Enterprise PL/1 for z/0S
PL/T for AIX

Rational Developer for System z PL/I for Windows

Messages and Codes

Version 3 Release 8

<|lI!

SC27-1461-08

Enterprise PL/1 for z/0S
PL/T for AIX

Rational Developer for System z PL/I for Windows

Messages and Codes

Version 3 Release 8

<|lI!

SC27-1461-08

Note!
Before using this information and the product it supports, be sure to read the general
information under [“Notices” on page 169

Tenth Edition (October 2008)

This edition applies to Version 3 Release 8 of Enterprise PL/I for z/0OS, 5655-H31, PL/I for AIX VV2.0.0.0, and to
Rational Developer for System z PL/I for Windows, Version 7.1, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of the
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, Department H150/090

555 Bailey Ave.

San Jose, CA, 95141-1099

United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999, 2008.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Part 1. Messages and Codes 1

Chapter 1. Compiler and preprocessor
messages .

Format of messages .

Message inserts

Contacting IBM for suppor

B w W

Chapter 2. How to send your comments 5

Chapter 3. Compiler Informational
Messages (1000-1076, 2800-2999). . . . 7

Chapter 4. Compiler Warning Messages
(1078-1225, 2600-2799)1

Chapter 5. Compiler Error Messages
(1226-1499, 2400-2599)29

Chapter 6. Compiler Severe Messages
(1500-2399).51

Chapter 7. MACRO and CICS
Preprocessor Messages (3000-3999) . . 99

Chapter 8. Code Generation Messages

(5000-5999)17
Chapter 9. SQL Preprocessor

Messages (7000-7999). 121
Chapter 10. Condition codes. 125
Conditions 1 through 50.125
Condition codes 51 through 100 126
Condition codes 100 through 520. 129
Condition codes 600 through 650. 130
Condition codes 651 through 672. 131

© Copyright IBM Corp. 1999, 2008

Condition codes 1002 through 1107 133
Condition codes 1500 through 1550 134
Condition codes 1551 through 1600 135
Condition codes 1601 through 1650 137
Condition codes 1651 through 1700 139
Condition codes 1701 through 1750 141
Condition codes 1751 through 1800 143
Condition codes 1801 through 1850 145
Condition codes 1851 through 1900 147
Condition codes 1901 through 1950 148
Condition codes 1951 through 2000 150
Condition codes 2002 through 2150 152
Condition codes 2151 through 2200 153
Condition codes 2201 through 2250 154
Condition codes 2251 through 2300 156
Condition codes 2301 through 2350 158
Condition codes 2351 through 2400 159
Condition codes 2403 through 2450 161
Condition codes 2451 through 2500 162
Condition codes 2504 through 2999 164
Condition codes 3000 through 3900 165
Condition codes 3901 through 4000 166
Condition codes 4001 through 9999 167
Notices169
Trademarks170
Bibliography. 171
Enterprise PL/I publications 171
PL/I for MVS & VM.17
z/0S Language Environment 171
CICS Transaction Server.171
DB2 UDB for OS/3%0 and z/OS171
DFSORT11
IMS/ESA. 172
z/OSMVS oL AT2
z/0S UNIX System Services172
z/OSTSO/E1712
z/Architecture 172
Unicode and character representation 172

iV PL/I Messages and Codes

Part 1. Messages and Codes

Chapter 1. Compiler and preprocessor messages

Format of messages .
Message inserts
Contacting IBM for suppor

Chapter 2. How to send your comments

Chapter 3. Compiler Informational Messages

(1000-1076, 2800-2999)

Chapter 4. Compiler Warning Messages

(1078-1225, 2600-2799) .

Chapter 5. Compiler Error Messages (1226-1499,

2400-2599)

Chapter 6. Compiler Severe Messages

(1500-2399) .

Chapter 7. MACRO and CICS Preprocessor

Messages (3000-3999)

Chapter 8. Code Generation Messages

(5000-5999).

Chapter 9. SQL Preprocessor Messages

(7000-7999).

Chapter 10. Condition codes
Conditions 1 through 50.
Condition codes 51 through 100 .
Condition codes 100 through 520 .
Condition codes 600 through 650 .
Condition codes 651 through 672.

Condition codes 1002 through 1107 .
Condition codes 1500 through 1550 .
Condition codes 1551 through 1600 .
Condition codes 1601 through 1650 .
Condition codes 1651 through 1700 .
Condition codes 1701 through 1750 .
Condition codes 1751 through 1800 .
Condition codes 1801 through 1850 .
Condition codes 1851 through 1900 .
Condition codes 1901 through 1950 .
Condition codes 1951 through 2000 .
Condition codes 2002 through 2150 .
Condition codes 2151 through 2200 .
Condition codes 2201 through 2250 .
Condition codes 2251 through 2300 .
Condition codes 2301 through 2350 .
Condition codes 2351 through 2400 .
Condition codes 2403 through 2450 .
Condition codes 2451 through 2500 .
Condition codes 2504 through 2999 .
Condition codes 3000 through 3900 .

© Copyright IBM Corp. 1999, 2008

3

A D w

.1

. 29

. 51

. 99

. 117

121

. 125
. 125
. 126
. 129
. 130
. 131
. 133
. 134
. 135
. 137
. 139
. 141
. 143
. 145
. 147
. 148
. 150
. 152
. 153
. 154
. 156
. 158
. 159
. 161
. 162
. 164
. 165

Condition codes 3901 through 4000 .
Condition codes 4001 through 9999 .

. 166
. 167

2 PL/I Messages and Codes

Chapter 1. Compiler and preprocessor messages

This section lists the compiler messages in numerical order. These messages are
also listed in numerical order in the output following the source program and in
any other listings produced by the compiler.

Format of messages
In your compilation output, each compiler message, with the exception of the
code generation messages in the range 5000-5999, starts with IBMnnnnI X where:
» IBM indicates that the message is a PL/I message
* nnnn is the number of the message
» the closing letter I indicates that no system operator action is required
* the X represents a severity code.

In this guide, messages are listed numerically. Each compiler message in this
section has the form IBMnnnnI X where X is the severity code.

Severity codes can be any of the following: I, W, E, S, or U.

These severity codes indicate the following. (Note that the return codes listed are
the highest return code generated.)

| An informational message (RC=0) indicates that the compiled program
should run correctly. The compiler might inform you of a possible
inefficiency in your code or some other condition of interest.

W A warning message (RC=4) warns you that a statement might be in error
(warning) even though it is syntactically valid. The compiled program
should run correctly, but might produce different results than expected or
be significantly inefficient.

E An error message (RC=8) describes a simple error fixed by the compiler.
The compiled program should run correctly, but might produce different
results than expected.

S A severe error message (RC=12) describes an error not fixed by the
compiler. If the program is compiled and an object module is produced, it
should not be used.

U An unrecoverable error message (RC=16) signifies an error that forces
termination of the compilation. An object module is not successfully
created.

Compiler messages are printed in groups according to these severity levels and to
the component that produced them.

The code generation messages (those in the range 5000-5999) start with IBMnnnn
where:

» IBM indicates that the message is a PL/I message
* nnnn is the number of the message

Under batch, the code generation messages are written to the STDOUT DD dataset,
while all other messages appear in the listing which is written to the SYSPRINT

© Copyright IBM Corp. 1999, 2008 3

DD dataset. Under z/OS UNIX, the code generation messages are written to
stdout, while all other messages appear in the listing and are also written to
stdout.

The compiler FLAG option suppresses the listing of messages in the compiler
listing. You can find a description of the FLAG option in the Enterprise PL/I for
z/OS Programming Guide.

Message inserts

Many of the compiler messages contain message inserts indicating where the
compiler inserts information when it prints the message. These inserts are
emphasized in the messages in this section using italics.

Contacting IBM for support

If you contact IBM for programming support for a compiler error, it is useful to
have a listing of your source program available. To make the analysis of any
potential problem easier, it is best if that listing is created with the options:
INSOURCE MACRO OPTIONS SOURCE.

4 PL/I Messages and Codes

Chapter 2. How to send your comments

Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this document or any other PL/I
documentation, contact us in one of these ways:

e Use the Online Readers’ Comment Form at
www.ibm.com/software/awdtools/rcf/

or send an e-mail to
comments@us.ibm.com

Be sure to include the name of the document, the publication number of the
document, the version of PL/1, and, if applicable, the specific location (for
example, page number) of the text that you are commenting on.

* Fill out the Readers’ Comment Form at the back of this document, and return it
by mail or give it to an IBM representative. If the form has been removed,
address your comments to:

International Business Machines Corporation
Reader Comments

H150/090

555 Bailey Avenue

San Jose, CA 95141-1003

USA

* Fax your comments to this U.S. number: (800)426-7773.
When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any
obligation to you.

© Copyright IBM Corp. 1999, 2008 5

6 PL/I Messages and Codes

Chapter 3. Compiler Informational Messages (1000-1076,

2800-2999)

IBM1018I I option-name should be specified within
OPTIONS, but is accepted as is.

Explanation: This message is used in building the
options listing.

IBM10351 I The next statement was merged with
this statement.

Explanation: The statement following the statement
for which this message was issued were merged with
that statement.

IBM10361 I The next statement-count statements were
merged with this statement.

Explanation: The specified number of statements
following the statement for which this message was
issued were merged with that statement.

IBM1038I I note

Explanation: This message is used to report back end
informational messages.

IBM10391 | Variable variable name is implicitly
declared.

Explanation: All variables should be declared except
for contextual declarations of built-in functions,
SYSPRINT and SYSIN.

IBM10401 I note

Explanation: This message is used by %NOTE
statements with a return code of 0.

IBM10411 I Comment spans line-count lines.

Explanation: A comment ends on a different line than
it begins. This may indicate that an end-of-comment
delimiter is missing.

IBM10421 | String spans line-count lines.

Explanation: A string ends on a different line than it
begins. This may indicate that a closing quote is
missing.

IBM10431 | variable name is contextually declared as
attribute.

Explanation: There is no declare statement for the
named variable, but it has been given the indicated

© Copyright IBM Corp. 1999, 2008

attribute because of its usage. For instance, if the
variable is used as a locator, it will be given the
POINTER attribute.

IBM10441 | FIXED BINARY with precision 7 or less
is mapped to 1 byte.

Explanation: The OS/370 PL/I and PL/I for MVS
compilers would have mapped this to 2 bytes.

IBM10451 I Code generated for the REFER object
reference name would be more efficient if
the REFER object had the attributes
REAL FIXED BIN(p,0).

Explanation: If the REFER object has any other
attributes, it will be converted to and from REAL
FIXED BIN(31,0) via library calls.

IBM10461 I UNSPEC applied to an array is handled
as a scalar reference.

Explanation: The OS/370 PL/1 and PL/1 for MVS
compilers would have handled UNSPEC applied to an
array as an array of scalars.

IBM10471 I ORDER option may inhibit
optimization.

Explanation: If the ORDER option applies to a block,
optimization is likely to be inhibited, especially if the
block contains ON-units that refer to variables declared
outside the ON-unit.

IBM10481 | GET/PUT DATA without a data-list
inhibits optimization.

Explanation: A GET DATA statement can alter almost
any variable, and a PUT DATA statement requires
almost all variables to be stored home anytime a PUT
DATA statement might be executed. Both of these
requirements inhibit optimization.

IBM10501 I INITIAL attribute for RESERVED
STATIC is ignored.

Explanation: The INITIAL attribute has been specified
for a variable with the attributes RESERVED STATIC.
Unless such a variable is listed in the EXPORTS clause
of a PACKAGE statement, the variable will not be
initialized.

IBM10511 I Argument to BUILTIN name built-in may
not be byte aligned.

Explanation: This message applies to the ADDR,
CURRENTSTORAGE/SIZE and STORAGE/SIZE
built-in functions. Applying any one of these built-in
functions to an unaligned bit variable may not produce
the results you expected.

IBM10521 I The NODESCRIPTOR attribute is
accepted even though some arguments
have * extents.

Explanation: When a string with * extent or an array
with * extents is passed, PL/I normally passes a
descriptor so that the called routine knows how big the
passed argument really is. The NODESCRIPTOR
attribute indicates that no descriptor should be passed;
this is invalid if the called routine is a PL/I procedure.

dc1 x entry(char(x), fixed bin(31))
options(nodescriptor);

IBM10531 I Scaled FIXED operation evaluated as
FIXED DECIMAL.

Explanation: If one of the built-in functions ADD,
DIVIDE, MULTIPLY or SUBTRACT is invoked with
argument that have type FIXED, if either operand has a
non-zero scale factor, the result will have type FIXED
DEC.

IBM10581 I Conversion from source type to target type
will be done by library call.

Explanation: This message can be used to help find
code that may be very expensive if executed as part of
a loop or to find code involving conversions of unlike

types.

IBM10591 | SELECT statement contains no
OTHERWISE clause.

Explanation: The ERROR condition will be raised if
no WHEN clause is satisfied.

IBM1060I I Name resolution for identifier selected its
declaration in a structure, rather than its
non-member declaration in a parent
block.

Explanation: The PL/I1 language rules require this, but
it might be a little surprising. In the following code
fragment, for instance, the display statement would
display the value of x.y.

a: proc;

8 PL/I Messages and Codes

dcl y fixed bin init(3);

call b;
b: proc;
dcl
1 x,
2 y fixed bin init(5),
2 z fixed bin init(7);

display(y);
end;

end a;

IBM10611 I Probable DATE calculation should be
examined for validity after the year
1999.

Explanation: Use of any of the constants 365, 1900 or
’19’ may indicate a date calculation. If this is true, you
should examine the calculation to determine if it will
be valid after the year 1999.

IBM10621 | variable inferred to contain a two-digit
year.

Explanation: The indicated was inferred to contain a
two-digit year because, for example, it was assigned the
DATE built-in function.

IBM10631 I Code generated for DO group would be
more efficient if control variable were a
4-byte integer.

Explanation: The control variable in the DO loop is a
1-byte integer, 2-byte integer, fixed decimal or fixed
picture, and consequently, the code generated for the
loop will not be optimal.

IBM10641 1 Use of OPT(2) forces TEST(BLOCK).

Explanation: Under OPT(2), any specification of TEST
hooks stronger than TEST(BLOCK) is not supported.

IBM10651 | Float constant constant would be more
precise if specified as a long float.

Explanation: The named short floating-point constant
cannot be exactly represented. It could be more
accurately represented if it were specified as a long
floating-point constant. For example, the 1.3E0 cannot
be exactly represented, but could be better represented
as 1.3D0.

IBM10671 I UNTIL clause ignored.

Explanation: If a DO specification has no clause such
as TO, BY or REPEAT that could cause the loop to be
repeated, then the UNTIL clause will have no effect on
the loop and will be ignored.

dox =yuntil (z>0);

end;

IBM1068I I Procedure has no RETURNS attribute,
but contains a RETURN statement. A

RETURNS attribute will be assumed.

Explanation: If a procedure contains a RETURN
statement, it should have the RETURNS attribute
specified on its PROCEDURE statement.

a: proc;
return(0);
end;

IBM10691 I The AUTOMATIC variables in a block
should not be used in the prologue of
that block.

Explanation: The AUTOMATIC variables in a block
may be used in the declare statements and the
executable statements of any contained block, but in the
block in which they are declared, they should be used
only in the executable statements.

dcl x fixed bin(15) init(5);
dcl y(x) fixed bin(15);

IBM2800I I The procedure proc name is not
referenced.

Explanation: The named procedure is not external and
is never referenced in the compilation unit. This may
represent an error (if it was supposed to be called) or
an opportunity to eliminate some dead code.

IBM28011 I FIXED DEC(source-precision,source-scale)
operand will be converted to FIXED
BIN(target-precision,target-scale). This
introduces a non-zero scale factor into
an integer operation and will produce a
result with the attributes FIXED

BIN(result-precision,result-scale).

Explanation: Under RULES(IBM), when an arithmetic
operation has an operand that is FIXED BIN and an
operand that is FIXED DEC with a non-zero scale

factor, then the FIXED DEC operand will be converted
to FIXED BIN.

IBM28021 I Aggregate mapping will be done by
library call.

Explanation: This message can be used to help find
code that may be very expensive if executed as part of
a loop. It may be produced, for example, if your code
refers to an element of a structure that uses REFER. If
the structure uses multiple REFERs and the element
occurs after the last REFER, the single reference to that
element may produce multiple copies of this message
(because multiple library calls will be made).

IBM28031 I keyword STRING EDIT statement
optimized.

Explanation: This message is issued when a PUT or
GET STRING EDIT statement has been optimized by
the compiler so that most of it is done inline.

IBM28041 I Boolean is compared with something

other than '1’b or '0’b.

Explanation: This message will flag statements such
as the following, where "true” is a BIT(1) STATIC
INIT('1’b). It would be better if "true” were a named
constant, i.e. if it were declared with the VALUE
attribute rather than STATIC INIT

if (a<b) = true then

IBM28051 I For assignment to variable name,
conversion from source type to target type

will be done by library call.

Explanation: This message can be used to help find
code that may be very expensive if executed as part of
a loop or to find code involving conversions of unlike

types.

IBM28061 I Passing a LABEL to another routine is
poor coding practice and will cause the
compiler to generate less than optimal

code.

Explanation: It is generally very unwise to pass a
label to another routine. It would be good to think
about redesigning any code doing this.

IBM28091 I FIXED DEC(source-precision,source-scale)
operand will be converted to FIXED
BIN(target-precision,target-scale). This
introduces 8-byte integer arithmetic into
an operation that might be faster if

computed in decimal.

Explanation: If the LIMITS option specifies a

Chapter 3. Compiler Informational Messages (1000-1076, 2800-2999) 9

maximum FIXED precision greater than 31, then an
operation involving a FIXED DEC and a FIXED BIN
operand might produce an 8-byte integer result even if
both operands are "small”. For example, if you add a
FIXED DEC(13) and a FIXED BIN(31), the result would
be an 8-byte integer (because a FIXED DEC(13) value
might be too large to fit in a 4-byte integer). To avoid
this, you could apply the DECIMAL built-in function to
the FIXED BIN operand.

IBM28101 I Conversion of FIXED
BIN(source-precision,source-scale) to FIXED
DEC(target-precision,target-scale) may
produce a more accurate result than
under the old compiler.

Explanation: In certain conversions of FIXED BIN(p,q)
to FIXED DEC, the old compiler slightly rounded the
result if q was positive.

IBM28111 I Use of PICTURE as DO control variable
is not recommended.

Explanation: If the control variable in a DO loop is a
PICTURE variable, then more code will be generated
for the loop than if the control variable were a FIXED
BIN variable. Moreover, such loops may easily be
miscoded so that they will loop infinitely.

IBM28121 I Argument number argument number to
BUILTIN name built-in would lead to
much better code if declared with the
VALUE attribute.

Explanation: For functions such as VERIFY(x,y), if y is
a constant, it is much better for performance to declare
y with the VALUE attribute rather than with the
INITIAL attribute.

IBM28141 | Aggregate mapping for storage
allocation will be done by library call.

Explanation: This message can be used to help find
code that may be expensive if invoked many times.
This message may be produced for ALLOCATE
statements for BASED and CONTROLLED variables
with non-constant extents, and it may also be produced
for the prologue of PROCEDUREs that use
AUTOMATIC variables with non-constant extents.

10 PL/I Messages and Codes

Chapter 4. Compiler Warning Messages (1078-1225,

2600-2799)

IBM10781 W Statement may never be executed.

Explanation: This message warns that the compiler
has detected a statement that can never be run as the
flow of control must always pass it by.

IBM10791 W Too few arguments have been specified
for the ENTRY ENTRY name.

Explanation: The number of arguments should match
the number of parameters in the ENTRY declaration.

IBM10801 W The keyword label-name, which could
form a complete statement, is accepted
as a label name, but a colon may have
been used where a semicolon was
meant.

Explanation: A PL/1 keyword which could form a
complete statement has been used as statement label.
This usage is accepted, but a colon may have been used
where a semicolon was intended.

dcl a fixed bin(31) ext;
if a =0 then

put skip list('a = 0)
else:

a=a+1l;

dcl e entry(1 2 fixed bin(31),

2 fixed bin(31));
dcl i fixed bin(15);
call e(i);

IBM10811 W keyword expression should be scalar.
Lower bounds assumed for any missing
subscripts.

Explanation: The expression in the named keyword
clause should be a scalar, but an array reference was
specified.

dcl p pointer;
del x based char(10);
dcl a(10) area(1000);

allocate x in(a) set(p);

IBM10821 W Argument number argument-number in
entry reference entry name is a scalar, but
its declare specifies a structure.

Explanation: A scalar may be passed as the argument
when a structure is expected, but this require building
a "dummy” structure and assigning the scalar to each
field in that structure.

© Copyright IBM Corp. 1999, 2008

IBM10831 W Source in label assignment is inside a
DO-loop, and an illegal jump into the
loop may be attempted. Optimization
will also be very inhibited.

Explanation: GOTO statements may not jump into DO
loops, and the compiler will flag any GOTO whose
target is a label constant inside a (different) DO loop.
However, if a label inside a DO loop is assigned to a
label variable, then this kind of error may go
undetected.

IBM10841 W Nonblanks after right margin are not
allowed under
RULES(NOLAXMARGINS).

Explanation: Under RULES(NOLAXMARGINS), there
should be nothing but blanks after the right margin.

IBM10851 W variable may be uninitialized when used.

Explanation: The indicated variable may be used
before it has been initialized.

IBM10861 W built-in function will be evaluated using
long rather than extended routines.

Explanation: The indicated built-in function has an
extended float argument, but since the corresponding
extended routine is not yet available, it will be
evaluated using the appropriate long routine.

IBM10871 W FLOAT source is too big for its target.
An appropriate HUGE value of assumed
value is assumed.

Explanation: A value larger than HUGE(1s0) cannot
be assigned to a short float. Under hexadecimal float,
the value 3.141592E+40 could be assigned to a short
float, but under IEEE, the maximum value that a short
float can hold is about 3.40281E+38.

IBM10881 W FLOAT literal is too big for its implicit
precision. The E in the exponent will be
replaced by a D.

11

Explanation: The precision for a float literal is implied
by the number of digits in its mantissa. For instance
1e99 is implicitly FLOAT DECIMAL(1), but the value
1e99 is larger than the largest value a FLOAT
DECIMAL(1) can hold.

IBM10891 W Control variable in DO loop cannot
exceed TO value, and loop may be
infinite.

Explanation: If the TO value is equal to the maximum

value that a FIXED or PICTURE variable can hold, then

a loop dominated by that variable will run endlessly

unless exited inside the loop by a LEAVE or GOTO. For

example, in the first code fragment below, x can never
be bigger than 99, and the loop would be infinite. In
the second code fragment below, y can never be bigger
than 32767, and the loop would be infinite.

dcl x pic’99’;

do x =1 to 99;
put skip Tlist(x);
end;

dcl y fixed bin(15);
doy =1 to 32767;

put skip Tlist(y);
end;

IBM10901 W Constant used as locator qualifier.

Explanation: An expression contains a reference to a
based variable with a constant value for its locator
qualifier. This may cause a protection exception on
some systems. It may also indicate that the variable
was declared as based on NULL or SYSNULL and that
this constant value is being used as its locator qualifier.

dcl a fixed bin(31) based(null());

a = 0;

IBM10911 W FIXED BIN precision less than storage
allows.

Explanation: Except in unusual circumstances, the
precision in a FIXED BIN declaration should be 7, 15,
31 or 63 if SIGNED and one greater if UNSIGNED.
This message may indicate that a declare specified, for
example, FIXED BIN(8) when UNSIGNED FIXED
BIN(8) was meant.

12 PL/I Messages and Codes

IBM10921 W GOTO whose target is or may be in
another block severely limits
optimization.

Explanation: Try to change the code so that it sets and
tests a switch instead, or limit GOTOs to very small
modules that do not need optimization.

IBM10931 W PLIXOPT string is invalid. See related
runtime message message-number.

Explanation: The PLIXOPT string could not be parsed.
See the cited Language Environment message for more
detail.

IBM10941 W Element option in PLIXOPT is invalid.
See related runtime message
message-number.

Explanation: The PLIXOPT string contains an invalid
item. See the cited Language Environment message for
more detail.

IBM10951 W Element option in PLIXOPT has been
remapped to option. See related runtime
message message-number.

Explanation: The PLIXOPT string contains a run-time
option which is not supported by LE. See the cited
Language Environment message for more detail.

IBM10961 W STAE and SPIE in PLIXOPT is not
supported. See related runtime message
message-number.

Explanation: The SPIE and STAE options have been
replaced by the TRAP option. TRAP(ON) is equivalent
to SPIE and STAE; TRAP(OFF) is equivalent to NOSPIE
and NOSTAE. The combination SPIE and NOSTAE and
the combination NOSPIE and STAE are no longer
supported. See the cited Language Environment
message for more detail.

IBM10971 W Scalar accepted as argument number
argument-number in ENTRY reference
ENTRY name although parameter
description specifies an array.

Explanation: Generally, scalars should not be passed
where arrays are expected, but in some situations, this
may be desired.

dcl a entry((*) fixed bin)
option(nodescriptor);

call a(0);

IBM10981 W Extraneous comma at end of statement
ignored.

Explanation: A comma was followed by a semicolon
rather than by a valid syntactical element (such as an
identifier). The comma will be ignored in order to make
the semicolon valid.

dcl 1 a, 2 b fixed bin, 2 ¢ fixed bin, ;

IBM11011 W option-name is not a known
PROCEDURE attribute and is ignored.

Explanation: An attribute (DATAONLY in the example
below) has been specified in the OPTIONS clause on a
PROCEDURE statement, but that attribute is not valid
for PROCEDUREs.

a: proc options(dataonly);

IBM10991 W FIXED DEC(source-precision,source-scale)
operand will be converted to FIXED
BIN(target-precision,target-scale).
Significant digits may be lost.

Explanation: Under RULES(IBM), when a comparison
or arithmetic operation has an operand that is FIXED
BIN and an operand that is FIXED DEC with a
non-zero scale factor, then the FIXED DEC operand will
be converted to FIXED BIN. Under RULES(ANS), when
a comparison or arithmetic operation has an operand
that is FIXED BIN and an operand that is FIXED DEC
with a zero scale factor, then the FIXED DEC operand
will be converted to FIXED BIN. In each case,
significant digits may be lost, and if there is a fractional
part, it may not be exactly represented as binary. For
instance, under RULES(IBM), the assignment statement
below will cause the target to have the value 29.19, and
in the comparison, C will be converted to FIXED
BIN(31,10) and significant digits will be lost (in fact,
SIZE would be raised, but since it is disabled, this
program would be in error).

dcl a fixed dec(07,2) init(12.2);
dcl b fixed bin(31,0) init(17);

dcl ¢ fixed dec(15,3) init(2097151);
dcl d fixed bin(31,0) init(0);

a=a+b;

if ¢ = d then;

IBM11001 W The attribute attribute-option is not valid
on BEGIN blocks and is ignored.

Explanation: An attribute (REDUCIBLE in the
example below) has been specified in the OPTIONS
clause on a BEGIN statement, but that attribute is not
valid for BEGIN blocks.

begin options(reducible);

IBM11021 W option-name is not a known BEGIN
attribute and is ignored.

Explanation: The indicated attribute is valid on
PROCEDURE statements, but not on BEGIN
statements.

begin recursive;

IBM11031 W option-name is not a supported compiler
option and is ignored.

Explanation: The compiler option is not supported on
this platform.

*process map;

IBM11041 W Suboptions of the compiler option
option-name are not supported and are
ignored.

Explanation: Suboptions of the compiler option are
not supported on this platform.

xprocess list(4);

IBM11051 W A suboption of the compiler option
option-name is too long. It is shortened to
number-of-letters characters.

Explanation: Various compiler options have limits on
the size of subfields. Refer to the :cit.Programming
Guide:ecit. for the limits of specific compiler options.

*process margini('+-');

IBM11061 W Condition prefixes on keyword
statements are ignored.

Explanation: Condition prefixes are not allowed on
DECLARE, DEFAULT, IF, ELSE, DO, END, SELECT,
WHEN or OTHERWISE statements.

(nofofl): if (x+y) > 0 then

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 13

IBM11071 W option-name is not a known ENTRY
statement attribute and is ignored.

Explanation: An attribute (DATAONLY in the example
below) has been specified in the OPTIONS clause on an
ENTRY statement, but that attribute is not valid for
ENTRY statements.

a: entry options(dataonly);

IBM11081 W The character char specified in the option
option is already defined and may not
be redefined. The redefinition will be
ignored.

Explanation: A character specified in the OR, NOT,
QUOTE or NAMES compiler option is already defined
in the PL/I character set or by another compiler option.

xprocess not('=");
*xprocess not("!") or(’!");

IBM11121 W condition-name condition is not supported
and is ignored.

Explanation: The CHECK and PENDING conditions
are not part of the SAA PL/I language.

on check ...

IBM11091 W The second argument in the C-format
item will be ignored.

Explanation: If you wish to display the real and
imaginary parts of a complex humber using different
formats, use the REAL and IMAG built-in functions
and 2 format items.

put edit (x) (c(e(10,6), e(10,6)));

IBM11131 W verb-name statement is not supported
and is ignored.

Explanation: The named statement, for example the
CHECK statement, is not part of the SAA PL/I
language.

IBM11141 W Comparands are both constant.

Explanation: Both operands in a comparison are
constant, and consequently, the result of the
comparison is also a constant. If this comparison is the
expression in an IF clause, for example, this means that
either the THEN or ELSE clause will never be executed.

IBM11151 W INITIAL list contains count items, but
the array variable name contains only
array size. Excess is ignored.

Explanation: For an array, an INITIAL list should not
contain more values than the array has elements.

dcl a init(1, 2), b(5) init((10) 0);

IBM11101 W The %INCLUDE statement should be on
a line by itself. The source on the line
after the %INCLUDE statement is
ignored.

Explanation: Split the text into 2 lines.

%include x; %include y;

IBM11111 W CHECK prefix is not supported and is
ignored.

Explanation: The CHECK prefix is not part of the
SAA PL/I language.

(check): i = j + 1;

14 PL/I Messages and Codes

IBM11161 W Comment spans more than one file.

Explanation: A comment ends in a different file than
it begins. This may indicate that an end-of-comment
statement is missing.

IBM11171 W String spans more than one file.

Explanation: A string ends in a different file than it
begins. This may indicate that a closing quote is
missing.

IBM11181 W Delimiter missing between nondelimiter
and nondelimiter. A blank is assumed.

Explanation: A delimiter (for example, a blank or a
comma) is required between all identifiers and
constants.

dcl 1 a, 2 b, 3c;

IBM11191 W Code generated for DO group would be
more efficient if control variable were
not an aggregate member.

Explanation: The control variable in the DO loop is a
member of an array, a structure or an union, and
consequently, the code generated for the loop will not
be optimal.

IBM11201 W Multiple closure of groups. END
statements will be inserted to close
intervening groups.

Explanation: Using one END statement to close more
than one group of statements is permitted, but it may
indicate a coding error.

IBM11251 W The ENVIRONMENT option option-name
has been specified more than once.

Explanation: ENVIRONMENT options should not be
repeated.

dcl f file env(consecutive consecutive);

IBM11211 W Missing character assumed.

Explanation: The indicated character is missing, and
there are no more characters in the source. The missing
character has been inserted by the parser in order to
correct your source.

IBM11221 W Missing character assumed before
character.

Explanation: The indicated character is missing and
has been inserted by the parser in order to correct your
source.

display('Program starting’ ;

IBM11231 W The ENVIRONMENT option option-name
has been specified without a suboption.
The option option-name is ignored.

Explanation: Certain ENVIRONMENT options, such
as RECSIZE, require suboptions.

dcl f file env(recsize);

IBM11241 W A suboption has been specified for the
ENVIRONMENT option option-name.
The suboption will be ignored.

Explanation: Certain ENVIRONMENT options, such
as CONSECUTIVE, should be specified without any
suboptions.

dcl f file env(consecutive(l));

IBM11261 W The ENVIRONMENT option option-name
has an invalid suboption. The option
will be ignored.

Explanation: The suboption type is incorrect.

dc1 f file env(regional(5));

IBM11271 W option-name is not a known
ENVIRONMENT option. It will be
ignored.

Explanation: There is no such supported
ENVIRONMENT option.

dc1 f file env(unknown);

IBM11281 W The ENVIRONMENT option option-name
conflicts with the LANGLVL compiler
option. The option will be ignored.

Explanation: The indicated option is valid only with
LANGLVL(OS).

dcl f file env(fb);

IBM11291 W verb-name processor-name statement
ignored up to closing semicolon.

Explanation: An EXEC SQL or EXEC CICS statement
has been found in the source program. The compiler
will ignore these statements.

exec sql ...;

IBM11301 W The external name identifier is too long.
It will be shortened to identifier.

Explanation: The maximum length of external names
is set by the EXTNAME suboption of the LIMITS
compiler option.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 15

dcl this_name_is_long static external pointer;

IBM11311 W An EXTERNAL name specification for
name has been specified on its
PROCEDURE statement and in the
EXPORTS clause of the PACKAGE
statement. The EXPORTS specification
will be used.

Explanation: The name specified in the EXTERNAL
attribute in the EXPORTS clause overrides the name
specified in the EXTERNAL attribute on the
PROCEDURE statement.

a: package exports(b ext(’_B'));

b: proc ext('BB');

IBM11321 W An EXTERNAL name specification for
name has been specified in its
declaration and in the RESERVES clause
of the PACKAGE statement. The
RESERVES specification will be used.

Explanation: The name specified in the EXTERNAL
attribute in the RESERVES clause overrides the name
specified in the EXTERNAL attribute in the DECLARE
statement.

a: package reserves(b ext(’_B'));

dcl b ext('BB’) static ...

IBM11331 W The FORMAT CONSTANT array
label-name is not fully initialized.

Explanation: An element of a FORMAT CONSTANT
array has not been defined, for example, f(2) in the
example below.

f(1): format(x(2), a);

f(3): format(x(4), a);

IBM11341 W The LABEL CONSTANT array
label-reference is not fully initialized.

Explanation: The named variable defines a statement
label array, but not all the elements in that array are
labels for statements in the containing procedure.

16 PL/I Messages and Codes

1(1): display(...);

1(3): display(...);

IBM11351 W Logical operand is constant.

Explanation: An argument to one of the logical
operators (or, and or not) is a constant. The result of
the operation may also be a constant. If this operation
is the expression in an IF clause, for example, this
means that either the THEN or ELSE clause will never
be executed.

if a | 'I'b then

IBM11361 W Function invoked as a subroutine.

Explanation: A function, for example, a PROCEDURE
or ENTRY statement with the RETURNS attribute, has
been invoked in a CALL statement. The value that is
returned by the function will be discarded, but the
OPTIONAL attribute should be used to indicate that
this is valid.

IBM11371 W The attribute attribute is invalid in
GENERIC descriptions and will be
ignored.

Explanation: The named attribute is invalid in
GENERIC description lists.

dc1 g generic (f1 when(connected),
f2 otherwise);

IBM11381 W Number of items in INITIAL list is
count for the array variable name which
contains array size elements.

Explanation: The array will be incompletely
initialized. If the named variable is part of a structure,
subsequent elements in that structure with this problem
will be flagged with message 2602. This may be a
programming error (in the example below, 4 should
probably have been 6) and may cause exceptions when
the program is run.

dcl a(8) fixed dec init(1, 2, (4) 0);

IBM11391 W Syntax of the %CONTROL statement is
incorrect.

Explanation: The %CONTROL statement must be
followed by FORMAT or NOFORMAT option enclosed
in parentheses and then a semicolon.

IBM11401 W Syntax of the LANGLVL option in the
%OPTION statement is incorrect.

Explanation: The LANGLVL option in the %OPTION
statement must be specified as either LANGLVL(SAA)
or LANGLVL(SAAZ2).

IBM11411 W Syntax of the %NOPRINT statement is
incorrect.

Explanation: The %NOPRINT statement must be
followed, with optional intervening blanks, by a
semicolon.

IBM11421 W Syntax of the %PAGE statement is
incorrect.

Explanation: The %PAGE statement must be followed,
with optional intervening blanks, by a semicolon.

IBM11431 W Syntax of the %PRINT statement is
incorrect.

Explanation: The %PRINT statement must be
followed, with optional intervening blanks, by a
semicolon.

IBM11441 W Number of lines specified with %SKIP
must be between 0 and 999 inclusive.

Explanation: Skip amounts greater than 999 are not
supported.

%skip(2000) ;

IBM11451 W Syntax of the %SKIP statement is
incorrect.

Explanation: The %SKIP statement must be followed
by a semicolon with optional intervening blanks and a
parenthesized integer.

IBM11461 W Syntax of the TEST option in the
%OPTION statement is incorrect.

Explanation: The TEST option in the %OPTION
statement must be specified without any suboptions.

IBM11471 W Syntax of the NOTEST option in the
%OPTION statement is incorrect.

Explanation: The NOTEST option in the %OPTION
statement must be specified without any suboptions.

IBM11481 W Syntax of the %PUSH statement is
incorrect.

Explanation: The %PUSH statement must be followed,
with optional intervening blanks, by a semicolon.

IBM11491 W Syntax of the %POP statement is
incorrect.

Explanation: The %POP statement must be followed,
with optional intervening blanks, by a semicolon.

IBM11501 W Syntax of the %NOTE statement is
incorrect.

Explanation: The %NOTE statement must be followed
by, in parentheses, a note and an optional return code,
and then a semicolon.

IBM11511 W FIXED BINARY precision is reduced to
maximum value.

Explanation: The maximum FIXED BIN precision
depends on the LIMITS option.

IBM11521 W FIXED DECIMAL precision is reduced
to maximum value.

Explanation: The maximum FIXED DEC precision
depends on the LIMITS option.

IBM11531 W FLOAT BINARY precision is reduced to
maximum value.

Explanation: The maximum FLOAT BIN precision is
64 on Intel, 106 on AIX and 109 on z/0OS.

IBM11541 W FLOAT DECIMAL precision is reduced
to maximum value.

Explanation: The maximum FLOAT DEC precision is
18 on Intel, 32 on AIX and 33 on z/0S except for DFP
which has a maximum of 34.

IBM11551 W The aggregate aggregate-name contains
noncomputational values. Those values
will be ignored.

Explanation: Some members of an aggregate
referenced in an 1/0 statement are noncomputational.
The computational members will be correctly
processed, but the noncomputational ones will be
ignored.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 17

dcl 1 x,

2y ptr,

3 fixed bin(31);
put skip Tlist(x);

IBM11561 W Arguments to MAIN procedure are not
all POINTER.

Explanation: Under SYSTEM(CICS), SYSTEM(TSO)
and SYSTEM(IMS), the arguments to the MAIN
procedure should all have type POINTER.

IBM11571 W note

Explanation: This message is used by %NOTE
statements with a return code of 4.

IBM11581 W A option is missing in the specification
of the option option. One is assumed.

Explanation: A closing quote or parenthesis is missing
in the specification of a compiler option. A quoted
string must not cross line boundaries.

IBM11591 W The string option is not recognized as a
valid option keyword and is ignored.

Explanation: An invalid compiler option has been
specified.

IBM11601 W The third argument to the MARGINS
option is not supported.

Explanation: Printer control characters are not
supported on input source records.

IBM11611 W The suboption suboption is not valid for
the option compiler option.

Explanation: A suboption of a compiler option is
incorrect. The suboption may be unknown or outside
the allowable range.

xprocess flag(q) margins(1002);

IBM11621 W A required suboption is missing for the
suboption option.

Explanation: A required suboption of a compiler
option is missing.

*process orj;

IBM11631 W Required sub-fields are missing for the
option option. Default values are
assumed.

Explanation: Required suboptions of a compiler
option are missing.

18 PL/I Messages and Codes

*process margins;

IBM11641 W option-name should be specified within
OPTIONS, but is accepted as is.

Explanation: The option, for example REORDER, is
accepted outside of the OPTIONS attribute, but it
should be specified within the OPTIONS attribute. This
would also conform to the ANSI standard.

IBM11651 W The OPTIONS option option-name has
been specified more than once.

Explanation: The only supported LINKAGE options
are OPTLINK and SYSTEM.

IBM11661 W option-name is not a known LINKAGE
suboption. The LINKAGE option will
be ignored.

Explanation: The only supported LINKAGE options
are OPTLINK and SYSTEM.

IBM11671 W Maximum number of %PUSH
statements exceeded. The control
statement is ignored.

Explanation: The maximum number of pending
%PUSH statements is 63.

IBM11681 W No %PUSH statements are in effect. The
%POP control statement is ignored.

Explanation: A %POP has been issued when no
%PUSH statement are pending.

IBM11691 W No precision was specified for the result
of the builtin name built-in. The
precision will be determined from the
argument.

Explanation: This message applies to the FIXED and
FLOAT built-in functions when only one argument is
given. The precision is not set to a default, but is
instead derived from the argument. For example, if x is
FLOAT BIN(21), FIXED(x) will return a FIXED BIN(21)
value.

IBM11701 W The OPTIONS attribute option-attribute
is not supported and is ignored.

Explanation: The indicated element of the OPTIONS
list is not supported.

dcl a ext entry options(nomap);

IBM11711 W SELECT statement contains no WHEN
or OTHERWISE clauses.

Explanation: WHEN or OTHERWISE clauses are not
required on SELECT statements, but their absence may
indicate a coding error.

IBM11721 W A zero length string has been entered
for the option-name option. The option is
ignored.

Explanation: User-specified string has zero length.
This can occur when OR(”) or OR('A’) has been
specified on the command line. In the latter case, the
single A’ character has been interpreted as an escape.

IBM11731 W SELECT statement contains no WHEN
clauses.

Explanation: SELECT statements do not require
WHEN clauses, but their absence may indicate a
coding error.

Explanation: Float decimal constants are limited to 18
digits on Intel, 106 on AIX and 109 on z/0OS.

IBM11741 W The reference in the from-into clause
clause may not be byte-aligned.

Explanation: The reference specified in the FROM or
INTO clause may not be byte-aligned. If the reference is
indeed not byte-aligned, unpredictable results may
occur.

IBM11751 W FIXED BINARY constant contains too
many digits. Excess nonsignificant digits
will be ignored.

Explanation: The maximum precision for FIXED
BINARY constants is specified by the FIXEDBIN
suboption of the LIMITS compiler option.

IBM11761 W FIXED DECIMAL constant contains too
many digits. Excess nonsignificant digits
will be ignored.

Explanation: The maximum precision for FIXED
DECIMAL constants is specified by the FIXEDDEC
suboption of the LIMITS compiler option.

IBM11771 W Mantissa in FLOAT BINARY constant
contains more digits than the
implementation maximum. Excess
nonsignificant digits will be ignored.

Explanation: Float binary constants are limited to 64
digits on Intel, 32 on AIX and 33 on z/0S.

IBM11781 W Mantissa in FLOAT DECIMAL constant
contains more digits than the
implementation maximum. Excess
nonsignificant digits will be ignored.

IBM11791 W FLOAT literal is too big for its implicit
precision. An appropriate HUGE value
of assumed value is assumed.

Explanation: The precision for a float literal is implied
by the the number of digits in its mantissa. For instance
1e99 is implicitly FLOAT DECIMAL(1), but the value
1e99 is larger than the largest value a FLOAT
DECIMAL(1) can hold.

IBM11801 W Argument to BUILTIN name built-in is
not byte aligned.

Explanation: This message applies to the ADDR,
CURRENTSTORAGE/SIZE and STORAGE/SIZE
built-in functions. Applying any one of these built-in
functions to a variable that is not byte-aligned may not
produce the results you expect.

IBM11811 W A WHILE or UNTIL option at the end
of a series of DO specifications applies
only to the last specification.

Explanation: In the following code snippet, the
WHILE clause applies only to the last DO specification,
that is only when | = 5;

doi=1, 3, 5while(j<5);

IBM11821 W Invocation of a NONRECURSIVE
procedure from within that procedure is
invalid. RECURSIVE attribute is
assumed.

Explanation: A procedure contains code that will
cause it to be recursively invoked, but the procedure
was not declared with RECURSIVE attribute.

a: proc(n);

if n> 0 then call a;

IBM11831 W condition-name condition is disabled.
Statement is ignored.

Explanation: The SIGNAL statement is ignored if the
condition it would raise is disabled. Some conditions,
like SIZE, are disabled by default.

(nofofl1): signal fixedoverflow;

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 19

IBM11841 W Source with length string-length in
INITIAL clause for variable name is
longer than target. Source will be
truncated.

Explanation: The string in the INITIAL clause
("TooBig’ in the example below) will be trimmed to fit
(to "TooB").

dcl x char(4) static init('tooBig’);

IBM11851 W Source in RETURN statement has length
greater than that in the corresponding
RETURNS attribute.

Explanation: The string in the RETURNS clause
("TooBig’ in the example below) will be trimmed to fit
(to "TooB").

x: proc returns(char(4));

return('TooBig');

IBM11861 W Source in string assignment is longer
than target.

Explanation: The source in the assignment ("TooBig’ in
the example below) will be trimmed to fit (to "TooB’).

dcl x char(4);
x = 'TooBig’;

IBM11871 W Argument number argument-number in
entry reference entry name is longer than
the corresponding parameter.

Explanation: The source in the entry invocation
("TooBig’ in the example below) will be trimmed to fit
(to "TooB").

dcl x entry(char(4));
call x('TooBig');

IBM11881 W Result of concatenating two strings is
too long.

Explanation: The length of the string produced by
concatenating two strings must not be greater than the
maximum allowed for the derived string type.

20 PL/1 Messages and Codes

IBM11891 W NODESCRIPTOR attribute conflicts
with the NONCONNECTED attribute
for the parameter parameter name.
CONNECTED is assumed.

Explanation: If NODESCRIPTOR is specified (or
implied) for a procedure, aggregate parameters should
have the CONNECTED attribute. The CONNECTED
attribute can be explicitly coded, or it can be implied
by the DEFAULT(CONNECTED) compiler option.

IBM11901 W The OPTIONS option option-name
conflicts with the LANGLVL compiler
option. The option will be applied.

Explanation: The named option is not part of the PL/I
language definition as specified in the LANGLVL
compiler option.

IBM11911 W Result of FIXED BIN divide will not be
scaled.

Explanation: When dividing a FIXED BIN(p1,0) value
by a FIXED BIN(p2,0) value where 31 > p1, the result
will have the attributes FIXED BIN(p1,0). With ANSI
76, it would have the attributes FIXED BIN(31,31-p1).

IBM11921 W WHEN clauses contain duplicate values.

Explanation: In a dominated SELECT statement, if a
WHEN clause has the same value as an earlier WHEN
clause, the code for the second WHEN clause will
never be executed. This message will be produced only
if the SELECT statement is otherwise suitable for
transformation into a branch table.

IBM11931 W statement count statements in block block
name. Optimization restricted.

Explanation: Optimization will be restricted for any
procedure or begin-block. that contains more
statements than specified in the MAXSTMT option. To
avoid this, the block could be split up into more
manageable parts.

IBM11941 W More than one argument to MAIN
procedure.

Explanation: A MAIN procedure should have at most
one argument, except under SYSTEM(CICS) and
SYSTEM(IMS).

IBM11951 W Argument to MAIN procedure is not
CHARACTER VARYING.

Explanation: The argument to the MAIN procedure
should be CHARACTER VARYING, except under
SYSTEM(CICS), SYSTEM(TSO) and SYSTEM(IMS).

IBM11961 W AREA initialized with EMPTY -
INITIAL attribute is ignored.

Explanation: Any INITIAL attribute specified for an
AREA variable is ignored. The variable will, instead, be
initialized with the EMPTY built-in function.

IBM11971 W file-name assumed as file condition
reference.

Explanation: All file conditions should be qualified
with a file reference, but ENDFILE and ENDPAGE are
accepted without a file reference. SYSIN and SYSPRINT
are then assumed, respectively.

IBM11981 W A null argument list is assumed for
variable name.

Explanation: An ENTRY reference is used where the
result of invoking that entry is probably meant to be
used.

dcl el entry returns(ptr);
dcl g ptr based;
el->q = null();

dcl e2 entry returns(bit(1));
if e2 then ...

IBM11991 W Syntax of the %LINE directive is
incorrect.

Explanation: The %LINE directive must be followed,
with optional intervening blanks, by a parenthesis, a
line number, a comma, a file name and a closing
parenthesis.

%1ine(19, test.pli);

IBM12001 W Use of DATE built-in function may
cause problems.

Explanation: The DATE built-in returns a two-digit
year. It might be better to use the DATETIME built-in
which returns a four-digit year.

IBM12011 W suboption conflicts with a previously
specified suboption for the option
compiler option.

Explanation: There is a conflict of suboptions for the
LANGLVL compiler option. The SAA2 and OS
suboptions are mutually exclusive.

xprocess langlvl(saa2 os);

IBM12021 W Syntax of the %OPTION statement is
incorrect.

Explanation: The only option supported in the
%OPTION statement is the LANGLVL option.

IBM12031 W Argument to PLITEST built-in
subroutine is ignored.

Explanation: Change the invocation of PLITEST so
that no argument is passed.

IBM12041 W INTERNAL CONSTANT assumed for
initialized STATIC LABEL.

Explanation: LABEL variables require block activation
information, and hence they cannot be initialized at
compile-time. For a STATIC LABEL variable with the
INITIAL attribute, if the variable is a member of a
structure or an union, a severe message will be issued.
Otherwise, its attributes will be changed to INTERNAL
CONSTANT in order to eliminate the requirement for
block activation information. Such a variable must be
initialized with LABEL CONSTANTs from containing
blocks.

IBM12051 W Arguments of the option compiler option
must be the same length.

Explanation: If two arguments of the NAMES option
are specified, they must be the same length. The second
argument is the uppercase value of the first. If a
character in the first string does not have an uppercase
value, use the character itself as the uppercase value.
For example:

names('$!@ '$!@’)

IBM12061 W BIT operators should be applied only to
BIT operands.

Explanation: In an expression of the form x &y, x | v,
or x Ny, x and y should both have BIT type.

IBM12071 W Operand to LENGTH built-in should
have string type.

Explanation: If the operand has a numeric type, the
result is the length that value would have after it was
converted to string. The length of a numeric type is
NOT the same as its storage requirement.

