
IBM Rational Developer for System z Version 7.5

Common Access Repository Manager

Developer’s Guide

SC23-7660-02

���

IBM Rational Developer for System z Version 7.5

Common Access Repository Manager

Developer’s Guide

SC23-7660-02

���

Note

Before using this document, read the general information under “Notices” on page 103.

Third edition (October 2008)

This edition applies to Common Access Repository Manager for version 7.5 of IBM Rational Developer for System z

(product number 5724-T07) and to all subsequent releases and modifications until otherwise indicated in new

editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30

a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)

445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.

Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation

Attn: Information Development Department 53NA

Building 501 P.O. Box 12195

Research Triangle Park NC 27709-2195.

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corp.

© Copyright International Business Machines Corporation 2000, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book v

Who should read this book v

Conventions used in this book v

Chapter 1. Introduction to CARMA . . . 1

Supported operations 1

Locating the sample files 2

Chapter 2. General concepts 5

Browsing 5

Checking in and out 5

Memory allocation 6

Member contents 7

Character buffers 8

Return codes 8

Logging 9

Custom parameters and return values 9

Chapter 3. Developing a RAM 11

RAM Construction 11

Construction for a PDS 11

Construction of a PDS/E 12

Using the RAM utilities module 12

utilInitMemberList 12

utilGetNextMember 12

utilCloseMemberList 13

utilGetAllMemberInfo 13

utilGetMemberInfo 13

utilSetMemberInfo 14

utilGetAllPDSInfo 14

utilCopyPDStoPDS 14

utilCopyPDStoSDS 15

utilCopySDStoPDS 15

utilCopySDStoSDS 15

utilPutMemberInit 15

utilPutMemberRecs 15

utilPutMemberRec 16

utilPutMemberClose 16

utilExtractMemberInit 16

utilExtractMemberRec 16

utilExtractMemberClose 17

Defining the RAM to CARMA 17

Exporting functions 17

IDs vs. names 17

RAM predefined data structures 17

Logging 18

Dealing with unsupported operations 18

Handling custom parameters and return values . . 18

CARMA Defined Metadata 19

RAM specified file extension 19

CARMA Version 20

State functions 21

initRAM 21

terminateRAM 22

reset 22

Browsing functions 22

getInstances 22

getMembers 23

isMemberContainer 24

getContainerContents 24

Create/Delete 25

File transfer functions 27

extractMember 27

putMember 29

Extract to External 30

Binary file transfer 32

Metadata functions 33

getAllMemberInfo 33

getMemberInfo 34

updateMemberInfo 35

Other operations 35

lock 35

unlock 36

check_in 36

check_out 37

performAction 37

getVersionList 38

RAM development using COBOL 39

COBOL RAM program structure 39

Passing values from C to COBOL 41

Passing Data from COBOL to C 43

Dealing with pointer operations 44

Variables shared between programs 46

Handling Custom Action Framework data . . . 46

Differences between the “utility DLL” and the

“COBOL-to-C utility source” 48

Debugging and avoiding abnormal termination 49

Chapter 4. Customizing a RAM API

using the CAF 51

CAF object types 51

RAM 51

Parameter 52

Return value 52

Action 53

Field 54

Developing the RAM model for a custom RAM . . 54

Creating VSAM records from a RAM model . . . 59

CRADEF 59

CRASTRS 61

SAMP RAM VSAM records 63

VSAM cluster access 65

Chapter 5. Developing a CARMA client 67

Compiling the CARMA client 67

Running the client 67

Storing results for later use 68

Client predefined data structures 68

Logging 70

Handling custom parameters and return values . . 70

© Copyright IBM Corp. 2000, 2007 iii

CARMA Defined Metadata 71

RAM specified file extension 71

Extract to External 71

copyFromExternal 71

copyToExternal 72

State functions 73

initCarma 73

getRAMList 74

initRAM 74

reset 74

terminateRAM 75

terminateCarma 75

Browsing functions 75

getInstances 75

getMembers 76

isMemberContainer 76

getContainerContents 77

Create/Delete 78

File transfer functions 81

extractMember 81

putMember 82

Binary file transfer 83

Metadata functions 85

getAllMemberInfo 85

getFieldsData 86

getMemberInfo 86

updateMemberInfo 87

Other operations 87

lock 87

unlock 88

checkin 88

checkout 89

performAction 89

getCAFData 90

getVersionList 91

Appendix A. Return codes 93

Appendix B. Action IDs 95

Appendix C. Sample RAMs 97

PDS RAM 97

RAM Description 97

Navigation Structure 97

Supported actions 97

Unsupported actions 97

SCLM RAM 97

RAM Description 97

Navigation Structure 98

Supported actions 98

Unsupported actions 100

COBOL RAM 100

RAM Description 100

Navigation Structure 100

Supported Capabilities 100

Skeleton RAM 101

RAM Description 101

Notices 103

Trademarks and service marks 105

Index 109

iv IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

About this book

This book explains how to develop repository access managers (RAMs) and

Common Access Repository Manager (CARMA) clients. It includes the following

topics:

v How to develop a RAM capable of connecting to a software configuration

manager (SCM)

v How to develop a CARMA client capable of accessing various SCMs through

CARMA using RAMs

You can use this document as a guide to these tasks or as a programming

reference.

Who should read this book

This book is intended for application programmers or anyone who wants to learn

how RAMs and clients are developed.

To use this book as a guide for RAM development, you need to be familiar with

the SCM for which you are developing a RAM. To use this book for CARMA client

development, you need to understand generic SCM concepts.

Conventions used in this book

Throughout this book there are several references to data sets and members that

have the high-level qualifier FEK. Depending on how your CARMA host has been

configured, these data sets may actually have different file names. For example, the

sample library referred to as FEK.SFEKSAMP in this book could actually be named

MYCORP.TEST.SFEKSAMP on your host system. Thus, depending on the configuration

of your host system, the FEK in the data set names referenced in this book may be

replaced with some other string. Contact your system programmer to determine

where these data sets are actually located on your host system.

© Copyright IBM Corp. 2000, 2007 v

vi IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Chapter 1. Introduction to CARMA

CARMA is a library that provides a generic interface to z/OS software

configuration managers (SCMs). Developers can build on top of CARMA by

developing repository access managers (RAMs) that plug into the CARMA

environment. RAMs define how CARMA should communicate with various SCMs.

For example, a CARMA host (a z/OS host machine with CARMA on it) could be

configured to use one RAM to communicate with IBM Source Code Library

Manager (SCLM) repositories and another RAM to communicate with your own

custom SCM.

By using CARMA, developers of client software can avoid writing specialized code

for accessing SCMs, and easily allow support for any SCM for which a RAM is

available. CARMA is a DLL stored within an MVS PDS. Only z/OS clients can

directly access CARMA. In order to access CARMA from a workstation, a software

bridge between the workstation and host must be developed. This bridge software

must act as a client to the CARMA host and as a server to workstations. IBM

Rational Developer for System z ships with such a software bridge to allow the

CARMA plug-in to access CARMA hosts.

Figure 1 illustrates an example CARMA environment.

 CARMA currently ships with four sample RAMs:

v Sample TSO/ISPF PDS RAM - Provides access to the Partition Data Sets (PDS)

through the use of Library Management API of TSO.

v Sample SCLM RAM - Provides access to Software Configuration Library

Manager (SCLM) projects.

v Sample COBOL RAM - Provides example COBOL code which demonstrates

handling of ILC issues specific to COBOL-based RAM development.

v Skeleton RAM - Provides a starting point for RAM developers.

Note: The sample RAMs are provided for the purpose of testing the configuration

of your CARMA environment and as examples for developing your own

RAMs. Do NOT use the provided sample RAMs in a production

environment.

To access your own SCMs using CARMA, you will need to obtain or develop

additional RAMs. See Chapter 2, “General concepts,” on page 5 and Chapter 3,

“Developing a RAM,” on page 11 for more information on developing a RAM to

access your own SCM.

Supported operations

CARMA currently supports the following sets of generic actions:

v Browse an SCM

v Extract an SCM member

v Create an SCM member

v Update an SCM member

Figure 1. Example CARMA environment

© Copyright IBM Corp. 2000, 2007 1

v Get SCM member metadata

v Update SCM member metadata

v Copy a member to a PDS or SDS

v Copy a member from a PDS or SDS

v Delete a member or container

v Lock, unlock, check in, and check out a member

v Browse an SCM member’s history

Although CARMA supports all of these actions, it is quite possible that a given

SCM may not support one or more of these actions due to its design. Developers

of RAMs accessing such SCMs should follow the guidelines for handling

unsupported operations in “Dealing with unsupported operations” on page 18.

CARMA also provides a framework called the Custom Action Framework (CAF)

for customizing the actions a RAM can perform (see Chapter 4, “Customizing a

RAM API using the CAF,” on page 51 for more information).

Locating the sample files

Sample files have been included in the CARMA host installation packages. After

your CARMA host has been successfully set up, you should be able to find these

sample files as members within the sample library (FEK.SFEKSAMP). The following

table summarizes these members:

 Table 1. Sample CARMA development files

Member in FEK.SFEKSAMP Description

CRA390H Header needed for clients

CRA390SD CARMA/390 DLL side deck

CRA#CCLT JCL to compile a CARMA client to a PDS/E

CRA#PCLT JCL to compile a CARMA client to a PDS

CRA#XCLT JCL to run a host-based client

CRACLISA Sample client source code

CRADSDEF C header needed for clients and RAMs

CRAFCDEF C header needed for RAMs

CRASUTIL Source code for the RAM utility functions

CRAHUTIL Header needed for RAM utility functions

CRA$VMSG IDCAMS JCL to REPRO CRAMSG

CRAMSGH Header file common to the sample PDS and SCLM

RAMs

CRAMSGO Object module common to the sample PDS and SCLM

RAMs

CRA#CCOB JCL to compile the COBOL Sample RAM to a PDS/E

CRA#PCOB JCL to compile the COBOL Sample RAM to a PDS

CRA#CRAM JCL to compile the Skeleton RAM to a PDS/E

CRA#PRAM JCL to compile the Skeleton RAM to a PDS

CRA#CSLM JCL to compile the sample SCLM RAM to a PDS/E

CRA#PSLM JCL to compile the sample SCLM RAM to a PDS

CRA#CPDS PDS RAM to a PDS/E

2 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Table 1. Sample CARMA development files (continued)

Member in FEK.SFEKSAMP Description

CRA#PPDS PDS RAM to a PDS

CRARAMSA Skeleton RAM source code

CRA$VDEF JCL to REPRO CRADEF

CRA#VPDS JCL to REPRO the sample PDS RAM's messages

CRA#VSLM JCL to REPRO the sample SCLM RAM's messages

CRASPDS Source code for the sample PDS RAM

CRA$VSTR JCL to REPRO CRASTRS

CRASSCLM Source code for the sample SCLM RAM

Note: The CRA$*members have been copied to FEK.#CUST.JCL for customization

during the setup of Developer for System z. Ask your system programmer

for a copy of these customized JCL’s to use as a starting point for your own

Chapter 1. Introduction to CARMA 3

4 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Chapter 2. General concepts

This section outlines several general concepts that are essential to understanding

how CARMA works. For a more in-depth overview of these concepts, please read

Integrating Source Code Management Systems into WebSphere Developer for zSeries

CARMA (SC23-5817-00) located at the IBM Rational Developer for System z library

(http://www.ibm.com/software/awdtools/devzseries/library/)

Browsing

CARMA views all entities within an SCM as Repository Instances (or RIs),

members, and metadata. Repository Instances are the entities at the highest level

within an SCM. For example, the sample PDS RAM uses PDSs as RIs. RIs could be

different libraries of code, different levels of code, or whatever the RAM developer

thinks would make the most sense for CARMA clients. For most SCMs, a RI

should represent a project or component in the SCM. Repository Instances are

more generally referred to as instances during further discussion.

Members are entities contained within instances or other members. Members that

contain other members are known as containers, while members that do not

contain other members are known as simple members.

Figure 2 illustrates a simple hierarchy. "Build" and "Development" are repository

instances, the components are containers, and the source files are simple members.

Checking in and out

CARMA provides a generic interface across various SCMs, each of which may

handle operations differently. Since it is not possible to predict whether the check

in or check out operation for any given SCM will respectively expect or return a

member’s contents, CARMA has been designed such that the check in and check

out actions are flag-setting operations. That is, no member contents are passed to

or returned from the SCM as part of the check in and check out actions.

Certain SCMs might expect the contents of a member to be passed in during a

check in operation for that member. A RAM for such an SCM should handle this

case by storing the member contents in a temporary location before making the

check in call to the SCM.

Similarly, certain SCMs might return the contents of a member during a check out

operation for that member. A RAM for such an SCM should handle this case by

storing the member contents in a temporary location until the client retrieves the

contents.

Figure 2. Example SCM hierarchy

© Copyright IBM Corp. 2000, 2007 5

Memory allocation

Many of the CARMA API functions require that either the RAM or the CARMA

client allocate memory to store function results or parameters that are passed

between the RAM and the CARMA client. For all functions other than

extractMember and putMember, a one dimensional array will need to be allocated by

the RAM and freed by the client to store sets of instance information, member

information, and other information. The following diagram illustrates how the

RAM should allocate this array:

 Each element in the array depicted above is of data structure type type. typePtr is

a type pointer (of type type*) that serves as a handle to the newly allocated

memory. In C, this memory can be allocated with the following code:

typePtr = (type*) malloc(sizeof(type) * numElements);

where numElements is the number of array indices that need to be created. The

memory typePtr points to must be freed by the client once it is no longer needed.

The putMember and extractMember functions use two-dimensional arrays to transfer

member contents, with each array row containing one of the member’s records. For

extractMember, the RAM should allocate the array and the CARMA client should

free the array. For putMember, the CARMA client should both allocate and free the

array. In both cases, the array should be allocated as illustrated in the following

diagram:

 charPtrPtr is a pointer to a char pointer (it is of type char**) that serves as a

handle to an array of char pointers (elements of type char*). The data for the

two-dimensional character array is actually stored in a one-dimensional character

array; the idea of rows and columns is purely conceptual. The array of char

pointers is used to provide handles to the first element in each row of the

"two-dimensional" array. Thus, in the illustration, the first row of the

two-dimensional array consists of elements 0a and 0b, with 0a being the first

element of that row; the second row consists of elements 1a and 1b, with 1a being

the first element of that row; and so on.

To allocate a two-dimensional array such as the ones required for the

extractMember and putMember functions, the CARMA client must first create

charPtrPtr. In C, use the following declaration:

char** charPtrPtr;

If the CARMA client is allocating the two-dimensional character array (as is the

case for the putMember function) the array can now be allocated. In C, the CARMA

client should use the following code:

charPtrPtr = (char**) malloc(sizeof(char*) * numRows);

charPtrPtr = (char) malloc(sizeof(char) * numColumns * numRows);

for(i = 0; i < numRows; i++)

 (charPtrPtr)[i] = ((*charPtrPtr) + (i * numColumns));

Figure 3. Simple one dimensional array as would be allocated by a RAM

Figure 4. Two-dimensional character array as used in extractMember and putMember

6 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

where numRows is the number of rows and numColumns is the number of columns in

the two-dimensional array. The first line allocates the array of char pointers (one

pointer for each row in the two-dimensional array), the second line allocates the

array that holds the data for the two-dimensional array, and the for loop assigns

each of the char pointers in the char pointer array to a row in the two-dimensional

array.

If the RAM is allocating the two-dimensional character array (as is the case for the

extractMember function) an extra step is required before the array can be allocated:

charPtrPtr needs to be passed by reference to the RAM as extractMember's

contents parameter; that is, a pointer to charPtrPtr needs to be passed. This is

necessary so that the client has a handle to the two-dimensional array after the

RAM has allocated the array. Suppose that the RAM receives a parameter named

contents of type char*** in the RAM function that will allocate the

two-dimensional array. The RAM should then allocate the two-dimensional array,

using contents as a handle to the array. In C, the RAM should use the following

code to allocate the two-dimensional array:

*contents = (char**) malloc(sizeof(char*) * numRows);

**contents = (char*) malloc(sizeof(char) * numColumns * numRows);

for(i = 0; i < numRows; i++)

 (*contents)[i] = ((**contents) + (i * numColumns));

where numRows is the number of rows and numColumns is the number of columns in

the two-dimensional array. The first line allocates the array of char pointers (one

pointer for each row in the two-dimensional array), the second line allocates the

array that holds the data for the two-dimensional array, and the for loop assigns

each of the char pointers in the char pointer array to a row in the two-dimensional

array.

Regardless of who allocated the array, the CARMA client must free the

two-dimensional character array in both the extractMember and putMember

functions. In C, the CARMA client should use code similar to the following:

free(charPtrPtr[0]);

free(charPtrPtr);

This frees the data array before freeing the char pointer array, thus avoiding a

memory leak.

Member contents

The contents of SCM members can be sent between the RAM, CARMA, and the

client all at once or a piece at a time. It is recommended that the contents of large

members be sent a piece at a time to avoid attempting to allocate a larger chunk of

memory than is available.

The contents will be passed to and from the RAM as two-dimensional character

arrays, each row in the array corresponding to a record in the member. As the

RAM writes to or reads from a member, it should place the first member record it

encounters at index 0 in the array, so that the indices of the array and member

match.

CARMA also supports binary transfer of member contents. When binary transfers

are performed, the contents are passed to and from the RAM as one-dimensional

character arrays.

Chapter 2. General concepts 7

Character buffers

To match the convention for passing strings in MVS, the RAM should expect all

character buffers passed to it to be padded with spaces instead of being

null-terminated. The RAM should also set up any buffers being returned to the

client in the same way. Assuming a buffer length of 30, the string "CARMA

mechanic" would be passed in the format illustrated in Figure 5 instead of the

format illustrated in Figure 6 (where "?" represents an unknown character). Both

RAM and client developers should initialize buffers that they have created to be

filled with spaces.

Return codes

All functions that run successfully should produce a return code of 0. If an error

occurs, RAM developers may return a code based on Table 2 below

 Table 2. Return code ranges

Error Type Range

CARMA Errors 4 – 99

Generic RAM Errors 100 – 200

Software Bridge Errors 201 – 500

RAM Specific Errors 501 – 900

TSO Errors 901 – 999

If an error occurs, RAM developers may return a code between 100 and 200 or

between 501 and 900. Codes ranging from 100 to 200 are reserved for generic

errors that all RAMs may face. Codes ranging from 501 to 900 should be used for

any errors that are specific to a certain RAM. Likewise, CARMA may return error

codes between 4 and 99, a software bridge created between CARMA and a

workstation client may return error codes between 201 and 500, and TSO errors

may be flagged by returning error codes between 901 and 999. See Appendix A,

“Return codes,” on page 93 for a list of the predefined error codes. When an error

results in a return code between 501 and 900, the RAM should fill the error buffer

with the details of the error. When an error results in a return code between 100

and 200, CARMA will be able to recognize the error and will put the appropriate

error message in the error buffer. If the RAM provides additional error information

using its error buffer, CARMA will append this information to the error message it

produces.

 C A R M A m e c h a n i c

Figure 5. Example of correct RAM buffer usage

 C A R M A m e c h a n i c \0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

An improvement to CARMA in version 7.1 is the ability for the CARMA client to support null terminated character

buffers (as shown in figure 6). All strings passed to the RAM will still be in the format shown in Figure 5, but the

provided CARMA client will work with both space filled and null terminated character buffers. Before designing

your RAM to provide null terminated character buffers, ensure it will only be used with version 7.1 or later of

CARMA clients, or another appropriate client.
Figure 6. Example of incorrect RAM buffer usage

8 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Logging

CARMA uses its own logging system. Trace levels can be used to filter log

messages generated by CARMA and the RAM. The available trace levels are listed

in the following table:

 Table 3. Trace levels. Messages at the "None" trace level are not logged.

Enumeration Trace Level

-1 None

0 Error

1 Warning

2 Information

3 Debug

All messages at or below the chosen level will be logged. For example, if

the"Information" trace level is chosen, the following types of messages will be

logged: information, warning, and error. Additional information on logging is

discussed in “Logging” on page 18 (for RAM development) and “Logging” on

page 70 (for CARMA client development).

