
Enterprise PL/I for z/OS

PL/I for AIX

Rational Developer for System z PL/I for Windows

Messages and Codes

Version 3 Release 8

SC27-1461-08

���

Enterprise PL/I for z/OS

PL/I for AIX

Rational Developer for System z PL/I for Windows

Messages and Codes

Version 3 Release 8

SC27-1461-08

���

Tenth Edition (October 2008)

This edition applies to Version 3 Release 8 of Enterprise PL/I for z/OS, 5655-H31, PL/I for AIX V2.0.0.0, and to

Rational Developer for System z PL/I for Windows, Version 7.1, and to any subsequent releases until otherwise

indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of the

product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address

your comments to:

 IBM Corporation, Department H150/090

 555 Bailey Ave.

 San Jose, CA, 95141-1099

 United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Note!

Before using this information and the product it supports, be sure to read the general

information under “Notices” on page 169.

Contents

Part 1. Messages and Codes 1

Chapter 1. Compiler and preprocessor

messages 3

Format of messages 3

Message inserts 4

Contacting IBM for support 4

Chapter 2. How to send your comments 5

Chapter 3. Compiler Informational

Messages (1000-1076, 2800-2999) 7

Chapter 4. Compiler Warning Messages

(1078-1225, 2600-2799) 11

Chapter 5. Compiler Error Messages

(1226-1499, 2400-2599) 29

Chapter 6. Compiler Severe Messages

(1500-2399) 51

Chapter 7. MACRO and CICS

Preprocessor Messages (3000-3999) . . 99

Chapter 8. Code Generation Messages

(5000-5999) 117

Chapter 9. SQL Preprocessor

Messages (7000-7999) 121

Chapter 10. Condition codes 125

Conditions 1 through 50 125

Condition codes 51 through 100 126

Condition codes 100 through 520 129

Condition codes 600 through 650 130

Condition codes 651 through 672 131

Condition codes 1002 through 1107 133

Condition codes 1500 through 1550 134

Condition codes 1551 through 1600 135

Condition codes 1601 through 1650 137

Condition codes 1651 through 1700 139

Condition codes 1701 through 1750 141

Condition codes 1751 through 1800 143

Condition codes 1801 through 1850 145

Condition codes 1851 through 1900 147

Condition codes 1901 through 1950 148

Condition codes 1951 through 2000 150

Condition codes 2002 through 2150 152

Condition codes 2151 through 2200 153

Condition codes 2201 through 2250 154

Condition codes 2251 through 2300 156

Condition codes 2301 through 2350 158

Condition codes 2351 through 2400 159

Condition codes 2403 through 2450 161

Condition codes 2451 through 2500 162

Condition codes 2504 through 2999 164

Condition codes 3000 through 3900 165

Condition codes 3901 through 4000 166

Condition codes 4001 through 9999 167

Notices 169

Trademarks 170

Bibliography 171

Enterprise PL/I publications 171

PL/I for MVS & VM 171

z/OS Language Environment 171

CICS Transaction Server 171

DB2 UDB for OS/390 and z/OS 171

DFSORT 171

IMS/ESA 172

z/OS MVS 172

z/OS UNIX System Services 172

z/OS TSO/E 172

z/Architecture 172

Unicode and character representation 172

© Copyright IBM Corp. 1999, 2008 iii

iv PL/I Messages and Codes

Part 1. Messages and Codes

Chapter 1. Compiler and preprocessor messages 3

Format of messages 3

Message inserts 4

Contacting IBM for support 4

Chapter 2. How to send your comments 5

Chapter 3. Compiler Informational Messages

(1000-1076, 2800-2999) 7

Chapter 4. Compiler Warning Messages

(1078-1225, 2600-2799) 11

Chapter 5. Compiler Error Messages (1226-1499,

2400-2599) 29

Chapter 6. Compiler Severe Messages

(1500-2399) 51

Chapter 7. MACRO and CICS Preprocessor

Messages (3000-3999) 99

Chapter 8. Code Generation Messages

(5000-5999) 117

Chapter 9. SQL Preprocessor Messages

(7000-7999) 121

Chapter 10. Condition codes 125

Conditions 1 through 50 125

Condition codes 51 through 100 126

Condition codes 100 through 520 129

Condition codes 600 through 650 130

Condition codes 651 through 672 131

Condition codes 1002 through 1107 133

Condition codes 1500 through 1550 134

Condition codes 1551 through 1600 135

Condition codes 1601 through 1650 137

Condition codes 1651 through 1700 139

Condition codes 1701 through 1750 141

Condition codes 1751 through 1800 143

Condition codes 1801 through 1850 145

Condition codes 1851 through 1900 147

Condition codes 1901 through 1950 148

Condition codes 1951 through 2000 150

Condition codes 2002 through 2150 152

Condition codes 2151 through 2200 153

Condition codes 2201 through 2250 154

Condition codes 2251 through 2300 156

Condition codes 2301 through 2350 158

Condition codes 2351 through 2400 159

Condition codes 2403 through 2450 161

Condition codes 2451 through 2500 162

Condition codes 2504 through 2999 164

Condition codes 3000 through 3900 165

Condition codes 3901 through 4000 166

Condition codes 4001 through 9999 167

© Copyright IBM Corp. 1999, 2008 1

2 PL/I Messages and Codes

Chapter 1. Compiler and preprocessor messages

This section lists the compiler messages in numerical order. These messages are

also listed in numerical order in the output following the source program and in

any other listings produced by the compiler.

Format of messages

In your compilation output, each compiler message, with the exception of the

code generation messages in the range 5000-5999, starts with IBMnnnnI X where:

v IBM indicates that the message is a PL/I message

v nnnn is the number of the message

v the closing letter I indicates that no system operator action is required

v the X represents a severity code.

In this guide, messages are listed numerically. Each compiler message in this

section has the form IBMnnnnI X where X is the severity code.

Severity codes can be any of the following: I, W, E, S, or U.

These severity codes indicate the following. (Note that the return codes listed are

the highest return code generated.)

I An informational message (RC=0) indicates that the compiled program

should run correctly. The compiler might inform you of a possible

inefficiency in your code or some other condition of interest.

W A warning message (RC=4) warns you that a statement might be in error

(warning) even though it is syntactically valid. The compiled program

should run correctly, but might produce different results than expected or

be significantly inefficient.

E An error message (RC=8) describes a simple error fixed by the compiler.

The compiled program should run correctly, but might produce different

results than expected.

S A severe error message (RC=12) describes an error not fixed by the

compiler. If the program is compiled and an object module is produced, it

should not be used.

U An unrecoverable error message (RC=16) signifies an error that forces

termination of the compilation. An object module is not successfully

created.

Compiler messages are printed in groups according to these severity levels and to

the component that produced them.

The code generation messages (those in the range 5000-5999) start with IBMnnnn

where:

v IBM indicates that the message is a PL/I message

v nnnn is the number of the message

Under batch, the code generation messages are written to the STDOUT DD dataset,

while all other messages appear in the listing which is written to the SYSPRINT

© Copyright IBM Corp. 1999, 2008 3

DD dataset. Under z/OS UNIX, the code generation messages are written to

stdout, while all other messages appear in the listing and are also written to

stdout.

The compiler FLAG option suppresses the listing of messages in the compiler

listing. You can find a description of the FLAG option in the Enterprise PL/I for

z/OS Programming Guide.

Message inserts

Many of the compiler messages contain message inserts indicating where the

compiler inserts information when it prints the message. These inserts are

emphasized in the messages in this section using italics.

Contacting IBM for support

If you contact IBM for programming support for a compiler error, it is useful to

have a listing of your source program available. To make the analysis of any

potential problem easier, it is best if that listing is created with the options:

INSOURCE MACRO OPTIONS SOURCE.

4 PL/I Messages and Codes

Chapter 2. How to send your comments

Your feedback is important in helping us to provide accurate, high-quality

information. If you have comments about this document or any other PL/I

documentation, contact us in one of these ways:

v Use the Online Readers’ Comment Form at

www.ibm.com/software/awdtools/rcf/

or send an e-mail to

comments@us.ibm.com

Be sure to include the name of the document, the publication number of the

document, the version of PL/I, and, if applicable, the specific location (for

example, page number) of the text that you are commenting on.

v Fill out the Readers’ Comment Form at the back of this document, and return it

by mail or give it to an IBM representative. If the form has been removed,

address your comments to:

International Business Machines Corporation

Reader Comments

H150/090

555 Bailey Avenue

San Jose, CA 95141-1003

USA

v Fax your comments to this U.S. number: (800)426-7773.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

© Copyright IBM Corp. 1999, 2008 5

6 PL/I Messages and Codes

Chapter 3. Compiler Informational Messages (1000-1076,

2800-2999)

IBM1018I I option-name should be specified within

OPTIONS, but is accepted as is.

Explanation: This message is used in building the

options listing.

IBM1035I I The next statement was merged with

this statement.

Explanation: The statement following the statement

for which this message was issued were merged with

that statement.

IBM1036I I The next statement-count statements were

merged with this statement.

Explanation: The specified number of statements

following the statement for which this message was

issued were merged with that statement.

IBM1038I I note

Explanation: This message is used to report back end

informational messages.

IBM1039I I Variable variable name is implicitly

declared.

Explanation: All variables should be declared except

for contextual declarations of built-in functions,

SYSPRINT and SYSIN.

IBM1040I I note

Explanation: This message is used by %NOTE

statements with a return code of 0.

IBM1041I I Comment spans line-count lines.

Explanation: A comment ends on a different line than

it begins. This may indicate that an end-of-comment

delimiter is missing.

IBM1042I I String spans line-count lines.

Explanation: A string ends on a different line than it

begins. This may indicate that a closing quote is

missing.

IBM1043I I variable name is contextually declared as

attribute.

Explanation: There is no declare statement for the

named variable, but it has been given the indicated

attribute because of its usage. For instance, if the

variable is used as a locator, it will be given the

POINTER attribute.

IBM1044I I FIXED BINARY with precision 7 or less

is mapped to 1 byte.

Explanation: The OS/370 PL/I and PL/I for MVS

compilers would have mapped this to 2 bytes.

IBM1045I I Code generated for the REFER object

reference name would be more efficient if

the REFER object had the attributes

REAL FIXED BIN(p,0).

Explanation: If the REFER object has any other

attributes, it will be converted to and from REAL

FIXED BIN(31,0) via library calls.

IBM1046I I UNSPEC applied to an array is handled

as a scalar reference.

Explanation: The OS/370 PL/I and PL/I for MVS

compilers would have handled UNSPEC applied to an

array as an array of scalars.

IBM1047I I ORDER option may inhibit

optimization.

Explanation: If the ORDER option applies to a block,

optimization is likely to be inhibited, especially if the

block contains ON-units that refer to variables declared

outside the ON-unit.

IBM1048I I GET/PUT DATA without a data-list

inhibits optimization.

Explanation: A GET DATA statement can alter almost

any variable, and a PUT DATA statement requires

almost all variables to be stored home anytime a PUT

DATA statement might be executed. Both of these

requirements inhibit optimization.

IBM1050I I INITIAL attribute for RESERVED

STATIC is ignored.

Explanation: The INITIAL attribute has been specified

for a variable with the attributes RESERVED STATIC.

Unless such a variable is listed in the EXPORTS clause

of a PACKAGE statement, the variable will not be

initialized.

© Copyright IBM Corp. 1999, 2008 7

IBM1051I I Argument to BUILTIN name built-in may

not be byte aligned.

Explanation: This message applies to the ADDR,

CURRENTSTORAGE/SIZE and STORAGE/SIZE

built-in functions. Applying any one of these built-in

functions to an unaligned bit variable may not produce

the results you expected.

IBM1052I I The NODESCRIPTOR attribute is

accepted even though some arguments

have * extents.

Explanation: When a string with * extent or an array

with * extents is passed, PL/I normally passes a

descriptor so that the called routine knows how big the

passed argument really is. The NODESCRIPTOR

attribute indicates that no descriptor should be passed;

this is invalid if the called routine is a PL/I procedure.

 dcl x entry(char(*), fixed bin(31))

 options(nodescriptor);

IBM1053I I Scaled FIXED operation evaluated as

FIXED DECIMAL.

Explanation: If one of the built-in functions ADD,

DIVIDE, MULTIPLY or SUBTRACT is invoked with

argument that have type FIXED, if either operand has a

non-zero scale factor, the result will have type FIXED

DEC.

IBM1058I I Conversion from source type to target type

will be done by library call.

Explanation: This message can be used to help find

code that may be very expensive if executed as part of

a loop or to find code involving conversions of unlike

types.

IBM1059I I SELECT statement contains no

OTHERWISE clause.

Explanation: The ERROR condition will be raised if

no WHEN clause is satisfied.

IBM1060I I Name resolution for identifier selected its

declaration in a structure, rather than its

non-member declaration in a parent

block.

Explanation: The PL/I language rules require this, but

it might be a little surprising. In the following code

fragment, for instance, the display statement would

display the value of x.y.

 a: proc;

 dcl y fixed bin init(3);

 call b;

 b: proc;

 dcl

 1 x,

 2 y fixed bin init(5),

 2 z fixed bin init(7);

 display(y);

 end;

 end a;

IBM1061I I Probable DATE calculation should be

examined for validity after the year

1999.

Explanation: Use of any of the constants 365, 1900 or

’19’ may indicate a date calculation. If this is true, you

should examine the calculation to determine if it will

be valid after the year 1999.

IBM1062I I variable inferred to contain a two-digit

year.

Explanation: The indicated was inferred to contain a

two-digit year because, for example, it was assigned the

DATE built-in function.

IBM1063I I Code generated for DO group would be

more efficient if control variable were a

4-byte integer.

Explanation: The control variable in the DO loop is a

1-byte integer, 2-byte integer, fixed decimal or fixed

picture, and consequently, the code generated for the

loop will not be optimal.

IBM1064I I Use of OPT(2) forces TEST(BLOCK).

Explanation: Under OPT(2), any specification of TEST

hooks stronger than TEST(BLOCK) is not supported.

IBM1065I I Float constant constant would be more

precise if specified as a long float.

Explanation: The named short floating-point constant

cannot be exactly represented. It could be more

accurately represented if it were specified as a long

floating-point constant. For example, the 1.3E0 cannot

be exactly represented, but could be better represented

as 1.3D0.

8 PL/I Messages and Codes

IBM1067I I UNTIL clause ignored.

Explanation: If a DO specification has no clause such

as TO, BY or REPEAT that could cause the loop to be

repeated, then the UNTIL clause will have no effect on

the loop and will be ignored.

 do x = y until (z > 0);

 ...

 end;

IBM1068I I Procedure has no RETURNS attribute,

but contains a RETURN statement. A

RETURNS attribute will be assumed.

Explanation: If a procedure contains a RETURN

statement, it should have the RETURNS attribute

specified on its PROCEDURE statement.

 a: proc;

 return(0);

 end;

IBM1069I I The AUTOMATIC variables in a block

should not be used in the prologue of

that block.

Explanation: The AUTOMATIC variables in a block

may be used in the declare statements and the

executable statements of any contained block, but in the

block in which they are declared, they should be used

only in the executable statements.

 dcl x fixed bin(15) init(5);

 dcl y(x) fixed bin(15);

IBM2800I I The procedure proc name is not

referenced.

Explanation: The named procedure is not external and

is never referenced in the compilation unit. This may

represent an error (if it was supposed to be called) or

an opportunity to eliminate some dead code.

IBM2801I I FIXED DEC(source-precision,source-scale)

operand will be converted to FIXED

BIN(target-precision,target-scale). This

introduces a non-zero scale factor into

an integer operation and will produce a

result with the attributes FIXED

BIN(result-precision,result-scale).

Explanation: Under RULES(IBM), when an arithmetic

operation has an operand that is FIXED BIN and an

operand that is FIXED DEC with a non-zero scale

factor, then the FIXED DEC operand will be converted

to FIXED BIN.

IBM2802I I Aggregate mapping will be done by

library call.

Explanation: This message can be used to help find

code that may be very expensive if executed as part of

a loop. It may be produced, for example, if your code

refers to an element of a structure that uses REFER. If

the structure uses multiple REFERs and the element

occurs after the last REFER, the single reference to that

element may produce multiple copies of this message

(because multiple library calls will be made).

IBM2803I I keyword STRING EDIT statement

optimized.

Explanation: This message is issued when a PUT or

GET STRING EDIT statement has been optimized by

the compiler so that most of it is done inline.

IBM2804I I Boolean is compared with something

other than ’1’b or ’0’b.

Explanation: This message will flag statements such

as the following, where ″true″ is a BIT(1) STATIC

INIT(’1’b). It would be better if ″true″ were a named

constant, i.e. if it were declared with the VALUE

attribute rather than STATIC INIT

 if (a < b) = true then

IBM2805I I For assignment to variable name,

conversion from source type to target type

will be done by library call.

Explanation: This message can be used to help find

code that may be very expensive if executed as part of

a loop or to find code involving conversions of unlike

types.

IBM2806I I Passing a LABEL to another routine is

poor coding practice and will cause the

compiler to generate less than optimal

code.

Explanation: It is generally very unwise to pass a

label to another routine. It would be good to think

about redesigning any code doing this.

IBM2809I I FIXED DEC(source-precision,source-scale)

operand will be converted to FIXED

BIN(target-precision,target-scale). This

introduces 8-byte integer arithmetic into

an operation that might be faster if

computed in decimal.

Explanation: If the LIMITS option specifies a

Chapter 3. Compiler Informational Messages (1000-1076, 2800-2999) 9

maximum FIXED precision greater than 31, then an

operation involving a FIXED DEC and a FIXED BIN

operand might produce an 8-byte integer result even if

both operands are ″small″. For example, if you add a

FIXED DEC(13) and a FIXED BIN(31), the result would

be an 8-byte integer (because a FIXED DEC(13) value

might be too large to fit in a 4-byte integer). To avoid

this, you could apply the DECIMAL built-in function to

the FIXED BIN operand.

IBM2810I I Conversion of FIXED

BIN(source-precision,source-scale) to FIXED

DEC(target-precision,target-scale) may

produce a more accurate result than

under the old compiler.

Explanation: In certain conversions of FIXED BIN(p,q)

to FIXED DEC, the old compiler slightly rounded the

result if q was positive.

IBM2811I I Use of PICTURE as DO control variable

is not recommended.

Explanation: If the control variable in a DO loop is a

PICTURE variable, then more code will be generated

for the loop than if the control variable were a FIXED

BIN variable. Moreover, such loops may easily be

miscoded so that they will loop infinitely.

IBM2812I I Argument number argument number to

BUILTIN name built-in would lead to

much better code if declared with the

VALUE attribute.

Explanation: For functions such as VERIFY(x,y), if y is

a constant, it is much better for performance to declare

y with the VALUE attribute rather than with the

INITIAL attribute.

IBM2814I I Aggregate mapping for storage

allocation will be done by library call.

Explanation: This message can be used to help find

code that may be expensive if invoked many times.

This message may be produced for ALLOCATE

statements for BASED and CONTROLLED variables

with non-constant extents, and it may also be produced

for the prologue of PROCEDUREs that use

AUTOMATIC variables with non-constant extents.

10 PL/I Messages and Codes

Chapter 4. Compiler Warning Messages (1078-1225,

2600-2799)

IBM1078I W Statement may never be executed.

Explanation: This message warns that the compiler

has detected a statement that can never be run as the

flow of control must always pass it by.

IBM1079I W Too few arguments have been specified

for the ENTRY ENTRY name.

Explanation: The number of arguments should match

the number of parameters in the ENTRY declaration.

IBM1080I W The keyword label-name, which could

form a complete statement, is accepted

as a label name, but a colon may have

been used where a semicolon was

meant.

Explanation: A PL/I keyword which could form a

complete statement has been used as statement label.

This usage is accepted, but a colon may have been used

where a semicolon was intended.

 dcl a fixed bin(31) ext;

 if a = 0 then

 put skip list(’a = 0’)

 else:

 a = a + 1;

IBM1081I W keyword expression should be scalar.

Lower bounds assumed for any missing

subscripts.

Explanation: The expression in the named keyword

clause should be a scalar, but an array reference was

specified.

 dcl p pointer;

 dcl x based char(10);

 dcl a(10) area(1000);

 allocate x in(a) set(p);

IBM1082I W Argument number argument-number in

entry reference entry name is a scalar, but

its declare specifies a structure.