IBM12081 W INITIAL list for the array variable name
contains only one item.

Explanation: The array will be incompletely
initialized. If the named variable is part of a structure,
subsequent elements in that structure with this problem
will be flagged with message 2603. An asterisk can be
used as an initialization factor to initialize all the

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 21

elements with one value. In the example below, a(1) is
initialized with the value 13, while the elements a(2)
through a(8) are uninitialized. In contrast, all the
elements in b are initialized to 13.

dcl a(8) fixed bin init(13);
dcl b(8) fixed bin init((*) 13);

IBM12091 W INDEXED environment option for file
file name will be treated as
ORGANIZATION(INDEXED).

Explanation: Since ISAM is not being simulated on
the OS/2 platform, the file will be treated in a manner
similar to VSAM KSDS. The file specified in the first
declaration below would be handled in the same
manner as the file in the second declaration. Both are
treated as ORGANIZATION(INDEXED).

dc1 f1 file env(indexed);
dc1 f2 file env(organization(indexed));

IBM12101 W The field width specified in the
keyword-format item may be too small
for complete output of the data item.

Explanation: The format width is too small for output.
It may be valid if the format is being used for input.

IBM12111 W Source with length string-length is longer
than the target variable.

Explanation: The source in the assignment ("TooBig’ in
the example below) will be trimmed to fit (to "TooB’). If
the target is a pseudovariable, message 1186 is issued
instead.

dcl x char(4);
x = 'TooBig';

IBM12121 W The A format item requires an argument
when used in GET statement. An L
format item is assumed in its place.

Explanation: A width must be specified on A format
items when specified on a GET statement.

get edit(name) (a);

IBM12131 W The procedure proc name is not
referenced.

Explanation: The named procedure is not external and
is never referenced in the compilation unit. This may
represent an error (if it was supposed to be called) or
an opportunity to eliminate some dead code.

22 PL/1 Messages and Codes

IBM12141 W A dummy argument will be created for
argument number argument-number in
entry reference entry name.

Explanation: An argument passed BYADDR to an
entry does not match the corresponding parameter in
the entry description. The address of the argument will
not be passed to the entry. Instead, the argument will
be assigned to a temporary with attributes that do
match the parameter in the entry description, and the
address of that temporary will be passed to the entry.
This means that if the entry alters the value of this
parameter, the alteration will not be visible in the
calling routine.

dcl e entry(fixed bin(31));
dcl i fixed bin(15);
call e(i);

IBM12151 W The variable variable name is declared
without any data attributes.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, parentheses may be
missing

dcl a, b fixed bin;

IBM12161 W The structure member variable name is
declared without any data attributes. A
level number may be incorrect.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, the level number on
¢ and d should probably be 3.

dcl a, b fixed bin;
1 a,
2 b,
2c,
2 d;

IBM12171 W An unnamed structure member is
declared without any data attributes. A
level number may be incorrect.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, the level number on
¢ and d should probably be 3.

dcl a, b fixed bin;

IBM12221 W Comparison involving 2-digit year is

2 *, .
2 ¢ problematic.
2 d; Explanation: Comparisons involving data containing

2-digit year fields may cause problems if exactly one of
the years is later than 1999.

IBM12181 W First argument to BUILTIN name built-in
should have string type.

IBM12231 W Literal in comparison interpreted with

Explanation: To eliminate this message, apply the DATE attribute.

CHAR or BIT built-in function to the first argument. Explanation: In a comparison, if one comparand has

the DATE attribute, the other should also. If the

non-date is a literal with a value that is valid for the
del i fixed bin; date pattern, it will be viewed as if it had the same
display(substr(i,4)); DATE attribute as the date comparand. So, in the
following code, '670101" will be interpreted as if it had
the DATE(CYYMMDD’) attribute.

IBM12191 W LEAVE will exit noniterative DO-group.

Explanation: This message is not produced if the
LEAVE statement specifies a label. In the following
loop, the LEAVE statement will cause only the if x > '670101' then ...
immediately enclosing DO-group to be exited; the loop

will not be exited.

dcl x char(6) date(’YYMMDD');

IBM12241 W DATE attribute ignored in comparison

do i =1 to n: with non-date literal.

if a(i) > @ then Explanation: In a comparison, if one comparand has
dos £ the DATE attribute, the other should also. If the
?lele- ’ non-date is a literal with a value that is not valid for
end; ’ the date pattern, the DATE attribute will be ignored.
else; So, in the following code, the comparison will be
end; evaluated as if x did not have the DATE attribute.

- . dcl h date(’YYMMDD’) ;
IBM12201 W Result of comparison is always constant. ¢l x char(6) date()

Explanation: This message is produced when a if x> then ...

variable is compared to a constant equal to the largest

or smallest value that the variable could assume. In the

following loop, the variable x can never be greater than IBM12251 W DATE attribute ignored in conversion
99, and hence the implied comparison executed each from literal.

time through the loop will always result in a '1’b.

Explanation: If the target in an explicit or implicit
assignment has the DATE attribute, the source should
also. If it does not, the DATE attribute will be ignored.

do x pic’99’; ; . . X

So, in the following code, the assignment will be
do x = 1 to 99; performed as if x did not have the DATE attribute.
end;

dcl x char(6) date('YYMMDD');

IBM12211 W Statement uses count bytes for o

X =)
temporaries.
Explanation: This message is produced if a statement
uses more bytes for temporaries than allowed by the IBM26001 W Compiler backend issued warning
MAXTEMP compiler option. messages to STDOUT.

Explanation: Look in STDOUT to see the message
issued by the compiler backend.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 23

IBM26011 W Missing character assumed before
character. DECLARE and other
nonexecutable statements should not
have labels.

Explanation: The indicated character is missing and
has been inserted by the parser in order to correct your
source.

xx: dcl test fixed bin;

IBM26021 W Number of items in INITIAL list is
count for the array variable name which
contains array size elements.

Explanation: The array will be incompletely
initialized. If the named variable is part of a structure,
the first element in that structure with this problem will
be flagged with message 1138. This may be a
programming error (in the example below, 6 should
probably have been 7) and may cause exceptions when
the program is run.

dcl
1 a,
2 b(8) fixed bin init(1, (7) 29),
2 c(8) fixed bin init(1, (6) 29);

IBM26031 W INITIAL list for the array variable name
contains only one item.

Explanation: The array will be incompletely
initialized. If the named variable is part of a structure,
the first element in that structure with this problem will
be flagged with message 1208. An asterisk can be used
as an initialization factor to initialize all the elements
with one value. In the example below, b(1) and c(1) are
initialized with the value 13, while the elements b(2)
through b(8) and c(2) through c(8) are uninitialized. In
contrast, all the elements in d are initialized to 13.

dcl
1 a,
2 b(8) fixed bin init(13),
2 c(8) fixed bin init(13),
2 d(8) fixed bin init((*) 13);

IBM26041 W FIXED DEC(source-precision,source-scale)
will be converted to FIXED
DEC(target-precision,target-scale).
Significant digits may be lost.

Explanation: If the source in a conversion to FIXED
DECIMAL is a FIXED DECIMAL or PICTURE variable
with a different precision and scale factor, and if the
difference between the precisions is not as large as the
the difference between the scale factors, then significant

24 PL/1 Messages and Codes

digits may be lost. If the SIZE condition were enabled,
code would be generated to detect any such occurrence,
and this message would not be issued.

dcl a fixed dec(04) init(1009);
dcl b fixed dec(03);

b = a;

IBM26051 W Invalid carriage control character. Blank
assumed.

Explanation: The specified line contains an invalid
ANS print control character. The valid characters are:
blank, 0, -, + and 1.

IBM26071 W PICTURE representing FIXED
DEC(source-precision,source-scale) will be
converted to FIXED DEC(target-
precision,target-scale). Significant digits
may be lost.

Explanation: If the source in a conversion to FIXED
DECIMAL is a PICTURE variable with a different
precision and scale factor, and if the difference between
the precisions is not as large as the the difference
between the scale factors, then significant digits may be
lost. If the SIZE condition were enabled, code would be
generated to detect any such occurrence, and this
message would not be issued.

dcl a pic’(4)9 init(1009);
dcl b fixed dec(03);

b = a;

IBM26081 W PICTURE representing FIXED
DEC(source-precision,source-scale) will be
converted to PICTURE representing
FIXED DEC(target-precision,target-scale).
Significant digits may be lost.

Explanation: If the source in a conversion to a
PICTURE is a PICTURE variable with a different
precision and scale factor, and if the difference between
the precisions is not as large as the the difference
between the scale factors, then significant digits may be
lost. If the SIZE condition were enabled, code would be
generated to detect any such occurrence, and this
message would not be issued.

dcl a pic’(4)9 init(1009);
dcl b pic'(3)9';

b = a;

IBM26091 W Comment contains a semicolon on line
line-number file-number.

Explanation: If a comment contains a semicolon, it
may indicate that there is an earlier unintentionally
unclosed comment that is accidentally commenting out
some source as in this example

/* start of unclosed comment
dcl b pic'(3)9';
/* next comment */

IBM26101 W One argument to BUILTIN name built-in
is FIXED DEC while the other is FIXED
BIN. Compiler will not interpret
precision as FIXED DEC.

Explanation: This message applies to the MULTIPLY,
DIVIDE, ADD, and SUBTRACT built-in functions: if
one argument to one of these functions is FIXED DEC
while the other is FIXED BIN, then the specified
precision will not be interpreted as a FIXED DEC
precision. This may cause improper truncation of data.
For example, the result of the following multiply will
have the attributes FIXED BIN(15), not FIXED DEC(15),
and that might cause the result to be improperly
truncated.

dcl a fixed bin(31);
dcl b fixed dec(15);

b = multiply(a, 1000, 15);

IBM26111 W The binary value binary value appears in
more than one WHEN clause.

Explanation: In a dominated SELECT statement, if a
WHEN clause has the same value as an earlier WHEN
clause, the code for the second WHEN clause will
never be executed. This message will be produced only
if the SELECT statement is otherwise suitable for
transformation into a branch table.

IBM26121 W The character string character string

appears in more than one WHEN clause.

Explanation: In a dominated SELECT statement, if a
WHEN clause has the same value as an earlier WHEN
clause, the code for the second WHEN clause will
never be executed. This message will be produced only
if the SELECT statement is otherwise suitable for
transformation into a branch table.

IBM26131 W Unless it is an output-only parameter,
variable may be uninitialized when used.

Explanation: The indicated variable may be used
before it has been initialized.

IBM26141 W Both comparands are booleans.

Explanation: This message will flag statements such
as the following, where the "equals” is meant to be an
"and” or "or".

if (a<b)=(c<d) then

IBM26151 W DO-loop will always execute exactly
once. A semicolon after the DO may be
missing.

Explanation: DO-loops should normally be iterative,
but if the DO-loop specification consists of just one
assignment, then it will always excute once and only
once. A semicolon after the DO may be missing, as in
this example

do
edsaup.tprs = adsl62.tprs;
edsaup.tops ads162.tops;
end;

IBM26161 W Size of parameter variable will return the
currentsize value since no descriptor is
available.

Explanation: If the SIZE or STG built-in function is
applied to a CHAR(*) VARYING (or VARYINGZ)
parameter when there is no descriptor available, then
the size of the actual storage allocated to the variable
cannot be determined and only the current size can be
returned.

IBM26171 W Passing a LABEL to a non-PL/I routine
is very poor coding practice and will
cause the compiler to generate less than
optimal code.

Explanation: It is generally very unwise to pass a
label to another routine. It would be good to think
about redesigning any code doing this. The compiler
will issue this message when a LABEL is passed to an
ENTRY declared with OPTIONS(COBOL) or
OPTIONS(ASM) or OPTIONS(FORTRAN). The only
valid use of this label in the called routine would be to
pass it on to another PL/1 routine.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 25

IBM26181 W The suboption suboption is not valid for
the suboption option of the option
compiler option.

Explanation: A suboption of a suboption of a compiler
option is incorrect. The suboption may be unknown or
outside the allowable range.

*process limits(extname(2000));

IBM26191 W The include file filename contains no
cross-referenced variables.

Explanation: It may be possible to omit the
%INCLUDE of this file.

IBM26201 W Target structure contains REFER objects.
Results are undefined if the assignment
changes any REFER object.

Explanation: Changing REFER objects may not
produce the expected results. For example, in the
following example, the assignment will not change any
of the elements in the array d.

dcl
1 a based(p),

2b fixed bin(31),

2 c fixed bin(31),

2 d(10 refer(c)),

3 e fixed bin(31),

3 f fixed bin(31);

IBM26211 W ON ERROR block does not start with
ON ERROR SYSTEM. An error inside
the block may lead to an infinite loop.

Explanation: The first statement in an ON ERROR
block should usually be an ON ERROR SYSTEM
statement. This will tend to prevent an infinite loop if
there is an error in the rest of the code in the ON
ERROR block.

IBM26221 W ENTRY used to set the initial value in a
DO loop will be invoked after any TO
or BY values are set.

Explanation: If the initial value in a DO loop is set via
an ENTRY, then you may get unexpected results if that
ENTRY also changes the TO or BY value. For example,
in the first loop below, the function "first” should not
change the value of the variable "last”. It would be
better to change this code into the form of the second
loop below.

do x = first() to Tlast;

26 PL/1 Messages and Codes

end;

temp = first();
do x = temp to last;
end;

IBM26231 W Mixing FIXED BIN and FLOAT DEC
produces a FLOAT BIN result. Under
DFP, this will lead to poor performance.

Explanation: Under DFP, the conversion of FLOAT
DEC to FLOAT BIN requires an expensive library call
that will lead to poor performance. To avoid this, the
DECIMAL built-in function can be applied to the
FIXED BIN operand. For example, it would be better to
change the first assignment statement into the form of
the second below.

dcl n fixed bin(31);
dcl f float dec(16);

—

n+ f;
dec(n) + f;

IBM26241 W Mixing BIT and FLOAT DEC produces a
FLOAT BIN result. Under DFP, this will
lead to poor performance.

Explanation: Under DFP, the conversion of FLOAT
DEC to FLOAT BIN requires an expensive library call
that will lead to poor performance. To avoid this, the
DECIMAL built-in function can be applied to the BIT
operand. For example, it would be better to change the
first assignment statement into the form of the second
below.

dcl b bit(8);
dcl f float dec(16);

b+ f;
dec(b) + f;

—
n nu

IBM26251 W Mixing FLOAT BIN and FLOAT DEC
produces a FLOAT BIN result. Under
DFP, this will lead to poor performance.

Explanation: Under DFP, the conversion of FLOAT
DEC to FLOAT BIN requires an expensive library call
that will lead to poor performance.

IBM26261 W Use of SUBSTR with a third argument
equal to 0 is somewhat pointless since
the result will always be a null string.

Explanation: While technically valid, a SUBSTR
reference with a third argument that is a constant of
zero probably represents a coding error.

IBM26271 W No metadata will be generated for the
structure identifier since its use of REFER
is too complex.

Explanation: XMI metadata is generated for BASED
structures using REFER only if their use of REFER is
"simple”.

IBM26281 W BYVALUE parameters should ideally be
no larger than 32 bytes.

Explanation: BYVALUE parameters larger than 32
bytes require too much overhead and are bad for
performance.

IBM26291 W No debug symbol information will be
generated for identifier.

Explanation: No debug symbol information will be
generated for the named variable, and hence it cannot
be referenced when using the debugger.

IBM26301 W The result in an arithmetic operation
has the attributes FIXED
base(precision,scale-factor) which means
that its scale factor is greater than its
precision and that the operation may
lead to an overflow.

Explanation: If the scale factor for the result of an
operation exceeds the precision of the result, then
unexpected fixedoverflow exceptions may occur. This
can happen, for example, when multiplying two FIXED
DEC(15,8) variables under the LIMITS(FIXEDDEC(15))
option because the result of such a multiplication
would have the attributes FIXED DEC(15,16). To
eliminate this message, the PRECISION built-in
function could be used to reduce the scale factor of one
of the operands or the MULTIPLY built-in function
could be used to override the default attributes for the
result.

IBM26311 W One argument to BUILTIN name built-in
is FIXED DEC while the other is FLOAT
BIN. Compiler will not interpret
precision as FIXED DEC.

Explanation: This message applies to the MULTIPLY,
DIVIDE, ADD, and SUBTRACT built-in functions: if
one argument to one of these functions is FIXED DEC
while the other is FLOAT BIN, then the specified
precision will not be interpreted as a FIXED DEC
precision. This may cause improper truncation of data.
For example, the result of the following multiply will
have the attributes FLOAT BIN(15), not FIXED
DEC(15), and that might cause the result to be
improperly truncated.

dck a float bin(31);
dcl b fixed dec(15);
b = multiply(a, 1000, 15);

IBM26321 W One argument to BUILTIN name built-in
is FIXED DEC while the other is FLOAT
DEC. Compiler will not interpret
precision as FIXED DEC.

Explanation: This message applies to the MULTIPLY,
DIVIDE, ADD, and SUBTRACT built-in functions: if
one argument to one of these functions is FIXED DEC
while the other is FLOAT DEC, then the specified
precision will not be interpreted as a FIXED DEC
precision. This may cause improper truncation of data.
For example, the result of the following multiply will
have the attributes FLOAT DEC(15), not FIXED
DEC(15), and that might cause the result to be
improperly truncated.

dc1 a float dec(15);
dcl b fixed dec(15);
b = multiply(a, 1000, 15);

IBM26331 W Given the support for addressing
arithmetic, basing a POINTER or
OFFSET on a FIXED BIN is unnecessary,
and it will also fail to work properly if
the size of a POINTER changes.

Explanation: Code using such variables will work
only as long as the size of the POINTER or OFFSET
variable remains the same as the size of the FIXED BIN
variable.

IBM26341 W Given the support for addressing
arithmetic, basing a FIXED BIN on a
POINTER or OFFSET is unnecessary,
and it will also fail to work properly if
the size of a POINTER changes.

Explanation: Code using such variables will work
only as long as the size of the POINTER or OFFSET
variable remains the same as the size of the FIXED BIN
variable.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 27

28 PL/1 Messages and Codes

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599)

IBM12261 E Area extent is reduced to maximum value.

Explanation: The maximum size allowed for an AREA
variable is 16777216.

IBM12271 E keyword statement is not allowed where
an executable statement is required. A
null statement will be inserted before
the keyword statement.

Explanation: In certain contexts, for example after an
IF-THEN clause, only executable statements are
permitted. A DECLARE, DEFINE, DEFAULT or
FORMAT statement has been found in one of these
contexts. A null statement, (a statement consisting of
only a semicolon) will be inserted before the offending
statement.

IBM12281 E DEFAULT statement is not allowed
where an executable statement is
required. The DEFAULT statement will
be enrolled in the current block, and a
null statement will be inserted in its
place.

Explanation: In certain contexts, for example after an
IF-THEN clause, only executable statements are
permitted. A DEFAULT statement has been found in
one of these contexts. A null statement (a statement
consisting of only a semicolon) will be inserted in place
of the DEFAULT statement.

IBM12291 E FORMAT statement is not allowed
where an executable statement is
required. The FORMAT statement will
be enrolled in the current block, and a
null statement will be inserted in its
place.

Explanation: In certain contexts, for example after an
IF-THEN clause, only executable statements are
permitted. A FORMAT statement has been found in
one of these contexts. A null statement (a statement
consisting of only a semicolon) will be inserted in place
of the FORMAT statement.

IBM12301 E Arguments have been specified for the
variable variable name, but it is not an
entry variable.

Explanation: Argument lists are valid only for ENTRY
references.

© Copyright IBM Corp. 1999, 2008

dcl a(15) entry returns(fixed bin(31));
i=a(3)(4);

IBM12311 E Arguments/subscripts have been
specified for the variable variable name,
but it is neither an entry nor an array
variable.

Explanation: Argument/subscript lists are valid only
for ENTRY and array references.

dcl a fixed bin;
i =a(3);

IBM12321 E Extraneous comma at end of statement
ignored.

Explanation: A comma was followed by a semicolon
rather than by a valid syntactical element (such as an
identifier). The comma will be ignored in order to make
the semicolon valid. Under RULES(LAXPUNC), a
message with the same text, but lesser severity would
be issued

dcl 1 a, 2 b fixed bin, 2 ¢ fixed bin, ;

IBM12331 E Missing character assumed.

Explanation: The indicated character is missing, and
there are no more characters in the source. The missing
character has been inserted by the parser in order to
correct your source. Under RULES(LAXPUNC), a
message with the same text, but lesser severity would
be issued

IBM12341 E Missing character assumed before
character.

Explanation: The indicated character is missing and
has been inserted by the parser in order to correct your
source. Under RULES(LAXPUNC), a message with the
same text, but lesser severity would be issued

display('Program starting’ ;

IBM12351 E No data format item in format list.

29

Explanation: Data items cannot be transmitted unless
a data format item is given in the format list.

put edit ((130)'-") (col(1));

IBM12361 E Subscripts on keyword labels are ignored.

Explanation: A label specified on a PROCEDURE,
PACKAGE or ENTRY statement should have no
subscripts.

IBM12371 E EXTERNAL ENTRY attribute is assumed
for variable-name.

Explanation: An undeclared variable is used with an
arguments list. This should give it a contextual
declaration as BUILTIN, but its name is not that of a
built-in function.

IBM12381 E The second argument to the BUILTIN
name built-in is greater than the
precision of the result.

Explanation: The sift amount in ISLL is should not be
greater than the precision of the result.

i =1s11(n, 221);

IBM1242]1 E Only '=" and =" are allowed as
operators in comparisons involving
program control data.

Explanation: Other relationships between program
control data are not defined. Perhaps a variable was
misspelled.

IBM12431 E REGIONAL(integer specification (2 or 3))
ENVIRONMENT option is not
supported.

Explanation: REGIONAL(2) and REGIONAL(3)
ENVIRONMENT options are syntax-checked during
compile-time but are not supported during run-time.

IBM12441 E The variable specified as the option
value in an ENVIRONMENT option
must be a STATIC scalar with the
attributes REAL FIXED BIN(31,0).

Explanation: This applies to the KEYLENGTH,
KEYLOC and RECSIZE suboptions.

IBM12451 E The variable specified as the option
value in an ENVIRONMENT option
must be a STATIC scalar with the
attribute CHARACTER.

Explanation: This applies to the PASSWORD
suboption.

IBM12391 E The attribute attribute is not supported
and is ignored.

Explanation: The named attribute is either not part of
the SAA PL/I language and is not supported on this
platform.

dcl f file transient;

IBM12461 E Argument to BUILTIN name built-in
should be CONNECTED.

Explanation: This message applies, for example, to the
ADDR built-in function. The value returned by the
ADDR function is the address of the first byte of its
argument. If you use this pointer to refer to a based
variable, the variable may be mapped over storage
occupied by some other variable, rather than the
storage occupied by the argument.

IBM12401 E The attribute attribute is invalid in a
RETURNS descriptor.

Explanation: The RETURNS descriptor may not
specify a structure, union or array.

dcl a entry returns(1 union, 2 ptr, 2 ptr);

IBM12411 E Only =’ and =" are allowed as
operators in comparisons involving
complex numbers.

Explanation: Equal and not equal are defined for
complex variables, but you have attempted to relate
them in some other way.

30 PL/1 Messages and Codes

IBM12481 E Argument to BUILTIN name built-in
should have arithmetic type.

Explanation: The argument to the named built-in
function should have arithmetic type. The required
implicit conversion will be performed, but this may
indicate a programming error.

IBM12491 E Argument to BUILTIN name built-in
should have CHARACTER type.

Explanation: The argument to the named built-in
function should have CHARACTER type. The required
implicit conversion will be performed, but this may
indicate a programming error.

IBM1272]1 E Argument number argument number to
BUILTIN name built-in is negative. It
will be changed to 0.

Explanation: The second argument to built-in
functions such as COPY and REPEAT must be
nonnegative.

x = copy(y, -1);

IBM12731 E Third argument to BUILTIN name
built-in is negative. It will be changed
to 0.

Explanation: The third argument to built-in functions
such as COMPARE, PLIFILL, and PLIMOVE must be
nonnegative.

call plimove(a, b, -1);

IBM12741 E RULES(NOLAXIF) requires BIT(1)
expressions in IF, WHILE, etc.

Explanation: Expressions in IF, WHILE, UNTIL and
undominated WHEN clauses should have the attributes
BIT(1) NONVARYING. If not, the expression should be
compared to an appropriate null value. This message
will not be issued if the RULES(LAXIF) option is
specified.

dcl x bit(8) aligned;

1fx then ...

IBM12811 E OPTIONS(RETCODE) on ATTACH
reference is invalid and will be ignored.

Explanation: OPTIONS(RETCODE) is not supported
on ATTACH references.

IBM12931 E WIDECHAR extent is reduced to
maximum value.

Explanation: The maximum length allowed for a
WIDECHAR variable is 16383.

IBM12941 E BIT extent is reduced to maximum value.

Explanation: The maximum length allowed for a BIT
variable is 32767.

IBM12951 E Sole bound specified is less than 1. An
upper bound of 1 is assumed.

Explanation: The default lower bound is 1, but the
upper bound must be greater than the lower bound.

dcl x(-5) fixed bin;

IBM12961 E The BYADDR option conflicts with the
SYSTEM option.

Explanation: The arguments passed to the MAIN
procedure when SYSTEM(IMS) or SYSTEM(CICS) is in
effect should not have the BYADDR attribute.

*process system(ims);
a: proc(x);
dcl x ptr byaddr;

IBM12971 E Source and target in BY NAME
assignment have no matching base
identifiers.

Explanation: In a BY NAME, the source and target
structures should have at least one matching base
element identifier.

dcl 1a, 2b, 2c, 2d;
dcl 1w, 2x, 2y, 2 z;
a = w, by name;

IBM12981 E Characters in B3 literals must be 0-7.

Explanation: In a B3 literal, each character must be

either 0-7.

IBM12991 E CHARACTER extent is reduced to
maximum value.

Explanation: The maximum length allowed for a
CHARACTER variable is 32767.

IBM13001 E variable name is contextually declared as
attribute.

Explanation: This is an E-level message because
RULES(NOLAXDCL) has been specified.

IBM13011 E A DECIMAL exponent is required.

Explanation: An E in a FLOAT constant must be
followed by at least one decimal digit (optionally
preceded by a sign).

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 31

IBM13021 E The limit on the number of DEFAULT
predicates in a block has already been
reached. This and subsequent DEFAULT
predicates in this block will be ignored.

Explanation: Each block should contain no more than
31 DEFAULT predicates.

IBM1303l E A second argument to the BUILTIN name
built-in must be supplied for arrays
with more than one dimension. A value
of 1 is assumed.

Explanation: The LBOUND, HBOUND, and
DIMENSION built-in functions require two arguments
when applied to arrays having more than one
dimension.

dcl a(5,10) fixed bin;
do i =1 to lbound(a);

IBM13041 E Second argument to BUILTIN name
built-in is not positive. A value of 1 is
assumed.

Explanation: The DIMENSION, HBOUND and
LBOUND built-in functions require that the second
argument be positive.

IBM13051 E Second argument to BUILTIN name
built-in is greater than the number of
dimensions for the first argument. A
value of dimension count is assumed.

Explanation: The second argument to the LBOUND,
HBOUND, and DIMENSION built-in functions must be
no greater than the number of dimensions of their
array arguments.

dcl a(5,10) fixed bin;
do i =1 to Thound(a,3);

IBM13061 E Repeated declaration of identifier is
invalid and will be ignored.

Explanation: Level 1 variable names must not be
repeated in the same block.

dcl a fixed bin, a float;

32 PL/I Messages and Codes

IBM13071 E Duplicate specification of arithmetic
precision. Subsequent specification
ignored.

Explanation: The precision attribute must be specified
only once in a declare.

dcl a fixed(15) bin(31);

IBM1308l E Repeated declaration of identifier is
invalid. The name will be replaced by
an asterisk.

Explanation: The variable names at any given sublevel
within a structure or union must be unique.

dcl 1 a, 2 b fixed, 2 b float;

IBM13091 E Duplicate specification of attribute.
Subsequent specification ignored.

Explanation: Attributes like INITIAL must not be
repeated for an element of a DECLARE statement.

dcl a fixed init(0) bin init(2);

IBM1310l E The attribute character conflicts with
previous attributes and is ignored.

Explanation: Attributes must be consistent.

dcl a fixed real float;

IBM13111 E EXTERNAL name contains no
non-blank characters and is ignored.

Explanation: The external name should contain some
nonblank characters.

dcl x external(' ');

IBM13121 E WX literals should contain a multiple of
4 hex digits.

Explanation: WX literals must represent unicode
strings and hence must contain a multiple of 4 hex
digits.

X = '00"wx;

IBM13141 E ELSE clause outside of an open
IF-THEN statement is ignored.

Explanation: ELSE clauses are valid immediately after
an IF-THEN statement.

do; if a > b then; end; else a = 0;

IBM13151 E END label matches a label on an open
group, but that group label is
subscripted.

Explanation: END statements for groups with a
subscripted label must have labels that are also
subscripted.

a(l): do;

end a;

IBM13161 E END label is not a label on any open
group.

Explanation: A Label on END statement must match a
LABEL on an open BEGIN, DO, PACKAGE,
PROCEDURE, or SELECT statement.

a: do;

end b;

IBM13171 E An END statement may be missing after
an OTHERWISE unit. One will be
inserted.

Explanation: After an OTHERWISE unit in a SELECT
statement, only an END statement is valid.

select;
when (...)
do;
end;
otherwise
do;
end;
display(....);

IBM13181 E The ENVIRONMENT option option-name
conflicts with preceding
ENVIRONMENT options. This option
will be ignored.

Explanation: There was a conflict detected in the
ENVIRONMENT options specification. In the example

ENV(CONSECUTIVE INDEXED), the INDEXED option
conflicts with the CONSECUTIVE option.

IBM13191 E STRINGSIZE condition raised while
evaluating expression. Result is
truncated.

Explanation: During the conversion of a user
expression during the compilation, the target string was
found to be shorter than the source, thus causing the
STRINGSIZE condition to be raised.

IBM13201 E STRINGRANGE condition raised while
evaluating expression. Arguments are
adjusted to fit.

Explanation: If all the arguments in a SUBSTR
reference are constants or restricted expressions, the
reference will be evaluated at compile- time and the
STRINGRANGE condition will occur if the arguments
do not comply with the rules described for the SUBSTR
built-in function.

a = substr('abcdef’, 5, 4);

IBM13211 E LEAVE/ITERATE label matches a label
on an open DO group, but that DO
group label is subscripted.

Explanation: LEAVE/ITERATE statements for groups
with a subscripted label must have labels that are also
subscripted.

a(l): do;

leave a;

IBM13221 E LEAVE/ITERATE label is not a label on
any open DO group in its containing
block.

Explanation: LEAVE/ITERATE must specify a label on
an open DO loop in the same block as the
LEAVE/ITERATE statement.

a: do Toop;
begin;
leave a;

IBM13231 E ITERATE/LEAVE statement is invalid
outside an open DO statement. The

statement will be ignored.

Explanation: ITERATE/LEAVE statements are valid
only inside DO groups.

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 33

a: begin;
leave a;

end a;

IBM13241 E The name name occurs more than once
in the EXPORTS clause.

Explanation: Names in the EXPORTS clause of a
package statement must be unique.

a: package exports(al, a2, al);

IBM13251 E The name name occurs in the EXPORTS
clause, but is not the name of any
level-1 procedure.

Explanation: Each name in the EXPORTS clause of a
package statement must be the name of some level-1
procedure in that package.

a: package exports(al, a2, a3);

IBM13261 E Variables declared without a name must
be structure members or followed by a
substructure list.

Explanation: An asterisk may be used only for
structure or union names, or for members of structures
or unions. An asterisk may not be used for a level-1
structure name that specifies the LIKE attribute.

dcl * char(20) static init('who can use me');

IBM13271 E The CHARACTER VARYING parameter
to MAIN should be ASCII with the
attribute NATIVE.

Explanation: If the parameter is EBCDIC or has the
attribute NONNATIVE, unpredictable results can occur.

IBM13281 E The CHARACTER VARYING parameter
to MAIN should be EBCDIC with the
attribute BIGENDIAN.

Explanation: If the parameter is ASCII or has the
attribute LITTLEENDIAN, unpredictable results can
occur. This message applies only to SYSTEM(MVS) etc.

34 PL/1 Messages and Codes

IBM13301 E The | in an iSUB token must be bigger
than zero. A value of 1 is assumed.

Explanation: The I in an iSUB token must represent a
valid dimension number.

dcl b(8) fixed bin def(@sub,1);

IBM13311 E The | in an iSUB token must have no
more than 2 digits. A value of 1 is
assumed.

Explanation: The I in an iSUB token must have only 1
or 2 digits.

dc1 b(8) fixed bin def(001sub,1);

IBM13321 E The format-item format item requires an
argument when used in GET statement.
A value of 1 is assumed.

Explanation: A width must be specified on A, B, and
G format items when specified on a GET statement.

get edit(name) (a);

IBM13331 E Non-asterisk array bounds are not
permitted in GENERIC descriptions.

Explanation: All array bounds in generic descriptions
must be asterisks.

dc1 x generic (el when((10) fixed), ...

IBM13341 E String lengths and area sizes are not
permitted in GENERIC descriptions.

Explanation: All string lengths and area sizes in
generic descriptions must be asterisks.

dc1 x generic (el when(char(10)), ...

IBM13351 E Entry description lists are not permitted
in GENERIC descriptions.

Explanation: Any ENTRY attribute in a generic
description list must not be qualified with an entry
description list.

dcl x generic (el when(entry(ptr)), ...

IBM13361 E GRAPHIC extent is reduced to maximum
value.

Explanation: The maximum length allowed for a
GRAPHIC variable is 16383.

IBM13371 E GX literals should contain a multiple of
4 hex digits.

Explanation: GX literals must represent graphic
strings and hence must contain a multiple of 4 hex
digits.

x = '00"gx;

IBM13381 E Upper bound is less than lower bound.
Bounds will be reversed.

Explanation: A variable has been declared with an
upper bound that is less than its lower bound. The
upper and lower bounds will be swapped in order to
correct this. For example, DECLARE x(3:1) will be
changed to DECLARE x(1:3).

IBM13391 E Identifier is too long. It will be
collapsed to identifier.

Explanation: The maximum length of an identifier is
set by the NAME suboption of the LIMITS compiler
option.

IBM13401 E Argument number argument-number in
ENTRY reference ENTRY name contains
BIT data. NOMAP is assumed.

Explanation: An argument containing BIT data has
been found in a call to a COBOL routine. Mapping of
such structures between PL/I and COBOL is not
supported.

dcl f ext entry options(cobol);
dcl 1 a, 2 b bit(8), 2 ¢ bit(8);

call f(a);

IBM13411 E Argument number argument-number in
ENTRY reference ENTRY name is or
contains an UNION. NOMAP is
assumed.

Explanation: An argument containing UNION data
has been found in a call to a COBOL routine. Mapping
of such structures between PL/I and COBOL is not
supported.

dcl f ext entry options(cobol);
dcl 1 a union, 2 b char(4), 2 c fixed bin(31);

call f(a);

IBM13421 E Argument number argument-number in
ENTRY reference ENTRY name contains
non-constant extents. NOMAP is
assumed.

Explanation: An argument containing non-constant
extents has been found in a call to a COBOL routine.
Mapping of such structures between PL/1 and COBOL
is not supported.

dc1 f ext entry options(cobol);
dcl n static fixed bin init(17);
dcl 1 a, 2 b char(n), 2 c fixed bin(31);

call f(a);

IBM13431 E nomap-suboption is invalid as a suboption
of option.

Explanation: The suboption should be specified as
ARGN where "n” is an integer greater than 0.

dc1 f ext entry options(cobol nomap(argd));

IBM13441 E NOMAP specifications are valid only
for ILC routines.

Explanation: NOMAP, NOMAPIN and NOMAPOUT
are valid only for COBOL, FORTRAN and ASM
Procedures and Entrys.

IBM13451 E Initial level number in a structure is not
1.

Explanation: The level-1 DECLARE statement may be
missing.

dcl
2 a,
3 b,
3¢,

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 35

IBM13461 E INIT expression should be enclosed in
parentheses.

Explanation: This is required to avoid ambiguities. For
example, it is unclear whether all of the elements
should be initialized with the value 4 or if the first
element should be initialized with the value 9.

dcl a(5) fixed bin init((5)+4);

IBM13471 E B assumed to complete iSUB.

Explanation: There is no language element of the form
1su.

dcl a(10) def b(1lsu, 1sub);

IBM13481 E Digit in BINARY constant is not zero or
one.

Explanation: In a BINARY constant, each digit must
be a zero or one.

IBM13491 E Characters in BIT literals must be 0 or 1.

Explanation: In a BIT literal, each character must be
either zero or one.

IBM13501 E Character with decimal value n does not
belong to the PL/I character set. It will
be ignored.

Explanation: The indicated character is not part of the
PL/I1 character set. This can occur if a program
containing NOT or OR symbols is ported from another
machine and those symbols are translated to a
character that is not part of the PL/1 character set.
Using the NOT and OR compiler options can help
avoid this problem.

IBM13511 E Characters in hex literals must be 0-9 or
A-F.

Explanation: In a hex literal, each character must be
either 0-9 or A-F.

IBM13521 E The statement element character is
invalid. The statement will be ignored.

Explanation: The statement entered could not be
parsed because the specified element is invalid.

36 PL/I Messages and Codes

IBM13531 E Use of underscore as initial character in
an identifier accepted although invalid
under LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), identifiers must
start with an alphabetic character or with one of the
extralingual characters. They may not start with an
underscore. Under LANGLVL(SAAZ2), identifiers may
start with an underscore, although names starting with
_IBM are reserved for use by IBM.

IBM13541 E Multiple argument lists are valid only
with the last identifier in a reference.

Explanation: A reference of the form x(1)(2).y.z is
invalid.

IBM13551 E Empty argument lists are valid only
with the last identifier in a reference.

Explanation: A reference of the form x().y.z is invalid.

IBM13561 E Character with decimal value n does not
belong to the PL/I character set. It is
assumed to be an OR symbol.

Explanation: The indicated character is not part of the
PL/1 character set, but was immediately followed by
the same character. This can occur if a program
containing an OR symbol is ported from another
machine and this symbol is translated to a character
that is not part of the PL/I character set. Using the OR
compiler option can help avoid this problem.

IBM13571 E Character with decimal value n does not
belong to the PL/I character set. It is
assumed to be a NOT symbol.

Explanation: The indicated character is not part of the
PL/1 character set, but was immediately followed by an
=, < or > symbol. This can occur if a program
containing a NOT symbol is ported from another
machine and this symbol is translated to a character
that is not part of the PL/I character set. Using the
NOT compiler option can help avoid this problem.

IBM13581 E The scale factor specified in BUILTIN
name built-in with a floating-point
argument must be positive. It will be
changed to 1.

Explanation: This applies to the ROUND built-in
function. The non-positive value will be changed to 1.

dcl x float bin(53);
x = round(x, -1);

IBM13591 E Names in RANGE(identifier:identifier) are
not in ascending order. Order is
reversed.

Explanation: The names must be in ascending order.

default range(h : a) fixed bin;

IBM13601 E The name identifier has already been
defined as a FORMAT constant.

Explanation: The name of a FORMAT constant cannot
be used as the name of a LABEL constant as well.

f(1): format(a, x(2), a);

f(2): ;

IBM13611 E The name identifier has already been
defined as a LABEL constant.

Explanation: The name of a LABEL constant cannot be
also used as the name of a FORMAT constant.

f(1): 3

f(2): format(a, x(2), a);

IBM13621 E The label label-name has already been
declared. The explicit declaration of the
label will not be accepted.

Explanation: Declarations for label constant arrays are
not permitted.

dcl a(10) Tabel variable;

a(l): ...
a(2): ...

IBM13631 E Structure level greater than 255
specified. It will be replaced by 255.

Explanation: The maximum structure level supported
is 255.

dcl
1 a,
256 b,
2 c,

IBM13641 E Elements with level numbers greater
than 1 follow an element without a level
number. A level number of 1 is
assumed.

Explanation: A structure level is probably missing.

IBM13651 E Statement type resolution requires too
many lexical units to be examined. The
statement will be ignored.

Explanation: To determine if a statement is an
assignment or another PL/I statement, many elements
of the statement may need to be examined. If too many
have to be examined, the compiler will flag the
statement as in error. For instance, the following
statement could be a DECLARE until the equal sign is
encountered by the lexer.

dcl (a, b, c) = d;

IBM13661 E Level number following LIKE
specification is greater than than the
level number for the LIKE specification.
LIKE attribute will be ignored.

Explanation: LIKE cannot be specified on a parent
structure or union.

dcl
1 a like x,
2 b,
2 ¢c,

Statements inside a SELECT must be
preceded by a WHEN or an
OTHERWISE clause.

IBM13671 E

Explanation: A WHEN or OTHERWISE may be
missing.

select;
i=1+1;
when (a>0)

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 37

IBM1368l E The attribute character is invalid if it is
not followed by an element with a
greater logical level.

Explanation: The named attribute is valid only on
parent structures.

dcl
1 a,
2 b union,
2 cl fixed bin(31),
2 c2 float bin(21),

IBM13691 E MAIN has already been specified in the
PACKAGE.

Explanation: OPTIONS(MAIN) may be specified for
only one PROCEDURE in a PACKAGE. All but the first
specification will be ignored.

IBM13701 E Extent expression is negative. It will be
replaced by the constant 1.

Explanation: Extents must be positive.

dcl x char(-10);

IBM13711 E Structure element identifier is not dot
qualified.

Explanation: Under the option
RULES(NOLAXQUAL), all structure elements should
be qualified with the name of at least one of their
parents.

IBM13721 E EXTERNAL specified on internal entry
point.

Explanation: The EXTERNAL attribute is valid only
on external procedures and entrys: for example, in a
non-package, only on the outermost procedure and
entry statements contained in it, and in a package, only
on the procedures and entrys listed in the EXPORTS
clause of the PACKAGE statement.

a: proc;
b: proc ext(’_B');

IBM13731 E Variable variable name is implicitly
declared.

Explanation: Under the RULES(NOLAXDCL) option,
all variables must be declared except for contextual

38 PL/I Messages and Codes

declarations of built-in functions, SYSPRINT and
SYSIN.

IBM13741 E Contextual attributes conflicting with
PARAMETER will not be applied to
variable name.

Explanation: Only those contextual attributes that can
be applied to a parameter will be applied. For example,
CONSTANT and EXTERNAL, which apply to
contextual file declarations, will not be applied to file
parameters.

a: proc(f);

open file(f);

IBM13751 E The DEFINED variable variable name
does not fit into its base variable.

Explanation: The number of bits, characters or
graphics needed for a DEFINED variable must be no
more than in the base variable.

dcl a char(10);

dcl b char(5) defined (a) pos(8);

IBM13761 E Factoring of level numbers into
declaration lists containing level
numbers is invalid. The level numbers
in the declaration list will be ignored.

Explanation: Only attributes can be factored into
declaration lists.

dcl 1a, 2 (b, 3c, 3d) fixed;

IBM13771 E A scale factor has been specified as an
argument to the BUILTIN name built-in,
but the result of that function has type
FLOAT. The scale factor will be ignored.

Explanation: Scale factors are valid only for FIXED
values.

X = binary(1e0,4,2);

IBM13781 E An arguments list or subscripts list has
been provided for a GENERIC entry
reference. It will be ignored.

Explanation: GENERIC entry references are not
allowed to contain an arguments or subscripts list.

dc1 t generic(sub1(10) when((*)),
sub2 when ((*,%)));

IBM13791 E Locator qualifier for GENERIC reference
is ignored.

Explanation: GENERIC references cannot be
locator-qualified.

dc1 x generic (...);

call p->x;

IBM1380l E Target structure in assignment contains
no elements with the ASSIGNABLE
attribute. No assignments will be
generated.

Explanation: In an assignment to a structure, some
element of the structure must have the assignable
attribute.

dcl
1 a based,
2 nonasgn fixed bin,
2 nonasgn fixed bin;

p->a = 03

IBM13811 E DEFINED base for a BIT structure
should be aligned.

Explanation: If a BIT structure (or union) is defined
on a variable that is not aligned on a byte boundary,
unpredictable results may occur. This is especially true
if a substructure of the DEFINED variable is passed to
another routine.

INITIAL attribute is invalid for STATIC
FORMAT variables. Storage class is
changed to AUTOMATIC.

IBM13821 E

Explanation: FORMAT variables require block
activation information; they cannot be initialized at
compile-time. If the variable were a member of a
structure, the storage class would not be changed to
AUTOMATIC, and a severe message would be issued
instead.

IBM1383l E Labels on keyword statements are invalid
and ignored.

Explanation: Labels are not permitted on DECLARE,
DEFAULT, and DEFINE statements or on WHEN and
OTHERWISE clauses.

IBM13841 E message

Explanation: This message is used to report back end
error messages.

IBM13851 E Invalid DEFINED - string overlay

defining attempted.

Explanation: The base variable in the DEFINED
attribute must consist of UNALIGNED, NONVARYING
string variables of the same string type as the
DEFINED variable.

IBM13861 E DEFINED base for a BIT variable
should not be subscripted.

Explanation: When one bit variable is defined on a
second (the base), the base may be an array, but it must
not be subscripted.

dcl a(20) bit(8) unaligned;
dcl b bit(8) defined(a(3));

IBM13871 E The NODESCRIPTOR attribute is
invalid when any parameters have *
extents. The NODESCRIPTOR attribute
will be ignored.

Explanation: A parameter can have * extents only if a
descriptor is also passed. The NODESCRIPTOR
attribute will be ignored, and descriptors will be
assumed to have been passed for all array, structure
and string arguments.

a: proc(x) options(nodescriptor);

dcl x char(*);

IBM13881 E The NODESCRIPTOR attribute is
invalid when any parameters have the
NONCONNECTED attribute.

Explanation: A parameter can have the
NONCONNECTED attribute only if a descriptor is also
passed.

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 39

a: proc(x) options(nodescriptor);

dcl x(20) fixed bin nonconnected;

IBM13891 E The identifier identifier is not the name
of a built-in function. The BUILTIN
attribute will be ignored.

Explanation: The BUILTIN attribute can be applied
only to identifiers that are the names of built-in
functions or subroutines.

IBM13901 E note

Explanation: This message is used by %NOTE
statements with a return code of 8.

IBM13911 E End-of-source has been encountered
after an unmatched comment marker.

Explanation: An end-of-comment marker is probably
missing.

IBM13921 E End-of-source has been encountered
after an unmatched quote.

Explanation: A closing quote is probably missing.

IBM13931 E Item in OPTIONS list conflicts with
other attributes in the declaration.
option-name is ignored.

Explanation: The indicated element of the options list
is invalid.

dcl a file options(assembler);

IBM13941 E Item in OPTIONS list is invalid for
BEGIN blocks. option-name is ignored.

Explanation: The indicated element of the options list
is invalid for BEGIN blocks (although it may be valid
for PROCEDURES).

begin options(assembler);

IBM13951 E Item in OPTIONS list is invalid for
PACKAGEs. option-name is ignored.

Explanation: The indicated element of the options list
is invalid for PACKAGEs (although it may be valid for
PROCEDUREsS).

40 PL/I Messages and Codes

a: package exports(x) options(assembler);

IBM13961 E Item in OPTIONS list is invalid for
PROCEDUREs. option-name is ignored.

Explanation: The indicated element of the options list
is invalid for PROCEDUREs (although it may be valid
for ENTRYS).

a: procedure options(inter);

IBM13971 E Item in OPTIONS list is invalid for
nested PROCEDUREs. option-name is
ignored.

Explanation: The indicated element of the options list
is invalid for nested PROCEDUREs (although it may be
valid for PROCEDUREsS).

a: proc;
b: proc options(main);

IBM1398l E Invalid item in OPTIONS list.
option-name is ignored.

Explanation: The indicated element of the options list
is not a supported option in any statement or
declaration.

a: proc options(unknown);

IBM13991 E Item in OPTIONS list is invalid for
ENTRY statements. option-name is
ignored.

Explanation: The indicated element of the options list
is invalid for ENTRY statements (although it may be
valid for PROCEDURES).

a: entry options(chargraphic);

IBM14001 E Item in OPTIONS list conflicts with
preceding items. option-name is ignored.

Explanation: The elements of the options list must be
consistent, unlike in the example where BYVALUE and
BYADDR conflict.

a: proc options(byvalue byaddr);

IBM14011 E Parameter attributes have been specified
for a variable that is not a parameter.
The parameter attributes are ignored.

Explanation: Parameter attributes, such as BYVALUE
or CONNECTED, may be specified only for
parameters.

a: proc;
dcl x byvalue ptr;

IBM14021 E Constant in POSITION attribute is less
than 1.

Explanation: The POSITION attribute must specify a
positive value.

dcl a def b pos(-10);

IBM14031 E The end of the source was reached
before the logical end of the program.
Null statements and END statements
will be inserted as necessary to
complete the program.

Explanation: The source should contain END
statements for all PACKAGEs, PROCEDUREs, BEGIN
blocks, DO groups, and SELECT statements, as well as
statements for all IF-THEN and ELSE clauses.

IBM14041 E The procedure name proc-name has
already been declared. The explicit
declaration of the procedure name will
not be accepted.

Explanation: Declarations for internal procedures are
not permitted.

a: proc;
dc1 b entry options(byvalue);
b: proc;

IBM14051 E Only one description is allowed in a
returns descriptor.

Explanation: A function can return only one value.

dcl b entry returns(ptr, ptr);

IBM14061 E The product of the repetition factor
repetition-factor and the length of the
constant string to which it is applied is
greater than the maximum length
allowed for a constant. The repetition
factor will be ignored.

Explanation: The string represented by a repetition
factor applied to another string must conform to the
same limits imposed on strings without repetition
factors.

a = (32767) 'abc’;

IBM14071 E Scale factor is bigger than 127. It will be
replaced by 127.

Explanation: Scale factors must lie between -128 and
127 inclusive.

IBM14081 E Scale factor is less than -128. It will be
replaced by -128.

Explanation: Scale factors must lie between -128 and
127 inclusive.

IBM14091 E A SELECT statement may be missing. A
SELECT statement, without an
expression, will be inserted.