Custom parameters and return values

Both custom parameters and return values are referenced by elements in void

pointer arrays. Since parameters and return values can be of various data types,

pointers to them are typecast to void* and then stored in a single array. Each such

array holds either the custom parameter or the custom return values, but never

both. The following diagram illustrates the structure of an example custom

parameter array:

 where params is a pointer to a void array and each voidPtr in the array is a void

pointer that points to a parameter. Custom return value arrays should be similarly

structured.

The number of elements that should be in a custom parameter or return value

array is dependent upon the CAF information in the CARMA VSAM clusters (see

“Creating VSAM records from a RAM model” on page 59). Since it is the

responsibility of the RAM developer to include information on the custom

parameters and return values in the VSAM clusters, the RAM developer should

already know how many elements to include in the custom parameter and return

value arrays. CARMA client developers can use the getCAFData CARMA function

to retrieve information on the custom actions, parameters, and return values for a

RAM (see “getCAFData” on page 90 for more information). Using this information,

CARMA client developers can determine how many custom parameters and return

values are required for each RAM action.

Figure 7. Custom parameter array example. Each element in the array is a pointer to a

parameter. The value of each parameter is shown and labeled with its data type.

Chapter 2. General concepts 9

10 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Chapter 3. Developing a RAM

Repository access managers (RAMs) provide CARMA with access to specific SCMs.

A RAM is a dynamically linked library (DLL) that exports entry points for all API

functions that it implements. An API function reference is included at the end of

this chapter.

Most RAM functions have the following pattern:

1. Determine what instance and/or member the request applies to

2. Contact the SCM to carry out the requested operation

3. Allocate any memory necessary to return the result

4. Fill the allocated memory with the result

5. Return the result to CARMA

You can use the skeleton RAM source file, CRARAMSA (located in the sample library),

as a starting point for your RAM if you are developing your RAM in C. Keep in

mind that your RAM must follow the state, memory allocation, and API

implementation guidelines given in this document; otherwise, serious problems

could develop: CARMA might not communicate properly with the RAM; memory

leaks could develop; or, in the worst case, CARMA or the RAM could abnormally

end. Specifically, read the following sections carefully:

v “Memory allocation” on page 6

v “State functions” on page 21

RAM Construction

RAM construction is a process that deviates from the construction process of a

normal load module or program object. Because of the requirements of DLL

support, the process of creating the RAM for a PDS requires more effort than that

for a PDS/E.

Construction for a PDS

The process for creating a RAM in a PDS requires the usage of the pre-linker. The

steps outlined in creating a RAM for a PDS are as follows:

1. Compile

2. Pre-Link

3. Link

The compile step requires that each source be given the proper compile options for

producing DLL object code. The pre-link step involves feeding the object code into

the pre-linker. The output of the pre-linker is object code that is valid input for the

linker. The pre-linker will create a side deck that may be required input for the

linker for resolving external references. The final link step requires object code and

side decks that are created by the previous steps as input.

To assist in performing compilations involving C, the JCL procedure CRACPL is

provided in the CARMA sample library. Sample JCL for creating a RAM in a PDS

is also provided in the members CRA#CRAM and CRA#PRAM. CRA#CRAM

compiles to PDS/E, and CRA#PRAM can compile to either PDS or PDS/E. Only

CRA#PRAM (or other compile to PDS JCL) requires CRACPL.

© Copyright IBM Corp. 2000, 2007 11

Construction of a PDS/E

The process for creating a RAM in a PDS/E involves two steps. The output of this

process is a program object.

1. Compile

2. Bind

The first step involves using the compiler to generate the object code for the RAM.

After the object code for all sources has been created, it may be fed to the binder

as input for generating the RAM program object.

The process of creating a RAM in a PDS/E is simpler than that for a PDS. Example

JCL is provided for creating the PDS, SCLM, and COBOL RAMs in a PDS/E. The

sample JCL makes use of standard procedures for performing the processes of

compiling and binding.

Notes:

1. RAMs written in C are only intended for use with the z/OS XL C compiler

2. RAMs written in COBOL are only intended for use with the Enterprise COBOL

for z/OS compiler.

Using the RAM utilities module

The RAM utility functions are provided as sample source that may be compiled for

usage by any RAM designed to work with CARMA. It provides access to methods

that are frequently required by RAM designers and are often called several times

within a single RAM. Using the RAM utilities module and its library of functions,

developers will be able to save a great deal of time and simplify performing

CARMA operations on PDS members.

The following methods are included in the RAM utilities module:

utilInitMemberList

This method initializes a list of PDS members for the specified PDS. It must be

called before calls to utilGetNextMember are made. A call to utilCloseMemberList

must also be made before the next call to utilInitMemberList if

utilInitMemberList returns 0 for success.

int utilInitMemberList(char pds[44], int* count, void** tempDataPtr)

 char pds[44] Input The specified PDS to list

members for

int* count Output The number of members in

the PDS

void** tempDataPtr Output State information stored for

use by the module, created

by this call

utilGetNextMember

This method places the next member in the PDS specified by utilInitMemberList

into member. utilGetNextMember returns 0 for success, 1 for no members remaining

and any other value on an error. utilCloseMemberList should be called when

finished reading the member list to prevent memory leaks. If utilGetNextMember

returns something other than 0 or 1, you do not have to call utilCloseMemberList.

int utilGetNextMember(char member[8], void** tempDataPtr)

12 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

char member[8] Output The next member in the PDS

(space filled if no members

exist)

void** tempDataPtr Output State information stored for

use by the module, modified

by this call

utilCloseMemberList

This method cleans up the PDS member list created by utilInitMemberList. It

should be called before another utilInitMemberList is called.

void utilCloseMemberList(void** tempDataPtr)

 void** tempDataPtr Input State information stored for

use by the module, cleaned

up by this call

utilGetAllMemberInfo

This method returns the following ISPF-maintained metadata available for the

given PDS member. This metadata includes:

v Dataset

v Version

v Modification Level

v Creation Date

v Modification Data

v Modification Time

v Current Size

v Initial Size

v Number of Records Modified
int utilGetAllMemberInfo(char pds[44], char member[8], memberInfo* output)

 char pds[44] Input The PDS which contains the

member

char member[8] Input The member name

memberInfo* output Output Member information is

placed in this structure

utilGetMemberInfo

This method returns a piece of ISPF-maintained metadata available for the given

PDS member, including the types listed in the “utilGetAllMemberInfo" method.

int utilGetMemberInfo(char pds[44], char member[8], char* info, int ukey)

 char pds[44] Input The PDS which contains the

member

char member[8] Input The member name

Chapter 3. Developing a RAM 13

char* info Output A buffer large enough to

contain the info.

U_ISPF_MI_SIZE[ukey] will

tell the size needed for a

given key. It will not be

NULL terminated, but the

space should be filled to the

size specified in

U_ISPF_MI_SIZE.

int ukey Input Key for information wanted.

See RAM Utilities Module

header file for a complete list

of keys.

utilSetMemberInfo

This method allows all ISPF-maintained metadata to be set. The metadata that may

be set includes the types listed in the "utilGetAllMemberInfo" method.

int utilSetMemberInfo(char pds[44], char member[8], char info[10], int ukey)

 char pds[44] Input The PDS which contains the

member

char member[8] Input The member name

char info[10] Input The new information.

Ukey_ZLLIB and Ukey_ZLMSEC

are not supported

int ukey Input Key for information wanted.

See RAM Utilities Module

header file for a complete list

of keys.

utilGetAllPDSInfo

This method returns all ISPF metadata available for the given PDS.

int utilGetAllPDSInfo(char pds[44], pdsInfo* output)

 char pds[44] Input The PDS to get all

information about

pdsInfo* output Output PDS information will be

placed in this structure

utilCopyPDStoPDS

int utilCopyPDStoPDS(char fromInstanceID[44], char frommemberID[8],

 char toInstanceID[44], char tomemberID[8])

 char fromInstanceID[44] Input The PDS to copy from

char frommemberID[8], Input The PDS member to copy

char toInstanceID[44] Input The PDS to copy to

char tomemberID[8] Input The PDS member to replace

(or create if it does not exist)

14 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

utilCopyPDStoSDS

int utilCopyPDStoSDS(char fromInstanceID[44], char frommemberID[8],

 char toInstanceID[44])

 char fromInstanceID[44] Input The PDS to copy from

char frommemberID[8], Input The PDS member to copy

char toInstanceID[44] Input The SDS to copy to (this

must exist)

utilCopySDStoPDS

int utilCopySDStoPDS(char fromInstanceID[44],char toInstanceID[44],

 char tomemberID[8])

 char fromInstanceID[44] Input The SDS to copy from

char toInstanceID[44] Input The PDS to copy to

char tomemberID[8] Input The PDS member to replace

(or create if it does not exist)

utilCopySDStoSDS

int utilCopySDStoSDS(char fromInstanceID[44], char toInstanceID[44])

 char fromInstanceID[44] Input The SDS to copy from

char toInstanceID[44] Input The SDS to copy to (this

must exist)

utilPutMemberInit

Will initiate a put to a PDS member. Call utilPutMemberRecs or utilPutMemberRec

until all the required records are put.

int utilPutMemberInit(char pds[44], char member[8], int* lrecl)

 char pds[44] Input The target PDS

char member[8] Input The target PDS member

int* lrecl Output The lrecl, or record size for

the given PDS. (For VB, this

will be the max record size.)

utilPutMemberRecs

Put multiple records of a fixed length.

int utilPutMemberRecs(char** contents, int numRecords)

 char** contents Input 2-D array of records (of size

lrecl) to be put.

int numRecords Input The number of records in a

members contents

Chapter 3. Developing a RAM 15

utilPutMemberRec

Put a single record of variable length.

int utilPutMemberRec(char* contents, int length)

 char* contents Input A single record to be put

int length Input The length of the record to

be put. (maximum of lrecl)

utilPutMemberClose

Must be called for every utilPutMemberInit, except in the case of an error

condition in utilPutMemberInit, utilPutMemberRec, or utilPutMemberRecs.

int utilPutMemberClose()

utilExtractMemberInit

Setup the PDS member to extract from.

int utilExtractMemberInit(char pds[44], char member[8], int* lrecl

 int* recFM, int* numRecords)

 char pds[44] Input The source PDS

char member[8] Input The source PDS member

int* lrecl Output The lrecl, or record size for

the given PDS. (For VB, this

will be the max record size.)

int* recFM Output A Flag representing record

format. Choices are

U_RECFM_VB, U_RECFM_FB, and

U_RECFM_U.

int* numRecords Output The number of records in the

PDS member. Because this

uses ISPF statistics to

determine the number of

records, the maximum value

is 65535 and this will only be

accurate if the statistics are

correct.

utilExtractMemberRec

returns 1 if out of records,

and should be used to

accurately determine when

to stop extracting.

For a value of 65535, the PDS member could actually have more records.

utilExtractMemberRec

Extract's the next record.

Returns 0 for success, and 1 for no more records.

int utilExtractMemberRec(char* record, int* length)

 char* record Output A char buffer of size lrecl,

where the next record will be

extracted to.

16 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

int* length Output The number of char's written

to record.

A return value of 1 says that there are no more records, and no records were

returned on this call.

utilExtractMemberClose

Must be called for every utilExtractMemberInit, except in the case of an error

condition in utilExtractMemberInit or utilExtractMemberRec

int utilExtractMemberClose()

Additional information on the methods listed above can be found in the RAM

utilities module header file.

Defining the RAM to CARMA

CARMA keeps its RAM information in several VSAM clusters, which must be

populated with records for each of the RAMs in the environment. Refer to

Chapter 4, “Customizing a RAM API using the CAF,” on page 51 to learn how to

insert the appropriate records for your RAM into these VSAM clusters. If you do

not need to customize your RAM API, the only record you need to include in the

VSAM cluster is the record for your RAM; you will not need to add parameter,

return value, or action records.

Exporting functions

When CARMA attempts to load a RAM, it expects to be able to load the RAM API

functions explicitly using the C dllqueryfn function. If using C, a #pragma export

statement such as the one below is used to export each RAM function. The

following example exports the initRAM function:

#pragma export(initRAM)

IDs vs. names

When a member, instance, or other type of data is being returned from the RAM to

CARMA, both its ID and display name are typically returned. The ID should

uniquely identify the entity to the RAM. It would be wise to return a member’s

absolute path (starting at the top-level container) in the ID field so that the

member can easily be accessed by the RAM when future requests are made. The

display name is simply the name that should be displayed on the client.

RAM predefined data structures

Most RAM functions use predefined structures to pass information back to

CARMA.

The Descriptor structure consists of a 64-byte name character field and a 256-byte

ID character field. It is used to describe instances, containers, and simple members.

The KeyValPair structure consists of a 64-byte key field and a 256-byte value field.

It is used for metadata key-value pairs. These structures are summarized in Table 4

on page 18 and Table 5 on page 18.

Chapter 3. Developing a RAM 17

Table 4. Descriptor data structure

Field Description

char id[256] Unique ID to describe the entity

char name[64] Display Name

 Table 5. KeyValPair data structure

Field Description

char key[64] An index

char value[256] The data

CRAFCDEF, a C header file in the sample library, must be included in the code for

your RAM before you can use these data structures.

Logging

CARMA provides RAMs with a pointer to a logging function, a pointer to a log

file, and a trace level (see Table 3 on page 9) at initialization. The trace level should

be used to filter out some messages that may not interest users. The logging

function takes a 16-byte sender character buffer, a 256-byte message character

buffer, and the log file pointer that is passed in at initialization. An example call in

C follows:

if(traceLevel > 1)

 (*writeToLog)("MyRAM", "Gathering instances", logPtr);

The job spool will indicate the name of the log created.

Dealing with unsupported operations

If you are developing a RAM that communicates with an SCM that does not

support a CARMA operation, you should inform the client that it is disabled by

appropriately modifying your RAM's CAF information (see Chapter 4,

“Customizing a RAM API using the CAF,” on page 51). You may assume that

CARMA clients will not invoke actions marked as disabled. However, you should

still account for the possibility of a client invoking a disabled action by taking one

of the two following actions:

1. Do not implement the function for the disabled action and do not include a

pragma export statement for the function. This will cause CARMA to return a

return code of 38 to any client that requests that operation from your RAM.

2. Implement the function for the disabled action to simply return a return code

of 107. Include the #pragma export statement for the function as you normally

would.

Handling custom parameters and return values

Custom parameters are passed to the RAM using the void** params parameter.

params is an array of void pointers that point to variables of several types. If these

custom parameters have been defined as required parameters for a given function

in the CARMA VSAM clusters (See Chapter 4, “Customizing a RAM API using the

CAF,” on page 51 for more information), it should be assumed that the client has

set up the params properly. To retrieve the parameters, simply typecast the

variables in params back to their proper types. Notice how params uses a char* for

strings instead of a char**. Use the following C code as an example:

18 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

int param0;

char param1[30];

double param2;

param0= *((int*) params[0]);

memcpy(param1, params[1], 30);

param2 = *((double*) params[2]);

A pointer to an unallocated custom return values array is passed to the RAM as

void*** customReturn. If custom return values are defined in the CARMA VSAM

clusters, the RAM must allocate memory for customReturn and fill it appropriately.

Because the client must free the memory created in the RAM, it is important RAM

developers allocate memory for each return value seperately. The following C code

demonstrates returning an int, a string, and a double:

/* These are defined at the top */

int* return0;

char* return1;

double* return2;

/* Program body */

return0 = malloc(sizeof(int));

*return0 = 5;

return1 = malloc(sizeof(char) * 10);

memcpy(return1, "THE STRING", 10);

return2 = malloc(sizeof(double));

*return2 = 3.41;

/* Allocate and fill the return value structure */

customReturn = malloc(sizeof(void) * 3);

(*customReturn)[0] = (void*) return0;

(*customReturn)[1] = (void*) return1;

(*customReturn)[2] = (void*) return2;

If no custom return values are defined in the CARMA VSAM clusters,

customReturn should be set to NULL.

CARMA Defined Metadata

RAM specified file extension

The RAM provides the ability to suggest file extensions for CARMA resources in

CARMA clients that use the RAM. File extensions provide the client with insight

into the appropriate editor to use with a specific CARMA resource. Allowing the

RAM to specify the file extension eliminates the need for the user to specify

extensions on every resource.

File extensions can be acquired from three different sources:

v The RAM

v The client

v A parent container

The RAM can be configured to suggest file extensions to the client that can be used

in conjunction with CARMA resources. For example, assuming the RAM metadata

property "carma.file-extension" is set to "foo", and the client is set to look to the

RAM for an extension. The file name for the CARMA resource "Name" would be

displayed in the client as "Name.foo". This is because CARMA will look to the

Chapter 3. Developing a RAM 19

RAM for a file extension if the client is configured to accept an extension from the

RAM. By default, the RAM does not suggest the file extension. However, it can be

assumed that the client will provide an extension if one is not already provided by

the RAM.

 Table 6. RAM suggested file extension

Display Name

RAM Metadata

Property

(carma.file-
extension)

Client Extension

Property (set to

accept the RAM's

suggestion) File Name in Client

Name .foo <unset> Name.foo

Once the RAM has specified the file extension however, it is then up to the

discretion of the client to either accept the suggested file extension or use one

defined within the client. In the example provided in Table 6, the extension

provided by the RAM was "foo", so the CARMA resource "Name" was displayed

within the client as "Name.foo". Now assuming that the client has been set to not

use the extension provided by the RAM and apply one of its own. The file

″Name.foo″ would be altered to display ″Name.ext″ where ″ext″ is the new

extension specified within the client. In the event that the display name already

has a file extension associated with it, the client can not remove the extension from

the display name; it can only append a new extension to the existing file name.

 Table 7. Client specified file extension. Client overrides the RAM suggested file extension

and applies its own.

Display Name

RAM Metadata

Property

(carma.file-
extension)

Client Extension

Property (set to

ignore the RAM's

suggestion) File Name in Client

Name .foo .ext Name.ext

Name.foo <unset> .ext Name.foo.ext

In the event that a file extension is not predefined within the RAM metadata

property (carma.file-extension = <unset>), a CARMA resource will then direct itself

to the client for an extension. If the client does not specify a file extension either,

the CARMA resource will then inherit the default extension of its parent container.

 Table 8. Inheritance of file extension. A file extension is not specified at any level, so the

resource inherits an extension from its parent. An extension of "dft" represents the default

extension of a parent as dictated by the CARMA client.

Display Name

RAM Metadata

Property

(carma.file-
extension)

Client Extension

Property File Name in Client

Name <unset> <unset> Name.dft

CARMA Version

The RAM provides the ability to track all available versions of CARMA members

through the use of a specific metadata key: carma.version. By providing the

carma.version key in the member info list, CARMA can provide specific

functionality for versioned resources. For example, CARMA members that support

version tracking may differ from members that do not support version tracking.

20 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

The actions available on version enabled members depend on the SCM the

member originates from as well as the RAM used to connect to the SCM. It is up

to the RAM developer to decide which actions to enable such as making versions

editable, read-only, or providing access to past versions. When CARMA performs

functions on members that have been version enabled, by default, the functions

will always reference the most recent version of a member unless otherwise

specified.

The use of the member info key does not uniquely identify the CARMA member.

Each versioned CARMA member must have a unique member ID in order to

indicate which version is being acted upon specifically. For example, a CARMA

member with ID “member1” has 2 versions – version 1 and version 2. The member

versions can be uniquely identified by appending a version number to the ID. See

the example in Table 9. The RAM must be able to uniquely identify the member

version based on the ID in order to provide functionality to support versioned

members – such as checkin, extractMember, performAction, etc.

 Table 9. CARMA member versioning example.

Member Version Example Member ID

Version 1 member1_v1

Version 1.1 member1_v1.1

Version 2 member1_v2

For detailed information on calling version lists for CARMA members, refer to the

section “getVersionList” on page 38.

State functions

The RAM has three state functions: initRAM, terminateRAM, and reset, as

illustrated in Figure 8. initRAM initializes the global variables of the RAM and

establishes the connection to the repository. It cannot be called again within a

session until the RAM has been terminated. reset restores the repository

connection to its initial state. It can be called at any time except immediately after

terminateRAM. terminateRAM can also be called at any time, but the only function

that can be successfully called immediately after terminateRAM is initRAM.

initRAM

int initRAM(Log_Func logFunc, FILE* log, int traceLev,

 char locale[8], char codepage[5], char error[256])

 Log_Func logFunc Input A function pointer to the

CARMA logging function.