Explanation: A scalar may be passed as the argument

when a structure is expected, but this require building

a ″dummy″ structure and assigning the scalar to each

field in that structure.

 dcl e entry(1 2 fixed bin(31),

 2 fixed bin(31));

 dcl i fixed bin(15);

 call e(i);

IBM1083I W Source in label assignment is inside a

DO-loop, and an illegal jump into the

loop may be attempted. Optimization

will also be very inhibited.

Explanation: GOTO statements may not jump into DO

loops, and the compiler will flag any GOTO whose

target is a label constant inside a (different) DO loop.

However, if a label inside a DO loop is assigned to a

label variable, then this kind of error may go

undetected.

IBM1084I W Nonblanks after right margin are not

allowed under

RULES(NOLAXMARGINS).

Explanation: Under RULES(NOLAXMARGINS), there

should be nothing but blanks after the right margin.

IBM1085I W variable may be uninitialized when used.

Explanation: The indicated variable may be used

before it has been initialized.

IBM1086I W built-in function will be evaluated using

long rather than extended routines.

Explanation: The indicated built-in function has an

extended float argument, but since the corresponding

extended routine is not yet available, it will be

evaluated using the appropriate long routine.

IBM1087I W FLOAT source is too big for its target.

An appropriate HUGE value of assumed

value is assumed.

Explanation: A value larger than HUGE(1s0) cannot

be assigned to a short float. Under hexadecimal float,

the value 3.141592E+40 could be assigned to a short

float, but under IEEE, the maximum value that a short

float can hold is about 3.40281E+38.

IBM1088I W FLOAT literal is too big for its implicit

precision. The E in the exponent will be

replaced by a D.

© Copyright IBM Corp. 1999, 2008 11

Explanation: The precision for a float literal is implied

by the number of digits in its mantissa. For instance

1e99 is implicitly FLOAT DECIMAL(1), but the value

1e99 is larger than the largest value a FLOAT

DECIMAL(1) can hold.

IBM1089I W Control variable in DO loop cannot

exceed TO value, and loop may be

infinite.

Explanation: If the TO value is equal to the maximum

value that a FIXED or PICTURE variable can hold, then

a loop dominated by that variable will run endlessly

unless exited inside the loop by a LEAVE or GOTO. For

example, in the first code fragment below, x can never

be bigger than 99, and the loop would be infinite. In

the second code fragment below, y can never be bigger

than 32767, and the loop would be infinite.

 dcl x pic’99’;

 do x = 1 to 99;

 put skip list(x);

 end;

 dcl y fixed bin(15);

 do y = 1 to 32767;

 put skip list(y);

 end;

IBM1090I W Constant used as locator qualifier.

Explanation: An expression contains a reference to a

based variable with a constant value for its locator

qualifier. This may cause a protection exception on

some systems. It may also indicate that the variable

was declared as based on NULL or SYSNULL and that

this constant value is being used as its locator qualifier.

 dcl a fixed bin(31) based(null());

 a = 0;

IBM1091I W FIXED BIN precision less than storage

allows.

Explanation: Except in unusual circumstances, the

precision in a FIXED BIN declaration should be 7, 15,

31 or 63 if SIGNED and one greater if UNSIGNED.

This message may indicate that a declare specified, for

example, FIXED BIN(8) when UNSIGNED FIXED

BIN(8) was meant.

IBM1092I W GOTO whose target is or may be in

another block severely limits

optimization.

Explanation: Try to change the code so that it sets and

tests a switch instead, or limit GOTOs to very small

modules that do not need optimization.

IBM1093I W PLIXOPT string is invalid. See related

runtime message message-number.

Explanation: The PLIXOPT string could not be parsed.

See the cited Language Environment message for more

detail.

IBM1094I W Element option in PLIXOPT is invalid.

See related runtime message

message-number.

Explanation: The PLIXOPT string contains an invalid

item. See the cited Language Environment message for

more detail.

IBM1095I W Element option in PLIXOPT has been

remapped to option. See related runtime

message message-number.

Explanation: The PLIXOPT string contains a run-time

option which is not supported by LE. See the cited

Language Environment message for more detail.

IBM1096I W STAE and SPIE in PLIXOPT is not

supported. See related runtime message

message-number.

Explanation: The SPIE and STAE options have been

replaced by the TRAP option. TRAP(ON) is equivalent

to SPIE and STAE; TRAP(OFF) is equivalent to NOSPIE

and NOSTAE. The combination SPIE and NOSTAE and

the combination NOSPIE and STAE are no longer

supported. See the cited Language Environment

message for more detail.

IBM1097I W Scalar accepted as argument number

argument-number in ENTRY reference

ENTRY name although parameter

description specifies an array.

Explanation: Generally, scalars should not be passed

where arrays are expected, but in some situations, this

may be desired.

 dcl a entry((*) fixed bin)

 option(nodescriptor);

 call a(0);

12 PL/I Messages and Codes

IBM1098I W Extraneous comma at end of statement

ignored.

Explanation: A comma was followed by a semicolon

rather than by a valid syntactical element (such as an

identifier). The comma will be ignored in order to make

the semicolon valid.

 dcl 1 a, 2 b fixed bin, 2 c fixed bin, ;

IBM1099I W FIXED DEC(source-precision,source-scale)

operand will be converted to FIXED

BIN(target-precision,target-scale).

Significant digits may be lost.

Explanation: Under RULES(IBM), when a comparison

or arithmetic operation has an operand that is FIXED

BIN and an operand that is FIXED DEC with a

non-zero scale factor, then the FIXED DEC operand will

be converted to FIXED BIN. Under RULES(ANS), when

a comparison or arithmetic operation has an operand

that is FIXED BIN and an operand that is FIXED DEC

with a zero scale factor, then the FIXED DEC operand

will be converted to FIXED BIN. In each case,

significant digits may be lost, and if there is a fractional

part, it may not be exactly represented as binary. For

instance, under RULES(IBM), the assignment statement

below will cause the target to have the value 29.19, and

in the comparison, C will be converted to FIXED

BIN(31,10) and significant digits will be lost (in fact,

SIZE would be raised, but since it is disabled, this

program would be in error).

 dcl a fixed dec(07,2) init(12.2);

 dcl b fixed bin(31,0) init(17);

 dcl c fixed dec(15,3) init(2097151);

 dcl d fixed bin(31,0) init(0);

 a = a + b;

 if c = d then;

IBM1100I W The attribute attribute-option is not valid

on BEGIN blocks and is ignored.

Explanation: An attribute (REDUCIBLE in the

example below) has been specified in the OPTIONS

clause on a BEGIN statement, but that attribute is not

valid for BEGIN blocks.

 begin options(reducible);

IBM1101I W option-name is not a known

PROCEDURE attribute and is ignored.

Explanation: An attribute (DATAONLY in the example

below) has been specified in the OPTIONS clause on a

PROCEDURE statement, but that attribute is not valid

for PROCEDUREs.

 a: proc options(dataonly);

IBM1102I W option-name is not a known BEGIN

attribute and is ignored.

Explanation: The indicated attribute is valid on

PROCEDURE statements, but not on BEGIN

statements.

 begin recursive;

IBM1103I W option-name is not a supported compiler

option and is ignored.

Explanation: The compiler option is not supported on

this platform.

 *process map;

IBM1104I W Suboptions of the compiler option

option-name are not supported and are

ignored.

Explanation: Suboptions of the compiler option are

not supported on this platform.

 *process list(4);

IBM1105I W A suboption of the compiler option

option-name is too long. It is shortened to

number-of-letters characters.

Explanation: Various compiler options have limits on

the size of subfields. Refer to the :cit.Programming

Guide:ecit. for the limits of specific compiler options.

 *process margini(’+-’);

IBM1106I W Condition prefixes on keyword

statements are ignored.

Explanation: Condition prefixes are not allowed on

DECLARE, DEFAULT, IF, ELSE, DO, END, SELECT,

WHEN or OTHERWISE statements.

 (nofofl): if (x+y) > 0 then

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 13

IBM1107I W option-name is not a known ENTRY

statement attribute and is ignored.

Explanation: An attribute (DATAONLY in the example

below) has been specified in the OPTIONS clause on an

ENTRY statement, but that attribute is not valid for

ENTRY statements.

 a: entry options(dataonly);

IBM1108I W The character char specified in the option

option is already defined and may not

be redefined. The redefinition will be

ignored.

Explanation: A character specified in the OR, NOT,

QUOTE or NAMES compiler option is already defined

in the PL/I character set or by another compiler option.

 *process not(’=’);

 *process not(’!’) or(’!’);

IBM1109I W The second argument in the C-format

item will be ignored.

Explanation: If you wish to display the real and

imaginary parts of a complex number using different

formats, use the REAL and IMAG built-in functions

and 2 format items.

 put edit (x) (c(e(10,6), e(10,6)));

IBM1110I W The %INCLUDE statement should be on

a line by itself. The source on the line

after the %INCLUDE statement is

ignored.

Explanation: Split the text into 2 lines.

 %include x; %include y;

IBM1111I W CHECK prefix is not supported and is

ignored.

Explanation: The CHECK prefix is not part of the

SAA PL/I language.

 (check): i = j + 1;

IBM1112I W condition-name condition is not supported

and is ignored.

Explanation: The CHECK and PENDING conditions

are not part of the SAA PL/I language.

 on check ...

IBM1113I W verb-name statement is not supported

and is ignored.

Explanation: The named statement, for example the

CHECK statement, is not part of the SAA PL/I

language.

IBM1114I W Comparands are both constant.

Explanation: Both operands in a comparison are

constant, and consequently, the result of the

comparison is also a constant. If this comparison is the

expression in an IF clause, for example, this means that

either the THEN or ELSE clause will never be executed.

IBM1115I W INITIAL list contains count items, but

the array variable name contains only

array size. Excess is ignored.

Explanation: For an array, an INITIAL list should not

contain more values than the array has elements.

 dcl a init(1, 2), b(5) init((10) 0);

IBM1116I W Comment spans more than one file.

Explanation: A comment ends in a different file than

it begins. This may indicate that an end-of-comment

statement is missing.

IBM1117I W String spans more than one file.

Explanation: A string ends in a different file than it

begins. This may indicate that a closing quote is

missing.

IBM1118I W Delimiter missing between nondelimiter

and nondelimiter. A blank is assumed.

Explanation: A delimiter (for example, a blank or a

comma) is required between all identifiers and

constants.

 dcl 1 a, 2 b, 3c;

14 PL/I Messages and Codes

IBM1119I W Code generated for DO group would be

more efficient if control variable were

not an aggregate member.

Explanation: The control variable in the DO loop is a

member of an array, a structure or an union, and

consequently, the code generated for the loop will not

be optimal.

IBM1120I W Multiple closure of groups. END

statements will be inserted to close

intervening groups.

Explanation: Using one END statement to close more

than one group of statements is permitted, but it may

indicate a coding error.

IBM1121I W Missing character assumed.

Explanation: The indicated character is missing, and

there are no more characters in the source. The missing

character has been inserted by the parser in order to

correct your source.

IBM1122I W Missing character assumed before

character.

Explanation: The indicated character is missing and

has been inserted by the parser in order to correct your

source.

 display(’Program starting’ ;

IBM1123I W The ENVIRONMENT option option-name

has been specified without a suboption.

The option option-name is ignored.

Explanation: Certain ENVIRONMENT options, such

as RECSIZE, require suboptions.

 dcl f file env(recsize);

IBM1124I W A suboption has been specified for the

ENVIRONMENT option option-name.

The suboption will be ignored.

Explanation: Certain ENVIRONMENT options, such

as CONSECUTIVE, should be specified without any

suboptions.

 dcl f file env(consecutive(1));

IBM1125I W The ENVIRONMENT option option-name

has been specified more than once.

Explanation: ENVIRONMENT options should not be

repeated.

 dcl f file env(consecutive consecutive);

IBM1126I W The ENVIRONMENT option option-name

has an invalid suboption. The option

will be ignored.

Explanation: The suboption type is incorrect.

 dcl f file env(regional(5));

IBM1127I W option-name is not a known

ENVIRONMENT option. It will be

ignored.

Explanation: There is no such supported

ENVIRONMENT option.

 dcl f file env(unknown);

IBM1128I W The ENVIRONMENT option option-name

conflicts with the LANGLVL compiler

option. The option will be ignored.

Explanation: The indicated option is valid only with

LANGLVL(OS).

 dcl f file env(fb);

IBM1129I W verb-name processor-name statement

ignored up to closing semicolon.

Explanation: An EXEC SQL or EXEC CICS statement

has been found in the source program. The compiler

will ignore these statements.

 exec sql ...;

IBM1130I W The external name identifier is too long.

It will be shortened to identifier.

Explanation: The maximum length of external names

is set by the EXTNAME suboption of the LIMITS

compiler option.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 15

dcl this_name_is_long static external pointer;

IBM1131I W An EXTERNAL name specification for

name has been specified on its

PROCEDURE statement and in the

EXPORTS clause of the PACKAGE

statement. The EXPORTS specification

will be used.

Explanation: The name specified in the EXTERNAL

attribute in the EXPORTS clause overrides the name

specified in the EXTERNAL attribute on the

PROCEDURE statement.

 a: package exports(b ext(’_B’));

 b: proc ext(’BB’);

IBM1132I W An EXTERNAL name specification for

name has been specified in its

declaration and in the RESERVES clause

of the PACKAGE statement. The

RESERVES specification will be used.

Explanation: The name specified in the EXTERNAL

attribute in the RESERVES clause overrides the name

specified in the EXTERNAL attribute in the DECLARE

statement.

 a: package reserves(b ext(’_B’));

 dcl b ext(’BB’) static ...

IBM1133I W The FORMAT CONSTANT array

label-name is not fully initialized.

Explanation: An element of a FORMAT CONSTANT

array has not been defined, for example, f(2) in the

example below.

 f(1): format(x(2), a);

 f(3): format(x(4), a);

IBM1134I W The LABEL CONSTANT array

label-reference is not fully initialized.

Explanation: The named variable defines a statement

label array, but not all the elements in that array are

labels for statements in the containing procedure.

 l(1): display(...);

 l(3): display(...);

IBM1135I W Logical operand is constant.

Explanation: An argument to one of the logical

operators (or, and or not) is a constant. The result of

the operation may also be a constant. If this operation

is the expression in an IF clause, for example, this

means that either the THEN or ELSE clause will never

be executed.

 if a | ’1’b then

IBM1136I W Function invoked as a subroutine.

Explanation: A function, for example, a PROCEDURE

or ENTRY statement with the RETURNS attribute, has

been invoked in a CALL statement. The value that is

returned by the function will be discarded, but the

OPTIONAL attribute should be used to indicate that

this is valid.

IBM1137I W The attribute attribute is invalid in

GENERIC descriptions and will be

ignored.

Explanation: The named attribute is invalid in

GENERIC description lists.

 dcl g generic (f1 when(connected),

 f2 otherwise);

IBM1138I W Number of items in INITIAL list is

count for the array variable name which

contains array size elements.

Explanation: The array will be incompletely

initialized. If the named variable is part of a structure,

subsequent elements in that structure with this problem

will be flagged with message 2602. This may be a

programming error (in the example below, 4 should

probably have been 6) and may cause exceptions when

the program is run.

 dcl a(8) fixed dec init(1, 2, (4) 0);

16 PL/I Messages and Codes

IBM1139I W Syntax of the %CONTROL statement is

incorrect.

Explanation: The %CONTROL statement must be

followed by FORMAT or NOFORMAT option enclosed

in parentheses and then a semicolon.

IBM1140I W Syntax of the LANGLVL option in the

%OPTION statement is incorrect.

Explanation: The LANGLVL option in the %OPTION

statement must be specified as either LANGLVL(SAA)

or LANGLVL(SAA2).

IBM1141I W Syntax of the %NOPRINT statement is

incorrect.

Explanation: The %NOPRINT statement must be

followed, with optional intervening blanks, by a

semicolon.

IBM1142I W Syntax of the %PAGE statement is

incorrect.

Explanation: The %PAGE statement must be followed,

with optional intervening blanks, by a semicolon.

IBM1143I W Syntax of the %PRINT statement is

incorrect.

Explanation: The %PRINT statement must be

followed, with optional intervening blanks, by a

semicolon.

IBM1144I W Number of lines specified with %SKIP

must be between 0 and 999 inclusive.

Explanation: Skip amounts greater than 999 are not

supported.

 %skip(2000);

IBM1145I W Syntax of the %SKIP statement is

incorrect.

Explanation: The %SKIP statement must be followed

by a semicolon with optional intervening blanks and a

parenthesized integer.

IBM1146I W Syntax of the TEST option in the

%OPTION statement is incorrect.

Explanation: The TEST option in the %OPTION

statement must be specified without any suboptions.

IBM1147I W Syntax of the NOTEST option in the

%OPTION statement is incorrect.

Explanation: The NOTEST option in the %OPTION

statement must be specified without any suboptions.

IBM1148I W Syntax of the %PUSH statement is

incorrect.

Explanation: The %PUSH statement must be followed,

with optional intervening blanks, by a semicolon.

IBM1149I W Syntax of the %POP statement is

incorrect.

Explanation: The %POP statement must be followed,

with optional intervening blanks, by a semicolon.

IBM1150I W Syntax of the %NOTE statement is

incorrect.

Explanation: The %NOTE statement must be followed

by, in parentheses, a note and an optional return code,

and then a semicolon.

IBM1151I W FIXED BINARY precision is reduced to

maximum value.

Explanation: The maximum FIXED BIN precision

depends on the LIMITS option.

IBM1152I W FIXED DECIMAL precision is reduced

to maximum value.

Explanation: The maximum FIXED DEC precision

depends on the LIMITS option.

IBM1153I W FLOAT BINARY precision is reduced to

maximum value.

Explanation: The maximum FLOAT BIN precision is

64 on Intel, 106 on AIX and 109 on z/OS.

IBM1154I W FLOAT DECIMAL precision is reduced

to maximum value.

Explanation: The maximum FLOAT DEC precision is

18 on Intel, 32 on AIX and 33 on z/OS except for DFP

which has a maximum of 34.

IBM1155I W The aggregate aggregate-name contains

noncomputational values. Those values

will be ignored.

Explanation: Some members of an aggregate

referenced in an I/O statement are noncomputational.

The computational members will be correctly

processed, but the noncomputational ones will be

ignored.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 17

dcl 1 x,

 2 y ptr,

 3 fixed bin(31);

 put skip list(x);

IBM1156I W Arguments to MAIN procedure are not

all POINTER.

Explanation: Under SYSTEM(CICS), SYSTEM(TSO)

and SYSTEM(IMS), the arguments to the MAIN

procedure should all have type POINTER.

IBM1157I W note

Explanation: This message is used by %NOTE

statements with a return code of 4.

IBM1158I W A option is missing in the specification

of the option option. One is assumed.

Explanation: A closing quote or parenthesis is missing

in the specification of a compiler option. A quoted

string must not cross line boundaries.

IBM1159I W The string option is not recognized as a

valid option keyword and is ignored.

Explanation: An invalid compiler option has been

specified.

IBM1160I W The third argument to the MARGINS

option is not supported.

Explanation: Printer control characters are not

supported on input source records.

IBM1161I W The suboption suboption is not valid for

the option compiler option.

Explanation: A suboption of a compiler option is

incorrect. The suboption may be unknown or outside

the allowable range.

 *process flag(q) margins(1002);

IBM1162I W A required suboption is missing for the

suboption option.

Explanation: A required suboption of a compiler

option is missing.

 *process or;

IBM1163I W Required sub-fields are missing for the

option option. Default values are

assumed.

Explanation: Required suboptions of a compiler

option are missing.

 *process margins;

IBM1164I W option-name should be specified within

OPTIONS, but is accepted as is.

Explanation: The option, for example REORDER, is

accepted outside of the OPTIONS attribute, but it

should be specified within the OPTIONS attribute. This

would also conform to the ANSI standard.

IBM1165I W The OPTIONS option option-name has

been specified more than once.

Explanation: The only supported LINKAGE options

are OPTLINK and SYSTEM.

IBM1166I W option-name is not a known LINKAGE

suboption. The LINKAGE option will

be ignored.

Explanation: The only supported LINKAGE options

are OPTLINK and SYSTEM.

IBM1167I W Maximum number of %PUSH

statements exceeded. The control

statement is ignored.

Explanation: The maximum number of pending

%PUSH statements is 63.

IBM1168I W No %PUSH statements are in effect. The

%POP control statement is ignored.

Explanation: A %POP has been issued when no

%PUSH statement are pending.

IBM1169I W No precision was specified for the result

of the builtin name built-in. The

precision will be determined from the

argument.

