate();

end

function inputRec_form_Validate()
inputRec_form.isValid();

end

function handleValidStateChange_inputRec(view Widget in, valid boolean in)
for (n int from inputRec_form.entries.getSize() to 1 decrement by 1)

entry FormField = inputRec_form.entries[n];
if (entry.controller.view == view)

if(valid)
// TODO: handle valid value
else

msg String? = entry.controller.getErrorMessage();
// TODO: handle invalid value

end
end

end
end

function showProcessImage()
processImage.visible = yes;

end

function hideProcessImage()
processImage.visible = no;

end

function calculateMortgage()
errorLabel.text = "";
call mortService.amortize(inputRec)

returning to displayResults
onException handleException;

end

function displayResults(retResult MortgageCalculationResult in)
paymentLabel.text = MortgageLib.formatMoney(retResult.monthlyPayment as STRING);
inputRec_form.publish();
hideProcessImage();

end

Create a mortgage application with EGL Rich UI 79

// catch-all exception handler
private function handleException(ae AnyException in)

errorLabel.text = "Error calling service: " + ae.message;
end

end

Related tasks

“Lesson 5: Add code to the mortgage calculator handler” on page 27

Finished code for CalculationResultsHandler.egl after Lesson
6

The following code is the text of the CalculationResultsHandler.egl file after
Lesson 6, which also made small but important changes to the
CalculationResultsHandler.egl file.
package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import com.ibm.egl.rui.widgets.GridLayout;
import com.ibm.egl.rui.widgets.GridLayoutData;
import dojo.widgets.DojoPieChart;
import dojo.widgets.PieChartData;
import services.MortgageCalculationResult;

handler CalculationResultsHandler type RUIhandler{
initialUI =[ui], onConstructionFunction = start,
cssFile = "css/MortgageUIProject.css", title = "CalculationResultsHandler"}

ui GridLayout{columns = 1, rows = 1, cellPadding = 4,
children =[interestPieChart]};

interestPieChart DojoPieChart{layoutData =
new GridLayoutData{row = 1, column = 1},
radius = 100, width = "300", height = "250", labelOffSet = 50,
fontColor = "white",
data =[

new PieChartData{y = 1, text = "Principal", color = "#99ccbb"},
new PieChartData{y = 0, text = "Interest", color = "#888855"}

]};

function start()
InfoBus.subscribe("mortgageApplication.mortgageCalculated", displayChart);

end

function displayChart(eventName string in, dataObject any in)
localPieData PieChartData[2];

resultRecord MortgageCalculationResult =
dataObject as MortgageCalculationResult;

localPieData = interestPieChart.data;
localPieData[1].y = resultRecord.loanAmount;
localPieData[2].y = resultRecord.interest;
interestPieChart.data = localPieData;

end
end

Related tasks

“Lesson 6: Create the calculation results handler” on page 34

Finished code for MainHandler.egl after Lesson 7
The following code is the text of the MainHandler.egl file after Lesson 7.

80 Create a mortgage application with EGL Rich UI

package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import utils.portal.Portal;
import utils.portal.Portlet;

handler MainHandler type RUIhandler
{initialUI = [mortgagePortal],
onConstructionFunction = start,
cssFile="css/MortgageUIProject.css",
title="MainHandler"}

mortgagePortal Portal{ columns = 2, columnWidths = [350, 650] };

calculatorHandler MortgageCalculatorHandler{};
resultsHandler CalculationResultsHandler{};

calculatorPortlet Portlet
{children = [calculatorHandler.ui], title = "Calculator"};

resultsPortlet Portlet{children = [resultsHandler.ui],
title = "Results", canMove = TRUE, canMinimize = TRUE};

function start()
mortgagePortal.addPortlet(calculatorPortlet, 1);
mortgagePortal.addPortlet(resultsPortlet, 1);

// Subscribe to calculation events
InfoBus.subscribe("mortgageApplication.mortgageCalculated", restorePortlets);

// Initial state is minimized
resultsPortlet.minimize();

end

function restorePortlets(eventName STRING in, dataObject ANY in)
if(resultsPortlet.isMinimized())

resultsPortlet.restore();
end

end
end

Related tasks

“Lesson 7: Create the main Rich UI handler” on page 38

Finished code for CalculationHistoryHandler.egl after Lesson
8

The following code is the text of the CalculationHistoryHandler.egl file after
Lesson 8.
package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import com.ibm.egl.rui.widgets.DataGrid;
import com.ibm.egl.rui.widgets.DataGridColumn;
import com.ibm.egl.rui.widgets.DataGridFormatters;
import com.ibm.egl.rui.widgets.DataGridLib;
import libraries.MortgageLib;
import services.MortgageCalculationResult;

handler CalculationHistoryHandler type RUIhandler
{initialUI = [historyResults_ui],
onConstructionFunction = start,
cssFile="css/MortgageUIProject.css",
title="CalculationHistoryHandler"}

historyResults MortgageCalculationResult[0];