This should be stored for use

in other RAM functions.

FILE* log Input A file pointer to the CARMA

log. This should be stored for

use along with the logging

function.

int traceLev Input The logging trace level to be

used throughout the session.

Figure 8. RAM state diagram

Chapter 3. Developing a RAM 21

char locale[8] Input Tells CARMA the locale of

the strings that will be

returned to the client

char codepage[5] Input Tells CARMA the code page

of the strings that will be

returned to the client

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

initRAM must be called before all other RAM operations occur. It should be used to

initialize the SCM connection and to set up any global variables used within the

program. Among these global variables should be ones used to store the three

variables passed into this function.

terminateRAM

void terminateRAM(char error[256])

 char error[256] Output If an error occurs, this

should be filled with a

description of the error.

terminateRAM should be used to close the SCM connection, and to free any

resources used by the RAM (such as memory and files).

reset

int reset(char buffer[256])

 char error[256] Output If an error occurs, this

should be filled with a

description of the error.

reset is used to restore the SCM connection to its initial state.

Browsing functions

getInstances

Retrieves the list of instances available in the SCM

int getInstances(Descriptor** records, int* numRecords, void** params,

 void*** customReturn, char filter[256],

 char error[256])

 Descriptor** records Output This should be allocated and

filled with the IDs and

names of the available

instances.

int* numRecords Output The number of records that

have been allocated and

returned

22 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char filter[256] Input This can be passed from the

client to filter out sets of

instances.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for its list of instances, possibly applying a filter.

2. Allocate the records array. If developing a RAM in C, use the following code:

records = (Descriptor) malloc(sizeof(Descriptor) * *numRecords);

3. Fill the records array with the IDs and names.

If it is not possible to query the SCM for instances, it may be useful to have the

client pass in a list of known instances using the filter buffer. The RAM should

then check the list and return the instances in the records array. The instances can

be hard-coded if they are constant for the SCM.

getMembers

Retrieves the list of members within an instance

int getMembers(char instanceID[256], Descriptor** members,

 int* numRecords, void** params, void*** customReturn,

 char filter[256], char error[256]);

 char instanceID[256] Input The instance for which the

members should be returned

Descriptor** members Output This should be allocated and

filled with the IDs and

names of the members

within the instance.

int* numRecords Output The number of members for

which the array has been

allocated

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

Chapter 3. Developing a RAM 23

char filter[256] Input This can be passed from the

client to filter out sets of

members.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for the given instance’s members, possibly applying a filter.

2. Allocate the members array. If developing a RAM in C, use the following code:

*members = malloc(sizeof(Descriptor) * *numRecords);

3. Fill the members array with the IDs and names of the members.

isMemberContainer

Sets isContainer to true if a member is a container; false if not

int isMemberContainer(char instanceID[256], char memberID[256],

 int* isContainer, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member being checked

char memberID[256] Input The member that is being

checked

int* isContainer Output Should be set to 1 if the

member is a container; 0 if

not

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Set *isContainer to 1 if the member is a container, or 0 if it is not a container.

getContainerContents

Retrieves the list of members available within a container

int getContainerContents(char instanceID[256], char memberID[256],

 Descriptor** contents, int* numMembers,

 void** params, void*** customReturn,

 char filter[256], char error[256])

 char instanceID[256] Input The instance containing the

container

char memberID[256] Input The container’s ID

24 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Descriptor** contents Output Should be allocated and

filled with the IDs and

names of the members

within the container

int* numRecords Output The number of members for

which the array has been

allocated

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char filter[256] Input This can be passed from the

client to filter out sets of

members.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for the given container’s members, possibly applying a filter.

2. Allocate the contents array. If developing a RAM in C, use the following code:

*contents = malloc(sizeof(Descriptor) * *numMembers);

3. Fill the contents array with the IDs and names of the members.

Create/Delete

Create and delete provides functionality to create and delete both members and

containers within a CARMA environment.

createMember

Creates a new member

int createMember(char instanceID[256], char memberID[256], char name[64],

 char parentID[256], int* lrecl, char recFM[4], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member being created

char memberID[256] Output The ID of the member that is

being created

char name[64] Input/Output ID of the member being

created

char parentID[256] Input ID of parent container (If no

parent exists, space must be

filled)

int* lrecl Output The number of columns in

the data set and array

char recFM[4] Output Contains the data set's record

format (FB, VB, ect)

Chapter 3. Developing a RAM 25

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

createContainer

Creates a new container

int createContainer(char instanceID[256], char memberID[256], char name[64],

 char parentID[256], void** params, void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

container being created

char memberID[256] Output The ID of the container that

is being created

char name[64] Input/Output ID of the container being

created

char parentID[256] Input ID of parent container (If no

parent exists, space must be

filled)

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

delete

Deletes a member or container

int delete(char instanceID[256], char memberID[256], int force, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member or container being

deleted

char memberID[256] Input The ID of the member that is

being deleted

int force Input Used to force a delete. A

value of 1 will force a delete

26 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The delete function may be used to delete both members and containers, however,

it should not be used to delete a RAM Instance.

File transfer functions

extractMember

Retrieves a member’s contents

int extractMember(char instanceID[256], char memberID[256],

 char*** contents, int* lrecl, int* numRecords,

 char recFM[4], int* moreData, int* nextRec,

 void** params, void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

extracted

char*** contents Output Will be allocated as a

two-dimensional array to

contain the member’s

contents

int* lrecl Output The number of columns in

the data set and array

int* numRecords Output The number of records in the

data set or the number of

rows in the array

char recFM[4] Output Will contain the data set’s

record format (FB, VB, etc.)

int* moreData Output Set the value of the variable

to which this points as 1 if

extract should be called

again (because there is still

more data to be extracted).

Otherwise, assign the value

to which it points as 0

Chapter 3. Developing a RAM 27

int* nextRec Input/Output Input: The member record

where the RAM should

begin extracting

Output: The first record in

the data set that wasn’t

extracted if *moreData is set

to 1; otherwise, undefined

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

extractMember returns the contents of the data set in a two-dimensional array. The

function is designed to support sending the data in chunks, so that the array does

not have to be allocated to the entire size of the file. The records in the data sets

are considered to be indexed with the first record being record 0.

Operation:

1. Determine how many records are in the data set, what lrecl and the record

formats are, and set *lrecl and recFM.

a. If the *numRecords - nextRec is greater than RAM’s data chunk size, set

*numRecords to the data chunk’s number of records, and set *moreData to 1;

finally, allocate the array.

b. Otherwise, set *numRecords to *numRecords - *nextRec and allocate the

array. If developing a RAM in C, use the following code:

 *contents = (char**) malloc(sizeof(char*) * (*numRecords));

 **contents = (char*) malloc(sizeof(char) * (*lrecl) * (*numRecords));

 for(i = 0; i < *numRecords; i++)

 (*contents)[i] = ((**contents) + (i * (*lrecl)));

2. Fill the array with the expected set of records. Ensure that the records are not

null-terminated. If there is more data to return, set *nextRec to the 0-based

index of the next record.

Example

Setup: The member contains 26 records, each containing the next alphabetic

character, starting with "A" in record 0. Its *lrecl value is 5, its recFM value is

“FB”, and the RAM’s data chunk size is 10.

 Figure 9 on page 29 shows what extractMember should return for each call needed

to extract all the contents.

28 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

putMember

Updates a member’s contents or creates a new member if the specified memberID

does not exist within the instance

int putMember(char instanceID[256],

 char memberID[256], char** contents, int lrecl,

 int* numRecords, char recFM[4], int moreData,

 int nextRec, int eof, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

updated/created

char** contents Input Contains the new member

contents

int lrecl Input The number of columns in

the data set and array

int* numRecords Input/Output The number of records in the

data set or the number of

rows in the array

char recFM[4] Input Contains the data set’s

record format (FB, VB, etc.)

int moreData Input Will be 1 if the client has

more chunks of data to send;

0 otherwise

int nextRec Input The record in the data set to

which the 0th record of the

contents array maps

int eof Input If 1, denotes that the last row

of the array should mark the

last row in the data set; 0

otherwise

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

 First Call Second Call Third Call

*lrecl = 5

*numRecords = 10

*moreData = 1

*nextRec = 10

*lrecl = 5

*numRecords = 10

*moreData = 1

*nextRec = 20

*lrecl = 5

*numRecords = 6

*moreData = 0

*nextRec = X

Figure 9. Example of return values for subsequent calls to extractMember. Notice that during the third call, *nextRec

has a listed value of X. This means that the value of *nextRec is not significant and will not need to be altered.

Chapter 3. Developing a RAM 29

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Like extractMember, putMember supports the data being sent in chunks. putMember

should also support clients that wish to pass data chunks that are not in sequential

order. For example, a client may send records 10 through 19, 20 through 29, and

then 0 through 9. The RAM should handle such a situation and properly update

the member, or return an error code and fill the error buffer with a string stating

that it cannot handle such a situation.

numRecords describes how many records the client would like to update/write on

input, and the RAM should set it to the number of records that were actually

written for output. If there is a difference between the two, the client will attempt

to put in the members that were not written. Therefore, after receiving a response

from the RAM, the client will set nextRec to the new numRecords value plus

nextRec on its next putMember call.

For putMember, nextRec tells the RAM where to begin writing the contents buffer

that has been passed in. For example, if nextRec is 0, the RAM should start at the

beginning of the member.

moreData signifies that the client will be calling putMember again with another

chunk. It is up to the RAM developer to decide how to handle a situation where

moreData is set and the next call to the RAM is not a call to the putMember function

providing the next chunk of data. In such a case, the RAM might simply return an

error. Alternatively, it could handle the problem and move on.

eof signifies that the current contents buffer contains the last records of a member.

If a 40-record member needed to be shortened to 5 records, eof would be set to 1

when the 5th record were being passed in. This should never be set when moreData

equals 1.

See the source for the Skeleton RAM and the sample PDS RAM for more help (see

“Locating the sample files” on page 2 for information on how to find these source

files).

Operation:

1. Ensure that the lrecl, numRecords, and nextRec values that were passed in are

valid.

2. Open up the dataset and write from record nextRec to record nextRec +

numRecords.

3. If eof is specified, ensure that all records starting with the record at index

nextRec + numRecords are removed.

4. If moreData is equal to 0, close the data set. If moreData is equal to 1, either

leave the data set open if its state cannot be maintained between calls, or close

the data set and make sure that it can be reopened to the appropriate place

with the values being passed in next time putMember is called.

Extract to External

CARMA provides RAM's with the ability to extract files from an SCM into a

normal host environment of PDSs and Sequential files.

30 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

copyFromExternal

Copies a member from a PDS or an SDS.

int copyFromExternal(char instanceID[256], char memberID[256], char external[256],

 void** params, void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member being copied

char memberID[256] Input The ID of the member being

copied

char external[256] Input The location to copy from.

Either a PDS member or an

SDS member. Examples:

FEK.#CUST.EXT.STOR

FEK.#CUST.EXT.PDS(MEMBER)

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

copyToExternal

Copies a member to a PDS or an SDS.

int copyToExternal(char instanceID[256], char memberID[256], char target[256],

 void** params, void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member being copied

char memberID[256] Input The ID of the member being

copied

char target[256] Input The location to copy to.

Either a PDS member or an

SDS member. Examples:

FEK.#CUST.EXT.STOR

FEK.#CUST.EXT.PDS(MEMBER)

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Chapter 3. Developing a RAM 31

Binary file transfer

To successfully transfer files containing binary data without incurring any

corruption, the RAM uses a designated set of functions to extract and put binary

members from an SCM. Once a binary member has been extracted from an SCM,

the RAM then hands the member to CARMA390, which continues to pass it along

as depicted in Figure 10 until the member reaches the user’s machine. At each

stage of the transfer process, the member is recognized as containing binary data,

and no changes are applied to the member because they would result in corruption

of the data.

extractBinMember

Retrieves a binary member's contents.

int putBinMember(char instanceID [256], char memberID [256],

 char** contents, int* length, int* moreData, int start,

 void** params, void*** customReturn, char error [256])

 char instanceID[256] Input The instance containing the

member being extracted.

char memberID[256] Input The ID of the member that is

being extracted.

char** contents Output Pointer to the member’s

contents

int* length Output The length of the member’s

contents.

int* moreData Output If extract should be called

again because there is more

data, set the value of the

variable to which this points

to 1, otherwise assign the

value to which it points to 0.

int start Input The byte location of the file

to start extracting from.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

putBinMember

Updates a binary member’s contents or creates a new member if the specified

memberID does not exist within the instance.

Figure 10. Binary file transfer path

32 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

int putBinMember(char instanceID [256], char memberID [256],

 char* contents, int length, int moreData, int start,

 void** params, void*** customReturn, char error [256])

 char instanceID[256] Input The instance containing the

member being

updated/created.

char memberID[256] Input The ID of the member that is

being updated/created.

char* contents Input Contains the new members

contents.

int length Input Pointer to the length of data

to be written.

int moreData Input Will be 1 if the client has

more chunks of data to send;

0 otherwise.

int start Input The byte location of the file

to start putting data.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Metadata functions

getAllMemberInfo

Retrieves all of a member or instance’s metadata

int getAllMemberInfo(char instanceID[256], char memberID[256],

 KeyValPair** metadata, int* num, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The ID of the instance

containing the member

char memberID[256] Input The ID of the member for

which metadata is being

returned. The ID may be

empty (set as all spaces) if

member info is to be

retrieved for the instance

instead of a specific member.

KeyValPair** contents Output This should be allocated and

filled with all the metadata

key-value pairs for the

specified member

Chapter 3. Developing a RAM 33

int* num Output The number of key-value

pairs for which the array has

been allocated

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for the given member’s metadata.

2. Allocate the contents array. If developing a RAM in C, use the following code:

*metadata = malloc(sizeof(KeyValPair) * *num);

3. Fill the contents array with the key-value pairs.

getMemberInfo

Retrieves a specific piece of a member or instance’s metadata.

int getMemberInfo(char instanceID[256], char memberID[256],

 char key[64], char value[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The ID of the instance

containing the member

char memberID[256] Input The ID of the member whose

metadata is being retrieved If

set as all spaces, the

metadata for the instance

should be returned.

char key[64] Input The key for the value to be

returned

char value[256] Output The requested value

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

getMemberInfo returns the value of the specified key for the given member.

34 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

updateMemberInfo

Updates a specific piece of a member or instance’s metadata

int updateMemberInfo(char instanceID[256], char memberID[256],

 char key[64], char value[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The ID of the instance

containing the member

char memberID[256] Input The ID of the member whose

metadata is being set. If set

as all spaces, the metadata

for the instance should be set

char key[64] Input The key for the value to be

set

char value[256] Input The value to set

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

updateMemberInfo attempts to update a member’s metadata (specified by the given

key) with the given value.

Other operations

lock

Locks the member

int lock(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

locked

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

Chapter 3. Developing a RAM 35

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

unlock

Unlocks the member

int unlock(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

unlocked

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

check_in

Checks in the member. This only consists of setting a flag to mark that it is

checked in.

int check_in(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

checked in

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

36 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

check_out

Checks out the member. This only consists of setting a flag to mark that it is

checked out.

int check_out(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

checked out

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

performAction

Performs the action identified in the actionID by using the parameters given and

the return values in customReturn (when applicable).

int performAction(int actionID, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 int actionID Input The custom action that is

being requested, as defined

in the CRADEF VSAM.

char instanceID[256] Input The instance the action is

being performed on. If this

and memberID are both set

to all spaces, this indicates

the action should be

performed on the RAM.

char memberID[256] Input The member the action is

being performaed on. If this

is set to all spaces, this

indicates the action should be

performed on the instance.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

Chapter 3. Developing a RAM 37

char error[256] Output If an error occurs, this should

be filled with a description of

the error.

getVersionList

Provides a list of versions available for a given member

int getVersionList(char instanceID[256], char memberID[256],

 VersionIdent** versions, int* num, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to get a list of

versions for

int* num Output The number of versions

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this should

be filled with a description of

the error.

VersionIdent will be identified by the following struct:

typedef struct {

char memberID[256]; /*A versioned memberID, such as

 baseMemberID_VerNum*/

char versionKey[64]; /* A way to refer to the version, such as

 “1.2.3”...should be the same as the value

 for the carma.version metadata key*/

 char comments[256]; /* RAM supplied comments on the version,

 could be timestamp, changes, etc.. */

} VersionIdent;

The version list should be a complete ordered version list, but the RAM Developer

can chose to use a ‘versioned’ ID for the current version, or to use the unchanging

ID. As an example, current version of a member might be accessible via

“location(Member)” or “location(Member)_1.4” where the file is on version 1.4.

The RAM developer could therefore choose to return either

“location(Member)_1.4” or “location(Member)” as the newest version in the list.

When returning a list of members through browsing functions, such as getMembers,

the memberIDs returned SHOULD NOT include the version. Changing the memberID

for a member prevents a CARMA client from properly tracking that member.

In order to support versioning, RAM Developers should handle CARMA calls

when presented with a ‘versioned’ ID for the memberID.

38 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

If a RAM developer wants to support versioning for some, but not all of the

members, a return code of 130, which stands for “Member does not support

versioning” can be used.

RAM development using COBOL

While the C programming language is a sufficient choice for the development of

most RAMs, you may occasionally find it beneficial to develop a RAM in COBOL.

Be warned that while there are certain advantages to using COBOL for RAM

development, there are also certain disadvantages as well:

Advantages of RAM development in COBOL

v Code between functions is more clearly separated, enforcing stringent

design and mandating a careful inventory of shared resources between

RAM program functions.

v Since COBOL is heavily associated with the host, the facilities for

COBOL development may be more readily available on your system.

v Since string manipulation in COBOL does not rely on NULL delimiters,

protection exceptions are less likely than they would be during C

development.

v RAMs that involve the incorporation of business logic implementation or

heavy amounts of data shuffling are simpler to develop in COBOL.

v COBOL code has the property of being self-documenting.

Disadvantages of RAM development in COBOL

v Dynamic structures used by CARMA are cumbersome to deal with in

COBOL.

v Usage of additional C-style facilities involves adding C code to

COBOL-to-C source.

v Data typing available within C is not available in COBOL. You must

exercise more care when dealing with pointers.

 CARMA ships with a sample RAM developed in COBOL, appropriately called the

sample COBOL RAM. This sample COBOL RAM requires the COBOL-to-C source

in order to function properly. You may use this RAM as a starting point for your

own RAM written in COBOL, but the provided sample COBOL RAM should not

be used in a production environment.

Note: In order to use the sample COBOL RAM, you must update the Custom

Action Framework (CAF) information in the VSAM clusters. Details on how

to accomplish this can be found in the IBM Rational Developer for System z

Host Configuration Guide (SC31-6930-02).

COBOL RAM program structure

Coding the program ID

RAMs developed in C implement CARMA RAM API functions, such as initRAM or

getMembers. RAMs developed in COBOL implement each of these functions as

individual COBOL programs (called RAM function programs). At compile time, the

source code for each program is concatenated and compiled into a single DLL.

Each program ID is exported to a definition side deck if the DLL is compiled to a

PDS. The program ID of each RAM function program should match the name of

the RAM function implemented by that program.

Chapter 3. Developing a RAM 39

Note: This matching should be case-sensitive. For instance, the following code

would define the program that implements the getInstances RAM function:
PROGRAM-ID. ’getInstances’.

The linkage section

Within a COBOL RAM function program, the linkage section is used for defining

parameter values, establishing addressability to pointer values passed as

parameters, and referencing the integer value returned by the RAM function.

Each parameter being passed to the RAM function should be defined as a 77-level

item. Although these parameters cannot be grouped as 77-level items, it is

recommended that they be defined adjacent to each other in the same sequence

that they are passed to the program (for clarity, locality of reference, and

readability).

Note: To help ease development, an example copy book with pre-defined

parameters for use in a linkage section can be found in the sample library

member CRACPY05..