Explanation: This message applies to the FIXED and

FLOAT built-in functions when only one argument is

given. The precision is not set to a default, but is

instead derived from the argument. For example, if x is

FLOAT BIN(21), FIXED(x) will return a FIXED BIN(21)

value.

IBM1170I W The OPTIONS attribute option-attribute

is not supported and is ignored.

Explanation: The indicated element of the OPTIONS

list is not supported.

 dcl a ext entry options(nomap);

18 PL/I Messages and Codes

IBM1171I W SELECT statement contains no WHEN

or OTHERWISE clauses.

Explanation: WHEN or OTHERWISE clauses are not

required on SELECT statements, but their absence may

indicate a coding error.

IBM1172I W A zero length string has been entered

for the option-name option. The option is

ignored.

Explanation: User-specified string has zero length.

This can occur when OR(’’) or OR(’Á’) has been

specified on the command line. In the latter case, the

single ’Á’ character has been interpreted as an escape.

IBM1173I W SELECT statement contains no WHEN

clauses.

Explanation: SELECT statements do not require

WHEN clauses, but their absence may indicate a

coding error.

IBM1174I W The reference in the from-into clause

clause may not be byte-aligned.

Explanation: The reference specified in the FROM or

INTO clause may not be byte-aligned. If the reference is

indeed not byte-aligned, unpredictable results may

occur.

IBM1175I W FIXED BINARY constant contains too

many digits. Excess nonsignificant digits

will be ignored.

Explanation: The maximum precision for FIXED

BINARY constants is specified by the FIXEDBIN

suboption of the LIMITS compiler option.

IBM1176I W FIXED DECIMAL constant contains too

many digits. Excess nonsignificant digits

will be ignored.

Explanation: The maximum precision for FIXED

DECIMAL constants is specified by the FIXEDDEC

suboption of the LIMITS compiler option.

IBM1177I W Mantissa in FLOAT BINARY constant

contains more digits than the

implementation maximum. Excess

nonsignificant digits will be ignored.

Explanation: Float binary constants are limited to 64

digits on Intel, 32 on AIX and 33 on z/OS.

IBM1178I W Mantissa in FLOAT DECIMAL constant

contains more digits than the

implementation maximum. Excess

nonsignificant digits will be ignored.

Explanation: Float decimal constants are limited to 18

digits on Intel, 106 on AIX and 109 on z/OS.

IBM1179I W FLOAT literal is too big for its implicit

precision. An appropriate HUGE value

of assumed value is assumed.

Explanation: The precision for a float literal is implied

by the the number of digits in its mantissa. For instance

1e99 is implicitly FLOAT DECIMAL(1), but the value

1e99 is larger than the largest value a FLOAT

DECIMAL(1) can hold.

IBM1180I W Argument to BUILTIN name built-in is

not byte aligned.

Explanation: This message applies to the ADDR,

CURRENTSTORAGE/SIZE and STORAGE/SIZE

built-in functions. Applying any one of these built-in

functions to a variable that is not byte-aligned may not

produce the results you expect.

IBM1181I W A WHILE or UNTIL option at the end

of a series of DO specifications applies

only to the last specification.

Explanation: In the following code snippet, the

WHILE clause applies only to the last DO specification,

that is only when I = 5;

 do i = 1, 3, 5 while(j < 5);

IBM1182I W Invocation of a NONRECURSIVE

procedure from within that procedure is

invalid. RECURSIVE attribute is

assumed.

Explanation: A procedure contains code that will

cause it to be recursively invoked, but the procedure

was not declared with RECURSIVE attribute.

 a: proc(n);

 ...

 if n > 0 then call a;

IBM1183I W condition-name condition is disabled.

Statement is ignored.

Explanation: The SIGNAL statement is ignored if the

condition it would raise is disabled. Some conditions,

like SIZE, are disabled by default.

 (nofofl): signal fixedoverflow;

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 19

IBM1184I W Source with length string-length in

INITIAL clause for variable name is

longer than target. Source will be

truncated.

Explanation: The string in the INITIAL clause

(’TooBig’ in the example below) will be trimmed to fit

(to ’TooB’).

 dcl x char(4) static init(’tooBig’);

IBM1185I W Source in RETURN statement has length

greater than that in the corresponding

RETURNS attribute.

Explanation: The string in the RETURNS clause

(’TooBig’ in the example below) will be trimmed to fit

(to ’TooB’).

 x: proc returns(char(4));

 ...

 return(’TooBig’);

IBM1186I W Source in string assignment is longer

than target.

Explanation: The source in the assignment (’TooBig’ in

the example below) will be trimmed to fit (to ’TooB’).

 dcl x char(4);

 x = ’TooBig’;

IBM1187I W Argument number argument-number in

entry reference entry name is longer than

the corresponding parameter.

Explanation: The source in the entry invocation

(’TooBig’ in the example below) will be trimmed to fit

(to ’TooB’).

 dcl x entry(char(4));

 call x(’TooBig’);

IBM1188I W Result of concatenating two strings is

too long.

Explanation: The length of the string produced by

concatenating two strings must not be greater than the

maximum allowed for the derived string type.

IBM1189I W NODESCRIPTOR attribute conflicts

with the NONCONNECTED attribute

for the parameter parameter name.

CONNECTED is assumed.

Explanation: If NODESCRIPTOR is specified (or

implied) for a procedure, aggregate parameters should

have the CONNECTED attribute. The CONNECTED

attribute can be explicitly coded, or it can be implied

by the DEFAULT(CONNECTED) compiler option.

IBM1190I W The OPTIONS option option-name

conflicts with the LANGLVL compiler

option. The option will be applied.

Explanation: The named option is not part of the PL/I

language definition as specified in the LANGLVL

compiler option.

IBM1191I W Result of FIXED BIN divide will not be

scaled.

Explanation: When dividing a FIXED BIN(p1,0) value

by a FIXED BIN(p2,0) value where 31 > p1, the result

will have the attributes FIXED BIN(p1,0). With ANSI

76, it would have the attributes FIXED BIN(31,31-p1).

IBM1192I W WHEN clauses contain duplicate values.

Explanation: In a dominated SELECT statement, if a

WHEN clause has the same value as an earlier WHEN

clause, the code for the second WHEN clause will

never be executed. This message will be produced only

if the SELECT statement is otherwise suitable for

transformation into a branch table.

IBM1193I W statement count statements in block block

name. Optimization restricted.

Explanation: Optimization will be restricted for any

procedure or begin-block. that contains more

statements than specified in the MAXSTMT option. To

avoid this, the block could be split up into more

manageable parts.

IBM1194I W More than one argument to MAIN

procedure.

Explanation: A MAIN procedure should have at most

one argument, except under SYSTEM(CICS) and

SYSTEM(IMS).

IBM1195I W Argument to MAIN procedure is not

CHARACTER VARYING.

Explanation: The argument to the MAIN procedure

should be CHARACTER VARYING, except under

SYSTEM(CICS), SYSTEM(TSO) and SYSTEM(IMS).

20 PL/I Messages and Codes

IBM1196I W AREA initialized with EMPTY -

INITIAL attribute is ignored.

Explanation: Any INITIAL attribute specified for an

AREA variable is ignored. The variable will, instead, be

initialized with the EMPTY built-in function.

IBM1197I W file-name assumed as file condition

reference.

Explanation: All file conditions should be qualified

with a file reference, but ENDFILE and ENDPAGE are

accepted without a file reference. SYSIN and SYSPRINT

are then assumed, respectively.

IBM1198I W A null argument list is assumed for

variable name.

Explanation: An ENTRY reference is used where the

result of invoking that entry is probably meant to be

used.

 dcl e1 entry returns(ptr);

 dcl q ptr based;

 e1->q = null();

 dcl e2 entry returns(bit(1));

 if e2 then ...

IBM1199I W Syntax of the %LINE directive is

incorrect.

Explanation: The %LINE directive must be followed,

with optional intervening blanks, by a parenthesis, a

line number, a comma, a file name and a closing

parenthesis.

 %line(19, test.pli);

IBM1200I W Use of DATE built-in function may

cause problems.

Explanation: The DATE built-in returns a two-digit

year. It might be better to use the DATETIME built-in

which returns a four-digit year.

IBM1201I W suboption conflicts with a previously

specified suboption for the option

compiler option.

Explanation: There is a conflict of suboptions for the

LANGLVL compiler option. The SAA2 and OS

suboptions are mutually exclusive.

 *process langlvl(saa2 os);

IBM1202I W Syntax of the %OPTION statement is

incorrect.

Explanation: The only option supported in the

%OPTION statement is the LANGLVL option.

IBM1203I W Argument to PLITEST built-in

subroutine is ignored.

Explanation: Change the invocation of PLITEST so

that no argument is passed.

IBM1204I W INTERNAL CONSTANT assumed for

initialized STATIC LABEL.

Explanation: LABEL variables require block activation

information, and hence they cannot be initialized at

compile-time. For a STATIC LABEL variable with the

INITIAL attribute, if the variable is a member of a

structure or an union, a severe message will be issued.

Otherwise, its attributes will be changed to INTERNAL

CONSTANT in order to eliminate the requirement for

block activation information. Such a variable must be

initialized with LABEL CONSTANTs from containing

blocks.

IBM1205I W Arguments of the option compiler option

must be the same length.

Explanation: If two arguments of the NAMES option

are specified, they must be the same length. The second

argument is the uppercase value of the first. If a

character in the first string does not have an uppercase

value, use the character itself as the uppercase value.

For example:

 names(’$!@’ ’$!@’)

IBM1206I W BIT operators should be applied only to

BIT operands.

Explanation: In an expression of the form x & y, x | y,

or x ^ y, x and y should both have BIT type.

IBM1207I W Operand to LENGTH built-in should

have string type.

Explanation: If the operand has a numeric type, the

result is the length that value would have after it was

converted to string. The length of a numeric type is

NOT the same as its storage requirement.

IBM1208I W INITIAL list for the array variable name

contains only one item.

Explanation: The array will be incompletely

initialized. If the named variable is part of a structure,

subsequent elements in that structure with this problem

will be flagged with message 2603. An asterisk can be

used as an initialization factor to initialize all the

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 21

elements with one value. In the example below, a(1) is

initialized with the value 13, while the elements a(2)

through a(8) are uninitialized. In contrast, all the

elements in b are initialized to 13.

 dcl a(8) fixed bin init(13);

 dcl b(8) fixed bin init((*) 13);

IBM1209I W INDEXED environment option for file

file name will be treated as

ORGANIZATION(INDEXED).

Explanation: Since ISAM is not being simulated on

the OS/2 platform, the file will be treated in a manner

similar to VSAM KSDS. The file specified in the first

declaration below would be handled in the same

manner as the file in the second declaration. Both are

treated as ORGANIZATION(INDEXED).

 dcl f1 file env(indexed);

 dcl f2 file env(organization(indexed));

IBM1210I W The field width specified in the

keyword-format item may be too small

for complete output of the data item.

Explanation: The format width is too small for output.

It may be valid if the format is being used for input.

IBM1211I W Source with length string-length is longer

than the target variable.

Explanation: The source in the assignment (’TooBig’ in

the example below) will be trimmed to fit (to ’TooB’). If

the target is a pseudovariable, message 1186 is issued

instead.

 dcl x char(4);

 x = ’TooBig’;

IBM1212I W The A format item requires an argument

when used in GET statement. An L

format item is assumed in its place.

Explanation: A width must be specified on A format

items when specified on a GET statement.

 get edit(name) (a);

IBM1213I W The procedure proc name is not

referenced.

Explanation: The named procedure is not external and

is never referenced in the compilation unit. This may

represent an error (if it was supposed to be called) or

an opportunity to eliminate some dead code.

IBM1214I W A dummy argument will be created for

argument number argument-number in

entry reference entry name.

Explanation: An argument passed BYADDR to an

entry does not match the corresponding parameter in

the entry description. The address of the argument will

not be passed to the entry. Instead, the argument will

be assigned to a temporary with attributes that do

match the parameter in the entry description, and the

address of that temporary will be passed to the entry.

This means that if the entry alters the value of this

parameter, the alteration will not be visible in the

calling routine.

 dcl e entry(fixed bin(31));

 dcl i fixed bin(15);

 call e(i);

IBM1215I W The variable variable name is declared

without any data attributes.

Explanation: It will be given the default attributes, but

this may be because of an error in the declare. For

instance, in the following example, parentheses may be

missing

 dcl a, b fixed bin;

IBM1216I W The structure member variable name is

declared without any data attributes. A

level number may be incorrect.

Explanation: It will be given the default attributes, but

this may be because of an error in the declare. For

instance, in the following example, the level number on

c and d should probably be 3.

 dcl a, b fixed bin;

 1 a,

 2 b,

 2 c,

 2 d;

IBM1217I W An unnamed structure member is

declared without any data attributes. A

level number may be incorrect.

Explanation: It will be given the default attributes, but

this may be because of an error in the declare. For

instance, in the following example, the level number on

c and d should probably be 3.

 dcl a, b fixed bin;

22 PL/I Messages and Codes

1 a,

 2 *,

 2 c,

 2 d;

IBM1218I W First argument to BUILTIN name built-in

should have string type.

Explanation: To eliminate this message, apply the

CHAR or BIT built-in function to the first argument.

 dcl i fixed bin;

 display(substr(i,4));

IBM1219I W LEAVE will exit noniterative DO-group.

Explanation: This message is not produced if the

LEAVE statement specifies a label. In the following

loop, the LEAVE statement will cause only the

immediately enclosing DO-group to be exited; the loop

will not be exited.

 do i = 1 to n;

 if a(i) > 0 then

 do;

 call f;

 leave;

 end;

 else;

 end;

IBM1220I W Result of comparison is always constant.

Explanation: This message is produced when a

variable is compared to a constant equal to the largest

or smallest value that the variable could assume. In the

following loop, the variable x can never be greater than

99, and hence the implied comparison executed each

time through the loop will always result in a ’1’b.

 do x pic’99’;

 do x = 1 to 99;

 end;

IBM1221I W Statement uses count bytes for

temporaries.

Explanation: This message is produced if a statement

uses more bytes for temporaries than allowed by the

MAXTEMP compiler option.

IBM1222I W Comparison involving 2-digit year is

problematic.

Explanation: Comparisons involving data containing

2-digit year fields may cause problems if exactly one of

the years is later than 1999.

IBM1223I W Literal in comparison interpreted with

DATE attribute.

Explanation: In a comparison, if one comparand has

the DATE attribute, the other should also. If the

non-date is a literal with a value that is valid for the

date pattern, it will be viewed as if it had the same

DATE attribute as the date comparand. So, in the

following code, ’670101’ will be interpreted as if it had

the DATE(’YYMMDD’) attribute.

 dcl x char(6) date(’YYMMDD’);

 if x > ’670101’ then ...

IBM1224I W DATE attribute ignored in comparison

with non-date literal.

Explanation: In a comparison, if one comparand has

the DATE attribute, the other should also. If the

non-date is a literal with a value that is not valid for

the date pattern, the DATE attribute will be ignored.

So, in the following code, the comparison will be

evaluated as if x did not have the DATE attribute.

 dcl x char(6) date(’YYMMDD’);

 if x > ’’ then ...

IBM1225I W DATE attribute ignored in conversion

from literal.

Explanation: If the target in an explicit or implicit

assignment has the DATE attribute, the source should

also. If it does not, the DATE attribute will be ignored.

So, in the following code, the assignment will be

performed as if x did not have the DATE attribute.

 dcl x char(6) date(’YYMMDD’);

 x = ’’;

IBM2600I W Compiler backend issued warning

messages to STDOUT.

Explanation: Look in STDOUT to see the message

issued by the compiler backend.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 23

IBM2601I W Missing character assumed before

character. DECLARE and other

nonexecutable statements should not

have labels.

Explanation: The indicated character is missing and

has been inserted by the parser in order to correct your

source.

 xx: dcl test fixed bin;

IBM2602I W Number of items in INITIAL list is

count for the array variable name which

contains array size elements.

Explanation: The array will be incompletely

initialized. If the named variable is part of a structure,

the first element in that structure with this problem will

be flagged with message 1138. This may be a

programming error (in the example below, 6 should

probably have been 7) and may cause exceptions when

the program is run.

 dcl

 1 a,

 2 b(8) fixed bin init(1, (7) 29),

 2 c(8) fixed bin init(1, (6) 29);

IBM2603I W INITIAL list for the array variable name

contains only one item.

Explanation: The array will be incompletely

initialized. If the named variable is part of a structure,

the first element in that structure with this problem will

be flagged with message 1208. An asterisk can be used

as an initialization factor to initialize all the elements

with one value. In the example below, b(1) and c(1) are

initialized with the value 13, while the elements b(2)

through b(8) and c(2) through c(8) are uninitialized. In

contrast, all the elements in d are initialized to 13.

 dcl

 1 a,

 2 b(8) fixed bin init(13),

 2 c(8) fixed bin init(13),

 2 d(8) fixed bin init((*) 13);

IBM2604I W FIXED DEC(source-precision,source-scale)

will be converted to FIXED

DEC(target-precision,target-scale).

Significant digits may be lost.

Explanation: If the source in a conversion to FIXED

DECIMAL is a FIXED DECIMAL or PICTURE variable

with a different precision and scale factor, and if the

difference between the precisions is not as large as the

the difference between the scale factors, then significant

digits may be lost. If the SIZE condition were enabled,

code would be generated to detect any such occurrence,

and this message would not be issued.

 dcl a fixed dec(04) init(1009);

 dcl b fixed dec(03);

 b = a;

IBM2605I W Invalid carriage control character. Blank

assumed.

Explanation: The specified line contains an invalid

ANS print control character. The valid characters are:

blank, 0, -, + and 1.

IBM2607I W PICTURE representing FIXED

DEC(source-precision,source-scale) will be

converted to FIXED DEC(target-
precision,target-scale). Significant digits

may be lost.

Explanation: If the source in a conversion to FIXED

DECIMAL is a PICTURE variable with a different

precision and scale factor, and if the difference between

the precisions is not as large as the the difference

between the scale factors, then significant digits may be

lost. If the SIZE condition were enabled, code would be

generated to detect any such occurrence, and this

message would not be issued.

 dcl a pic’(4)9’ init(1009);

 dcl b fixed dec(03);

 b = a;

IBM2608I W PICTURE representing FIXED

DEC(source-precision,source-scale) will be

converted to PICTURE representing

FIXED DEC(target-precision,target-scale).

Significant digits may be lost.

Explanation: If the source in a conversion to a

PICTURE is a PICTURE variable with a different

precision and scale factor, and if the difference between

the precisions is not as large as the the difference

between the scale factors, then significant digits may be

lost. If the SIZE condition were enabled, code would be

generated to detect any such occurrence, and this

message would not be issued.

 dcl a pic’(4)9’ init(1009);

 dcl b pic’(3)9’;

 b = a;

24 PL/I Messages and Codes

IBM2609I W Comment contains a semicolon on line

line-number.file-number.

Explanation: If a comment contains a semicolon, it

may indicate that there is an earlier unintentionally

unclosed comment that is accidentally commenting out

some source as in this example

 /* start of unclosed comment

 dcl b pic’(3)9’;

 /* next comment */

IBM2610I W One argument to BUILTIN name built-in

is FIXED DEC while the other is FIXED

BIN. Compiler will not interpret

precision as FIXED DEC.

Explanation: This message applies to the MULTIPLY,

DIVIDE, ADD, and SUBTRACT built-in functions: if

one argument to one of these functions is FIXED DEC

while the other is FIXED BIN, then the specified

precision will not be interpreted as a FIXED DEC

precision. This may cause improper truncation of data.

For example, the result of the following multiply will

have the attributes FIXED BIN(15), not FIXED DEC(15),

and that might cause the result to be improperly

truncated.

 dcl a fixed bin(31);

 dcl b fixed dec(15);

 b = multiply(a, 1000, 15);

IBM2611I W The binary value binary value appears in

more than one WHEN clause.

Explanation: In a dominated SELECT statement, if a

WHEN clause has the same value as an earlier WHEN

clause, the code for the second WHEN clause will

never be executed. This message will be produced only

if the SELECT statement is otherwise suitable for

transformation into a branch table.

IBM2612I W The character string character string

appears in more than one WHEN clause.

Explanation: In a dominated SELECT statement, if a

WHEN clause has the same value as an earlier WHEN

clause, the code for the second WHEN clause will

never be executed. This message will be produced only

if the SELECT statement is otherwise suitable for

transformation into a branch table.

IBM2613I W Unless it is an output-only parameter,

variable may be uninitialized when used.