Explanation. A WHEN or OTHERWISE clause has
been found outside of a SELECT statement.

IBM14101 E Semicolon inserted after ELSE keyword.

Explanation: An END statement enclosing a statement
such as DO or SELECT has been found before the
statement required after ELSE.

do;
if a > b then

else
end;

IBM14111 E Semicolon inserted after ON clause.

Explanation: An END statement enclosing a statement
such as DO or SELECT has been found before the
statement required after ON condition.

do;

on zdiv
end;

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 41

IBM14121 E Semicolon inserted after OTHERWISE
keyword.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM14131 E Semicolon inserted after THEN
keyword.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM14211 E More than 15 dimensions have been
specified. Excess will be ignored.

Explanation: The maximum number of dimensions
allowed for a variable, including all inherited
dimensions, is 15.

IBM14141 E Semicolon inserted after WHEN clause.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM14221 E Maximum of 500 LIKE attributes per
block exceeded.

Explanation: A block should contain no more than 500
LIKE references. Under LANGLVL(SAA?2), there is no
limit.

IBM14151 E Source file does not end with the logical
end of the program.

Explanation: The source file contains statements after
the END statement that closed the first PACKAGE or
PROCEDURE. These statements will be ignored, but
their presence may indicate a programming error.

IBM14231 E UNALIGNED attribute conflicts with
AREA attribute.

Explanation: All AREA variables must be ALIGNED.

IBM14161 E Subscripts have been specified for the
variable variable name, but it is not an
array variable.

Explanation: Subscripts can be specified only for
elements of an array.

IBM14241 E End of comment marker found when
there are no open comments. Marker
will be ignored.

Explanation: An */ was found when there was no
open comment.

IBM14171 E Second argument in SUBSTR reference
is less than 1. It will be replaced by 1.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM14251 E There is no compiler directive directive.
Input up to the next semicolon will be
ignored.

Explanation: See the :cit.Language Reference
Manual:ecit. for the list of supported compiler
directives.

IBM14181 E Second argument in SUBSTR reference
is too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM14261 E Structure level of 0 replaced by 1.

Explanation: Structure level numbers must be
positive.

IBM14271 E Numeric precision of 0 replaced by 1.

Explanation: Numeric precisions must be positive.

IBM14191 E Third argument in SUBSTR reference is
less than 0. It will be replaced by 0.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM14281 E X literals should contain a multiple of 2
hex digits.

Explanation: An X literal may not contain an odd
number of digits.

IBM14201 E The factor in K/M constant is too large
and is replaced by maximum factor.

Explanation: The maximum K constant is 2097151K,
and the maximum M constant is 2047M.

42 PL/I Messages and Codes

IBM14291 E INITIAL attribute for REFER object
variable name is invalid.

Explanation: In DCL 1 a BASED, 2 b FIXED BIN
INIT(3), 2 c(n REFER(D)), the initial clause for b’ is
invalid and will be ignored.

IBM14301 E UNSIGNED attribute for type type type
type name conflicts with negative
INITIAL values and is ignored.

Explanation: If an ORDINAL type is declared with the
UNSIGNED attribute, any INITIAL values specified
must be nonnegative.

IBM14311 E PRECISION specified for type type type
type name is too small to cover its
INITIAL values and is adjusted to fit.

Explanation: An ORDINAL type must have a
precision larger enough to cover the range of values
defined for it.

define ordinal

colors
(red init(0),
orange init(256)
yellow init(512)) unsigned prec(8);

IBM14321 E The type type type type name is already
defined. The redefinition is ignored.

Explanation: An ORDINAL type may be defined only
once in any block.

IBM14331 E The name name occurs more than once
in the RESERVES clause.

Explanation: Names in the RESERVES clause of a
package statement must be unique.

a: package reserves(al, a2, al);

IBM14341 E The name name occurs in the RESERVES
clause, but is not the name of any
level-1 STATIC EXTERNAL variable.

Explanation: Each name in the RESERVES clause of a
package statement must be the name of some level-1
static external variable in that package.

a: package reserves(al, a2, a3);

IBM14351 E A precision value less than 1 has been
specified as an argument to the BUILTIN
name built-in. It will be replaced by 15.

Explanation: Precision values must be positive.

middle = divide(todo, 2, 0);

IBM14361 E The scale factor specified as an
argument to the BUILTIN name built-in
is out of the valid range. It will be
replaced by the nearest valid value.

Explanation: Scale factors must be between -128 and
127 inclusive.

f = fixed(i, 15, 130);

IBM14371 E The second argument to the BUILTIN
name built-in is greater than the
maximum FIXED BINARY precision. It
will be replaced by the maximum value.

Explanation: The maximum FIXED BINARY precision
supported allowed depends on the FIXEDBIN
suboption of the LIMITS option.

i = signed(n, 63);

IBM14381 E Excess arguments for ENTRY ENTRY
name ignored.

Explanation: More arguments were specified in an
ENTRY reference than were defined as parameters in
that ENTRY’s declaration.

dcl e entry(fixed bin);
call e(1, 2);

IBM14391 E Excess arguments for BUILTIN name
built-in ignored.

Explanation: More arguments were specified for the
indicated built-in function than are supported by that
built-in function.

i = acos(j, k)3

IBM14411 E ENTRY/RETURNS description lists for
comparands do not match.

Explanation: In a comparison of two ENTRY variables
or constants, the ENTRY and RETURNS description
lists should match. The linkages must also match.

dcl el entry(fixed), e2 entry(float);

if el = e2 then

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 43

IBM14421 E The ENTRY/RETURNS description lists
in the ENTRY to be assigned to target
variable do not match those of the target
variable.

Explanation: In an assignment of an ENTRY variable
or constant, the ENTRY and RETURNS description lists
for the source should match those of the target. The
linkages must also match.

dcl el variable entry(fixed),
e2 entry(float);

el = e2;

IBM14431 E An ENTRY/RETURNS description list in
an ENTRY in the INITIAL list for target
variable do not match those of the target
variable.

Explanation: When initializing an ENTRY variable or
constant, the ENTRY and RETURNS description lists
for the source should match those of the target. The
linkages must also match.

dcl el variable entry(fixed);
dcl e2 variable entry(float) init(el);

IBM14441 E The ENTRY/RETURNS description lists
in the RETURN statement do not match
those in the corresponding RETURNS
attribute

Explanation: When a function returns an ENTRY
variable or constant, the ENTRY and RETURNS
description lists in the returned ENTRY reference
should match those in the containing procedure’s
RETURNS option. The linkages must also match.

a: proc returns(entry(float));
dcl el entry(fixed);

return(el);

IBM14451 E The ENTRY/RETURNS description lists
for argument number argument-number in
entry reference entry name do not match
those in the corresponding parameter.

Explanation: This message also occurs if the linkages
do not match.

dcl a entry(entry(float));

44 PL/I Messages and Codes

dcl el entry(fixed);

call a(el);

IBM14461 E Third argument in SUBSTR reference is
too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM14471 E Literals with an X prefix are valid only
in EXEC SQL statements.

Explanation: In PL/I statements, hex literals should be
specified with an X suffix.

IBM14481 E Use of nonconstant extents in BASED
variables without REFER accepted
although invalid under
LANGLVL(SAA).

Explanation: In the SAA level-1 language definition,
extents in BASED variables must all be constant except
where the REFER option is used. The following would
be invalid

dcl x based char(n);

IBM14491 E Use of type function accepted although
invalid under LANGLVL(SAA).

Explanation: Type functions are not part of the SAA
level-1 language.

IBM14501 E keyword keyword accepted although
invalid under LANGLVL(SAA).

Explanation: The indicated keyword (UNSIGNED in
the example below) is not defined in the SAA level-1
language.

dcl x fixed bin unsigned;

IBM14511 E Use of S, D and Q constants accepted
although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not include S, D, and Q floating-point
constants.

IBM14521 E Use of underscores in constants accepted
although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not permit using underscores in numeric
and hex constants.

IBM14531 E Use of asterisks for names in declares
accepted although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not permit using asterisks for structure
element names.

IBM14541 E Use of XN and XU constants accepted
although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not include XN and XU constants.

IBM14551 E Use of arguments with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the DATETIME
built-in function cannot have any arguments.

s = datetime(’DDMMYYYY’);

IBM14561 E Use of 3 arguments with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the VERIFY and
INDEX built-in functions are supposed to have exactly
2 arguments.

i = verify(s, j, k);

IBM14571 E Use of 1 argument with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the DIM,
LBOUND and HBOUND built-in functions are
supposed to have 2 arguments.

i =dim(a);

IBM14581 E GOTO is not allowed under
RULES(NOGOTO).

Explanation: Under RULES(NOGOQOTO), there should
be no GOTO statements in your source program.

IBM14591 E Uninitialized AUTOMATIC variables in
a block should not be used in the
prologue of that block.

Explanation: The AUTOMATIC variables in a block
may be used in the declare statements and the
executable statements of any contained block, but in the
block in which they are declared, they should be used
only in the executable statements.

dcl x fixed bin(15) automatic;
dcl y(x) fixed bin(15) automatic;

IBM14601 E Under RULES(ANS), nonzero scale
factors are not permitted in declarations
of FIXED BIN. Declared scale factor will
be ignored.

Explanation: RULES(IBM) allows scaled FIXED BIN,
but RULES(ANS) supports it only for FIXED
DECIMAL. RULES(ANS) will ignore the scale factors in
the following declares

dcl x fixed bin(31,16);
dcl y entry(fixed bin(31,16));

IBM14611 E Under RULES(ANS), nonzero scale
factors are not permitted when the
result of BUILTIN name has the
attributes FIXED BIN. Specified scale
factor will be ignored.

Explanation: RULES(IBM) allows scaled FIXED BIN,
but RULES(ANS) supports it only for FIXED
DECIMAL. RULES(ANS) will ignore the scale factors in
the following built-ins

dcl (x,y) fixed bin(15,0);
put Tist(add(x,y,31,2));
put Tist(bin(x,31,2));

put list(prec(x,31,2));

IBM14621 E Expression in comparison interpreted
with DATE attribute.

Explanation: In a comparison, if one comparand has
the DATE attribute, the other should also. If the
non-date is an expression that could have a value that
is valid for the date pattern, it will be viewed as if it

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 45

had the same DATE attribute as the date comparand.

IBM14631 E Operand with DATE attribute is invalid
except in compare or assign. DATE
attribute will be ignored.

Explanation: Comparisons are the only infix
operations where operands with the DATE attribute
may be used. If they are used in any other operation,
the DATE attribute will be ignored. So, in the following
code, the addition will be flagged and the DATE
attribute ignored.

dc1 x char(5) date(’YYDDD');

put Tist(x + 1);

IBM14641 E DATE attribute ignored in comparison
with non-date expression.

Explanation: In a comparison, if one comparand has
the DATE attribute, the other should also. If the
non-date is an expression that could not have a value
that is not valid for the date pattern, the DATE
attribute will be ignored.

IBM14651 E Source in assignment has the DATE
attribute, but target variable does not.
The DATE attribute will be ignored.

Explanation: If the target in an assignment has the
DATE attribute, the source should also. If the target is a
pseudovariable, message 1466 is issued instead.

dc1 x char(6);
x = date();

IBM14661 E Source in assignment has the DATE
attribute, but target does not. The DATE
attribute will be ignored.

Explanation: If the source in an assignment has the
DATE attribute, the target should also.

IBM14671 E Source in INITIAL clause for variable
name has the DATE attribute but the
target does not. The DATE attribute will
be ignored.

Explanation: If an INITIAL expression has the DATE
attribute, the target should also.

46 PL/I Messages and Codes

IBM14681 E Argument number argument-number in
entry reference entry name has the DATE
attribute but the corresponding
parameter does not. The DATE attribute
will be ignored.

Explanation: The argument and parameter should
match, unlike in the example below

dcl x entry(char(6));
call x(date());

IBM14691 E Source in RETURN statement has the
DATE attribute, but the corresponding
RETURNS option does not. The DATE
attribute will be ignored.

Explanation: The attributes of the RETURNed
expression and in the RETURNS option should match,
unlike in the example below

x: proc returns(char(6));

;‘é’;urn(date());

IBM14701 E An ID option must be specified for the
INCLUDE preprocessor.

Explanation: No other options are valid for the
INCLUDE preprocessor.

IBM14711 E The ID option specified for the
INCLUDE preprocessor is invalid.

Explanation: The INCLUDE preprocessor ID option
must have one suboption consisting of a string
specifying the INCLUDE directive.

IBM14721 E A closing right parenthesis is missing
from the ID option specified for the
INCLUDE preprocessor.

Explanation: The suboption specified for the
INCLUDE preprocessor 1D option must be closed with
a right parenthesis.

IBM14731 E The syntax of the preprocessor
INCLUDE directive is incorrect.

Explanation: A statement that starts with the
preprocessor INCLUDE directive specified in that
preprocessor’s ID option must be followed by a name
and, optionally, a semicolon.

IBM14741 E Source in assignment does not have the
DATE attribute, but target variable does.
The DATE attribute will be ignored.

Explanation: If the target in an assignment has the
DATE attribute, the source should also. If the target is a
pseudovariable, message 1475 is issued instead.

dcl x char(6) date(’YYMMDD');
X ="

IBM14751 E Target in assignment has the DATE
attribute, but source does not. The
DATE attribute will be ignored.

Explanation: If the target in an assignment has the
DATE attribute, the source should also.

IBM14761 E Source in INITIAL clause for variable
name does not have the DATE attribute
but the target does. The DATE attribute
will be ignored.

Explanation: If a variable has the DATE attribute, then
any INITIAL value for it should also.

IBM14771 E Argument number argument-number in
entry reference entry name does not have
the DATE attribute but the
corresponding parameter does. The
DATE attribute will be ignored.

Explanation: The argument and parameter should
match, unlike in the example below

dcl x entry(char(6) date(’YYMMDD'));
call x(");

IBM14781 E Source in RETURN statement does not
have the DATE attribute, but the
corresponding RETURNS option does.
The DATE attribute will be ignored.

Explanation: The attributes of the RETURNed
expression and in the RETURNS option should match,
unlike in the example below

x: proc returns(char(6) date(’YYMMDD'));

return(”’);

IBM14801 E Multiple closure of groups is not
allowed under
RULES(NOMULTICLOSE).

Explanation: Under RULES(NOMULTICLOSE), there
should be no multiple closure of groups in your source
program.

IBM14811 E BYNAME assignment statements are not
allowed under RULES(NOBYNAME).

Explanation: Under RULES(NOBYNAME), there
should be no BYNAME assignment statements in your
source program.

IBM14821 E The variable variable name is declared
without any data attributes.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, parentheses may be
missing. Under RULES(LAXDCL), this is a W-level
message.

dcl a, b fixed bin;

IBM14831 E The structure member variable name is
declared without any data attributes. A
level number may be incorrect.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, the level number on
¢ and d should probably be 3. Under RULES(LAXDCL),
this is a W-level message.

dcl a, b fixed bin;
1 a,
2 b,
2c,
2 d;

IBM14841 E An unnamed structure member is
declared without any data attributes. A
level number may be incorrect.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, the level number on
¢ and d should probably be 3. Under RULES(LAXDCL),
this is a W-level message.

dcl a, b fixed bin;
1 a,

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 47

IBM24001 E Compiler backend issued error messages
to STDOUT.

Explanation: Look in STDOUT to see the message
issued by the compiler backend.

IBM24011 E Missing character assumed before
character. DECLARE and other
nonexecutable statements should not
have labels.

Explanation: The indicated character is missing and
has been inserted by the parser in order to correct your
source. Under RULES(LAXPUNC), a message with the
same text, but lesser severity would be issued

xx: dcl test fixed bin;

IBM24021 E variable name is declared as BASED on
the ADDR of variable name, but variable
name requires more storage than variable
name.

Explanation: The amount of storage needed for a
BASED variable must be no more than provided by its
base variable.

dcl a char(10);

dcl b char(5) based(addr(a));

IBM24031 E PROCESS statements are not permitted
under the NOPROCESS option.

Explanation: When the NOPROCESS option is in
effect, the source should contain no PROCESS
statements.

IBM24041 E variable name is declared as BASED on
the ADDR of variable name, but variable
name requires more storage than remains
in the enclosing level 1 structure variable
name after the location of variable name.

Explanation: The amount of storage needed for a
BASED variable must be no more than provided by its
base variable.

48 PL/I Messages and Codes

dcl 1 a, 2 al char(10), 2 a2 char(10);

dcl b char(15) based(addr(a2));

IBM24051 E Even decimal precisions are not allowed
under RULES(NOEVENDEC).

Explanation: Under RULES(NOEVENDEC), there
should be no FIXED DECIMAL data declared with an
even precision.

dcl a fixed dec(10);

IBM24061 E Precision outside VALUE clause will be
ignored.

Explanation: In DEFAULT statements, numeric
precisions should be specified only inside VALUE
clauses.

dft range(*) fixed bin(31);

IBM24071 E Length outside VALUE clause will be
ignored.

Explanation: In DEFAULT statements, lengths of
strings should be specified only inside VALUE clauses.

dft range(*) bit(8);

IBM24081 E AREA size outside VALUE clause will
be ignored.

Explanation: In DEFAULT statements, sizes of AREASs
should be specified only inside VALUE clauses.

dft range(*) area(10000);

IBM24091 E RETURN statement without an
expression is invalid inside a
subprocedure that specified the
RETURNS attribute.

Explanation: All RETURN statements inside functions
must specify a value to be returned.

a: proc returns(fixed bin);

return;

IBM24101 E Function function name contains no valid
RETURN statement.

Explanation: Functions must contain at least one
RETURN statement.

IBM24111 E STRINGOFGRAPHIC(CHARACTER)
option is ignored because argument to
STRING built-in function is possibly
not contiguous.

Explanation: The STRINGOFGRAPHIC(
CHARACTER) option will be ignored if the argument
contains any elements that are VARYING or if the
argument is a NONCONNECTED slice of an array.

IBM24121 E Procedure has no RETURNS attribute,
but contains a RETURN statement. A
RETURNS attribute will be assumed.

Explanation: If a procedure contains a RETURN
statement, it should have the RETURNS attribute
specified on its PROCEDURE statement.

a: proc;
return(0);
end;

IBM24131 E The attribute attribute should be
specified only on parameters and
descriptors.

Explanation: Attributes must be consistent.

dcl a fixed based connected;

IBM24141 E The option option conflicts with the
option option. The IBM default of option
will be used instead.

Explanation: The specified options conflict and cannot
be used together. On ASCII systems, the compiler will
produce this message if you specify the GRAPHIC and
EBCDIC options. Conversely, on EBCDIC systems, the
compiler will produce this message if you specify the
GRAPHIC and ASCII options.

IBM24151 E Without APAR number, compiler would
generate incorrect code for this
statement.

Explanation: The indicated APAR will fix a compiler
problem with this statement.

IBM24161 E The SEPARATE suboption of TEST is
not supported when the LINEDIR
option is in effect.

Explanation: When the LINEDIR option is in effect,
only the NOSEPARATE suboption of the TEST option
is supported.

IBM24171 E In FETCHABLE code compiled with
NORENT NOWRITABLE(PRV), it is
invalid to ALLOCATE or FREE a
CONTROLLED variable unless it is a

PARAMETER.

Explanation: In FETCHABLE code, all CONTROLLED
variables should be parameters.

IBM24181 E Variable variable is unreferenced.

Explanation: Under RULES(NOUNREF), the compiler
will issue this message for any level-1 AUTOMATIC
variable that is not referenced.

IBM24191 E HGPR is invalid and ignored unless the
ARCH option is 5 or greater.

Explanation: The HGPR option will be ignored unless
the ARCH option is 5 or greater since the necessary
instructions are available only with ARCH(5) or later.

IBM24201 E DFP is invalid and ignored unless the
ARCH option is 7 or greater.

Explanation: The FLOAT(DFP) option will be ignored
unless the ARCH option is 7 or greater since the
necessary instructions are available only with ARCH(7)
or later.

IBM24211 E A file should not be closed in its
ENDFILE block.

Explanation: In an ENDFILE block for a file, it is
invalid to close that file in the ENDFILE block.

IBM24221 E Under the DFP option, the HEXADEC
attribute is not supported for FLOAT
DEC.

Explanation: Under the FLOAT(DFP) option, all
FLOAT DECIMAL will be treated as DFP and may not
be declared as HEXADEC. The attribute is still valid for
FLOAT BIN.

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 49

IBM24231 E Under the DFP option, the IEEE
attribute is not supported for FLOAT
DEC.

Explanation: Under the FLOAT(DFP) option, all
FLOAT DECIMAL will be treated as DFP and may not
be declared as IEEE. The attribute is still valid for
FLOAT BIN.

IBM24241 E Scale factors are not allowed in FLOAT
declarations.

Explanation: Scale factors are valid only in declares of
FIXED BIN or FiXED DEC. The first declaration below
is invalid and should be changed to one of the
subsequent declarations.

dcl al float dec(15,2);

dcl a2 fixed dec(15,2);
dc1 a3 float dec(15);

IBM24251 E Statement with ELSE IF should be
rewritten using SELECT.

Explanation: Under RULES(NOELSEIF), the compiler
will issue this message for statement where an ELSE is
immediately followed by an IF statement.

IBM24261 E Maximum nesting of DO statements has
been exceeded.

Explanation: The nesting of DO statements has
exceeded the value specified in the DO suboption of
the MAXNEST compiler option.

IBM24271 E Maximum nesting of IF statements has
been exceeded.

Explanation: The nesting of IF statements has
exceeded the value specified in the IF suboption of the
MAXNEST compiler option.

IBM24281 E Maximum nesting of PROC and BEGIN
statements has been exceeded.

Explanation: The nesting of PROC and BEGIN
statements has exceeded the value specified in the
BLOCK suboption of the MAXNEST compiler option.

IBM24291 E CMPAT(V3) requires that 8-byte integers
be allowed. The second value in the
FIXEDBIN suboption of the LIMITS
option will be set to 63.

Explanation: The use of the CMPAT(V3) option with
LIMITS(FIXEDBIN(31,31)) is not supported. Since
CMPAT(V3) will cause various built-in functions (such
as HBOUND) to return a FIXED BIN(63) result, at least

50 PL/1 Messages and Codes

the second value in the FIXEDBIN suboption of LIMITS
must be 63 (i.e. LIMITS(FIXEDBIN(31,63)) or
LIMITS(FIXEDBIN(63,63)) must be in effect).

IBM24301 E The LINESIZE value specified in the
OPEN of file file name is not compatible
with the RECSIZE specified in its
declare.

Explanation: If the file has F format and is not a
PRINT file, then the LINESIZE must be no greater than
the RECSIZE. If the file has F format and is a PRINT
file, then the LINESIZE must be less than the RECSIZE.
If the file has V format and is not a PRINT file, then
the LINESIZE must be no greater than the RECSIZE-4.
If the file has V format and is a PRINT file, then the
LINESIZE must be less than the RECSIZE-4.

IBM24311 E The option option conflicts with the
GOFF option. NOGOFF will be used
instead.

Explanation: The specified option is not permitted
with the GOFF option, and the GOFF option will be
turned off so that the compile may proceed. This
applies, for example, to the NOWRITABLE(PRV) and
COMMON options.

IBM24321 E The attribute character is invalid with
parameters and is ignored.

Explanation: The INITIAL attribute, for example, is
invalid with parameters (since their storage will have
been allocated elsewhere).

dcl a fixed bin parameter initial(0);

IBM24331 E The attribute character is invalid with
DEFINED and is ignored.

Explanation: The INITIAL attribute, for example, is
invalid with DEFINED variables (since their storage
will have been allocated elsewhere).

dcl b char(l) initial('’) defined(a);

IBM24341 E Under RULES(NOLAXENTRY), all
ENTRY declares must specify a
parenthesized parameter list, even if
empty.

Explanation: Under RULES(NOLAXENTRY), all
ENTRY declares must be prototyped. If the ENTRY
should have no parameters, it should be declared as
ENTRY() rather than as simply ENTRY.

Chapter 6. Compiler Severe Messages (1500-2399)

IBM15001 S Argument number argument-number in
ENTRY reference ENTRY name has type
source type, which is invalid for a
parameter with type target type.

Explanation: An argument must have a type that can
be converted to the corresponding parameter’s type.

IBM15011 S Argument number argument-number in
ENTRY reference ENTRY name has a
different strong type than the
corresponding parameter.

Explanation: If a parameter is strongly typed, any
argument passed to it must have the same type.

IBM15021 S Argument number argument-number in
ENTRY reference ENTRY name has type
source type, which is invalid for a
parameter with type target type. If the
ENTRY should be invoked, an argument
list must be provided.

Explanation: An argument must have a type that can
be converted to the corresponding parameter’s type.

IBM15031 S Argument number argument-number in
ENTRY reference ENTRY name has type
source type, which is invalid for a
parameter with type LIMITED ENTRY.

Explanation: Only an EXTERNAL ENTRY
CONSTANT, an ENTRY CONSTANT representing a
non-nested PROCEDURE, or an ENTRY VARIABLE
with the LIMITED attribute can be passed to a
LIMITED ENTRY parameter.

IBM15041 S Argument number argument-number in
ENTRY reference ENTRY name has type
POINTER, which is invalid for an
OFFSET parameter without an AREA
qualifier.

Explanation: POINTER expressions can be converted
to OFFSET only if the OFFSET is declared with an
AREA qualifier.

IBM15051 S Argument number argument-number in
ENTRY reference ENTRY name has type
POINTER, which is invalid for a
POINTER parameter since the OFFSET
argument is not an OFFSET variable
declared with an AREA qualifier.

Explanation: OFFSET variables can be converted to

© Copyright IBM Corp. 1999, 2008

POINTER only if the OFFSET is declared with an
AREA qualifier.

IBM15061 S Argument number argument-number in
ENTRY reference ENTRY name has a
different ORDINAL type than the
corresponding parameter.

Explanation: ORDINALSs cannot be passed to other
ORDINALs having different ORDINAL types.

IBM15071 S Arrays of label constants may not be
passed as arguments.

Explanation: The array can be assigned to an array of
LABEL variables, and that array can be passed.

Ix(1): ...
1x(2): ...

call x(1x);

IBM15081 S Too few arguments have been specified
for the ENTRY ENTRY name.

Explanation: The number of arguments must match
the number of parameters in the ENTRY declaration.

IBM15091 S Argument to variable name
pseudovariable must be ASSIGNABLE.

Explanation: The target in an assignment through a
pseudovariable must not have the NONASSIGNABLE
attribute.

dcl a static nonasgn char(7) init('example’);

unspec(a) = "'b;

IBM15101 S First argument to variable name
pseudovariable must be ASSIGNABLE.

Explanation: The target in an assignment through a
pseudovariable must not have the NONASSIGNABLE
attribute.

dcl a static nonasgn char(7) init('example’);

substr(a,1,2) = 'tr’;

51

IBM15111 S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate, but the parameter description
specifies a scalar.

Explanation: Scalars cannot be converted to
aggregates.

dcl a entry(fixed bin), b(10) fixed bin;

call a(b);

IBM15121 S Argument number argument-number in
ENTRY reference ENTRY name is a
scalar, but the parameter description
specifies an aggregate to which it cannot
be passed.

Explanation: Dummy aggregate arguments are not
supported except when passing a non-AREA scalar to a
non-CONTROLLED array of scalars, and the array
must have no bounds specified as *. The scalar can be
assigned to an aggregate, and that aggregate can be
passed.

dcl a entry(1, 2 fixed bin, 2 fixed bin);

call a(0);

IBM15131 S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate that does not exactly match
the corresponding parameter
description.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an
aggregate parameter, then any argument passed must
match that parameter’s description.

IBM15141 S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate with more members than its
corresponding parameter description.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an
aggregate parameter, then any argument passed must
match that parameter’s description.

IBM15151 S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate with fewer members than its
corresponding parameter description.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an

52 PL/1 Messages and Codes

aggregate parameter, then any argument passed must
match that parameter’s description.

IBM15161 S The number of dimensions in the
subelements of argument number
argument-number in ENTRY reference
ENTRY name and in its corresponding
parameter description do not match.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an
aggregate parameter, then any argument passed must
match that parameter’s description.

IBM15171 S The upper and lower bounds in the
subelements of argument number
argument-number in ENTRY reference
ENTRY name and in its corresponding
parameter description do not match.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an
aggregate parameter, then any argument passed must
match that parameter’s description.

IBM15181 S The number of dimensions for
argument number argument-number in
ENTRY reference ENTRY name and in its
corresponding parameter description do
not match.

Explanation: Array arguments and parameters must
have the same number of dimensions.

dcl a entry((*,*) fixed bin),
b (10) fixed bin;

call a(b);

IBM15191 S The upper and lower bounds for
argument number argument-number in
ENTRY reference ENTRY name and in its
corresponding parameter description do
not match.

Explanation: Array arguments and parameters must
have the same lower and upper bounds.

dcl a entry((0:10) fixed bin),
b (10) fixed bin;

call a(b);

IBM15201 S Charset 48 is not supported.

Explanation: Charset 48 is no longer supported. The
source code must be converted to charset 60.

IBM15211 S Not enough virtual memory is available
to continue the compile.

Explanation: The compilation requires more virtual
memory than is available. It may help to specify one or
more of the following compiler options: NOTEST,
NOXREF, NOATTRIBUTES, and/or NOAGGREGATE

IBM15221 S variable cannot be SET unless an IN
clause is specified.

Explanation: If an offset variable is declared without
an AREA reference, it cannot be set in an ALLOCATE
or LOCATE statement unless an IN clause names an
AREA reference.

IBM15231 S Argument to BUILTIN name built-in
must be an AREA reference.

Explanation: The built-in function AVAILABLEAREA
is defined only for AREAs.

IBM15241 S BUILTIN name(x) is undefined if ABS(x)
> 1.

Explanation: An expression contains the built-in
function ASIN or ACOS applied to a restricted
expression that evaluated to a number outside the
domain of that function.

IBM15251 S ATANH(x) is undefined if x is REAL
and ABS(x) >= 1.

Explanation: An expression contains the built-in
function ATANH applied to a restricted expression that
evaluated to a number outside the domain of that
function.

IBM15281 S First argument to BUILTIN name built-in
must have derived mode REAL.

Explanation: An expression contains the named
built-in function with its first argument having mode
COMPLEX. This message applies, for example, to the
ATAN and ATAND built-in functions when two
arguments are given.

IBM15301 S Second argument to BUILTIN name
built-in must have derived mode REAL.

Explanation: An expression contains the named
built-in function, with its second argument having
mode COMPLEX. This message applies, for example, to
the ATAN and ATAND built-in functions when two
arguments are given.

IBM15311 S BUILTIN name argument has invalid
type.
Explanation: An expression contains the reference

BINARYVALUE(x) where x has a type other than
POINTER, OFFSET or ORDINAL.

IBM15321 S E35 sort exit routines must use a 32-bit
linkage.

Explanation: Any other linkage is invalid.

IBM15331 S BUILTIN name argument must have
computational type.

Explanation: An expression contains the named
built-in function with an argument that has neither
string nor numeric type.

IBM15341 S BUILTIN name result would be too long.

Explanation: The result of the REPEAT or COPY
built-in function must not be longer than the maximum
allowed for the base string type.

IBM15261 S Argument to BUILTIN name must have
derived mode REAL.

Explanation: An expression contains the named
built-in function with an argument having mode
COMPLEX.

IBM15271 S First argument to BUILTIN name built-in
must have locator type.

Explanation: An expression contains the named
built-in function with its first argument having neither
type POINTER nor OFFSET.

IBM15351 S BUILTIN name argument must have type
REAL FLOAT.

Explanation: An expression contains the named
built-in function with an argument having type other
than REAL FLOAT. This message applies, for instance,
to the floating-point inquiry built-in functions such as
HUGE and RADIX, and to the floating-point
manipulation built-in functions such as EXPONENT
and SUCC.

IBM15361 S BUILTIN name argument must be a
reference.

Explanation: An expression contains the named
built-in function with an argument that is not a
reference.

Chapter 6. Compiler Severe Messages (1500-2399) 53

IBM15371 S BUILTIN name argument must be an
array expression.

Explanation: An expression contains the named
built-in function with an argument that is not an array
expression. This message applies, for example, to the
built-in functions ALL, ANY, SUM and PROD.

IBM15381 S BUILTIN name argument must be a FILE
reference.

Explanation: An expression contains the named
built-in function with an argument that is not a FILE.
This message applies, for example, to the 1/0 built-in
functions such as LINENO and PAGENO.

IBM15451 S First argument to BUILTIN name built-in
must be an array.

Explanation: An expression contains the named
built-in function with a first argument that is not an
array. This message applies, for instance, to the
DIMENSION, HBOUND, and LBOUND built-in
functions.

IBM15461 S Second argument to BUILTIN name
built-in must have type CHARACTER(1)
NONVARYING.

Explanation: This applies to the PLIFILL built-in
subroutine.

IBM15391 S *is invalid as a BUILTIN function
argument.

Explanation: A value must be specified as an
argument to a BUILTIN function unless the argument is
optional.

dcl a float;

a = sqrt(*);

IBM15401 S Argument number argument number to
BUILTIN name built-in must have
derived mode REAL.

Explanation: An expression contains the named
built-in function with the specified argument having
mode COMPLEX. This message applies to the MAX
and MIN built-in functions.

IBM15411 S Argument number argument number to
BUILTIN name built-in must have
computational type.

Explanation: An expression contains the named
built-in function with the specified argument having
noncomputational type. This message applies to the
MAX and MIN built-in functions.

IBM15421 S First argument to BUILTIN name built-in
must have computational type.

Explanation: An expression contains the named
built-in function with a first argument that has neither
string nor numeric type.

IBM15431' S Argument to BUILTIN name built-in
must have type CHARACTER(1)
NONVARYING.

Explanation: This applies to the RANK built-in
function.

54 PL/1 Messages and Codes

IBM15471 S Second argument to BUILTIN name
built-in must have computational type.

Explanation: An expression contains the named
built-in function with a second argument that has
neither string nor numeric type.

IBM15481 S BUILTIN function may not be used inside
a BEGIN block.

Explanation: The PLISTSIZE built-in functions may be
used only in procedures.

IBM15491 S BUILTIN function may be used only in
procedures with LINKAGE(SYSTEM).

Explanation: The PLISTSIZE built-in function may not
be used in procedures with any of the linkages
OPTLINK, PASCAL, etc.

IBM15501 S Argument to the BUILTIN name
pseudovariable must be an EVENT
variable.

Explanation: This message applies to the
COMPLETION and STATUS pseudovariables.

IBM15511 S Argument to the BUILTIN name
pseudovariable must be a TASK
variable.

Explanation: This message applies to the PRIORITY
pseudovariable.

IBM15521 S Third argument to BUILTIN name
built-in must have computational type.

Explanation: An expression contains the named
built-in function with a third argument that has neither
string nor numeric type. This message applies, for
example, to the SUBSTR and CENTER built-in
functions.

IBM15541 S Argument to BUILTIN name built-in
must be either a NONVARYING BIT
array reference or else an array
expression with known length.

Explanation: The ALL and ANY built-in functions are
restricted to two types of array expressions: an array
expression that is a NONVARYING BIT array reference
or an array expression that has known length. The first
five examples below meet these restrictions, but the
remaining examples do not.

dc1 a(10) bit(16) varying;
dc1 b(10) bit(16);

if all(b) then ...

if any(a b) then ...

if all(a=b & a) then ...

if any("'b = b) then ...

if all(a ”b|b=”b)then...

if any(a) then ...
if all(substr(b,1,n)) then ...

IBM15551 S Second argument to BUILTIN name
built-in must have computational type.

Explanation: An expression contains the named
built-in function with a second argument that has
neither string nor numeric type.

IBM15561 S Third argument to BUILTIN name
built-in would force STRINGRANGE.

Explanation: If a third argument is given for one of
the built-in functions INDEX, SEARCH or VERIFYR, it
must be positive. For SEARCHR and VERIFYR, it must
be nonnegative.

IBM15571 S Second argument to BUILTIN name
built-in must be positive.

Explanation: The second argument for the built-in
functions CENTER, LEFT and RIGHT must not be zero
or negative.

IBM15581 S Argument to VALID built-in must have
the attributes FIXED DECIMAL or
PICTURE.

Explanation: The argument to the VALID built-in
function must have exactly the indicated attributes. It is
not sufficient that it can be converted to these
attributes.

IBM15591 S SQRT(x) is undefined if x is REAL and
x <0.

Explanation: An expression contains the BUILTIN
function SQRT applied to a restricted expression that

evaluated to a number outside the domain of that
function.

IBM15601 S BUILTIN function(x) is undefined if x is
REAL and x <= 0.

Explanation: An expression contains the named
built-in function applied to a restricted expression that
evaluated to a number outside the domain of that
function. This message applies, for instance, to the
LOG, LOG2, and LOGI10 built-in functions.

IBM15611 S RULES(ANS) does not allow ROUND to
be applied to FIXED BIN.

Explanation: RULES(ANS) dose not permit non-zero
scale factors with FIXED BIN, and hence it does not
allow ROUND to be applied to FIXED BIN (or BIT)
arguments.

IBM15621 S Argument to BUILTIN name built-in has
invalid type.

Explanation: The argument to the HANDLE built-in
must be a structure type, and conversely the argument
to the TYPE built-in must be a handle.

IBM15631 S Second argument to BUILTIN name
built-in must be nonnegative.

Explanation: The second argument for the built-in
functions CHARACTER, BIT, and GRAPHIC must be
Zero or greater.

IBM15641 S Too few arguments have been specified
for the BUILTIN name built-in.

Explanation: Supply the minimum number of
arguments required.

IBM15661 S BUILTIN name(x) is undefined for x
outside the supported domain.

Explanation: An expression contains the named
built-in function applied to a restricted expression that
evaluated to a number outside the supported domain
of that function.

IBM15681 S BUILTIN function(x,y) is undefined if x=0
and y=0.

Explanation: An expression contains the built-in
function ATAN or ATAND applied to a restricted
expression that evaluated to a number outside the
domain of that function.

Chapter 6. Compiler Severe Messages (1500-2399) 55

IBM15691 S BUILTIN name argument must be a
CONNECTED reference.

Explanation: The argument to the named built-in
function must be a reference (for example, not an
expression or a literal), and that reference must be
CONNECTED.

IBM15701 S BUILTIN name argument must be a
reference to a level 1 CONTROLLED
variable.

Explanation: The ALLOCATION built-in function
cannot be used with structure members or with
non-CONTROLLED variables.

IBM15711 S BUILTIN name argument must be a
reference to a level 1 BYADDR
parameter.

Explanation: The OMITTED built-in function cannot
be used with BYVALUE parameters, structure
members, or non-parameters.

IBM15791 S Second argument to BUILTIN name
built-in must have type AREA.

Explanation: This applies to the OFFSET and
POINTER built-in functions.

IBM15801 S First argument to BUILTIN name built-in
is an OFFSET value.

Explanation: If the first argument to built-in functions
such as PLIMOVE and COMPARE has the attribute
OFFSET, it must be an OFFSET reference not an
OFFSET value.

IBM15811 S First argument to BUILTIN name built-in
is an OFFSET variable declared without
an AREA qualifier.

Explanation: If the first argument to built-in functions
such as PLIMOVE and COMPARE is an OFFSET
variable, that OFFSET variable must be declared with
an AREA qualifier so that the offset can be converted to
an address.

IBM15731' S The use of * as an argument is
permitted only for parameters declared
with the OPTIONAL attribute.

Explanation: Add the OPTIONAL attribute to the
entry declaration or replace the * by an actual
argument.

IBM15751 S Argument number argument number to
BUILTIN name built-in must have type
POINTER or OFFSET.

Explanation: The indicated argument to built-in
functions such as PLIMOVE and COMPARE must be a
locator.

IBM15761 S Third argument to BUILTIN name
built-in must have type CHARACTER(1)
NONVARYING.

Explanation: This applies to the HEXIMAGE built-in
subroutine.

IBM15771 S First argument to BUILTIN name built-in
must have type POINTER.

Explanation: This applies to the OFFSET built-in
function.

IBM15781 S First argument to BUILTIN name built-in
must have type OFFSET.

Explanation: This applies to the POINTER built-in
function.

56 PL/1 Messages and Codes

IBM15821 S Argument number argument number to
BUILTIN name built-in is an OFFSET
value.

Explanation: If the indicated argument to built-in
functions such as PLIMOVE and COMPARE has the
attribute OFFSET, it must be an OFFSET reference not
an OFFSET value.

IBM15831 S Argument number argument number to
BUILTIN name built-in is an OFFSET
variable declared without an AREA
qualifier.

Explanation: If the indicated argument to built-in
functions such as PLIMOVE and COMPARE is an
OFFSET variable, that OFFSET variable must be
declared with an AREA qualifier so that the offset can
be converted to an address.

IBM15841 S Second argument to BUILTIN name
built-in must have type OFFSET.

Explanation: This applies to the OFFSETDIFF built-in
function.

IBM15851 S Second argument to BUILTIN name
built-in must have type POINTER.

Explanation: This applies to the POINTERDIFF
built-in function.

IBM15861 S Argument to STRING built-in
function/pseudovariable must be
CONNECTED.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to discontiguous
array cross-sections or to array parameters not declared
with the CONNECTED attribute.

IBM15871 S Argument number argument number to
BUILTIN name built-in must have the
ENTRY attribute.

Explanation: Any other argument type is invalid. This
message applies to the PLISRTx built-in functions.

IBM15881 S First argument to BUILTIN name built-in
must have type GRAPHIC.

Explanation: This applies to the CHARGRAPHIC
built-in function. For instance, in the following
example, g should be declared as graphic, not as char.

dcl ¢ char(10);
dcl g char(5);

c = charg(g);

IBM15891 S BUILTIN name argument must not have
any subscripts.

Explanation: The LOCATION and BITLOCATION
built-in functions cannot be applied to subscripted
references.

IBM15901 S Argument to STRING built-in
function/pseudovariable must not be a

UNION and must not contain a UNION.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to UNIONS or to
structures containing UNIONs.

IBM15911 S All members of an argument to the
STRING built-in function/
pseudovariable must have the
UNALIGNED attribute.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to structures or
arrays containing elements with the ALIGNED
attribute.

IBM15921 S All members of an argument to the
STRING built-in function/
pseudovariable must have the
NONVARYING attribute.

Explanation: The STRING built-in function and

pseudovariable cannot be applied to structures or
arrays containing VARYING strings.

IBM15931 S All members of an argument to the
STRING built-in function/
pseudovariable must have string type.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to structures or
arrays containing noncomputational types or arithmetic
types other than pictures.

IBM15941 S All members of an argument to the
STRING built-in function/
pseudovariable must have the same
string type.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to structures or
arrays containing different string types, for example,
BIT and CHARACTER strings.

IBM15951 S First argument to BUILTIN name built-in
must have type REAL FLOAT.

Explanation: This applies to the floating-point inquiry
and manipulation built-in functions such as HUGE and
EXPONENT.

IBM15961 S Second argument to BUILTIN name
built-in must have type CHARACTER.

Explanation: This applies to the EDIT built-in
function.

IBM15971 S BUILTIN name argument must have type
TASK.

Explanation: This applies to the PRIORITY built-in
function.

IBM15981 S BUILTIN name argument must have type
EVENT.

Explanation: This applies to the COMPLETION and
STATUS built-in functions.

IBM15991 S The BUILTIN function variable name may
not be used as a pseudovariable.

Explanation: The named built-in function is not a
pseudovariable and may not be used as one.

IBM16001 S Source to BUILTIN name pseudovariable
must be scalar.

Explanation: It is invalid to assign an array, structure,
or union to one of the built-in functions ONCHAR,
ONSOURCE, or ONGSOURCE.

Chapter 6. Compiler Severe Messages (1500-2399) 57

IBM16011 S The identifier identifier is not the name
of a built-in function. Any use of it is
unsupported.

Explanation: The BUILTIN attribute can be applied
only to identifiers that are the names of built-in
functions or subroutines.

IBM16021 S Fourth argument to BUILTIN name
built-in must have the attributes REAL
FIXED BIN(31,0).

Explanation: This applies to the PLISRTX built-in
functions. For instance, in the following example, rc
should be declared as fixed bin(31), not fixed bin(15).

dcl rc fixed bin(15);

call plisrta('SORT FIELDS=(1,80,CH,A) ’,
"RECORD TYPE=F,LENGTH=(80) ',
256000,
rc);

IBM16071 S First argument to variable name
pseudovariable must be a reference.

Explanation: The SUBSTR pseudovariable cannot be
applied to expressions.

substr('nope’, 1, 1) ='d’;

IBM16031 S BUILTIN name argument must not have
the CONSTANT attribute.

Explanation: This applies to the ADDR and similar
built-in functions. It is invalid, for instance, to apply
the ADDR built-in function to a label constant.

IBM16041 S BUILTIN function argument must be
nonnegative.

Explanation: The argument for the built-in functions
LOW and HIGH must be zero or greater.

IBM16051 S Argument to ENTRYADDR built-in
must be an ENTRY variable or an
EXTERNAL ENTRY constant.

Explanation: The ENTRYADDR built-in function
cannot be applied to non-ENTRYs or to INTERNAL
ENTRY constants.

IBM16061 S Argument to variable name
pseudovariable must be a reference.

Explanation: Pseudovariables cannot be applied to
expressions.

unspec(12) = '00’'b4;

58 PL/I Messages and Codes

IBM1608l1 S Argument to variable name
pseudovariable must be a scalar.

Explanation: The compiler does not support the
named pseudovariable applied to arrays, structures, or
unions.

IBM16091 S First argument to variable name
pseudovariable must be a scalar.

Explanation: The compiler does not support the
named pseudovariable applied to arrays, structures, or
unions.

IBM16101 S Argument to variable name
pseudovariable must be COMPLEX.

Explanation: The REAL and IMAG pseudovariable
can be applied only to COMPLEX arithmetic variables.

IBM16111 S First argument to SUBSTR
pseudovariable must have string type.

Explanation: The SUBSTR pseudovariable cannot be
applied to numeric variables or to noncomputational
values.

IBM16121 S Argument to the ENTRYADDR
pseudovariable must be an ENTRY
variable.

Explanation: The ENTRYADDR pseudovariable can be
applied only to ENTRY variables.

IBM16131' S Argument to BUILTIN name built-in has
attributes that conflict with file attribute.

Explanation: The indicated built-in function cannot be
applied to file constants with attributes that conflict
with the indicated attribute.

IBM16141 S Argument to BUILTIN name built-in has
attributes that conflict with STREAM.

Explanation: The indicated built-in function cannot be
applied to non-STREAM files.

IBM16151 S Argument to BUILTIN name built-in has
attributes that conflict with PRINT.

Explanation: The indicated built-in function cannot be
applied to non-PRINT files.

IBM16161 S Attributes and ENVIRONMENT options
for file file name conflict.

Explanation: Specified file attributes and
ENVIRONMENT options on a declaration statement
are in conflict. The following DECLARE statement is an
example of this type of conflict:

dcl file f1 direct env(consecutive);

IBM16171 S DIRECT attribute for file file name needs
ENVIRONMENT option specification of
INDEXED, REGIONAL, RELATIVE, or
VSAM.

Explanation: Use of the DIRECT file attribute needs
an ENVIRONMENT option specification of INDEXED,
REGIONAL, RELATIVE, or VSAM.

dcl file f1 direct env(relative);

IBM16181 S Syntax of the %INCLUDE statement is
incorrect.

Explanation: %INCLUDE must be followed by a name
and either a semicolon or else a second name in
parenthesis and then a semicolon.

IBM16191 S File specification after %INCLUDE is
too long.

Explanation: The maximum length of the file
specification is 8 characters.

IBM16201 S File specification missing after
%INCLUDE.

Explanation: %INCLUDE must be followed by a file
name, not just a semicolon.

IBM16211 S NODESCRIPTOR attribute is invalid if
any parameters have bit alignment.

Explanation: If a parameter is an unaligned bit string

or an array or structure consisting entirely of unaligned
bit strings, then OPTIONS(NODESCRIPTOR) must not
be specified or implied.

IBM16221 S The number of elements and dimension
specifications in an aggregate must not
exceed 131071.

Explanation: Aggregates with more than 131071
elements and dimension specifications would require

descriptors that would require too much storage.

IBM16231 S The dot-qualified reference reference
name is unknown.

Explanation: The named reference is not a member of
any structure or union declared in the block in which it
is referenced or declared in any block containing that
block.

IBM16251 S Extent must be a scalar.

Explanation: An expression specifying an array
bound, a string length or an AREA size must not be a
reference to an array, a structure, or a union.

IBM16261 S Extent must have computational type.

Explanation: An expression specifying an array
bound, a string length, or an AREA size must have
numeric or string type.

IBM16271 S Subscript expressions must be scalars.

Explanation: An expression used as a subscript must
not be an array, structure, or union reference.

IBM16281 S Index number index number into the
array variable name must have
computational type.

Explanation: Only expressions having numeric or
string type may be used as subscripts.

IBM16291 S Extents for STATIC variable are not
constant.

Explanation: Array bounds, string lengths, and AREA
sizes in STATIC variables must evaluate at
compile-time to constants.

IBM16301 S Number of dimensions in arrays do not
match.

Explanation: In the assignment of one array to
another, the two arrays must have the same number of
dimensions.

IBM16311 S Upper and lower bounds in arrays do
not match.

Explanation: In the assignment of one array to
another, the two arrays must have the same lower and
upper bound in each dimension.

Chapter 6. Compiler Severe Messages (1500-2399) 59

IBM16321 S Index number index number into the
variable variable name is less than the
lower bound for that dimension.

Explanation: Executing such a program would most
likely cause a protection exception.

dcl a(5:10) fixed bin(31);

a(l) = 0;

2 z char(10);

a = x;

IBM16361 S Substructuring in subelements of
structures do not match.

Explanation: In structure assignments and structure
expressions, if any element of one structure is itself a
structure, then the corresponding element in all the
other structures must also be a similar structure.

IBM16331 S Index number index number into the
variable variable name is greater than the
upper bound for that dimension.

Explanation: Executing such a program would most
likely cause a protection exception.

dcl a(5:10) fixed bin(31);

a(20) = 0;

IBM16341 S Number of dimensions in subelements
of structures do not match.