For example, you could use the following code to define the parameters for the

getInstances RAM function program:

 77 ARG-RECORDS POINTER.

 77 ARG-NUMRECS PIC S9(9) BINARY.

 77 ARG-PARAMS POINTER.

 77 ARG-RETURNS POINTER.

 77 ARG-FILTER PIC X(256).

 77 ARG-ERROR PIC X(256).

 77 INT-RVAL PIC S9(9) BINARY.

Note: The items used in the above procedure division are displayed as they are

defined in the copy book.

77-level items should also be defined for areas referenced by pointers that are not

dynamic in size. For instance, a definition should exist for referencing the 256-byte

error buffer. Use the following definition for this error buffer:

77 ERROR-BUFFER PIC X(256).

The linkage section should also contain a reference to the integer value being

returned from the RAM function (the return code). Define this integer using the

following code:

77 INT-RVAL PIC S9(9) BINARY.

Addressability to the return code need not be established. It may simply be used

as if it were defined within the working storage section.

Defining the procedure division

Parameters should be established with a USING phrase so that they can be made

available to the COBOL program. Since parameters can be passed by reference or

value, you should determine which method is most appropriate for your

parameters depending upon the coding practices in use.

The following example procedure division for the getInstances declaration

illustrates how you might designate parameters to be passed.

PROCEDURE DIVISION USING BY VALUE ARG-RECORDS

 BY REFERENCE ARG-NUMRECS

 BY VALUE ARG-PARAMS

 BY VALUE ARG-RETURNs

40 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

BY REFERENCE ARG-FILTER

 BY REFERENCE ARG-ERROR

 RETURNING INT-RVAL.

Since each RAM function returns an integer value, the RETURNING phrase is used to

specify that an integer value is being returned from the COBOL program.

Note: The order specified in the procedure division must also match the order

defined in the API prototype.

Ending the program

Since each COBOL RAM function program serves the purpose of a C RAM

function, each RAM function program should be terminated with an END PROGRAM

directive. When compiling a COBOL RAM DLL, the COBOL source programs are

provided to the COBOL compiler as a series of concatenated DD statement. Failing

to provide END PROGRAM directives will cause programs to be treated as nested,

which will yield compiler error messages.

Passing values from C to COBOL

Function arguments passed from a C program into a COBOL RAM function

program must be handled in a maner that is appropriate to the method by which

they are being passed. More information on this topic can be found in the guide:

Language Environment Writing Interlanguage Communication Applications. For specific

information on passing values between languages, refer to Chapter 4,

Communicating between C and COBOL. All examples within this section refer to

behavior in which equivalent data types must be defined without the use of

#pragma in the calling C program.

There are two ways of using parameters that have been passed from C. Parameters

can be included with the USING BY VALUE phrase or the USING BY REFERENCE phrase

of the procedure division header.

Receiving basic C data types passed by value

As a general rule, arguments of basic C data types such as int, double, float, or

long that are passed into the C function by value should be received with the BY

VALUE phrase in the COBOL program’s procedure division. For information on each

basic C data type passed BY VALUE and how it should be defined as a linkage

section item, refer to z/OS V1R8.0-V1R9.0 Language Environment Writing

Interlanguage Communication Applications (SA22-7563-05), Chapter 4

″Communicating between C and COBOL″, Table 11. ″Supported Data Types Passed

by Value (Direct) without #pragma″.

Arguments that are passed from C using pointers (such as strings in the form of

character arrays) received BY VALUE must be manually dereferenced using the SET

operator. Alternatively, arguments that use pointers may also be received with the

BY REFERENCE procedure division phrase in the receiving COBOL program,

provided that there is no possibility for the passed pointer to have a NULL value.

More information about this technique can be found in “Avoiding Dereferencing

(Receiving C data types BY REFERENCE)” on page 42, located later in this section

Example: Receiving an integer BY VALUE.

In this example the COBOL program is receiving a parameter that is defined as

type int in C.

First, a linkage section entry must be defined for the incoming integer value.

Chapter 3. Developing a RAM 41

77 IN-INTEGER PIC S9(9) BINARY.

Then, we must add the correct information to the PROCEDURE DIVISION statement to

make the incoming integer available to the program.

PROCEDURE DIVISION USING BY VALUE IN-INTEGER.

Within the COBOL program, IN-INTEGER may be used as if it were any other item

in storage.

Example 2: Receiving Character Arrays BY VALUE.

Most of the C RAM API functions receive a space-padded C character array of 256

bytes called a memberID. In C, this array is passed by reference using a pointer.

When receiving a character array BY VALUE, the COBOL program receives a copy of

the pointer that points to the storage location holding the characters. This pointer

must be dereferenced manually before the string can be used within the COBOL

program.

Define the item in the linkage section as a POINTER.

77 IN-MEMBERID POINTER.

You must also define a second item in the linkage section for dereferencing the

pointer.

77 DEREFERENCED-MEMBERID PIC X(256)

Ensure that the PROCEDURE DIVISION receives the memberID properly.

PROCEDURE DIVISION USING BY VALUE IN-MEMBERID

Then, before working with the memberID, use the SET operator to dereference

IN-MEMBERID.

SET ADDRESS OF DEREFERENCED-MEMBERID TO IN-MEMBERID.

5. Now DEREFERENCED-MEMBERID may be used as though it were defined in the

working storage section:

MOVE ‘MEMBER1’ TO DEREFERENCED-MEMBERID.

Avoiding Dereferencing (Receiving C data types BY

REFERENCE)

In receiving a parameter with the BY REFERENCE phrase, the COBOL program will

take care of dereferencing operations provided that the item is defined properly in

the linkage section. This is useful in avoiding dereferencing operations, but risky in

cases where a NULL pointer may be passed into the receiving COBOL program.

Note: A COBOL program that receives a NULL pointer for an argument received

BY REFERENCE will be likely to ABEND with a protection exception 0C4.

Example: Receiving character arrays BY REFERENCE.

In this example, memberID will be received BY REFERENCE from CARMA.

First, a linkage section entry must be defined to match the character array being

passed.

77 IN-MEMBERID PIC X(256).

42 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

The PROCEDURE DIVISION statement must reflect that this item is being received BY

REFERENCE.

PROCEDURE DIVISION USING BY REFERENCE IN-MEMBERID.

IN-MEMBERID can now be used as if it were any other item defined in working

storage.

MOVE ‘MEMBER1’ TO IN-MEMBERID.

Knowing when to receive BY REFERENCE

The following situations describe when it is appropriate for the COBOL program

to receive parameters BY REFERENCE:

v The item being received is passed from C as a pointer to a simple data type that

does not require multiple levels of dereferencing. (e.g. int *, char *, double *).

v The item being received is being passed into COBOL via a pointer and its value

in the calling program is allowed to be changed by the called program.

v The item being received is a pointer that is guaranteed not to be NULL.

Knowing when to receive BY VALUE

The following situations describe when it is appropriate for the COBOL program

to receive parameters BY VALUE:

v The item coming into COBOL is being passed by value from C (the item is not

being passed via a pointer and its value in the calling program should not be

modified).

v The item coming into COBOL is a type of pointer that will require multiple

levels of dereferencing.

v The item coming into COBOL is a pointer that may potentially have a NULL

value and must be validated before usage in order to prevent an exception

(particularly 0C4).

v Any pointer coming into COBOL that requires manual dereferencing using the

SET operator.

v Any pointers to C functions.

v Any incoming value that is a pointer and will need to have pointer arithmetic

performed upon it.

Passing Data from COBOL to C

When calling C DLL functions from within COBOL, the method by which

parameters are passed from the COBOL program must carefully match the data

types of each of the parameters in the prototype for the receiving C function. This

is necessary in order to avoid problems such as abnormal termination. The general

rule is that if a C function receives an argument that is not a pointer, it should be

passed from COBOL using the BY VALUE phrase. If the argument is a pointer, it

should be passed using the BY REFERENCE phrase.

Passing COBOL items as basic C function arguments

Basic C data types found within function prototypes should be passed by value

from the calling COBOL program. In the following example, a C function is

invoked that accepts two arguments that are basic C data types from the calling

COBOL program.

C function prototype:

int callme(int a, double b);

Working storage items as they should be defined in the calling COBOL program:

Chapter 3. Developing a RAM 43

01 FUNC-ARG1 PIC S9(9).

01 FUNC-ARG2 COMP-2.

01 RETVAL PIC S9(9) BINARY.

An example of the CALL statement in the COBOL program.

CALL “callme” USING BY VALUE FUNC-ARG1 FUNC-ARG2 RETURNING RETVAL.

Passing COBOL items into C functions by reference

C functions frequently receive arguments for reference modification. The most

prevalent example of this is a C-style string modification where a character array is

received via a copy of a pointer to the original string. Items may be passed from

COBOL to C for reference modification using the BY REFERENCE phrase inside the

CALL statement. The following example demonstrates such a situation.

Example:

C function prototype of receiving function:

int receiveString(char inString[256]);

Definitions for the working storage item being passed as an argument and the

return value:

01 THE-STRING PIC X(256).

01 RETVAL PIC S9(9) BINARY.

The CALL statement in the COBOL program:

CALL “receiveString” USING BY REFERENCE THE-STRING RETURNING RETVAL.

Example 2: A C function that receives a pointer to an integer from the calling

COBOL program:

C function prototype:

int changeInt(int * fromCOBOL);

Working storage entries in the calling COBOL:

01 THE-INT PIC S9(9) BINARY.

01 RETVAL PIC S9(9) BINARY.

The CALL statement in the COBOL program:

CALL “changeInt” USING BY REFERENCE THE-INT RETURNING RETVAL.

Dealing with pointer operations

Simple pointer operations

For most parameters passed to COBOL RAM function programs, a small amount

of pointer dereferencing code may need to be implemented using the SET operator.

For example, most programs will receive a pointer to a 256-byte buffer for a

detailed error message. Before you can fill this buffer though, it must be

dereferenced using the SET operator. For smaller items, dereferencing can be

avoided by USING BY REFERENCE.

As an example, the following code demonstrates how to establish addressability to

the error buffer. The pointer to the error buffer is passed by value to the procedure

division for getInstances and is defined in the linkage section as follows:

77 GIP-ERROR POINTER.

44 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Later in the linkage section, a 77-level item is defined for dereferencing and

performing operations on the error buffer:

77 ERROR-BUFFER PIC X(256).

Then, within the procedure division we establish addressability to the error buffer

after verifying that GIP-ERROR is not NULL:

SET ADDRESS OF ERROR-BUFFER TO GIP-ERROR.

Now we can treat the error buffer as we would any normal 256-byte alphanumeric

field. In this case, the error buffer is a 256-byte non-NULL-terminated string.

Complex pointer operations

For pointers with multiple levels of indirection, dereferencing operations can be

complicated. The COBOL code to perform such dereferencing operations would

require multiple 77-level items with a SET operation for each level of indirection. To

complicate matters, dynamically allocated structures are difficult to access without

knowing an absolute maximum size for the structure.

Instead of attempting complex pointer operations in COBOL, it is highly

recommended that code of this nature be implemented in a modular fashion by

using the COBOL-to-C source. Currently functions are implemented for memory

allocation and contents buffer data insertion and retrieval. You may find it helpful

to add to this code as necessary and use it for more complex operations.

Pointer Arithmetic

Alternatively, complex pointer operations can be performed within COBOL, but

decrease code readability and maintainability. To deal with dynamic structures,

pointer arithmetic is necessary. Pointer arithmetic is achieved through the use of

redefines. To create a pointer that may be manipulated through pointer arithmetic,

use code similar to the following within the working storage section:

01 SOME-POINTER POINTER.

01 SOME-POINTER-MANIP REDEFINES SOME-POINTER.

 05 ADD-TO-ME PIC S9(9) BINARY.

After defining the pointer, you can manipulate it as necessary using the redefined

version. The following code would change the pointer to point to the next

structure in a contiguously allocated chunk of memory containing multiple

structures.

ADD SIZE-OF-STRUCTURE TO ADD-TO-ME.

SET ADDRESS OF STRUCTURE TO SOME-POINTER.

Memory Allocation

Certain RAM functions, such as extractMember and getAllMemberInfo, require that

the RAM allocate memory. This memory is later freed by CARMA, which uses C's

free function to deallocate the memory. For this reason, a RAM implemented in

COBOL must use C's malloc function or the Language Environment service

CEEGTST to allocate memory. The COBOL-to-C source has a C function called

CMALLOC to provide access to malloc from within COBOL code. The CMALLOC

function accepts as an argument an integer representing the requested number of

bytes and returns a pointer to the portion of memory that was allocated. It is the

RAM developer’s responsibility to ensure that the pointer is not NULL before

attempting to use the allocated memory.

The following sample call to CMALLOC illustrates its use:

Chapter 3. Developing a RAM 45

01 MALLOC-SIZE PIC S9(9) BINARY.

01 VOID-POINTER-RETURNED POINTER.

MOVE 80 TO MALLOC-SIZE.

CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

 RETURNING VOID-POINTER-RETURNED.

The Language Environment callable service CEEGTST is also available for

dynamically acquiring storage. For more information on this service and other

services provided by Language Environment refer to z/OS V1R9.0 Language

Environment Programming Reference (SA22-7562-09).

Variables shared between programs

Global variables that need to be shared between RAM function programs may be

declared as external. The following example illustrates how to declare variables

using the EXTERNAL keyword in the working storage entry of the initRAM function

program:

01 SHARED-VARIABLES EXTERNAL.

 05 LOG-FUNCTION-POINTER FUNCTION-POINTER.

 05 TRACELEVEL PIC S9(9) BINARY.

 05 FILE-POINTER POINTER.

 05 LOCALE PIC X(8).

 05 CODEPAGE PIC X(5).

In the sample code above, the global variables have their values set within the call

to initRAM. Later, when terminateRAM is called, these values are displayed to show

that they are persistent and shared.

This type of definition should be used for values that need to be shared across

calls to different RAM function programs. If a working storage item will only be

accessed by one RAM function program, do not declare it as an external item.

Working storage items that do not need to be modified by other RAM function

programs should not be made external.

Handling Custom Action Framework data

The Custom Action Framework (CAF) allows you to expand upon the existing

function programs of your COBOL RAM by implementing new custom actions

that are designed to meet the needs of your CARMA client.

Handling Custom actions

Custom actions may be created by using the sample COBOL source file (CRACOB16,

located in the sample library) as an example for implementing the performAction

RAM function. Within the performAction RAM function program, use an EVALUATE

statement to selectively execute code based upon ARG-ACTIONID:

EVALUATE ARG-ACTIONID

 WHEN 119

 CALL ’ESREVER’ USING BY VALUE ARG-PARAMS ARG-RETURNS

 BY REFERENCE ARG-ERROR RETURNING RETCODE

 IF RETCODE NOT = 0

 MOVE RETCODE TO INT-RVAL

 EXIT PROGRAM

 END-IF

 WHEN OTHER

 MOVE RC-UNSUPPORTED TO INT-RVAL

 EXIT PROGRAM

 END-EVALUATE.

46 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Handing Custom Parameters without using COBOL-to-C Utility

Functions

Custom parameters can be retrieved through two dereferencing operations. After

ensuring that the pointer passed to the RAM program is not NULL, establish

addressability to the array of pointers. Then dereference each pointer to access each

custom parameter that it refers to. The following excerpt from the linkage section

for theperformAction RAM function program describes the fields as they are

defined for dealing with two custom parameters:

77 PA-PARAMS POINTER.

01 PARAMS.

 05 PARAM1 POINTER.

 05 PARAM2 POINTER.

01 CUSTOM-PARAM1 PIC S9(9) BINARY.

01 CUSTOM-PARAM2 PIC X(8).

First establish addressability to the custom parameter pointer list using the

following code:

SET ADDRESS OF PARAMS TO PA-PARAMS.

Then establish addressability to individual parameters.

SET ADDRESS OF CUSTOM-PARAM1 TO PARAM1.

SET ADDRESS OF CUSTOM-PARAM2 TO PARAM2.

The custom parameters can now be used as if they were normal fields in the

working storage section. Also, it is assumed that the procedure division statement

has specified that PA-PARMS is being used BY VALUE.

Note: The above example code does not include the checks for NULL pointers that

you should include in your code.

Handling Custom Returns without using COBOL-to-C Utility

Functions

Accessing custom return values within a COBOL RAM requires more caution than

dealing with custom parameters. For custom returns to be established, a series of

concise steps must be followed. The following code outlines linkage section items

that are used to reference a list of two custom returns. It is assumed that the

procedure division statement has specified that PA-PARMS is being used BY VALUE:

77 PA-RETURNS POINTER.

01 RETURNS-LV2 POINTER.

01 RETURNS-LV3.

 05 RETURN1 POINTER.

 05 RETURN2 POINTER.

01 CUSTOM-RETURN1 PIC X(8).

01 CUSTOM-RETURN2 PIC S9(9) BINARY.

Begin by dereferencing the first level of indirection:

SET ADDRESS OF RETURNS-LV2 TO PA-RETURNS.

Then allocate the memory necessary for the array of pointers to the custom

parameters:

COMPUTE MALLOC-SIZE =

 SIZE-OF-POINTER * NUM-CUSTOM-RETURNS

END-COMPUTE.

CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

 RETURNING RETURN-POINTER.

Chapter 3. Developing a RAM 47

Now set the second level pointer to point at that block of memory.

SET RETURNS-LV2 TO RETURN-POINTER.

Next, establish addressability to the list of pointers to return values that you have

just allocated:

SET ADDRESS OF RETURNS-LV3 TO RETURNS-LV2.

Allocate the necessary memory for the custom parameters:

* Allocate space for 8 byte string

MOVE 8 TO MALLOC-SIZE.

CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

 RETURNING RETURN1.

*Allocate space for integer

MOVE 4 TO MALLOC-SIZE.

CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

 RETURNING RETURN2.

Note: This code automatically sets the list of pointers within a RETURNING phrase.

As such, it is not necessary to set these pointers manually.

Finally, establish addressability to the return values and set them accordingly.

SET ADDRESS OF CUSTOM-RETURN1 TO RETURN1.

SET ADDRESS OF CUSTOM-RETURN2 TO RETURN2.

MOVE ‘COBOLRAM’ TO CUSTOM-RETURN1.

MOVE 42 TO CUSTOM-RETURN2.

Note: See the COBOL RAM sample source for documentation and examples on

how to use the COBOL-to-C utility functions.

Differences between the “utility DLL” and the “COBOL-to-C

utility source”

Within the CARMA documentation there are references to a “utility DLL” and

“COBOL-to-C utility source”. There is potential for confusion between these two

items.

The "utility DLL” name is a misnomer. The provided “utility DLL” is a set of C

source code found within the member CRASUTIL within the CARMA SFEKSAMP

library. No compiled DLL form of this source is provided. The source is intended

to provide various utility functions in C that can be shared by various RAM

implementations. These functions implement tasks that RAM developers may

frequently need to perform within their code. This code is provided by the

CARMA development team to ease the process of RAM development. You can

compile the source as a DLL, or as object code and include it in the linking process

for any RAM. In either case, the code is intended to be compiled with the compiler

options for producing DLL code (for example: RENT,DLL). In creating the sample

RAMs provided with CARMA, the utility object code was linked into the final

module.

The other utility source provided, the COBOL-to-C utility source, is also C code

found in the member CRACOBC1 of the SFEKSAMP library. This source is

provided as a set of C functions accessible to COBOL RAM developers to simplify

tasks that are cumbersome to implement in COBOL. The provided functions also

make it possible to access the CARMA log, which is difficult from COBOL due to

the CARMA RAM API specification for the format of the initRAM function.

48 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Both the “utility DLL” and the “COBOL-to-C utility” are provided to developers as

unsupported sample code with the intent of simplifying the task of RAM

development. C developers will likely only consider using the “utility DLL” to

develop a RAM and COBOL developers should consider utilizing both in order to

simplify the development process.

Debugging and avoiding abnormal termination

There are multiple techniques and coding practices available to facilitate COBOL

RAM development.

Displaying values to help debug your COBOL RAM

The DISPLAY verb can be used to inspect the values of program variables,

parameters being passed, and buffers being filled. Moreover, DISPLAY statements

can be most useful if they are inserted to trace the execution path. Most

importantly, note that the displayed values for pointers are shown in decimal, not

in hexadecimal. Output from the use of the DISPLAY verb will display in the

CARMA job spool.