Explanation: The indicated variable may be used

before it has been initialized.

IBM2614I W Both comparands are booleans.

Explanation: This message will flag statements such

as the following, where the ″equals″ is meant to be an

″and″ or ″or″.

 if (a < b) = (c < d) then

IBM2615I W DO-loop will always execute exactly

once. A semicolon after the DO may be

missing.

Explanation: DO-loops should normally be iterative,

but if the DO-loop specification consists of just one

assignment, then it will always excute once and only

once. A semicolon after the DO may be missing, as in

this example

 do

 edsaup.tprs = ads162.tprs;

 edsaup.tops = ads162.tops;

 end;

IBM2616I W Size of parameter variable will return the

currentsize value since no descriptor is

available.

Explanation: If the SIZE or STG built-in function is

applied to a CHAR(*) VARYING (or VARYINGZ)

parameter when there is no descriptor available, then

the size of the actual storage allocated to the variable

cannot be determined and only the current size can be

returned.

IBM2617I W Passing a LABEL to a non-PL/I routine

is very poor coding practice and will

cause the compiler to generate less than

optimal code.

Explanation: It is generally very unwise to pass a

label to another routine. It would be good to think

about redesigning any code doing this. The compiler

will issue this message when a LABEL is passed to an

ENTRY declared with OPTIONS(COBOL) or

OPTIONS(ASM) or OPTIONS(FORTRAN). The only

valid use of this label in the called routine would be to

pass it on to another PL/I routine.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 25

IBM2618I W The suboption suboption is not valid for

the suboption option of the option

compiler option.

Explanation: A suboption of a suboption of a compiler

option is incorrect. The suboption may be unknown or

outside the allowable range.

 *process limits(extname(2000));

IBM2619I W The include file filename contains no

cross-referenced variables.

Explanation: It may be possible to omit the

%INCLUDE of this file.

IBM2620I W Target structure contains REFER objects.

Results are undefined if the assignment

changes any REFER object.

Explanation: Changing REFER objects may not

produce the expected results. For example, in the

following example, the assignment will not change any

of the elements in the array d.

 dcl

 1 a based(p),

 2 b fixed bin(31),

 2 c fixed bin(31),

 2 d(10 refer(c)),

 3 e fixed bin(31),

 3 f fixed bin(31);

 a = ’’;

IBM2621I W ON ERROR block does not start with

ON ERROR SYSTEM. An error inside

the block may lead to an infinite loop.

Explanation: The first statement in an ON ERROR

block should usually be an ON ERROR SYSTEM

statement. This will tend to prevent an infinite loop if

there is an error in the rest of the code in the ON

ERROR block.

IBM2622I W ENTRY used to set the initial value in a

DO loop will be invoked after any TO

or BY values are set.

Explanation: If the initial value in a DO loop is set via

an ENTRY, then you may get unexpected results if that

ENTRY also changes the TO or BY value. For example,

in the first loop below, the function ″first″ should not

change the value of the variable ″last″. It would be

better to change this code into the form of the second

loop below.

 do x = first() to last;

 end;

 temp = first();

 do x = temp to last;

 end;

IBM2623I W Mixing FIXED BIN and FLOAT DEC

produces a FLOAT BIN result. Under

DFP, this will lead to poor performance.

Explanation: Under DFP, the conversion of FLOAT

DEC to FLOAT BIN requires an expensive library call

that will lead to poor performance. To avoid this, the

DECIMAL built-in function can be applied to the

FIXED BIN operand. For example, it would be better to

change the first assignment statement into the form of

the second below.

 dcl n fixed bin(31);

 dcl f float dec(16);

 f = n + f;

 f = dec(n) + f;

IBM2624I W Mixing BIT and FLOAT DEC produces a

FLOAT BIN result. Under DFP, this will

lead to poor performance.

Explanation: Under DFP, the conversion of FLOAT

DEC to FLOAT BIN requires an expensive library call

that will lead to poor performance. To avoid this, the

DECIMAL built-in function can be applied to the BIT

operand. For example, it would be better to change the

first assignment statement into the form of the second

below.

 dcl b bit(8);

 dcl f float dec(16);

 f = b + f;

 f = dec(b) + f;

IBM2625I W Mixing FLOAT BIN and FLOAT DEC

produces a FLOAT BIN result. Under

DFP, this will lead to poor performance.

Explanation: Under DFP, the conversion of FLOAT

DEC to FLOAT BIN requires an expensive library call

that will lead to poor performance.

IBM2626I W Use of SUBSTR with a third argument

equal to 0 is somewhat pointless since

the result will always be a null string.

Explanation: While technically valid, a SUBSTR

reference with a third argument that is a constant of

zero probably represents a coding error.

26 PL/I Messages and Codes

IBM2627I W No metadata will be generated for the

structure identifier since its use of REFER

is too complex.

Explanation: XMI metadata is generated for BASED

structures using REFER only if their use of REFER is

″simple″.

IBM2628I W BYVALUE parameters should ideally be

no larger than 32 bytes.

Explanation: BYVALUE parameters larger than 32

bytes require too much overhead and are bad for

performance.

IBM2629I W No debug symbol information will be

generated for identifier.

Explanation: No debug symbol information will be

generated for the named variable, and hence it cannot

be referenced when using the debugger.

IBM2630I W The result in an arithmetic operation

has the attributes FIXED

base(precision,scale-factor) which means

that its scale factor is greater than its

precision and that the operation may

lead to an overflow.

Explanation: If the scale factor for the result of an

operation exceeds the precision of the result, then

unexpected fixedoverflow exceptions may occur. This

can happen, for example, when multiplying two FIXED

DEC(15,8) variables under the LIMITS(FIXEDDEC(15))

option because the result of such a multiplication

would have the attributes FIXED DEC(15,16). To

eliminate this message, the PRECISION built-in

function could be used to reduce the scale factor of one

of the operands or the MULTIPLY built-in function

could be used to override the default attributes for the

result.

IBM2631I W One argument to BUILTIN name built-in

is FIXED DEC while the other is FLOAT

BIN. Compiler will not interpret

precision as FIXED DEC.

Explanation: This message applies to the MULTIPLY,

DIVIDE, ADD, and SUBTRACT built-in functions: if

one argument to one of these functions is FIXED DEC

while the other is FLOAT BIN, then the specified

precision will not be interpreted as a FIXED DEC

precision. This may cause improper truncation of data.

For example, the result of the following multiply will

have the attributes FLOAT BIN(15), not FIXED

DEC(15), and that might cause the result to be

improperly truncated.

 dck a float bin(31);

 dcl b fixed dec(15);

 b = multiply(a, 1000, 15);

IBM2632I W One argument to BUILTIN name built-in

is FIXED DEC while the other is FLOAT

DEC. Compiler will not interpret

precision as FIXED DEC.

Explanation: This message applies to the MULTIPLY,

DIVIDE, ADD, and SUBTRACT built-in functions: if

one argument to one of these functions is FIXED DEC

while the other is FLOAT DEC, then the specified

precision will not be interpreted as a FIXED DEC

precision. This may cause improper truncation of data.

For example, the result of the following multiply will

have the attributes FLOAT DEC(15), not FIXED

DEC(15), and that might cause the result to be

improperly truncated.

 dcl a float dec(15);

 dcl b fixed dec(15);

 b = multiply(a, 1000, 15);

IBM2633I W Given the support for addressing

arithmetic, basing a POINTER or

OFFSET on a FIXED BIN is unnecessary,

and it will also fail to work properly if

the size of a POINTER changes.

Explanation: Code using such variables will work

only as long as the size of the POINTER or OFFSET

variable remains the same as the size of the FIXED BIN

variable.

IBM2634I W Given the support for addressing

arithmetic, basing a FIXED BIN on a

POINTER or OFFSET is unnecessary,

and it will also fail to work properly if

the size of a POINTER changes.

Explanation: Code using such variables will work

only as long as the size of the POINTER or OFFSET

variable remains the same as the size of the FIXED BIN

variable.

Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799) 27

28 PL/I Messages and Codes

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599)

IBM1226I E Area extent is reduced to maximum value.

Explanation: The maximum size allowed for an AREA

variable is 16777216.

IBM1227I E keyword statement is not allowed where

an executable statement is required. A

null statement will be inserted before

the keyword statement.

Explanation: In certain contexts, for example after an

IF-THEN clause, only executable statements are

permitted. A DECLARE, DEFINE, DEFAULT or

FORMAT statement has been found in one of these

contexts. A null statement, (a statement consisting of

only a semicolon) will be inserted before the offending

statement.

IBM1228I E DEFAULT statement is not allowed

where an executable statement is

required. The DEFAULT statement will

be enrolled in the current block, and a

null statement will be inserted in its

place.

Explanation: In certain contexts, for example after an

IF-THEN clause, only executable statements are

permitted. A DEFAULT statement has been found in

one of these contexts. A null statement (a statement

consisting of only a semicolon) will be inserted in place

of the DEFAULT statement.

IBM1229I E FORMAT statement is not allowed

where an executable statement is

required. The FORMAT statement will

be enrolled in the current block, and a

null statement will be inserted in its

place.

Explanation: In certain contexts, for example after an

IF-THEN clause, only executable statements are

permitted. A FORMAT statement has been found in

one of these contexts. A null statement (a statement

consisting of only a semicolon) will be inserted in place

of the FORMAT statement.

IBM1230I E Arguments have been specified for the

variable variable name, but it is not an

entry variable.

Explanation: Argument lists are valid only for ENTRY

references.

 dcl a(15) entry returns(fixed bin(31));

 i = a(3)(4);

IBM1231I E Arguments/subscripts have been

specified for the variable variable name,

but it is neither an entry nor an array

variable.

Explanation: Argument/subscript lists are valid only

for ENTRY and array references.

 dcl a fixed bin;

 i = a(3);

IBM1232I E Extraneous comma at end of statement

ignored.

Explanation: A comma was followed by a semicolon

rather than by a valid syntactical element (such as an

identifier). The comma will be ignored in order to make

the semicolon valid. Under RULES(LAXPUNC), a

message with the same text, but lesser severity would

be issued

 dcl 1 a, 2 b fixed bin, 2 c fixed bin, ;

IBM1233I E Missing character assumed.

Explanation: The indicated character is missing, and

there are no more characters in the source. The missing

character has been inserted by the parser in order to

correct your source. Under RULES(LAXPUNC), a

message with the same text, but lesser severity would

be issued

IBM1234I E Missing character assumed before

character.

Explanation: The indicated character is missing and

has been inserted by the parser in order to correct your

source. Under RULES(LAXPUNC), a message with the

same text, but lesser severity would be issued

 display(’Program starting’ ;

IBM1235I E No data format item in format list.

© Copyright IBM Corp. 1999, 2008 29

Explanation: Data items cannot be transmitted unless

a data format item is given in the format list.

 put edit ((130)’-’) (col(1));

IBM1236I E Subscripts on keyword labels are ignored.

Explanation: A label specified on a PROCEDURE,

PACKAGE or ENTRY statement should have no

subscripts.

IBM1237I E EXTERNAL ENTRY attribute is assumed

for variable-name.

Explanation: An undeclared variable is used with an

arguments list. This should give it a contextual

declaration as BUILTIN, but its name is not that of a

built-in function.

IBM1238I E The second argument to the BUILTIN

name built-in is greater than the

precision of the result.

Explanation: The sift amount in ISLL is should not be

greater than the precision of the result.

 i = isll(n, 221);

IBM1239I E The attribute attribute is not supported

and is ignored.

Explanation: The named attribute is either not part of

the SAA PL/I language and is not supported on this

platform.

 dcl f file transient;

IBM1240I E The attribute attribute is invalid in a

RETURNS descriptor.

Explanation: The RETURNS descriptor may not

specify a structure, union or array.

 dcl a entry returns(1 union, 2 ptr, 2 ptr);

IBM1241I E Only ’=’ and ’^=’ are allowed as

operators in comparisons involving

complex numbers.

Explanation: Equal and not equal are defined for

complex variables, but you have attempted to relate

them in some other way.

IBM1242I E Only ’=’ and ’^=’ are allowed as

operators in comparisons involving

program control data.

Explanation: Other relationships between program

control data are not defined. Perhaps a variable was

misspelled.

IBM1243I E REGIONAL(integer specification (2 or 3))

ENVIRONMENT option is not

supported.

Explanation: REGIONAL(2) and REGIONAL(3)

ENVIRONMENT options are syntax-checked during

compile-time but are not supported during run-time.

IBM1244I E The variable specified as the option

value in an ENVIRONMENT option

must be a STATIC scalar with the

attributes REAL FIXED BIN(31,0).

Explanation: This applies to the KEYLENGTH,

KEYLOC and RECSIZE suboptions.

IBM1245I E The variable specified as the option

value in an ENVIRONMENT option

must be a STATIC scalar with the

attribute CHARACTER.

Explanation: This applies to the PASSWORD

suboption.

IBM1246I E Argument to BUILTIN name built-in

should be CONNECTED.

Explanation: This message applies, for example, to the

ADDR built-in function. The value returned by the

ADDR function is the address of the first byte of its

argument. If you use this pointer to refer to a based

variable, the variable may be mapped over storage

occupied by some other variable, rather than the

storage occupied by the argument.

IBM1248I E Argument to BUILTIN name built-in

should have arithmetic type.

Explanation: The argument to the named built-in

function should have arithmetic type. The required

implicit conversion will be performed, but this may

indicate a programming error.

IBM1249I E Argument to BUILTIN name built-in

should have CHARACTER type.

Explanation: The argument to the named built-in

function should have CHARACTER type. The required

implicit conversion will be performed, but this may

indicate a programming error.

30 PL/I Messages and Codes

IBM1272I E Argument number argument number to

BUILTIN name built-in is negative. It

will be changed to 0.

Explanation: The second argument to built-in

functions such as COPY and REPEAT must be

nonnegative.

 x = copy(y, -1);

IBM1273I E Third argument to BUILTIN name

built-in is negative. It will be changed

to 0.

Explanation: The third argument to built-in functions

such as COMPARE, PLIFILL, and PLIMOVE must be

nonnegative.

 call plimove(a, b, -1);

IBM1274I E RULES(NOLAXIF) requires BIT(1)

expressions in IF, WHILE, etc.

Explanation: Expressions in IF, WHILE, UNTIL and

undominated WHEN clauses should have the attributes

BIT(1) NONVARYING. If not, the expression should be

compared to an appropriate null value. This message

will not be issued if the RULES(LAXIF) option is

specified.

 dcl x bit(8) aligned;

 ...

 if x then ...

IBM1281I E OPTIONS(RETCODE) on ATTACH

reference is invalid and will be ignored.

Explanation: OPTIONS(RETCODE) is not supported

on ATTACH references.

IBM1293I E WIDECHAR extent is reduced to

maximum value.

Explanation: The maximum length allowed for a

WIDECHAR variable is 16383.

IBM1294I E BIT extent is reduced to maximum value.

Explanation: The maximum length allowed for a BIT

variable is 32767.

IBM1295I E Sole bound specified is less than 1. An

upper bound of 1 is assumed.

Explanation: The default lower bound is 1, but the

upper bound must be greater than the lower bound.

 dcl x(-5) fixed bin;

IBM1296I E The BYADDR option conflicts with the

SYSTEM option.

Explanation: The arguments passed to the MAIN

procedure when SYSTEM(IMS) or SYSTEM(CICS) is in

effect should not have the BYADDR attribute.

 *process system(ims);

 a: proc(x);

 dcl x ptr byaddr;

IBM1297I E Source and target in BY NAME

assignment have no matching base

identifiers.

Explanation: In a BY NAME, the source and target

structures should have at least one matching base

element identifier.

 dcl 1 a, 2 b, 2 c, 2 d;

 dcl 1 w, 2 x, 2 y, 2 z;

 a = w, by name;

IBM1298I E Characters in B3 literals must be 0-7.

Explanation: In a B3 literal, each character must be

either 0-7.

IBM1299I E CHARACTER extent is reduced to

maximum value.

Explanation: The maximum length allowed for a

CHARACTER variable is 32767.

IBM1300I E variable name is contextually declared as

attribute.

Explanation: This is an E-level message because

RULES(NOLAXDCL) has been specified.

IBM1301I E A DECIMAL exponent is required.

Explanation: An E in a FLOAT constant must be

followed by at least one decimal digit (optionally

preceded by a sign).

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 31

IBM1302I E The limit on the number of DEFAULT

predicates in a block has already been

reached. This and subsequent DEFAULT

predicates in this block will be ignored.

Explanation: Each block should contain no more than

31 DEFAULT predicates.

IBM1303I E A second argument to the BUILTIN name

built-in must be supplied for arrays

with more than one dimension. A value

of 1 is assumed.

Explanation: The LBOUND, HBOUND, and

DIMENSION built-in functions require two arguments

when applied to arrays having more than one

dimension.

 dcl a(5,10) fixed bin;

 do i = 1 to lbound(a);

IBM1304I E Second argument to BUILTIN name

built-in is not positive. A value of 1 is

assumed.

Explanation: The DIMENSION, HBOUND and

LBOUND built-in functions require that the second

argument be positive.

IBM1305I E Second argument to BUILTIN name

built-in is greater than the number of

dimensions for the first argument. A

value of dimension count is assumed.

Explanation: The second argument to the LBOUND,

HBOUND, and DIMENSION built-in functions must be

no greater than the number of dimensions of their

array arguments.

 dcl a(5,10) fixed bin;

 do i = 1 to lbound(a,3);

IBM1306I E Repeated declaration of identifier is

invalid and will be ignored.

Explanation: Level 1 variable names must not be

repeated in the same block.

 dcl a fixed bin, a float;

IBM1307I E Duplicate specification of arithmetic

precision. Subsequent specification

ignored.

Explanation: The precision attribute must be specified

only once in a declare.

 dcl a fixed(15) bin(31);

IBM1308I E Repeated declaration of identifier is

invalid. The name will be replaced by

an asterisk.

Explanation: The variable names at any given sublevel

within a structure or union must be unique.

 dcl 1 a, 2 b fixed, 2 b float;

IBM1309I E Duplicate specification of attribute.

Subsequent specification ignored.

Explanation: Attributes like INITIAL must not be

repeated for an element of a DECLARE statement.

 dcl a fixed init(0) bin init(2);

IBM1310I E The attribute character conflicts with

previous attributes and is ignored.

Explanation: Attributes must be consistent.

 dcl a fixed real float;

IBM1311I E EXTERNAL name contains no

non-blank characters and is ignored.

Explanation: The external name should contain some

nonblank characters.

 dcl x external(’ ’);

IBM1312I E WX literals should contain a multiple of

4 hex digits.

Explanation: WX literals must represent unicode

strings and hence must contain a multiple of 4 hex

digits.

 x = ’00’wx;

32 PL/I Messages and Codes

IBM1314I E ELSE clause outside of an open

IF-THEN statement is ignored.

Explanation: ELSE clauses are valid immediately after

an IF-THEN statement.

 do; if a > b then; end; else a = 0;

IBM1315I E END label matches a label on an open

group, but that group label is

subscripted.

Explanation: END statements for groups with a

subscripted label must have labels that are also

subscripted.

 a(1): do;

 ...

 end a;

IBM1316I E END label is not a label on any open

group.

Explanation: A Label on END statement must match a

LABEL on an open BEGIN, DO, PACKAGE,

PROCEDURE, or SELECT statement.

 a: do;

 ...

 end b;

IBM1317I E An END statement may be missing after

an OTHERWISE unit. One will be

inserted.

Explanation: After an OTHERWISE unit in a SELECT

statement, only an END statement is valid.

 select;

 when (...)

 do;

 end;

 otherwise

 do;

 end;

 display(....);

IBM1318I E The ENVIRONMENT option option-name

conflicts with preceding

ENVIRONMENT options. This option

will be ignored.

Explanation: There was a conflict detected in the

ENVIRONMENT options specification. In the example

ENV(CONSECUTIVE INDEXED), the INDEXED option

conflicts with the CONSECUTIVE option.

IBM1319I E STRINGSIZE condition raised while

evaluating expression. Result is

truncated.

Explanation: During the conversion of a user

expression during the compilation, the target string was

found to be shorter than the source, thus causing the

STRINGSIZE condition to be raised.

IBM1320I E STRINGRANGE condition raised while

evaluating expression. Arguments are

adjusted to fit.

Explanation: If all the arguments in a SUBSTR

reference are constants or restricted expressions, the

reference will be evaluated at compile- time and the

STRINGRANGE condition will occur if the arguments

do not comply with the rules described for the SUBSTR

built-in function.

 a = substr(’abcdef’, 5, 4);

IBM1321I E LEAVE/ITERATE label matches a label

on an open DO group, but that DO

group label is subscripted.