Create a mortgage application with EGL Rich UI 81

historyResults_ui DataGrid {
selectionMode = DataGridLib.SINGLE_SELECTION,
selectionListeners ::= cellClicked,
columns = [

new DataGridColumn {name = "loanAmount", displayName = "Principal",
width = 80, alignment = DataGridLib.ALIGN_RIGHT,
formatters = [formatDollars]},

new DataGridColumn {name = "interestRate", displayName = "Rate",
width = 80, alignment = DataGridLib.ALIGN_RIGHT,
formatters = [DataGridFormatters.percentage]},

new DataGridColumn {name = "term", displayName = "Years",
width = 50, alignment = DataGridLib.ALIGN_RIGHT},

new DataGridColumn {name = "monthlyPayment", displayName = "Payment",
width = 70, alignment = DataGridLib.ALIGN_RIGHT,
formatters = [formatDollars]}

],
data = historyResults as any[] };

function start()
InfoBus.subscribe("mortgageApplication.mortgageCalculated", addResultRecord);

end

// Update the grid to include the latest mortgage calculation
function addResultRecord(eventName STRING in, dataObject ANY in)

resultRecord MortgageCalculationResult =
dataObject as MortgageCalculationResult;

historyResults.appendElement(resultRecord);
historyResults_ui.data = historyResults as ANY[];

end

// Publish an event to the InfoBus whenever the user selects an old calculation
function cellClicked(myGrid DataGrid in)

updateRec MortgageCalculationResult =
myGrid.getSelection()[1] as MortgageCalculationResult;

InfoBus.publish("mortgageApplication.mortgageResultSelected", updateRec);
end

function formatDollars(class string, value string, rowData any in)
value = mortgageLib.formatMoney(value);

end
end

Related tasks

“Lesson 8: Create the calculation history handler” on page 42

Finished code for MainHandler.egl after Lesson 9
The following code is the text of the MainHandler.egl file at the end of Lesson 9,
which also made small but important changes to CalculationResultsHandler.egl.
package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import utils.portal.Portal;
import utils.portal.Portlet;

handler MainHandler type RUIhandler{initialUI =[mortgagePortal],
onConstructionFunction = start,
cssFile = "css/MortgageUIProject.css",
title = "MainHandler"}

mortgagePortal Portal{columns = 2, columnWidths =[350, 650]};

calculatorHandler MortgageCalculatorHandler{};
resultsHandler CalculationResultsHandler{};
historyHandler CalculationHistoryHandler{};

82 Create a mortgage application with EGL Rich UI

calculatorPortlet Portlet{children =[calculatorHandler.ui], title = "Calculator"};
resultsPortlet Portlet{children =[resultsHandler.ui],

title = "Results", canMove = true, canMinimize = true};
historyPortlet Portlet{children = [historyHandler.historyResults_ui],

title = "History", canMove = TRUE, canMinimize = TRUE};

function start()
mortgagePortal.addPortlet(calculatorPortlet, 1);
mortgagePortal.addPortlet(resultsPortlet, 1);
mortgagePortal.addPortlet(historyPortlet, 1);

// Subscribe to calculation events
InfoBus.subscribe("mortgageApplication.mortgageCalculated", restorePortlets);

// Initial state is minimized
resultsPortlet.minimize();
historyPortlet.minimize();

end

function restorePortlets(eventName string in, dataObject any in)

if(resultsPortlet.isMinimized())
resultsPortlet.restore();

end

if(historyPortlet.isMinimized())
historyPortlet.restore();

end
end

end

Related tasks

“Lesson 9: Embed the calculation history handler in the application” on page 47

Finished code for GooglePlaceRecords.egl after Lesson 10
The following code is the text of the GooglePlaceRecords.egl file at the end of
Lesson 10.
package services;

Record PlaceSearchResponse
status string;
result Result[];
html_attribution string;
next_page_token string;
end