Explanation: In structure assignments and structure
expressions, all subelements that are arrays must have
the same number of dimensions.

dcl
1 a,
2 b(8) fixed bin,
2 c char(10);
dcl
1 x,
2 y(8,9) fixed bin,
2 z char(10);
a = Xx;

IBM16351 S Upper and lower bounds in

subelements of structures do not match.

Explanation: In structure assignments and structure
expressions, all subelements that are arrays must have
the same bounds.

dcl
1 a,
2 b(8) fixed bin,
2 c char(10);
dcl
1 x,

2 y(9) fixed bin,

60 PL/1 Messages and Codes

IBM16371 S Number of subelements in structures do
not match.

Explanation: In structure assignments and structure
expressions, all structures must have the same number
of elements.

IBM16381 S Structures and unions are not permitted
in GENERIC descriptions.

Explanation: Only scalars and arrays of scalars are
permitted in GENERIC descriptions.

IBM16391 S The aggregate aggregate-name contains
only noncomputational values. The
aggregate will be ignored.

Explanation: Aggregates containing no strings or
arithmetic variables cannot be used in PUT or GET
statements.

IBM16401 S The aggregate aggregate-name contains
one or more unions and cannot be used
in stream /0.

Explanation: Aggregates containing one or more
UNION statements cannot be used in PUT or GET
statements.

IBM16411 S References to slices of the array of
structures structure-name are not
permitted.

Explanation: An array of structures must be
referenced in its entirety or element by element.

dcl
1 a(8,9),
2b fixed bin,
2 ¢C char(10);
a(2,x) = 0;

IBM16421 S References to slices of the array of
unions union-name are not permitted.

Explanation: An array of unions must be referenced in
its entirety or element by element.

dcl
1 a(8,9) union,
2 b fixed bin,
2 c char(10);
a(2,x) = 0;

IBM16431 S Each dimension of an array must
contain no more than 2147483647
elements.

Explanation: It must be possible to compute the value
of the DIMENSION built-in function for an array. In
DECLARE x(x:y), (y-x+1) must be less than 214748648.

IBM16441 S Aggregate contains more than 15 logical
levels.

Explanation: The maximum physical level allowed is
255, but the maximum logical level is 15.

IBM16451 S Data aggregate exceeds the maximum
length.

Explanation: Aggregates containing unaligned bits
must be less than 2**28 bytes in size while all other
aggregates must be less than 2**31.

IBM16461 S SIZE would be raised in assigning TO
value to control variable.

Explanation: If the TO value is bigger than the
maximum value that a FIXED or PICTURE variable can
hold, then a loop dominated by that variable would
cause SIZE to be raised. For example, in the first code
fragment below, x can not be assigned a value bigger
than 99. In the second code fragment below, y can not
be assigned a value bigger than 32767.

dcl x pic’'99’;

do x =1 to 100;
put skip Tlist(x);
end;

dcl y fixed bin(15);
doy =1 to 32768;

put skip list(y);
end;

IBM16471 S Too few subscripts specified for the
variable variable name.

Explanation: The number of subscripts given for a
variable must match that variable’s number of
dimensions

IBM16481 S Too many subscripts specified for the
variable variable name.

Explanation: The number of subscripts given for a
variable must match that variable’s number of
dimensions

IBM16491 S The number of inherited dimensions
plus the number of member dimensions
exceeds 15.

Explanation: Arrays with more than 15 dimensions
are not supported.

dcl

1 dim7(2,3,4,5,6,7,8),
2 dim7more(2,3,4,5,6,7,8)
3 dim2many(2,3) fixed bin,
3 % fixed bin,

2 = char(10);

IBM16501 S The LIKE reference is neither a structure
nor a union.

Explanation: The LIKE reference cannot be a scalar or
an array of scalars.

dcl
a fixed bin,
1 b Tike a;

IBM16511 S The LIKE reference is ambiguous.

Explanation: The LIKE reference needs enough
qualification to be unique.

dcl
1 x Tike b,
1 a,
2 b,

Chapter 6. Compiler Severe Messages (1500-2399) 61

IBM16521 S Neither the LIKE reference nor any of
its substructures can be declared with
the LIKE attribute.

Explanation: LIKE from LIKE is not supported.

dcl
1a,
2 bl like c,
2 b2 like c,
1ec,
2 d fixed bin,
2 e fixed bin;
dcl
1 x Tike a;

IBM16531 S The LIKE reference must not be a
member of a structure or union declared
with the LIKE attribute.

Explanation: LIKE from LIKE is not supported.

dcl
1a,
2 bl like c,
2 b2 like c,
lc,
2 d fixed bin,
2 e fixed bin;
dcl
1 x 1Tike a.bl;

IBM16541 S The LIKE reference is unknown.

Explanation: The LIKE reference must be known in
the block containing the LIKE attribute specification.

IBM16551 S Only CONTROLLED variables can be
passed to CONTROLLED parameters.

Explanation: If a parameter is declared as controlled,
non-controlled variables and expressions with operators
cannot be passed to it.

dcl ¢ char(20);
call a(c);

a: proc(b);
dcl b controlled char(*);

IBM16561 S A CONTROLLED variable passed to a
CONTROLLED parameter must have
the same attributes as that parameter.

Explanation: Differences in any arithmetic attributes
are not permitted. The following example will emit this
message.

62 PL/I Messages and Codes

dcl x fixed bin(15) controlled;
call a(x);

a: proc(b);
dcl b controlled fixed bin(31);

IBM16571 S A subscript has been specified for the
non-array variable variable name.

Explanation: Subscripts are permitted only in array
element references.

IBM16581 S Argument number argument-number in
ENTRY reference ENTRY name is an
array expression requiring a temporary
array with strings of unknown length.

Explanation: Temporary arrays of strings are
supported only if the string length is known.

dcl a entry, (b(10),c(10)) char(20) var;

call a(b || ¢);

IBM16591 S After LIKE expansion, aggregate would
contain more than 15 logical levels.

Explanation: The total number of logical levels after
LIKE expansion must not exceed 15.

IBM16601 S The size (record-size) of the record
conflicts with the RECSIZE (recsize)
specified in the ENVIRONMENT
attribute.

Explanation: Execution of the statement would raise
the RECORD condition.

dcl datei file record output

env(fb recsize (80) total);
dcl satzaus char (100);

write file(datei) from(satzaus);

IBM16611 S Aggregates cannot be assigned to
scalars.

Explanation: Only scalars can be assigned to scalars.

IBM16621 S Unsupported use of union or structure
containing a union.

Explanation: Unions and structures containing unions
may not be used in expressions except when used as an

argument to a built-in function such as ADDR or
UNSPEC.

IBM16631 S Unsupported or invalid use of structure
expression.

Explanation: Structure expressions may not, for
instance, be assigned to arrays of scalars.

IBM16641 S Array expressions cannot be assigned to
non-arrays.

Explanation: Array expressions may not, for instance,
be assigned to structures or scalars.

IBM16651 S E15 sort exit routines must have the
RETURNS attribute.

Explanation: An E15 sort exit have the RETURNS
attribute since it will be invoked as a function by the
sort library routine.

IBM16661 S E15 sort exit routines must return a
CHARACTER string.

Explanation: An E15 sort exit may return a
NONVARYING, VARYING or VARYINGZ
CHARACTER string, but it must be a character string.

IBM16671 S Target in assignment is
NONASSIGNABLE.

Explanation: The target in an assignment statement
must not have the NONASSIGNABLE attribute.

IBM1668l S Target in assignment is a function
reference.

Explanation: The target of an assignment statement
must be an array, structure, union or scalar reference.
Function references are not permitted as target of
assignments.

IBM16691 S Target in assignment is a UNION.

Explanation: Assignments to UNIONSs are not
supported.

IBM16701 S A PROCEDURE containing ENTRY
statements with differing RETURNS
attributes must return values BYADDR.

Explanation: In a PROCEDURE containing ENTRY
statements, if the PROCEDURE and ENTRY statements
do not all have the same RETURNS attributes, then all
values must be returned BYADDR. You can compile
with DFT(RETURNS(BYADDR)) to force this, or you
can add the BYADDR attribute to each set of RETURNS
attribute. For example, you must either compile the
following program with DFT(RETURNS(BYADDR)) or

change the "fixed bin” to "fixed bin byaddr”.

a: proc;
return;

b: entry returns(fixed bin);
return(1729);

end;

IBM16711 S The source in a structure assignment
must be a scalar expression or a
matching structure.

Explanation: The source in a structure assignment
cannot be an array of scalars or a structure that does
not match the target.

IBM16721 S In multiple BY NAME assignments, if
one target is an array of structures, then
all must be.

Explanation: A BY NAME assignment may have not
have a mixture of array and non-array targets.

dcl 1 a, 2 al fixed bin, 2 a2 fixed bin;
dc1 1 b(3), 2 al fixed bin, 2 a2 fixed bin;
dcl 1 ¢, 2 al fixed bin, 2 a2 fixed bin;

a,b = ¢, by name;

IBM16731 S The target in a compound concatenate
and assign must be a VARYING or
VARYINGZ string.

Explanation: Only the simple assignment operator can
be used to assign to a NONVARYING string.

IBM16741 S Target in assignment contains UNIONSs.

Explanation: The target in an assignment must not
contain any UNIONSs.

IBM16751 S FROMALIEN option cannot be used
with MAIN.

Explanation: These two options are mutually
exclusive.

IBM16761 S Source in assignment to LIMITED
ENTRY must be either a non-nested
ENTRY constant or another LIMITED
ENTRY.

Explanation: ENTRY constants representing nested
procedures and ENTRY variables not declared with the
LIMITED attribute cannot be assigned to variables with
the attributes LIMITED ENTRY.

Chapter 6. Compiler Severe Messages (1500-2399) 63

IBM16771 S Assignment of ENTRY to target type is
invalid. If the ENTRY should be
invoked, an argument list must be
provided.

Explanation: An ENTRY constant or variable without
an argument list will not be invoked and hence can be
assigned only to an ENTRY variable.

IBM16781 S Assignment of source type to target type is
invalid.

Explanation: The target attributes conflict with the
source attributes.

IBM16791 S Assignment of POINTER to OFFSET is
invalid unless the OFFSET is declared
with an AREA qualifier.

Explanation: POINTER expressions can be converted
to OFFSET only if the OFFSET is declared with an
AREA qualifier.

IBM16801 S Assignment of OFFSET to POINTER is
invalid unless the OFFSET is declared
with an AREA qualifier.

Explanation: OFFSET variables can be converted to
POINTER only if the OFFSET is declared with an
AREA qualifier.

IBM16811 S The number of preprocessor invocations
specified exceeds the maximum number
(25) allowed.

Explanation: A maximum of 25 preprocessor
invocations can be specified in the PP option or in
combination with the MACRO option.

IBM16821 S The target in a BY NAME assignment
must be a structure.

Explanation: The target in a BY NAME assignment
cannot be an array or a scalar.

IBM16831 S Set of matching names in the expansion
of BY NAME assignment must contain
either all structures or no structures.

Explanation: For instance, in the assignment, x =y, by
name, if both x and y immediately contain a member z,
then either both x.z and y.z are structures or neither x.z
and y.z is a structure.

IBM16841 S Number of dimensions in the BY
NAME corresponding elements variable
name and variable name do not match.

Explanation: In a BY NAME assignment, arrays with

64 PL/1 Messages and Codes

matching names must have the same number of
dimensions.

dcl
1 a,
2 b(4,5) bin(31,0),
2 C bin(31,0);
dcl
1 x,
2 b(4) bin(31,0),
2 ¢C bin(31,0);

a = X, by name;

IBM16851 S Upper and lower bounds in BY NAME
corresponding elements variable name
and variable name do not match.

Explanation: In a BY NAME assignment, arrays with
matching names must have the same lower and upper
bounds.

dcl
1a,
2 b(1:5) bin(31,0),
2 ¢C bin(31,0);
dcl
1

X,
2 b(0:4) bin(31,0),
2 c bin(31,0);

a = X, by name;

IBM16861 S BY NAME assignment contains
UNION:Ss.

Explanation: The target structure in a BY NAME
assignment must not contain any UNIONSs even if no
names in those UNIONs match names in the source.
The source expression also must contain any unions or
structures containing unions.

IBM16871 S reserved name cannot be declared with
OPTIONS other than ASM.

Explanation: If the DLI compiler option is specified,
PLITDLI cannot be declared with any OPTIONS other
than OPTIONS(ASM).

IBM1688I S reserved name cannot be declared with an
entry description list.

Explanation: If the DLI compiler option is specified,
PLITDLI cannot be declared with an entry description
list.

IBM16891 S reserved name cannot be declared as a
function.

Explanation: If the DLI compiler option is specified,
PLITDLI cannot be declared as a function.

IBM16901 S OPTIONS(language-name) is not
supported for functions.

Explanation: Functions, i.e. entrys declared with the
RETURNS attribute, cannot be declared with
OPTIONS(ASM) or OPTIONS(COBOL).

IBM16911 S Extents in ENTRY descriptors must be
asterisks or restricted expressions with
computational type.

Explanation: In ENTRY descriptors, each array bound,
string length and AREA size must be specified either
with an asterisk or with a restricted expression that has
computational type.

IBM16921 S An ENTRY invoked as a function must
have the RETURNS attribute.

Explanation: There is no default RETURNS attribute.

dcl e entry;

a=-e();

IBM16931 S call-option option repeated in CALL
statement.

Explanation: The TASK, EVENT and PRIORITY
options may be specified only once in any CALL
statement.

IBM16941 S Reference in CALL statement must not
be a built-in function.

Explanation: CALL x is invalid unless x is a built-in
subroutine, an ENTRY constant, or an ENTRY variable.
Built-in functions are not built-in references. For
example, "Call SQRT(x)" is invalid.

IBM16951 S Reference in CALL statement must
either be a built-in subroutine or have
type ENTRY.

Explanation: CALL x is invalid unless x is a built-in
subroutine, an ENTRY constant, or an ENTRY variable.

IBM16961 S RETURN statement without an
expression is invalid inside a
subprocedure that specified the
RETURNS attribute.

Explanation: All RETURN statements inside functions

must specify a value to be returned.

a: proc returns(fixed bin);

return;

IBM16971 S RETURN statement is invalid inside a
PROCEDURE that did not specify the
RETURNS attribute.

Explanation: A statement of the form RETURN(X) is
valid inside only PROCEDUREs that are defined with a
RETURNS attribute.

IBM16981 S RETURN statement with an expression
is invalid inside a BEGIN in a
PROCEDURE that does not have the
RETURNS(BYADDR) attribute.

Explanation: A statement of the form RETURN(X) is
valid inside a BEGIN block only if the PROCEDURE
enclosing that BEGIN block has the
RETURNS(BYADDR) attribute explicitly or by default.

IBM16991 S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate. This conflicts with the
BYVALUE option.

Explanation: Arrays, structures, and unions cannot be
passed BYVALUE.

IBM17001 S Argument number argument-number in
ENTRY reference ENTRY name is an
AREA reference with unknown size.
This conflicts with the BYVALUE
option.

Explanation: Only AREA variables with constant size
can be passed BYVALUE.

IBM17011 S Argument number argument-number in
ENTRY reference ENTRY name is a
string with unknown size. This conflicts
with the BYVALUE option.

Explanation: Only strings with constant size can be
passed BYVALUE.

IBM17021 S The attribute keyword attribute is invalid
as a RETURNS subattribute.

Explanation: Structures and union may not be
returned.

Chapter 6. Compiler Severe Messages (1500-2399) 65

IBM17031 S Reference in CALL statement must not
be an aggregate reference.

Explanation: CALL references must be scalars.

dcl ea(10) entry;

call ea;

RETURNS expression in a function that returns a
LIMITED ENTRY.

IBM17041 S Too many argument lists have been
specified for the variable variable name.

Explanation: A function can have only one argument
list unless it returns an ENTRY, in which case it can
have only two argument lists unless the returned
ENTRY returns an ENTRY, and so on.

IBM17051 S RETURN expression with attribute
source type is invalid for RETURNS
options specifying the attribute target

type.

Explanation: The RETURN expression must have a
type that can be converted to the type indicated in the
RETURNS option.

a: proc returns(pointer)

return(0);
end;

IBM17061 S RETURN expression with attribute
source type is invalid for RETURNS
options specifying the attribute target
type. If the ENTRY should be invoked,
an argument list must be provided.

Explanation: The RETURN expression must have a
type that can be converted to the type indicated in the
RETURNS option.

a: proc returns(pointer)

dcl f entry returns(pointer);
return(f);
end;

IBM17071 S RETURN expression with attribute
source type is invalid for RETURNS
options specifying the attribute
LIMITED ENTRY.

Explanation: Only an EXTERNAL ENTRY
CONSTANT, an ENTRY CONSTANT representing a
non-nested PROCEDURE, or an ENTRY VARIABLE
with the LIMITED attribute can be specified as the

66 PL/1 Messages and Codes

IBM17081 S RETURN expression with attribute
POINTER is invalid for RETURNS
options specifying the attribute OFFSET
since the OFFSET attribute is not
declared with an AREA qualifier.

Explanation: POINTER expressions can be converted
to OFFSET only if the offset is declared with an AREA
qualifier.

IBM17091 S RETURN expression with attribute
OFFSET is invalid for RETURNS
options specifying the attribute
POINTER since the OFFSET expression
is not an OFFSET variable declared with
an AREA qualifier.

Explanation: OFFSET variables can be converted to
POINTER only if the OFFSET is declared with an
AREA qualifier.

IBM17101 S ORDINAL type in RETURN expression
and RETURNS option must match.

Explanation: In a function that returns an ordinal, the
ORDINAL type in any RETURN expression must be
the same as returned by the function.

a: proc returns(ordinal color);

dcT i ordinal intensity;
return(i);
end;

IBM17111 S Expression in RETURN statement must
be scalar.

Explanation: The expression in a RETURN statement
must not be an array, a structure, or an union.

IBM17121 S External name specification must be a
non-null string.

Explanation: EXTERNAL(") is invalid.

IBM17131 S Function function name contains no
RETURN statement.

Explanation: Functions must contain at least one
RETURN statement.

IBM17141 S Extents in RETURNS descriptors must
be constants.

Explanation: In RETURNS descriptors, each array
bound, string length, and AREA size must be specified
with a restricted expression that has computational
type. Unlike ENTRY descriptors, asterisks are not
permitted.

IBM17151 S Exit from an ON-unit via RETURN is
invalid.

Explanation: RETURN statements are not permitted in
an ON-unit or any of its contained BEGIN blocks
unless the contained block is also contained in a
procedure defined in the ON-unit.

IBM17161 S FORMAT expression must be a scalar
value.

Explanation: Expressions in FORMAT lists, including
SKIP clauses, must represent scalar values.

IBM17211 S Expression contains too many nested
subexpressions.

Explanation: The compiler’s space for evaluating
expressions has been exhausted. Rewrite the expression
in terms of simpler expressions.

IBM17221 S The number of error messages allowed
by the MAXMSG option has been
exceeded.

Explanation: Compilation will terminate when the
number of messages has exceeded the limit set in the
MAXMSG compiler option.

IBM17231 S Result of concatenating two literals is
too long.

Explanation: The length of the string literal produced
by concatenating two string literals must not be greater
than the maximum allowed for a literal with the
derived string type.

IBM17171 S FORMAT expression must have
computational type.

Explanation: Expressions in FORMAT lists, including
SKIP clauses, must have computational type so that the
expression can be converted to FIXED BIN(31).

IBM17241 S Addition of source type and target type is
invalid.

Explanation: One of the operands in an addition must
be computational and the other must be either
computational or a locator.

IBM17181 S source type is invalid as a boolean
expression.

Explanation: The expression in an IF, WHILE, UNTIL,
SELECT, or WHEN clause must have computational
type so that it can be converted to BIT(1).

IBM17191 S ENTRY is invalid as a boolean
expression. If an ENTRY should be
invoked, an argument list must be
provided.

Explanation: The expression in an IF, WHILE, UNTIL,
SELECT, or WHEN clause must have computational
type so that it can be converted to BIT(1). An ENTRY
cannot be used as a boolean expression. If the ENTRY
is a function which should be invoked, an argument
list, even if it consists only of a left and right
parenthesis, must be provided.

IBM17201 S Expression for calculating size of
variable with adjustable extents is too
complicated. Variable may be defined in
terms of itself.

Explanation: An expression used in calculating the
size of a variable must not depend on any values that
the variable may have because those values do not
exist until storage can be allocated for the variable.

IBM17251 S Addition of source type and target type is
invalid. If an ENTRY should be
invoked, an argument list must be
provided.

Explanation: An ENTRY cannot be used as an
arithmetic operand. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

IBM17261 S Subtraction of target type from source type
is invalid.

Explanation: The first operand in a subtraction must
be computational or a locator. The second operand can
be a locator only if the first is a locator. Otherwise, the
second operand must be computational.

IBM17271 S Subtraction of target type from source type
is invalid. If an ENTRY should be
invoked, an argument list must be
provided.

Explanation: An ENTRY cannot be used as an
arithmetic operand. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

Chapter 6. Compiler Severe Messages (1500-2399) 67

IBM17281 S Multiplication of source type by target
type is invalid.

Explanation: Both operands in a multiplication must
be computational.

IBM17291 S Multiplication of source type by target
type is invalid. If an ENTRY should be
invoked, an argument list must be
provided.

Explanation: An ENTRY cannot be used as an
arithmetic operand. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

IBM17361 S Comparison of source type to target type
invalid.

S

Explanation: Computational types can be compared
only with other computational types, and
non-computational types can be compared only with
like non-computational types.

IBM17301 S Division of source type by target type is
invalid.

Explanation: Both operands in a division must be
computational.

IBM17311 S Division of source type by target type is
invalid. If an ENTRY should be
invoked, an argument list must be
provided.

Explanation: An ENTRY cannot be used as an
arithmetic operand. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

IBM17321 S Unsupported use of aggregate
expression.

Explanation: Aggregate expressions are supported
only as the source in an assignment statement and,
with some limitations, as an argument to the ANY or
ALL built-in functions.

IBM17331 S Concatenate operands must have
computational type.

Explanation: Only expressions having string or
numeric type may be concatenated.

IBM17341 S Operand in a prefix expression is not
computational.

Explanation: The prefix operators (plus, minus, and
logical not) may be applied only to expressions having
string or numeric type.

IBM17351 S AREA variables may not be compared.

Explanation: No relational operations are defined for
AREA variables.

68 PL/I Messages and Codes

IBM17371 S Comparison of ENTRY to target type is
invalid. If the ENTRY should be
invoked, an argument list must be
provided.

Explanation: ENTRYs can be compared only with
other ENTRYs. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

IBM17381 S Comparison of source type to ENTRY is
invalid. If the ENTRY should be
invoked, an argument list must be
provided.

Explanation: ENTRYs can be compared only with
other ENTRYs. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

IBM17391 S TASK variables may not be compared.

Explanation: No relational operations are defined for
TASK variables.

IBM17401 S Comparison of an OFFSET to a
POINTER is invalid since the OFFSET
comparand is not an OFFSET variable
declared with an AREA qualifier.

Explanation: An OFFSET can be compared with a
POINTER as long as the OFFSET can be converted to a
POINTER. This requires that the OFFSET is declared
with an AREA qualifier.

IBM17411 S Operands in comparison have differing
strong types.

Explanation: Comparisons of strongly-typed variables
are invalid unless both have the same type.

dcl hp handle point;
dcl hr handle rectangle;

if hp = hr then

IBM17421 S Compared ORDINALSs must have the
same ORDINAL type.

Explanation: ORDINALSs cannot be compared with
other ORDINALSs having a different ORDINAL type.

IBM17431 S Source and target in assignment have
differing strong types.

Explanation: Assignments of strongly-typed variables
are invalid unless both have the same type.

IBM17441 S Conversion of ORDINALSs is invalid
unless both have the same ORDINAL

type.

Explanation: ORDINALSs cannot be assigned to other
ORDINALs having different ORDINAL type.

IBM17451 S In a function that returns a strong type,
the type in any RETURN expression
must be the same as that returned by
the function.

Explanation: For instance, in a function that returns a
typed structure, any RETURN expression must have
the same structure type.

IBM17461 S VALUE and STATIC INITIAL
expressions must be constant.

Explanation: These expressions must be reducible to a
constant at compile-time.

dc1l a fixed bin static nonassignable init(0);
dcl m fixed bin value(a);
dcl n fixed bin static init(a);

IBM17471 S Function cannot be used before the
function’s descriptor list has been
scanned.

Explanation: This is a compiler restriction. Reorder the
declarations and blocks in your program. For example,
the following declarations should be in reverse order.

dcl a char(csize(x, y));
dc1 csize entry(char(2), fixed bin)
returns(fixed bin);

IBM17481 S Extents of automatic variables must not
depend on the extents of automatic
variables declared later in the same
block.

Explanation: Reorder the declarations in your

program. For example, the following declarations
should be in reverse order.

dcl a char(length(b)) auto;
dcl b char(10) auto;

IBM17491 S VALUE and INITIAL expressions must
be scalars.

Explanation: Aggregate expressions are not valid as
INITIAL and VALUE expressions.

IBM17501 S INITIAL attribute is invalid for the
STATIC LABEL variable variable-name
since it has the MEMBER attribute.

Explanation: LABEL variables require block activation
information; they cannot be initialized at compile-time.
If the variable were not a member of a structure, the
storage class would be changed to AUTOMATIC and
an E-level message would be issued instead.

IBM17511 S INITIAL attribute is valid for the
STATIC ENTRY variable variable-name
only if it has the LIMITED attribute.

Explanation: ENTRY variables that don’t have the
LIMITED attribute require block activation information,
and hence they cannot be initialized at compile-time.

IBM17531 S INITIAL attribute is invalid for the
STATIC FORMAT variable variable-name.

Explanation: FORMAT variables require block
activation information, and hence they cannot be
initialized at compile-time. If the variable were not a
member of a structure, the storage class would be
changed to AUTOMATIC and an error message would
be issued instead.

IBM17541 S An asterisk iteration factor can be
applied only to the last expression in
the INITIAL item list for variable-name.

Explanation: Since an asterisk iteration factor
completes the initialization of a variable, it cannot be
followed by more initial values.

dcl a(10) fixed bin init(1, 2, (*) 0, 8);

IBM17551 S An asterisk iteration factor cannot be
used in the nested INITIAL item list for
variable-name.

Explanation: An asterisk iteration can be used only in
a non-nested INITIAL item list. The following example
is invalid.

Chapter 6. Compiler Severe Messages (1500-2399) 69

dcl a(20) fixed bin init((2) (1, (*) 2));

1 a(10,2) static,
2 bl bit(1) init((20) 'I'b),
2 b2 bit(1) init((20) '0'b);

IBM17561 S The scalar variable variable-name has an
INITIAL list with more than one item.

Explanation: Only arrays can have an INITIAL list
with more than one element.

dcl a fixed bin init(1, 2);

IBM17571 S LABEL constant in STATIC INITIAL for
the variable variable-name must be in the
same block as the LABEL being
initialized.

Explanation: Change the storage class to

AUTOMATIC.

Ix:;
subproc: proc;
dcl Ta static Tabel init(1x);

end;

IBM17581 S Only one element in the STATIC
UNION variable-name may have the
INITIAL attribute.

Explanation: If more than one element in a STATIC
UNION had an INITIAL value, it would not be clear
which should take precedence.

dcl
1 a union static,
2 b fixed bin(31) init(17),
2 ¢ fixed bin(15) init(19);

IBM17591 S Non-null INITIAL values are not
supported for the STATIC
NONCONNECTED array variable-name
since it has the attributes UNALIGNED
BIT.

Explanation: The only supported INITIAL values for a
STATIC UNALIGNED BIT variable with inherited
dimensions are bit strings equal to "’b.

dcl

70 PL/I Messages and Codes

IBM17601 S LABEL constant in the STATIC INITIAL
list for variable-name must not be an
element of a LABEL CONSTANT array.

Explanation: Replace the subscripted LABEL with an
unsubscripted one or change the storage class to
AUTOMATIC.

1x(1):;
1x(2) =3

dcl T1a(2) static label init(1x(2), 1x(1));

IBM17611 S ENTRY reference in INITIAL clause for
the STATIC ENTRY variable
variable-name must not be FETCHABLE.

Explanation: The variable y in DCL x ENTRY
LIMITED INIT(y) must not be FETCHABLE; y must
not be used in a FETCH or RELEASE statement, and y
must not have the OPTIONS(FETCHABLE) attribute.

IBM17621 S INITIAL iteration factor must have
computational type.

Explanation: Iteration factors in INITIAL lists must
have numeric or string types.

IBM17631 S INITIAL iteration factor must be a
scalar.

Explanation: An iteration factor in an INITIAL list
must not be an array, structure, or union.

IBM17641 S The BYVALUE attribute is invalid for
strings of nonconstant length.

Explanation: Strings with nonconstant length must be
passed and received by address.

a: proc(x)3
dc1 x char(*) byvalue;

IBM17651 S Length of string with the VALUE
attribute must be a constant or an
asterisk.

Explanation: Named strings must have a constant
length or a length determined from their VALUE.

dcl a fixed bin automatic;
dcl s char(a) value(’variable length’);

IBM17661 S VALUE for variable-name must be
evaluated before its first use.

Explanation: Named constants must be evaluated
before they are used. Reorder the declarations so that
each named constant is declared before its first use.

dcl a char(n) static init('tooSoon’);
dcl n fixed bin value(7);

IBM17711 S The variable name BUILTIN function may
be used as a pseudovariable in a
DO-loop only if the length of the
pseudovariable reference is known at
compile time.

Explanation: SUBSTR and UNSPEC may be used as
pseudovariables in DO-loops only if their derived
length is known at compile time.

IBM17671 S Control variable in DO statement must
not be a named constant.

Explanation: Named constants may not be used as
control variables in DO loops.

dcl n fixed bin value(7);

don=1 to 5

IBM17681 S Control variable in DO statement must
have VARIABLE attribute.

Explanation: Constants may not be used as control
variables in DO loops.

dcl ex external entry, (evl, ev2) entry;

do ex = evl, ev2;

IBM17691 S Control variable has type POINTER, but
TO expression does not.

Explanation: If the control variable in a DO loop has
POINTER type, the TO expression must have POINTER
type. Implicit conversion from OFFSET to POINTER is
not supported in this context.

IBM17701 S Control variable in loop with TO clause
must have computational or locator

type.

Explanation: In a DO loop with a TO clause, the
control variable must have a type that allows a
comparison of less than and greater than. This is
possible only for computational and locator types.

IBM17721 S Source in DO loop initialization must
be scalar.

Explanation: In a DO loop of the form DO a =b TO ¢,
b must be a scalar.

IBM17731 S Control variable in DO statement must
be a scalar.

Explanation: In a DO loop of the form DO x = .., X
must be a scalar.

IBM17741 S Compiler restriction: control variable in
DO statement must not be a BASED or
CONTROLLED string or area that has
non-constant extent.

Explanation: In a DO loop of the form DO x = .., if x
is a string or an area, then it must have constant size or
must be static, automatic, or defined.

IBM17751 S BY expression must have computational
type.

Explanation: The expression in the BY clause of a DO
loop must have a string or numeric type. It cannot
have a locator type because it must be comparable to
zero.

IBM17761 S BY expression must not be COMPLEX.

Explanation: The expression in the BY clause of a DO
loop must be REAL.

dcl z cplx float;

do jx =1 to 10 by z;

IBM17771' S TO expression must not be COMPLEX.

Explanation: The expression in the TO clause of a DO
loop must be REAL

dcl z cplx float;

do jx =1 to z;

Chapter 6. Compiler Severe Messages (1500-2399) 71

IBM17781 S Control variable in loop with TO clause
must not be COMPLEX.

Explanation: In a DO loop with a TO clause, the
control variable must have a type that allows a
comparison of less than and greater than. This is
possible for numeric types only if the numeric type is
REAL.

IBM17791 S TO expression must have computational
type.

Explanation: The expression in the TO clause of a DO
loop must have a string or numeric type.

IBM17801 S SIGNAL ANYCONDITION is invalid.

Explanation: ON ANYCONDITION may be used to
trap conditions not otherwise trapped, but
ANYCONDITION may not be signalled.

IBM17861 S BUILTIN name built-in may not be used
as a locator qualifier.

Explanation: The named built-in function cannot be
used as a locator qualifier since it does not return a
POINTER.

IBM17871 S The ENTRY variable-name may not be
used as a locator qualifier.

Explanation: x(...)->y is invalid unless x returns a
POINTER or an OFFSET declared with a qualifying
AREA.

IBM17891 S The qualifier variable-name does not have
locator type.

Explanation: Only POINTERs and OFFSETs declared
with a qualifying AREA can be used as locator
qualifiers.

IBM17811 S And, or and exclusive-or of source type
and target type is invalid.

Explanation: Bitwise operands must have a
computational type.

IBM17901 S Locator qualification is invalid for
variable-name.

Explanation: Locator qualification is valid only for
BASED variables.

IBM17821 S And, or and exclusive-or of source type
and target type is invalid. If an ENTRY
should be invoked, an argument list
must be provided.

Explanation: An ENTRY cannot be used as a bitwise
operand. If the ENTRY is a function which should be
invoked, an argument list, even if it consists only of a
left and right parenthesis, must be provided.

IBM17831 S BASED variable without an implicit
qualifier must be explicitly qualified.

Explanation: A variable declared as BASED instead of
as BASED(reference) must always be explicitly
qualified. This is necessary even when the variable is
an argument to built-in functions such as STORAGE.

IBM17841 S The ENTRY variable-name may not be
used as a locator qualifier since it does
not have the RETURNS attribute.

Explanation: Functions, but not subprocedures, can be
used as locator qualifiers (and then only if they return
a locator).

IBM17851 S The variable variable-name is used as a
locator qualifier, but it is not a scalar.

Explanation: Only scalars can be used as locator
qualifiers.

72 PL/I Messages and Codes

IBM17911 S The locator qualified reference reference
name is ambiguous.

Explanation: All references must be unambiguous.

IBM17921 S The locator qualified reference reference
name is unknown.

Explanation: Locator qualified references must be
explicitly declared. BASED variables may not be
implicitly declared.

IBM17931 S The variable name BUILTIN function may
not be used as a pseudovariable in a
DO-loop.

Explanation: Only IMAG, REAL, SUBSTR and
UNSPEC may be used as pseudovariables in DO loops.

IBM17941 S Too many implicit locators are needed to
resolve the qualification for a variable.
Variable may be based on itself.

Explanation: An implicitly qualified variable must
require no more than 15 qualifiers to be completely
qualified. If it requires more, this may indicate its
qualifiers are too interdependent.

dcl a pointer based(b);
dcl b pointer based(a);
a=null();

IBM17951 S The OFFSET variable variable-name may
not be used as a locator qualifier since it
was not declared with an AREA
specification.

Explanation: An OFFSET variable can be used as a
locator qualifier only if it can be converted to a pointer
value. This requires that the offset be declared with an
AREA qualification.

IBM17961 S Qualifier must be a scalar.

Explanation: Arrays, structures, and unions may not
be used as locator qualifiers.

IBM17971 S BASED variables may not contain
extents with nonconstant values if other
extents use the REFER option.

Explanation: The REFER option cannot be used in a
BASED variable which also has an extent that is set by
a non-constant expression.

IBM17981 S Invalid scale factor in PICTURE
specification.

Explanation: The picture character F specifies a
picture scaling factor for fixed-point decimal numbers.
The number of digits following the V picture character,
minus the integer specified with F, must be between
-128 and 127.

IBM17991 S Invalid characters in PICTURE
specification.

Explanation: The picture specification can contain
only A X 9 for the Character Data, and only 9V Z * , .
/BS+-$CRDBY K E F < > for the Numeric Data.
The characters between the insertion characters < > are
not affected by this rule.

IBM1800I S Invalid characters in the F scaling factor.

Explanation: The picture character F specifies a
picture scaling factor for fixed-point decimal numbers.
The format is F(n) where n can be any signed integer
between -128 and 127 inclusively.

IBM18011 S A character PICTURE string may have
only A, X, or 9.

Explanation: The picture specification can contain
only A, X, or 9 for the character data. Other characters
are not permitted.

IBM18021 S Invalid precision in PICTURE fixed
decimal precision.

Explanation: The number of digits for the precision
field within a numeric data picture specification must

be between one and the maximum allowed by the
LIMITS(FIXEDDEC) option.

IBM18031 S Too many T, I, or R appear in the
PICTURE specification.

Explanation: T, I, or R are the overpunched characters
in the picture specification. Only one overpunched
character can appear in the specification for a fixed
point number. A floating-point specification can contain
two (One in the mantissa field and one in the exponent
field).

IBM18041 S PICTURE specifications in C-format
items must be arithmetic.

Explanation: Character PICTURE specifications are
not permitted in C-format items.

IBM18051 S Precision in numeric PICTURE must
NOT be less than 1.

Explanation: The precision field within a numeric data
picture specification must contain at least one digit.

IBM18061 S The precision in FIXED DECIMAL
PICTURE is too big.

Explanation: The precision in the fixed decimal
picture specification must not exceed that specified in
the LIMITS compiler option.

IBM18071 S Precision in FLOAT DECIMAL
PICTURE is too big.

Explanation: The precision in the float decimal picture
specification is limited by the hardware to 18 digits.

IBM18081 S PICTURE string is empty.

Explanation: Null picture strings ("’P) are invalid.

IBM18091 S Exponent in FLOAT PICTURE is too
long. Exponent will be truncated to fit.

Explanation: The number of digits in the exponent of
the float decimal picture specification is limited to 4.

IBM18101 S Exponent in FLOAT PICTURE has no
digits.
Explanation: The exponent in the float decimal picture

specification is missing. It must be entered even if it is
zero.

Chapter 6. Compiler Severe Messages (1500-2399) 73

IBM18111 S Exponent in PICTURE specification
cannot contain V.

Explanation: V specifies an implicit decimal point.
Therefore, it is not permitted in the exponent field.

IBM18121 S FLOAT PICTURE cannot contain CR,
DB or F.

Explanation: Credit (CR), debit (DB), and scale factor
(F) are only allowed in the FIXED picture specification.

IBM18131 S PICTURE specification is too long.
Excess characters are truncated on the
right.

Explanation: The compiler restrictions on the length of
the picture specification are:

fixed decimal: 254
float decimal: 253
character data: 511

IBM18141 S PICTURE string has an invalid floating
insertion character string.

Explanation: The floating insertion string is delimited
by < >. Floating is done by the > character. The string
can contain any character with one exception: the
delimiters themselves. In order to include the
characters < and > in the floating insertion string, these
angle brackets must be used in an escaped format. <<
must be used to specify the character <, and <> must
be used to specify the character >. So, for example,
<aaa<<bbb<>ccc> denotes the insertion string
aaa<bbb>ccc.

IBM18151 S BUILTIN name is a built-in subroutine. It
should be used only in CALL
statements and not as a function.

Explanation: Built-in subroutines cannot be used as
functions - they can only be called. For instance, the
following code is invalid

dcl pliretc builtin;

rc = pliretc(16);

IBM18161 S keyword item variable name is not
computational.

Explanation: The expression must be arithmetic or
string.

dcl x label variable;
put Tist(x);

74 PL/I Messages and Codes

IBM18171 S The KEYTO reference must be of type
CHARACTER or GRAPHIC.

Explanation: The KEYTO reference should have the
data type character or graphic. The reference can also
be a variable with a non-numeric picture string
specification.

IBM18181 S 1/O-option conflicts with previous
options on the 1/0O-stmt statement.

Explanation: An option on the I/0 statement conflicts
with prior options.

open file(fl) input output;
read file(f) into(x) set(p);

IBM18191 S The 1/O-option option is multiply
specified on the 1/0O-stmt statement.

Explanation: Each option may be specified only once.

read file(fl) ignore(1l) ignore(2);

IBM18201 S Mandatory 1/O-option option not
specified on the 1/0O-stmt statement.

Explanation: A required statement element has not
been specified.

open output;
write file(x);

IBM18211 S Reference for from-into-option is an
invalid element or aggregate type.

Explanation: An invalid scalar or aggregate reference
has been specified for the FROM or INTO clause in a
record 1/0 statement. The example below will cause
this message to be issued.

dcl f1 file;
read file(fl) into(f1l);

IBM18221 S The keyword-type expression must be
computational.

Explanation: The expression in a KEY or KEYFROM
record 1/0 statement option must be computational
data.

IBM18231 S SET reference must have locator type.

Explanation: In the SET clause of an ALLOCATE or
LOCATE statement, the reference must have the type
POINTER or OFFSET.

IBM18241 S keyword expression must be scalar.

Explanation: The expression in the named keyword
clause must be scalar. This keyword clause could be an
IF, UNTIL, WHILE, WHEN, KEY, KEYFROM or
KEYTO clause.

dcl f1 file;

del x char(10);

dcl z(10) char(10);

read file(fl) into(x) key(z);

IBM18251 S The reference in the keyword clause
cannot be a built-in function reference.

Explanation: The references for the KEYTO, FROM,

INTO, and SET record I/0 options cannot be built-in
functions. The example below will cause this message
to be issued.

dcl f1 file;
del x char(10);
read file(fl) into(hex(x));

IBM18261 S The reference in the keyword clause
cannot be a function invocation.

Explanation: The references for the KEYTO, FROM,
INTO, and SET record I/0 options cannot be entry.

IBM18271 S The reference in the keyword clause must
have CHARACTER type.

Explanation: The specified reference is invalid. It must
be of type character. The example below will cause this
message to be issued.

dcl p pointer;
display ('what is your name?’) reply(p);

IBM18281 S The reference in the keyword clause must
be a scalar variable.

Explanation: The specified reference is invalid. It must
be a scalar. The example below will cause this message
to be issued.

dc1 z(10) char(10);
display ('what is your name?’) reply(z);

IBM18291 S The attributes of the argument in the
clause clause conflict with its usage.

Explanation: The declared attributes conflict with their
use in the statement.

dcl f file stream;
read file(f) into(x);

IBM18301 S keyword expression is not computational.
Explanation: The expression must be arithmetic or
string.

dcl p pointer;
put Tist(ptradd(p,2));

IBM18311 S The LOCATE reference variable-name is
not implicitly qualified and is invalid
without a SET clause.

Explanation: Provide a SET clause in the LOCATE
statement.

dcl f file;
dcl x char(10) based;
locate x file(fl);

IBM18321 S SET reference must have POINTER
type.
Explanation: The reference in the SET clause of a

FETCH statement must have the POINTER type.
OFFSET types are not supported in this context.

IBM18331 S The aggregate reference in the from-into
clause clause must be CONNECTED.

Explanation: The specified reference in the FROM or
INTO record 1/0 option is invalid. The reference must
be connected. The example below will cause this
message to be issued.

dcl f1 file;

dcl 1 a(3),
2 b(4) char(4),
2 c(4) char(4);

read file(f1l) into(b);

IBM18341 S The expression in IGNORE must be
computational.

Explanation: The specified expression in the IGNORE
option of the READ statement must be computational.
The example below will cause this message to be
issued.

dcl a area;

read file(fl) ignore(a);

IBM18351 S The LOCATE reference variable-name is
not a level-1 BASED variable.

Explanation: The LOCATE reference may not be a
structure member and must have the storage attribute
BASED.

Chapter 6. Compiler Severe Messages (1500-2399) 75

IBM18361 S INITIAL attribute is invalid for
structures.

Explanation: The INITIAL attribute is valid only for
scalars and arrays of scalars.

IBM18431 S The fractional digits specified in the
keyword-format item is invalid.

Explanation: The fractional number of digits must be
less than or equal to the field width and non-negative.

IBM18371 S The reference in the keyword clause
cannot be a named constant.

Explanation: The specified reference is invalid. It
cannot be a named constant. The example below will
cause this message to be issued.

dcl f1 file;
dcl x char(2);
dcl val fixed bin(15) value(4);

read file(fl) into(x) keyto(val);

IBM18441 S The argument in the R-format item is
not a format constant or format variable.

Explanation: The argument to the R-format item must
be either a format constant or a format variable.

IBM18381 S The attributes of argument-number
conflict with its usage in data directed
1/0.

Explanation: Only AUTOMATIC, CONTROLLED,
PARAMETER, STATIC and and implicitly qualified
BASED variables are supported in data directed 170.

dcl q based;
put data(q);

IBM18391 S DATA-directed 1/O does not support
references with locators.

Explanation: Use a temporary or use LIST- or EDIT
directed 170.

IBM18401 S Subscripted references are not allowed
in GET DATA.

Explanation: Use a temporary or use GET LIST or
GET EDIT.

IBM18411 S The first argument in the keyword-format
item is invalid.

Explanation: The format argument is outside the valid
range.

put edit("hi’) (a(-1));

IBM18421 S The field width specified in the
keyword-format item is too small for
complete input or output of the data
item.

Explanation: The width specified is too small for
complete processing.

put edit(10190) (f(3));

76 PL/I Messages and Codes

IBM18451 S The significant digits specified in
E-format item is invalid.

Explanation: The number of significant digits must be
greater than or equal to the number of fractional digits,
less than or equal to the field width and non-negative.

IBM18461 S The format-item format item is invalid
with GET/PUT STRING.

Explanation: G, L, PAGE, LINE, SKIP, and COLUMN
format items may not be used in GET/PUT EDIT
statements using the STRING option.

IBM18471 S GOTO target is inside a (different) DO
loop.

Explanation: The target of a GOTO cannot be inside a
DO loop unless the GOTO itself is in the same DO
loop.

IBM18481 S The INCLUDE file for include-stmt-arg
could not be found.

Explanation: The INCLUDE file could not be found or
opened.

IBM18491 S Under CMPAT(V1), bounds must not be
greater than 32767.

Explanation: Under CMPAT(V1), bounds must be
between -32768 and 32767 inclusive. To use bounds
outside this range, specify a different CMPAT option.

IBM18501 S Under CMPAT(V1), bounds must not be
less than -32768.

Explanation: Under CMPAT(V1), bounds must be
between -32768 and 32767 inclusive. To use bounds
outside this range, specify a different CMPAT option.

IBM18511 S The INCLUDE file include-file-name
could not be opened.

Explanation: An unexpected error occurred while
trying to open an include source file.

IBM18521 S The preprocessor preprocessor is not
known to the compiler.

Explanation: A preprocessor specified in the PP
compiler option is unknown.

IBM18531 S Variable in statement statement must be
a FETCHABLE entry constant.

Explanation: The argument in the FETCH and
RELEASE statements must be a FETCHABLE entry
constant.

IBM18541 S Fetch of the PP name preprocessor failed
with ONCODE-= oncode.

Explanation: The compiler attempted to load the
module specified in the PP-DEF installation option for
the preprocessor.

IBM18551 S Preprocessor PP name terminated
abnormally with ONCODE=
oncode-value.

Explanation: A terminating error was detected in a
preprocessor invoked by the compiler.

IBM18561 S Fetch of the user exit initialization
routine failed with ONCODE= oncode.

Explanation: The compiler was unable to load the
user exit.

IBM18571 S User exit routine terminated abnormally
with ONCODE-= oncode-value.

Explanation: The compiler detected a terminating
error in the user exit.

IBM18581 S Compile aborted by user exit.

Explanation: The user exit aborted the compile by
setting the return code to 16.

IBM18591 S The first statement must be a
PROCEDURE or PACKAGE statement.

Explanation: All other statements must be enclosed in
a PACKAGE or PROCEDURE statement.

IBM18601 S PACKAGE statement must be the first
statement in the program.

Explanation: PACKAGE statements cannot follow any
other statements in the program.

IBM18611 S All statements other than DECLARE,
DEFAULT and PROCEDURE statements
must be contained inside a
PROCEDURE.

Explanation: This message can occur, for instance, if
the first PROCEDURE statement is invalid or if a
PROCEDURE contains too many END statements.

IBM18621 S Statements are nested too deep.

Explanation: The nesting of PROCEDURE, DO,
SELECT and similar statements is greater than that
supported by the compiler. Rewrite the program so that
it is less complicated.

IBM18631 S Variables declared in a PACKAGE
outside of any PROCEDURE must have
the storage class STATIC, BASED or
CONTROLLED or must be DEFINED
on STATIC.

Explanation: AUTOMATIC variables must be declared
inside a PROCEDURE, and DEFINED variables
declared outside a PROCEDURE must be defined on
STATIC.

IBM18641 S The function name built-in is not
supported.

Explanation: Support for the indicated built-in
function has been discontinued.

IBM18651 S The only BASED variables supported in
data-directed i/o are those that have
constant extents and that are implicitly
qualified by simple variables.

Explanation: The variable implicitly qualifying the
BASED variable must be a scalar that is not part of an
array, structure or union, and it must be a POINTER
with either the AUTOMATIC or STATIC storage
attribute.

IBM18661 S The keyword statement is not supported.

Explanation: Support for the indicated statement has
been discontinued.

IBM18671 S The pseudovariable variable name is not
supported.

Explanation: Support for the indicated pseudovariable
has been discontinued.

IBM18681 S Invalid use of iSUB.

Explanation: iSUB references are permitted only in
DEFINED clauses.

Chapter 6. Compiler Severe Messages (1500-2399) 77

IBM18691 S ALLOCATE with attribute lists is not
supported.

Explanation: For example, neither of the following are
supported.

allocate x(5);
allocate y char(10);

IBM18781 S The reference in the EVENT clause must
have type EVENT.

Explanation: A reference of any other type is invalid
and is invalid.

IBM18701 S ON statement cannot specify both
SYSTEM and an ON-unit.

Explanation: If the SYSTEM action is specified in an
ON statement, an ON-unit may not be specified as
well.

on error system stop;

IBM18791 S The reference in the TASK clause must
have type TASK.

Explanation: A reference of any other type is invalid
and is invalid.

IBM18711 S The reference in the CONDITION
condition must have type CONDITION.

Explanation: x in CONDITION(x) refers to a variable
that does not have the type CONDITION.

IBM18721 S The reference in the condition-name
condition must have type FILE.

Explanation: The reference in the named FILE
condition does not have the type FILE.

IBM18731 S Nesting of DO statements exceeds the
maximum.

Explanation: DO statements can be nested only 50
deep. Simplify the program.