NULL pointers

Attempting to dereference a NULL pointer will almost certainly result in a

protection exception. This effectively will result in not only the termination of the

RAM, but also of CARMA. To avoid such an abnormal termination, all pointer

values should be checked for NULL values. Further documentation is provided

about pointers and checking for NULL values within Enterprise COBOL for z/OS

Language Reference.

Properly exiting your RAM function programs

Conventionally STOP RUN is used to end the execution of a program written purely

in COBOL. However, coding STOP RUN within a COBOL RAM will terminate both

CARMA and the COBOL RAM. Avoiding STOP RUN statements is recommended

unless circumstances require this sort of behavior. You should use EXIT PROGRAM

instead of STOP RUN to leave execution of the COBOL RAM and return to CARMA

processing.

Chapter 3. Developing a RAM 49

50 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Chapter 4. Customizing a RAM API using the CAF

The Custom Action Framework (CAF) is used by RAM developers to describe to

CARMA clients how their RAM APIs differ from the standard RAM API. The CAF

allows a RAM API to define the following differences between its API and the

standard RAM API:

v Additional ("custom") actions

v Disabled standard actions

v Additional ("custom") parameters to standard actions

v Additional ("custom") return values to standard actions

v Fields describing metadata that should be displayed on the client

These differences are defined using CAF information. CAF information can be

thought of as a contract between a RAM and the CARMA clients using that RAM;

the RAM is guaranteed to run properly as long as CARMA clients follow the

RAM's CAF information. Before attempting to define a RAM's CAF information,

you may want to create a conceptual model of your RAM's CAF information. This

will help you plan how you will define your RAMs CAF information in the

CARMA VSAM clusters. This chapter provides a practical example of how to

create such a model for a RAM and how to then define the CAF information for

the RAM using that model.

Before you can follow the example, you should first understand the basic CAF

object types. The example RAM model is designed using these objects.

CAF object types

There are five types of objects used in CAF information: RAMs, parameters, return

values, actions, and fields.

RAM

RAMs provide CARMA with access to specific SCMs. CAF information for your

RAM includes the following:

Name The RAM's name

Description

A short description of the RAM

RAM ID

A numeric identifier for the RAM between 0 and 99

Programming Language

The programming language the RAM was written in (C, COBOL, or PL/I)

RAM DLL name

The name of the RAM DLL

Version

The version number of the RAM

Repository version

The repository version that the RAM was designed to work with

© Copyright IBM Corp. 2000, 2007 51

CARMA version

The CARMA version the RAM was designed to work with

Parameter

Parameters are values passed to an action from the CARMA client. They are

defined per-RAM; thus, once a parameter has been defined, its parameter ID can

be used in the parameter list of any action defined for that RAM. This can be

useful if many of the actions for a RAM require the same parameters.

CAF information for your RAM will include the following information about each

parameter:

Name The parameter's name

Description

A short description of the parameter

Parameter ID

A numeric identifier for the parameter between 000 and 999 (3 bytes).

RAM ID

The ID of the RAM the parameter belongs to

Type The data type of the parameter. Choose from the following list of standard

programming data types: int, long, double, and string.

Length

A numeric value that is specified differently based on the parameter type:

 Parameter Type Specification Instructions

int Arbitrary (this value does not matter)

long Arbitrary (this value does not matter)

double The precision of the parameter

string The field width of the parameter

Constant

Whether or not the parameter will always contain the same value

Default value

The parameter's default value. This is not optional information.

Prompt

The prompt that should be displayed by CARMA clients when requesting

a value for the parameter from users

Return value

Return values are the result of an action called by CARMA. They are defined

per-RAM; thus, once a return value has been defined, its return value ID can be

used in the return value list of any action defined for that RAM. This can be useful

if many of the actions for a RAM require the same return values.

CAF information for your RAM will include the following information about each

return value:

Name The return value's name.

Description

A short description of the return value.

52 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Return value ID

A numeric identifier for the return value between 000 and 999 (3 bytes).

RAM ID

The ID of the RAM the return value belongs to (2 bytes).

Type The data type of the return value. Choose from the following list of

standard programming data types: int, long, double, and string.

Length

A numeric value that is specified differently based on the return value

type:

 Parameter Type Specification Instructions

int Arbitrary (this value does not matter)

long Arbitrary (this value does not matter)

double The precision of the return value

string The field width of the return value

Constant

Whether or not the parameter will always contain the same value

Default value

The default value of the parameter

Prompt

The prompt that should be displayed by CARMA clients when requesting

from users a value for the parameter

Action

All RAMs have a standard set of actions defined within the RAM API. You can use

the CAF to modify these standard actions to use additional input parameters, to

use additional return values, or to be hidden from CARMA (essentially disabling

the actions).

Note: Although it is not possible to specify to the CAF that a default parameter in

a standard action be removed, such a parameter can simply be ignored in

the implementation of that action if passed to the action by a CARMA client.

You can also declare new ("custom") actions. Each declared custom action must

have an assigned ID (called its action ID). When a CARMA client attempts to

invoke a custom action in a RAM, CARMA will first call the RAM’s performAction

function, passing the action ID (provided by the CARMA client) of the custom

action as a parameter. The performAction function should then attempt to call the

function for the custom action with the specified action ID.

Note: It is the responsibility of the RAM developer to handle the case where an

invalid action ID is provided to the RAM's performAction function. A

reasonable way of handling this case would be to return an error to the

client along with a detailed error message.

CAF information for your RAM will include the following information about each

action (for disabled actions, only the RAM and action IDs are required):

Name The action's name

Chapter 4. Customizing a RAM API using the CAF 53

Description

A short description of the action

Action ID

A numeric identifier for the action between 0 and 999. Action IDs between

0 and 79 override standard actions (see Appendix B, “Action IDs,” on page

95 for a full listing of the IDs for the standard actions). Action IDs between

80 and 99 are reserved for use by CARMA. Use an ID between 100 and 999

to define a custom action.

RAM ID

The ID of the RAM the action belongs to

Parameter list

A list of the IDs for the parameters the action uses. If you are overriding a

standard action, you only need a list of those parameters that are being

added to the list of standard parameters. If you are defining a custom

action, you must list the IDs of all the parameters required by the action

except the instance and member IDs, which are passed by default to every

custom action.

Return value list

A list of the IDs for the return values the action returns. If you are

overriding a standard action, you only need a list of those return values

that are being added to the list of standard return values. If you are

defining a custom action, you must list the IDs of all the return values

being returned by the action except for the action's return code, which

must always be returned by every custom action.

Field

Fields describe metadata of particular interest to users. CAF information for Fields

includes the following:

Name The localized displayable name for the field.

Metadata Key

The metadata key to provide to the getMemberInfo function for the field to

be displayed.

Default value

The localized displayable value for the field if no value is returned by a

call to getMemberInfo.

Description

A localized displayable description of the metadata.

Developing the RAM model for a custom RAM

Suppose we want to create a RAM named SAMP RAM that is capable of accessing

an SCM solution named Sample SCM. Assume that Sample SCM operates in a

manner that would cause SAMP RAM to have the following differences from a

standard CARMA RAM:

v Provides no support for checking out files

v Its lock action returns the lock type in addition to the return values for the

standard CARMA lock action

v It has a "lock instance" action, which locks an instance within the SCM. This

action requires the following parameters:

1. Instance ID

54 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

2. Reason

and returns the following values:

1. Lock type

2. Return code
v Has a "disenflaguate" action, which removes a flag from a member within the

SCM. This action requires the following parameters:

1. Instance ID

2. Member ID

3. Reason

and returns the following values:

1. Return code
v Has a "concatenate" action, which concatenates the contents of two members

within the SCM. This action requires the following parameters:

1. Target instance ID

2. Target member ID

3. Destination instance ID

4. Destination member ID

and returns the following values:

1. New instance ID

2. New member ID

3. Return code

In order to fully support the functionality of Sample SCM, we will use the CAF to

customize our RAM API. We would need to create three new custom actions (for

the lock instance, disenflaguate, and concatenate operations) and override two of

the standard actions (lock and check out).

Assume for this example that we are developing the first version of SAMP RAM

(version 1.0), that it is being designed to access Sample SCM version 1.4 and work

with CARMA version 2.5, and that it will be written in C and compiled into a DLL

named SAMPRAM. For this example we will assign SAMP RAM a RAM ID of 1.

Note: We will assume that SAMPRAM, the RAM's DLL, is stored in the common PDS

that contains all of the RAMs available on the CARMA host. See “RAM

Construction” on page 11 to learn where a RAM's DLL should be stored.

We now have all the information about the RAM needed for the SAM RAM model

(see “RAM” on page 51). The following table summarizes this information:

 Table 10. Information about SAMP RAM

Name SAMP RAM

Description

Provides CARMA access to instances of

Sample SCM

RAM ID 1

Programming Language C

RAM DLL Name SAMPRAM

Version 1.0

Repository Version 1.4

Chapter 4. Customizing a RAM API using the CAF 55

Table 10. Information about SAMP RAM (continued)

CARMA Version 2.5

At this time, you may find it helpful to tabulate the information (as described in

“Action” on page 53) for all of the actions that need to be created or overridden.

The following tables summarize this information. Note that the action ID for the

lock action matches the action ID of the standard lock action (see Appendix B,

“Action IDs,” on page 95) in order to ensure that the original lock action is

overridden. The disabled check out action is similarly assigned an ID

corresponding to the standard check out action.

 Table 11. Information about SAMP RAM's lock instance action

Name Lock instance

Description Locks an instance within the SCM

Action ID 100

RAM ID 1

Parameter List

Instance ID

Reason

Return Value List

Return code

Lock type

 Table 12. Information about SAMP RAM's disenflaguate action

Name Disenflaguate

Description

Removes a flag from a member within the

SCM

Action ID 101

RAM ID 1

Parameter List

Instance ID

Member ID

Reason

Return Value List Return code

 Table 13. Information about SAMP RAM's concatenate action

Name Concatenate

Description

Concatenates the contents of two members

within the SCM

Action ID 102

RAM ID 1

Parameter List

Destination instance ID

Destination member ID

Target instance ID

Target member ID

Return Value List

Return code

New instance ID

New member ID

56 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Table 14. Information about SAMP RAM's lock action. Note that we do not provide a

description for this action, since the description from the standard action is already available

to the client. You may override the existing description by specifying a new one in the

VSAM clusters, but the client may or may not use the updated description.

Name Lock

Description

Action ID 10

RAM ID 1

Parameter List

Instance ID

Member ID

Return Value List

Return code

Lock type

 Table 15. Information about SAMP RAM's check out action. Since this action is disabled, we

do not need to include a description, parameter list, or return value list.

Name Check out

Description (Disabled)

Action ID 13

RAM ID 1

Parameter List

(Disabled)

Return Value List

Since the instance and member IDs are passed by default to all actions (see the

description of “Parameter list” in “Action” on page 53), only three additional

parameters need to be defined for the custom actions (lock instance, disenflaguate,

and concatenate) and the lock action: reason, target instance ID, and target member

ID. For the concatenate action, we can map destination instance ID and destination

member ID respectively to the default parameters instance ID and member ID.

We can now list all of the parameters needed for the SAMP RAM model. The

following tables summarize this information. Note that the parameters are assigned

parameter IDs sequentially, starting with 0 for the first parameter.

 Name Reason

Description Reason why the action should be performed

Parameter ID 0

RAM ID 1

Type String

Length 30

Constant No

Default Value None

Prompt

Why are you requesting that the action be

performed?

 Name Target instance ID

Chapter 4. Customizing a RAM API using the CAF 57

Description

ID of the instance containing the member

whose contents should be appended to the

end of the given member

Parameter ID 1

RAM ID 1

Type String

Length 15

Constant No

Default Value None

Prompt

Which instance contains the member that

you want to concatenate with the selected

member?

 Name Target member ID

Description

ID of the member whose contents should be

appended to the end of the given member

Parameter ID 2

RAM ID 1

Type String

Length 30

Constant No

Default Value None

Prompt

Which member’s contents do you want to

append to the end of the selected member?

Only three additional return values need to be defined for SAMP RAM, since the

return code is already returned by default (see the description of “Return value

list” in “Action” on page 53). The following tables summarize the return value

information needed for our SAM RAM model. Again, note that the return values

are assigned return value IDs sequentially, starting with 0 for the first return value.

 Name Lock type

Description The lock type being applied to the member

Return Value ID 0

RAM ID 1

Type Int

Length 4

 Name New instance ID

Description

The instance in which the action's results

have been placed

Return Value ID 1

RAM ID 1

Type String

Length 30

58 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Name New member ID

Description

The member containing the results of the

action

Return Value ID 2

RAM ID 1

Type String

Length 30

With all of the information necessary to define SAMP RAM to the CAF neatly

tabulated, we can represent the information visually. Figure 11 illustrates the

relationship between the actions, parameters, and return values used in SAMP

RAM. Before setting up the clusters for a RAM, you may find it helpful to develop

a similar diagram.

Creating VSAM records from a RAM model

Now that we have a model for the SAMP RAM, we can easily define SAMP

RAM's CAF information. To do this, it is first necessary to understand where and

how the CAF information is stored. There are two CAF key-sequenced VSAM

clusters that store all of the CAF information: CRADEF and CRASTRS. As CARMA is

loaded, it discovers the RAMs available to it (as well as their corresponding

actions, parameters, and return values) by reading CRADEF, which contains

information about the capabilities of the RAMs available. As necessary, CARMA

tries to determine if a user’s preferred language is available for a given RAM by

checking CRASTRS, which contains locale-specific information for the RAMs.

CRADEF

CRADEF stores all the language-independent CAF data (data that does not need to

be translated from one locale to another), using English characters from code page

00037. It contains records for each of the CAF object types (RAMs, actions,

parameters, and return values), using a record width of 1032 bytes. However, only

action records may actually make use of all 1032 bytes; the other record types

simply fill the unused bytes with spaces. CRADEF uses an 8-byte key and reserves

the remaining 1024 bytes for data. Table A summarizes the composition of a

generic record in CRADEF:

 Table 16. CRADEF record format

1032-Byte Record

(8 bytes)

Key

(1024 bytes)

Data

Record keys

CRADEF record keys are composed of the following fields:

1. (1 byte) The type character (″A″ for action, ″D″ for disabled action, ″P″ for

parameter, ″R″ for RAM, ″T″ for return value, and "F" for field)

2. (2 bytes) The two-digit RAM ID left-padded with 0s (a unique identification

number between ″00″ and ″99″)

Figure 11. Visual representation of the SAMP RAM model. Only information relevant to the relationship between the

objects is shown.

Chapter 4. Customizing a RAM API using the CAF 59

3. (3 bytes) The three-digit secondary ID left-padded with 0s. For all RAMs, this

should be ″000″. For standard actions you should use the

predefined action ID, and for custom actions you should use a custom action

ID greater than or equal to ″100″. For parameters, return values

and fields, you should use sequential IDs starting at ″000″.

4. (2 bytes) Unused (reserved for future use). Fill these bytes with spaces.

The following table summarizes the CRADEF key format.

 Table 17. CRADEF key format. The number of bytes reserved for each field is specified in

parentheses. Fields marked as ″Unused″ should be filled entirely with spaces.

8-Byte Key

(1 byte)

Type

(2 bytes)

RAM ID

(3 bytes)

Secondary ID

(2 bytes)

Unused

Record data

The rest of the bytes in each record are used for the record data. These 1024 bytes

contain different fields depending on the record type:

RAM

1. (8 bytes) The version number of the RAM. This value may be displayed

to users by CARMA clients.

2. (8 bytes) The programming language the RAM is written in. Select from

the following list of valid values: ″C″, ″COBOL″, ″PLI″ (alternatively,

″PL1″ may be used).

3. (8 bytes) The version number of the repository that the RAM is

compatible with. This value may be displayed to users by CARMA

clients.

4. (8 bytes) The version number of CARMA that the RAM is compatible

with. This value may be displayed to users by CARMA clients.

5. (8 bytes) The name of the RAM DLL

Action

Note: The combined width of fields (1) and (3) below should be less than

or equal to 1023.

1. (0 to 1023 bytes) A list of the parameter IDs used by the action. The IDs

listed should be separated by commas. Do not use a trailing comma at

the end of the list.

2. (1 byte) The pipe character, ″|″. This symbol is used to denote the

separation between the parameter ID list and the return value ID list.

Note: This character must be included even if either the parameter ID

list or the return value ID list is empty. However, it should not

be included if both the parameter ID list and return value ID list

are empty.

3. (0 to 1023 bytes) A list of the return value IDs used by the action. The

IDs listed should be separated by commas. Do not use a trailing

comma at the end of the list.

Disabled action

1. (1024 bytes) Empty spaces. No data is required for disabled actions.

Parameter

60 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

1. (16 bytes) The data type of the parameter. Choose from the following

available values: ″INT″, ″LONG″, ″DOUBLE″, ″STRING″.

2. (16 bytes) The length of the parameter. This is either a precision (for

parameters of type ″DOUBLE″) or field width (for parameters of type

″STRING″). Specify this value numerically (for example, as ″12″ instead

of ″twelve″). Use an arbitrary value if the parameter type is neither

″DOUBLE″ nor ″STRING″.

3. (1 byte) A ″Y″ or ″N″ to indicate whether this parameter does or does

not (respectively) have a constant value.

Return value

1. (16 bytes) The data type of the return value. Choose from the following

available values: ″INT″, ″LONG″, ″DOUBLE″, ″STRING″.

2. (16 bytes) The length of the return value. This is either a precision (for

return values of type ″DOUBLE″) or field width (for return values of

type ″STRING″). Specify this value numerically (for example, as ″12″

instead of ″twelve″). Use an arbitrary value if the return value type is

neither ″DOUBLE″ nor ″STRING″.

Field

1. (64 bytes) The Metadata Key used to identify the metadata to be

displayed. Optionally, this can be left all spaces, then the Name value

(taken from the CRASTRS VSAM) will be used for the Metadata Key.

 The following table summarizes the CRADEF data formats for each of the CAF object

types.

 Table 18. CRADEF data formats for each CAF object type (the "Type" column lists the abbreviated type characters

instead of the full type names). The number of bytes reserved for each field is specified in parentheses (a ″*″

indicates a variable-length field). Fields marked as ″Unused″ should be filled entirely with spaces.

Type 1024-Byte Data

R

(8 bytes)

RAM Version

(8 bytes)

Programming

Language

(8 bytes)

Repository Version

(8 bytes)

CARMA Version

(8 bytes)

DLL Name

A

(* bytes)

Parameter ID List

(1 byte)

List Separator Pipe

(* bytes)

Return Value ID List

D

(1024 bytes)

Unused

P

(16 bytes)

Type

(16 bytes)

Length

(1 byte)

Constant

T

(16 bytes)

Type

(16 bytes)

Length

F

(64 bytes)

Metadata Key

CRASTRS

CRASTRS stores all the language-dependent CAF data (data that needs to be

translated from one locale to another, such as descriptions and messages). The

languages are indexed within the VSAM cluster based on an eight-character locale

(for example, “EN_US ” or “FR_FR ”) and a five-character code page (for example,

“00037”). As a CARMA client initializes CARMA, the client provides CARMA a

Chapter 4. Customizing a RAM API using the CAF 61

locale and code page, which CARMA attempts to locate in CRASTRS. If the specified

locale and code page combination is not available in the CARMA environment,

CARMA will use the default locale (“EN_US”) and code page (“00037”) and return

an error to the client.

When a client request the list of available RAMs, CARMA will reference CRASTRS to

attempt to compose a list of the RAMs that are available in the client’s requested

locale and code page. By convention, if a RAM record is available in a given locale,

it is expected for its actions, parameters, and return values to also be available in

that same locale.

CRASTRS uses a record width of 2101 bytes. CRASTRS uses a 21-byte key and reserves

the remaining 2080 bytes for data. The following table summarizes the composition

of a generic record in CRASTRS:

 Table 19. CRASTRS record format

2101-Byte Record

(21 bytes)

Key

(2080 bytes)

Data

Note: Disabled actions do not need records in CRASTRS since they have no string to

be translated.

Record keys

CRASTRS record keys are composed of the following fields:

1. (8 bytes) The locale of the record (for example, “EN_US ”)

2. (5 bytes) The code page of the record (for example, “00037”)

3. (8 bytes) The key to the CRADEF record to which this CRASTRS record corresponds

The following table summarizes the CRASTRS key format.