Explanation: LEAVE/ITERATE statements for groups

with a subscripted label must have labels that are also

subscripted.

 a(1): do;

 ...

 leave a;

IBM1322I E LEAVE/ITERATE label is not a label on

any open DO group in its containing

block.

Explanation: LEAVE/ITERATE must specify a label on

an open DO loop in the same block as the

LEAVE/ITERATE statement.

 a: do loop;

 begin;

 leave a;

IBM1323I E ITERATE/LEAVE statement is invalid

outside an open DO statement. The

statement will be ignored.

Explanation: ITERATE/LEAVE statements are valid

only inside DO groups.

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 33

a: begin;

 ...

 leave a;

 ...

 end a;

IBM1324I E The name name occurs more than once

in the EXPORTS clause.

Explanation: Names in the EXPORTS clause of a

package statement must be unique.

 a: package exports(a1, a2, a1);

IBM1325I E The name name occurs in the EXPORTS

clause, but is not the name of any

level-1 procedure.

Explanation: Each name in the EXPORTS clause of a

package statement must be the name of some level-1

procedure in that package.

 a: package exports(a1, a2, a3);

IBM1326I E Variables declared without a name must

be structure members or followed by a

substructure list.

Explanation: An asterisk may be used only for

structure or union names, or for members of structures

or unions. An asterisk may not be used for a level-1

structure name that specifies the LIKE attribute.

 dcl * char(20) static init(’who can use me’);

IBM1327I E The CHARACTER VARYING parameter

to MAIN should be ASCII with the

attribute NATIVE.

Explanation: If the parameter is EBCDIC or has the

attribute NONNATIVE, unpredictable results can occur.

IBM1328I E The CHARACTER VARYING parameter

to MAIN should be EBCDIC with the

attribute BIGENDIAN.

Explanation: If the parameter is ASCII or has the

attribute LITTLEENDIAN, unpredictable results can

occur. This message applies only to SYSTEM(MVS) etc.

IBM1330I E The I in an iSUB token must be bigger

than zero. A value of 1 is assumed.

Explanation: The I in an iSUB token must represent a

valid dimension number.

 dcl b(8) fixed bin def(0sub,1);

IBM1331I E The I in an iSUB token must have no

more than 2 digits. A value of 1 is

assumed.

Explanation: The I in an iSUB token must have only 1

or 2 digits.

 dcl b(8) fixed bin def(001sub,1);

IBM1332I E The format-item format item requires an

argument when used in GET statement.

A value of 1 is assumed.

Explanation: A width must be specified on A, B, and

G format items when specified on a GET statement.

 get edit(name) (a);

IBM1333I E Non-asterisk array bounds are not

permitted in GENERIC descriptions.

Explanation: All array bounds in generic descriptions

must be asterisks.

 dcl x generic (e1 when((10) fixed), ...

IBM1334I E String lengths and area sizes are not

permitted in GENERIC descriptions.

Explanation: All string lengths and area sizes in

generic descriptions must be asterisks.

 dcl x generic (e1 when(char(10)), ...

IBM1335I E Entry description lists are not permitted

in GENERIC descriptions.

Explanation: Any ENTRY attribute in a generic

description list must not be qualified with an entry

description list.

 dcl x generic (e1 when(entry(ptr)), ...

34 PL/I Messages and Codes

IBM1336I E GRAPHIC extent is reduced to maximum

value.

Explanation: The maximum length allowed for a

GRAPHIC variable is 16383.

IBM1337I E GX literals should contain a multiple of

4 hex digits.

Explanation: GX literals must represent graphic

strings and hence must contain a multiple of 4 hex

digits.

 x = ’00’gx;

IBM1338I E Upper bound is less than lower bound.

Bounds will be reversed.

Explanation: A variable has been declared with an

upper bound that is less than its lower bound. The

upper and lower bounds will be swapped in order to

correct this. For example, DECLARE x(3:1) will be

changed to DECLARE x(1:3).

IBM1339I E Identifier is too long. It will be

collapsed to identifier.

Explanation: The maximum length of an identifier is

set by the NAME suboption of the LIMITS compiler

option.

IBM1340I E Argument number argument-number in

ENTRY reference ENTRY name contains

BIT data. NOMAP is assumed.

Explanation: An argument containing BIT data has

been found in a call to a COBOL routine. Mapping of

such structures between PL/I and COBOL is not

supported.

 dcl f ext entry options(cobol);

 dcl 1 a, 2 b bit(8), 2 c bit(8);

 call f(a);

IBM1341I E Argument number argument-number in

ENTRY reference ENTRY name is or

contains an UNION. NOMAP is

assumed.

Explanation: An argument containing UNION data

has been found in a call to a COBOL routine. Mapping

of such structures between PL/I and COBOL is not

supported.

 dcl f ext entry options(cobol);

 dcl 1 a union, 2 b char(4), 2 c fixed bin(31);

 call f(a);

IBM1342I E Argument number argument-number in

ENTRY reference ENTRY name contains

non-constant extents. NOMAP is

assumed.

Explanation: An argument containing non-constant

extents has been found in a call to a COBOL routine.

Mapping of such structures between PL/I and COBOL

is not supported.

 dcl f ext entry options(cobol);

 dcl n static fixed bin init(17);

 dcl 1 a, 2 b char(n), 2 c fixed bin(31);

 call f(a);

IBM1343I E nomap-suboption is invalid as a suboption

of option.

Explanation: The suboption should be specified as

ARGn where ″n″ is an integer greater than 0.

 dcl f ext entry options(cobol nomap(arg0));

IBM1344I E NOMAP specifications are valid only

for ILC routines.

Explanation: NOMAP, NOMAPIN and NOMAPOUT

are valid only for COBOL, FORTRAN and ASM

Procedures and Entrys.

IBM1345I E Initial level number in a structure is not

1.

Explanation: The level-1 DECLARE statement may be

missing.

 dcl

 2 a,

 3 b,

 3 c,

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 35

IBM1346I E INIT expression should be enclosed in

parentheses.

Explanation: This is required to avoid ambiguities. For

example, it is unclear whether all of the elements

should be initialized with the value 4 or if the first

element should be initialized with the value 9.

 dcl a(5) fixed bin init((5)+4);

IBM1347I E B assumed to complete iSUB.

Explanation: There is no language element of the form

1su.

 dcl a(10) def b(1su, 1sub);

IBM1348I E Digit in BINARY constant is not zero or

one.

Explanation: In a BINARY constant, each digit must

be a zero or one.

IBM1349I E Characters in BIT literals must be 0 or 1.

Explanation: In a BIT literal, each character must be

either zero or one.

IBM1350I E Character with decimal value n does not

belong to the PL/I character set. It will

be ignored.

Explanation: The indicated character is not part of the

PL/I character set. This can occur if a program

containing NOT or OR symbols is ported from another

machine and those symbols are translated to a

character that is not part of the PL/I character set.

Using the NOT and OR compiler options can help

avoid this problem.

IBM1351I E Characters in hex literals must be 0-9 or

A-F.

Explanation: In a hex literal, each character must be

either 0-9 or A-F.

IBM1352I E The statement element character is

invalid. The statement will be ignored.

Explanation: The statement entered could not be

parsed because the specified element is invalid.

IBM1353I E Use of underscore as initial character in

an identifier accepted although invalid

under LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), identifiers must

start with an alphabetic character or with one of the

extralingual characters. They may not start with an

underscore. Under LANGLVL(SAA2), identifiers may

start with an underscore, although names starting with

_IBM are reserved for use by IBM.

IBM1354I E Multiple argument lists are valid only

with the last identifier in a reference.

Explanation: A reference of the form x(1)(2).y.z is

invalid.

IBM1355I E Empty argument lists are valid only

with the last identifier in a reference.

Explanation: A reference of the form x().y.z is invalid.

IBM1356I E Character with decimal value n does not

belong to the PL/I character set. It is

assumed to be an OR symbol.

Explanation: The indicated character is not part of the

PL/I character set, but was immediately followed by

the same character. This can occur if a program

containing an OR symbol is ported from another

machine and this symbol is translated to a character

that is not part of the PL/I character set. Using the OR

compiler option can help avoid this problem.

IBM1357I E Character with decimal value n does not

belong to the PL/I character set. It is

assumed to be a NOT symbol.

Explanation: The indicated character is not part of the

PL/I character set, but was immediately followed by an

=, < or > symbol. This can occur if a program

containing a NOT symbol is ported from another

machine and this symbol is translated to a character

that is not part of the PL/I character set. Using the

NOT compiler option can help avoid this problem.

IBM1358I E The scale factor specified in BUILTIN

name built-in with a floating-point

argument must be positive. It will be

changed to 1.

Explanation: This applies to the ROUND built-in

function. The non-positive value will be changed to 1.

 dcl x float bin(53);

 x = round(x, -1);

36 PL/I Messages and Codes

IBM1359I E Names in RANGE(identifier:identifier) are

not in ascending order. Order is

reversed.

Explanation: The names must be in ascending order.

 default range(h : a) fixed bin;

IBM1360I E The name identifier has already been

defined as a FORMAT constant.

Explanation: The name of a FORMAT constant cannot

be used as the name of a LABEL constant as well.

 f(1): format(a, x(2), a);

 f(2): ;

IBM1361I E The name identifier has already been

defined as a LABEL constant.

Explanation: The name of a LABEL constant cannot be

also used as the name of a FORMAT constant.

 f(1): ;

 f(2): format(a, x(2), a);

IBM1362I E The label label-name has already been

declared. The explicit declaration of the

label will not be accepted.

Explanation: Declarations for label constant arrays are

not permitted.

 dcl a(10) label variable;

 a(1): ...

 a(2): ...

IBM1363I E Structure level greater than 255

specified. It will be replaced by 255.

Explanation: The maximum structure level supported

is 255.

 dcl

 1 a,

 256 b,

 2 c,

IBM1364I E Elements with level numbers greater

than 1 follow an element without a level

number. A level number of 1 is

assumed.

Explanation: A structure level is probably missing.

 dcl

 a,

 2 b,

 2 c,

IBM1365I E Statement type resolution requires too

many lexical units to be examined. The

statement will be ignored.

Explanation: To determine if a statement is an

assignment or another PL/I statement, many elements

of the statement may need to be examined. If too many

have to be examined, the compiler will flag the

statement as in error. For instance, the following

statement could be a DECLARE until the equal sign is

encountered by the lexer.

 dcl (a, b, c) = d;

IBM1366I E Level number following LIKE

specification is greater than than the

level number for the LIKE specification.

LIKE attribute will be ignored.

Explanation: LIKE cannot be specified on a parent

structure or union.

 dcl

 1 a like x,

 2 b,

 2 c,

IBM1367I E Statements inside a SELECT must be

preceded by a WHEN or an

OTHERWISE clause.

Explanation: A WHEN or OTHERWISE may be

missing.

 select;

 i = i + 1;

 when (a > 0)

 ...

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 37

IBM1368I E The attribute character is invalid if it is

not followed by an element with a

greater logical level.

Explanation: The named attribute is valid only on

parent structures.

 dcl

 1 a,

 2 b union,

 2 c1 fixed bin(31),

 2 c2 float bin(21),

 ...

IBM1369I E MAIN has already been specified in the

PACKAGE.

Explanation: OPTIONS(MAIN) may be specified for

only one PROCEDURE in a PACKAGE. All but the first

specification will be ignored.

IBM1370I E Extent expression is negative. It will be

replaced by the constant 1.

Explanation: Extents must be positive.

 dcl x char(-10);

IBM1371I E Structure element identifier is not dot

qualified.

Explanation: Under the option

RULES(NOLAXQUAL), all structure elements should

be qualified with the name of at least one of their

parents.

IBM1372I E EXTERNAL specified on internal entry

point.

Explanation: The EXTERNAL attribute is valid only

on external procedures and entrys: for example, in a

non-package, only on the outermost procedure and

entry statements contained in it, and in a package, only

on the procedures and entrys listed in the EXPORTS

clause of the PACKAGE statement.

 a: proc;

 b: proc ext(’_B’);

IBM1373I E Variable variable name is implicitly

declared.

Explanation: Under the RULES(NOLAXDCL) option,

all variables must be declared except for contextual

declarations of built-in functions, SYSPRINT and

SYSIN.

IBM1374I E Contextual attributes conflicting with

PARAMETER will not be applied to

variable name.

Explanation: Only those contextual attributes that can

be applied to a parameter will be applied. For example,

CONSTANT and EXTERNAL, which apply to

contextual file declarations, will not be applied to file

parameters.

 a: proc(f);

 open file(f);

IBM1375I E The DEFINED variable variable name

does not fit into its base variable.

Explanation: The number of bits, characters or

graphics needed for a DEFINED variable must be no

more than in the base variable.

 dcl a char(10);

 dcl b char(5) defined (a) pos(8);

IBM1376I E Factoring of level numbers into

declaration lists containing level

numbers is invalid. The level numbers

in the declaration list will be ignored.

Explanation: Only attributes can be factored into

declaration lists.

 dcl 1 a, 2 (b, 3 c, 3 d) fixed;

IBM1377I E A scale factor has been specified as an

argument to the BUILTIN name built-in,

but the result of that function has type

FLOAT. The scale factor will be ignored.

Explanation: Scale factors are valid only for FIXED

values.

 x = binary(1e0,4,2);

38 PL/I Messages and Codes

IBM1378I E An arguments list or subscripts list has

been provided for a GENERIC entry

reference. It will be ignored.

Explanation: GENERIC entry references are not

allowed to contain an arguments or subscripts list.

 dcl t generic(sub1(10) when((*)),

 sub2 when((*,*)));

IBM1379I E Locator qualifier for GENERIC reference

is ignored.

Explanation: GENERIC references cannot be

locator-qualified.

 dcl x generic (...);

 call p->x;

IBM1380I E Target structure in assignment contains

no elements with the ASSIGNABLE

attribute. No assignments will be

generated.

Explanation: In an assignment to a structure, some

element of the structure must have the assignable

attribute.

 dcl

 1 a based,

 2 nonasgn fixed bin,

 2 nonasgn fixed bin;

 p->a = 0;

IBM1381I E DEFINED base for a BIT structure

should be aligned.

Explanation: If a BIT structure (or union) is defined

on a variable that is not aligned on a byte boundary,

unpredictable results may occur. This is especially true

if a substructure of the DEFINED variable is passed to

another routine.

IBM1382I E INITIAL attribute is invalid for STATIC

FORMAT variables. Storage class is

changed to AUTOMATIC.

Explanation: FORMAT variables require block

activation information; they cannot be initialized at

compile-time. If the variable were a member of a

structure, the storage class would not be changed to

AUTOMATIC, and a severe message would be issued

instead.

IBM1383I E Labels on keyword statements are invalid

and ignored.

Explanation: Labels are not permitted on DECLARE,

DEFAULT, and DEFINE statements or on WHEN and

OTHERWISE clauses.

IBM1384I E message

Explanation: This message is used to report back end

error messages.

IBM1385I E Invalid DEFINED - string overlay

defining attempted.

Explanation: The base variable in the DEFINED

attribute must consist of UNALIGNED, NONVARYING

string variables of the same string type as the

DEFINED variable.

IBM1386I E DEFINED base for a BIT variable

should not be subscripted.

Explanation: When one bit variable is defined on a

second (the base), the base may be an array, but it must

not be subscripted.

 dcl a(20) bit(8) unaligned;

 dcl b bit(8) defined(a(3));

IBM1387I E The NODESCRIPTOR attribute is

invalid when any parameters have *

extents. The NODESCRIPTOR attribute

will be ignored.

Explanation: A parameter can have * extents only if a

descriptor is also passed. The NODESCRIPTOR

attribute will be ignored, and descriptors will be

assumed to have been passed for all array, structure

and string arguments.

 a: proc(x) options(nodescriptor);

 dcl x char(*);

IBM1388I E The NODESCRIPTOR attribute is

invalid when any parameters have the

NONCONNECTED attribute.

Explanation: A parameter can have the

NONCONNECTED attribute only if a descriptor is also

passed.

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 39

a: proc(x) options(nodescriptor);

 dcl x(20) fixed bin nonconnected;

IBM1389I E The identifier identifier is not the name

of a built-in function. The BUILTIN

attribute will be ignored.

Explanation: The BUILTIN attribute can be applied

only to identifiers that are the names of built-in

functions or subroutines.

IBM1390I E note

Explanation: This message is used by %NOTE

statements with a return code of 8.

IBM1391I E End-of-source has been encountered

after an unmatched comment marker.

Explanation: An end-of-comment marker is probably

missing.

IBM1392I E End-of-source has been encountered

after an unmatched quote.

Explanation: A closing quote is probably missing.

IBM1393I E Item in OPTIONS list conflicts with

other attributes in the declaration.

option-name is ignored.

Explanation: The indicated element of the options list

is invalid.

 dcl a file options(assembler);

IBM1394I E Item in OPTIONS list is invalid for

BEGIN blocks. option-name is ignored.

Explanation: The indicated element of the options list

is invalid for BEGIN blocks (although it may be valid

for PROCEDUREs).

 begin options(assembler);

IBM1395I E Item in OPTIONS list is invalid for

PACKAGEs. option-name is ignored.

Explanation: The indicated element of the options list

is invalid for PACKAGEs (although it may be valid for

PROCEDUREs).

 a: package exports(*) options(assembler);

IBM1396I E Item in OPTIONS list is invalid for

PROCEDUREs. option-name is ignored.

Explanation: The indicated element of the options list

is invalid for PROCEDUREs (although it may be valid

for ENTRYs).

 a: procedure options(inter);

IBM1397I E Item in OPTIONS list is invalid for

nested PROCEDUREs. option-name is

ignored.

Explanation: The indicated element of the options list

is invalid for nested PROCEDUREs (although it may be

valid for PROCEDUREs).

 a: proc;

 b: proc options(main);

IBM1398I E Invalid item in OPTIONS list.

option-name is ignored.

Explanation: The indicated element of the options list

is not a supported option in any statement or

declaration.

 a: proc options(unknown);

IBM1399I E Item in OPTIONS list is invalid for

ENTRY statements. option-name is

ignored.

Explanation: The indicated element of the options list

is invalid for ENTRY statements (although it may be

valid for PROCEDUREs).

 a: entry options(chargraphic);

IBM1400I E Item in OPTIONS list conflicts with

preceding items. option-name is ignored.

Explanation: The elements of the options list must be

consistent, unlike in the example where BYVALUE and

BYADDR conflict.

40 PL/I Messages and Codes

a: proc options(byvalue byaddr);

IBM1401I E Parameter attributes have been specified

for a variable that is not a parameter.

The parameter attributes are ignored.

Explanation: Parameter attributes, such as BYVALUE

or CONNECTED, may be specified only for

parameters.

 a: proc;

 dcl x byvalue ptr;

IBM1402I E Constant in POSITION attribute is less

than 1.

Explanation: The POSITION attribute must specify a

positive value.

 dcl a def b pos(-10);

IBM1403I E The end of the source was reached

before the logical end of the program.

Null statements and END statements

will be inserted as necessary to

complete the program.

Explanation: The source should contain END

statements for all PACKAGEs, PROCEDUREs, BEGIN

blocks, DO groups, and SELECT statements, as well as

statements for all IF-THEN and ELSE clauses.

IBM1404I E The procedure name proc-name has

already been declared. The explicit

declaration of the procedure name will

not be accepted.

Explanation: Declarations for internal procedures are

not permitted.

 a: proc;

 dcl b entry options(byvalue);

 b: proc;

IBM1405I E Only one description is allowed in a

returns descriptor.

Explanation: A function can return only one value.

 dcl b entry returns(ptr, ptr);

IBM1406I E The product of the repetition factor

repetition-factor and the length of the

constant string to which it is applied is

greater than the maximum length

allowed for a constant. The repetition

factor will be ignored.

Explanation: The string represented by a repetition

factor applied to another string must conform to the

same limits imposed on strings without repetition

factors.

 a = (32767) ’abc’;

IBM1407I E Scale factor is bigger than 127. It will be

replaced by 127.

Explanation: Scale factors must lie between -128 and

127 inclusive.

IBM1408I E Scale factor is less than -128. It will be

replaced by -128.

Explanation: Scale factors must lie between -128 and

127 inclusive.

IBM1409I E A SELECT statement may be missing. A

SELECT statement, without an

expression, will be inserted.

Explanation: A WHEN or OTHERWISE clause has

been found outside of a SELECT statement.