IBM18741 S Nesting of IF statements exceeds the
maximum.

Explanation: IF statements can be nested only 50
deep. Simplify the program.

IBM18751 S Nesting of SELECT statements exceeds
the maximum.

Explanation: SELECT statements can be nested only
50 deep. Simplify the program.

IBM18761 S Nesting of blocks exceeds the
maximum.

Explanation: Blocks may be nested only 30 deep.

78 PL/1 Messages and Codes

IBM18801 S Reference must have FILE type.

Explanation: A file variable or constant is required.

dcl x format variable;
open file(x);

IBM18811 S The reference reference name is
ambiguous.

Explanation: Enough qualification must be provided
to make any reference unique.

IBM18821 S The ALLOCATE reference variable-name
is not a level-1 BASED or
CONTROLLED variable.

Explanation: References in ALLOCATE statements
must be level-1 variable names, and those variables
must have the BASED or CONTROLLED attributes.

IBM18831 S The ALLOCATE reference variable-name
is not implicitly qualified and is invalid
without a SET clause.

Explanation: Provide a SET clause in the ALLOCATE
statement.

dcl a based;

allocate a;

IBM18841 S The reference variable-name in the
GENERIC attribute list is not a scalar
ENTRY reference.

Explanation: A reference of any other type is invalid.

IBM18851 S IN option reference must have AREA
type.

Explanation: A reference of any other type is invalid.

IBM18861 S The REFER object name reference name is
ambiguous.

Explanation: Provide enough qualification to make the
name unique.

dcl
1 a based,

2 bl,
3¢ bit(8) aligned,
3d char(10),

2 b2,
3¢ bit(8) aligned,
3d char(10),

2 e(n refer(c)) char(10);

IBM18871 S The REFER object reference name must be
an element of the same structure where
it is used, and must precede its first
usage in that structure.

Explanation: The named REFER object cannot be
declared in another structure or in the same structure,
but after its first usage.

IBM1888l1 S The REFER object reference name must
have computational type.

Explanation: It must be possible to convert the REFER
object safely to and from REAL FIXED BIN(31,0).

dcl
1 a based,
2 b,
3¢ pointer,
3d char(10),
2 e(n refer(c)) char(10);

IBM18891 S The REFER object reference name must be
a scalar.

Explanation: The REFER object may not have any
dimensions in its declaration and neither may any of its
parents.

dcl
1 a based,
2 b(8),
3¢ fixed bin,
3d char(10),

2 e(n refer(c)) char(10);

IBM18901 S The REFER object reference name must
precede the first level-2 element
containing a REFER.

Explanation: Reorder the elements in the declaration
so that all REFER objects precede the first level-2
element containing a REFER.

dcl
1 a based,
2 b fixed bin,
2 c char(n refer(b)),
2 d fixed bin,
2 e char(n refer(d));

IBM18911 S REFER is not allowed on non-BASED
variables.

Explanation: REFER can be used only in declarations
of BASED variables.

IBM18921 S The REFER object reference name must
have constant length.

Explanation: If a REFER object is a string, it must
have constant length.

IBM18931 S REFER is allowed only on members of
structures and unions.

Explanation: REFER cannot be used only in
declarations of scalars or arrays of scalars.

IBM18941 S FREE references must not be
subscripted.

Explanation: In the statement FREE X, X must not
have any subscripts or arguments.

IBM18951 S Operations involving
OPTIONS(language-name) routines are
not supported if the DIRECTED option
applies.

Explanation: If the DIRECTED(ASM) option is used,
comparisons and assignments are not supported for
ENTRYs declared with OPTIONS(ASM). Similarly, if
the DIRECTED(COBOL) option is used, comparisons
and assignments are not supported for ENTRYs
declared with OPTIONS(COBOL).

IBM18961 S OPTIONS(language-name) is not
supported for ENTRY VARIABLEs if the
DIRECTED option applies.

Explanation: If the DIRECTED(ASM) option is used,
ENTRY VARIABLES may not be declared with
OPTIONS(ASM). Similarly, if the DIRECTED(COBOL)
option is used, ENTRY VARIABLES may not be

Chapter 6. Compiler Severe Messages (1500-2399) 79

declared with OPTIONS(COBOL).

IBM18971 S Simple defining is supported only for
scalars, for structures with constant
extents matching those in the base
variable, and for arrays of such scalars
and structures as long as the array is not
based on a controlled variable.

Explanation: If simple defining is not intended,
specify POSITION(1) to force string defining.

IBM18981 S The base reference in the DEFINED
attribute cannot be a built-in or type
function.

Explanation: You can define a variable only another
user variable.

IBM18991 S The base variable in the DEFINED
attribute cannot be BASED, DEFINED
or CONSTANT.

Explanation: Convert the DEFINED and base
variables into a UNION.

IBM1900lI S Extents for DEFINED bit structures
must be constant.

Explanation: All bounds and string lengths for
DEFINED structures and unions consisting of bit
strings must be constant.

IBM19011 S POSITION attribute is invalid without
the DEFINED attribute.

Explanation: The POSITION attribute has no meaning
without DEFINED attribute.

IBM19021 S The expression in the POSITION
attribute must have computational type.

Explanation: The POSITION expression must have a
numeric or string type.

IBM19031 S The expression in the POSITION
attribute for bit string-overlay defining
must be an integer constant.

Explanation: The compiler must be able to evaluate
the expression to an integer constant when it scans the
POSITION attribute.

IBM19041 S Variable following the free clause clause
must be level-1 and either BASED or
CONTROLLED.

Explanation: A variable that is either based or
controlled should immediately follow the FREE
keyword.

80 PL/I Messages and Codes

IBM19051 S IN or SET option option invalid after the
CONTROLLED variable in the
ALLOCATE or FREE clause clause.

Explanation: An invalid option immediately follows a
controlled variable in an ALLOCATE or FREE
statement.

IBM19061 S The reference qualifying an OFFSET
attribute must be a scalar AREA
reference.

Explanation: Using the specified AREA reference to
qualify an OFFSET variable is invalid. The reference
must be scalar. The following example will issue this
message.

dcl a(10) area;
dcl o offset(a);

IBM19071 S Extents for CONTROLLED variables
cannot be specified using asterisks or
REFER.

Explanation: The extent specified for the controlled
variable is invalid. The following example will emit this
message.

dcl c(*) char(10) controlled;

IBM1908l S Extents for attribute variables cannot be
specified using asterisks or REFER.

Explanation: Extents for AUTOMATIC and DEFINED
variables must be specified by expressions.

IBM19091 S The attribute attribute conflicts with the
attribute attribute.

Explanation: The named attributes, for example
PARAMETER and INITIAL, are mutually exclusive.

IBM19101 S The attributes given in the declaration
for identifier conflict with its use as a
parameter.

Explanation: Parameters can have no storage
attributes other than CONTROLLED. Parameters also
cannot have any of the attributes BUILTIN,
CONDITION, CONSTANT, EXTERNAL, and
GENERIC.

IBM19111 S Repeated specifications of the
unsubscripted statement label character
are in error.

Explanation: All statement labels in any block must be
unique.

IBM19121 S Indices specified for the LABEL character
have already been specified.

Explanation: All statement labels in any block must be
unique.

IBM19131 S ON-units may not be labeled. All such
labels will be ignored.

Explanation: A BEGIN block or a statement associated
with an ON clause may not have a label.

IBM19141 S GOTO target must be a LABEL
reference.

Explanation: x in GOTO x must have type LABEL. x
must not have type FORMAT.

IBM19151 S GOTO target must be a scalar.

Explanation: x in GOTO x must not be an array.

IBM19161 S The procedure/entry proc-name has
already been defined.

Explanation: Sister procedures must have different
names.

a: proc;
b: proc;
end;

b: proc;
end;
end;

IBM19171 S Program contains no valid source lines.

Explanation: The source contains either no statements
or all statements that it contains are invalid.

IBM19181 S All the names in the ORDINAL
ordinal-name have been previously
declared.

Explanation: None of the names in an ORDINAL
should have been declared elsewhere. If they are,
perhaps the ORDINAL definition has been accidentally
repeated.

IBM19191 S The EXTERNAL name string is specified
for the differing internal names name
and name.

Explanation: Each EXTERNAL name must have only
one INTERNAL name. So, for example, the following
declares would be illegal since the external name Z is
specified for two different internal names: X and Y.

dcl X fixed bin(31) ext(’Z');
dc1 Y fixed bin(31) ext('Z");

IBM19201 S FIXED BINARY constant contains too
many digits.
Explanation: The maximum precision of FIXED

BINARY constants is set by the FIXEDBIN suboption of
the LIMITS compiler option.

IBM19211 S FIXED DECIMAL constant contains too
many significant digits.

Explanation: The maximum precision of FIXED
DECIMAL constants is set by the FIXEDDEC suboption
of the LIMITS compiler option.

IBM19221 S Exponent in FLOAT BINARY constant
contains more digits than the
implementation maximum.

Explanation: The exponent in a FLOAT BINARY
constant may contain no more than 5 digits.

IBM19231 S Mantissa in FLOAT BINARY constant
contains more significant digits than the
implementation maximum.

Explanation: The mantissa in a FLOAT BINARY
constant may contain no more than 64 digits.

IBM19241 S Exponent in FLOAT DECIMAL constant
contains more digits than the
implementation maximum.

Explanation: The exponent in a FLOAT BINARY
constant may contain no more than 4 digits.

IBM19251 S Mantissa in FLOAT DECIMAL constant
contains more significant digits than the
implementation maximum.

Explanation: The mantissa in a FLOAT DECIMAL
constant may contain no more than maximum number
of digits allowed on the platform.

IBM19261 S Constants must not exceed 8192 bytes.

Explanation: The number of bytes used to represent a
constant in your program must not exceed 8192. This
limit holds even for bit strings where the internal
representation will consume only one-eighth the
number of bytes as the external representation does.

Chapter 6. Compiler Severe Messages (1500-2399) 81

IBM19271 S SIZE condition raised by attempt to
convert source-value to target-attributes

Explanation: The source value is not in the domain of
the target.

dcl x fixed bin(15);
x = 172900,

IBM19281 S ERROR raised while building
CEEUOPT from PLIXOPT.

Explanation: The ERROR condition was while the

compiler was trying to build CEEUOPT from PLIXOPT.

There may an error in the Language Environment APIs
used by the compiler. Contact IBM service.

IBM19291 S Unable to open file file-name in routine
proc-name(line-number).

Explanation: The compiler was unable to open the
named temporary file used to communicate with the
code generation module. Check the value of the TMP
environment variable.

IBM19301 S Unable to write to file file-name . Disk
may be full.

Explanation: The compiler was unable to write to a
temporary file used to communicate with the code
generation module. The disk to which the TMP
environment variable points may be full.

IBM19321 S Unable to close file file-name in routine
proc-name(line-number).

Explanation: The compiler was unable to close the
named temporary file used to communicate with the
code generation module. Check the value of the TMP
environment variable.

IBM19331 S Unable to open temporary files because
the path and filename are too long.

Explanation: Shorten the name of the source file or
the directory specified by the TMP variable.

IBM19341 S If a parameter is a structure with
nonconstant extents, only matching
structures are supported as arguments.

Explanation: Assign the structure to a temporary and
pass the temporary, or omit the parameter description
in the entry declaration.

82 PL/I Messages and Codes

IBM19351 S Structure expressions as arguments are
not supported for undescribed
parameters.

Explanation: Assign the structure to a temporary and
pass the temporary, or describe the parameter in the
entry declaration.

IBM19361 S Invocation of compiler backend ended
abnormally.

Explanation: The back end of the compiler either
could not be found or else it detected an error from
which it could not recover. The latter problem can
sometimes occur, on Intel, if your disk is short of free
space and, on the z/Series, if your job’s region size is
not large enough. Otherwise, report the problem to
IBM.

IBM19371 S Extents for parameters must be asterisks
or restricted expressions with
computational type.

Explanation: For parameters, each array bound, string
length and AREA size must be specified either with an
asterisk or with a restricted expression that has
computational type.

IBM19381 S Message file file name not found.

Explanation: The message must be in the current
directory or in one of the directories specified in the
DPATH environment variable.

IBM19391 S Exponentiation operands must have
computational type.

Explanation: The operands in an exponentiation must
have numeric or string type.

IBM19401 S note

Explanation: This message is used by %NOTE
statements with a return code of 12.

IBM19411 U note

Explanation: This message is used by %NOTE
statements with a return code of 16.

IBM19421 S The scale factor specified in BUILTIN
name built-in must be a restricted
expression with integer type.

Explanation: This applies to all the precision-handling
built-in functions.

IBM19431' S The number of error messages allowed
by the FLAG option has been exceeded.

Explanation: Compilation will terminate when the
number of messages has exceeded the limit set in the
FLAG compiler option.

IBM19441 S The precision specified in BUILTIN name
built-in must be a restricted expression
with integer type.

Explanation: This applies to all the precision-handling
built-in functions.

IBM19451 S Extents for BASED variable may not
contain asterisks.

Explanation: Extents in BASED variables must be
either constants or specified with the REFER option.

IBM19461 S Reference must be an AREA variable.

Explanation: The specified reference is invalid. An
AREA variable is needed.

IBM19471 S The reference to the GENERIC variable
GENERIC variable name cannot be
resolved.

Explanation: The argument list in a GENERIC
reference must match one of the generic descriptors in
one of that GENERIC’s WHEN clauses. If an
OTHERWISE clause was specified, the argument list
must have the same number of elements as the
OTHERWISE entry reference.

IBM19481 S condition-name condition with
ONCODE=oncode-value raised while
evaluating restricted expression.

Explanation: Compile-time evaluation of a restricted
expression raised a condition.

display(1/0);

IBM19491 S Parameter name identifier appears more
than once in parameter list.

Explanation: Each identifier in a parameter list must
be unique.

a: proc(b, c, b);

IBM19511 S storage class variables must be named.

Explanation: Variables with the CONTROLLED
attribute must be named, and a variable with the
EXTERNAL attribute may not have an * instead of a
name unless a name is given with the EXTERNAL
attribute itself.

IBM19521 S INITIAL CALL cannot be used to
initialize STATIC data.

Explanation: An INITIAL CALL must be evaluated at
run-time; it can be used to initialize only non-STATIC
data.

IBM19531 S The attributes of the EXTERNAL
variable variable name do not match those
in its previous declaration.

Explanation: EXTERNAL variables can be declared in
more than one procedure in a compilation unit, but the
attributes in those declarations must match.

IBM19541 S The base reference in the DEFINED
attribute must be CONNECTED.

Explanation: Variables cannot be DEFINED on
NONCONNECTED references.

IBM19551 S Repeated declarations of the
EXTERNAL attribute variable name are not
supported.

Explanation: EXTERNAL FILE constants and
CONDITIONs may be declared only once in a
compilation unit. Remove all but the outermost declare.

IBM19561 S ITERATE is valid only for iterative
DO-groups.

Explanation: ITERATE is not valid inside type-I do
groups.

IBM19571 S The WAIT event number specification
must be computational.

Explanation: The expression representing the number
of items to wait for in a WAIT statement is invalid. The
expression must be of computational type. The
following example will issue this message.

dcl e event;
dcl p pointer:
wait (e) (p);

IBM19581 S References in the WAIT statement must
be of type EVENT.

Explanation: The event reference in the WAIT
statement is invalid. It must be of type EVENT. The

Chapter 6. Compiler Severe Messages (1500-2399) 83

following example will issue this message.

dcl e entry;
wait (e);

IBM19591 S Invalid aggregate expression specified
in WAIT statement.

Explanation: References in WAIT statements can be
scalars. The only valid aggregate reference is a simple
array of events. Structures, unions, and arrays of
structures or unions would be flagged as as errors.

IBM19601 S type type type type name is not defined.

Explanation: If ORDINAL x is used in a declaration, x
must be a defined ORDINAL type.

IBM19611 S INITIAL values for type type type type
name must be in increasing order.

Explanation: Any values specified in INITIAL clauses
in an ORDINAL definition must be in strictly
increasing order.

IBM19621 S INITIAL values for type type type type
name must be less than 2G.

Explanation: ORDINAL values must fit in the range
of a FIXED BIN(31) variable.

IBM19631 S BUILTIN name argument must have
ORDINAL type.

Explanation: An expression contains the named
built-in function with an argument that is not an
ORDINAL. This message applies, for example, to the
ORDINALNAME, ORDINALPRED and
ORDINALSUCC built-in functions.

IBM19641 S The attributes derived from the
PROCEDURE statement for the ENTRY
constant variable name do not match
those in its explicit declaration.

Explanation: A label on a PROCEDURE statement
constitutes a declaration for an ENTRY constant with
that name. That name also appears in a DECLARE
statement, but the attributes in those two declarations
do not match.

IBM19661 S There is no element named reference
name in the class structure name.

Explanation: HANDLE qualified references must be
explicitly declared.

IBM19671 S The ENTRY variable-name may not be
used as a handle since it does not have
the RETURNS attribute.

Explanation: Functions, but not subprocedures, can be
used as handles (and then only if they return a handle).

IBM19681 S The ENTRY variable-name may not be
used as a handle.

Explanation: x(...)=>y is invalid unless x returns a
HANDLE.

IBM19691 S The variable variable-name is used as a
handle, but it is not a scalar.

Explanation: Only scalars can be used as handles.

IBM19701 S BUILTIN name built-in may not be used
as a handle.

Explanation: The named built-in function cannot be
used as a handle.

IBM19711 S The GENERIC variable variable-name
may not be used as a handle.

Explanation: GENERIC references may not be used as
handles.

IBM19721 S variable-name may not be used as a
handle.

Explanation: x=>y is invalid unless x has the
HANDLE attribute

IBM19761 S DBCS characters are allowed only in G
and M constants.

Explanation: Hex strings (strings ending in one of the
suffixes X, BX, B4, GX or XN), bit strings, (strings
ending in the suffix B), and character strings not
ending in the suffix M must contain only SBCS
characters.

IBM19651 S There is more than one element named
reference name in the class structure name.

Explanation: All references must be unambiguous.

84 PL/I Messages and Codes

IBM19771 S SBCS characters are not allowed in G
constants.

Explanation: Mixed SBCS and DBCS is allowed only
in M constants.

IBM19781 S Invalid use of SBCS encoded as DBCS.

Explanation: Outside of comments, SBCS can be
encoded as DBCS only as part of an identifier.

IBM19811 S BUILTIN function may not be used
outside a procedure.

Explanation: The named built-in function may be
used only inside procedures.

IBM19841 S File filename could not be opened.

Explanation: The named file could not be opened.
Make sure that the file is named correctly, that it exists,
that it has the proper attributes and that you have the
needed permissions to access it.

IBM19851 S File filename could not be found.

Explanation: The file does not exist in the current
directory, in the path specified by the appropriate
environment variable. Check to see that the file name
was entered correctly.

IBM19861 S The path for file filename could not be
found.

Explanation: The path does not exist for the drive
specified, or the path was entered incorrectly.

IBM19871 S File filename could not be opened
because too many files have been
opened.

Explanation: The maximum number of open files has
been reached. On some platforms, there is a system
limit on the number of open files, but the compiler also
has a limit of 2047 include files.

IBM19881 S File filename could not be opened due to
an access violation.

Explanation: Either the file is in use or you tried to
open a file for which you do not have sufficient
privilege.

IBM19891 S File name or extension for filename is too
long.

Explanation: The length of the file name or extension
is greater than the maximum allowed.

IBM19901 S File name filename has invalid format.

Explanation: Apart from z/0S UNIX, file names
should not contain quotes. Under z/OS UNIX, if the
file name does contain quotes, it should specify a PDS
member.

IBM19911 S The load of the SQL preprocessor failed
with ONCODE= oncode. DB2/2 must be
properly installed before the SQL
preprocessor can be loaded.

Explanation: The compiler attempted to load the SQL
preprocessor but was unable to do so. Check that
DB2/2 is properly installed.

IBM19921 S A file name must be specified.

Explanation: The command syntax is:

PLI {d:}{path}filename{.ext} {(options}

IBM19931 S Compilation terminated by
ATTENTION condition.

Explanation: If you hit CTL-BRK during the
compilation, the compilation will stop.

IBM19941 S Internal compiler error: storage header
has been overwritten

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM19951 S Internal compiler error: storage tail has
been overwritten.

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM19961 S Internal compiler error: free amount free
request size does not match allocated size
allocated size.

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM19971 S Internal compiler error: no WHEN
clause satisfied within module name

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM19981 S Internal compiler error: protection
exception in module name

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

Chapter 6. Compiler Severe Messages (1500-2399) 85

IBM19991 S note

Explanation: This message indicates that there is an
error in the back end of the compiler. Please report the
problem to IBM.

IBM2008I S ATTACH reference cannot be
FETCHABLE.

Explanation: An ATTACH reference may not be used
in a FETCH or RELEASE statement.

IBM20011 S A LICENSE REQUEST WAS DENIED
FOR PL/I, PID 5655-B22. THE REQUEST
ENDED WITH STATUS CODE STATUS
CODE AND RETURN CODE RETURN
CODE. THE COMPILATION WILL BE
TERMINATED.

Explanation: IBM License Manager is installed on
your system, but the request to verify that you have a
license to use the PL/I compiler has failed.

IBM20021 S Close of file filename failed. There may
be a space problem.

Explanation: An error has occurred while attempting
to close a file.

IBM20031 S Write to file filename failed. There may
be a space problem.

Explanation: An error has occurred while attempting
to write to a file.

IBM20041 S ATTACH reference must be declared
with either a null argument list or with
an argument list specifying only one
argument.

Explanation: If the ATTACH reference is declared
without an argument list, change the declare to specify
a null argument list by adding a pair of parentheses.

IBM20051 S ATTACH reference must be an ENTRY
reference.

Explanation: GENERIC references and built-in
subroutines may not be attached.

IBM20061 S ATTACH reference cannot be a function
reference.

Explanation: An ATTACH reference must not have the
RETURNS attribute, even if the value returned is an
ENTRY.

IBM20071 S ATTACH reference must use
LINKAGE(SYSTEM).

Explanation: Unless the default linkage is overridden,
OPTIONS(LINKAGE(SYSTEM)) must be specified on
the declare for the ATTACH reference.

86 PL/I Messages and Codes

IBM20091 S ATTACH reference cannot be a nested
procedure.

Explanation: An ATTACH reference must be a level-1
procedure, although it does need to be external.

IBM20101 S ATTACH reference, if an ENTRY
variable, must be a LIMITED ENTRY.

Explanation: Specify the LIMITED attribute in the
declare for the ENTRY VARIABLE.

IBM20111 S ATTACH reference, if it has an
argument, must declare that argument as
POINTER BYVALUE.

Explanation: No other argument types are support in
ATTACH statements.

IBM20121 S The attribute keyword attribute is invalid
in an ALIAS descriptor.

Explanation: Like RETURNS descriptors, the attributes
STRUCTURE, UNION and DIMENSION are not
permitted. Hence, the following are invalid:

define alias array (10) fixed bin;

define alias point 1, 2 fixed bin, 2 fixed bin;

IBM20131' S Only one description is allowed in an
ALIAS definition.

Explanation: The syntax allows the name in an alias
definition to be followed by a description list, but that
description list must consist of exactly one description.
The following is invalid:

define alias x fixed bin, float bin;

IBM20141 S Extents in type descriptors must be
constant.

Explanation: In ALIAS and STRUCTURE descriptors,
each string length and AREA size must be specified
with a restricted expression. Like RETURNS
descriptors, asterisks and non-constant expressions are
not permitted.

IBM20151 S VALUE attribute conflicts with data
type.
Explanation: The VALUE attribute is allowed only

with computational data types as well as pointer, offset,
handle and ordinal.

IBM20161 S VALUE and INITIAL attributes are not
allowed with typed structures.

Explanation: The VALUE attribute is valid only on
scalars, and the INITIAL attribute is not allowed on
typed structures.

IBM20171' S INITIAL TO is valid only for NATIVE
POINTER.

Explanation: INITIAL TO is not valid for
NONNATIVE POINTERs. It is also invalid for
non-POINTERs since they cannot be assigned
addresses.

IBM20181 S INITIAL TO is supported only for
STATIC variables.

Explanation: INITIAL TO is not supported for
variables belonging to any storage class other than
STATIC.

IBM20191 S Unsupported LINKAGE used with the
LIST attribute.

Explanation: Specify OPTIONS(LINKAGE(OPTLINK))
or, on WINDOWS, OPTIONS(LINKAGE(CDECL)) on
the PROCEDURE or ENTRY having a parameter with
the LIST attribute and then recompile.

IBM20201 S There is more than one element named
reference name in the typed structure
structure name.

Explanation: All references must be unambiguous.

IBM20211 S There is no element named reference
name in the structure structure name.

Explanation: All structure references must be
explicitly declared.

IBM20221 S The ENTRY variable-name may not be
used as a typed structure qualifier since
it does not have the RETURNS
attribute.

Explanation: Functions, but not subprocedures, can be
used as typed structure qualifiers (and then only if they
return a typed structure).

IBM20231 S The ENTRY variable-name may not be
used as a typed structure qualifier.

Explanation: x(...)=>y is invalid unless x returns a
typed structure.

IBM20241 S The array variable variable-name may be
used as a typed structure qualifier only
if it is completely subscripted before its
dot qualification.

Explanation: For instance, if x is an array of structure
t with member m, x.m(2) is invalid. However, x(2).m is
valid.

IBM20251 S BUILTIN name built-in may not be used
as a typed structure qualifier.

Explanation: The named built-in function cannot be
used as a typed structure qualifier.

IBM20261 S The GENERIC variable variable-name
may not be used as a typed structure
qualifier.

Explanation: GENERIC references may not be used as
typed structure qualifiers.

IBM20271 S variable-name may not be used as a
structure qualifier.

Explanation: x.y is invalid unless x is a structure, a
union or a function returning a typed structure.

IBM20281 S TYPEs must be defined before their use.

Explanation: The DEFINE STRUCTURE or DEFINE
ALIAS statement for a type x must precede any of use
of x as attribute type. The following two statements
should be in the opposite order.

dcl x type point;

define structure
1 point
2 x fixed bin(31),
2y fixed bin(31);

IBM20291 S DEFINE STRUCTURE must specify a
structure or union type.

Explanation: A DEFINE STRUCTURE statement must
specify a structure or union type with level numbers.

define structure int fixed bin;

Chapter 6. Compiler Severe Messages (1500-2399) 87

IBM20301 S INITIAL attribute is invalid in structure
definitions.

Explanation: Defined structure types must be
initialized via assignments.

IBM20311 S Storage attributes are invalid in
structure definition.

Explanation: Storage attributes, such as AUTOMATIC
and BYADDR, must be specified with variables
declared with structure type.

IBM20321 S DEFINE STRUCTURE may not specify
an array of structures.

Explanation: The level 1 name in a structure definition
may not have the DIMENSION attribute.

IBM20331' S Only one description is allowed in a
structure definition.

Explanation: The syntax allows the name in a
structure definition to be followed by a description list,
but that description list must consist of exactly one
structure description. The following is invalid:

define structure
1 point
2 x fixed bin(31),
2 y fixed bin(31),
1 rectangle
2 upper_left type point,
2 lower_right type point;

IBM20341 S The argument to the type function type
function must be an ordinal type name.

Explanation: The argument to the type functions
FIRST and LAST must be a type name, and that type
must be an ordinal type.

IBM20351 S The argument to the type function type
function must be a structure type name.

Explanation: The argument to the type function NEW
must be a type name, and that type must be a structure

type.

IBM20361 S The second argument to the type
function type function must have locator

type.
Explanation: The second argument to the BIND type
function must be a pointer or offset value that is to be

converted to a handle to the structure type named as
the first argument.

88 PL/I Messages and Codes

IBM20371 S The first argument to the type function
type function must be a structure type
name.

Explanation: The first argument to the type functions
BIND must be a type name, and that type must be a
structure type.

IBM20381 S BUILTIN name argument must have
HANDLE type.

Explanation: An expression contains the named
built-in function with an argument that is not a
HANDLE.

IBM20391 S Argument to variable name
pseudovariable must be a HANDLE.

Explanation: The TYPE pseudovariable can be applied
only to HANDLEs.

IBM20401 S The argument to the type function type
function must be a defined type.

Explanation: The first argument to the type function
SIZE must be the name of a defined type.

IBM20411 S The first argument to the type function
type function must be a defined type.

Explanation: The first argument to the type function
CAST must be the name of a defined type.

IBM20421 S The second argument to the type
function type function must be a scalar.

Explanation: The second argument to the type
function CAST must be a scalar.

IBM20431' S The second argument to the type
function type function must have the
same size as the first argument.

Explanation: The second argument to the type
function CAST must have the same size as the size of
the type that is the first argument.

IBM20441 S The get storage function to BUILTIN
name must be a LIMITED ENTRY with
LINKAGE(OPTLINK) and an
appropriate entry description list.

Explanation: The function should be declared as

dcl get entry(pointer byvalue,
fixed bin(31) byaddr,
fixed bin(31) byaddr)
returns(pointer);

IBM20451 S The free storage function to BUILTIN
name must be a LIMITED ENTRY with
LINKAGE(OPTLINK) and an
appropriate entry description list.

Explanation: The function should be declared as
dcl free entry(pointer byvalue,

pointer byvalue,
fixed bin(31) byvalue);

IBM20461 S Descriptors must not be needed for any
parameter to an ENTRY with a variable
number of arguments.

Explanation: If an entry has a variable number of
arguments, i.e. its last parameter has the LIST attribute,
OPTIONS(NODESCRIPTOR) must be specified (and
valid) if any of the required parameters could have a
descriptor.

IBM20471 S The VARGLIST built-in function may
be used only inside procedures whose
last parameter had the LIST attribute.

Explanation: The VARGLIST built-in function obtains
the address of the variable argument list passed to
procedures whose last parameter had the LIST
attribute. It may not be used in subprocedures of such
routines or in procedures having either no parameters
or having no parameter declared with the LIST
attribute.

IBM20481 S The LIST attribute may be specified
only on non-nested procedures, external
entry constants, and limited entry
variables.

Explanation: The LIST attribute causes a variable
argument list to be built, and such argument lists are
permitted neither with nested procedures nor with

entry variables declared without the LIMITED attribute.

IBM20491 S The LIST attribute may be specified
only on the last element of an entry
description list.

Explanation: The LIST attribute indicates that zero or
more parameters may be specified after it, but those
parameters may not be described.

IBM20501 S Descriptors are supported for Fortran
only for scalar character strings.

Explanation: If OPTIONS(FORTRAN DESCRIPTOR)
applies, all parameters other than character strings
must have constant extents.

IBM20511 S Descriptors are not supported for
Fortran for routines defined by or
containing ENTRY statements.

Explanation: If OPTIONS(FORTRAN DESCRIPTOR)
applies to an ENTRY statement or to a procedure
containing an ENTRY statement, all parameters must
have constant extents.

IBM20521 S A function defined by a PROCEDURE
containing ENTRY statements must
return aggregate values BYADDR.

Explanation: Either BYADDR must be specified in the
RETURNS option of the PROCEDURE statement, or the
RETURNS(BYADDR) suboption of the DEFAULT
statement must be in effect.

IBM20531 S A function defined by an ENTRY
statement must return aggregate values
BYADDR.

Explanation: Either BYADDR must be specified in the
RETURNS option of the ENTRY statement, or the
RETURNS(BYADDR) suboption of the DEFAULT
statement must be in effect.

IBM20541 S A PROCEDURE containing ENTRY
statements must receive all non-pointer
parameters BYADDR.

Explanation: Either BYADDR must be specified in the
declares for the parameters, or the BYADDR suboption
of the DEFAULT statement must be in effect.

IBM20551 S An ENTRY statement must receive all
parameters BYADDR.

Explanation: Either BYADDR must be specified in the
declares for the parameters, or the BYADDR suboption
of the DEFAULT statement must be in effect.

IBM20561 S ENTRY statement is not allowed in DO
loops.

Explanation: ENTRY statements are allowed in
non-iterative DO groups, but not in iterative DO loops.

IBM20571 S RETURN statement is invalid inside a
BEGIN in a PROCEDURE that contains
ENTRY statements.

Explanation: A RETURN statement is valid inside a
BEGIN block only if the PROCEDURE enclosing that
BEGIN block contains no ENTRY statements.

Chapter 6. Compiler Severe Messages (1500-2399) 89

IBM20581 S In a PROCEDURE without the
RETURNS option, any ENTRY
statement must use BYADDR for its
RETURNS value.

Explanation: Either BYADDR must be specified in the
RETURNS option of the ENTRY statement, or the
RETURNS(BYADDR) suboption of the DEFAULT
statement must be in effect.

IBM20591 S OPTIONS(FORTRAN) is invalid if any
parameters are UNALIGNED BIT.

Explanation: Only ALIGNED BIT strings with
constant length are valid with OPTIONS(FORTRAN).

IBM20601 S Attributes may not be specified in
ALLOCATEs of BASED variables.

Explanation: Attributes may be specified only in
ALLOCATEs of CONTROLLED variables.

IBM20611 S Attributes specified for variable-name in
ALLOCATE statement do not match
those in its declaration.

Explanation: An attribute, such as CHARACTER, may
be specified in an ALLOCATE statement only if it is
also specified in the declaration of the variable to be
allocated.

IBM20621 S Structuring specified in ALLOCATE of
variable-name does not match that in its
declaration.

Explanation: In an ALLOCATE statement for a
structure, all the levels specified in its declaration must
be specified, and no new levels may be specified.

IBM20631 S Specification of extent for variable-name
in ALLOCATE statement is invalid since
it was declared with a constant extent.

Explanation: An attribute, such as CHARACTER, may
be specified in an ALLOCATE statement only if it is
also specified in the declaration of the variable to be
allocated with either an asterisk or a non-constant
expression.

IBM20641 S The extent specified for the lower
bound for dimension dimension-value of
variable-name in ALLOCATE statement is
invalid since that variable was declared
with a different constant extent.

Explanation: If a bound for a CONTROLLED variable
is declared as a constant, then it must be specified as
the same constant value in any ALLOCATE statement
for that variable.

90 PL/1 Messages and Codes

IBM20651 S The extent specified for the upper
bound for dimension dimension-value of
variable-name in ALLOCATE statement is
invalid since that variable was declared
with a different constant extent.

Explanation: If a bound for a CONTROLLED variable
is declared as a constant, then it must be specified as
the same constant value in any ALLOCATE statement
for that variable.

IBM20751 S ENTRY types and arguments in type
function must be LIMITED.

Explanation: A ENTRY type or argument used with
the type function CAST must have the attribute
LIMITED.

IBM20761 S FLOAT types and arguments in type
function must be NATIVE REAL.

Explanation: A FLOAT type or argument used with
the type function CAST must have the attributes
NATIVE REAL.

IBM20771 S FIXED BIN types and arguments in type
function must be REAL with scale factor
zero.

Explanation: A FIXED BIN type or argument used
with the type function CAST must have the attributes
REAL PRECISION(p,0).

IBM20781 S Types with the attributes attributes are
not supported as the target of the type
function function.

Explanation: The first argument to the type function
CAST must be a type with one of the following sets of
attributes: REAL FIXED BIN(p,0) or NATIVE REAL
FLOAT.

IBM20791 S Arguments with the attributes attributes
are not supported as the source in the
type function function.

Explanation: The second argument to the type
function CAST must have one of the following sets of
attributes: REAL FIXED BIN(p,0) or NATIVE REAL
FLOAT.

IBM2080l1 S DATE pattern is invalid.

Explanation: See the Language Reference Manual for
a list of the supported DATE patterns.

IBM20811 S DATE attribute is valid only with
NONVARYING CHARACTER, FIXED
DECIMAL and arithmetic PICTURE.

Explanation: The DATE attribute cannot be used on
any other than the named types.

IBM20821 S DATE attribute conflicts with non-zero
scale factor.

Explanation: The DATE attribute can be used on a
numeric only if it has a scale factor of zero.

IBM20831 S DATE attribute conflicts with
COMPLEX attribute.

Explanation: The DATE attribute can be used on a
numeric only if it is REAL.

IBM20841 S DATE attribute conflicts with PICTURE
string containing characters other than 9.

Explanation: The DATE attribute can be used on a
PICTURE only if the PICTURE consists entirely of 9’s.

IBM20851 S Length of DATE pattern and base
precision do not match.

Explanation: The DATE attribute can be used on a
numeric only if its precision equals the length of the
DATE pattern.

IBM20901 S The keyword statement cannot be used
under SYSTEM(CICS).

Explanation: The named statement cannot be used
under CICS.

IBM20911 S DISPLAY with REPLY cannot be used
under SYSTEM(CICS).

Explanation: DISPLAY with REPLY cannot be used
under CICS.

IBM20921 S The BUILTIN name built-in function
cannot be used under SYSTEM(CICS).

Explanation: The named built-in function cannot be
used under CICS.

IBM20931 S The keyword statement cannot be used
under SYSTEM(CICS) except with
SYSPRINT.

Explanation: The named 1/0 statement cannot be
used under CICS unless the file used in the statement
is SYSPRINT.

IBM20941 S Source in CAST to FLOAT must be
FLOAT, FIXED or ORDINAL.

Explanation: The source in a CAST to a FLOAT must
be FLOAT, FIXED or ORDINAL.

IBM20861 S Length of DATE pattern and base length
do not match.

Explanation: The DATE attribute can be used on a
string only if its length equals the length of the DATE
pattern.

IBM20871 S DATE attribute conflicts with adjustable
length.

Explanation: The DATE attribute can be used on a
string only if the string is declared with a constant
length.

IBM20881 S Response file is too large. Excess will be
ignored.

Explanation: The options string built from the
response file must be less than 32767 characters long.

IBM20951 S Target in CAST from FLOAT must be
FLOAT, FIXED BIN or ORDINAL.

Explanation: The target in a CAST from a FLOAT
must be FLOAT, FIXED BIN or ORDINAL.

IBM20961 S Target in CAST from FIXED DEC must
be FLOAT, FIXED BIN or ORDINAL.

Explanation: The target in a CAST from a FIXED DEC
must be FLOAT, FIXED BIN or ORDINAL.

IBM20971 S FIXED DEC types and arguments in type
function must be REAL with
non-negative scale factor.

Explanation: A FIXED DEC type or argument used
with the type function CAST must have the attributes
REAL PRECISION(p,q) with p >= g and q >= 0.

IBM20891 S Line in response file is longer than 100
characters. That line and rest of file will
be ignored.

Explanation: All lines in any response file must
contain no more than 100 characters.

IBM20981 S Source in CAST to FIXED DEC must be
FLOAT, FIXED or ORDINAL.

Explanation: The source in a CAST to a FIXED DEC
must be FLOAT, FIXED or ORDINAL.

Chapter 6. Compiler Severe Messages (1500-2399) 91

IBM20991 S

Explanation:

CASEX strings must have the same
length.

The two strings in the CASEX option

must have the same length. The second argument is the
uppercase value of the first. If a character in the first
string does not have an uppercase value, use the
character itself as the uppercase value.

IBM21001 S

Explanation:

the message

The ORDINAL types do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21011 S

Explanation:

the message

The HANDLE types do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21021 S

Explanation:

the message

The STRUCTURE types do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21031 S

Explanation:

the message

Alignment does not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21041 S

Explanation:

the message

Number and attributes of structure
members do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21051 S

Explanation:

the message

Number of dimensions do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21091 S

Explanation:

the message

BYVALUE/BYADDR attributes in
RETURNS do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21101 S

Explanation:

the message

LINKAGE values do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21111 S

Explanation:

the message

OPTIONS values do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21121 S

Explanation:

the message

Parameter counts do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21131 S

Explanation:

the message

BYVALUE/BYADDR attributes in
parameter parameter-number do not
match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21141 S

Explanation:

the message

Number of dimensions for parameter
parameter-number do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21151 S

Explanation:

the message

Lower bounds for parameter
parameter-number do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21061 S

Explanation:

the message

Lower bounds do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21071 S

Explanation:

the message

Upper bounds do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21081 S

Explanation:

the message

RETURNS attributes do not match.

This message is issued in explanation of
immediately preceding it in the listing.

92 PL/I Messages and Codes

IBM21161 S

Explanation:

the message

Upper bounds for parameter
parameter-number do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21171 S

Explanation:

the message

Alignment of parameter
parameter-number does not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21181 S

Explanation:

the message

Number and attributes of structure
members in parameter parameter-number
do not match.

This message is issued in explanation of
immediately preceding it in the listing.

IBM21191 S Attributes of parameter parameter-number
do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM21271 S The ENTRY named ENTRY variable name
matches the reference to the GENERIC
variable GENERIC variable name, but
while the GENERIC reference is used as
a function, the matching ENTRY does
not have the RETURNS attribute.

Explanation: A match for the GENERIC reference has
been found, but the match is not suitable because while
the GENERIC reference is used as a function, the
matching ENTRY is not a function. For example, the
first GENERIC reference below is invalid, while the
second is oK.

dc1 el entry(fixed bin);
dcl e2 entry(fixed bin, fixed bin)
returns(fixed bin);
dcl gp generic(el when(*),
e2 when(*, =));

rc =gp(0);

rc =gp(0, 0);

IBM21281 S The ENTRY named ENTRY variable name
matches the reference to the GENERIC
variable GENERIC variable name, but
while the GENERIC reference is used as
a function acting as a locator qualifier,
the matching ENTRY does not return a
POINTER.

Explanation: A match for the GENERIC reference has
been found, but the match is not suitable because while
the GENERIC reference is used as a locator, the
matching ENTRY is not a function returning a
POINTER. For example, the first GENERIC reference
below is invalid, while the second is ok.

dcl f1 entry(fixed bin)
returns(fixed bin);
dcl f2 entry(fixed bin, fixed bin)
returns(pointer);
dc1 bx based fixed bin;
dc1 gf generic(f1 when(*),
f2 when(*, =));

rc = gf(0)->bx;

rc = gf(0, 0)->bx;

IBM21291 S The ENTRY named ENTRY variable name
matches the reference to the GENERIC
variable GENERIC variable name, but
while the GENERIC reference is used as
a repeating function reference, the
matching ENTRY cannot be so used.

Explanation: A match for the GENERIC reference has
been found, but the match is not suitable because while
the GENERIC reference is used as a function whose
return value is a function that is invoked (and so on, as
the number of argument lists mandates), the matching
ENTRY cannot be so used. For example, the first
GENERIC reference below is invalid, while the second
is ok.

dcl x1 entry(fixed bin)
returns(entry);
dcl x2 entry(fixed bin, fixed bin)
returns(entry returns(fixed bin));
dc1 gx generic(x1 when(*),
x2 when(*, *));

9x(10)0;
gx(0, 0)0);

rc

rc

IBM21301 S iSUB defining is not valid with the
POSITION attribute.

Explanation: The POSITION attribute can be used
only with string overlay defining.

dcl b(4) char(2) pos(2) def(a(lsub,1lsub));

IBM21311 S In iSUB defining, the base and
DEFINED variables must match.

Explanation: The defined and base arrays in iSUB
defining must have identical attributes apart from the
dimension attribute.

dcl a(4) fixed bin(31);
dcl b(4) fixed bin(15) def(a(lsub,lsub));

IBM21321 S The i in an iSUB reference must not
exceed the dimensionality of the
DEFINED variable.

Explanation: The i in an iSUB reference must refer to
a subscript of the DEFINED variable and hence must
not be greater than the number of dimensions for that
variable.

Chapter 6. Compiler Severe Messages (1500-2399) 93

dcl a(4,4) fixed bin(31);
dc1 b(4) fixed bin(15) def(a(lsub,2sub));

IBM21331 S An iSUB variable cannot be defined on
a cross-section of its base.

Explanation: In an iSUB variable, no asterisks may
appear in the specification of the base array.

dcl a(4,4) fixed bin(31);
dcl b(4) fixed bin(15) def(a(lsub,*));

IBM21341 S iSUB defining is supported only for
arrays of scalars.

Explanation: iSUB defining is not supported for
structures and unions.

IBM21351 S DFT(DESCLIST) conflicts with
CMPAT (cmpat-suboption).

Explanation: If CMPAT(V1) or CMPAT(V2) is
specified, then DFT(DESCLOCATOR) must be in effect
(as it is by default on z/0S).

IBM21361 S The number of indices specified for the
LABEL identifier does not match the
number previously specified.

Explanation: The number of indices given for an
element of a label constant array must not vary.

IBM21371 S Indices have been specified for the
LABEL identifier when it was previously
specified without indices.

Explanation: A label constant cannot be subscripted if
its first use contains no subscripts.

IBM21381 S Indices have not been specified for the
LABEL identifier when it was previously
specified with indices.

Explanation: A label constant must be subscripted if
its first use contains subscripts.

94 PL/1 Messages and Codes

IBM21391 S The Language Environment runtime is
not current enough.

Explanation: You are using Language Environment
2.10 (or earlier!), which is not supported by the
compiler.

IBM21401 S Length of second argument to the
REPLACEBY?2 built-in must be twice
that of the third.

Explanation: The second argument to the
REPLACEBY2 built-in function provides the set of pairs
of characters which are to replace the corresponding
characters in the third argument, and hence the length
of the second string must be twice that of the third.

IBM21411 S First argument to the BUILTIN name
built-in must be a structure.

Explanation: The first argument to the named built-in
subroutine must be a structure supplying the event
handlers for the SAX parser.

IBM21421 S Event structure argument to the BUILTIN
name built-in has too few elements.

Explanation: The first argument to the named built-in
subroutine must be a structure supplying the event
handlers for the SAX parser, and that structure must
exactly the right number of members. See the Language
Reference Manual for more details.

IBM21431 S Event structure argument to the BUILTIN
name built-in has too many elements.

Explanation: The first argument to the named built-in
subroutine must be a structure supplying the event
handlers for the SAX parser, and that structure must
exactly the right number of members. See the Language
Reference Manual for more details.

IBM21441' S Member member-number in the event
structure argument to the BUILTIN name
built-in is not a scalar.

Explanation: The first argument to the named built-in
subroutine must be a structure supplying the event
handlers for the SAX parser, and each element of that
structure must be a scalar. See the Language Reference
Manual for more details.

IBM21451 S Member member-number in the event
structure argument to the BUILTIN name
built-in must be a LIMITED ENTRY.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
be a LIMITED ENTRY. See the Language Reference
Manual for more details.

IBM21461 S Member member-number in the event
structure argument to the BUILTIN name
built-in must return BYVALUE a
NATIVE FIXED BIN(31).

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
be a function returning BYVALUE a NATIVE FIXED
BIN(31). See the Language Reference Manual for more
details.

IBM21471 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a non-empty entry
description list.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a non-empty entry description list. See the
Language Reference Manual for more details.

IBM21481 S Member member-number in the event
structure argument to the BUILTIN name
built-in has a parameter count of
specified-parm-count when the correct
parameter count is required-parm-count .

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have the correct number of parameters. See the
Language Reference Manual for more details.

IBM21491 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE
POINTER as its first parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE POINTER as its first parameter. See
the Language Reference Manual for more details.

IBM21501 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE
POINTER as its second parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE POINTER as its second parameter.
See the Language Reference Manual for more details.

IBM21511 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE NATIVE
FIXED BIN(31) as its third parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE NATIVE FIXED BIN(31) as its third
parameter. See the Language Reference Manual for
more details.

IBM21521 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE
POINTER as its fourth parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE POINTER as its fourth parameter.
See the Language Reference Manual for more details.

IBM21531 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE NATIVE
FIXED BIN(31) as its fifth parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE NATIVE FIXED BIN(31) as its fifth
parameter. See the Language Reference Manual for
more details.

IBM21541 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE
POINTER as its second parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE POINTER as its second parameter.
See the Language Reference Manual for more details.

IBM21551 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE NATIVE
FIXED BIN(31) as its fourth parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE NATIVE FIXED BIN(31) as its fourth
parameter. See the Language Reference Manual for
more details.

IBM21561 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE NATIVE
FIXED BIN(31) as its second parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE NATIVE FIXED BIN(31) as its second

Chapter 6. Compiler Severe Messages (1500-2399) 95

parameter. See the Language Reference Manual for
more details.

IBM21571 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE
CHAR(1) or BYVALUE WCHAR(1) as its
second parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE CHAR (or BYVALUE WIDECHAR)
of length one as its second parameter. See the Language
Reference Manual for more details.

IBM21631 S The input structure to the BUILTIN name
built-in must not contain any
WIDECHAR elements.

Explanation: The XMLCHAR built-in function cannot
be applied to structures containing any WIDECHAR
data.

IBM21581 S Member member-number in the event
structure argument to the BUILTIN name
built-in has the wrong linkage.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have the PL/1 default linkage. See the Language
Reference Manual for more details.

IBM21641 S The input structure to the BUILTIN name
built-in must not contain any unnamed
substructures.

Explanation: The XMLCHAR built-in function cannot
be applied to structures containing substructures using
an asterisk as a name.

IBM21651 S PRV support is provided only if the
LIMITS(EXTNAME(7)) option is in
effect.

Explanation: Support for long external names is
incompatible with support for using the PRV to address
CONTROLLED variables.

IBM21591 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have the
NODESCRIPTOR option.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have the NODESCRIPTOR option. See the Language
Reference Manual for more details.

IBM21601 S All members of the input structure to
the BUILTIN name built-in must have
computational type.

Explanation: The XMLCHAR built-in function cannot
be applied to structures containing noncomputational

types.

IBM21611 S The input structure to the BUILTIN name
built-in must not be a UNION or
contain any UNIONSs.

Explanation: The XMLCHAR built-in function cannot
be applied to unions or to structures containing unions.

IBM21621 S The input structure to the BUILTIN name
built-in must not contain any GRAPHIC
elements.

Explanation: The XMLCHAR built-in function cannot
be applied to structures containing any GRAPHIC data.

96 PL/I Messages and Codes

IBM21661 S PRV support is provided only if the
NORENT option is in effect.

Explanation: Support for the RENT option is
incompatible with support for using the PRV to address
CONTROLLED variables.

IBM21671 S PRV support is provided only if the
CMPAT (V1) or CMPAT(V2) option is in
effect.

Explanation: Support for the CMPAT(LE) option is
incompatible with support for using the PRV to address
CONTROLLED variables.

IBM21701 S Too many INTERNAL CONTROLLED
variables.