Record Result
name string;
vicinity string;
type1 string[] {@XMLElement{name = "type"}};
geometry Geometry;
rating string?;
icon string;
reference string;
id string;
opening_hours Opening_hours?;
photo Photo?;
price_level string?;
end

Record Geometry
location Location;
end

Record Location

Create a mortgage application with EGL Rich UI 83

lat string;
lng string;
end

Record Opening_hours
open_now string;
end

Record Photo
photo_reference string;
width string;
height string;
html_attribution string?;
end

Related tasks

“Lesson 10: Create the map locator handler” on page 52

Finished code for GooglePlacesService.egl after Lesson 10
The following code is the text of the GooglePlacesService.egl file at the end of
Lesson 10.
package interfaces;

import services.PlaceSearchResponse;

// interface
interface GooglePlacesService

function getSearchResults(typeName string? in) returns(PlaceSearchResponse)
{@GetRest{uriTemplate = "https://maps.googleapis.com/maps/api/place/search/xml?location=37.47,-122.26&radius=50000&sensor=false&key=AIzaSyD_K9zveT

Related tasks

“Lesson 10: Create the map locator handler” on page 52

Finished code for MapLocatorHandler.egl after Lesson 10
The following code is the text of the MapLocatorHandler.egl file at the end of
Lesson 10.
package handlers;

import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.GridLayout;
import com.ibm.egl.rui.widgets.GridLayoutData;
import com.ibm.egl.rui.widgets.GridLayoutLib;
import com.ibm.egl.rui.widgets.HyperLink;
import com.ibm.egl.rui.widgets.TextLabel;
import egl.ui.rui.Event;
import dojo.widgets.DojoButton;
import dojo.widgets.DojoComboBox;
import interfaces.GooglePlacesService;
import services.PlaceSearchResponse;
import utils.dialog.DojoDialogLib;
import utils.map.GoogleMap;
import utils.map.MapMarker;

handler MapLocatorHandler type RUIhandler{initialUI =[ui
], onConstructionFunction = start, cssFile = "css/MortgageUIProject.css", title = "MapLocatorHandler"}

ui GridLayout{columns = 3, rows = 3, cellPadding = 4, children =[localMap,
listingBox, typeButton, typeComboBox, typeLabel, introLabel

]};
introLabel TextLabel{layoutData = new GridLayoutData{row = 1, column = 1, horizontalSpan = 3}, text = "Search for places in San Francisco:"};
typeLabel TextLabel{layoutData = new GridLayoutData{row = 2, column = 1}, text = "Type:"};
typeComboBox DojoComboBox{layoutData = new GridLayoutData{row = 2, column = 2}, value = "mortgage", inputRequired = true, width = "100", onChange ::

"bar", "food", "restaurant", "cafe", "movie_theater", "mortgage",

84 Create a mortgage application with EGL Rich UI

"bank", "atm"]};

typeButton DojoButton{layoutData = new GridLayoutData{row = 2, column = 3}, text = "Search", onClick ::= buttonClicked};
listingBox Box{layoutData = new GridLayoutData{row = 3, column = 1, verticalAlignment = GridLayoutLib.VALIGN_TOP, horizontalSpan = 2}, padding =
localMap GoogleMap{layoutData = new GridLayoutData{row = 3, column = 3}, width = 400, height = 400};

function start()
end

function checkForEnter(event Event in)

end

function buttonClicked(event Event in)

end
end

Related tasks

“Lesson 10: Create the map locator handler” on page 52

Finished code for MapLocatorHandler.egl after Lesson 11
The following code is the text of the MapLocatorHandler.egl file at the end of
Lesson 11.
package handlers;

import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.GridLayout;
import com.ibm.egl.rui.widgets.GridLayoutData;
import com.ibm.egl.rui.widgets.GridLayoutLib;
import com.ibm.egl.rui.widgets.HyperLink;
import com.ibm.egl.rui.widgets.TextLabel;
import egl.ui.rui.Event;
import dojo.widgets.DojoButton;
import dojo.widgets.DojoComboBox;
import interfaces.GooglePlacesService;
import services.PlaceSearchResponse;
import utils.dialog.DojoDialogLib;
import utils.map.GoogleMap;
import utils.map.MapMarker;

handler MapLocatorHandler type RUIhandler{initialUI =[ui
], onConstructionFunction = start, cssFile = "css/MortgageUIProject.css", title = "MapLocatorHandler"}

ui GridLayout{columns = 3, rows = 3, cellPadding = 4, children =[localMap,
listingBox, typeButton, typeComboBox, typeLabel, introLabel