IBM1410I E Semicolon inserted after ELSE keyword.

Explanation: An END statement enclosing a statement

such as DO or SELECT has been found before the

statement required after ELSE.

 do;

 if a > b then

 ...

 else

 end;

IBM1411I E Semicolon inserted after ON clause.

Explanation: An END statement enclosing a statement

such as DO or SELECT has been found before the

statement required after ON condition.

 do;

 ...

 on zdiv

 end;

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 41

IBM1412I E Semicolon inserted after OTHERWISE

keyword.

Explanation: An END statement may be misplaced or

a semicolon may be missing.

IBM1413I E Semicolon inserted after THEN

keyword.

Explanation: An END statement may be misplaced or

a semicolon may be missing.

IBM1414I E Semicolon inserted after WHEN clause.

Explanation: An END statement may be misplaced or

a semicolon may be missing.

IBM1415I E Source file does not end with the logical

end of the program.

Explanation: The source file contains statements after

the END statement that closed the first PACKAGE or

PROCEDURE. These statements will be ignored, but

their presence may indicate a programming error.

IBM1416I E Subscripts have been specified for the

variable variable name, but it is not an

array variable.

Explanation: Subscripts can be specified only for

elements of an array.

IBM1417I E Second argument in SUBSTR reference

is less than 1. It will be replaced by 1.

Explanation: Otherwise the STRINGRANGE condition

would be raised.

IBM1418I E Second argument in SUBSTR reference

is too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition

would be raised.

IBM1419I E Third argument in SUBSTR reference is

less than 0. It will be replaced by 0.

Explanation: Otherwise the STRINGRANGE condition

would be raised.

IBM1420I E The factor in K/M constant is too large

and is replaced by maximum factor.

Explanation: The maximum K constant is 2097151K,

and the maximum M constant is 2047M.

IBM1421I E More than 15 dimensions have been

specified. Excess will be ignored.

Explanation: The maximum number of dimensions

allowed for a variable, including all inherited

dimensions, is 15.

IBM1422I E Maximum of 500 LIKE attributes per

block exceeded.

Explanation: A block should contain no more than 500

LIKE references. Under LANGLVL(SAA2), there is no

limit.

IBM1423I E UNALIGNED attribute conflicts with

AREA attribute.

Explanation: All AREA variables must be ALIGNED.

IBM1424I E End of comment marker found when

there are no open comments. Marker

will be ignored.

Explanation: An */ was found when there was no

open comment.

IBM1425I E There is no compiler directive directive.

Input up to the next semicolon will be

ignored.

Explanation: See the :cit.Language Reference

Manual:ecit. for the list of supported compiler

directives.

IBM1426I E Structure level of 0 replaced by 1.

Explanation: Structure level numbers must be

positive.

IBM1427I E Numeric precision of 0 replaced by 1.

Explanation: Numeric precisions must be positive.

IBM1428I E X literals should contain a multiple of 2

hex digits.

Explanation: An X literal may not contain an odd

number of digits.

IBM1429I E INITIAL attribute for REFER object

variable name is invalid.

Explanation: In DCL 1 a BASED, 2 b FIXED BIN

INIT(3), 2 c(n REFER(b)), the initial clause for ’b’ is

invalid and will be ignored.

42 PL/I Messages and Codes

IBM1430I E UNSIGNED attribute for type type type

type name conflicts with negative

INITIAL values and is ignored.

Explanation: If an ORDINAL type is declared with the

UNSIGNED attribute, any INITIAL values specified

must be nonnegative.

IBM1431I E PRECISION specified for type type type

type name is too small to cover its

INITIAL values and is adjusted to fit.

Explanation: An ORDINAL type must have a

precision larger enough to cover the range of values

defined for it.

 define ordinal

 colors

 (red init(0),

 orange init(256)

 yellow init(512)) unsigned prec(8);

IBM1432I E The type type type type name is already

defined. The redefinition is ignored.

Explanation: An ORDINAL type may be defined only

once in any block.

IBM1433I E The name name occurs more than once

in the RESERVES clause.

Explanation: Names in the RESERVES clause of a

package statement must be unique.

 a: package reserves(a1, a2, a1);

IBM1434I E The name name occurs in the RESERVES

clause, but is not the name of any

level-1 STATIC EXTERNAL variable.

Explanation: Each name in the RESERVES clause of a

package statement must be the name of some level-1

static external variable in that package.

 a: package reserves(a1, a2, a3);

IBM1435I E A precision value less than 1 has been

specified as an argument to the BUILTIN

name built-in. It will be replaced by 15.

Explanation: Precision values must be positive.

 middle = divide(todo, 2, 0);

IBM1436I E The scale factor specified as an

argument to the BUILTIN name built-in

is out of the valid range. It will be

replaced by the nearest valid value.

Explanation: Scale factors must be between -128 and

127 inclusive.

 f = fixed(i, 15, 130);

IBM1437I E The second argument to the BUILTIN

name built-in is greater than the

maximum FIXED BINARY precision. It

will be replaced by the maximum value.

Explanation: The maximum FIXED BINARY precision

supported allowed depends on the FIXEDBIN

suboption of the LIMITS option.

 i = signed(n, 63);

IBM1438I E Excess arguments for ENTRY ENTRY

name ignored.

Explanation: More arguments were specified in an

ENTRY reference than were defined as parameters in

that ENTRY’s declaration.

 dcl e entry(fixed bin);

 call e(1, 2);

IBM1439I E Excess arguments for BUILTIN name

built-in ignored.

Explanation: More arguments were specified for the

indicated built-in function than are supported by that

built-in function.

 i = acos(j, k);

IBM1441I E ENTRY/RETURNS description lists for

comparands do not match.

Explanation: In a comparison of two ENTRY variables

or constants, the ENTRY and RETURNS description

lists should match. The linkages must also match.

 dcl e1 entry(fixed), e2 entry(float);

 if e1 = e2 then

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 43

IBM1442I E The ENTRY/RETURNS description lists

in the ENTRY to be assigned to target

variable do not match those of the target

variable.

Explanation: In an assignment of an ENTRY variable

or constant, the ENTRY and RETURNS description lists

for the source should match those of the target. The

linkages must also match.

 dcl e1 variable entry(fixed),

 e2 entry(float);

 e1 = e2;

IBM1443I E An ENTRY/RETURNS description list in

an ENTRY in the INITIAL list for target

variable do not match those of the target

variable.

Explanation: When initializing an ENTRY variable or

constant, the ENTRY and RETURNS description lists

for the source should match those of the target. The

linkages must also match.

 dcl e1 variable entry(fixed);

 dcl e2 variable entry(float) init(e1);

IBM1444I E The ENTRY/RETURNS description lists

in the RETURN statement do not match

those in the corresponding RETURNS

attribute

Explanation: When a function returns an ENTRY

variable or constant, the ENTRY and RETURNS

description lists in the returned ENTRY reference

should match those in the containing procedure’s

RETURNS option. The linkages must also match.

 a: proc returns(entry(float));

 dcl e1 entry(fixed);

 return(e1);

IBM1445I E The ENTRY/RETURNS description lists

for argument number argument-number in

entry reference entry name do not match

those in the corresponding parameter.

Explanation: This message also occurs if the linkages

do not match.

 dcl a entry(entry(float));

 dcl e1 entry(fixed);

 call a(e1);

IBM1446I E Third argument in SUBSTR reference is

too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition

would be raised.

IBM1447I E Literals with an X prefix are valid only

in EXEC SQL statements.

Explanation: In PL/I statements, hex literals should be

specified with an X suffix.

IBM1448I E Use of nonconstant extents in BASED

variables without REFER accepted

although invalid under

LANGLVL(SAA).

Explanation: In the SAA level-1 language definition,

extents in BASED variables must all be constant except

where the REFER option is used. The following would

be invalid

 dcl x based char(n);

IBM1449I E Use of type function accepted although

invalid under LANGLVL(SAA).

Explanation: Type functions are not part of the SAA

level-1 language.

IBM1450I E keyword keyword accepted although

invalid under LANGLVL(SAA).

Explanation: The indicated keyword (UNSIGNED in

the example below) is not defined in the SAA level-1

language.

 dcl x fixed bin unsigned;

IBM1451I E Use of S, D and Q constants accepted

although invalid under

LANGLVL(SAA).

Explanation: The definition of the SAA level-1

language does not include S, D, and Q floating-point

constants.

44 PL/I Messages and Codes

IBM1452I E Use of underscores in constants accepted

although invalid under

LANGLVL(SAA).

Explanation: The definition of the SAA level-1

language does not permit using underscores in numeric

and hex constants.

IBM1453I E Use of asterisks for names in declares

accepted although invalid under

LANGLVL(SAA).

Explanation: The definition of the SAA level-1

language does not permit using asterisks for structure

element names.

IBM1454I E Use of XN and XU constants accepted

although invalid under

LANGLVL(SAA).

Explanation: The definition of the SAA level-1

language does not include XN and XU constants.

IBM1455I E Use of arguments with BUILTIN name

built-in accepted although invalid under

LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the DATETIME

built-in function cannot have any arguments.

 s = datetime(’DDMMYYYY’);

IBM1456I E Use of 3 arguments with BUILTIN name

built-in accepted although invalid under

LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the VERIFY and

INDEX built-in functions are supposed to have exactly

2 arguments.

 i = verify(s, j, k);

IBM1457I E Use of 1 argument with BUILTIN name

built-in accepted although invalid under

LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the DIM,

LBOUND and HBOUND built-in functions are

supposed to have 2 arguments.

 i = dim(a);

IBM1458I E GOTO is not allowed under

RULES(NOGOTO).

Explanation: Under RULES(NOGOTO), there should

be no GOTO statements in your source program.

IBM1459I E Uninitialized AUTOMATIC variables in

a block should not be used in the

prologue of that block.

Explanation: The AUTOMATIC variables in a block

may be used in the declare statements and the

executable statements of any contained block, but in the

block in which they are declared, they should be used

only in the executable statements.

 dcl x fixed bin(15) automatic;

 dcl y(x) fixed bin(15) automatic;

IBM1460I E Under RULES(ANS), nonzero scale

factors are not permitted in declarations

of FIXED BIN. Declared scale factor will

be ignored.

Explanation: RULES(IBM) allows scaled FIXED BIN,

but RULES(ANS) supports it only for FIXED

DECIMAL. RULES(ANS) will ignore the scale factors in

the following declares

 dcl x fixed bin(31,16);

 dcl y entry(fixed bin(31,16));

IBM1461I E Under RULES(ANS), nonzero scale

factors are not permitted when the

result of BUILTIN name has the

attributes FIXED BIN. Specified scale

factor will be ignored.

Explanation: RULES(IBM) allows scaled FIXED BIN,

but RULES(ANS) supports it only for FIXED

DECIMAL. RULES(ANS) will ignore the scale factors in

the following built-ins

 dcl (x,y) fixed bin(15,0);

 put list(add(x,y,31,2));

 put list(bin(x,31,2));

 put list(prec(x,31,2));

IBM1462I E Expression in comparison interpreted

with DATE attribute.

Explanation: In a comparison, if one comparand has

the DATE attribute, the other should also. If the

non-date is an expression that could have a value that

is valid for the date pattern, it will be viewed as if it

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 45

had the same DATE attribute as the date comparand.

IBM1463I E Operand with DATE attribute is invalid

except in compare or assign. DATE

attribute will be ignored.

Explanation: Comparisons are the only infix

operations where operands with the DATE attribute

may be used. If they are used in any other operation,

the DATE attribute will be ignored. So, in the following

code, the addition will be flagged and the DATE

attribute ignored.

 dcl x char(5) date(’YYDDD’);

 put list(x + 1);

IBM1464I E DATE attribute ignored in comparison

with non-date expression.

Explanation: In a comparison, if one comparand has

the DATE attribute, the other should also. If the

non-date is an expression that could not have a value

that is not valid for the date pattern, the DATE

attribute will be ignored.

IBM1465I E Source in assignment has the DATE

attribute, but target variable does not.

The DATE attribute will be ignored.

Explanation: If the target in an assignment has the

DATE attribute, the source should also. If the target is a

pseudovariable, message 1466 is issued instead.

 dcl x char(6);

 x = date();

IBM1466I E Source in assignment has the DATE

attribute, but target does not. The DATE

attribute will be ignored.

Explanation: If the source in an assignment has the

DATE attribute, the target should also.

IBM1467I E Source in INITIAL clause for variable

name has the DATE attribute but the

target does not. The DATE attribute will

be ignored.

Explanation: If an INITIAL expression has the DATE

attribute, the target should also.

IBM1468I E Argument number argument-number in

entry reference entry name has the DATE

attribute but the corresponding

parameter does not. The DATE attribute

will be ignored.

Explanation: The argument and parameter should

match, unlike in the example below

 dcl x entry(char(6));

 call x(date());

IBM1469I E Source in RETURN statement has the

DATE attribute, but the corresponding

RETURNS option does not. The DATE

attribute will be ignored.

Explanation: The attributes of the RETURNed

expression and in the RETURNS option should match,

unlike in the example below

 x: proc returns(char(6));

 ...

 return(date());

IBM1470I E An ID option must be specified for the

INCLUDE preprocessor.

Explanation: No other options are valid for the

INCLUDE preprocessor.

IBM1471I E The ID option specified for the

INCLUDE preprocessor is invalid.

Explanation: The INCLUDE preprocessor ID option

must have one suboption consisting of a string

specifying the INCLUDE directive.

IBM1472I E A closing right parenthesis is missing

from the ID option specified for the

INCLUDE preprocessor.

Explanation: The suboption specified for the

INCLUDE preprocessor ID option must be closed with

a right parenthesis.

IBM1473I E The syntax of the preprocessor

INCLUDE directive is incorrect.

Explanation: A statement that starts with the

preprocessor INCLUDE directive specified in that

preprocessor’s ID option must be followed by a name

and, optionally, a semicolon.

46 PL/I Messages and Codes

IBM1474I E Source in assignment does not have the

DATE attribute, but target variable does.

The DATE attribute will be ignored.

Explanation: If the target in an assignment has the

DATE attribute, the source should also. If the target is a

pseudovariable, message 1475 is issued instead.

 dcl x char(6) date(’YYMMDD’);

 x = ’’;

IBM1475I E Target in assignment has the DATE

attribute, but source does not. The

DATE attribute will be ignored.

Explanation: If the target in an assignment has the

DATE attribute, the source should also.

IBM1476I E Source in INITIAL clause for variable

name does not have the DATE attribute

but the target does. The DATE attribute

will be ignored.

Explanation: If a variable has the DATE attribute, then

any INITIAL value for it should also.

IBM1477I E Argument number argument-number in

entry reference entry name does not have

the DATE attribute but the

corresponding parameter does. The

DATE attribute will be ignored.

Explanation: The argument and parameter should

match, unlike in the example below

 dcl x entry(char(6) date(’YYMMDD’));

 call x(’’);

IBM1478I E Source in RETURN statement does not

have the DATE attribute, but the

corresponding RETURNS option does.

The DATE attribute will be ignored.

Explanation: The attributes of the RETURNed

expression and in the RETURNS option should match,

unlike in the example below

 x: proc returns(char(6) date(’YYMMDD’));

 ...

 return(’’);

IBM1480I E Multiple closure of groups is not

allowed under

RULES(NOMULTICLOSE).

Explanation: Under RULES(NOMULTICLOSE), there

should be no multiple closure of groups in your source

program.

IBM1481I E BYNAME assignment statements are not

allowed under RULES(NOBYNAME).

Explanation: Under RULES(NOBYNAME), there

should be no BYNAME assignment statements in your

source program.

IBM1482I E The variable variable name is declared

without any data attributes.

Explanation: It will be given the default attributes, but

this may be because of an error in the declare. For

instance, in the following example, parentheses may be

missing. Under RULES(LAXDCL), this is a W-level

message.

 dcl a, b fixed bin;

IBM1483I E The structure member variable name is

declared without any data attributes. A

level number may be incorrect.

Explanation: It will be given the default attributes, but

this may be because of an error in the declare. For

instance, in the following example, the level number on

c and d should probably be 3. Under RULES(LAXDCL),

this is a W-level message.

 dcl a, b fixed bin;

 1 a,

 2 b,

 2 c,

 2 d;

IBM1484I E An unnamed structure member is

declared without any data attributes. A

level number may be incorrect.

Explanation: It will be given the default attributes, but

this may be because of an error in the declare. For

instance, in the following example, the level number on

c and d should probably be 3. Under RULES(LAXDCL),

this is a W-level message.

 dcl a, b fixed bin;

 1 a,

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 47

2 *,

 2 c,

 2 d;

IBM2400I E Compiler backend issued error messages

to STDOUT.

Explanation: Look in STDOUT to see the message

issued by the compiler backend.

IBM2401I E Missing character assumed before

character. DECLARE and other

nonexecutable statements should not

have labels.

Explanation: The indicated character is missing and

has been inserted by the parser in order to correct your

source. Under RULES(LAXPUNC), a message with the

same text, but lesser severity would be issued

 xx: dcl test fixed bin;

IBM2402I E variable name is declared as BASED on

the ADDR of variable name, but variable

name requires more storage than variable

name.

Explanation: The amount of storage needed for a

BASED variable must be no more than provided by its

base variable.

 dcl a char(10);

 dcl b char(5) based(addr(a));

IBM2403I E PROCESS statements are not permitted

under the NOPROCESS option.

Explanation: When the NOPROCESS option is in

effect, the source should contain no PROCESS

statements.

IBM2404I E variable name is declared as BASED on

the ADDR of variable name, but variable

name requires more storage than remains

in the enclosing level 1 structure variable

name after the location of variable name.

Explanation: The amount of storage needed for a

BASED variable must be no more than provided by its

base variable.

 dcl 1 a, 2 a1 char(10), 2 a2 char(10);

 dcl b char(15) based(addr(a2));

IBM2405I E Even decimal precisions are not allowed

under RULES(NOEVENDEC).

Explanation: Under RULES(NOEVENDEC), there

should be no FIXED DECIMAL data declared with an

even precision.

 dcl a fixed dec(10);

IBM2406I E Precision outside VALUE clause will be

ignored.

Explanation: In DEFAULT statements, numeric

precisions should be specified only inside VALUE

clauses.

 dft range(*) fixed bin(31);

IBM2407I E Length outside VALUE clause will be

ignored.

Explanation: In DEFAULT statements, lengths of

strings should be specified only inside VALUE clauses.

 dft range(*) bit(8);

IBM2408I E AREA size outside VALUE clause will

be ignored.

Explanation: In DEFAULT statements, sizes of AREAs

should be specified only inside VALUE clauses.

 dft range(*) area(10000);

IBM2409I E RETURN statement without an

expression is invalid inside a

subprocedure that specified the

RETURNS attribute.

Explanation: All RETURN statements inside functions

must specify a value to be returned.

48 PL/I Messages and Codes

a: proc returns(fixed bin);

 return;

IBM2410I E Function function name contains no valid

RETURN statement.

Explanation: Functions must contain at least one

RETURN statement.

IBM2411I E STRINGOFGRAPHIC(CHARACTER)

option is ignored because argument to

STRING built-in function is possibly

not contiguous.

Explanation: The STRINGOFGRAPHIC(

CHARACTER) option will be ignored if the argument

contains any elements that are VARYING or if the

argument is a NONCONNECTED slice of an array.

IBM2412I E Procedure has no RETURNS attribute,

but contains a RETURN statement. A

RETURNS attribute will be assumed.

Explanation: If a procedure contains a RETURN

statement, it should have the RETURNS attribute

specified on its PROCEDURE statement.

 a: proc;

 return(0);

 end;

IBM2413I E The attribute attribute should be

specified only on parameters and

descriptors.

Explanation: Attributes must be consistent.

 dcl a fixed based connected;

IBM2414I E The option option conflicts with the

option option. The IBM default of option

will be used instead.

Explanation: The specified options conflict and cannot

be used together. On ASCII systems, the compiler will

produce this message if you specify the GRAPHIC and

EBCDIC options. Conversely, on EBCDIC systems, the

compiler will produce this message if you specify the

GRAPHIC and ASCII options.

IBM2415I E Without APAR number, compiler would

generate incorrect code for this

statement.

Explanation: The indicated APAR will fix a compiler

problem with this statement.

IBM2416I E The SEPARATE suboption of TEST is

not supported when the LINEDIR

option is in effect.

Explanation: When the LINEDIR option is in effect,

only the NOSEPARATE suboption of the TEST option

is supported.