 Table 20. CRASTRS key format. The number of bytes reserved for each field is specified in

parentheses.

21-Byte Key

(8 byte)

Locale

(5 bytes)

Code Page

(8 bytes)

Record Key

Record data

The rest of the bytes in each record are used for the record data. These 2080 bytes

contain different fields depending on the record type:

RAM, action, and return type

1. (16 bytes) The name of the CAF object this record corresponds to

2. (1024 bytes) A description of the CAF object this record corresponds to

Parameter

1. (16 bytes) The name of the parameter this record corresponds to

2. (16 bytes) The default value of the parameter this record corresponds to

3. (1024 bytes) The prompt the client should display when requesting a

value for the parameter this record corresponds to

4. (1024 bytes) A description of the parameter this record corresponds to

Field

62 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

1. (128 bytes) The name corresponding to this metadata. To use this

localized name as the Metadata Key, leave the Metadata Key blank in

CRADEF. Leaving this blank will cause the name to be the Metadata

Key defined in CRADEF.

2. (256 bytes) The default value to display if no value is provided by the

RAM for a given member for the Metadata Key.

3. (1024 bytes) A description of the metadata shown in this field.

 All information in the data section should be in the locale and code page specified

in the key. The following table summarizes the CRASTRS data formats for each of

the CAF object types.

 Table 21. CRASTRS data formats for each CAF object type (the "Type" column lists the

abbreviated type characters instead of the full type names). Note that the disabled action

type has not been included in this table because CRASTRS should not have any records for

disabled actions. The number of bytes reserved for each field is specified in parentheses.

Type 2080-Byte Data

A

R

T

(16 bytes)

Name

(1024 bytes)

Description

P

(16 bytes)

Name

(16 bytes)

Default Value

(1024 bytes)

Prompt

(1024 bytes)

Description

F

(128 bytes)

Name

(256 bytes)

Default Value

(1024 bytes)

Description

SAMP RAM VSAM records

Building on our earlier SAMP RAM example, we can define records for SAMP

RAM in CRADEF as shown in the following table.

 Table 22. SAMP RAM records (one per row) in CRADEF. Each cell represents a field. Refer to

“CRADEF” on page 59 to determine the widths for these fields.

Key Data

A 01 010 000 |

A 01 100 000 | 000

A 01 101 | 000

A 01 102 001,002 | 001,002

D 01 013

P 01 000 STRING 30 N

P 01 001 STRING 15 N

P 01 002 STRING 30 N

R 01 000 1.0 C 1.4 2.5 SAMPRAM

T 01 000 INT 4

T 01 001 STRING 30

T 01 002 STRING 30

Please refer to FEK.SFEKVSM2(CRAINIT) for an example of the proper column

format. This sequential data set is used to initialize CRADEF during CARMA

installation. Initially, it contained records for the sample PDS RAM, the sample

SCLM RAM, and Skeleton RAM. However, depending on the configuration of your

Chapter 4. Customizing a RAM API using the CAF 63

host, FEK.SFEKVSM2(CRAINIT) may have been modified if RAMs have been added

or removed from your CARMA environment.

To add a RAM to the CRADEF cluster, you should add its records to

FEK.SFEKVSM2(CRAINIT). Ensure that all record keys are in alpha-numeric order so

that the data set can be successfully REPROed. You should use the JCL script

located at FEK.#CUST.JCL(CRA$VDEF) to REPRO FEK.SFEKVSM2(CRAINIT).

Now we need to define the locale-specific records in CRASTRS. Assume that SAMP

RAM needs support for English and Brazilian Portuguese. We can define records

for SAMP RAM in CRASTRS as shown in the following table.

 Table 23. SAMP RAM records (one per row) in CRASTRS. Each cell represents a field. Refer to “CRASTRS” on page 61

to determine the widths for these fields. Note that the records that have a key ending with A01010 have no data. The

data for these records are optional, since these records correspond to standard actions that have been overridden.

CARMA will provide the client with the default name and description for these overridden standard actions.

Key Data

EN_US 00037 A01010

EN_US 00037 A01100 Lock Instance Locks the instance

EN_US 00037 A01101 Disenflaguate Removes a flag

EN_US 00037 A01102 Concatenate Concatenates two data sets

EN_US 00037 P01000 Reason Why not?

Why do you

want me to

perform the

action?

The reason

for

performing

the action

EN_US 00037 P01001

Target

Instance ID

MyInstance

In which

instance is

the member

located?

The instance

containing

the member to

be

concatenated

EN_US 00037 P01002

Target Member

ID

MyMember

Which member

would you

like to

concatenate?

The member to

be

concatenated

EN_US 00037 R01000 Sample RAM An example RAM

EN_US 00037 T01000 Lock Type

The type of lock the SCM put

on the member

EN_US 00037 T01001 New Instance ID

The concatenation's instance

ID

EN_US 00037 T01002 New Member ID The concatenation's member ID

PT_BR 01047 A01010

PT_BR 01047 A01100 Bloquear Instância Bloqueia a instância

PT_BR 01047 A01101 Tirar sinalizador Remove um sinalizador

PT_BR 01047 A01102 Concatenar

Concatena dois conjuntos de

dados

PT_BR 01047 P01000 Motivo Por que não?

Por que você

deseja que eu

execute a

ação?

O motivo para

executar a

ação

64 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Table 23. SAMP RAM records (one per row) in CRASTRS. Each cell represents a field. Refer to “CRASTRS” on page 61

to determine the widths for these fields. Note that the records that have a key ending with A01010 have no data. The

data for these records are optional, since these records correspond to standard actions that have been overridden.

CARMA will provide the client with the default name and description for these overridden standard

actions. (continued)

Key Data

PT_BR 01047 P01001

ID de

Instância de

Destino

MyInstance

Em qual

instância o

membro está

localizado?

A instância

que contém o

membro a ser

concatenado

PT_BR 01047 P01002

ID do Membro

de Destino

MyMember

Qual membro

você deseja

concatenar?

O membro a

ser

concatenado

PT_BR 01047 R01000 RAM de Amostra Um RAM de exemplo

PT_BR 01047 T01000 Tipo de Bloqueio

O tipo de bloqueio que SCM

coloca no membro

PT_BR 01047 T01001 Novo ID de Instância

O ID de instância de

concatenação

PT_BR 01047 T01002 Novo ID do Membro

O ID do membro de

concatenação

Please refer to FEK.SFEKVSM2(CRASINIT) for an example of the proper column

format. This sequential data set is used to initialize CRASTRS during CARMA

installation. Like FEK.SFEKVSM2(CRAINIT), initially, it contained the strings for the

sample PDS RAM, the sample SCLM RAM, and Skeleton RAM. Depending on the

configuration of your host, FEK.SFEKVSM2(CRASINIT) may also have been modified

if RAMs have been added or removed from your CARMA environment.

To add a RAM to the CRASTRS cluster, you should add its records to

FEK.SFEKVSM2(CRASINIT). Ensure that all record keys are in alpha-numeric order so

that the data set can be successfully REPROed. You should use the JCL script

located at FEK.#CUST.JCL(CRA$VSTR) to REPRO FEK.SFEKVSM2(CRASINIT).

VSAM cluster access

When editing VSAM clusters, ensure that no clients are accessing CARMA.

CARMA may exhibit abnormal behavior if the VSAM cluster changes while it is

operating. It is recommended that only system administrators and RAM

developers have write access to the VSAM clusters, but that all users have read

access.

Chapter 4. Customizing a RAM API using the CAF 65

66 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Chapter 5. Developing a CARMA client

CARMA clients can be designed to work specifically with a RAM, can provide a

generic interface for any RAM to use, or can do a combination of the two. A good

example of a generic client that can also be modified to work specifically with

certain RAMs is IBM Rational Developer for System z. Rational Developer was

designed to support the basic functions all RAMs have in common, so a RAM

fitting perfectly into the CARMA RAM API specification would work with Rational

Developer right out of the box. Rational Developer also provides extension points

with which RAM developers can customize the client for their RAM(s). On the

other end of the spectrum, a very specific, non-interactive client could be written

to simply run maintenance operations through a RAM.

CARMA clients can make use of some or all of the basic CARMA API functions.

The only functions that are required to be implemented are initCarma, initRAM,

and terminateCarma. terminateRAM is not required because terminateCarma will

take care of cleaning up the RAMs if it is called and CARMA still has RAMs

loaded. However, special care should be taken with the memory that is passed to

and from CARMA. Often, the RAM will allocate memory that the client is required

to free. Please read through “Storing results for later use” on page 68 and

“Memory allocation” on page 6 carefully, as memory leaks and abnormal program

termination can easily result from not following the recommendations on handling

memory for each function.

Compiling the CARMA client

CARMA clients can include the CARMA DLL’s side deck during compilation

(causing the CARMA DLL to be loaded implicitly) or can be compiled without the

side deck (causing the CARMA DLL to be loaded explicitly). The example client

(CRACLISA in the sample library) implicitly loads the CARMA DLL. The JCL code to

compile a client that will implicitly load the CARMA DLL is in the sample file

named CRACLICM.

Running the client

When running a CARMA client, you must ensure that CARMA and all its RAMs

have the resources they require available to them. CARMA requires access to its

message VSAM cluster (CRAMSG), the CAF VSAM clusters (CRADEF and CRASTRS),

and the PDS containing the RAMs. Browse the JCL used to run clients (CRACLIRN,

located in the sample library) to see the DD statements CARMA requires (CRASTRS,

CRAMSG, and CRADEF) and how the CARMA DLL and the PDS containing all RAMs

are added to the STEPLIB DD statement. RAMs should document any resources they

require. For example, the sample PDS RAM and sample SCLM RAM each require

a message cluster to be available, so the JCL used to run the client should be

modified so that the RAM can access these resources. Failure to provide CARMA

or the RAMs with access to their required resources may result in abnormal

behavior.

When providing resources to RAMs, the TSO/ISPF message libraries should also

be considered. RAMs may use the TSO/ISPF messages if errors occur. By default,

the JCL used to run a client will provide the RAMs with the English (00037 code

page) version of these messages. The JCL should be edited appropriately if the

RAM should return TSO/ISPF messages to the client in a different language.

© Copyright IBM Corp. 2000, 2007 67

Storing results for later use

The client should store the results for most operations executed during a CARMA

session, especially the results from browsing functions such as getMembers and

getInstances. All instances, simple members, and containers have both an ID and

a display name. The display name is what the client should display to the user.

The display name for an entity should be given in the context of that entity’s

instance and, if applicable, all parent containers needed to reach that entity. The ID

defines the entity to the RAM uniquely. For example, the entity’s ID could simply

contain its absolute path. Alternatively, the RAM could use a hashing function to

obtain the entity’s absolute path from the ID. The ID should be stored by the client

so that it can be passed back to the RAM as needed. For example, a user might

obtain a list of members within an instance and then check to see if one of those

members is a container.

The other pieces of data that might need to be stored by the client (if they are not

already known) are metadata keys, RAM CAF information, and names. The RAM

CAF information is required by virtually every function that uses a RAM to carry

out an operation. The CAF information that is required may be as simple as the ID

of the RAM the action should be run by.

Client predefined data structures

Most RAM functions use predefined structures to pass information back to

CARMA and then the RAM. The RAMRecord consists of an integer RAM ID, a

16–byte name character field, and several other character fields that describe the

RAM. The Descriptor structure consists of a 64–byte name character field and a

256–byte ID character field. It is used to describe instances, containers, and simple

members. The KeyValPair structure consists of a 64–byte key field and a 256–byte

value field. It is used for metadata key-value pairs. The Parameter structure

consists of an integer ID, a 16-byte name, a 16-byte type, a 16-byte default value,

an integer length, an integer specifying whether it is constant (a value of 1

indicates that it is), a 1024-byte prompt, and a 1024-byte description. The

returnValue structure consists of an integer ID, a 16-byte name, a 16-byte type, an

integer length, and a 1024-byte description. The Action structure consists of an

integer ID, a 16-byte name, a pointer to an integer array to store the IDs of the

parameters related to the action, an integer storing the number of parameters

associated with the action, a pointer to an integer array to store the IDs of the

return values related to the action, an integer storing the number of return values

associated with the action, and a 1024-byte description.

When running an action against CARMA, the client should see if the action's

respective Action structure exists for the RAM being worked with. If so, it should

then use the Action structure and related Parameter structures to call the action.

After the action is complete, the client should use the returnValue structures

related to the action called to properly parse the action’s response.

The applicable structures are summarized in the following tables. These structures

are available in the CRADSDEF header file located in the sample library. These

structures are almost always allocated by the RAM, so it is unlikely that the client

will ever have to initialize any of their buffers. However, the client will have to

free any memory that is allocated by the RAM.

68 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Table 24. RAMRecord data structure

Field Description

int id Unique ID to describe the RAM

char name[16] Display name

char version[8] RAM version

char reposLevel[8] The level of the SCM the RAM accesses.

char language[8] Language in which the RAM is written

char CRALevel[8] The level of CARMA for which the RAM

was designed.

char moduleName[8] Name of the RAM module to load

char description[2048] Displayed as a RAM description by the

client.

 Table 25. Descriptor data structure

Field Description

char id[256] Unique ID to describe the entity

char name[64] Display name

 Table 26. KeyValPair data structure

Field Description

char key[64] An index

char value[256] The data

 Table 27. Action data structure

Field Description

int id A numeric identifier for the action between 0

and 999. Action IDs between 0 and 79

override standard actions, while IDs

between 100 and 999 to define custom

actions. Action IDs between 80 and 99 are

reserved for use by CARMA.

char name[16] The action's name

int* paramArr A list of the IDs for the parameters the

action uses

int numParams The number of elements in the paramArr

array

int* returnArr A list of the IDs for the return values the

action returns

int numReturn The number of elements in the returnArr

array

char description[1024] A short description of the action

 Table 28. Parameter data structure

Field Description

int id A numeric identifier for the parameter

between 0 and 999

Chapter 5. Developing a CARMA client 69

Table 28. Parameter data structure (continued)

Field Description

char name[16] The parameter's name

char type[16] The data type of the parameter ("INT",

"LONG", "DOUBLE", or "STRING")

char defaultValue[16] The parameter's default value

int length The precision of the parameter (if it is of the

"DOUBLE" type) or the field width of the

parameter (if it is of the "STRING" type). If

the parameter is of some other type, then

this value can be ignored.

int isConstant Whether or not the parameter will always

contain the same value

char prompt[1024] The prompt that the CARMA client should

display when requesting a value for the

parameter from users

char description[1024] A short description of the parameter

 Table 29. returnValue data structure

Field Description

int id A numeric identifier for the return value

between 0 and 999

char name[16] The return value's name

char type[16] The data type of the return value ("INT",

"LONG", "DOUBLE", or "STRING")

int length The precision of the return value (if it is of

the "DOUBLE" type) or the field width of

the return value (if it is of the "STRING"

type). If the return value is of some other

type, then this value can be ignored.

char description[1024] A short description of the return value

Logging

CARMA and RAMs will write messages to a log per CARMA session. When

initializing CARMA, a trace level should be passed to it. The trace levels are

shown in Table 3 on page 9. Logging can be disabled by sending CARMA a trace

level of -1.

Handling custom parameters and return values

Custom parameters are passed to the RAM using the void** params parameter.

params is an array of void pointers that point to variables of several types. The

getCAFData function will return the Custom Action Framework information for all

RAM functions. Call this before running any other RAM functions to determine

what custom parameters and return values the RAM functions use. Required

custom parameters must be passed to the RAM using the params parameter. If

there are no required custom parameters, set params to NULL. To fill params, simply

assign the void pointers in the array to each custom parameter. Use the following

C code as an example:

70 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

int param0 = 5;

char* param1 = "HELLO";

double param2 = 4.3234;

void** params = (void**) malloc(sizeof(void*) * 3);

params[0] = (void*) ¶m0;

params[1] = (void*) param1; /*the char pointer should not be dereferenced*/

params[2] = (void*) ¶m2;

/* Function call goes hereà.*/

free(params);

CARMA clients must pass a void*** parameter into all RAM functions defined to

return custom return values. You may simply pass a pointer to a void** variable

that you define. Once the custom return values have been returned, they can be

unpacked as demonstrated in the following C code. It is the responsibility of the

client to free the custom returns:

/* Declared at top */

int return0;

char return1[15];

void ** returnVals = NULL;

/* Call the CARMA function with &returnVals for custom returns */

/* Unpack the void** (returnVals) */

return0 = *((int*) returnVals[0]);

memcpy(return1, (char*) returnVals[1], 15);

/*Free each return, and the array*/

free(returnVals[0]);

free(returnVals[1]);

free(returnVals);

CARMA Defined Metadata

RAM specified file extension

When using a CARMA client, CARMA resources can automatically obtain

suggested extensions from the metadata property which is specified by the RAM.

This is done to eliminate the need to have the user set the extension on every

CARMA resource. In some cases however, an extension may not be specified by

the RAM requiring the client to provide a default extension. In instances such as

this, the client should be configured to ignore the file extension provided by the

RAM and instead, utilize an extension specified from within the client. Examples

of how the client can override a RAM specified file extension can be found in

“RAM specified file extension” on page 19.

Extract to External

CARMA provides clients with the ability to extract files from an SCM into a

normal host environment of PDSs and Sequential files.

copyFromExternal

Copies a member from a PDS or an SDS.

int copyFromExternal(int ramID, char instanceID[256], char memberID[256],

 char external[256], void** params, void*** customReturn, char error[256])

Chapter 5. Developing a CARMA client 71

int ramID Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member being copied

char memberID[256] Input The ID of the member being

copied

char external[256] Input The location to copy from.

Either a PDS member or an

SDS member. Examples:

FEK.#CUST.EXT.STOR

FEK.#CUST.EXT.PDS(MEMBER)

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

copyToExternal

Copies a member to a PDS or an SDS.

int copyToExternal(int ramID, char instanceID[256], char memberID[256],

 char target[256], void** params, void*** customReturn, char error[256])

 int ramID Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member being copied

char memberID[256] Input The ID of the member being

copied

char target[256] Input The location to copy to.

Either a PDS member or an

SDS member. Examples:

FEK.#CUST.EXT.STOR

FEK.#CUST.EXT.PDS(MEMBER)

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

72 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

State functions

CARMA expects certain functions to be run in order. These state functions and

their expected order are:

1. initCARMA — CARMA initializes several global variables; the session log, and

the locale to be used for the session with this function. This function should not

be called a second time unless a terminateCarma call is made first.

2. getRAMList — This should be called before loading any RAMs, but clients may

cache the RAM list and ignore this function if desired. However, there is little

performance benefit in doing this, because CARMA will run the function as it

needs the list itself.

3. initRAM — This must be called for each RAM before attempting to run any of

that RAM’s functions. Once this is run, CARMA will keep a pointer to the

RAM until termination. RAMs should not be re-initialized without first

terminating them.

4. reset — This may be called if the user wants to reload the SCM environment

because a change has occurred. It will tell the RAM to restore itself to its initial

state.

5. terminateRAM — This function does not have to be called. Each loaded RAM’s

terminateRAM function will be called by terminateCarma if terminateCarma is

called first. Once terminateRAM is called, each RAM must be re-initialized using

the initRAM function before any other function can be called for that RAM.

6. terminateCarma — This should always be called when exiting the CARMA

session. It will handle cleaning up all of the RAMs that are currently loaded.

Once this is called, initCarma must be run again before attempting to call any

other CARMA function.

initCarma

Will set up the CARMA environment, session log, and session locale

int initCarma(int traceLev, char locale[5], char error[256])

 int traceLev Input The trace level for the

current session. See

“Logging” on page 70 for

more information.

char locale[5] Input Five character, non-null

terminated buffer containing

the locale for which all

displayable strings should be

set

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

If this function is not called, a default locale of "EN_US" and a default trace level

of 0 will be used.