Explanation: When using the PRV to address
CONTROLLED variables, there may be no more than
568 INTERNAL CONTROLLED variables.

IBM21711 S Under the NOWRITABLE option, no
FETCHABLE ENTRY may be declared at
the PACKAGE level.

Explanation: Under the NOWRITABLE option, every
FETCHABLE ENTRY constant must be declared inside
a PROCEDURE.

IBM21721 S Under the NOWRITABLE option, no
FILE CONSTANT may be declared at
the PACKAGE level.

Explanation: Under the NOWRITABLE option, every

FILE CONSTANT must be declared inside a
PROCEDURE.

IBM21731' S Under the NOWRITABLE option, no
CONTROLLED may be declared at the
PACKAGE level.

Explanation: Under the NOWRITABLE option, every
CONTROLLED variable must be declared inside a
PROCEDURE.

IBM21741 S Result of REPLACEBY? is too long.

Explanation: The length of the string literal produced
by applying the REPLACEBY?2 built-in function to 3
literals must not be greater than the maximum allowed
for a character literal.

IBM21751 S The second and third arguments to
REPLACEBY2 must be restricted
expressions.

Explanation: The REPLACEBY2 built-in function
currently supports only second and third arguments
that have a length and value known at compile time.

IBM21761 S The result of the BUILTIN name built-in
would require more than 32767 bytes.

Explanation: The HEX and HEXIMAGE built-in
functions cannot be applied to strings using more than
16383 bytes of storage.

IBM21801 S Use of the KEYED DIRECT file filename
in a keyword statement without a
KEY/KEYFROM clause is invalid.

Explanation: Any input/output operation using a
KEYED DIRECT file must include the key of the record
to which the the operation is to be applied.

IBM21811 S First argument to BUILTIN name built-in
must have type CHARACTER.

Explanation: This applies to the PICSPEC built-in
function, for example.

IBM21821 S Second argument to BUILTIN name
built-in must be a constant.

Explanation: This applies to the PICSPEC built-in
function, for example.

IBM21831 S The first argument to BUILTIN name
built-in must have constant length equal
to that of the second argument.

Explanation: This applies to the PICSPEC built-in
function, for example.

IBM21841 S Compiler input files must have less
then 1000000 lines.

Explanation: Break up the source files into smaller
files.

IBM21771 S The file filename is a PDS member and
hence cannot be used for SYSADATA.

Explanation: The named file is the file intended to be
used as the SYSADATA file, but such a file must not be
a member of a PDS.

IBM21781 S INCLUDE statements are not supported
when the LINEDIR option is in effect.

Explanation: When the LINEDIR option is in effect,
your source must contain no INCLUDE statements.

IBM21791 S There is too little room between the
margins for the LINE directive. The
PPTRACE option will be turned off.

Explanation: The %LINE directive generated by the
PPTRACE must fit on one line. You must either make
the margins wide enough to allow this or make the
source file names short enough.

IBM21851 S Argument to BUILTIN name built-in
must have type REAL DECIMAL
FLOAT, and the DFP option must be in
effect.

Explanation: This applies to the ISFINITE and similar
built-in functions.

IBM21861 S BUILTIN name is not supported for DFP.

Explanation: The named built-in function is not
supported for float using DFP. This message applies,
for instance, to the SQRTF built-in functions

IBM21871 S The exponent in the literal value is too
large for DECIMAL FLOAT with
precision precision.

Explanation: A DFP literal value when adjusted to
have no decimal point (e.g. 3.14E0 would be adjusted
to 314E-2) must have an exponent no larger than the
maximum for its precision. For precision <= 7, the
maximum is 90. For 7 < precision <= 16, the maximum
is 369. For 16 < precision, the maximum is 6111.

Chapter 6. Compiler Severe Messages (1500-2399) 97

IBM21881 S The exponent in the literal value is too
small for DECIMAL FLOAT with
precision precision.

Explanation: A DFP literal value when adjusted to
have no decimal point (e.g. 3.14E0 would be adjusted
to 314E-2) must have an exponent no smaller than the
minimum for its precision. For precision <=7, the
minimum is -95. For 7 < precision <= 16, the minimum
is -383. For 16 < precision, the minimum is -6143.

IBM21891 S Under CMPAT(V2) and CMPAT(LE),
bounds must not be greater than
+2147483647.

Explanation: Under CMPAT(V2) and CMPAT(LE),
bounds must be between -2147483648 and +2147483647.

IBM21901 S Under CMPAT(V2) and CMPAT(LE),
bounds must not be less than
-2147483648.

Explanation: Under CMPAT(V2) and CMPAT(LE),
bounds must be between -2147483648 and +2147483647.

IBM21911 S No valid character specified in the option
option.

Explanation: You must specify at least one valid
character in each of the OR, NOT and QUOTE or
NAMES compiler options.

IBM21921 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE
POINTER as parameter number
parameter-number .

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must
have a BYVALUE POINTER in the specified parameter
position. See the Programming Guide for more details.

IBM21931' S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE NATIVE
FIXED BIN(31) as parameter number
parameter-number .

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE NATIVE FIXED BIN(31) in the
specified parameter position. See the Programming
Guide for more details.

IBM21941 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYADDR
POINTER as parameter number
parameter-number .

98 PL/I Messages and Codes

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must
have a BYADDR POINTER in the specified parameter
position. See the Programming Guide for more details.

IBM21951 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYADDR NATIVE
FIXED BIN(31) as parameter number
parameter-number .

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYADDR NATIVE FIXED BIN(31) in the
specified parameter position. See the Programming
Guide for more details.

IBM21961 S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE
ALIGNED BIT(8) as parameter number
parameter-number .

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE ALIGNED BIT(8) in the specified
parameter position. See the Programming Guide for
more details.

IBM21971 S Argument to BUILTIN name built-in
must have type CHAR or WIDECHAR.

Explanation: This applies to the UVALID and
ULENGTH built-in functions, for example.

IBM21981 S First argument to BUILTIN name built-in
must have type CHAR or WIDECHAR.

Explanation: This applies to the UPOS and UWIDTH
built-in functions, for example.

IBM21991 S The run-time option XPLINK(ON) must
be in effect if object code is to be
generated.

Explanation: The compiler backend requires the
XPLINK(ON) option to be in effect.

Chapter 7. MACRO and CICS Preprocessor Messages

(3000-3999)

IBM3000I I note

Explanation: This message is used by %NOTE
statements with a return code of 0.

IBM30201 I Comment spans line-count lines.

Explanation: A comment ends on a different line than
it begins. This may indicate that an end-of-comment
delimiter is missing.

IBM30211 I String spans line-count lines.

Explanation: A string ends on a different line than it
begins. This may indicate that a closing quote is
missing.

IBM32501 W note

Explanation: This message is used by %NOTE
statements with a return code of 4.

IBM32511 W identifier is multiply defined, but with
different attributes. The declaration is
ignored.

Explanation: Attributes and declares must be
consistent.

a: proc;
end;
dcl a;

O oF oF

IBM32521 W The attribute character conflicts with
previous attributes and is ignored.

Explanation: Attributes must be consistent.

dcl a fixed char;

IBM32531 W Comment spans more than one file.

Explanation: A comment ends in a different file than
it begins. This may indicate that an end-of-comment
statement is missing.

IBM32541 W String spans more than one file.

Explanation: A string ends in a different file than it

© Copyright IBM Corp. 1999, 2008

begins. This may indicate that a closing quote is
missing.

IBM32551 W Delimiter missing between nondelimiter
and nondelimiter. A blank is assumed.

Explanation: A delimiter (for example, a blank or a
comma) is required between all identifiers and
constants.

dcl 1 a, 2 b, 3c;

IBM32561 W Multiple closure of groups. END
statements will be inserted to close
intervening groups.

Explanation: Using one END statement to close more
than one group of statements is permitted, but it may
indicate a coding error.

IBM32571 W Missing character assumed.

Explanation: The indicated character is missing, and
there are no more characters in the source. The missing
character has been inserted by the parser in order to
correct your source.

IBM32581 W Missing character assumed before
character.

Explanation: The indicated character is missing and
has been inserted by the parser in order to correct your
source.

%dc1 jump fixed;
%skip
%jump = 2;

IBM32601 W Syntax of the %CONTROL statement is
incorrect.

Explanation: The %CONTROL statement must be
followed by FORMAT or NOFORMAT option enclosed
in parentheses and then a semicolon.

IBM32651 W Number of lines specified with %SKIP
must be between 0 and 999 inclusive.

Explanation: Skip amounts greater than 999 are not
supported.

99

%skip(2000) ;

Explanation: Float binary constants are limited to 64
digits.

IBM32701 W "EXEC CICS’ encountered, but the CICS
option is not in effect. Command
ignored.

Explanation: The CICS option must be in effect if the
source contains EXEC CICS statements.

IBM32881 W Mantissa in FLOAT DECIMAL constant
contains more digits than the
implementation maximum. Excess
nonsignificant digits will be ignored.

Explanation: Float decimal constants are limited to 18
digits.

IBM32711 W 'EXEC CSPM'’ encountered, but the
CSPM option is not in effect. Command
ignored.

Explanation: The CSPM option must be in effect if the
source contains EXEC CSPM statements.

IBM32721 W 'EXEC DLI’ encountered, but the DLI
option is not in effect. Command
ignored.

Explanation: The DLI option must be in effect if the
source contains EXEC DLI statements.

IBM32891 W FLOAT literal is too big for its implicit
precision. An appropriate HUGE value
is assumed.

Explanation: The precision for a float literal is implied
by the number of digits in its mantissa. For instance
1e99 is implicitly FLOAT DECIMAL(1), but the value
1e99 is larger than the largest value a FLOAT
DECIMAL(1) can hold.

IBM32811 W SELECT statement contains no WHEN
or OTHERWISE clauses.

Explanation: WHEN or OTHERWISE clauses are not
required on SELECT statements, but their absence may
indicate a coding error.

IBM32831 W SELECT statement contains no WHEN
clauses.

Explanation: SELECT statements do not require
WHEN clauses, but their absence may indicate a
coding error.

IBM32851 W FIXED BINARY constant contains too
many digits. Excess nonsignificant digits
will be ignored.

Explanation: A FIXED BINARY constant must contain
31 or fewer digits.

IBM32861 W FIXED DECIMAL constant contains too
many digits. Excess nonsignificant digits
will be ignored.

Explanation: The maximum precision for FIXED
DECIMAL constants is specified by the FIXEDDEC
suboption of the LIMITS compiler option.

IBM32871 W Mantissa in FLOAT BINARY constant
contains more digits than the
implementation maximum. Excess
nonsignificant digits will be ignored.

100 PL/I Messages and Codes

IBM32911 W The OPTIONS option option-name
conflicts with the LANGLVL compiler
option. The option will be applied.

Explanation: The named option is not part of the PL/I
language definition as specified in the LANGLVL
compiler option.

IBM32921 W suboption is not a valid suboption for
option.

Explanation: The specified suboption is not one of the
supported suboptions of the named option.

xprocess pp(macro('fixed(long)'));

IBM32931 W A required suboption is missing for the
suboption option.

Explanation: The named option requires a suboption.

xprocess pp(macro('fixed'));

IBM32941 W A closing parenthesis is missing in the
specification of the option option. One is
assumed.

Explanation: A closing parenthesis is missing in the
specification of the named option.

xprocess pp(macro(’fixed(bin'));

IBM32951 W option is not a supported option.

Explanation: The named option is not, in fact, an
option.

*process pp(macro(’float’));

IBM32991 W Syntax of the %LINE directive is
incorrect.

Explanation: The %LINE directive must be followed,
with optional intervening blanks, by a parenthesis, a
line number, a comma, a file name and a closing
parenthesis.

%line(19, test.pli);

IBM33001 W identifier has not been declared.
CHARACTER attribute assumed.

Explanation: All variables should be declared.

IBM33001 W Operand to LENGTH built-in should
have string type.

Explanation: If the operand has a numeric type, the
result is the length that value would have after it was
converted to string. The length of a numeric type is
NOT the same as its storage requirement.

IBM33101 W First argument to BUILTIN name built-in
should have string type.

Explanation: To eliminate this message, apply the
CHAR or BIT built-in function to the first argument.

dcl i fixed bin;
display(substr(i,4));

IBM33111 W Argument number to the BUILTIN name
built-in function is missing. A null
value will be passed for the missing
argument.

Explanation: An argument to the function reference is
missing. A null string or zero will be passed, as
appropriate, for the missing argument.

%dc1 a fixed;

%a = max(n,);

IBM33111 W LEAVE will exit noniterative DO-group.

Explanation: This message is not produced if the
LEAVE statement specifies a label. In the following
loop, the LEAVE statement will cause only the
immediately enclosing DO-group to be exited; the loop
will not be exited.

do i =1 to n;

if a(i) > 0 then
do;
call f;
leave;
end;
else;
end;

IBM33121 W Result of comparison is always constant.

Explanation: This message is produced when a
variable is compared to a constant equal to the largest
or smallest value that the variable could assume. In the
following loop, the variable x can never be greater than
99, and hence the implied comparison executed each
time through the loop will always result in a '1’b.

do x pic’99’;

do x =1 to 99;
end;

IBM33201 W RETURNS attribute in ENTRY declare
ignored.

Explanation: ENTRY declares should not specify a
RETURNS attribute. In the example below, the "returns(
char)” should be omitted.

%dc1 a entry returns(char);

IBM33211 W RETURNS option assumed to enclose
attribute in PROCEDURE statement.

Explanation: In a PROCEDURE statement, any
RETURNS attribute should be enclosed in parentheses
following the RETURNS keyword. In the example
below, the "char” attribute should be specified as
"returns(char)".

%a: proc char ;
return(’1729’);
%end;

IBM33221 W Argument list for PROCEDURE identifier
is missing. It will be invoked without
any arguments.

Explanation: References in open code to
PROCEDUREs that have parameters should always
include at least an empty argument list. For example,
the "display(a)" below should be "display(a())".

%a: proc(x) char ;

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 101

dc1 x char;
return('1729');
%end;
%act a;

display(a);

IBM33231 W Too few arguments for PROCEDURE
identifier. Null values will be passed for
the missing arguments.

Explanation: There are too few arguments for the
specified procedure. Null strings or zeros will be
passed, as appropriate, for the missing arguments.

%a: proc(x) char ;
dcl x char;
return('1729");

%end;

%act a;

display(a());

IBM33241 W Too many arguments for PROCEDURE
identifier. Excess ignored.

Explanation: There are too many arguments for the
specified procedure. The excess arguments will be
ignored.

%a: proc(x) char ;
dc1 x char;
return('1729");

%end;

%act a;

display(a(1,2));

IBM33251 W No data attributes specified in declare
for identifier.

Explanation: Preprocessor variables should be
declared with an attribute such as CHAR or FIXED.
This message could indicate that there is an extraneous
comma in the declare statement as in this example.

%dc1 a, char;

IBM35001 E note

Explanation: This message is used by %NOTE
statements with a return code of 8.

102 PL/I Messages and Codes

IBM35101 E keyword statement is not allowed where
an executable statement is required. A
null statement will be inserted before
the keyword statement.

Explanation: In certain contexts, for example after an
IF-THEN clause, only executable statements are
permitted. A DECLARE, DEFINE, DEFAULT or
FORMAT statement has been found in one of these
contexts. A null statement, (a statement consisting of
only a semicolon) will be inserted before the offending
statement.

IBM35111 E COUNTER value would exceed 99999. It
will be reset to 0.

Explanation: The COUNTER built-in function should
not be invoked more than 99999 times.

IBM35121 E Multiple closure of groups is not
allowed under
RULES(NOMULTICLOSE).

Explanation: Under RULES(NOMULTICLOSE), there
should be no multiple closure of groups in your source
program.

IBM35141 E Second argument to BUILTIN name
built-in is negative. It will be changed
to 0.

Explanation: The second argument to built-in
functions such as COPY and REPEAT must be
nonnegative.

X = Cop.y(Yy, -1);

IBM35171 E Sole bound specified for dimension
dimension number of array variable name is
less than 1. An upper bound of 1 is
assumed.

Explanation: The default lower bound is 1, but the
upper bound must be greater than the lower bound.

dcl x(-5) fixed bin;

IBM35191 E Characters in B3 literals must be 0-7.

Explanation: In a B3 literal, each character must be
either 0-7.

IBM3522] E A DECIMAL exponent is required.

Explanation: An E in a FLOAT constant must be
followed by at least one decimal digit (optionally
preceded by a sign).

IBM35301 E identifier is an array. ACTIVATE and
DEACTIVATE are invalid for arrays.

Explanation: Only scalars may be activated.

IBM35231 E A second argument to the BUILTIN name
built-in must be supplied for arrays
with more than one dimension. A value
of 1 is assumed.

Explanation: The LBOUND, HBOUND, and
DIMENSION built-in functions require two arguments
when applied to arrays having more than one
dimension.

dcl a(5,10) fixed bin;
do i =1 to Thound(a);

IBM35311 E identifier is a statement label. ACTIVATE
and DEACTIVATE are invalid for labels.

Explanation: Labels may not be activated.

IBM35331 E THEN clause outside of an open IF
statement is ignored.

Explanation: THEN clauses are valid only
immediately after an IF <expression>.

%if a > b; %then;

IBM35241 E Second argument to BUILTIN name
built-in is not positive. A value of 1 is
assumed.

Explanation: The DIMENSION, HBOUND and
LBOUND built-in functions require that the second
argument be positive.

IBM35251 E Second argument to BUILTIN name
built-in is greater than the number of
dimensions for the first argument. A
value of dimension count is assumed.

Explanation: The second argument to the LBOUND,
HBOUND, and DIMENSION built-in functions must be
no greater than the number of dimensions of their
array arguments.

dcl a(5,10) fixed bin;
do i =1 to Thound(a,3);

IBM35261 E Repeated declaration of identifier is
invalid and will be ignored.

Explanation: Level 1 variable names must not be
repeated in the same block.

dcl a char, a fixed;

IBM35271 E Missing THEN assumed.

Explanation: THEN keyword must be part of any IF
statement.

IBM35341 E ELSE clause outside of an open
IF-THEN statement is ignored.

Explanation: ELSE clauses are valid only immediately
after an IF-THEN statement.

do; if a > b then; end; else a = 0;

IBM35361 E END label is not a label on any open
group.

Explanation: A Label on END statement must match a
LABEL on an open DO, PROCEDURE, or SELECT
statement.

a: do;

end b;

IBM35371 E An END statement may be missing after
an OTHERWISE unit. One will be
inserted.

Explanation: After an OTHERWISE unit in a SELECT
statement, only an END statement is valid.

select;
when (...)
do;
end;
otherwise
do;
end;
display(...);

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 103

IBM35381 E %END statement found without any
open %PROCEDURE, %DO or
%SELECT statements. It will be ignored.

Explanation: Any %END statement should be part of
a %PROCEDURE-%END, %DO-%END or
%SELECT-%END group.

IBM35391 E STRINGSIZE condition raised while
evaluating expression. Result is
truncated.

Explanation: During the conversion of a user
expression during the compilation, the target string was
found to be shorter than the source, thus causing the
STRINGSIZE condition to be raised.

IBM35401 E STRINGRANGE condition raised while
evaluating expression. Arguments are
adjusted to fit.

Explanation: If all the arguments in a SUBSTR
reference are constants or restricted expressions, the
reference will be evaluated at compile- time and the
STRINGRANGE condition will occur if the arguments
do not comply with the rules described for the SUBSTR
built-in function.

a = substr('abcdef’, 5, 4);

IBM3542]1 E LEAVE/ITERATE label is not a label on
any open DO group.

Explanation: LEAVE/ITERATE must specify a label on
an open DO loop.

%a: do jx =1 to 1729;
%leave b;
%end;

IBM35431 E ITERATE/LEAVE statement is invalid
outside an open DO statement. The
statement will be ignored.

Explanation: ITERATE/LEAVE statements are valid
only inside DO groups.

%a: do jx =1 to 1729;
%end;
%leave a;

104 PL/I Messages and Codes

IBM35441 E GX literals should contain a multiple of
4 hex digits.

Explanation: GX literals must represent graphic
strings and hence must contain a multiple of 4 hex
digits.

X = '00"gx;

IBM35451 E Upper bound for dimension dimension
number of array variable name is less than
lower bound. Bounds will be reversed.

Explanation: A variable has been declared with an
upper bound that is less than its lower bound. The
upper and lower bounds will be swapped in order to
correct this. For example, DECLARE x(3:1) will be
changed to DECLARE x(1:3).

IBM35461 E Identifier is too long. It will be
collapsed to identifier.

Explanation: All identifiers must be contained in 31
bytes or less. PL/I DBCS identifiers must have 14 or
fewer DBCS characters.

IBM35471 E B assumed to complete iSUB.

Explanation: There is no language element of the form
1su.

dcl a(10) def b(1lsu, Isub);

IBM35481 E Digit in BINARY constant is not zero or
one.

Explanation: In a BINARY constant, each digit must
be a zero or one.

IBM35491 E Characters in BIT literals must be 0 or 1.

Explanation: In a BIT literal, each character must be
either zero or one.

IBM35501 E Character with decimal value n does not
belong to the PL/I character set. It will
be ignored.

Explanation: The indicated character is not part of the
PL/I character set. This can occur if a program
containing NOT or OR symbols is ported from another
machine and those symbols are translated to a
character that is not part of the PL/I character set.
Using the NOT and OR compiler options can help
avoid this problem.

IBM35511 E Characters in hex literals must be 0-9 or
A-F.

Explanation: In a hex literal, each character must be
either 0-9 or A-F.

IBM35521 E The statement element character is
invalid. The statement will be ignored.

Explanation: The statement entered could not be
parsed because the specified element is invalid.

IBM35531 E Use of underscore as initial character in
an identifier accepted although invalid
under LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), identifiers must
start with an alphabetic character or with one of the
extralingual characters. They may not start with an
underscore. Under LANGLVL(SAAZ2), identifiers may
start with an underscore, although names starting with
_IBM are reserved for use by IBM.

IBM35561 E Character with decimal value n does not
belong to the PL/I character set. It is
assumed to be an OR symbol.

Explanation: The indicated character is not part of the
PL/I1 character set, but was immediately followed by
the same character. This can occur if a program
containing an OR symbol is ported from another
machine and this symbol is translated to a character
that is not part of the PL/I character set. Using the OR
compiler option can help avoid this problem.

IBM35571 E Character with decimal value n does not
belong to the PL/I character set. It is
assumed to be a NOT symbol.

Explanation: The indicated character is not part of the
PL/I1 character set, but was immediately followed by an
=, < or > symbol. This can occur if a program
containing a NOT symbol is ported from another
machine and this symbol is translated to a character
that is not part of the PL/I character set. Using the
NOT compiler option can help avoid this problem.

IBM35651 E Statement type resolution requires too
many lexical units to be examined. The
statement will be ignored.

Explanation: To determine if a statement is an
assignment or another PL/| statement, many elements
of the statement may need to be examined. If too many
have to be examined, the compiler will flag the
statement as in error. For instance, the following
statement could be a DECLARE until the equal sign is
encountered by the lexer.

dcl (a, b, ¢) =d;

IBM35671 E Statements inside a SELECT must be
preceded by a WHEN or an
OTHERWISE clause.

Explanation: A WHEN or OTHERWISE may be
missing.

select;
i=d+ 1

when (a >0)

IBM35701 E Extent expression is negative. It will be
replaced by the constant 1.

Explanation: Extents must be positive.

dcl x char(-10);

IBM35801 E Parameter keyword may not be set more
than once. First setting is assumed.

Explanation: In a statement-form procedure
invocation, each parameter may be specified only once.
Any subsequent specifications will be ignored. In the
example code, 17 would be returned for both
invocations of P.

%p: proc(a) stmt returns(char);
dcl a char;
return(a);

%end;

%act p;

display(p a(17) a(29););

display(p(17) a(29););

IBM35811 E Unknown keyword in statement-form
procedure invocation. keyword and any
argument are ignored.

Explanation: In a statement-form procedure
invocation, any keyword specified must be the name of
a parameter for that procedure.

%p: proc(a) stmt returns(char);
dc1 a char;
return(a);

%end;

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 105

%act p;

display(p a(17) b(29););

IBM35821 E Parameter identifier is not declared.

Explanation: Each parameter in a procedure should be
declared.

%a: proc(b, ¢);
dcl b fixed;
%end;

IBM35831 E Labels on keyword statements are invalid
and ignored.

Explanation: Labels are not permitted on DECLARE
statements or on WHEN and OTHERWISE clauses.

IBM35891 E The identifier identifier is not the name
of a built-in function. The BUILTIN
attribute will be ignored.

Explanation: The BUILTIN attribute can be applied
only to identifiers that are the names of built-in
functions or subroutines.

IBM35901 E The attribute keyword is not supported
and will be ignored.

Explanation: The named attribute is not supported by
the macro facility.

%dcl a char external;

IBM35911 E Right parenthesis will be assumed at
end of argument list.

Explanation: A right parenthesis is probably missing.
If this occurs in the source, all the characters after the
unmatched left parenthesis in the source will be
interpreted as parameters to the function. If this occurs
in a replacement string, all the characters after the
unmatched left parenthesis in the string will be
interpreted as parameters to the function.

IBM36031 E The end of the source was reached
before the logical end of the program.
Null statements and END statements
will be inserted as necessary to
complete the program.

Explanation: The source should contain END
statements for all PROCEDUREs, DO groups, and
SELECT statements, as well as statements for all
IF-THEN and ELSE clauses.

106 PL/I Messages and Codes

IBM36041 E The procedure name proc-name has
already been declared. The explicit
declaration of the procedure name will
not be accepted.

Explanation: Declarations for internal procedures are
not permitted.

a: proc;
dcl b entry options(byvalue);
b: proc;

IBM36091 E A SELECT statement may be missing. A
SELECT statement, without an
expression, will be inserted.

Explanation. A WHEN or OTHERWISE clause has
been found outside of a SELECT statement.

IBM36101 E Semicolon inserted after ELSE keyword.

Explanation: An END statement enclosing a statement
such as DO or SELECT has been found before the
statement required after ELSE.

do;
if a > b then

else
end;

IBM36121 E Semicolon inserted after OTHERWISE
keyword.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM36131 E Semicolon inserted after THEN
keyword.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM36141 E Semicolon inserted after WHEN clause.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM36151 E Source file does not end with the logical
end of the program.

Explanation: The source file contains statements after
the END statement that closed the first PACKAGE or
PROCEDURE. These statements will be ignored, but
their presence may indicate a programming error.

IBM36161 E Subscripts have been specified for the
variable variable name, but it is not an
array variable.

Explanation: Subscripts can be specified only for
elements of an array.

%a: proc;
skips
%end;

IBM36171 E Second argument in SUBSTR reference
is less than 1. It will be replaced by 1.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM36281 E X literals should contain a multiple of 2
hex digits.

Explanation: An X literal may not contain an odd
number of digits.

IBM36181 E Second argument in SUBSTR reference
is too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM36191 E Third argument in SUBSTR reference is
less than 0. It will be replaced by 0.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM36201 E Third argument in SUBSTR reference is
too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM36211 E More than 15 dimensions have been
specified. Excess will be ignored.

Explanation: The maximum number of dimensions
allowed for a variable, including all inherited
dimensions, is 15.

IBM36241 E End-of-comment marker found when
there are no open comments. Marker
will be ignored.

Explanation: An */ was found when there was no
open comment.

IBM36251 E There is no compiler directive directive.
Input up to the next semicolon will be
ignored.

Explanation: See the Language Reference Manual for the
list of supported compiler directives.

IBM36261 E Listing control statement must start with
a percent symbol.

Explanation: A listing control statement, even when in
a preprocessor procedure, must be preceded by a "%".

IBM3638l E Excess arguments for ENTRY ENTRY
name ignored.

Explanation: More arguments were specified in an
ENTRY reference than were defined as parameters in
that ENTRY’s declaration.

dcl e entry(fixed bin);
call e(1, 2);

IBM36391 E Excess arguments for BUILTIN name
built-in ignored.

Explanation: More arguments were specified for the
indicated built-in function than are supported by that
built-in function.

i = acos(j, k);

IBM36501 E keyword keyword accepted although
invalid under LANGLVL(SAA).

Explanation: The indicated keyword (UNSIGNED in
the example below) is not defined in the SAA level-1
language.

dcl x fixed bin unsigned;

IBM36511 E Use of S, D and Q constants accepted
although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not include S, D, and Q floating-point
constants.

IBM36521 E Use of underscores in constants accepted
although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 107

language does not permit using underscores in numeric
and hex constants.

IBM36531 E Use of asterisks for names in declares
accepted although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not permit using asterisks for structure
element names.

IBM36541 E Use of XN constants accepted although
invalid under LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not include XN constants.

IBM36561 E Use of 3 arguments with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the VERIFY and
INDEX built-in functions are supposed to have exactly
2 arguments.

i = verify(s, j, k)3

IBM36571 E Use of 1 argument with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the DIM,
LBOUND and HBOUND built-in functions are
supposed to have 2 arguments.

i =dim(a);

IBM37501 S note

Explanation: This message is used by %NOTE
statements with a return code of 12.

IBM37601 S Too few arguments have been specified
for the ENTRY ENTRY name.

Explanation: The number of arguments must match
the number of parameters in the ENTRY declaration.

IBM37611 S Procedures may not be nested.

Explanation: Macro procedures may not be nested.

108 PL/I Messages and Codes

IBM37621 S No percent statements are allowed
inside procedures.

Explanation: Inside a procedure, statements should
not begin with a percent. The %DCL in the example
below should be just DCL.

%a: proc(x) returns(char);
%dcl x char;
return(< || x || >);
%end;

IBM37631 S Not enough virtual memory is available
to continue the compile.

Explanation: The compilation requires more virtual
memory than is available. It may help to specify one or
more of the following compiler options: NOTEST,
NOXREF, NOATTRIBUTES, and/or NOAGGREGATE

IBM37641 S BUILTIN name argument must be a
parameter.

Explanation: An expression contains the named
built-in function with an argument that is not a
parameter.

IBM37651 S BUILTIN name argument must be a
reference.

Explanation: An expression contains the named
built-in function with an argument that is not a
reference.

IBM37681 S The use of asterisks as subscripts is not
permitted in the macro facility.

Explanation: In the macro facility, all subscripts must
be scalar expressions.

IBM37691 S Argument to BUILTIN name built-in
must have type CHARACTER(1)
NONVARYING.

Explanation: This applies to the RANK built-in
function.

IBM37701 S First argument to BUILTIN name built-in
must be an array.

Explanation: An expression contains the named
built-in function with a first argument that is not an
array. This message applies, for instance, to the
DIMENSION, HBOUND, and LBOUND built-in
functions.

IBM37721 S Third argument to BUILTIN name
built-in would force STRINGRANGE.

Explanation: If a third argument is given for one of
the built-in functions INDEX or VERIFY, it must be
positive.

IBM37731' S Second argument to BUILTIN name
built-in must be nonnegative.

Explanation: The second argument for the built-in
functions CHARACTER, BIT, and GRAPHIC must be
Zero or greater.

IBM37741 S Too few arguments have been specified
for the BUILTIN name built-in.

Explanation: Supply the minimum number of
arguments required.

IBM37781 S Syntax of the %INCLUDE statement is
incorrect.

Explanation: %INCLUDE must be followed by a name
and either a semicolon or else a second name in
parenthesis and then a semicolon.

IBM37791 S File specification after %INCLUDE is
too long.

Explanation: The maximum length of the file
specification is 8 characters.

IBM37801 S File specification missing after
%INCLUDE.

Explanation: %INCLUDE must be followed by a file
name, not just a semicolon.

IBM37811 S Procedures may have no more than 63
parameters.

Explanation: The excess parameters will be removed
from the proc statement.

IBM37891 S Index number index number into the
variable variable name is less than the
lower bound for that dimension.

Explanation: Executing such a statement would most
likely cause a protection exception.

%dcl a(5:10) fixed;

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999)

IBM37901 S Index number index number into the
variable variable name is greater than the
upper bound for that dimension.

Explanation: Executing such a statement would most
likely cause a protection exception.

%dcl a(5:10) fixed;

%a(20) = 0

IBM37911 S Each dimension of an array must
contain no more than 2147483647
elements.

Explanation: It must be possible to compute the value
of the DIMENSION built-in function for an array. In
DECLARE x(x:y), (y-x+1) must be less than 214748648.

IBM37921 S Array variable name has too many
elements. Bounds set to 1.

Explanation: Arrays are limited to 2**20 elements.

IBM37931 S Too few subscripts specified for the
variable variable name.

Explanation: The number of subscripts given for a
variable must match that variable’s number of
dimensions

IBM37941 S Too many subscripts specified for the
variable variable name.

Explanation: The number of subscripts given for a
variable must match that variable’s number of
dimensions

IBM37961 S Array expressions cannot be assigned to
non-arrays, and if any target in a
multiple assignment is an array, then all
the targets must arrays.

Explanation: Array expressions may not, for instance,
be assigned to structures or scalars.

IBM37971 S RETURN statement without an
expression is invalid inside a
PROCEDURE that specified the
RETURNS attribute.

Explanation: All RETURN statements inside functions
must specify a value to be returned.

%a: proc returns(fixed);

return;
%end;

109

IBM37981 S RETURN statement with an expression
is invalid inside a PROCEDURE that
did not specify the RETURNS attribute.

Explanation: A statement of the form RETURN(X) is
valid inside only PROCEDUREs that are defined with a
RETURNS attribute.

%a: proc;

return('this is invalid);
%end;

IBM3800lI S Function function name contains no
RETURN statement.

Explanation: Functions must contain at least one
RETURN statement.

IBM38011 S Target in assignment is invalid.

Explanation: The target in an assignment must be
character or fixed element reference. Pseudovariables
are not supported.

IBM38021 S Statement labels may not be used in
expressions.

Explanation: Statement labels may be used only in
GOTO, LEAVE and ITERATE statements.

IBM38031 S Target in concatenate-equals assignment
must have type char.

Explanation: Compound concatenate assignments
with fixed targets are not supported.

%dc1 a fixed;

A
]

IBM38041 S Target in arithmetic-equals assignment
must have type fixed.

Explanation: Compound arithmetic assignments with
character targets are not supported.

%dc1 a char;

a="0;
a +="1";

N o

110 PL/1 Messages and Codes

IBM38111 S Expression contains too many nested
subexpressions.

Explanation: The compiler’s space for evaluating
expressions has been exhausted. Rewrite the expression
in terms of simpler expressions.

IBM38121 S Result of concatenating a string of
length string length to a string of length
string length would produce a string that
is too long.

Explanation: The result of a concatenation must not
have a length greater than the maximum allowed for a
string.

IBM38131 S Result of BUILTIN name applied
repetition value times to a string of length
string length would produce a string that
is too long.

Explanation: The result of COPY and REPEAT must
not have a length greater than the maximum allowed
for a string.

IBM38141 S Unsupported use of aggregate
expression.

Explanation: The only valid aggregate expression is
the use of an array name as the first argument to the
HBOUND or LBOUND built-in functions.

IBM38151 S Operand in bit operation must have
length less than 32768.

Explanation: Bit operations are limited to strings of
length 32767 or less.

IBM38161 S Second and third arguments to the
TRANSLATE built-in function must
have length less than 32768.

Explanation: The TRANSLATE built-in function is not
supported if the second or third argument is longer
than 32767 characters.

IBM38171 S Result of BUILTIN name would exceed
maximum string length.

Explanation: The result of a COMMENT or QUOTE
built-in function must not be a string that would have
length greater than the supported maximum.

IBM38201 S Under the INCONLY option, the use of
INCLUDE or XINCLUDE as a macro
procedure name is invalid unless the
colon follows immediately after the
name.

Explanation: If you must use INCLUDE or

XINCLUDE as a macro name, put the colon on the
same line as the name.

IBM38211 S Under the INCONLY option, the use of
INCLUDE or XINCLUDE as a macro
statement label is invalid unless the
colon follows immediately after the
name.

Explanation: If you must use INCLUDE or
XINCLUDE as a macro statement label, put the colon
on the same line as the name.

IBM38221 S Under the INCONLY option, the use of
INCLUDE or XINCLUDE as a macro
variable that is the target of an
assignment is invalid unless the equals
sign follows immediately after the
name.

Explanation: If you must use INCLUDE or
XINCLUDE as a macro variable name, put the equals
sign in the assignment on the same line as the name.
For example, change the first assignment below into the
second.

%xinclude
= 17;

%xinclude = 17;

IBM38371 S GOTO target is inside a (different) DO
loop.

Explanation: The target of a GOTO cannot be inside a
DO loop unless the GOTO itself is in the same DO
loop.

IBM38411 S The INCLUDE file include-file-name
could not be opened.

Explanation: The INCLUDE file could not be found,
or if found, it could not be opened.

IBM38421 S Statements are nested too deep.

Explanation: The nesting of PROCEDURE, DO,
SELECT and similar statements is greater than that
supported by the compiler. Rewrite the program so that
it is less complicated.

IBM38441 S The function name built-in is not
supported.

Explanation: Support for the indicated built-in
function has been discontinued.

IBM38461 S The keyword statement is not supported.

Explanation: Support for the indicated statement has
been discontinued.

IBM38481 S Use of iSUB is not supported.

Explanation: iSUB is only supported in syntax
checking.

IBM38531 S Nesting of DO statements exceeds the
maximum.

Explanation: DO statements can be nested only 100
deep. Simplify the program.

IBM38541 S Nesting of IF statements exceeds the
maximum.

Explanation: IF statements can be nested only 100
deep. Simplify the program.

IBM38551 S Nesting of SELECT statements exceeds
the maximum.

Explanation: SELECT statements can be nested only
50 deep. Simplify the program.

IBM38561 S Nesting of blocks exceeds the
maximum.

Explanation: Blocks may be nested only 30 deep.

IBM38701 S The fetch of the CICS backend failed.

Explanation: Check that the CICS modules are
accessible, otherwise report this error to IBM.

IBM38711 S The CICS backend reported an internal
error while attempting to perform its
initialization.

Explanation: Report this error to IBM.

IBM38721 S The CICS backend reported an internal
error while attempting to parse its
options.

Explanation: Report this error to IBM.

IBM38731 S The CICS backend reported an internal
error while attempting to build and emit
the local declares.

Explanation: Report this error to IBM.

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 111

IBM38741 S The CICS backend reported an internal
error while attempting to translate an
EXEC statement.

Explanation: Report this error to IBM.

IBM39201 S FIXED BINARY constant contains too
many digits.

Explanation: A FIXED BINARY constant must contain
31 or fewer digits.

IBM38751 S The CICS backend reported an internal
error while attempting to translate a
CICS macro (such as DFHVALUE).

Explanation: Report this error to IBM.

IBM38761 S The CICS backend reported an internal
error while attempting to perform its
termination.

Explanation: Report this error to IBM.

IBM39091 S The attribute attribute conflicts with the
attribute attribute.

Explanation: The named attributes, for example
PARAMETER and INITIAL, are mutually exclusive.

IBM39111 S The statement label character has already
been declared.

Explanation: All statement labels in any block must be
unique.

IBM39141 S GOTO target must be a LABEL
reference.

Explanation: x in GOTO x must have type LABEL. x
must not have type FORMAT.

IBM39151 S GOTO target must be a scalar.

Explanation: x in GOTO x must not be an array.

IBM39161 S The procedure proc-name has already
been defined.

Explanation: Sister procedures must have different
names.

b: proc;
end;
b: proc;
end;

AN OF o° o°

IBM39171 S Program contains no valid source lines.

Explanation: The source contains either no statements
or all statements that it contains are invalid.

112 PL/1 Messages and Codes

IBM39211 S FIXED DECIMAL constant contains too
many significant digits.

Explanation: The maximum precision of FIXED
DECIMAL constants is set by the FIXEDDEC suboption
of the LIMITS compiler option.

IBM39221 S Exponent in FLOAT BINARY constant
contains more digits than the
implementation maximum.

Explanation: The exponent in a FLOAT BINARY
constant may contain no more than 5 digits.

IBM39231 S Mantissa in FLOAT BINARY constant
contains more significant digits than the
implementation maximum.

Explanation: The mantissa in a FLOAT BINARY
constant may contain no more than 64 digits.

IBM39241 S Exponent in FLOAT DECIMAL constant
contains more digits than the
implementation maximum.

Explanation: The exponent in a FLOAT BINARY
constant may contain no more than 4 digits.

IBM39251 S Mantissa in FLOAT DECIMAL constant
contains more significant digits than the
implementation maximum.

Explanation: The mantissa in a FLOAT BINARY
constant may contain no more than 18 digits.

IBM39261 S Constants must not exceed 30720 bytes.

Explanation: The number of bytes used to represent a
constant in your program must not exceed 30720. This
limit holds even for bit strings where the internal
representation will consume only one-eighth the
number of bytes as the external representation does.

IBM39271 S Numeric constants must be real,
unscaled and fixed.

Explanation: Any complex, scaled or floating point
constant will be converted to an integer value.

%a = 3.1415;

IBM39281 S Only B, BX and X string suffixes are
supported.

Explanation: G, GX, M, A and E string suffixes are not
supported.

IBM39491 S Parameter name identifier appears more
than once in parameter list.

Explanation: Each identifier in a parameter list must
be unique.

a: proc(b, ¢, b);

IBM39301 S Invalid syntax in statement-form of
procedure invocation. Text up to next
semicolon will be ignored.

Explanation: In the invocation of a statement-form
procedure, all characters that are not part of comments
or key names should be enclosed in parentheses
following one of the keys. For example, the "+" in the
display statement below should not be present.

%a: proc(x) stmt returns(char);
dcl x char;
return(1729);

%end;

%act a;

display(a + x(5);)3

IBM39561 S ITERATE is valid only for iterative
DO-groups.

Explanation: ITERATE is not valid inside type-I do
groups.

IBM39311 S Under the FIXED(DEC) option, decimal
constants must have no more than 5
digits.

Explanation: Under the FIXED(BIN), decimal

constants that represent any valid FIXED BIN(31)
number are supported.

IBM39431 S The number of error messages allowed
by the FLAG option has been exceeded.

Explanation: Compilation will terminate when the
number of messages has exceeded the limit set in the
FLAG compiler option.

IBM39481 S condition-name condition with
ONCODE=oncode-value raised while
evaluating expression.

Explanation: Evaluation of an expression raised the
named condition.

%a = a / 0;

IBM39571 S RETURN statement outside of a
PROCEDURE is invalid.

Explanation: RETURN statements are valid only
inside procedures.

IBM39581 S INCLUDE statement inside of a
PROCEDURE is invalid.

Explanation: INCLUDE statements are permitted only
outside any preprocessor procedures.

%a: proc;
include sample;
%end;

IBM39591 S Length of parameter exceeds 32767
bytes.

Explanation: Parameters to macro procedures must be
no longer than 32767 bytes.

IBM39601 S End-of-source has been encountered
after an unmatched comment marker.

Explanation: An end-of-comment marker is probably
missing.

IBM39611 S End-of-source has been encountered
after an unmatched quote.

Explanation: A closing quote is probably missing.

IBM39621 S Replacement value contains no
end-of-comment delimiter. A comment
delimiter will be assumed at the end of
the replacement value.

Explanation: An end-of-comment marker is probably
missing.

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 113

IBM39631 S Replacement value contains no
end-of-string delimiter. A string
delimiter will be assumed at the end of
the replacement value.

Explanation: A closing quote is probably missing.

IBM39751 S Every shift-in character within a string
generated for rescan must have a
matching shift-out character within that
same string.

Explanation: DBCS shift codes must be paired.

IBM39641 S ANSWER statement outside of a
PROCEDURE is invalid.

Explanation: ANSWER statements are valid only
inside procedures.

IBM39651 S ANSWER statement inside of a
PROCEDURE with RETURNS is
invalid.

Explanation: ANSWER statements are not valid inside
functions.

%a: proc returns(char);
answer("this is invalid);
return('this is ok however’);

%end;

%b: proc;
answer('this is valid);
%end;

IBM39661 S Source has caused too many rescans.

Explanation: A rescan of a replacement string or a
rescan of a string returned by a preprocessor has
caused further replacement leading to another rescan
etc., and the maximum depth of rescanning was
exceeded.

For instance, the following macro, which is meant to
count the number of dcl statements in a compilation,
would produce this message. If the %ACTIVATE
statement specified NORESCAN, it would work
correctly.

%dc1 dcl_Count fixed;
%dc1_Count = 0;

%dc1: proc returns(char);
dcl_count = dc1_count + 1;
return('dcl’);

%end;

%activate dcl;

IBM39741 S Every shift-in character after the left
margin of a source line must have a
matching shift-out character before the
right margin of the same line.

Explanation: DBCS shift codes must be paired.

114 PL/1 Messages and Codes

IBM39761 S DBCS characters are allowed only in G
and M constants.

Explanation: Hex strings (strings ending in one of the
suffixes X, BX, B4, GX or XN), bit strings, (strings
ending in the suffix B), and character strings not
ending in the suffix M must contain only SBCS
characters.

IBM39771 S SBCS characters are not allowed in G
constants.

Explanation: Mixed SBCS and DBCS is allowed only
in M constants.

IBM39781 S Invalid use of SBCS encoded as DBCS.

Explanation: Outside of comments, SBCS can be
encoded as DBCS only as part of an identifier.

IBM39801 S Recursion of procedures is not allowed.

Explanation: A procedure must not invoke itself
directly or indirectly.

IBM39811 S BUILTIN function may not be used
outside a procedure.

Explanation: The named built-in function may be
used only inside procedures.

IBM39821 S Procedure procedure-name is undefined
and cannot be invoked.

Explanation: A procedure must be defined (correctly)
before it can be invoked.

IBM39831 S Premature end-of-source in scan.

Explanation: The source ended during a scan when a
right parenthesis or semicolon was required.

%a: proc() stmt returns(char);
return('1729");

%end;

%dc1 a entry;

a /* and no more source follows */

IBM39841 S File filename could not be opened.

Explanation: The named source file could not be
opened. Make sure that the file is named correctly, that
it exists and that it is readable.

IBM39971 S Internal preprocessor error: no WHEN
clause satisfied within module name

Explanation: This message indicates that there is an
error in the macro preprocessor. Please report the
problem to IBM.

IBM39981 S Internal preprocessor error: protection
exception in module name

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM39991 U note

Explanation: This message is used by %NOTE
statements with a return code of 16.

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999)

115

116 PL/1 Messages and Codes

Chapter 8. Code Generation Messages (5000-5999)

1IBM5001 INTERNAL COMPILER ERROR: text
Explanation:

An internal compiler error occurred during
compilation.

Contact your Service Representative.

1IBM5002 Virtual storage exceeded.

Explanation:

The compiler ran out of memory trying to compile the
file. This sometimes happens with large files or
programs with large functions. Note that very large
programs limit the amount of optimization that can be
done.

Shut down any large processes that are running, ensure
your swap path is large enough, turn off optimization,
and redefine your virtual storage to a larger size. You
can also divide the file into several small sections or
shorten the function.

1BM5003 text
Explanation:

General error message.

IBM5031 Unable to open file filename.

Explanation:
The compiler could not open the specified file.

Ensure the file name is correct. Ensure that the correct
file is specified. If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

1BM5032 An error occurred while reading file

filename.
Explanation:

The compiler detected an error while reading from the
specified file.

Ensure that the correct file is being read and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly.

IBM5033 An error occurred while writing to file

filename.

Explanation:

© Copyright IBM Corp. 1999, 2008

The compiler detected an error while writing to the
specified file.

Ensure that the correct file is specified. If the file is
located on a LAN drive, ensure the LAN is working

properly.

IBM5034 Read-only pointer initialization of
dynamically allocated object name is not
valid.

Explanation:

The value of a read-only pointer must be known at
compile time; a pointer cannot be read-only and point
to a dynamically allocated object at the same time
because the address of the pointee is known at run
time only.

Modify the code so that the pointer is initialized with a
read-only value or make the pointer read-write.

Function function-name exceeds size
limit.

IBM5051

Explanation:

The ACU for the function exceeds the LIMIT specified
in the INLINE suboption.

Increase LIMIT if feasible to do so.

IBM5052 Function function-name is (or grows) too

large to be inlined.
Explanation:

A function is too large to be inlined into another
function.

Some calls to function function-name
cannot be inlined.

IBM5053

Explanation:

At least one call is either directly recursive, or the
wrong number of parameters were specified.

Check all calls to the function specified and make that
number of parameters match the function definition.

IBM5054 Automatic storage for function

function-name increased to over value.
Explanation:

The size of automatic storage for function increased by
at least 4 KB due to inlining.

117

Avoid inlining of functions which have large automatic
storage.

IBM5055 Parameter area overflow while
compiling function-name. Parameter area
size exceeds the allowable limit of value.

Explanation:

The parameter area for a function resides in the first 4K
of automatic storage for that function. This message
indicates that the parameter area cannot fit into 4K.

Reduce the size of the parameter area by passing fewer
parameters or by passing the address of a large
structure rather than the structure itself.

IBM5057 name section size cannot exceed 16777215

bytes. Total section size is value bytes.
Explanation:
A Data or Code section cannot exceed 16M in size.

Partition input source files into multiple source files
which can be compiled separately.

1BM5101 Maximum spill size of value is exceeded

in function function-name.
Explanation:

Spill size is the size of the spill area. Spill area is the
storage allocated if the number of machine registers is
not sufficient for program translation.

Reduce the complexity of the program and recompile.

1BM5102 Spill size for function function-name is
not sufficient. Recompile specifying
option SPILL(n) where lower-limit < n <=
upper-limit.

Explanation:

Spill size is the size of the spill area. Spill area is the
storage allocated if the number of machine registers is
not sufficient for program translation.

Recompile using the SPILL(n) option lower-limit < n <=
upper-limit or with a different OPT level.

IBM5103 Internal error while compiling function

function-name text.
Explanation:

An internal compiler error occurred during
compilation.

Contact your Service Representative or compile with a
different OPT level.

118 PL/1 Messages and Codes

IBM5104 Internal error while compiling function
function-name text. Compilation
terminated.

Explanation:

An internal compiler error of high severity has
occurred.

Contact your Service Representative. Be prepared to
quote the text of this message.

IBM5105 Constant table overflow compiling
function function-name. Compilation
terminated.