IBM2417I E In FETCHABLE code compiled with

NORENT NOWRITABLE(PRV), it is

invalid to ALLOCATE or FREE a

CONTROLLED variable unless it is a

PARAMETER.

Explanation: In FETCHABLE code, all CONTROLLED

variables should be parameters.

IBM2418I E Variable variable is unreferenced.

Explanation: Under RULES(NOUNREF), the compiler

will issue this message for any level-1 AUTOMATIC

variable that is not referenced.

IBM2419I E HGPR is invalid and ignored unless the

ARCH option is 5 or greater.

Explanation: The HGPR option will be ignored unless

the ARCH option is 5 or greater since the necessary

instructions are available only with ARCH(5) or later.

IBM2420I E DFP is invalid and ignored unless the

ARCH option is 7 or greater.

Explanation: The FLOAT(DFP) option will be ignored

unless the ARCH option is 7 or greater since the

necessary instructions are available only with ARCH(7)

or later.

IBM2421I E A file should not be closed in its

ENDFILE block.

Explanation: In an ENDFILE block for a file, it is

invalid to close that file in the ENDFILE block.

IBM2422I E Under the DFP option, the HEXADEC

attribute is not supported for FLOAT

DEC.

Explanation: Under the FLOAT(DFP) option, all

FLOAT DECIMAL will be treated as DFP and may not

be declared as HEXADEC. The attribute is still valid for

FLOAT BIN.

Chapter 5. Compiler Error Messages (1226-1499, 2400-2599) 49

IBM2423I E Under the DFP option, the IEEE

attribute is not supported for FLOAT

DEC.

Explanation: Under the FLOAT(DFP) option, all

FLOAT DECIMAL will be treated as DFP and may not

be declared as IEEE. The attribute is still valid for

FLOAT BIN.

IBM2424I E Scale factors are not allowed in FLOAT

declarations.

Explanation: Scale factors are valid only in declares of

FIXED BIN or FiXED DEC. The first declaration below

is invalid and should be changed to one of the

subsequent declarations.

 dcl a1 float dec(15,2);

 dcl a2 fixed dec(15,2);

 dcl a3 float dec(15);

IBM2425I E Statement with ELSE IF should be

rewritten using SELECT.

Explanation: Under RULES(NOELSEIF), the compiler

will issue this message for statement where an ELSE is

immediately followed by an IF statement.

IBM2426I E Maximum nesting of DO statements has

been exceeded.

Explanation: The nesting of DO statements has

exceeded the value specified in the DO suboption of

the MAXNEST compiler option.

IBM2427I E Maximum nesting of IF statements has

been exceeded.

Explanation: The nesting of IF statements has

exceeded the value specified in the IF suboption of the

MAXNEST compiler option.

IBM2428I E Maximum nesting of PROC and BEGIN

statements has been exceeded.

Explanation: The nesting of PROC and BEGIN

statements has exceeded the value specified in the

BLOCK suboption of the MAXNEST compiler option.

IBM2429I E CMPAT(V3) requires that 8-byte integers

be allowed. The second value in the

FIXEDBIN suboption of the LIMITS

option will be set to 63.

Explanation: The use of the CMPAT(V3) option with

LIMITS(FIXEDBIN(31,31)) is not supported. Since

CMPAT(V3) will cause various built-in functions (such

as HBOUND) to return a FIXED BIN(63) result, at least

the second value in the FIXEDBIN suboption of LIMITS

must be 63 (i.e. LIMITS(FIXEDBIN(31,63)) or

LIMITS(FIXEDBIN(63,63)) must be in effect).

IBM2430I E The LINESIZE value specified in the

OPEN of file file name is not compatible

with the RECSIZE specified in its

declare.

Explanation: If the file has F format and is not a

PRINT file, then the LINESIZE must be no greater than

the RECSIZE. If the file has F format and is a PRINT

file, then the LINESIZE must be less than the RECSIZE.

If the file has V format and is not a PRINT file, then

the LINESIZE must be no greater than the RECSIZE-4.

If the file has V format and is a PRINT file, then the

LINESIZE must be less than the RECSIZE-4.

IBM2431I E The option option conflicts with the

GOFF option. NOGOFF will be used

instead.

Explanation: The specified option is not permitted

with the GOFF option, and the GOFF option will be

turned off so that the compile may proceed. This

applies, for example, to the NOWRITABLE(PRV) and

COMMON options.

IBM2432I E The attribute character is invalid with

parameters and is ignored.

Explanation: The INITIAL attribute, for example, is

invalid with parameters (since their storage will have

been allocated elsewhere).

 dcl a fixed bin parameter initial(0);

IBM2433I E The attribute character is invalid with

DEFINED and is ignored.

Explanation: The INITIAL attribute, for example, is

invalid with DEFINED variables (since their storage

will have been allocated elsewhere).

 dcl b char(1) initial(’’) defined(a);

IBM2434I E Under RULES(NOLAXENTRY), all

ENTRY declares must specify a

parenthesized parameter list, even if

empty.

Explanation: Under RULES(NOLAXENTRY), all

ENTRY declares must be prototyped. If the ENTRY

should have no parameters, it should be declared as

ENTRY() rather than as simply ENTRY.

50 PL/I Messages and Codes

Chapter 6. Compiler Severe Messages (1500-2399)

IBM1500I S Argument number argument-number in

ENTRY reference ENTRY name has type

source type, which is invalid for a

parameter with type target type.

Explanation: An argument must have a type that can

be converted to the corresponding parameter’s type.

IBM1501I S Argument number argument-number in

ENTRY reference ENTRY name has a

different strong type than the

corresponding parameter.

Explanation: If a parameter is strongly typed, any

argument passed to it must have the same type.

IBM1502I S Argument number argument-number in

ENTRY reference ENTRY name has type

source type, which is invalid for a

parameter with type target type. If the

ENTRY should be invoked, an argument

list must be provided.

Explanation: An argument must have a type that can

be converted to the corresponding parameter’s type.

IBM1503I S Argument number argument-number in

ENTRY reference ENTRY name has type

source type, which is invalid for a

parameter with type LIMITED ENTRY.

Explanation: Only an EXTERNAL ENTRY

CONSTANT, an ENTRY CONSTANT representing a

non-nested PROCEDURE, or an ENTRY VARIABLE

with the LIMITED attribute can be passed to a

LIMITED ENTRY parameter.

IBM1504I S Argument number argument-number in

ENTRY reference ENTRY name has type

POINTER, which is invalid for an

OFFSET parameter without an AREA

qualifier.

Explanation: POINTER expressions can be converted

to OFFSET only if the OFFSET is declared with an

AREA qualifier.

IBM1505I S Argument number argument-number in

ENTRY reference ENTRY name has type

POINTER, which is invalid for a

POINTER parameter since the OFFSET

argument is not an OFFSET variable

declared with an AREA qualifier.

Explanation: OFFSET variables can be converted to

POINTER only if the OFFSET is declared with an

AREA qualifier.

IBM1506I S Argument number argument-number in

ENTRY reference ENTRY name has a

different ORDINAL type than the

corresponding parameter.

Explanation: ORDINALs cannot be passed to other

ORDINALs having different ORDINAL types.

IBM1507I S Arrays of label constants may not be

passed as arguments.

Explanation: The array can be assigned to an array of

LABEL variables, and that array can be passed.

 lx(1): ... ;

 lx(2): ... ;

 call x(lx);

IBM1508I S Too few arguments have been specified

for the ENTRY ENTRY name.

Explanation: The number of arguments must match

the number of parameters in the ENTRY declaration.

IBM1509I S Argument to variable name

pseudovariable must be ASSIGNABLE.

Explanation: The target in an assignment through a

pseudovariable must not have the NONASSIGNABLE

attribute.

 dcl a static nonasgn char(7) init(’example’);

 unspec(a) = ’’b;

IBM1510I S First argument to variable name

pseudovariable must be ASSIGNABLE.

Explanation: The target in an assignment through a

pseudovariable must not have the NONASSIGNABLE

attribute.

 dcl a static nonasgn char(7) init(’example’);

 substr(a,1,2) = ’tr’;

© Copyright IBM Corp. 1999, 2008 51

IBM1511I S Argument number argument-number in

ENTRY reference ENTRY name is an

aggregate, but the parameter description

specifies a scalar.

Explanation: Scalars cannot be converted to

aggregates.

 dcl a entry(fixed bin), b(10) fixed bin;

 call a(b);

IBM1512I S Argument number argument-number in

ENTRY reference ENTRY name is a

scalar, but the parameter description

specifies an aggregate to which it cannot

be passed.

Explanation: Dummy aggregate arguments are not

supported except when passing a non-AREA scalar to a

non-CONTROLLED array of scalars, and the array

must have no bounds specified as *. The scalar can be

assigned to an aggregate, and that aggregate can be

passed.

 dcl a entry(1, 2 fixed bin, 2 fixed bin);

 call a(0);

IBM1513I S Argument number argument-number in

ENTRY reference ENTRY name is an

aggregate that does not exactly match

the corresponding parameter

description.

Explanation: Dummy aggregate arguments are not

supported. If an entry description describes an

aggregate parameter, then any argument passed must

match that parameter’s description.

IBM1514I S Argument number argument-number in

ENTRY reference ENTRY name is an

aggregate with more members than its

corresponding parameter description.

Explanation: Dummy aggregate arguments are not

supported. If an entry description describes an

aggregate parameter, then any argument passed must

match that parameter’s description.

IBM1515I S Argument number argument-number in

ENTRY reference ENTRY name is an

aggregate with fewer members than its

corresponding parameter description.

Explanation: Dummy aggregate arguments are not

supported. If an entry description describes an

aggregate parameter, then any argument passed must

match that parameter’s description.

IBM1516I S The number of dimensions in the

subelements of argument number

argument-number in ENTRY reference

ENTRY name and in its corresponding

parameter description do not match.

Explanation: Dummy aggregate arguments are not

supported. If an entry description describes an

aggregate parameter, then any argument passed must

match that parameter’s description.

IBM1517I S The upper and lower bounds in the

subelements of argument number

argument-number in ENTRY reference

ENTRY name and in its corresponding

parameter description do not match.

Explanation: Dummy aggregate arguments are not

supported. If an entry description describes an

aggregate parameter, then any argument passed must

match that parameter’s description.

IBM1518I S The number of dimensions for

argument number argument-number in

ENTRY reference ENTRY name and in its

corresponding parameter description do

not match.

Explanation: Array arguments and parameters must

have the same number of dimensions.

 dcl a entry((*,*) fixed bin),

 b (10) fixed bin;

 call a(b);

IBM1519I S The upper and lower bounds for

argument number argument-number in

ENTRY reference ENTRY name and in its

corresponding parameter description do

not match.

Explanation: Array arguments and parameters must

have the same lower and upper bounds.

 dcl a entry((0:10) fixed bin),

 b (10) fixed bin;

 call a(b);

52 PL/I Messages and Codes

IBM1520I S Charset 48 is not supported.

Explanation: Charset 48 is no longer supported. The

source code must be converted to charset 60.

IBM1521I S Not enough virtual memory is available

to continue the compile.

Explanation: The compilation requires more virtual

memory than is available. It may help to specify one or

more of the following compiler options: NOTEST,

NOXREF, NOATTRIBUTES, and/or NOAGGREGATE

IBM1522I S variable cannot be SET unless an IN

clause is specified.

Explanation: If an offset variable is declared without

an AREA reference, it cannot be set in an ALLOCATE

or LOCATE statement unless an IN clause names an

AREA reference.

IBM1523I S Argument to BUILTIN name built-in

must be an AREA reference.

Explanation: The built-in function AVAILABLEAREA

is defined only for AREAs.

IBM1524I S BUILTIN name(x) is undefined if ABS(x)

> 1.

Explanation: An expression contains the built-in

function ASIN or ACOS applied to a restricted

expression that evaluated to a number outside the

domain of that function.

IBM1525I S ATANH(x) is undefined if x is REAL

and ABS(x) >= 1.

Explanation: An expression contains the built-in

function ATANH applied to a restricted expression that

evaluated to a number outside the domain of that

function.

IBM1526I S Argument to BUILTIN name must have

derived mode REAL.

Explanation: An expression contains the named

built-in function with an argument having mode

COMPLEX.

IBM1527I S First argument to BUILTIN name built-in

must have locator type.

Explanation: An expression contains the named

built-in function with its first argument having neither

type POINTER nor OFFSET.

IBM1528I S First argument to BUILTIN name built-in

must have derived mode REAL.

Explanation: An expression contains the named

built-in function with its first argument having mode

COMPLEX. This message applies, for example, to the

ATAN and ATAND built-in functions when two

arguments are given.

IBM1530I S Second argument to BUILTIN name

built-in must have derived mode REAL.

Explanation: An expression contains the named

built-in function, with its second argument having

mode COMPLEX. This message applies, for example, to

the ATAN and ATAND built-in functions when two

arguments are given.

IBM1531I S BUILTIN name argument has invalid

type.

Explanation: An expression contains the reference

BINARYVALUE(x) where x has a type other than

POINTER, OFFSET or ORDINAL.

IBM1532I S E35 sort exit routines must use a 32-bit

linkage.

Explanation: Any other linkage is invalid.

IBM1533I S BUILTIN name argument must have

computational type.

Explanation: An expression contains the named

built-in function with an argument that has neither

string nor numeric type.

IBM1534I S BUILTIN name result would be too long.

Explanation: The result of the REPEAT or COPY

built-in function must not be longer than the maximum

allowed for the base string type.

IBM1535I S BUILTIN name argument must have type

REAL FLOAT.

Explanation: An expression contains the named

built-in function with an argument having type other

than REAL FLOAT. This message applies, for instance,

to the floating-point inquiry built-in functions such as

HUGE and RADIX, and to the floating-point

manipulation built-in functions such as EXPONENT

and SUCC.

IBM1536I S BUILTIN name argument must be a

reference.

Explanation: An expression contains the named

built-in function with an argument that is not a

reference.

Chapter 6. Compiler Severe Messages (1500-2399) 53

IBM1537I S BUILTIN name argument must be an

array expression.

Explanation: An expression contains the named

built-in function with an argument that is not an array

expression. This message applies, for example, to the

built-in functions ALL, ANY, SUM and PROD.

IBM1538I S BUILTIN name argument must be a FILE

reference.

Explanation: An expression contains the named

built-in function with an argument that is not a FILE.

This message applies, for example, to the I/O built-in

functions such as LINENO and PAGENO.

IBM1539I S * is invalid as a BUILTIN function

argument.

Explanation: A value must be specified as an

argument to a BUILTIN function unless the argument is

optional.

 dcl a float;

 a = sqrt(*);

IBM1540I S Argument number argument number to

BUILTIN name built-in must have

derived mode REAL.

Explanation: An expression contains the named

built-in function with the specified argument having

mode COMPLEX. This message applies to the MAX

and MIN built-in functions.

IBM1541I S Argument number argument number to

BUILTIN name built-in must have

computational type.

Explanation: An expression contains the named

built-in function with the specified argument having

noncomputational type. This message applies to the

MAX and MIN built-in functions.

IBM1542I S First argument to BUILTIN name built-in

must have computational type.

Explanation: An expression contains the named

built-in function with a first argument that has neither

string nor numeric type.

IBM1543I S Argument to BUILTIN name built-in

must have type CHARACTER(1)

NONVARYING.

Explanation: This applies to the RANK built-in

function.

IBM1545I S First argument to BUILTIN name built-in

must be an array.

Explanation: An expression contains the named

built-in function with a first argument that is not an

array. This message applies, for instance, to the

DIMENSION, HBOUND, and LBOUND built-in

functions.

IBM1546I S Second argument to BUILTIN name

built-in must have type CHARACTER(1)

NONVARYING.

Explanation: This applies to the PLIFILL built-in

subroutine.

IBM1547I S Second argument to BUILTIN name

built-in must have computational type.

Explanation: An expression contains the named

built-in function with a second argument that has

neither string nor numeric type.

IBM1548I S BUILTIN function may not be used inside

a BEGIN block.

Explanation: The PLISTSIZE built-in functions may be

used only in procedures.

IBM1549I S BUILTIN function may be used only in

procedures with LINKAGE(SYSTEM).

Explanation: The PLISTSIZE built-in function may not

be used in procedures with any of the linkages

OPTLINK, PASCAL, etc.

IBM1550I S Argument to the BUILTIN name

pseudovariable must be an EVENT

variable.

Explanation: This message applies to the

COMPLETION and STATUS pseudovariables.

IBM1551I S Argument to the BUILTIN name

pseudovariable must be a TASK

variable.

Explanation: This message applies to the PRIORITY

pseudovariable.

IBM1552I S Third argument to BUILTIN name

built-in must have computational type.

Explanation: An expression contains the named

built-in function with a third argument that has neither

string nor numeric type. This message applies, for

example, to the SUBSTR and CENTER built-in

functions.

54 PL/I Messages and Codes

IBM1554I S Argument to BUILTIN name built-in

must be either a NONVARYING BIT

array reference or else an array

expression with known length.

Explanation: The ALL and ANY built-in functions are

restricted to two types of array expressions: an array

expression that is a NONVARYING BIT array reference

or an array expression that has known length. The first

five examples below meet these restrictions, but the

remaining examples do not.

 dcl a(10) bit(16) varying;

 dcl b(10) bit(16);

 if all(b) then ...

 if any(a ^= ’’b) then ...

 if all(a = b & a) then ...

 if any(’’b ^= b) then ...

 if all(a = ’’b | b = ’’b) then ...

 if any(a) then ...

 if all(substr(b,1,n)) then ...

IBM1555I S Second argument to BUILTIN name

built-in must have computational type.

Explanation: An expression contains the named

built-in function with a second argument that has

neither string nor numeric type.

IBM1556I S Third argument to BUILTIN name

built-in would force STRINGRANGE.

Explanation: If a third argument is given for one of

the built-in functions INDEX, SEARCH or VERIFYR, it

must be positive. For SEARCHR and VERIFYR, it must

be nonnegative.

IBM1557I S Second argument to BUILTIN name

built-in must be positive.

Explanation: The second argument for the built-in

functions CENTER, LEFT and RIGHT must not be zero

or negative.

IBM1558I S Argument to VALID built-in must have

the attributes FIXED DECIMAL or

PICTURE.

Explanation: The argument to the VALID built-in

function must have exactly the indicated attributes. It is

not sufficient that it can be converted to these

attributes.

IBM1559I S SQRT(x) is undefined if x is REAL and

x < 0.

Explanation: An expression contains the BUILTIN

function SQRT applied to a restricted expression that

evaluated to a number outside the domain of that

function.

IBM1560I S BUILTIN function(x) is undefined if x is

REAL and x <= 0.

Explanation: An expression contains the named

built-in function applied to a restricted expression that

evaluated to a number outside the domain of that

function. This message applies, for instance, to the

LOG, LOG2, and LOG10 built-in functions.

IBM1561I S RULES(ANS) does not allow ROUND to

be applied to FIXED BIN.

Explanation: RULES(ANS) dose not permit non-zero

scale factors with FIXED BIN, and hence it does not

allow ROUND to be applied to FIXED BIN (or BIT)

arguments.

IBM1562I S Argument to BUILTIN name built-in has

invalid type.

Explanation: The argument to the HANDLE built-in

must be a structure type, and conversely the argument

to the TYPE built-in must be a handle.

IBM1563I S Second argument to BUILTIN name

built-in must be nonnegative.

Explanation: The second argument for the built-in

functions CHARACTER, BIT, and GRAPHIC must be

zero or greater.

IBM1564I S Too few arguments have been specified

for the BUILTIN name built-in.

Explanation: Supply the minimum number of

arguments required.

IBM1566I S BUILTIN name(x) is undefined for x

outside the supported domain.

Explanation: An expression contains the named

built-in function applied to a restricted expression that

evaluated to a number outside the supported domain

of that function.

IBM1568I S BUILTIN function(x,y) is undefined if x=0

and y=0.

Explanation: An expression contains the built-in

function ATAN or ATAND applied to a restricted

expression that evaluated to a number outside the

domain of that function.

Chapter 6. Compiler Severe Messages (1500-2399) 55

IBM1569I S BUILTIN name argument must be a

CONNECTED reference.

Explanation: The argument to the named built-in

function must be a reference (for example, not an

expression or a literal), and that reference must be

CONNECTED.

IBM1570I S BUILTIN name argument must be a

reference to a level 1 CONTROLLED

variable.

Explanation: The ALLOCATION built-in function

cannot be used with structure members or with

non-CONTROLLED variables.

IBM1571I S BUILTIN name argument must be a

reference to a level 1 BYADDR

parameter.