Chapter 5. Developing a CARMA client 73

getRAMList

Retrieves the list of available RAMs from CARMA

int getRAMList(RAMRecord** records, int *numRecords, char error[256])

 RAMRecord** records Output Will contain an array of

RAMRecord data structures to

be used for display

information about the RAMs

and accessing them with

other functions

int* numRecords Output The number of RAMRecord

data structures contained in

the records array

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The list of RAMs that is returned is dependent on the locale that was passed into

initializeCarma. All RAMs stored within the CARMA environment that have

display strings for the specified client locale will be returned.

initRAM

Initializes a RAM. CARMA will store a pointer to the RAM for quick future access.

int initRAM(int RAMid, char locale[8], char codepage[5], char error[256])

 int RAMid Input Tells CARMA which RAM

should be initialized. This ID

was obtained after running

getRAMList.

char locale[8] Input Tells CARMA the locale of

the strings that should be

returned to the client

char codepage[5] Input Tells CARMA the code page

of the strings that should be

returned to the client

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

reset

Tells the RAM to reset itself to its initial state

int reset(int RAMid, char error[256])

 int RAMid Input Tells CARMA which RAM

should be reset. This ID was

obtained after running

getRAMList.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

74 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

terminateRAM

Tells the RAM to clean up its environment. CARMA will release the RAM module.

int terminateRAM(int RAMid, char error[256])

 int RAMid Input Tells CARMA which RAM

should be terminated. This

ID was obtained after

running getRAMList.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

terminateCarma

Will clean up the CARMA environment, including the environments of any loaded

RAMs

int terminateCarma(char error[256])

 char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Browsing functions

getInstances

Retrieves the list of instances available in the SCM

int getInstances(int RAMid, Descriptor** RIrecords,int* numRecords,

 void** params, void*** customReturn, char filter[256],

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

Descriptor** RIrecords Output This will be allocated and

filled with the IDs and

names of instances.

int* numRecords Output The number of records that

have been allocated and

returned

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char filter[256] Input This can be passed from the

client to filter out sets of

instances.

Chapter 5. Developing a CARMA client 75

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the RIrecords array

getMembers

Retrieves the list of members available within the specified instance

int getMembers(int RAMid, char instanceID[256],

 Descriptor** memberArr, int* numRecords, void** params,

 void*** customReturn, char filter[256], char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance for which the

members should be retrieved

Descriptor** memberArr Output This will be allocated and

filled with the IDs and

names of instances.

int* numRecords Output The number of records that

have been allocated and

returned in the array

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char filter[256] Input This can be passed from the

client to filter out sets of

members.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the memberArr array.

isMemberContainer

Sets isContainer to true if the member is a container; false if not

int isMemberContainer(int RAMid, char instanceID[256],

 char memberID[256], int* isContainer,

 void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

76 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member that may be a

container

int* isContainer Output Set this to 1 if the member is

a container; 0 if not.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

getContainerContents

Retrieves the list of members within a container

int getContainerContents(int RAMid, char instanceID[256],

 char memberID[256], Descriptor** contents,

 int* numMembers, void** params,

 void*** customReturn, char filter[256],

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The container for which the

members are being retrieved

Descriptor** contents Output This will be allocated and

filled with the IDs and

names of the members

within the container.

int* numRecords Output The number of member

records that have been

allocated and returned in the

array

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

Chapter 5. Developing a CARMA client 77

char filter[256] Input This can be passed from the

client to filter out sets of

members

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the contents array.

Create/Delete

Create and delete provides functionality to create and delete both members and

containers within a CARMA environment.

createMember

Creates a new member

int createMember(int RAMid, char instanceID[256], char memberID[256], char name[64],

 char parentID[256], int* lrecl, char recFM[4], void** params,

 void*** customReturn, char error[256]);

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member being created

char memberID[256] Output The ID of the member that is

being created

char name[64] Input/Output ID of the member being

created

char parentID[256] Input ID of parent container (If no

parent exists, space must be

filled)

int* lrecl Output The number of columns in

the data set and array

char recFM[4] Output Contains the data set'record

format (FB, VB, ect)

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

To account for specific RAM naming conventions, a client calls create by requesting

a certain name. The RAM can then provide a unique memberID, lrecl, recFM and an

appropriate displayable name back to the client.

78 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

If the client requests the name "bob," for example, the RAM might return a

memberID of "BOB" as well as a displayable name of "BOB". If the member "bob"

already exists, it might return "BOB2", or instead return an error saying it can not

create the requested member.

parentID is the memberID for the parent of the member being created. If the

member being created does not have a parent (it is directly under the repository

instance), parentID should be left blank (all spaces).

A RAM does not have to create a member when createMember is called, but can

just provide the proper memberID, lrecl, recFM, and displayable name to the client.

It is the client's responsibility to make a call to putMember with the new memberID in

order to create a concrete member. RAMs should support adding a member with

no records (even if they have to create a single blank record for the member).

createContainer

Creates a new container

int createContainer(int RAMid, char instanceID[256], char memberID[256],

 char name[64], char parentID[256], void** params, void*** customReturn,

 char error[256]);

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

container being created

char memberID[256] Output The ID of the member that is

being created

char name[64] Input/Output ID of the container being

created

char parentID[256] Input ID of parent container (If no

parent exists, space must be

filled)

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

To account for specific RAM naming conventions, a client calls create by requesting

a certain name. The RAM can then provide a unique memberID, lrecl, recFM and an

appropriate displayable name back to the client.

Chapter 5. Developing a CARMA client 79

If the client requests the name "bob," for example, the RAM might return a

memberID of "BOB" as well as a displayable name of "BOB". If the container "bob"

already exists, it might return "BOB2", or instead return an error saying it can not

create the requested container.

parentID is the memberID for the parent of the container being created. If the

container being created does not have a parent (it is directly under the repository

instance), parentID should be left blank (all spaces).

Unlike the createMember function, when createContainer is called, the container

should always be created immediately by the RAM, unless an error occurs.

delete

Deletes a member or container

int delete(int RAMid, char instanceID[256], char memberID[256], int force,

 void** params, void*** customReturn, char error[256]);

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member or container being

deleted

char memberID[256] Input The ID of the member that is

being deleted

int force Input Used to force a delete. A

value of 1 will force a delete

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The force parameter can be set to 1 to tell a RAM to delete a member it normally

would not, such as a non-empty container. If a RAM can delete an item, but it

requires a force parameter to do so, it can send a certain return code, along with

an appropriate error, to inform the client. The client can then offer a user the

option of deleting with the force parameter.

Optionally, the client could also allow the user to set the force parameter before

calling delete.

The delete function may be used to delete both members and containers, however,

it should not be used to delete a RAM Instance.

80 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

File transfer functions

extractMember

Retrieves a member’s contents

int extractMember(int RAMid, char instanceID[256],

 char memberID[256], char*** contents, int* lrecl,

 int* numRecords, char recFM[4], int* moreData,

 int* nextRec, void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

extracted

char*** contents Output Will be allocated as

two-dimensional array to

contain the member’s

contents

int* lrecl Output The number of columns in

the data set and array

int* numRecords Output The number of records in the

data set or the number of

rows in the array

char recFM[4] Output Will contain the data set’s

record format (FB, VB, etc.)

int* moreData Output Set the value of the variable

to which this points as 1 if

extract should be called

again (because there is still

more data to be extracted).

Otherwise, assign the value

to which it points as 0.

int* nextRec Input/Output Input: The member record

where the RAM should

begin the extraction

Output: The first record in

the data set that was not

extracted if *moreData is set

to 1; otherwise, undefined

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

Chapter 5. Developing a CARMA client 81

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The contents buffer is a two-dimensional character array that will be filled by the

RAM and returned to the client. For the first extractMember call, nextRec must be

0. The RAM may choose to return the data in chunks of records. Extract should be

called until moreData is 0. If moreData is 1, extractMember needs to be called again,

and the extraction from the member will start with the record indexed by the value

of nextRec returned on the previous call. The RAM will need the client to pass that

value of nextRec back in for the following call.

See Chapter 3, “Developing a RAM,” on page 11 for an example of extractMember’s

operation from the RAM’s point of view.

Note: Be sure to free contents properly. It has been allocated as a large contiguous

data chunk, so it should be freed in the following manner (the example is in C):

for(i = 0; i < numRecords; i++)

 free(contents[i]);

free(contents);

putMember

Updates a member’s contents or creates a new member if the specified memberID

does not exist within the instance

int putMember(int RAMid, char instanceID[256],

 char memberID[256], char** contents, int lrecl,

 int* numRecords, char recFM[4], int moreData,

 int nextRec, int eof, void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

updated/created

char** contents Input Contains the new member

contents

int lrecl Input The number of columns in

the data set and array

int* numRecords Input/Output The number of records in the

data set or the number of

rows in the array

char recFM[4] Input Contains the data set’s

record format (FB, VB, etc.)

int moreData Input Will be 1 if the client has

more chunks of data to send;

0 otherwise

int nextRec Input The record in the data set to

which the 0th record of the

contents array maps

82 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

int eof Input If 1, denotes that the last row

of the array should mark the

last row in the data set; 0

otherwise.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The client may choose a chunk size for the function or attempt to pass the whole

file’s contents at once. The client may also choose to jump around within a file. For

example, records 0 through 15 could be passed first, 40 through 50 next, and then

16 through 39. However, not all RAMs may handle non-sequential data chunks

such as this properly.

If sending data in chunks, moreData should be 1 on every call until the final one,

during which it should be 0. nextRec should always be set to the first record to be

updated in the member. Remember that this uses a 0-based index. eof is used to

specify that the member record at nextRec + numRecords should be the last one in

the updated member. For example, if that sum is 15 and there are currently 30

records in the member, records 16 through 29 will be deleted by the RAM after it

updates through record 15.

See the source for the sample client (CRACLISA in the sample library) for more help.

Note: The contents buffer should be allocated before the call in a manner similar to

the following (the example is in C):

 contents = (char**) malloc(sizeof(char*) * (numRecords));

 contents = (char) malloc(sizeof(char) * (lrecl) * (numRecords));

 for(i = 0; i < numRecords; i++)

 (contents)[i] = ((*contents) + (i * (lrecl)));

and should be freed after the call in a manner similar to the following (the

example is in C):

 free(contents[0])

 free(contents);

Binary file transfer

extractBinMember

Retrieves a member's contents.

int putBinMember(int RAMid, char instanceID [256], char memberID [256],

 char** contents, int* length, int* moreData, int start,

 void** params, void*** customReturn, char error [256])

Chapter 5. Developing a CARMA client 83

int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member being extracted.

char memberID[256] Input The ID of the member that is

being extracted.

char** contents Output Pointer to the member’s

contents

int* length Output The length of the member’s

contents.

int* moreData Output If extract should be called

again because there is more

data, set the value of the

variable to which this points

to 1, otherwise assign the

value to which it points to 0.

int start Input The byte location of the file

to start extracting from.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

putBinMember

Updates a member’s contents or creates a new member if the specified memberID

does not exist within the instance.

int putBinMember(int RAMid, char instanceID [256], char memberID [256],

 char* contents, int length, int moreData, int start,

 void** params, void*** customReturn, char error [256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member being

updated/created.

char memberID[256] Input The ID of the member that is

being updated/created.

char* contents Input Contains the new members

contents.

int length Input Pointer to the length of data

to be written.

84 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

int moreData Input Will be 1 if the client has

more chunks of data to send;

0 otherwise.

int start Input The byte location of the file

to start putting data.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Metadata functions

getAllMemberInfo

Retrieves all metadata for the given member

int getAllMemberInfo(int RAMid, char instanceID[256],

 char memberID[256], KeyValPair** metadata,

 int* num, void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The ID of the member for

which metadata is being

returned. The ID may be

empty if member info is to

be retrieved for the instance

instead of a specific member.

KeyValPair** metadata Output This will be allocated and

filled with the keys and

values of the metadata.

int* num Output The number of metadata

KeyValPair structs allocated

and returned in the array

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

Chapter 5. Developing a CARMA client 85

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the metadata array.

getFieldsData

Retrieves the fields data for the given RAM. The fields provide suggestions for

metadata that should be displayed to the user.

int getFieldsData(int RAMid, Field** fields, int * numFields, char error[256])

 int RAMid Input Tells CARMA which RAM to

gather fields for. This ID was

obtained after running

getRAMList.

Field** fields Output This will be allocated and

filled with the id, metadata

key, name, default value, and

description for each field.

int * numFields Output The number of Field structs

allocated and filled in the

array.

char error[256] Output In an error occurs this

should be filled with a

description of the error.

Note: Be sure to free the fields array.

getMemberInfo

Retrieves a specific piece of metadata for the given member

int getMemberInfo(int RAMid, char instanceID[256],

 char memberID[256], char key[64], char value[256],

 void** params, void*** customReturn, char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member for which

metadata is being retrieved

char key[64] Input The key of the metadata

value to be retrieved

char value[256] Output The value being retrieved

86 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

updateMemberInfo

Updates a specific piece of metadata for the given member

int updateMemberInfo(int RAMid, char instanceID[256],

 char memberID[256], char key[64], char value[256],

 void** params, void*** customReturn,

 char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member for which

metadata is being set

char key[64] Input The key of the metadata

value to be set

char value[256] Input The value being set

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Other operations

lock

Locks the member

int lock(int RAMid, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

Chapter 5. Developing a CARMA client 87

int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be locked

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

unlock

Unlocks the member

int unlock(int RAMid, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be unlocked

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

checkin

Check in the member. This only sets a flag. A putMember call is expected

immediately after this call.

int checkin(int RAMid, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

88 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be checked

in

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

checkout

Check out the member. This only sets a flag. A extractMember call is expected

immediately after this call.

int checkout(int RAMid, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be checked

out

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

performAction

Instructs the specified RAM to perform the action identified in the actionID by

using the parameters given and the return values in customReturn (when

applicable).

Chapter 5. Developing a CARMA client 89

int performAction(int RAMid, int actionID, char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 int RAMid Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList

int actionID Input The custom action that is

being requested, as defined

in the CRADEF VSAM.

char instanceID[256] Input The instance the action is

being performed on. The ID

may be blank if the action is

expected to be performed on

the RAM itself instead of a

specific instance or member.

char memberID[256] Input The member the action is

being performed on. The ID

may be blank if the action is

expected to be performed on

an instance or on the RAM

itself instead of a specific

member.

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 70)

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 70)

char error[256] Output If an error occurs, this should

be filled with a description of

the error.

getCAFData

Retrieves the CAF data for the requested RAM

int getCAFData(int RAMid, Action** actions, int* numActions,

 int** disabledActions, int* numDisabled,

 Parameter** params, int* numParams,

 returnValue** returnVals, int* numReturn,

 char error[256])

 Table 30.

int RAMid Input Tells CARMA for which

RAM the CAF data should

be pulled. This ID was

obtained after running

getRAMList.

Action** actions Output This will be allocated and

filled with the custom

actions for the given RAM.

int* numActions Output The number of actions being

returned

90 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Table 30. (continued)

int** disabledActions Output This will be allocated and

filled with the disabled

actions for the given RAM.

int* numDisabled Output The number of disabled

actions being returned

Parameter** params Output This will be allocated and

filled with the custom

parameters for the given

RAM

int* numParams Output The number of parameters

being returned

returnValue** returnVals Output This will be allocated and

filled with the custom return

values for the given RAM.

int* numReturn Output The number of return values

being returned

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

See Chapter 4, “Customizing a RAM API using the CAF,” on page 51 for more

information on the types of data that may be returned. The data that is returned

should be stored for the remainder of the session so that it can be checked before

any function call for the respective RAM.

getVersionList

Provides a list of versions available for a given member

int getVersionList(char instanceID[256], char memberID[256],

 VersionIdent** versions, int* num, void** params,

 void*** customReturn, char error[256])

 int RAMid Input Tells CARMA for which

RAM the CAF data should

be pulled. This ID was

obtained after running

getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to get a list of

versions for

VersionIdent** versions Output A list of all versions of the

member available. This

should be an ordered list,

with the ‘newest’ version

first, and the oldest version

last.

int* num Output The number of versions

void** params Input Pointer to an array of custom

parameters (see “Handling

custom parameters and

return values” on page 18)

Chapter 5. Developing a CARMA client 91

void*** customReturn Output Used to reference an array of

custom return values (see

“Handling custom

parameters and return

values” on page 18)

char error[256] Output If an error occurs, this should

be filled with a description of

the error.

VersionIdent will be identified by the following struct:

typedef struct {

char memberID[256]; /*A versioned memberID, such as

 baseMemberID_VerNum*/

char versionKey[64]; /* A way to refer to the version, such as

 “1.2.3”...should be the same as the value

 for the carma.version metadata key*/

 char comments[256]; /* RAM supplied comments on the version,

 could be timestamp, changes, etc.. */

} VersionIdent;

The version list will be a complete ordered version list, but the RAM Developer

can chose to use a ‘versioned’ ID for the current version, or to use the unchanging

ID. As an example, current version of a member might be accessible via

“location(Member)” or “location(Member)_1.4” where the file is on version 1.4.

The RAM developer could therefore choose to return either

“location(Member)_1.4” or “location(Member)” as the newest version in the list.

When returning a list of members through browsing functions, such as getMembers,

RAMs SHOULD NOT include the version in the memberID. Changing the memberID

for a member prevents CARMA clients from properly tracking that member.

In order to support versioning, RAM Developers should handle CARMA calls

when presented with a ‘versioned’ ID for the memberID.

Clients should support the return code of 130, which stands for “Member does not

support versioning”

Clients can support a variety of calls against versioned members, such as the file

transfer functions and the metadata functions.

92 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Appendix A. Return codes

 Return Code Description

20 Internal error

22 No RAMs defined for this locale

24 CRADEF could not be opened for reading

25 CRASTRS could not be opened for reading

26 No records found in CRADEF

28 CRADEF read error

30 (placeholder)

32 Invalid CRADEF record found

34 Requested RAM not found

36 Could not load RAM module

38 Could not load pointer to RAM function

40 Requested RAM RAM name has not been

loaded

42 Invalid CRASTRS record found

44 CARMA has not been initialized

46 Failed attempting to load the RAM list

48 Out of memory

50 Record in CRADEF does not have equivalent

in CRASTRS for this locale

52 Action references unknown parameter

54 Action references unknown return type

56 CRASTRS read error

58 Neither the specified locale or the default

locale (EN_US, codepage 00037) could be

found in CRASTRS

60 CRAMSG not found

62 CRAMSG read error

64 CRADEF error: Action 16 can not have custom

parameters and/or returns

66 Invalid type specified in VSAM record

68 Invalid default value in VSAM record

101 Could not allocate memory

102 TSO/ISPF Library functions not available

103 Invalid member identifier

104 Cannot allocate (out of space)

105 Member not found

106 Instance not found

107 Function not supported

108 Member is not a container

© Copyright IBM Corp. 2000, 2007 93

Return Code Description

109 Invalid parameter value

110 Member cannot be updated

111 Member cannot be created

112 Not authorized

113 Could not initialize

114 Could not terminate

115 Resource out of sync

116 File locked

117 Specified next record out of range

118 Unsupported record format

119 Invalid LRECL

120 Invalid metadata key

121 Cannot update property value

122 Invalid metadata value

123 Property value is read-only

124 Requested member is empty

125 Empty instance

126 No members found

127 Reset error

128 Delete error

129 Member/Version is readOnly

130 Member does not support versioning

197 (encapsulated ISPF/LMF error message)

198 Unable to access log file

199 Unknown RAM error

222 Error retrieving Custom Action Framework

parameter list

223 Missing an expected Custom Action

Framework parameter

224 Unknown data type specified for Custom

Action Framework parameter

225 Error retrieving Custom Action Framework

return values

94 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Appendix B. Action IDs

 Action ID Action Name

0 initRam

1 terminateRam

2 getMembers

3 extractMember

4 putMember

5 getAllMemberInfo

6 getMemberInfo

7 updateMemberInfo

8 isMemberContainer

9 getContainerContents

10 lock

11 unlock

12 checkIn

13 checkOut

14 getInstances

15 reset

16 performAction

17 createMember

18 createContainer

19 delete

20 copyToExternal

21 copyFromExternal

22 putBinMember

23 extractBinMember

24 getVersionList

80 initCarma

81 terminateCarma

82 getRAMList

83 getCAFData

© Copyright IBM Corp. 2000, 2007 95

96 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Appendix C. Sample RAMs

This appendix functions as a resource for the sample RAMs that are shipped with

the Common Access Repository Manager (CARMA). The sample RAMs are

provided for the purpose of testing the configuration of your CARMA environment

and as examples for developing your own RAMs. Do NOT use the provided

sample RAMs in a production environment.