Explanation:

The constant table is the table that stores all the integer
and floating point constants.

Reduce the number of constants in the program and
recompile.

IBM5106 Instruction in function function-name on
line value is too complex. Compilation
terminated.

Explanation:

The specified instruction is too complex to be
optimized.

Reduce the complexity of the instruction and recompile,
or recompile with a different OPT level.

IBM5107 Program too complex in function

function-name.
Explanation:
The specified function is too complex to be optimized.

Reduce the complexity of the program and recompile,
or recompile with a different OPT level.

IBM5108 Expression too complex in function
function-name. Some optimizations not
performed.

Explanation:

The specified expression is too complex to be
optimized.

Reduce the complexity of the expression or compile
with a different OPT level.

IBM5109 Infinite loop detected in function

function-name. Program may not stop.
Explanation:

A loop which may be infinite has been detected in the
given function, and your code may need to be changed.
However, sometimes the compiler will issue this

message when your code is OK. For example, if the
loop is exited via a GOTO out of an ON-unit, the
compiler may issue this message although you would
not need to change your code.

Recode the loop so that it will end.

IBM5110 Loop too complex in function
function-name. Some optimizations not
performed.

Explanation:

The specified loop is too complex to be optimized.

No action is required.

IBM5111 Division by zero detected in function
function-name. Runtime exception may
occur.

Explanation:

A division by zero has been detected in the given
function.

Recode the expression to eliminate the divide by zero.

IBM5112 Exponent is non-positive with zero as
base in function function-name. Runtime
exception may occur.

Explanation:

This is a possible floating-point divide by zero.

Recode the expression to eliminate the divide by zero.

control flow. Edges are the possible paths of control
flow between basic blocks.

Reduce the complexity of the program and recompile.

IBM5116 Too many expressions in function
function-name; number of symbolic
registers exceeds value.

Explanation:

Symbolic registers are the internal representation of the
results of computations.

Reduce the complexity of the program and recompile.

IBM5117 Too many expressions in function
function-name; number of computation
table entries exceeds value.

Explanation:

The computation table contains all instructions
generated in the translation of a program.

Reduce the complexity of the program and recompile.

IBM5118 Too many instructions in function
function-name; number of procedure list
entries exceeds value.

Explanation:

The procedure list is the list of all instructions
generated by the translation of each subprogram.

Reduce the complexity of the program and recompile.

IBM5113 Unsigned division by zero detected in
function function-name. Runtime
exception may occur.

Explanation:

A division by zero has been detected in the given
function.

Recode the expression to eliminate the divide by zero.

IBM5119 Number of labels in function

function-name exceeds value.
Explanation:

Labels are used whenever the execution path of the
program could change; for example: if statements,
switch statements, loops or conditional expressions.

Reduce the complexity of the program and recompile.

IBM5114 Internal error while compiling function

function-name text.
Explanation:
An internal compiler error of low severity has occurred.

Contact your Service Representative or compile with a
different OPT level.

IBM5115 Control flow too complex in function
function-name; number of basic blocks or
edges exceeds value.

Explanation:

Basic blocks are segments of executable code without

IBM5120 Too many symbols in function
function-name; number of dictionary
entries exceeds value.

Explanation:

Dictionary entries are used for variables, aggregate
members, string literals, pointer dereferences, function
names and internal compiler symbols.

Compile the program at a lower level of optimization
or simplify the program by reducing the number of
variables or expressions.

Chapter 8. Code Generation Messages (5000-5999) 119

IBM5121 Program is too complex in function
function-name. Specify MAXMEM option
value greater than value.

Explanation:

Some optimizations not performed.

Recompile specifying option MAXMEM with the
suggested value for additional optimization.

IBM5122 Parameter area overflow while
compiling name. Parameter area size
exceeds value.

Explanation:

The parameter area is used to pass parameters when
calling functions. Its size depends on the number of
reference parameters, the number and size of value
parameters, and on the linkage used.

Reduce the size of the parameter area by passing fewer
parameters or by passing the address of a large
structure rather than the structure itself.

IBM5123 Spill size for function function-name is
exceeded. Recompile specifying option
SPILL(n) where lower-limit < n <=
upper-limit for faster spill code.
Explanation:

Spill size is the reserved size of the primary spill area.
Spill area is the storage allocated if the number of
machine registers is not sufficient for program
translation.

Recompile using the SPILL(n) option with lower-limit <
n <= upper-limit for improved spill code generation.

IBM5130 An error occurred while opening file

filename.
Explanation:
The compiler could not open the specified file.

Ensure the file name is correct. Ensure that the correct
file is being opened and has not been damaged. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

IBM5131 An error occurred while writing file

filename.
Explanation:
The compiler could not read from the specified file.

Ensure the file name is correct. Ensure that the correct
file is being written to and has not been damaged. If
the file is located on a LAN drive, ensure the LAN is

120 PL/I Messages and Codes

working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

IBM5132 An error occurred while closing file

filename.
Explanation:
The compiler could not write to the specified file.

Ensure the file name is correct. Ensure that the correct
file is being closed and has not been damaged. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

IBM5141 Automatic area for function-name is too

large
Explanation:

Automatic data resides in the stack; the stack size is
limited by the target machine addressabilty.

Avoid large structures and large arrays as local
variables; try using dynamically allocated data.
Alternatively, try to break down the procedure into
several smaller procedures.

Chapter 9. SQL Preprocessor Messages (7000-7999)

IBM70211 E No PROCEDURE or PACKAGE
statements were found.

Explanation: The SQL preprocessor expects to find
either a PROCEDURE statement or a PACKAGE
statement in the program.

IBM70221 W No SQL statements were found in the
program.

Explanation: The source program contains no SQL
statements.

IBM70371 | DECLARE TABLE statement is ignored.

Explanation: The DECLARE TABLE statement is
treated as a documentation only statement. It is ignored
and does not have any effect on the program.

IBM70381 I DECLARE STATEMENT statement is
ignored.

Explanation: The DECLARE STATEMENT statement
is treated as a documentation only statement. It is
ignored and does not have any effect on the program.

IBM70281 W Reference var-name is ambiguous.

Explanation: All references must be unambiguous.

IBM70291 E Host structure var-name contains a
non-scalar member.

Explanation: A host structure must contain only scalar
members.

IBM70401 | sgl-message

Explanation: An SQL informational message has been
returned.

IBM70411 W sql-message

Explanation: An SQL warning message has been
returned.

IBM70301 E The indicator variable var-name is not
declared as a scalar.

Explanation: An indicator variable must be declared
as FIXED BIN(15).

IBM70311 E Some members of the indicator variable
array var-name are out of sequence.

Explanation: Indicator variables specified in an array
must be sequential beginning with 1.

IBM70321 I SQL comment is used.

Explanation: The characters after the two hyphens (--)
toward the end of the line are treated as comments.

IBM70341 W Host variables can not be arrays.

Explanation: Arrays as host variables are not allowed.

IBM70351 E Host variable var-name does not have a
valid host data type.

Explanation: Invalid host data type used for host
variable.

IBM70361 E Host structure member var-name does
not have a valid host data type.

Explanation: Invalid host data type used for host
structure member.

© Copyright IBM Corp. 1999, 2008

IBM70421 E sql-message

Explanation: An SQL error message has been
returned.

IBM70431 S sql-message

Explanation: An SQL severe error message has been
returned.

IBM70441 U sql-message

Explanation:

IBM70451 U Fatal SQL Error var-name was returned
from the Database.

Explanation: A fatal database error occurred. Check to
see that the database is installed correctly.

IBM70461 U Fatal Error - PL/lI User DB2 Logon Exit
failed to load.

Explanation: A fatal SQL Preprocessor occurred.
Check that the file IBMSUDB2.DLL is present.

IBM70471 U Fatal Error - PL/l User DB2 Logon Exit
caused an error.

Explanation: A fatal SQL Preprocessor occurred.
Contact the provider of IBMSUDB2.DLL.

121

IBM70501 U SQL Preprocessor Internal Error
error_number occurred.

Explanation: The SQL Preprocessor detects an error in
its own code.

IBM70611 E The host variable var-name is undefined.

Explanation: The host variable "<name>" is not
declared any DECLARE SECTION. The statement
cannot be processed.

IBM70531 E The string beginning with var-name does
not have an ending string delimiter.

Explanation: Examine the statement for missing end
delimiters for the indicated string. The statement
cannot be processed.

IBM70621 W The host variable var-name is already
defined.

Explanation: The host variable "<name>" has already
been declared in a DECLARE SECTION. The statement
cannot be processed.

IBM70541 E The comment is not terminated.

Explanation: The comment is not terminated properly.
The statement cannot be processed.

IBM70551 E File . var-name could not be opened.

Explanation: The file "<filename>" was requested but
could not be opened. The source program could not be
processed.

IBM70561 E A memory allocation error has occurred.

Explanation: During processing, there was not enough
memory to continue processing.

IBM70571 W Precompilation has completed with
var-name errors and var-name warnings.

Explanation: The precompilation has completed with
the stated number of errors and warnings.

IBM70581 E The statement is too long or too
complex.

Explanation: The statement could not be processed
because it exceeds a system limit for either length or
complexity. The statement cannot be processed.

IBM70591 E An unexpected token var-name was
found following var-name . Expected
tokens may include: var-name .

Explanation: The syntax error in the SQL statement

was detected at the specified token following the text
"<text>". The "<text>" field indicates the characters of
the SQL statement that preceded the token that is not
valid. The statement cannot be processed.

IBM70601 E The name var-name is too long. The
maximum length is var-name .

Explanation: The name returned as "<name>" is too
long. The maximum length permitted for names of that
type is indicated by "<length>". The statement cannot
be processed.

122 PL/I Messages and Codes

IBM70631 E The limit on the number of host
variables has been reached.

Explanation: The limit on the number of host
variables is dependent on how many will fit in the
HOST_VARS column of SYSPLAN. This limit has been
reached. The source program could not be processed.

IBM70641 E The host variable var-name is incorrectly
declared.

Explanation: The host variable "<name>" is not
declared correctly. Some possible reasons may be that
the type specified is not one that is supported, that the
length specification is 0, negative, or too large, that an
initializer is used, or that an incorrect syntax is
specified. The variable remains undefined. The source
program could not be processed.

IBM70651 E No END DECLARE SECTION was
found after a BEGIN DECLARE
SECTION.

Explanation: The end of input was reached during
processing of a DECLARE SECTION. The source
program could not be processed.

IBM70661 E The "SQLAINIT” function has not been
called.

Explanation: Precompiler Services must be initialized
before the requested function call can be processed. The
source program could not be processed.

IBM70671 E Unable to use file var-name .

Explanation: While reading or writing file "<name>",
an error was encountered. The source program could
not be processed.

IBM70681 E The load of the DB2 Precompiler
Services module (DSNHPSRV) failed.

Explanation: An error was encountered while trying
to load the DB2 Precompiler Services module
(DSNHPSRV). Check that the dataset concatenation in

your job is correct. The source program could not be
processed.

IBM70691 E The DBRM Library was not found.

Explanation: An error was encountered while trying
to locate the DBRM library. Check that there is a
DBRMLIB DD card included in your job. The source
program could not be processed.

IBM70701 E The FLOAT option is inconsistent.

Explanation: The PL/1 Compiler option
DEFAULT(IEEE | HEXADEC) does not match the PL/I
SQL Preprocessor option FLOAT(IEEE | S390). Make
sure they are consistent and resubmit your job. The
source program could not be processed.

Chapter 9. SQL Preprocessor Messages (7000-7999)

123

124 PL/I Messages and Codes

Chapter 10. Condition codes

Condition codes listed in this section reflect an aggregate of condition codes
generated by all implementations. Some might not be generated for a particular
platform.

The following is a summary of all condition codes in numerical sequence.

Conditions 1 through 50

3

10
20
21

22

23

24
40
4

© Copyright IBM Corp. 1999, 2008

This condition is raised if, in a SELECT group, no WHEN clause is selected
and no OTHERWISE clause is present.

SIGNAL FINISH, or STOP statement executed.
SIGNAL ERROR statement executed.

SIGNAL NAME statement executed.

SIGNAL RECORD statement executed.

Record variable smaller than record size. Either:

* The record is larger than the variable in a READ INTO statement; the
remainder of the record is lost.

* The record length specified for a file with fixed-length records is larger
than the variable in a WRITE, REWRITE, or LOCATE statement; the
remainder of the record is undefined. If the variable is a varying-length
string, RECORD is not raised if the SCALARVARYING option is applied
to the file.

Record variable larger than record size. Either:

* The record length specified for a file with fixed-length records is smaller
than the variable in a READ INTO statement; the remainder of the
variable is undefined. If the variable is a varying-length string, RECORD
is not raised if the SCALARVARYING option is applied to the file.

* The maximum record length is smaller than the variable in a WRITE,
REWRITE, or LOCATE statement. For WRITE or REWRITE, the
remainder of the variable is lost; for LOCATE, the variable is not
transmitted.

* The variable in a WRITE or REWRITE statement indicates a zero length;
no transmission occurs. If the variable is a varying-length string,
RECORD is not raised if the SCALARVARYING option is applied to the
file.

Record variable length is either zero or too short to contain the embedded
key.

The variable in a WRITE or REWRITE statement is too short to contain the
data set embedded key; no transmission occurs. (This case currently
applies only to indexed key-sequenced data sets.)

Zero length record was read from a REGIONAL data set.
SIGNAL TRANSMIT statement executed.

Uncorrectable transmission error in output data set.

125

Condition codes

42
43
44
45

46
50

Uncorrectable transmission error in input data set.
Uncorrectable transmission error on output to index set.
Uncorrectable transmission error on input from index set.

Uncorrectable transmission error on output to indexed consecutive data
set.

Uncorrectable transmission error on input from consecutive data set.
SIGNAL KEY statement executed.

Condition codes 51 through 100

126

51
52

53

54

55

56

57
58

70
80
81

82

83

84

85

86

87

PL/1 Messages and Codes

Key specified cannot be found.

Attempt to add keyed record that has same key as a record already present
in data set; or, in a REGIONAL(1) data set, attempt to write into a region
already containing a record.

Value of expression specified in KEYFROM option during sequential
creation of INDEXED or REGIONAL data set is less than value of
previously specified key or region number.

Key conversion error, possibly due to region number not being numeric
character.

Key specification is null string or begins (8)'1'B or a change of embedded
key has occurred on a sequential REWRITE[FROM] for an INDEXED or
key-sequenced data set.

Attempt to access a record using a key that is outside the data set limits.
No space available to add a keyed record on INDEXED insert.

Key of record to be added lies outside the range(s) specified for the data
set.

SIGNAL ENDFILE statement executed.
SIGNAL UNDEFINEDFILE statement executed.

Conflict in file attributes exists at open time between attributes in
DECLARE statement and those in explicit or implicit OPEN statement.

Conflict between file attributes and physical organization of data set (for
example, between file organization and device type), or indexed data set
has not been loaded.

After merging ENVIRONMENT options with DD statement and data set
label, data set specification is incomplete; for example, block size or record
format has not been specified.

No DD statement associating file with a data set.

During initialization of a DIRECT OUTPUT file associated with a
REGIONAL data set, an input/output error occurred.

LINESIZE greater than implementation-defined maximum, or invalid value
in an ENVIRONMENT option.

After merging ENVIRONMENT options with DD statement and data set
label, conflicts exist in data set specification; the value of LRECL, BLKSIZE
or RECSIZE are incompatible with one another or the DCB FUNCTION
specified.

88

89
90
91
92
93

94
95
96
99

Condition codes

After merging ENVIRONMENT options with DD statement and data set
label, conflicts exist in data set specification; the resulting combination of
MODE/FUNCTION and record format are invalid.

Password invalid or not specified.

SIGNAL ENDPAGE statement executed.

ENVIRONMENT option invalid for file accessing indexed data set.
The requested data set was not available.

Error detected by the operating system while opening a data set.

Subcodel Meaning

50 A nonexistent ISAM file is being opened for input.

51 An unexpected error occurred when opening an ISAM file.
Subcode2 gives the return code from ISAM.

52,53 An unexpected error occurred when opening a native or
REGIONAL(2) file.

54 A nonexistent BTRIEVE file is being opened for input.

55 An unexpected error occurred when opening a BTRIEVE
file. Subcode?2 gives the return code from BTRIEVE.

56 An unexpected error occurred when opening a DDM file.

57,58 An unexpected error occurred when opening a DDM

sequential, DDM relative or DDM indexed file. Subcode2
gives the return code from DDM.

59 An attempt was made to open a file that was already open.

60 A file of invalid type is being opened. An example of this
is opening a VSAM file under z/OS UNIX System Services.
VSAM files are not supported under z/OS UNIX System

Services.

66 Open of a VSAM file failed. Subcode2 gives the feedback
code.

76 A retry attempt at opening an SFS file failed.

79 An SFS file opened for input or update could not be found.

REUSE specified for a nonreusable data set.

Alternate index specified for an index data set is empty.
Incorrect environment variable.

File cannot be opened.

Subcodel Meaning

lor?2 The extended attributes (EAs) for an existing
REGIONAL(Y) file could not be located and no
RECCOUNT or RECSIZE values were given via the
ENVIRONMENT or SET DD option.

3 A positioning error occurred for a sequential output file.

4 TYPE (FIXED) was specified for a native file, but the file
size was not a multiple of RECSIZE.

Chapter 10. Condition codes 127

Condition codes

128

PL/1 Messages and Codes

5o0r 13
6-12
21-23

24
25

26
27
28-30
31
35

36
37
38
40

41
42
43
60

62

63

64

65

66

A positioning error occurred for a REGIONAL(1) file.
A positioning error occurred for an output file.

AMTHD(DDM) was specified on the SET DD statement for
a file, but the DDM DDLs (DUBRUN and DUBLDM) could
not be found or accessed.

Incorrect extended attribute on a DDM file.

The ORGANIZATION option of the ENVIRONMENT
attribute conflicts with the type of data set (DDM or
native).

Conflicts exist with how the file is being used.

A composite key was detected with a keyed-opening.
A new DDM file could not be created.

A positioning error occurred for a DDM file.

AMTHD(BTRIEVE) was specified on the DD environment
variable but the BTRIEVE loadable component
(BTRCALLS) could not be found or could not be accessed
on the system.

Unexpected error occurred when opening a BTRIEVE file.
A new BTRIEVE file could not be created.
A positioning error occurred for a BTRIEVE file.

AMTHD(ISAM) was specified on the DD environment
variable but the ISAM non-multithreading loadable
components (IBMWS20F and IBMWS20G) or the ISAM
multithreading loadable components (IBMWMZ20F and
IBMWM20G) could not be found or could not be accessed
on the system.

Unexpected error occurred when opening an ISAM file.
A new ISAM file could not be created.
A positioning error occurred for an ISAM file.

A file of invalid type is being opened. An example of this
is opening a VSAM file under z/OS UNIX System Services.
VSAM files are not supported under z/OS UNIX System
Services.

Query for file information failed for a VSAM file under
MVS batch.

A non-VSAM file is being opened as a VSAM file under
MVS batch.

A VSAM file is being opened with an invalid type (that is,
the file is not a KSDS, ESDS or RRDS file).

A VSAM file is being opened in a non-MVS batch
environment. VSAM files are supported only under MVS
batch.

Open of a VSAM file failed. Subcode 2 gives the feedback
code.

Condition codes

67 A VSAM file is being opened as a non-VSAM file under
MVS batch.

68 An invalid VSAM file is being opened.

69 Query for file information failed for a native file under
MVS batch.

70 Positioning for a VSAM file failed.

71 A VSAM file is being opened under a non-MVS batch
environment.

72 An invalid PL/I file is being opened.

73 The SFS library cannot be loaded.

74 The DCE library cannot be loaded.

75 A new SFS file could not be created.

77 Positioning for an SFS file failed.

78 Not enough storage below the line.

80 There was an error processing an empty VSAM file opened

for update. Oncode 82 should have been issued.

Condition codes 100 through 520

150

151
290

300

310

320

330

340

341

350

360

361
362
400

SIGNAL STRINGSIZE statement executed or STRINGSIZE condition
occurred.

Truncation occurred during assignment of a mixed character string.

SIGNAL INVALIDOP statement was executed or INVALIDOP exception
occurred.

SIGNAL OVERFLOW statement executed or OVERFLOW condition
occurred.

SIGNAL FIXEDOVERFLOW statement executed or FIXEDOVERFLOW
condition occurred.

SIGNAL ZERODIVIDE statement executed or ZERODIVIDE condition
occurred.

SIGNAL UNDERFLOW statement executed or UNDERFLOW condition
occurred.

SIGNAL SIZE statement executed; or high-order nonzero digits have been
lost in an assignment to a variable or temporary, or significant digits have
been lost in an input/output operation.

High order nonzero digits have been lost in an input/output operation.

SIGNAL STRINGRANGE statement executed or STRINGRANGE condition
occurred.

Attempt to allocate a based variable within an area that contains
insufficient free storage for allocation to be made.

Insufficient space in target area for assignment of source area.
SIGNAL AREA statement executed.
SIGNAL ATTENTION statement executed.

Chapter 10. Condition codes 129

Condition codes

450
451

500
520

SIGNAL STORAGE statement executed.

ALLOCATE statement or ALLOCATE built-in function failed; insufficient
storage to satisfy request.

SIGNAL CONDITION (name) statement executed.

SIGNAL SUBSCRIPTRANGE statement executed, or subscript has been
evaluated and found to lie outside its specified bounds.

Condition codes 600 through 650

130

600
601
603
604
605

606
607
608

609
610
611

612
613

614

615
616

617

618
619

620

621
622
623

624

PL/1 Messages and Codes

SIGNAL CONVERSION statement executed.

Invalid conversion attempted during input/output of a character string.
Error during processing of an F-format item for a GET STRING statement.
Error during processing of an F-format item for a GET FILE statement.

Error during processing of an F-format item for a GET FILE statement
following a TRANSMIT condition.

Error during processing of an E-format item for a GET STRING statement.
Error during processing of an E-format item for a GET FILE statement.

Error during processing of an E-format item for a GET FILE statement
following a TRANSMIT condition.

Error during processing of a B-format item for a GET STRING statement.
Error during processing of a B-format item for a GET FILE statement.

Error during processing of a B-format item for a GET FILE statement
following TRANSMIT condition.

Error during character value to arithmetic conversion.

Error during character value to arithmetic conversion for a GET or PUT
FILE statement.

Error during character value to arithmetic conversion for a GET or PUT
FILE statement following a TRANSMIT condition.

Error during character value to bit value conversion.

Error during character value to bit value conversion for a GET or PUT
FILE statement.

Error during character value to bit value conversion for a GET or PUT
FILE statement following a TRANSMIT condition.

Error during character value to picture conversion.

Error during character value to picture conversion for a GET or PUT FILE
statement.

Error during character value to picture conversion for a GET or PUT FILE
statement following a TRANSMIT condition.

Error in decimal P-format item for a GET STRING statement.
Error in decimal P-format input for a GET FILE statement.

Error in decimal P-format input for a GET FILE statement following a
TRANSMIT condition.

Error in character P-format input for a GET FILE statement.

625
626

627

628

629

633
634
635

640
641
642

643

644

645

646

647

648

649

650

Condition codes

Error exists in character P-format input for a GET FILE statement.

Error exists in character P-format input for a GET FILE statement following
a TRANSMIT condition.

A graphic or mixed character string encountered in a nongraphic
environment.

A graphic or mixed character string encountered in a nongraphic
environment on input.

A graphic or mixed character string encountered in a nongraphic
environment on input after TRANSMIT was detected.

An invalid character detected in a X, BX, or GX string constant.
An invalid character detected in a X, BX, or GX string constant on input.

An invalid character detected in a X, BX, or GX string constant on input
after TRANSMIT was detected.

Conversion from picture contained an invalid character.
Conversion from picture contained an invalid character on input or output.

Conversion from picture contained an invalid character on input after
TRANSMIT was detected.

Error during processing of a graphic F-format item for a GET STRING
statement.

Error during processing of a graphic F-format item for a GET FILE
statement.

Error during processing of a graphic F-format item for a GET FILE
statement following a TRANSMIT condition.

Error during processing of a graphic E-format item for a GET STRING
statement.

Error during processing of a graphic E-format item for a GET FILE
statement.

Error during processing of a graphic E-format item for a GET FILE
statement following a TRANSMIT condition.

Error during processing of a graphic B-format item for a GET STRING
statement.

Error during processing of a graphic B-format item for a GET FILE
statement.

Condition codes 651 through 672

651

652
653

654

655

Error during processing of a graphic B-format item for a GET FILE
statement following TRANSMIT condition.

Error during graphic character value to arithmetic conversion.

Error during graphic character value to arithmetic conversion for a GET or
PUT FILE statement.

Error during graphic character value to arithmetic conversion for a GET or
PUT FILE statement following a TRANSMIT condition.

Error during graphic character value to bit value conversion.

Chapter 10. Condition codes 131

Condition codes

132

656

657

658
659

660

661
662
663

664
665
666

667
668
669

670
671
672
673
674

675

676
677

678

679
680

681

682

683

PL/1 Messages and Codes

Error during graphic character value to bit value conversion for a GET or
PUT FILE statement.

Error during graphic character value to bit value conversion for a GET or
PUT FILE statement following a TRANSMIT condition.

Error during graphic character value to picture conversion.

Error during graphic character value to picture conversion for a GET or
PUT FILE statement.

Error during graphic character value to picture conversion for a GET or
PUT FILE statement following a TRANSMIT condition.

Error in decimal graphic P-format item for a GET STRING statement.
Error in decimal graphic P-format input for a GET FILE statement.

Error in decimal graphic P-format input for a GET FILE statement
following a TRANSMIT condition.

Error in character graphic P-format input for a GET FILE statement.
Error exists in character graphic P-format input for a GET FILE statement.

Error exists in character graphic P-format input for a GET FILE statement
following a TRANSMIT condition.

No SBCS equivalent in the GRAPHIC conversion to character.
No SBCS equivalent in the GRAPHIC conversion to character on input.

No SBCS equivalent in the GRAPHIC conversion to character on input
following a TRANSMIT condition.

Unknown source attributes.

Unknown source attributes on input.

Unknown source attributes on input following a TRANSMIT condition.
Error during WIDECHAR value to character conversion.

Error during WIDECHAR value to character conversion for a GET or PUT
FILE statement.

Error during WIDECHAR value to character conversion for a GET or PUT
FILE statement following a TRANSMIT condition.

Error during WIDECHAR value to arithmetic conversion.

Error during WIDECHAR value to arithmetic conversion for a GET or PUT
FILE statement.

Error during WIDECHAR value to arithmetic conversion for a GET or PUT
FILE statement following a TRANSMIT condition.

Error during WIDECHAR value to bit value conversion.

Error during WIDECHAR value to bit value conversion for a GET or PUT
FILE statement.

Error during WIDECHAR value to bit value conversion for a GET or PUT
FILE statement following a TRANSMIT condition.

Error during WIDECHAR value to picture conversion.

Error during WIDECHAR value to picture conversion for a GET or PUT
FILE statement.

684

Condition codes

Error during WIDECHAR value to picture conversion for a GET or PUT
FILE statement following a TRANSMIT condition.

Condition codes 1002 through 1107

1002
1003

1004
1005

1007
1008

1009

1010
1011

1013

1014

1015

1016

1018

1019
1020

1021
1022
1023
1024
1025
1026
1027
1028
1029

GET or PUT STRING specifies data exceeding size of string.

Further output prevented by TRANSMIT or KEY conditions previously
raised for the data set.

Attempt to use PAGE, LINE, or SKIP <= 0 for nonprintable file.

In a DISPLAY (expression) REPLY (character-reference) statement,
expression or character-reference is zero length.

A REWRITE or a DELETE statement not preceded by a READ.

Unrecognized field preceding the assignment symbol in a string specified
in a GET STRING DATA statement.

An input/output statement specifies an operation or an option which
conflicts with the file attributes.

A built-in function or pseudovariable referenced an unopened file.

Data management detected an input/output error but is unable to provide
any information about its cause.

Previous input operation incomplete; REWRITE or DELETE statement
specifies data which has been previously read in by a READ statement
with an EVENT option, and no corresponding WAIT has been executed.

Attempt to initiate further input/output operation when number of
incomplete operations equals number specified by ENVIRONMENT option
NCP(n) or by default.

Event variable specified for an input/output operation when already in
use.

After UNDEFINEDFILE condition raised as a result of an unsuccessful
attempt to implicitly open a file, the file was found unopened on normal
return from the ON-unit.

End of file or string encountered in data before end of data-list or in
edit-directed transmission format list.

Attempt to close file not opened in current process.

Further input/output attempted before WAIT statement executed to ensure
completion of previous READ.

Attempt to access a record locked by another file in this process.
Unable to extend indexed data set.

Exclusive file closed while records still locked in a subtask
Incorrect sequence of 1/0 operations on device-associated file.
Insufficient virtual storage available to complete request.

No position established in index data set.

Record control interval already held in exclusive control.
Requested record lies on an unmounted volume.

Attempt to reposition in index data set failed.

Chapter 10. Condition codes 133

Condition codes

1030
1031
1040
1041
1042
1102

1104
1105
1106
1107

An error occurred during index upgrade on a index data set.

Invalid sequential write attempted on index data set.

A data set open for output used all available space.

An attempt was made to write a record containing a record delimiter.
Record in data set is not properly delimited.

An error occurred in storage management. Storage to be freed was pointed
to by an invalid address.

An internal error occurred in the library.
Unable to create an object window.
Insufficient space available to satisfy a storage allocation request.

There was a problem during free storage processing.

Condition codes 1500 through 1550

134

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1514

1515

PL/1 Messages and Codes

Computational error; short floating-point argument of SQRT built-in
function is less than zero.

Computational error; long floating-point argument of SQRT built-in
function is less than zero.

Computational error; extended floating-point argument of SQRT built-in
function is less than zero.

Computational error in LOG, LOG2, or LOG10 built-in function; extended
floating-point argument is less than zero.

Computational error in LOG, LOG2, or LOG10 built-in function; short
floating-point argument is less than zero.

Computational error in LOG, LOG2 or LOG10 built-in function; long
floating-point argument is less than zero.

Computational error in SIN, COS, SIND, or COSD built-in function;
absolute value of short floating-point argument exceeds (2**63) (SIN and
COS) or (2**63)*180 (SIND and COSD).

Computational error in SIN, COS, SIND, or COSD built-in function;
absolute value of long floating-point argument exceeds (2**63) (SIN and
COS) or (2**63)*180 (SIND and COSD).

Computational error; absolute value of short floating-point argument of
TAN or TAND built-in function is greater than or equal to (2**63).

Computational error; absolute value of long floating-point argument of
TAN or TAND built-in function exceeds, respectively, (2**63) or (2**63)*180.

Computational error; short floating-point arguments of ATAN or ATAND
built-in function both invalid.

Computational error; long floating-point arguments of ATAN or ATAND
built-in function both invalid.

Computational error; absolute value of short floating-point argument of
ATANH built-in function >1.

Computational error; absolute value of long floating-point argument of
ATANH built-in function >1.

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1550

Condition codes

Computational error; absolute value of extended floating-point argument
of ATANH built-in function >1.

Computational error in SIN, COS, SIND, or COSD built-in function;
argument of extended floating-point argument exceeds (2**64).

Computational error; absolute value of short floating-point argument of
ASIN or ACOS built-in function exceeds 1.

Computational error; absolute value of long floating-point argument of
ASIN or ACOS built-in function exceeds 1.

Computational error; absolute value of extended floating-point argument
of ASIN, ACOS built-in function exceeds 1.

Computational error; extended floating-point arguments of ATAN or
ATAND built-in function both invalid.

Computational error; absolute value of extended floating-point argument
of TAN or TAND built-in function >= (2**64) or (2**64)*180, respectively.

Computational error; absolute value of real short floating-point argument
of SINH or COSH built-in function greater than 89.41.

Absolute value of real long floating-point argument of SINH or COSH
argument greater than or equal to 710.47.

Absolute value of real extended floating-point argument of SINH or COSH
greater than or equal to 11357.22.

Computational error; absolute value of real short floating-point argument
of COTAN or COTAND greater than or equal to (2**63).

Computational error; absolute value of real long floating-point argument of
COTAN or COTAND greater than or equal to (2**63).

Computational error; absolute value of real extended floating-point
argument of COTAN or COTAND greater than or equal to (2**64).

Computational error in SIN, COS, SIND, or COSD built-in function;
absolute value of the real part of complex short floating-point argument
greater than or equal to (2**63)

Computational error in SIN, COS, SIND, or COSD built-in function;
absolute value of the real part of complex long floating-point argument
greater than or equal to (2**63).

Computational error in SIN, COS, SIND, or COSD built-in function;
absolute value of the real part of complex extended floating-point
argument greater than or equal to (2**64).

Computational error; during exponentiation, real short floating-point base
is zero and integer exponent is not positive.

Condition codes 1551 through 1600

1551

1552

1553

Computational error; during exponentiation, real long floating-point base is
zero and integer exponent is not positive.

Computational error; during exponentiation, real short floating-point base
is zero and the floating-point or noninteger exponent is not positive.

Computational error; during exponentiation, real long floating-point base is
zero and the floating-point or noninteger exponent is not positive.

Chapter 10. Condition codes 135

Condition codes

136

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

PL/1 Messages and Codes

Computational error; during exponentiation, complex short floating-point
base is zero and integer exponent is not positive.

Computational error; during exponentiation, complex long floating-point
base is zero and integer exponent is not positive.

Computational error; during exponentiation, complex short floating-point
base is zero and floating-point or noninteger exponent is not positive and
real.

Computational error; during exponentiation, complex long floating-point
base is zero and floating-point or noninteger exponent is not positive and
real.

Computational error; complex short floating-point argument of ATAN or
ATAND built-in function has value, respectively, of £11 or 1.

Computational error; complex long floating-point argument of ATAN or
ATAND built-in function has value, respectively, of £11 or £1.

Computational error; during exponentiation, real extended floating-point
base is zero and integer exponent not positive.

Computational error; during exponentiation, real extended floating-point
base is zero and floating-point or noninteger exponent is not positive.

Computational error; during exponentiation, complex extended
floating-point base is zero and integer exponent is not positive.

Computational error; complex extended floating-point base is zero and
floating-point or nonintegral exponent is not positive.

Computational error; complex extended floating-point argument of ATAN
or ATAND built-in function has value, respectively, of £11 or £1.

Computational error; real short floating-point argument of EXP built-in
function was less than —87.33.

Computational error; real long floating-point argument of EXP built-in
function was less than —708.39.

Computational error; real extended floating-point argument of EXP built-in
function was less than —11355.13.

Computational error EXP built-in function; absolute value of the imaginary
part of the complex short floating-point argument is greater than or equal
to (2**63).

Computational error EXP built-in function; absolute value of the imaginary
part of the complex long floating-point argument is greater than or equal
to (2**63).

Computational error EXP built-in function; absolute value of the imaginary
part of the complex extended floating-point argument is greater than or
equal to (2**64).

Computational error GAMMA or LOGGAMMA built-in function; real short
floating point argument is greater than 35.04 (GAMMA) or 4.085E+36
(LOGGAMMA).

Computational error GAMMA or LOGGAMMA built-in function; real long
floating point argument is greater than 171.62 (GAMMA) or 2.559E+305
(LOGGAMMA).

1573

1574

1575

1576

1577

1578

1579

1600

Condition codes

Computational error GAMMA or LOGGAMMA built-in function; real
extended floating point argument is greater than 1755.54 (GAMMA) or
1.048E+4928 (LOGGAMMA).

Computational error TANH built-in function; absolute value of the
imaginary part of the complex short floating-point argument is greater
than or equal to (2**63).

Computational error TANH built-in function; absolute value of the
imaginary part of the complex long floating-point argument is greater than
or equal to (2**63).

Computational error TANH built-in function; absolute value of the
imaginary part of the complex extended floating-point argument is greater
than or equal to (2**64).

Computational error in LOG, LOG2, or LOG10 built-in function; real short
floating-point argument equal to plus or minus zero.

Computational error in LOG, LOG2, or LOG10 built-in function; real long
floating-point argument equal to plus or minus zero.

Computational error in LOG, LOG2, or LOG10 built-in function; real
extended floating-point argument equal to plus zero.

Computational error in EXP built-in function; for complex long
floating-point arguments, the real argument was not plus or minus infinity,
and the imaginary argument was not zero.

Condition codes 1601 through 1650

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

Computational error in EXP built-in function; for complex extended
floating-point arguments, the real argument was not plus or minus infinity,
and the imaginary argument was not zero.

Computational error; real part of the complex short floating-point
argument for the EXP built-in function was not a valid IEEE number.

Computational error; real part of the complex long floating-point argument
for the EXP built-in function was not a valid IEEE number.

Computational error; real part of the complex extended floating-point
argument for the EXP built-in function was not a valid IEEE number.

Computational error; imaginary part of the complex short floating-point
argument for the EXP built-in function was not a valid IEEE number.

Computational error; imaginary part of the complex long floating-point
argument for the EXP built-in function was not a valid IEEE number.

Computational error; imaginary part of the complex extended
floating-point argument for the EXP built-in function was not a valid IEEE
number.

Computational error; both parts of the complex short floating-point
argument for the EXP built-in function were not valid IEEE numbers.

Computational error; both parts of the complex long floating-point
argument for the EXP built-in function were not valid IEEE numbers.

Computational error; both parts of the complex extended floating-point
argument for the EXP built-in function were not valid IEEE numbers.

Chapter 10. Condition codes 137

Condition codes

138

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

PL/1 Messages and Codes

Computational error; real short floating-point argument for EXP built-in
function greater than or equal to 88.73.

Computational error; real long floating-point argument for EXP built-in
function greater than or equal to 709.79.

Computational error; real extended floating-point argument for EXP
built-in function greater than or equal to 11356.53.

Computational error; real short floating-point argument for EXP built-in
function is not a valid IEEE number.

Computational error; real long floating-point argument for EXP built-in
function is not a valid IEEE number.

Computational error; real extended floating-point argument for EXP
built-in function is not a valid IEEE number.

Computational error in LOG built-in function; for complex short
floating-point arguments, the real argument was not plus or minus infinity,
and the imaginary argument was not zero.

Computational error in LOG built-in function; for complex long
floating-point arguments, the real argument was not plus or minus infinity,
and the imaginary argument was not zero.

Computational error in LOG, LOG2, or LOG10 built-in function; for
complex extended floating-point arguments, the real argument was not
plus or minus infinity, and the imaginary argument was not zero.

Computational error in LOG, LOG2, or LOG10 built-in function; real part
of complex short floating-point argument was not a valid IEEE number.

Computational error in LOG, LOG2, or LOG10 built-in function; real part
of complex long floating-point argument was not a valid IEEE number.

Computational error in LOG, LOG2, or LOG10 built-in function; real part
of complex extended floating-point argument was not a valid IEEE
number.

Computational error in LOG, LOG2, or LOG10 built-in function; imaginary
part of complex short floating-point argument was not a valid IEEE
number.

Computational error in LOG, LOG2, or LOG10 built-in function; imaginary
part of complex long floating-point argument was not a valid IEEE
number.

Computational error in LOG, LOG2, or LOG10 built-in function; imaginary
part of complex extended floating-point argument was not a valid IEEE
number.

Computational error in LOG, LOG2, or LOG10 built-in function; both parts
of complex short floating-point argument were not valid IEEE numbers.

Computational error in LOG, LOG2, or LOG10 built-in function; both parts
of complex long floating-point argument were not valid IEEE numbers.

Computational error in LOG, LOG2, or LOG10 built-in function; both parts
of complex extended floating-point argument were not valid IEEE
numbers.

Computational error in LOG, LOG2, or LOG10 built-in function; real short
floating-point argument is not a valid IEEE number.

1630

1631

1650

Condition codes

Computational error in LOG, LOG2, or LOG10 built-in function; real long
floating-point argument is not a valid IEEE number.

Computational error in LOG, LOG2, or LOG10 built-in function; real
extended floating-point argument is not a valid IEEE number.

Computational error; during exponentiation, real long floating-point base is
plus or minus infinity, and real long floating-point exponent is zero.

Condition codes 1651 through 1700

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

Computational error; during exponentiation, real extended floating-point
base is plus or minus infinity, and real extended floating-point exponent is
zero.

Computational error; during exponentiation for a real short floating-point
base with a real short floating-point exponent, the first argument was not a
valid IEEE number.

Computational error; during exponentiation for a real long floating-point
base with a real long floating-point exponent, the first argument was not a
valid IEEE number.

Computational error; during exponentiation for a real extended
floating-point base with a real extended floating-point exponent, the first
argument was not a valid IEEE number.

Computational error; during exponentiation for a real short floating-point
base with a real short floating-point exponent, the second argument was
not a valid IEEE number.

Computational error; during exponentiation for a real long floating-point
base with a real long floating-point exponent, the second argument was
not a valid IEEE number.

Computational error; during exponentiation for a real extended
floating-point base with a real extended floating-point exponent, the
second argument was not a valid IEEE number.

Computational error; during exponentiation for a real short floating-point
base with a real short floating-point exponent, both arguments were not
valid IEEE numbers.

Computational error; during exponentiation for a real long floating-point
base with a real long floating-point exponent both arguments were not
valid IEEE numbers.

Computational error; during exponentiation for a real extended
floating-point base with a real extended floating-point exponent, both
arguments were not valid IEEE numbers.

Computational error; during exponentiation for complex short
floating-point base with integer value exponent, an argument plus or
minus infinity is specified.

Computational error; during exponentiation for complex long
floating-point base with integer value exponent, an argument plus or
minus infinity is specified.

Computational error; during exponentiation for complex extended
floating-point base with integer value exponent, an argument plus or
minus infinity is specified.

Chapter 10. Condition codes 139

Condition codes

140

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

PL/1 Messages and Codes

Computational error; during exponentiation for complex short
floating-point base with integer value exponent, the real part of the
complex argument is not a valid IEEE number.

Computational error; during exponentiation for complex long
floating-point base with integer value exponent, the real part of the
complex argument is not a valid IEEE number.

Computational error; during exponentiation for complex extended
floating-point base with integer value exponent, the real part of the
complex argument is not a valid IEEE number.

Computational error; during exponentiation for complex short
floating-point base with integer value exponent, the imaginary part of the
complex argument is not a valid IEEE number.

Computational error; during exponentiation for complex long
floating-point base with integer value exponent, the imaginary part of the
complex argument is not a valid IEEE number.

Computational error; during exponentiation for complex extended
floating-point base with integer value exponent, the imaginary part of the
complex argument is not a valid IEEE number.

Computational error; during exponentiation for complex short
floating-point base with integer value exponent, both parts of the complex
argument are not valid IEEE numbers.

Computational error; during exponentiation for complex long
floating-point base with integer value exponent, both parts of the complex
argument are not valid IEEE numbers.

Computational error; during exponentiation for complex extended
floating-point base with integer value exponent, both parts of the complex
argument are not valid IEEE numbers.

Computational error; during exponentiation, integer base is zero and
integer exponent is not positive.

Computational error; during exponentiation, integer base is not plus or
minus 1 and integer exponent is not positive.

Computational error; during exponentiation, real short floating-point base
was plus or minus infinity and integer exponent is equal to plus or minus
zero.

Computational error; during exponentiation, real long floating-point base
was plus or minus infinity and integer exponent is equal to plus or minus
zero.

Computational error; during exponentiation, real extended floating-point
base was plus or minus infinity and integer exponent is equal to plus or
minus zero.

Computational error; during exponentiation for a real short floating-point
base with an integer exponent, the first argument was not a valid IEEE
number.

Computational error; during exponentiation for a real long floating-point
base with an integer exponent, the first argument was not a valid IEEE
number.

1680

1681

1700

Condition codes

Computational error; during exponentiation for a real extended
floating-point base with an integer exponent, the first argument was not a
valid IEEE number.

Computational error in the EXP built-in function; for complex short
floating-point arguments, the real argument was not plus or minus infinity,
and the imaginary argument was not zero.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, imaginary
parts of both complex arguments are not valid IEEE numbers.

Condition codes 1701 through 1750

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent,
imaginary parts of both complex arguments are not valid IEEE numbers.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, real part
of first complex argument and imaginary part of second complex argument
are not valid IEEE numbers.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, real part
of first complex argument and imaginary part of second complex argument
are not valid IEEE numbers.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, real
part of first complex argument and imaginary part of second complex
argument are not valid IEEE numbers.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent,
imaginary part of first complex argument and real part of second complex
argument are not valid IEEE numbers.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, imaginary
part of first complex argument and real part of second complex argument
are not valid IEEE numbers.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent,
imaginary part of first complex argument and real part of second complex
argument are not valid IEEE numbers.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, real part
of first complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, real part
of first complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, real
part of first complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex short

Chapter 10. Condition codes 141

Condition codes

142

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

PL/1 Messages and Codes

floating-point base with a complex short floating-point exponent,
imaginary part of first complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, imaginary
part of first complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent,
imaginary part of first complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, real part
of second complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, real part
of second complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, real
part of second complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent,
imaginary part of second complex argument was the only valid IEEE
number.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, imaginary
part of second complex argument was the only valid IEEE number.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent,
imaginary part of second complex argument was the only valid IEEE
number.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, both
parts of both complex arguments were not valid IEEE numbers.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, both parts
of both complex arguments were not valid IEEE numbers.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, both
parts of both complex arguments were not valid IEEE numbers.

Computational error; during exponentiation, real short floating-point base
plus or minus infinity and real short floating-point exponent is an invalid
32-bit integer.

Computational error; during exponentiation, real long floating-point base is
plus or minus infinity and real long floating-point exponent is an invalid
32-bit integer.

Computational error; during exponentiation, real extended floating-point
base plus or minus infinity and real extended floating-point exponent is an
invalid 32-bit integer.

Computational error; during exponentiation, real short floating-point base
plus 1 and real short floating-point exponent is plus or minus infinity.

1727

1728

1729

1730

1731

1750

Condition codes

Computational error; during exponentiation, real long floating-point base is
+1 and real long floating-point exponent is plus or minus infinity.

Computational error; during exponentiation, real extended floating-point
base is +1 and real extended floating-point exponent is plus or minus
infinity.

Computational error; during exponentiation, real short floating-point base
is zero and real short floating-point exponent is not positive or zero.

Computational error; during exponentiation, real long floating-point base is
zero and real long floating-point exponent is not positive or zero.

Computational error; during exponentiation, real short floating-point base
plus or minus infinity and real short floating-point exponent is zero.

Computational error; the first real short floating-point argument for SCALE
was not a valid IEEE number.

Condition codes 1751 through 1800

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

Computational error; the real short floating-point argument for ASIN(X) or
ACOS(X) was not a valid IEEE number.

Computational error; the real long floating-point argument for ASIN(X) or
ACOS(X) was not a valid IEEE number.

Computational error; the real extended floating-point argument for
ASIN(X) or ACOS(X) was not a valid IEEE number.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, an
argument exceeded the limit.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, an
argument exceeded the limit.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, an
argument exceeded the limit.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, plus or
minus infinity was specified as an argument.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, plus or
minus infinity was specified as an argument.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, plus
or minus infinity was specified as an argument.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, the real
part of the first complex argument is not a valid IEEE number.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, the real
part of the first complex argument is not a valid IEEE number.

Computational error; during exponentiation for a complex extended

Chapter 10. Condition codes 143

Condition codes

144

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

PL/1 Messages and Codes

floating-point base with a complex extended floating-point exponent, the
real part of the first complex argument is not a valid IEEE number.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, the real
part of the second complex argument is not a valid IEEE number.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, the real
part of the second complex argument is not a valid IEEE number.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, the
real part of the second complex argument is not a valid IEEE number.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, the
imaginary part of the first complex argument is not a valid IEEE number.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, the
imaginary part of the first complex argument is not a valid IEEE number.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, the
imaginary part of the first complex argument is not a valid IEEE number.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, the
imaginary part of the second complex argument is not a valid IEEE
number.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, the
imaginary part of the second complex argument is not a valid IEEE
number.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, the
imaginary part of the second complex argument is not a valid IEEE
number.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, both
parts of the first complex argument are not valid IEEE numbers.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, both parts
of the first complex argument are not valid IEEE numbers.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, both
parts of the first complex argument are not valid IEEE numbers.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, both
parts of the second complex argument are not valid IEEE numbers.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, both parts
of the second complex argument are not valid IEEE numbers.

Computational error; during exponentiation for a complex extended

1778

1779

1780

1781

1800

Condition codes

floating-point base with a complex extended floating-point exponent, both
parts of the second complex argument are not valid IEEE numbers.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent, real parts
of both complex arguments are not valid IEEE numbers.

Computational error; during exponentiation for a complex long
floating-point base with a complex long floating-point exponent, real parts
of both complex arguments are not valid IEEE numbers.

Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, real
parts of both complex arguments are not valid IEEE numbers.

Computational error; during exponentiation for a complex short
floating-point base with a complex short floating-point exponent,
imaginary parts of both complex arguments are not valid IEEE numbers.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex extended floating-point argument both parts of the argument are
not valid IEEE numbers.

Condition codes 1801 through 1850

1801

1802

1803

1804

1808

1809

1810

1811

1812

1813

1814

Computational error in SIN, COS, SIND, or COSD built-in function;
absolute value of real short floating-point argument is not a valid IEEE
number.

Computational error in SIN, COS, SIND, or COSD built-in function;
absolute value of real long floating-point argument is not a valid IEEE
number.

Computational error in SIN, COS, SIND, or COSD built-in function;
absolute value of real extended floating-point argument is not a valid IEEE
number.

The calculated result of real extended floating-point arguments for TANH
overflowed the output field.

Computational error; for real short floating-point arguments of ATAN or
ATAND built-in function, the first argument was not a valid IEEE number.

Computational error; for real long floating-point arguments of ATAN or
ATAND built-in function, the first argument was not a valid IEEE number.

Computational error; for real extended floating-point argument of ATAN or
ATAND built-in function, the first argument was not a valid IEEE number.

Computational error; for real short floating-point arguments of ATAN or
ATAND built-in function, the second argument was not a valid IEEE
number.

Computational error; for real long floating-point arguments of ATAN or
ATAND built-in function, the second argument was not a valid IEEE
number.