]};
introLabel TextLabel{layoutData = new GridLayoutData{row = 1, column = 1, horizontalSpan = 3}, text = "Search for places in San Francisco:"};
typeLabel TextLabel{layoutData = new GridLayoutData{row = 2, column = 1}, text = "Type:"};
typeComboBox DojoComboBox{layoutData = new GridLayoutData{row = 2, column = 2}, value = "mortgage", inputRequired = true, width = "100", onChange

"bar", "food", "restaurant", "cafe", "movie_theater", "mortgage",
"bank", "atm"]};

typeButton DojoButton{layoutData = new GridLayoutData{row = 2, column = 3}, text = "Search", onClick ::= buttonClicked};
listingBox Box{layoutData = new GridLayoutData{row = 3, column = 1, verticalAlignment = GridLayoutLib.VALIGN_TOP, horizontalSpan = 2}, padding =
localMap GoogleMap{layoutData = new GridLayoutData{row = 3, column = 3}, width = 400, height = 400};

lookupService GooglePlacesService{@restbinding};

function start()
end

function checkForEnter(event Event in)

Create a mortgage application with EGL Rich UI 85

if(event.ch == 13)
search();

end
end

function buttonClicked(event Event in)
search();

end

function search()
localMap.zoom = 10;

localMap.removeAllMarkers();
// show an initial marker, as necessary to display the map at all
localMap.addMarker(new MapMarker{ latitude = "37.47", longitude = "-122.26", address = "I am here!", description = "San Francisco"});

// Call the remote Google service, passing the type value
call lookupService.getSearchResults(typeComboBox.value) returning to showResults

onException displayError;
end

function showResults(retResult PlaceSearchResponse in)
linkListing HyperLink[0];

for(i int from 1 to retResult.result.getSize() by 1)
newLink HyperLink{padding = 4, text = retResult.result[i].name, href = "#"};
newLink.setAttribute("title", retResult.result[i].vicinity);
newLink.setAttribute("lat",

retResult.result[i].geometry.location.lat);
newLink.setAttribute("lng",

retResult.result[i].geometry.location.lng);
newLink.onClick ::= mapAddress;
linkListing.appendElement(newLink);

end
listingBox.setChildren(linkListing);

end

function mapAddress(e Event in)

// Show the marker when the user clicks the link
businessAddress string = e.widget.getAttribute("address") as string;
businessName string = e.widget.getAttribute("title") as string;
lat string = e.widget.getAttribute("lat") as string;
lng string = e.widget.getAttribute("lng") as string;
localMap.addMarker(new MapMarker{ latitude = lat,
longitude = lng, address = businessAddress, description = businessName});

end

function displayError(ex AnyException in)
DojoDialogLib.showError("Google Service",

"Cannot invoke Google Places service: " + ex.message, null);
end

end

Related tasks

“Lesson 11: Add code to the map locator handler” on page 58

Finished code for MainHandler.egl after Lesson 12
The following code is the text of the MainHandler.egl file at the end of Lesson 12.
package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import egl.ui.columns;
import utils.portal.Portal;
import utils.portal.Portlet;

86 Create a mortgage application with EGL Rich UI

handler MainHandler type RUIhandler{initialUI =[mortgagePortal
], onConstructionFunction = start, cssFile = "css/MortgageUIProject.css", title = "MainHandler"}

mortgagePortal Portal{columns = 2, columnWidths =[350, 650]};

calculatorHandler MortgageCalculatorHandler{};
resultsHandler CalculationResultsHandler{};
historyHandler CalculationHistoryHandler{};

mapHandler MapLocatorHandler{};

historyPortlet Portlet{children =[historyHandler.historyResults_ui
], title = "History", canMove = true, canMinimize = true};

calculatorPortlet Portlet{children =[calculatorHandler.ui
], title = "Calculator"};

resultsPortlet Portlet{children =[resultsHandler.ui
], title = "Results", canMove = true, canMinimize = true};

mapPortlet Portlet{children = [mapHandler.ui],
title = "Map", canMove = FALSE, canMinimize = TRUE};

function start()
mortgagePortal.addPortlet(calculatorPortlet, 1);
mortgagePortal.addPortlet(resultsPortlet, 1);
mortgagePortal.addPortlet(historyPortlet, 1);

mortgagePortal.addPortlet(mapPortlet, 2);

historyPortlet.minimize();