PDS RAM

RAM Description

The Partitioned Data Set (PDS) RAM allows you to access a PDS associated with

TSO users by leveraging ISPF services. In this case, the TSO/ISPF services are the

SCM and the repository is the user's PDS.

Navigation Structure

Within the PDS RAM, CARMA displays a list of all the PDS data sets that are

available to you on a particular connection. Each PDS can then be expanded to

display a collection of Sequential Data Sets (SDS), also called members which make

up each PDS.

Supported actions

The following actions are currently only available for files with a record format of

"Fixed Block".

v Extract

v Upload Local File

v Replace Local File

Unsupported actions

The following CARMA actions are unsupported by the PDS RAM, since it does not

have version control capabilities:

v Lock

v Unlock

v Check Out

v Check In

SCLM RAM

RAM Description

The Software Configuration Library Manager (SCLM) sample RAM is another

demonstration of CARMA’s ability to interface with Source Code Managers

(SCM’s). The purpose of this appendix is to give the RAM developer an

understanding of CARMA’s SCLM RAM implementation. The SCLM RAM

interfaces with an IBM Software Configuration and Library Manager (SCLM).

IBM SCLM provides an API like ISPF that provides for the dialog manager. In

addition, SCLM interfaces with ISPF library management services for most of its

© Copyright IBM Corp. 2000, 2007 97

functions. ISPF/SCLM creates and accesses variables, lists, and reports as a result

of the API calls that it makes. For a full description of all the ISPF/SCLM

programming services, refer to the Software Configuration Library Manager

Reference, z/OS Version 1 Release 7.0, and also the ISPF services manual for

detailed information on ISPF library management services. CARMA leverages both

the ISPF library management services and SCLM services in the SCLM sample

RAM.

Navigation Structure

Within the SCLM RAM, CARMA displays a selected SCLM project that is available

to you on a particular connection. Each SCLM project can then be expanded to

display the groups and types associated with the project.

Supported actions

The SCLM sample RAM employs the core functions of ISPF and SCLM in

CARMA’s User Interface. This functionality enables users to send requests to the

SCLM RAM on the z/OS host and then display the results at their workstation.

The following is a list of SCLM functions that can be invoked from a member’s

selection in the CARMA UI.

 Table 31. Basic Functions

Function Name Description

LOCK This is a stand alone function that enables a user to lock a member or

add an access key to limit or restrict access to it by other users. This

function can be enabled by right-clicking an SCLM member in the

CARMA UI and selecting Lock from the context menu.

UNLOCK This function will unlock a member that has been locked by removing

the access key. It can be accessed by right-clicking the locked member

in the CARMA UI and selecting Unlock from the context menu.

DELETE This function will delete all traces of an SCLM member, including all

text and any metadata, from an SCLM project. This function can be

accessed by right-clicking an SCLM member in the CARMA UI and

selecting Delete from the context menu.

The following functions are custom actions that are specific to SCLM RAM content.

They can be accessed by right-clicking an SCLM member from the CARMA UI and

selecting Custom from the context menu.

Note: The custom commands below will prompt users for additional parameters.

 Table 32. Custom Actions

Service Name Description

MIGRATE The MIGRATE service creates or updates the SCLM accounting

information for members in a development library. Pattern matching is

not provided at this time.

BUILD The BUILD service compiles, links, and integrates software components

according to the project’s architecture definition. Before a member is

built however, the member’s dependency information must exist in the

project database. For this reason, either the STORE or SAVE services for a

member must be completed successfully before the BUILD service can

be preformed.

98 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Table 32. Custom Actions (continued)

Service Name Description

PROMOTE The PROMOTE service moves data, or promotes data through the project

database according to the project’s architecture definition and project

definition. Before SCLM can promote a member, it must have a blank

access key in addition to having successfully completed the BUILD

service. If a member has an access key, you must call the UNLOCK

service to reset the access key before you can promote the member.

DELETE The DELETE service deletes database components. You can delete an

entire member, its associated accounting records, and build map, just

the accounting records and the build map, or simply the member’s

build map.

EDIT The EDIT service is not like SCLM’s edit. This service is instead used

to announce the intent of an edit. The user will be prompted for the

development group to move the member to. A refresh is required so

the user can select the member at development level by double

clicking on member. At is point; the source code will appear in the

UI’s edit panel.

The following are services of the SCLM API that the SCLM RAM uses to provide

functionality.

 Table 33. Integrated SCLM Services

Service Name Description

SCLMINFO The SCLMINFO service is used by CARMA’s getmembers function to

retrieve all SCLM groups and types stored in ISPF variables for later

retrieval from getContainer.

SAVE The SAVE service locks and parses a member then proceeds to store

that member’s statistical, dependency, and historical information all in

one service call. The SAVE service called within CARMA’s putMember

function calls the LOCK, PARSE, and STORE SCLM services.

The following SCLM services maintain session integrity within existing CARMA

functions.

 Table 34.

Service Name Description

INIT The INIT service initializes an SCLM ID. During this process, it also

initializes the specified project definition.

START The START service initializes an SCLM services session. It generates an

application ID that identifies the services session.

END The END service stops an SCLM service session and frees an

application ID generated by the START service. Each START service

invocation needs a matching END service invocation. This service also

calls the FREE service to free any SCLM IDs associated with the given

application ID that have not been explicitly freed.

FREE The FREE service frees an SCLM ID generated by the INIT service.

Each INIT service invocation needs a matching FREE service invocation.

After freeing the SCLM ID, SCLM closes all project data sets and frees

the project definition specified on the INIT service.

Appendix C. Sample RAMs 99

Unsupported actions

The SCLM RAM does not support the following actions. Attempting to execute

any of these actions will result in an error dialog.

v Check Out

To gain exclusive access to a source file for editing, use the Lock action. Other

users will still be able to access the source file by extracting it from the

repository, but they will not be permitted to check in their updates to this file

until you have unlocked the file.

v Check In

To allow another user to edit a source file, use the Unlock action.

COBOL RAM

RAM Description

The COBOL RAM is an implementation of the PDS RAM written in COBOL. It is

comprised of a DLL resulting from linking compiled COBOL and C source. The

COBOL RAM provides functionality for browsing PDS assets in the same manner

as the PDS sample RAM. Some of the functionality present in the PDS RAM is not

implemented, but skeleton programs are provided for implementing additional

functionality.

Navigation Structure

Within the COBOL RAM, CARMA display a list of all the PDS instances available

under the user’s high-level qualifier on the CARMA host. Each instance can then

be expanded to display the list of members that make up each instance.

Supported Capabilities

The following functions are already configured on the sample COBOL RAM.

Depending on what your COBOL RAM will be supporting, additional functions

may need to be implemented.

v extractMember

Extracts a member in the same manner as the PDS RAM.. The function is coded

such that extracting from any member associated with an instance of the COBOL

RAM will return the records from a dataset referenced by the DD CBLIN. This

DD must be added to the CARMA start-up CLIST for extractMember to work.

v putMember

Stores a PDS member to the PDS instance specified.

v getInstances

Provides a list of PDS instances.

v getMembers

Returns the list of members associated with a PDS instance.

v initRAM

Sets global variables and demonstrates the COBOL-to-C logging function.

v performAction

Contains sample code for performing a custom action. The sample

for performAction accepts custom parameters and then provides them as custom

returns in reverse order. Information for configuring the CAF to use the custom

action may be found within the program documentation for performAction.

100 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

For more detailed information, see “RAM development using COBOL” on page 39

Skeleton RAM

RAM Description

The Skeleton RAM is the most basic out of all of the samples. It provides a simple

framework that can be used to developed a RAM that will meet your needs. This

RAM should be used as a starting point for developing your own custom RAM.

Appendix C. Sample RAMs 101

102 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law:INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 2000, 2007 103

IBM Corporation

P.O. Box 12195, Dept. TL3B/B503/B313

3039 Cornwallis Rd.

Research Triangle Park, NC 27709-2195

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurement may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates

programming techniques on various operating platforms. You may copy, modify, and distribute these

sample programs in any form without payment to IBM, for the purposes of developing, using, marketing

or distributing application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. You may copy, modify, and distribute these sample programs in any form

without payment to IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

104 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Trademarks and service marks

The following terms are trademarks or registered trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

v IBM

v WebSphere

v Rational

v System z

Other company, product, and service names, which may be denoted by a double asterisk(**), may be

trademarks or service marks of others.

Notices 105

106 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

Readers’ Comments — We’d Like to Hear from You

IBM Rational Developer for System z Version 7.5

Common Access Repository Manager Developer’s Guide

 Publication No. SC23-7660-02

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send a fax to the following number: 1-800-227-5088 (US and Canada)

v Send your comments via e-mail to: kfrye@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-7660-02

SC23-7660-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department G7IA / Bldg. 503

P.O. Box 12195

Research Triangle Park, NC

 27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

Index

A
action IDs 95

B
binary file transfer 32

browsing 5

browsing functions
Create/Delete 25

getContainerContents 24, 77

getInstances 22, 75

getMembers 23, 76

isMemberContainer 24, 76

C
C to COBOL

passing values 41

CAF
object types

action 53

field 54

parameter 52

RAM 51

return value 52

using to customize RAM API 51

CARMA
defined metadata 19

introduction 1

CARMA defined metadata 71

character buffers 8

checking in 5

checking out 5

COBOL RAM
ending the program 41

linkage section 40

procedure division, defining 40

program id, coding 39

program structure 39

COBOLto C
data, passing 43

compiling
CARMA client 67

compiling a RAM 11

Construction, PDS 11

Construction, PDS/E 12

copyFromExternal 31

copyToExternal 31

CRADEF 59

CRARAMCM 11

CRASTRS 61

Create/Delete 25

Create/Delete functions
createContainer 26, 79

createMember 25, 78

delete 26, 80

createContainer 26, 79

createMember 25, 78

creating
VSAM records 59

Custom actions 46

custom parameters 9, 18, 70

custom RAM 54

Custom returns 47

Custome parameters 47

customizing
RAM API 51

D
data structure

Action 69

descriptor 69

KeyValPair 69

parameter 69

RAMRecord 69

returnValue 70

data structures
Descriptor 18

KeyValPair 18

predefined 17

data structures, predefined
client 68

Debugging 49

defined metadata 19

defining
RAM to CARMA 17

delete 26, 80

Dereferencing, Avoiding 42

Descriptor 18

developing
CARMA client 67

RAM model 54

developing a RAM 11

E
exporting functions 17

extract to external 30

extractBinMember 32, 83

extractMember 27, 81

F
file extension

client specified 20

inheritance 20

RAM specified 19

RAM suggested 20

file transfer functions
binary file transfer 32

extractBinMember 32

putBinMember 32

binary, extractBinMember 83

binary, putBinMember 84

extractMember 27, 81

putMember 29, 82

functions
browsing 22, 75

Create/Delete 78

functions (continued)
exporting 17

file transfer 27, 81

logging 18

metadata 33

state 73

State 21

G
general concepts

browsing 5

character buffers 8

checking in 5

checking out 5

custom parameters 9

logging 9

member contents 7

memory allocation 6

return codes 8

return values 9

generic actions 1

getAllMemberInfo 33, 85

getContainerContents 24, 77

getFieldsData 86

getInstances 22, 75

getMemberInfo 34, 86

getMembers 23, 76

getRAMList 74

I
IDs vs. names 17

INFILE 11

inheritance of file extension 20

initCarma 73

initRAM 21, 74

isMemberContainer 24, 76

K
KeyValPair 18

L
locating

sample files 2

logging 9, 70

function 18

M
member contents 7

member operations, other
check_in 36

check_out 37

getVersionList 38

lock 35

performAction 37

© Copyright IBM Corp. 2000, 2007 109

member operations, other (continued)
unlock 36

memory allocation 6, 45

metadata
CARMA defined 71

metadata functions
getAllMemberInfo 33, 85

getFieldsData 86

getMemberInfo 34, 86

updateMemberInfo 35, 87

metadata, defined 19

methods
utilities module

utilCloseMemberList 13

utilCopyPDStoPDS 14

utilCopyPDStoSDS 15

utilCopySDStoPDS 15

utilCopySDStoSDS 15

utilExtractMemberClose 17

utilExtractMemberInit 16

utilExtractMemberRec 16

utilGetAllMemberInfo 13

utilGetAllPDSInfo 14

utilGetMemberInfo 13

utilGetNextMember 12

utilInitMemberList 12

utilPutMemberClose 16

utilPutMemberInit 15

utilPutMemberRec 16

utilPutMemberRecs 15

utilSetMemberInfo 14

N
names vs. IDs 17

Null pointers 49

O
one dimensional array 6

operations, other
checkin 88

checkout 89

getCAFData 90

getVersionList 91

lock 87

performAction 89

unlock 88

operations, pointer 44

other member operations
check_in 36

check_out 37

getVersionList 38

lock 35

performAction 37

unlock 36

other operations
checkin 88

checkout 89

getCAFData 90

getVersionList 91

lock 87

performAction 89

unlock 88

OUTFILE 11

P
PDS construction 11

PDS/E construction 12

pointer arithmetic 45

pointer operations 44

predefined data structures 17

client 68

putBinMember 32, 84

putMember 29, 82

R
RAM

compiling 11

defining to CARMA 17

developing 11

function pattern 11

predefined data structures 17

samples 1

specified file extension 19

utilities module 12

RAM development
using COBOL 39

RAM model 54

RAM specified file extension 71

record format
CRADEF 59

CRASTRS 61

repository access managers
See RAM

reset 22, 74

return codes 8, 93

return values 9, 18, 70

running the CARMA client 67

S
SAMP RAM 63

sample file locations 2

sample RAMs 1

SCM hierarchy 5

shared variables 46

state functions
getRAMList 74

initCarma 73

initRAM 21, 74

reset 22, 74

terminateCarma 75

terminateRAM 22, 75

storing results 68

supported operations 1

SYSDEFSD 11

SYSLIB 11

T
terminateCarma 75

terminateRAM 22, 75

Termination, abnormal 49

trace levels 9

two-dimensional character array 6

U
unsupported operations 18

updateMemberInfo 35, 87

utilCloseMemberList 13

utilCopyPDStoPDS 14

utilCopyPDStoSDS 15

utilCopySDStoPDS 15

utilCopySDStoSDS 15

utilExtractMemberClose 17

utilExtractMemberInit 16

utilExtractMemberRec 16

utilGetAllMemberInfo 13

utilGetAllPDSInfo 14

utilGetMemberInfo 13

utilGetNextMember 12

utilInitMemberList 12

utilities module
methods

utilCloseMemberList 13

utilCopyPDStoPDS 14

utilCopyPDStoSDS 15

utilCopySDStoPDS 15

utilCopySDStoSDS 15

utilExtractMemberClose 17

utilExtractMemberInit 16

utilExtractMemberRec 16

utilGetAllMemberInfo 13

utilGetAllPDSInfo 14

utilGetMemberInfo 13

utilGetNextMember 12

utilInitMemberList 12

utilPutMemberClose 16

utilPutMemberInit 15

utilPutMemberRec 16

utilPutMemberRecs 15

utilSetMemberInfo 14

utilities module, RAM 12

utilPutMemberClose 16

utilPutMemberInit 15

utilPutMemberRec 16

utilPutMemberRecs 15

utilSetMemberInfo 14

V
variables, shared 46

VSAM cluster access 65

VSAM records
SAMP RAM 63

110 IBM Rational Developer for System z Version 7.5: Common Access Repository Manager Developer’s Guide

����

Program Number: 5724-T07

Printed in USA

SC23-7660-02

	Contents
	About this book
	Who should read this book
	Conventions used in this book

	Chapter 1. Introduction to CARMA
	Supported operations
	Locating the sample files

	Chapter 2. General concepts
	Browsing
	Checking in and out
	Memory allocation
	Member contents
	Character buffers
	Return codes
	Logging
	Custom parameters and return values

	Chapter 3. Developing a RAM
	RAM Construction
	Construction for a PDS
	Construction of a PDS/E

	Using the RAM utilities module
	utilInitMemberList
	utilGetNextMember
	utilCloseMemberList
	utilGetAllMemberInfo
	utilGetMemberInfo
	utilSetMemberInfo
	utilGetAllPDSInfo
	utilCopyPDStoPDS
	utilCopyPDStoSDS
	utilCopySDStoPDS
	utilCopySDStoSDS
	utilPutMemberInit
	utilPutMemberRecs
	utilPutMemberRec
	utilPutMemberClose
	utilExtractMemberInit
	utilExtractMemberRec
	utilExtractMemberClose

	Defining the RAM to CARMA
	Exporting functions
	IDs vs. names
	RAM predefined data structures
	Logging
	Dealing with unsupported operations
	Handling custom parameters and return values
	CARMA Defined Metadata
	RAM specified file extension
	CARMA Version

	State functions
	initRAM
	terminateRAM
	reset

	Browsing functions
	getInstances
	getMembers
	isMemberContainer
	getContainerContents
	Create/Delete
	createMember
	createContainer
	delete

	File transfer functions
	extractMember
	Example

	putMember
	Extract to External
	copyFromExternal
	copyToExternal

	Binary file transfer
	extractBinMember
	putBinMember

	Metadata functions
	getAllMemberInfo
	getMemberInfo
	updateMemberInfo

	Other operations
	lock
	unlock
	check_in
	check_out
	performAction
	getVersionList

	RAM development using COBOL
	COBOL RAM program structure
	Coding the program ID
	The linkage section
	Defining the procedure division
	Ending the program

	Passing values from C to COBOL
	Receiving basic C data types passed by value
	Avoiding Dereferencing (Receiving C data types BY REFERENCE)
	Knowing when to receive BY REFERENCE
	Knowing when to receive BY VALUE

	Passing Data from COBOL to C
	Passing COBOL items as basic C function arguments
	Passing COBOL items into C functions by reference

	Dealing with pointer operations
	Simple pointer operations
	Complex pointer operations
	Pointer Arithmetic
	Memory Allocation

	Variables shared between programs
	Handling Custom Action Framework data
	Handling Custom actions
	Handing Custom Parameters without using COBOL-to-C Utility Functions
	Handling Custom Returns without using COBOL-to-C Utility Functions

	Differences between the “utility DLL” and the “COBOL-to-C utility source”
	Debugging and avoiding abnormal termination
	Displaying values to help debug your COBOL RAM
	NULL pointers
	Properly exiting your RAM function programs

	Chapter 4. Customizing a RAM API using the CAF
	CAF object types
	RAM
	Parameter
	Return value
	Action
	Field

	Developing the RAM model for a custom RAM
	Creating VSAM records from a RAM model
	CRADEF
	Record keys
	Record data

	CRASTRS
	Record keys
	Record data

	SAMP RAM VSAM records
	VSAM cluster access

	Chapter 5. Developing a CARMA client
	Compiling the CARMA client
	Running the client
	Storing results for later use
	Client predefined data structures
	Logging
	Handling custom parameters and return values
	CARMA Defined Metadata
	RAM specified file extension

	Extract to External
	copyFromExternal
	copyToExternal

	State functions
	initCarma
	getRAMList
	initRAM
	reset
	terminateRAM
	terminateCarma

	Browsing functions
	getInstances
	getMembers
	isMemberContainer
	getContainerContents
	Create/Delete
	createMember
	createContainer
	delete

	File transfer functions
	extractMember
	putMember
	Binary file transfer
	extractBinMember
	putBinMember

	Metadata functions
	getAllMemberInfo
	getFieldsData
	getMemberInfo
	updateMemberInfo

	Other operations
	lock
	unlock
	checkin
	checkout
	performAction
	getCAFData
	getVersionList

	Appendix A. Return codes
	Appendix B. Action IDs
	Appendix C. Sample RAMs
	PDS RAM
	RAM Description
	Navigation Structure
	Supported actions
	Unsupported actions

	SCLM RAM
	RAM Description
	Navigation Structure
	Supported actions
	Unsupported actions

	COBOL RAM
	RAM Description
	Navigation Structure
	Supported Capabilities

	Skeleton RAM
	RAM Description

	Notices
	Trademarks and service marks

	Readers’ Comments — We'd Like to Hear from You
	Index