Computational error; for real extended floating-point argument of ATAN or
ATAND built-in function, the second argument was not a valid IEEE
number.

Computational error; both real short floating-point arguments of ATAN or
ATAND built-in function were not valid IEEE numbers.

Chapter 10. Condition codes 145

Condition codes

146

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1850

PL/1 Messages and Codes

Computational error; both real long floating-point arguments of ATAN or
ATAND built-in function were not valid IEEE numbers.

Computational error; both real extended floating-point arguments of ATAN
or ATAND built-in function were not valid IEEE numbers.

Computational error; complex short floating-point argument of ATAN or
ATAND built-in function does not have value of (plus infinity, 0i) or
(minus infinity, Oi).

Computational error; complex long floating-point argument of ATAN or
ATAND built-in function does not have value of (plus infinity, 0i) or
(minus infinity, 0i).

Computational error; complex extended floating-point argument of ATAN
or ATAND built-in function does not have value of (plus infinity, 0i) or
(minus infinity, Oi).

Computational error; real part of complex short floating-point argument of
ATAN or ATAND built-in function is not a valid IEEE number.

Computational error; real part of complex long floating-point argument of
ATAN or ATAND built-in function is not a valid IEEE number.

Computational error; real part of complex extended floating-point
argument of ATAN or ATAND built-in function is not a valid IEEE
number.

Computational error; imaginary part of complex short floating-point
argument of ATAN or ATAND built-in function is not a valid IEEE
number.

Computational error; imaginary part of complex long floating-point
argument of ATAN or ATAND built-in function is not a valid IEEE
number.

Computational error; imaginary part of complex extended floating-point
argument of ATAN or ATAND built-in function is not a valid IEEE
number.

Computational error; both parts of complex short floating-point argument
of ATAN or ATAND built-in function were not valid IEEE numbers.

Computational error; both parts of complex long floating-point argument
of ATAN or ATAND built-in function were not valid IEEE numbers.

Computational error; both parts of complex extended floating-point
argument of ATAN or ATAND built-in function were not valid IEEE
numbers.

Computational error; the real short floating-point argument of ATAN(X) or
ATAND(X) built-in function was not a valid IEEE number.

Computational error; the real long floating-point argument of ATAN(X) or
ATAND(X) built-in function was not a valid IEEE number.

Computational error; the real extended floating-point argument of
ATAN(X) or ATAND(X) built-in function was not a valid IEEE number.

Computational error; real short floating-point argument of COTAN or
COTAND was not a valid IEEE number.

Condition codes

Condition codes 1851 through 1900

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

Computational error; real long floating-point argument of COTAN or
COTAND was not a valid IEEE number.

Computational error; real extended floating-point argument of COTAN or
COTAND was not a valid IEEE number.

Computational error in TAN or TAND; for complex short floating-point
argument, absolute value of the real part of argument greater than or equal
to (2**63).

Computational error in TAN or TAND; for complex long floating-point
argument, absolute value of the real part of argument greater than or equal
to (2**63).

Computational error in TAN or TAND; for complex extended
floating-point argument, absolute value of the real part of argument greater
than or equal to (2**64).

Computational error in TAN or TAND; for complex short floating-point
argument both parts of the argument were plus or minus infinity.

Computational error in TAN or TAND; for complex long floating-point
argument both parts of the argument were plus or minus infinity.

Computational error in TAN or TAND; for complex extended
floating-point argument both parts of the argument were plus or minus
infinity.

Computational error in TAN or TAND; for complex short floating-point
argument real part of argument not a valid IEEE number.

Computational error in TAN or TAND; for complex long floating-point
argument real part of argument not a valid IEEE number.

Computational error in TAN or TAND; for complex extended
floating-point argument real part of argument not a valid IEEE number.

Computational error in TAN or TAND; for complex short floating-point
argument imaginary part of argument not a valid IEEE number.

Computational error in TAN or TAND; for complex long floating-point
argument imaginary part of argument not a valid IEEE number.

Computational error in TAN or TAND; for complex extended
floating-point argument imaginary part of argument not a valid IEEE
number.

Computational error in TAN or TAND; for complex short floating-point
argument both parts of the argument were not valid IEEE numbers.

Computational error in TAN or TAND; for complex long floating-point
argument both parts of the argument were not valid IEEE numbers.

Computational error in TAN or TAND; for complex extended
floating-point argument both parts of the argument were not valid IEEE
numbers.

Computational error in TAN or TAND; real short floating-point argument
not a valid IEEE number.

Computational error in TAN or TAND,; real long floating-point argument
not a valid IEEE number.

Chapter 10. Condition codes 147

Condition codes

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1900

Computational error in TAN or TAND; real extended floating-point
argument not a valid IEEE number.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex short floating-point argument both parts of the argument were
plus or minus infinity.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex long floating-point argument both parts of the argument were
plus or minus infinity.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex extended floating-point argument both parts of the argument
were plus or minus infinity.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex short floating-point argument the real part of the argument was
not a valid IEEE number.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex long floating-point argument the real part of the argument was
not a valid IEEE number.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex extended floating-point argument the real part of the argument
was not a valid IEEE number.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex short floating-point argument the imaginary part of the argument
was not a valid IEEE number.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex long floating-point argument the imaginary part of the argument
was not a valid IEEE number.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex extended floating-point argument the imaginary part of the
argument was not a valid IEEE number.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex short floating-point argument both parts of the argument were
not valid IEEE numbers.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex long floating-point argument both parts of the argument were not
valid IEEE numbers.

Computational error in TANH; for complex long floating-point argument
the real part of the argument was not equal to plus or minus infinity, and
the imaginary part of the argument was not zero.

Condition codes 1901 through 1950

148

1901

1902

1903

PL/1 Messages and Codes

Computational error in TANH; for complex extended floating-point
argument the real part of the argument was not equal to plus or minus
infinity, and the imaginary part of the argument was not zero.

Computational error in TANH; for complex short floating-point argument
real part of argument not a valid IEEE number.

Computational error in TANH; for complex long floating-point argument
real part of argument not a valid IEEE number.

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

Condition codes

Computational error in TANH; for complex extended floating-point
argument real part of argument not a valid IEEE number.

Computational error in TANH; for complex short floating-point argument
the imaginary part of the argument was not a valid IEEE number.

Computational error in TANH; for complex long floating-point argument
the imaginary part of the argument was not a valid IEEE number.

Computational error in TANH; for complex extended floating-point
argument the imaginary part of the argument was not a valid IEEE
number.

Computational error in TANH; for complex short floating-point argument
both parts of the argument were not valid IEEE numbers.

Computational error in TANH; for complex long floating-point argument
both parts of the argument were not valid IEEE numbers.

Computational error in TANH; for complex extended floating-point
argument both parts of the argument were not valid IEEE numbers.

Computational error; real short floating-point argument of TANH built-in
function not a valid IEEE number.

Computational error; real long floating-point argument of TANH built-in
function not a valid IEEE number.

Computational error; real extended floating-point argument of TANH
built-in function not a valid IEEE number.

Computational error; absolute value of imaginary part of complex short
floating-point argument of SINH or COSH built-in function was greater
than or equal to (2**63).

Computational error; absolute value of the imaginary part of complex long
floating-point argument of SINH or COSH built-in function was greater
than or equal to (2**63).

Computational error; absolute value of the imaginary part of complex
extended floating-point argument of SINH or COSH built-in function was
greater than or equal to (2**64).

Computational error; for complex short floating-point argument of SINH or
COSH built-in function real argument was not plus or minus infinity and
imaginary argument was not zero.

Computational error; for complex long floating-point argument of SINH or
COSH built-in function real argument was not plus or minus infinity and
imaginary argument was not zero.

Computational error; for complex extended floating-point argument of
SINH or COSH built-in function real argument was not plus or minus
infinity and imaginary argument was not zero.

Computational error; for complex short floating-point argument of SINH or
COSH built-in function real part of argument not valid IEEE number.

Computational error; for complex long floating-point argument of SINH or
COSH built-in function real part of argument not valid IEEE number.

Computational error; for complex extended floating-point argument of
SINH or COSH built-in function real part of argument not valid IEEE
number.

Chapter 10. Condition codes 149

Condition codes

1923

1924

1925

1926

1927

1928

1929

1930

1931

1950

Computational error; for complex short floating-point argument of SINH or
COSH built-in function imaginary part of argument not valid IEEE
number.

Computational error; for complex long floating-point argument of SINH or
COSH built-in function imaginary part of argument not valid IEEE
number.

Computational error; for complex extended floating-point argument of
SINH or COSH built-in function imaginary part of argument not valid
IEEE number.

Computational error; for complex short floating-point argument of SINH or
COSH built-in function both parts of argument not valid IEEE numbers.

Computational error; for complex long floating-point argument of SINH or
COSH built-in function both parts of argument not valid IEEE numbers.

Computational error; for complex extended floating-point argument of
SINH or COSH built-in function both parts of argument not valid IEEE
numbers.

Computational error; real short floating-point argument of SINH or COSH
built-in function was not a valid IEEE number.

Computational error; real long floating-point argument of SINH or COSH
built-in function was not a valid IEEE number.

Computational error; real extended floating-point argument of SINH or
COSH built-in function was not a valid IEEE number.

Computational error in SQRT; for complex extended floating-point
argument real part was not equal to plus or minus infinity, and imaginary
part was not equal to zero.

Condition codes 1951 through 2000

150

1951

1952

1953

1954

1955

1956

1957

1958

1959

PL/1 Messages and Codes

Computational error in SQRT; real part of complex short floating-point
argument was not a valid IEEE number.

Computational error in SQRT; real part of complex long floating-point
argument was not a valid IEEE number.

Computational error in SQRT; real part of complex extended floating-point
argument was not a valid IEEE number.

Computational error in SQRT; imaginary part of complex short
floating-point argument was not a valid IEEE number.

Computational error in SQRT; imaginary part of complex long
floating-point argument was not a valid IEEE number.

Computational error in SQRT; imaginary part of complex extended
floating-point argument was not a valid IEEE number.

Computational error in SQRT,; both parts of complex short floating-point
argument were not valid IEEE numbers.

Computational error in SQRT,; both parts of complex long floating-point
argument were not valid IEEE numbers.

Computational error in SQRT,; both parts of complex extended
floating-point argument were not valid IEEE numbers.

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

Condition codes

Computational error in SQRT; real short floating-point argument is equal to
minus zero.

Computational error in SQRT; real long floating-point argument is equal to
minus zero.

Computational error in SQRT; real extended floating-point argument is
equal to minus zero.

Computational error in SQRT; real short floating-point argument was not a
valid IEEE number.

Computational error in SQRT; real long floating-point argument was not a
valid IEEE number.

Computational error in SQRT; real extended floating-point argument was
not a valid IEEE number.

Computational error; complex short floating-point argument of ATANH
included plus or minus infinity.

Computational error; complex long floating-point argument of ATANH
included plus or minus infinity.

Computational error; complex extended floating-point argument of
ATANH included plus or minus infinity.

Computational error; real part of complex short floating-point argument of
ATANH was not a valid IEEE number.

Computational error; real part of complex long floating-point argument of
ATANH was not a valid IEEE number.

Computational error; real part of complex extended floating-point
argument of ATANH was not a valid IEEE number.

Computational error; imaginary part of complex short floating-point
argument of ATANH was not a valid IEEE number.

Computational error; imaginary part of complex long floating-point
argument of ATANH was not a valid IEEE number.

Computational error; imaginary part of complex extended floating-point
argument of ATANH was not a valid IEEE number.

Computational error; both parts of complex short floating-point argument
of ATANH were not valid IEEE numbers.

Computational error; both parts of complex long floating-point argument
of ATANH were not valid IEEE numbers.

Computational error; both parts of complex extended floating-point
argument of ATANH were not valid IEEE numbers.

Computational error; floating-point argument of ATANH was not a valid
IEEE number.

Computational error; long floating-point argument of ATANH was not a
valid IEEE number.

Computational error; extended floating-point argument of ATANH was not
a valid IEEE number.

Computational error in TANH; for complex short floating-point argument
the real part of the argument was not equal to plus or minus infinity, and
the imaginary part of the argument was not zero.

Chapter 10. Condition codes 151

Condition codes

Condition codes 2002 through 2150

152

2002
2101

2102

2103
2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

PL/1 Messages and Codes

WAIT statement cannot be executed because of restricted system facility.

Greenwich mean time was not available for the RANDOM built-in
function.

An invalid seed value was detected in the RANDOM built-in function. The
random number was set to -1.

Local time was unavailable.

The value of y in the SECSTODATE, DAYS, DAYSTODATE, or DATETIME
built-in function contained an invalid picture string specification.

The value of x in the DAYS built-in function contained an invalid day
value; the valid range is 15 October 1582 to 31 December 9999.

The value of x in the DAYS built-in function contained an invalid month
value; the valid range is October 1582 to December 9999.

The value of x in the DAYS built-in function contained an invalid year
value; the valid range is 1582 to 9999.

The value of x in the DAYSTODATE built-in function was outside the
supported range; the valid range is from 1 to 3,074,324.

The value of x in the SECSTODATE built-in function was outside the
supported range; the valid range is from 86,400 to 265,621,679,999.999.

The value of x in the DAYSTODATE built-in function could not be
converted to a valid Japanese or Republic of China Era.

The difference between the current local time and the Greenwich Mean
Time was unavailable.

The value of x in the SECS or DAYS built-in function was outside the
supported range; the valid range is from 15 October 1582 to 31 December
9999,

The value of x in the SECS built-in function contained an invalid seconds
value; the valid range is from 0 to 59.

The value of x in the SECS built-in function contained an invalid minutes
value; the valid range is from 0 to 59.

The value of x in the SECS built-in function contained an invalid hour
value; the valid range is from 0 to 23 or from 0 to 12 (if the AP field is
present).

The value of x in the DAYS built-in function did not match the given
picture specification.

The value of x in the SECS built-in function did not match the given
picture specification.

The date string returned by the DAYSTODATE built-in function was
truncated.

The timestamp returned by the DATETIME or SECSTODATE built-in
function was truncated.

The value of x in the SECSTODATE or DATETIME built-in function
contained an invalid value for the number of seconds with the range of
supported Japanese or Republic of China Eras.

2121

2122

2150

Condition codes

Insufficient data was passed to the DAYS or SECS built-in function; the
picture string did not contain enough information.

The value of x in the SECS or DAYS built-in function contained an invalid
Era name.

Computational error; in MOD(x,y) built-in function the second argument
was equal to zero.

Condition codes 2151 through 2200

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

Computational error in ABS built-in function; real part of complex short
floating-point argument was not a valid IEEE number.

Computational error in ABS built-in function; real part of complex long
floating-point argument was not a valid IEEE number.

Computational error in ABS built-in function; real part of complex
extended floating-point argument was not a valid IEEE number.

Computational error in ABS built-in function; imaginary part of complex
short floating-point argument was not a valid IEEE number.

Computational error in ABS built-in function; imaginary part of complex
long floating-point argument was not a valid IEEE number.

Computational error in ABS built-in function; imaginary part of complex
extended floating-point argument was not a valid IEEE number.

Computational error in ABS built-in function; both parts of complex short
floating-point argument were not valid IEEE numbers.

Computational error in ABS built-in function; both parts of complex long
floating-point argument were not valid IEEE numbers.

Computational error in ABS built-in function; both parts of complex
extended floating-point argument were not valid IEEE numbers.

Computational error in ABS built-in function; integer argument is equal to
(—2**31).

Computational error in ABS built-in function; real short floating-point
argument was not a valid IEEE number.

Computational error in ABS built-in function; real long floating-point
argument was not a valid IEEE number.

Computational error in ABS built-in function; real extended floating-point
argument was not a valid IEEE number.

Computational error GAMMA or LOGGAMMA built-in function; real
extended floating point argument is less than zero.

Computational error GAMMA or LOGGAMMA built-in function; real short
floating point argument is less than or equal to zero.

Computational error GAMMA or LOGGAMMA built-in function; real long
floating point argument is less than or equal to zero.

Computational error GAMMA or LOGGAMMA built-in function; real
extended floating point argument is equal to zero.

Computational error GAMMA or LOGGAMMA built-in function; real short
floating point argument is not a valid IEEE number.

Chapter 10. Condition codes 153

Condition codes

2169

2170

2171

2172

2173

2174

2175

2176

2177
2178
2179

2180

2181

2200

Computational error GAMMA or LOGGAMMA built-in function; real long
floating point argument is not a valid IEEE number.

Computational error GAMMA or LOGGAMMA built-in function; real
extended floating point argument is not a valid IEEE number.

Computational error in ERFC built-in function; real short floating-point
argument was greater than 9.19.

Computational error in ERFC built-in function; real long floating-point
argument was greater than 26.54.

Computational error in ERFC built-in function; real extended floating-point
argument was greater than 106.53.

Computational error in ERFC built-in function; real short floating-point
argument was not a valid IEEE number.

Computational error in ERFC built-in function; real long floating-point
argument was not a valid IEEE number.

Computational error in ERFC built-in function; real extended floating-point
argument was not a valid IEEE number.

Real short floating-point argument in ERF was not a valid IEEE number.
Real long floating-point argument in ERF was not a valid IEEE number.

Real extended floating-point argument in ERF was not a valid IEEE
number.

Computational error in SQRT,; for complex short floating-point argument,
real part was not equal to plus or minus infinity, and imaginary part was
not equal to zero.

Computational error in SQRT,; for complex long floating-point argument,
real part was not equal to plus or minus infinity, and imaginary part was
not equal to zero.

Computational error; during multiplication real part of first complex long
floating-point argument was the only valid IEEE number.

Condition codes 2201 through 2250

154

2201

2202

2203

2204

2205

2206

PL/1 Messages and Codes

Computational error; during multiplication real part of first complex
extended floating-point argument was the only valid IEEE number.

Computational error; during multiplication the imaginary part of the first
complex short floating-point argument was the only valid IEEE number.

Computational error; during multiplication the imaginary part of the first
complex long floating-point argument was the only valid IEEE number.

Computational error; during multiplication the imaginary part of the first
complex extended floating-point argument was the only valid IEEE
number.

Computational error; during multiplication the real part of the second
complex short floating-point argument was the only valid IEEE number.

Computational error; during multiplication the real part of the second
complex long floating-point argument was the only valid IEEE number.

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

Condition codes

Computational error; during multiplication the real part of the second
complex extended floating-point argument was the only valid IEEE
number.

Computational error; during multiplication the imaginary part of the
second complex short floating-point argument was the only valid IEEE
number.

Computational error; during multiplication the imaginary part of the
second complex long floating-point argument was the only valid IEEE
number.

Computational error; during multiplication the imaginary part of the
second complex extended floating-point argument was the only valid IEEE
number.

Computational error; during multiplication both parts of both complex
short floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication both parts of both complex
long floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication both parts of both complex
extended floating-point arguments were not valid IEEE numbers.

The real short floating-point argument for TRUNC was plus or minus
infinity.

The real long floating-point argument for TRUNC was plus or minus
infinity.

The real extended floating-point argument for TRUNC was plus or minus
infinity.

The real short floating-point argument for TRUNC was not a valid IEEE
number.

The real long floating-point argument for TRUNC was not a valid IEEE
number.

The real extended floating-point argument for TRUNC was not a valid
IEEE number.

Computational error; in MOD(x,y) built-in function real short floating-point
arguments, the first argument was plus or minus infinity, or the second
argument was plus or minus zero.

Computational error; in MOD(x,y) built-in function real long floating-point
arguments, the first argument was plus or minus infinity, or the second
argument was plus or minus zero.

Computational error; in MOD(x,y) built-in function real extended
floating-point arguments, the first argument was plus or minus infinity, or
the second argument was plus or minus zero.

Computational error; in MOD(x,y) built-in function real short floating-point
arguments, the first argument was not a valid IEEE number.

Computational error; in MOD(x,y) built-in function real long floating-point
arguments, the first argument was not a valid IEEE number.

Computational error; in MOD(x,y) built-in function real extended
floating-point arguments, the first argument was not a valid IEEE number.

Chapter 10. Condition codes 155

Condition codes

2226 ~ Computational error; in MOD(X,y) built-in function real short floating-point
arguments, the second argument was not a valid IEEE number.

2227 Computational error; in MOD(x,y) built-in function real long floating-point
arguments, the second argument was not a valid IEEE number.

2228 Computational error; in MOD(x,y) built-in function real extended
floating-point arguments, the second argument was not a valid IEEE
number.

2229 Computational error; in MOD(X,y) built-in function real short floating-point
arguments, both arguments were not valid IEEE numbers.

2230 Computational error; in MOD(x,y) built-in function real long floating-point
arguments, both arguments were not valid IEEE numbers.

2231 Computational error; in MOD(x,y) built-in function real extended
floating-point arguments, both arguments were not valid IEEE numbers.

2250 Computational error; during multiplication for complex extended
floating-point arguments plus or minus infinity was specified.

Condition codes 2251 through 2300

2251 Computational error; during multiplication the real part of the first
complex short floating-point argument was not a valid IEEE number.

2252 Computational error; during multiplication the real part of the first
complex long floating-point argument was not a valid IEEE number.

2253 Computational error; during multiplication the real part of the first
complex extended floating-point argument was not a valid IEEE number.

2254 Computational error; during multiplication the real part of the second
complex short floating-point argument was not a valid IEEE number.

2255 Computational error; during multiplication the real part of the second
complex long floating-point argument was not a valid IEEE number.

2256 Computational error; during multiplication the real part of the second
complex extended floating-point argument was not a valid IEEE number.

2257 Computational error; during multiplication the imaginary part of the first
complex short floating-point argument was not a valid IEEE number.

2258 Computational error; during multiplication the imaginary part of the first
complex long floating-point argument was not a valid IEEE number.

2259 Computational error; during multiplication the imaginary part of the first
complex extended floating-point argument was not a valid IEEE number.

2260 Computational error; during multiplication the imaginary part of the
second complex short floating-point argument was not a valid IEEE
number.

2261 Computational error; during multiplication the imaginary part of the
second complex long floating-point argument was not a valid IEEE
number.

2262 Computational error; during multiplication the imaginary part of the
second complex extended floating-point argument was not a valid IEEE
number.

2263 Computational error; during multiplication both parts of first complex
short floating-point arguments were not valid IEEE numbers.

156 PL/I Messages and Codes

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2300

Condition codes

Computational error; during multiplication both parts of first complex long
floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication both parts of first complex
extended floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication both parts of second complex
short floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication both parts of second complex
long floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication both parts of second complex
extended floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication real parts of both complex
short floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication real parts of both complex long
floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication real parts of both complex
extended floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication imaginary parts of both
complex short floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication imaginary parts of both
complex long floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication imaginary parts of both
complex extended floating-point arguments were not valid IEEE numbers.

Computational error; during multiplication real part of first complex short
floating-point argument and imaginary part of second complex short
floating-point argument were not valid IEEE numbers.

Computational error; during multiplication real part of first complex long
floating-point argument and imaginary part of second complex long
floating-point argument were not valid IEEE numbers.

Computational error; during multiplication real part of first complex
extended floating-point argument and imaginary part of second complex
extended floating-point argument were not valid IEEE numbers.

Computational error; during multiplication imaginary part of first complex
short floating-point argument and real part of second complex short
floating-point argument were not valid IEEE numbers.

Computational error; during multiplication imaginary part of first complex
long floating-point argument and real part of second complex long
floating-point argument were not valid IEEE numbers.

Computational error; during multiplication imaginary part of first complex
extended floating-point argument and real part of second complex
extended floating-point argument were not valid IEEE numbers.

Computational error; during multiplication real part of first complex short
floating-point argument was the only valid IEEE number.

Computational error; during division real parts of both complex short
floating-point arguments were not valid IEEE numbers.

Chapter 10. Condition codes 157

Condition codes

Condition codes 2301 through 2350

158

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

PL/1 Messages and Codes

Computational error; during division real parts of both complex long
floating-point arguments were not valid IEEE numbers.

Computational error; during division real parts of both complex extended
floating-point arguments were not valid IEEE numbers.

Computational error; during division imaginary parts of both complex
short floating-point arguments were not valid IEEE numbers.

Computational error; during division imaginary parts of both complex long
floating-point arguments were not valid IEEE numbers.

Computational error; during division imaginary parts of both complex
extended floating-point arguments were not valid IEEE numbers.

Computational error; during division real part of first complex short
floating-point argument and imaginary part of second complex short
floating-point argument were not valid IEEE numbers.

Computational error; during division real part of first complex long
floating-point argument and imaginary part of second complex long
floating-point argument were not valid IEEE numbers.

Computational error; during division real part of first complex extended
floating-point argument and imaginary part of second complex extended
floating-point argument were not valid IEEE numbers.

Computational error; during division imaginary part of first complex short
floating-point argument and real part of second complex short
floating-point argument were not valid IEEE numbers.

Computational error; during division imaginary part of first complex long
floating-point argument and real part of second complex long
floating-point argument were not valid IEEE numbers.

Computational error; during division imaginary part of first complex
extended floating-point argument and real part of second complex
extended floating-point argument were not valid IEEE numbers.

Computational error; during division real part of first complex short
floating-point argument was the only valid IEEE number.

Computational error; during division real part of first complex long
floating-point argument was the only valid IEEE number.

Computational error; during division real part of first complex extended
floating-point argument was the only valid IEEE number.

Computational error; during division imaginary part of first complex short
floating-point argument was the only valid IEEE number.

Computational error; during division imaginary part of first complex long
floating-point argument was the only valid IEEE number.

Computational error; during division imaginary part of first complex
extended floating-point argument was the only valid IEEE number.

Computational error; during division real part of second complex short
floating-point argument was the only valid IEEE number.

Computational error; during division real part of second complex long
floating-point argument was the only valid IEEE number.

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2350

Condition codes

Computational error; during division real part of second complex extended
floating-point argument was the only valid IEEE number.

Computational error; during division imaginary part of second complex
short floating-point argument was the only valid IEEE number.

Computational error; during division imaginary part of second complex
long floating-point argument was the only valid IEEE number.

Computational error; during division imaginary part of second complex
extended floating-point argument was the only valid IEEE number.

Computational error; during division both parts of both complex short
floating-point argument were not valid IEEE numbers.

Computational error; during division both parts of both complex long
floating-point argument were not valid IEEE numbers.

Computational error; during division both parts of both complex extended
floating-point argument were not valid IEEE numbers.

Computational error; during multiplication complex short floating-point
arguments equal to the limits.

Computational error; during multiplication complex long floating-point
arguments equal to the limits.

Computational error; during multiplication complex extended
floating-point arguments equal to the limits.

Computational error; during multiplication for complex short floating-point
arguments plus or minus infinity was specified.

Computational error; during multiplication for complex long floating-point
arguments plus or minus infinity was specified.

Computational error; the first real long floating-point argument for SCALE
was not a valid IEEE number.

Condition codes 2351 through 2400

2351

2352

2353

2354

2355

2356

2357

2358

Computational error; the first real extended floating-point argument for
SCALE was not a valid IEEE number.

X in CEIL(X) or FLOOR(X) was invalid for a real short floating-point
argument because the argument was plus or minus infinity.

X in CEIL(X) or FLOOR(X) was invalid for a real long floating-point
argument because the argument was plus or minus infinity.

X in CEIL(X) or FLOOR(X) was invalid for a real extended floating-point
argument because the argument was plus or minus infinity.

X in CEIL(X) or FLOOR(X) was invalid for a real short floating-point
argument because the argument was not a valid IEEE number.

X in CEIL(X) or FLOOR(X) was invalid for a real long floating-point
argument because the argument was not a valid IEEE number.

X in CEIL(X) or FLOOR(X) was invalid for a real extended floating-point
argument because the argument was not a valid IEEE number.

Computational error; during division complex short floating-point
arguments equal to the limits.

Chapter 10. Condition codes 159

Condition codes

160

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

PL/1 Messages and Codes

Computational error; during division complex long floating-point
arguments equal to the limits.

Computational error; during division complex extended floating-point
arguments equal to the limits.

Computational error; during division for complex short floating-point
arguments plus or minus infinity was specified.

Computational error; during division for complex long floating-point
arguments plus or minus infinity was specified.

Computational error; during division for complex extended floating-point
arguments plus or minus infinity was specified.

Computational error; during division real part of first complex short
floating-point argument was not a valid IEEE number.

Computational error; during division real part of first complex long
floating-point argument was not a valid IEEE number.

Computational error; during division real part of first complex extended
floating-point argument was not a valid IEEE number.

Computational error; during division real part of second complex short
floating-point argument was not a valid IEEE number.

Computational error; during division real part of second complex long
floating-point argument was not a valid IEEE number.

Computational error; during division real part of second complex extended
floating-point argument was not a valid IEEE number.

Computational error; during division imaginary part of first complex short
floating-point argument was not a valid IEEE number.

Computational error; during division imaginary part of first complex long
floating-point argument was not a valid IEEE number.

Computational error; during division imaginary part of first complex
extended floating-point argument was not a valid IEEE number.

Computational error; during division imaginary part of second complex
short floating-point argument was not a valid IEEE number.

Computational error; during division imaginary part of second complex
long floating-point argument was not a valid IEEE number.

Computational error; during division imaginary part of second complex
extended floating-point argument was not a valid IEEE number.

Computational error; during division both parts of first complex short
floating-point argument were not valid IEEE numbers.

Computational error; during division both parts of first complex long
floating-point argument were not valid IEEE numbers.

Computational error; during division both parts of first complex extended
floating-point argument were not valid IEEE numbers.

Computational error; during division both parts of second complex short
floating-point argument were not valid IEEE numbers.

Computational error; during division both parts of second complex long
floating-point argument were not valid IEEE numbers.

2381

Condition codes

Computational error; during division both parts of second complex
extended floating-point argument were not valid IEEE numbers.

Condition codes 2403 through 2450

2403

2404

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

Computational error; real extended floating point argument of GAMMA or
LOGGAMMA built-in function was less than or equal to minus zero.

Computational error; real extended floating point argument of GAMMA or
LOGGAMMA built-in function was equal to zero.

The calculated result of real short floating-point arguments for EXP
overflowed the output field.

The calculated result of real long floating-point arguments for EXP
overflowed the output field.

The calculated result of real extended floating-point arguments for EXP
overflowed the output field.

The calculated result of real short floating-point arguments for SCALE
overflowed the output field.

The calculated result of real long floating-point arguments for SCALE
overflowed the output field.

The calculated result of real extended floating-point arguments for SCALE
overflowed the output field.

Computational error; complex short floating-point argument in LOG,
LOG2, or LOG10 built-in function was zero.

Computational error; complex long floating-point argument in LOG, LOG2,
or LOG10 built-in function was zero.

Computational error; complex extended floating-point argument in LOG,
LOG2, or LOG10 built-in function was zero.

The calculated result of real short floating-point arguments for SINH or
COSH calculated result overflowed output field.

The calculated result of real long floating-point arguments for SINH or
COSH calculated result overflowed output field.

The calculated result of real extended floating-point arguments for SINH or
COSH calculated result overflowed output field.

The calculated result of real short floating-point arguments for COTAN or
COTAND calculated result overflowed output field.

The calculated result of real long floating-point arguments for COTAN or
COTAND calculated result overflowed output field.

The calculated result of real extended floating-point arguments for COTAN
or COTAND calculated result overflowed output field.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex short floating-point argument the calculated result overflowed
output field.

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex long floating-point argument the calculated result overflowed
output field.

Chapter 10. Condition codes 161

Condition codes

2424

2425

2426

2427

2428

2429

2430

2431

2450

Computational error in SIN, COS, SIND, or COSD built-in function; for
complex extended floating-point argument the calculated result overflowed
output field.

Computational error in SIN, COS, SIND, or COSD built-in function; real
short floating-point argument is equal to plus or minus infinity.

Computational error in SIN, COS, SIND, or COSD built-in function; real
long floating-point argument is equal to plus or minus infinity.

Computational error in TAN or TAND built-in function; real short
floating-point argument equal to plus or minus infinity.

Computational error in TAN or TAND built-in function; real long
floating-point argument equal to plus or minus infinity.

Computational error in COTAN or COTAND built-in function; real short
floating-point argument is equal to plus or minus zero, or plus or minus
infinity.

Computational error in COTAN or COTAND built-in function; real long
floating-point argument is equal to plus or minus zero, or plus or minus
infinity.

Computational error in COTAN or COTAND built-in function; real
extended floating-point argument is equal to plus or minus zero.

Computational error in EXPONENT built-in function; for complex long
floating-point base with integer exponent, the calculated result was infinity.

Condition codes 2451 through 2500

162

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

PL/1 Messages and Codes

Computational error in EXPONENT built-in function; for complex
extended floating-point base with integer exponent, the calculated result
was infinity.

Computational error in EXP built-in function; for complex short
floating-point argument, the calculated result was infinity.

Computational error in EXP built-in function; for complex long
floating-point argument, the calculated result was infinity.

Computational error in EXP built-in function; for complex extended
floating-point argument, the calculated result was infinity.

Computational error during division; for complex short floating-point
argument, the calculated result was infinity.

Computational error during division; for complex long floating-point
argument, the calculated result was infinity.

Computational error during division; for complex extended floating-point
argument, the calculated result was infinity.

Computational error in SQRT built-in function; for real short floating-point
arguments, the ONCODE value was infinity.

Computational error in SQRT built-in function; for real long floating-point
arguments, the ONCODE value was infinity.

Computational error in SQRT built-in function; for real extended
floating-point arguments, the ONCODE value was infinity.

Computational error in LOG built-in function; for real short floating-point
arguments, the calculated result was infinity.

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

Condition codes

Computational error in LOG built-in function; for real long floating-point
arguments, the calculated result was infinity.

Computational error in LOG built-in function; for real extended
floating-point arguments, the calculated result was infinity.

Computational error in ATANH built-in function; for real short
floating-point arguments, calculated result was infinity.

Computational error in ATANH built-in function; for real long
floating-point arguments, the calculated result was infinity.

Computational error in ATANH built-in function; for real extended
floating-point arguments, the calculated result was infinity.

Computational error in SINH or COSH built-in function; for real short
floating-point arguments, the calculated result was infinity.

Computational error in SINH or COSH built-in function; for real long
floating-point arguments, the calculated result was infinity.

Computational error in SINH or COSH built-in function; for real extended
floating-point arguments, the calculated result was infinity.

Computational error in GAMMA or LOGGAMMA built-in function; for
real short floating-point argument, the calculated result was infinity.

Computational error in GAMMA or LOGGAMMA built-in function; for
real long floating-point argument, the calculated result was infinity.

Computational error in GAMMA or LOGGAMMA built-in function; for
real extended floating-point argument, the calculated result was infinity.

Computational error in EXPONENT built-in function; for real short
floating-point base with real short floating-point exponent, the calculated
result was infinity.

Computational error in EXPONENT built-in function; for real long
floating-point base with real long floating-point exponent, the calculated
result was infinity.

Computational error in EXPONENT built-in function; for real extended
floating-point base with real extended floating-point exponent, the
calculated result was infinity.

Computational error in EXPONENT built-in function; for real short
floating-point base with integer exponent, the calculated result was infinity.

Computational error in EXPONENT built-in function; for real long
floating-point base with integer exponent, the calculated result was infinity.

Computational error in EXPONENT built-in function; for real extended
floating-point base with integer exponent, the calculated result was infinity.

Computational error in EXP built-in function; for real short floating-point
argument, the calculated result was infinity.

Computational error in EXP built-in function; for real long floating-point
argument, the calculated result was infinity.

Computational error in EXP built-in function; for real extended
floating-point argument, the calculated result was infinity.

Chapter 10. Condition codes 163

Condition codes

Condition codes 2504 through 2999

2504 Computational error in ABS built-in function; for real short floating-point
arguments, the calculated result was infinity.

2505 Computational error in ABS built-in function; for real long floating-point
arguments, the calculated result was infinity.

2506 Computational error in ABS built-in function; for real extended
floating-point arguments, the calculated result was infinity.

2507 Computational error in ABS built-in function; for complex short
floating-point arguments, the calculated result was infinity.

2508 Computational error in ABS built-in function; for complex long
floating-point arguments, the calculated result was infinity.

2509 Computational error in ABS built-in function; for complex extended
floating-point arguments, the calculated result was infinity.

2510 Computational error in SCALE built-in function; for real short
floating-point arguments, the calculated result was infinity.

2511 Computational error in SCALE built-in function; for real long
floating-point arguments, the calculated result was infinity.

2512 Computational error in SCALE built-in function; for real extended
floating-point arguments, the calculated result was infinity.

2513 Computational error in SQRT built-in function; for complex short
floating-point arguments, the calculated result was infinity.

2514 Computational error in SQRT built-in function; for complex long
floating-point arguments, the calculated result was infinity.

2515 Computational error in SQRT built-in function; for complex extended
floating-point arguments, the calculated result was infinity.

2516 Computational error during multiplication; for complex short floating-point
argument, the calculated result was infinity.

2517 Computational error during multiplication; for complex long floating-point
argument, the calculated result was infinity.

2518 Computational error during multiplication; for complex extended
floating-point argument, the calculated result was infinity.

2519 Computational error in LOG built-in function; for complex short
floating-point arguments, the calculated result was infinity.

2520 Computational error in LOG built-in function; for complex long
floating-point arguments, the calculated result was infinity.

2521 Computational error in LOG built-in function; for complex extended
floating-point arguments, the calculated result was infinity.

2522 Computational error in ATANH built-in function; for complex short
floating-point arguments, the calculated result was infinity.

2523 Computational error in ATANH built-in function; for complex long
floating-point arguments, the calculated result was infinity.

2524 Computational error in ATANH built-in function; for complex extended
floating-point arguments, the calculated result was infinity.

164 PL/I Messages and Codes

2525

2526

2527

2528

2529

2530

2531

Condition codes

Computational error in SINH or COSH built-in function; for complex short
floating-point arguments, the calculated result was infinity.

Computational error in SINH or COSH built-in function; for complex long
floating-point arguments, the calculated result was infinity.

Computational error in SINH or COSH built-in function; for complex
extended floating-point arguments, the calculated result was infinity.

Computational error in EXPONENT built-in function; for complex short
floating-point base with complex short floating-point exponent, the
calculated result was infinity.

Computational error in EXPONENT built-in function; for complex long
floating-point base with complex long floating-point exponent, the
calculated result was infinity.

Computational error in EXPONENT built-in function; for complex
extended floating-point base with complex extended floating-point
exponent, the calculated result was infinity.

Computational error in EXPONENT built-in function; for complex short
floating-point base with integer exponent, the calculated result was infinity.

Condition codes 3000 through 3900

3000

3002
3003
3006
3009

3010

3011

3013

3014
3015
3016

3018
3019

Field width, number of fractional digits, and number of significant digits
(w, d, and s) specified for E-format item in edit-directed input/output
statement do not allow transmission without loss of significant digits or
sign.

memconvert built-in returned a bad return code.
No room for shift-in after Unicode conversion.
Picture description of target does not match non-character-string source.

A mixed-character string contained a shift-out, then ended before a shift-in
was found.

During processing of a mixed-character constant, one of the following
occurred:

» A shift-in present in the SBCS portion.

* A shift-out present in the graphic (double-byte) portion. (A shift-out
cannot appear in either byte of a graphic character).

* A shift-in present in the second byte of a graphic character.

MPSTR built-in function contains an invalid character (or a null function
string, or only blanks) in the expression that specifies processing rules.
(Only V, v, S, s, and blank are valid characters.)

An assignment attempted to a graphic target with a length greater than
16,383 characters (32,766 bytes).

A graphic or mixed string did not conform to the continuation rules.
A X or GX constant has an invalid number of digits.

Improper use of graphic data in stream 1/0. Graphic data can only be
used as part of a variable name or string.

Invalid UTF-8 data was detected.
An invalid byte 2 in a UTF-8 character was detected.

Chapter 10. Condition codes 165

Condition codes

3020 Aninvalid byte 3 in a UTF-8 character was detected.

3021 An invalid byte 4 in a UTF-8 character was detected.

3022 An incomplete UTF-8 character was detected.

3023 Invalid UTF-16 data was detected.

3024 An incomplete UTF-16 character was detected.

3025 USUBSTR reference is invalid.

3500 Error detected by the operating system while processing WAIT statement.

3501 Error detected by the operating system while processing DETACH
statement.

3502 Error detected by the operating system while processing ATTACH
statement.

3503 Error detected by the operating system while processing STOP statement.
3797 Attempt to convert to or from graphic data.

3798 ONCHAR, ONSOURCE, or ONGSOURCE pseudovariable used out of
context.

3799 The source was not modified in the CONVERSION ON-unit. Retry was not
attempted. An ON-unit was entered as a result of the CONVERSION
condition being raised by an invalid character in the string being
converted. The character was not corrected in an ON-unit using the
ONSOURCE, ONGSOURCE, or ONCHAR pseudovariables.

3800 Length of data aggregate exceeds system limit of 2**24 bytes.
3808 Aggregate cannot be mapped in COBOL or FORTRAN.
3809 A data aggregate exceeded the maximum length.

3810 An array has an extent that exceeds the allowable maximum.

Condition codes 3901 through 4000

3901 Attempt to invoke process using a process variable that is already
associated with an active process.

3904 Event variable referenced as argument to COMPLETION pseudovariable
while already in use for a DISPLAY statement.

3906 Assignment to an event variable that is already active.

3907 Attempt to associate an event variable that is already associated with an
active process.

3909 Attempt to create a subtask (using CALL statement) when insufficient
main storage available.

3910 Attempt to attach a process (using CALL statement) when number of
active processes was already at limit defined by ISASIZE parameter of
EXEC statement.

3911 WAIT statement in ON-unit references an event variable already being
waited for in process from which ON-unit was entered.

3912 Attempt to execute CALL with TASK option in block invoked while
executing PUT FILE(SYSPRINT) statement.

3913 CALL statement with TASK option specifies an unknown entry point.

166 PL/I Messages and Codes

3914

3915

3920

Condition codes

Attempt to call FORTRAN or COBOL routines in two processes
simultaneously.

Attempt to call a process when the multitasking library was not selected in
the link-edit step.

An out-of-storage abend occurred.

Condition codes 4001 through 9999

4001

4002

4003

8091
8092
8093
8094
8095
8096
8097
8098
9002
9003
9050
9051

9200
9201
9202
9203
9204

9205

9206
9207
9208
9249

Attempt to assign data to an unallocated CONTROLLED variable occurred
on a GET DATA statement.

Attempt to output an unallocated CONTROLLED variable occurred on a
PUT DATA statement.

Attempt to assign from an unallocated CONTROLLED variable occurred
on a PUT DATA statement with the STRING option.

Operation exception.

Privileged operation exception.

EXECUTE exception.

Protection exception.

Addressing exception.

Specification exception.

Data exception.

Insufficient stack storage

Attempt to execute GO TO statement referencing label in an inactive block.
Attempt to execute a GO TO statement to a nonexistent label constant.
Program terminated by an abend.

An error occurred in CICS. It is highly likely that parameters, particularly
pointers, specified on the EXEC CICS command do not point at storage
owned by the PL/I program. The ERROR on-unit is not given control.
When the TEST run-time option is in effect, PLITEST allows the user to
examine variables, etc. but the execution cannot be continued.

Program check in SORT/MERGE program.

SORT not supported in CMS.

RECORD TYPE string missing in the PLISRTx call.
Incorrect record type specified in the PLISRTx call.

LENGTH= missing from RECORD TYPE string specification in the
PLISRTB or PLISRTD call.

Length specified in the LENGTH= parameter of the PLISRTx call is not
numeric.

Incorrect return code received from E15 or E35 data-handling routine.
DFSORT failed with the return code displayed in the message.
PLISRTx invoked in an environment other than ADMVS.

Routine cannot be released.

Chapter 10. Condition codes 167

Condition codes

168

9250
9251
9252
9253
9254

9999

PL/1 Messages and Codes

Procedure to be fetched cannot be found.

Permanent transmission error when fetching a procedure.
FETCH/RELEASE not supported in CMS.

PLITEST unavailable.

Under CICS, an attempt was made to fetch a MAIN procedure from a PL/I
routine.

A failure occurred in invocation of a Language Environment service.

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Corporation
J74/G4

555 Bailey Avenue

San Jose, CA 95141-1099
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION ,AS IS, WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999, 2008 169

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

IBM IMS

The IBM logo IMS/ESA

ibm.com Language Environment
AIX MVS

CICS 0S/390

CICS/ESA RACF

DB2 System/390

DFSMS VisualAge

DFSORT z/0S

Intel is a registered trademark of Intel Corporation in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States and other countries.

Pentium is a registered trademark of Intel Corporation in the United States and
other countries.

Unicode is a trademark of the Unicode Consortium.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be the trademarks or service marks
of others.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

170 PL/I Messages and Codes

Bibliography

Enterprise PL/I publications

Programming Guide, SC27-1457
Language Reference, SC27-1460
Messages and Codes, SC27-1461
Compiler and Run-Time Migration Guide, GC27-1458

PL/I for MVS & VM

Installation and Customization under MVS, SC26-3119
Language Reference, SC26-3114

Compile-Time Messages and Codes, SC26-3229
Diagnosis Guide, SC26-3149

Migration Guide, SC26-3118

Programming Guide, SC26-3113

Reference Summary, SX26-3821

z/OS Language Environment

Concepts Guide, SA22-7567

Debugging Guide, GA22-7560

Run-Time Messages, SA22-7566

Customization, SA22-7564

Programming Guide, SA22-7561

Programming Reference, SA22-7562

Run-Time Application Migration Guide, GA22-7565

Writing Interlanguage Communication Applications, SA22-7563

CICS Transaction Server

Application Programming Guide, SC33-1687
Application Programming Reference, SC33-1688
Customization Guide, SC33-1683

External Interfaces Guide, SC33-1944

DB2 UDB for OS/390 and z/OS

Administration Guide, SC26-9931

An Introduction to DB2 for OS/390, SC26-9937
Application Programming and SQL Guide, SC26-9933
Command Reference, SC26-9934

Messages and Codes, GC26-9940

SQL Reference, SC26-9944

DFSORT"™

Application Programming Guide, SC33-4035
Installation and Customization, SC33-4034

© Copyright IBM Corp. 1999, 2008 171

IMS/ESA®

Application Programming:
Application Programming:
Application Programming:
Application Programming:
Application Programming:
Application Programming:
Application Programming:

SC26-8036

Database Manager, SC26-8015

Database Manager Summary, SC26-8037

Design Guide, SC26-8016

Transaction Manager, SC26-8017

Transaction Manager Summary, SC26-8038

EXEC DL/l Commands for CICS and IMS™, SC26-8018
EXEC DL/I Commands for CICS and IMS Summary,

z/0S MVS

JCL Reference, SA22-7597

JCL User’s Guide, SA22-7598
System Commands, SA22-7627

z/OS UNIX System Services

z/OS UNIX System Services Command Reference, SA22-7802
z/OS UNIX System Services Programming: Assembler Callable Services Reference,

SA22-7803

z/OS UNIX System Services User’s Guide, SA22-7801

z/OS TSO/E

Command Reference, SA22-7782

User’s Guide, SA22-7794

z/Architecture

Principles of Operation, SA22-7832

Unicode® and character representation
0S/390 Support for Unicode: Using Conversion Services, SC33-7050

172 PL/I Messages and Codes

Readers’ Comments — We'd Like to Hear from You

Enterprise PL/I for z/OS

PL/I for AIX

Rational Developer for System z PL/I for Windows
Messages and Codes

Version 3 Release 8

Publication No. SC27-1461-08

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:

* Send your comments to the address on the reverse side of this form.
» Send a fax to the following number: 1-800-426-7773

* Send your comments via e-mail to: comments@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We'd Like to Hear from You

SC27-1461-08

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

SC27-1461-08

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department H150/090

555 Bailey Ave.

San Jose, CA
95141-1099

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5655-H31

Printed in USA

Enterprise PL/I for z/OS Library
SC27-1456

Licensed Program Specifications
SC27-1457

Programming Guide
GC27-1458

Compiler and Run-Time Migration Guide
SC27-1460

Language Reference
SC27-1461

Compile-Time Messages and Codes

SC27-1461-08

	Contents
	Part 1. Messages and Codes
	Chapter 1. Compiler and preprocessor messages
	Format of messages
	Message inserts
	Contacting IBM for support

	Chapter 2. How to send your comments
	Chapter 3. Compiler Informational Messages (1000-1076, 2800-2999)
	Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799)
	Chapter 5. Compiler Error Messages (1226-1499, 2400-2599)
	Chapter 6. Compiler Severe Messages (1500-2399)
	Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999)
	Chapter 8. Code Generation Messages (5000-5999)
	Chapter 9. SQL Preprocessor Messages (7000-7999)
	Chapter 10. Condition codes
	Conditions 1 through 50
	Condition codes 51 through 100
	Condition codes 100 through 520
	Condition codes 600 through 650
	Condition codes 651 through 672
	Condition codes 1002 through 1107
	Condition codes 1500 through 1550
	Condition codes 1551 through 1600
	Condition codes 1601 through 1650
	Condition codes 1651 through 1700
	Condition codes 1701 through 1750
	Condition codes 1751 through 1800
	Condition codes 1801 through 1850
	Condition codes 1851 through 1900
	Condition codes 1901 through 1950
	Condition codes 1951 through 2000
	Condition codes 2002 through 2150
	Condition codes 2151 through 2200
	Condition codes 2201 through 2250
	Condition codes 2251 through 2300
	Condition codes 2301 through 2350
	Condition codes 2351 through 2400
	Condition codes 2403 through 2450
	Condition codes 2451 through 2500
	Condition codes 2504 through 2999
	Condition codes 3000 through 3900
	Condition codes 3901 through 4000
	Condition codes 4001 through 9999

	Notices
	Trademarks

	Bibliography
	Enterprise PL/I publications
	PL/I for MVS & VM
	z/OS Language Environment
	CICS Transaction Server
	DB2 UDB for OS/390 and z/OS
	DFSORT™
	IMS/ESA®
	z/OS MVS
	z/OS UNIX System Services
	z/OS TSO/E
	z/Architecture
	Unicode® and character representation

	Readers’ Comments — We'd Like to Hear from You