// Subscribe to calculation events
InfoBus.subscribe("mortgageApplication.mortgageCalculated",

restorePortlets);

// Initial state is minimized
resultsPortlet.minimize();

end

function restorePortlets(eventName string in, dataObject any in)
if(resultsPortlet.isMinimized())

resultsPortlet.restore();
end
if(historyPortlet.isMinimized())

historyPortlet.restore();
end

end
end

Related tasks

“Lesson 12: Embed the map locator handler in the application” on page 63

Create a mortgage application with EGL Rich UI 87

88 Create a mortgage application with EGL Rich UI

Index

C
calculateMortgage() function 31
CalculationHistoryHandler.egl

source code 81
CalculationResultsHandler.egl

source code 80

D
displayResults() function 31

G
GooglePlacesService.egl

source code
lesson 10 84

H
hideProcessImage() function 31

I
inputRec_ui_Submit() function 30

M
MainHandler.egl

source code
lesson 12 86
lesson 7 81
lesson 9 82

MapLocatorHandler.egl
source code

lesson 10 83, 84
lesson 11 85

MortgageCalculationService.egl
source code

Lesson 3 74
MortgageCalculatorHandler.egl

source code
lesson 4 74
lesson 5 77

P
portals

definitions 1
portlet

definitions 1

R
REST protocols

definitions 1

S
Service part

creating 12
showProcessImage() function 30
SOAP protocols

definitions 1

89

	Contents
	Create a mortgage application with EGL Rich UI
	Introduction
	Lesson 1: Plan the mortgage application
	Sketch the interface
	Identify the application structure
	Lesson checkpoint

	Lesson 2: Set up the workspace
	Create an EGL service project
	Create an EGL Rich UI project
	Import the EGL Dojo widgets sample
	Change your build path for MortgageUIProject
	Lesson checkpoint

	Lesson 3: Create the mortgage calculation service
	Create a Service part
	Create a Record part
	Lesson checkpoint

	Lesson 4: Create the user interface for the calculator
	Create a Rich UI handler
	Construct the user interface
	Lesson checkpoint

	Lesson 5: Add code to the mortgage calculator handler
	Create an EGL library
	Change the code in the handler
	Complete the inputRec_form_Submit function
	Add the showProcessImage function
	Add the hideProcessImage function
	Add the calculateMortgage function
	Add the displayResults function
	Write the exception handler
	Test the calculator
	Lesson checkpoint

	Lesson 6: Create the calculation results handler
	Publish the service results
	Create the CalculationResultsHandler handler
	Test the pie chart
	Lesson checkpoint

	Lesson 7: Create the main Rich UI handler
	Create the MainHandler handler
	Test the portal
	Lesson checkpoint

	Lesson 8: Create the calculation history handler
	Create the handler
	Lesson checkpoint

	Lesson 9: Embed the calculation history handler in the application
	Change the results portlet
	Change the main portal
	Test the portal
	Lesson checkpoint

	Lesson 10: Create the map locator handler
	Create records for the Interface file
	Create the Local Search Interface
	Create the MapLocatorHandler handler
	Lesson checkpoint

	Lesson 11: Add code to the map locator handler
	Finish the source code for MapLocatorHandler.egl
	Test the new portlet
	Lesson checkpoint

	Lesson 12: Embed the map locator handler in the application
	Change the main portal
	Test the portal
	Lesson checkpoint

	Lesson 13: Install Apache Tomcat
	Download and access the server
	Lesson checkpoint

	Lesson 14: Deploy and test the mortgage application
	Edit the deployment descriptor
	Deploy the Rich UI application
	Run the generated code
	Lesson checkpoint

	Summary
	Resources
	Finished code for MortgageCalculationService.egl after Lesson 3
	Finished code for MortgageCalculatorHandler.egl after Lesson 4
	Finished code for MortgageCalculatorHandler.egl after Lesson 5
	Finished code for CalculationResultsHandler.egl after Lesson 6
	Finished code for MainHandler.egl after Lesson 7
	Finished code for CalculationHistoryHandler.egl after Lesson 8
	Finished code for MainHandler.egl after Lesson 9
	Finished code for GooglePlaceRecords.egl after Lesson 10
	Finished code for GooglePlacesService.egl after Lesson 10
	Finished code for MapLocatorHandler.egl after Lesson 10
	Finished code for MapLocatorHandler.egl after Lesson 11
	Finished code for MainHandler.egl after Lesson 12

	Index
	C
	D
	G
	H
	I
	M
	P
	R
	S