Explanation: The OMITTED built-in function cannot

be used with BYVALUE parameters, structure

members, or non-parameters.

IBM1573I S The use of * as an argument is

permitted only for parameters declared

with the OPTIONAL attribute.

Explanation: Add the OPTIONAL attribute to the

entry declaration or replace the * by an actual

argument.

IBM1575I S Argument number argument number to

BUILTIN name built-in must have type

POINTER or OFFSET.

Explanation: The indicated argument to built-in

functions such as PLIMOVE and COMPARE must be a

locator.

IBM1576I S Third argument to BUILTIN name

built-in must have type CHARACTER(1)

NONVARYING.

Explanation: This applies to the HEXIMAGE built-in

subroutine.

IBM1577I S First argument to BUILTIN name built-in

must have type POINTER.

Explanation: This applies to the OFFSET built-in

function.

IBM1578I S First argument to BUILTIN name built-in

must have type OFFSET.

Explanation: This applies to the POINTER built-in

function.

IBM1579I S Second argument to BUILTIN name

built-in must have type AREA.

Explanation: This applies to the OFFSET and

POINTER built-in functions.

IBM1580I S First argument to BUILTIN name built-in

is an OFFSET value.

Explanation: If the first argument to built-in functions

such as PLIMOVE and COMPARE has the attribute

OFFSET, it must be an OFFSET reference not an

OFFSET value.

IBM1581I S First argument to BUILTIN name built-in

is an OFFSET variable declared without

an AREA qualifier.

Explanation: If the first argument to built-in functions

such as PLIMOVE and COMPARE is an OFFSET

variable, that OFFSET variable must be declared with

an AREA qualifier so that the offset can be converted to

an address.

IBM1582I S Argument number argument number to

BUILTIN name built-in is an OFFSET

value.

Explanation: If the indicated argument to built-in

functions such as PLIMOVE and COMPARE has the

attribute OFFSET, it must be an OFFSET reference not

an OFFSET value.

IBM1583I S Argument number argument number to

BUILTIN name built-in is an OFFSET

variable declared without an AREA

qualifier.

Explanation: If the indicated argument to built-in

functions such as PLIMOVE and COMPARE is an

OFFSET variable, that OFFSET variable must be

declared with an AREA qualifier so that the offset can

be converted to an address.

IBM1584I S Second argument to BUILTIN name

built-in must have type OFFSET.

Explanation: This applies to the OFFSETDIFF built-in

function.

IBM1585I S Second argument to BUILTIN name

built-in must have type POINTER.

Explanation: This applies to the POINTERDIFF

built-in function.

56 PL/I Messages and Codes

IBM1586I S Argument to STRING built-in

function/pseudovariable must be

CONNECTED.

Explanation: The STRING built-in function and

pseudovariable cannot be applied to discontiguous

array cross-sections or to array parameters not declared

with the CONNECTED attribute.

IBM1587I S Argument number argument number to

BUILTIN name built-in must have the

ENTRY attribute.

Explanation: Any other argument type is invalid. This

message applies to the PLISRTx built-in functions.

IBM1588I S First argument to BUILTIN name built-in

must have type GRAPHIC.

Explanation: This applies to the CHARGRAPHIC

built-in function. For instance, in the following

example, g should be declared as graphic, not as char.

 dcl c char(10);

 dcl g char(5);

 c = charg(g);

IBM1589I S BUILTIN name argument must not have

any subscripts.

Explanation: The LOCATION and BITLOCATION

built-in functions cannot be applied to subscripted

references.

IBM1590I S Argument to STRING built-in

function/pseudovariable must not be a

UNION and must not contain a UNION.

Explanation: The STRING built-in function and

pseudovariable cannot be applied to UNIONs or to

structures containing UNIONs.

IBM1591I S All members of an argument to the

STRING built-in function/
pseudovariable must have the

UNALIGNED attribute.

Explanation: The STRING built-in function and

pseudovariable cannot be applied to structures or

arrays containing elements with the ALIGNED

attribute.

IBM1592I S All members of an argument to the

STRING built-in function/
pseudovariable must have the

NONVARYING attribute.

Explanation: The STRING built-in function and

pseudovariable cannot be applied to structures or

arrays containing VARYING strings.

IBM1593I S All members of an argument to the

STRING built-in function/
pseudovariable must have string type.

Explanation: The STRING built-in function and

pseudovariable cannot be applied to structures or

arrays containing noncomputational types or arithmetic

types other than pictures.

IBM1594I S All members of an argument to the

STRING built-in function/
pseudovariable must have the same

string type.

Explanation: The STRING built-in function and

pseudovariable cannot be applied to structures or

arrays containing different string types, for example,

BIT and CHARACTER strings.

IBM1595I S First argument to BUILTIN name built-in

must have type REAL FLOAT.

Explanation: This applies to the floating-point inquiry

and manipulation built-in functions such as HUGE and

EXPONENT.

IBM1596I S Second argument to BUILTIN name

built-in must have type CHARACTER.

Explanation: This applies to the EDIT built-in

function.

IBM1597I S BUILTIN name argument must have type

TASK.

Explanation: This applies to the PRIORITY built-in

function.

IBM1598I S BUILTIN name argument must have type

EVENT.

Explanation: This applies to the COMPLETION and

STATUS built-in functions.

IBM1599I S The BUILTIN function variable name may

not be used as a pseudovariable.

Explanation: The named built-in function is not a

pseudovariable and may not be used as one.

IBM1600I S Source to BUILTIN name pseudovariable

must be scalar.

Explanation: It is invalid to assign an array, structure,

or union to one of the built-in functions ONCHAR,

ONSOURCE, or ONGSOURCE.

Chapter 6. Compiler Severe Messages (1500-2399) 57

IBM1601I S The identifier identifier is not the name

of a built-in function. Any use of it is

unsupported.

Explanation: The BUILTIN attribute can be applied

only to identifiers that are the names of built-in

functions or subroutines.

IBM1602I S Fourth argument to BUILTIN name

built-in must have the attributes REAL

FIXED BIN(31,0).

Explanation: This applies to the PLISRTx built-in

functions. For instance, in the following example, rc

should be declared as fixed bin(31), not fixed bin(15).

 dcl rc fixed bin(15);

 call plisrta(’SORT FIELDS=(1,80,CH,A) ’,

 ’RECORD TYPE=F,LENGTH=(80) ’,

 256000,

 rc);

IBM1603I S BUILTIN name argument must not have

the CONSTANT attribute.

Explanation: This applies to the ADDR and similar

built-in functions. It is invalid, for instance, to apply

the ADDR built-in function to a label constant.

IBM1604I S BUILTIN function argument must be

nonnegative.

Explanation: The argument for the built-in functions

LOW and HIGH must be zero or greater.

IBM1605I S Argument to ENTRYADDR built-in

must be an ENTRY variable or an

EXTERNAL ENTRY constant.

Explanation: The ENTRYADDR built-in function

cannot be applied to non-ENTRYs or to INTERNAL

ENTRY constants.

IBM1606I S Argument to variable name

pseudovariable must be a reference.

Explanation: Pseudovariables cannot be applied to

expressions.

 unspec(12) = ’00’b4;

IBM1607I S First argument to variable name

pseudovariable must be a reference.

Explanation: The SUBSTR pseudovariable cannot be

applied to expressions.

 substr(’nope’, 1, 1) = ’d’;

IBM1608I S Argument to variable name

pseudovariable must be a scalar.

Explanation: The compiler does not support the

named pseudovariable applied to arrays, structures, or

unions.

IBM1609I S First argument to variable name

pseudovariable must be a scalar.

Explanation: The compiler does not support the

named pseudovariable applied to arrays, structures, or

unions.

IBM1610I S Argument to variable name

pseudovariable must be COMPLEX.

Explanation: The REAL and IMAG pseudovariable

can be applied only to COMPLEX arithmetic variables.

IBM1611I S First argument to SUBSTR

pseudovariable must have string type.

Explanation: The SUBSTR pseudovariable cannot be

applied to numeric variables or to noncomputational

values.

IBM1612I S Argument to the ENTRYADDR

pseudovariable must be an ENTRY

variable.

Explanation: The ENTRYADDR pseudovariable can be

applied only to ENTRY variables.

IBM1613I S Argument to BUILTIN name built-in has

attributes that conflict with file attribute.

Explanation: The indicated built-in function cannot be

applied to file constants with attributes that conflict

with the indicated attribute.

IBM1614I S Argument to BUILTIN name built-in has

attributes that conflict with STREAM.

Explanation: The indicated built-in function cannot be

applied to non-STREAM files.

58 PL/I Messages and Codes

IBM1615I S Argument to BUILTIN name built-in has

attributes that conflict with PRINT.

Explanation: The indicated built-in function cannot be

applied to non-PRINT files.

IBM1616I S Attributes and ENVIRONMENT options

for file file name conflict.

Explanation: Specified file attributes and

ENVIRONMENT options on a declaration statement

are in conflict. The following DECLARE statement is an

example of this type of conflict:

 dcl file f1 direct env(consecutive);

IBM1617I S DIRECT attribute for file file name needs

ENVIRONMENT option specification of

INDEXED, REGIONAL, RELATIVE, or

VSAM.

Explanation: Use of the DIRECT file attribute needs

an ENVIRONMENT option specification of INDEXED,

REGIONAL, RELATIVE, or VSAM.

 dcl file f1 direct env(relative);

IBM1618I S Syntax of the %INCLUDE statement is

incorrect.

Explanation: %INCLUDE must be followed by a name

and either a semicolon or else a second name in

parenthesis and then a semicolon.

IBM1619I S File specification after %INCLUDE is

too long.

Explanation: The maximum length of the file

specification is 8 characters.

IBM1620I S File specification missing after

%INCLUDE.

Explanation: %INCLUDE must be followed by a file

name, not just a semicolon.

IBM1621I S NODESCRIPTOR attribute is invalid if

any parameters have bit alignment.

Explanation: If a parameter is an unaligned bit string

or an array or structure consisting entirely of unaligned

bit strings, then OPTIONS(NODESCRIPTOR) must not

be specified or implied.

IBM1622I S The number of elements and dimension

specifications in an aggregate must not

exceed 131071.

Explanation: Aggregates with more than 131071

elements and dimension specifications would require

descriptors that would require too much storage.

IBM1623I S The dot-qualified reference reference

name is unknown.

Explanation: The named reference is not a member of

any structure or union declared in the block in which it

is referenced or declared in any block containing that

block.

IBM1625I S Extent must be a scalar.

Explanation: An expression specifying an array

bound, a string length or an AREA size must not be a

reference to an array, a structure, or a union.

IBM1626I S Extent must have computational type.

Explanation: An expression specifying an array

bound, a string length, or an AREA size must have

numeric or string type.

IBM1627I S Subscript expressions must be scalars.

Explanation: An expression used as a subscript must

not be an array, structure, or union reference.

IBM1628I S Index number index number into the

array variable name must have

computational type.

Explanation: Only expressions having numeric or

string type may be used as subscripts.

IBM1629I S Extents for STATIC variable are not

constant.

Explanation: Array bounds, string lengths, and AREA

sizes in STATIC variables must evaluate at

compile-time to constants.

IBM1630I S Number of dimensions in arrays do not

match.

Explanation: In the assignment of one array to

another, the two arrays must have the same number of

dimensions.

IBM1631I S Upper and lower bounds in arrays do

not match.

Explanation: In the assignment of one array to

another, the two arrays must have the same lower and

upper bound in each dimension.

Chapter 6. Compiler Severe Messages (1500-2399) 59

IBM1632I S Index number index number into the

variable variable name is less than the

lower bound for that dimension.

Explanation: Executing such a program would most

likely cause a protection exception.

 dcl a(5:10) fixed bin(31);

 a(1) = 0;

IBM1633I S Index number index number into the

variable variable name is greater than the

upper bound for that dimension.

Explanation: Executing such a program would most

likely cause a protection exception.

 dcl a(5:10) fixed bin(31);

 a(20) = 0;

IBM1634I S Number of dimensions in subelements

of structures do not match.

Explanation: In structure assignments and structure

expressions, all subelements that are arrays must have

the same number of dimensions.

 dcl

 1 a,

 2 b(8) fixed bin,

 2 c char(10);

 dcl

 1 x,

 2 y(8,9) fixed bin,

 2 z char(10);

 a = x;

IBM1635I S Upper and lower bounds in

subelements of structures do not match.

Explanation: In structure assignments and structure

expressions, all subelements that are arrays must have

the same bounds.

 dcl

 1 a,

 2 b(8) fixed bin,

 2 c char(10);

 dcl

 1 x,

 2 y(9) fixed bin,

 2 z char(10);

 a = x;

IBM1636I S Substructuring in subelements of

structures do not match.

Explanation: In structure assignments and structure

expressions, if any element of one structure is itself a

structure, then the corresponding element in all the

other structures must also be a similar structure.

IBM1637I S Number of subelements in structures do

not match.

Explanation: In structure assignments and structure

expressions, all structures must have the same number

of elements.

IBM1638I S Structures and unions are not permitted

in GENERIC descriptions.

Explanation: Only scalars and arrays of scalars are

permitted in GENERIC descriptions.

IBM1639I S The aggregate aggregate-name contains

only noncomputational values. The

aggregate will be ignored.

Explanation: Aggregates containing no strings or

arithmetic variables cannot be used in PUT or GET

statements.

IBM1640I S The aggregate aggregate-name contains

one or more unions and cannot be used

in stream I/O.

Explanation: Aggregates containing one or more

UNION statements cannot be used in PUT or GET

statements.

IBM1641I S References to slices of the array of

structures structure-name are not

permitted.

Explanation: An array of structures must be

referenced in its entirety or element by element.

 dcl

 1 a(8,9),

 2 b fixed bin,

 2 c char(10);

 a(2,*) = 0;

60 PL/I Messages and Codes

IBM1642I S References to slices of the array of

unions union-name are not permitted.

Explanation: An array of unions must be referenced in

its entirety or element by element.

 dcl

 1 a(8,9) union,

 2 b fixed bin,

 2 c char(10);

 a(2,*) = 0;

IBM1643I S Each dimension of an array must

contain no more than 2147483647

elements.

Explanation: It must be possible to compute the value

of the DIMENSION built-in function for an array. In

DECLARE x(x:y), (y-x+1) must be less than 214748648.

IBM1644I S Aggregate contains more than 15 logical

levels.

Explanation: The maximum physical level allowed is

255, but the maximum logical level is 15.

IBM1645I S Data aggregate exceeds the maximum

length.

Explanation: Aggregates containing unaligned bits

must be less than 2**28 bytes in size while all other

aggregates must be less than 2**31.

IBM1646I S SIZE would be raised in assigning TO

value to control variable.

Explanation: If the TO value is bigger than the

maximum value that a FIXED or PICTURE variable can

hold, then a loop dominated by that variable would

cause SIZE to be raised. For example, in the first code

fragment below, x can not be assigned a value bigger

than 99. In the second code fragment below, y can not

be assigned a value bigger than 32767.

 dcl x pic’99’;

 do x = 1 to 100;

 put skip list(x);

 end;

 dcl y fixed bin(15);

 do y = 1 to 32768;

 put skip list(y);

 end;

IBM1647I S Too few subscripts specified for the

variable variable name.

Explanation: The number of subscripts given for a

variable must match that variable’s number of

dimensions

IBM1648I S Too many subscripts specified for the

variable variable name.

Explanation: The number of subscripts given for a

variable must match that variable’s number of

dimensions

IBM1649I S The number of inherited dimensions

plus the number of member dimensions

exceeds 15.

Explanation: Arrays with more than 15 dimensions

are not supported.

 dcl

 1 dim7(2,3,4,5,6,7,8),

 2 dim7more(2,3,4,5,6,7,8)

 3 dim2many(2,3) fixed bin,

 3 * fixed bin,

 2 * char(10);

IBM1650I S The LIKE reference is neither a structure

nor a union.

Explanation: The LIKE reference cannot be a scalar or

an array of scalars.

 dcl

 a fixed bin,

 1 b like a;

IBM1651I S The LIKE reference is ambiguous.

Explanation: The LIKE reference needs enough

qualification to be unique.

 dcl

 1 x like b,

 1 a,

 2 b,

 3 c,

 3 d,

 2 e,

 3 f,

 3 g,

 1 h,

 2 b,

 3 j,

 3 k;

Chapter 6. Compiler Severe Messages (1500-2399) 61

IBM1652I S Neither the LIKE reference nor any of

its substructures can be declared with

the LIKE attribute.

Explanation: LIKE from LIKE is not supported.

 dcl

 1 a,

 2 b1 like c,

 2 b2 like c,

 1 c,

 2 d fixed bin,

 2 e fixed bin;

 dcl

 1 x like a;

IBM1653I S The LIKE reference must not be a

member of a structure or union declared

with the LIKE attribute.

Explanation: LIKE from LIKE is not supported.

 dcl

 1 a,

 2 b1 like c,

 2 b2 like c,

 1 c,

 2 d fixed bin,

 2 e fixed bin;

 dcl

 1 x like a.b1;

IBM1654I S The LIKE reference is unknown.

Explanation: The LIKE reference must be known in

the block containing the LIKE attribute specification.

IBM1655I S Only CONTROLLED variables can be

passed to CONTROLLED parameters.

Explanation: If a parameter is declared as controlled,

non-controlled variables and expressions with operators

cannot be passed to it.

 dcl c char(20);

 call a(c);

 a: proc(b);

 dcl b controlled char(*);

IBM1656I S A CONTROLLED variable passed to a

CONTROLLED parameter must have

the same attributes as that parameter.

Explanation: Differences in any arithmetic attributes

are not permitted. The following example will emit this

message.

 dcl x fixed bin(15) controlled;

 call a(x);

 a: proc(b);

 dcl b controlled fixed bin(31);

IBM1657I S A subscript has been specified for the

non-array variable variable name.

Explanation: Subscripts are permitted only in array

element references.

IBM1658I S Argument number argument-number in

ENTRY reference ENTRY name is an

array expression requiring a temporary

array with strings of unknown length.

Explanation: Temporary arrays of strings are

supported only if the string length is known.

 dcl a entry, (b(10),c(10)) char(20) var;

 call a(b || c);

IBM1659I S After LIKE expansion, aggregate would

contain more than 15 logical levels.

Explanation: The total number of logical levels after

LIKE expansion must not exceed 15.

IBM1660I S The size (record-size) of the record

conflicts with the RECSIZE (recsize)

specified in the ENVIRONMENT

attribute.

Explanation: Execution of the statement would raise

the RECORD condition.

 dcl datei file record output

 env(fb recsize (80) total);

 dcl satzaus char (100);

 write file(datei) from(satzaus);

IBM1661I S Aggregates cannot be assigned to

scalars.

Explanation: Only scalars can be assigned to scalars.

IBM1662I S Unsupported use of union or structure

containing a union.

Explanation: Unions and structures containing unions

may not be used in expressions except when used as an

62 PL/I Messages and Codes

argument to a built-in function such as ADDR or

UNSPEC.

IBM1663I S Unsupported or invalid use of structure

expression.

Explanation: Structure expressions may not, for

instance, be assigned to arrays of scalars.

IBM1664I S Array expressions cannot be assigned to

non-arrays.

Explanation: Array expressions may not, for instance,

be assigned to structures or scalars.

IBM1665I S E15 sort exit routines must have the

RETURNS attribute.

Explanation: An E15 sort exit have the RETURNS

attribute since it will be invoked as a function by the

sort library routine.

IBM1666I S E15 sort exit routines must return a

CHARACTER string.

Explanation: An E15 sort exit may return a

NONVARYING, VARYING or VARYINGZ

CHARACTER string, but it must be a character string.

IBM1667I S Target in assignment is

NONASSIGNABLE.

Explanation: The target in an assignment statement

must not have the NONASSIGNABLE attribute.

IBM1668I S Target in assignment is a function

reference.

Explanation: The target of an assignment statement

must be an array, structure, union or scalar reference.

Function references are not permitted as target of

assignments.

IBM1669I S Target in assignment is a UNION.

Explanation: Assignments to UNIONs are not

supported.

IBM1670I S A PROCEDURE containing ENTRY

statements with differing RETURNS

attributes must return values BYADDR.

Explanation: In a PROCEDURE containing ENTRY

statements, if the PROCEDURE and ENTRY statements

do not all have the same RETURNS attributes, then all

values must be returned BYADDR. You can compile

with DFT(RETURNS(BYADDR)) to force this, or you

can add the BYADDR attribute to each set of RETURNS

attribute. For example, you must either compile the

following program with DFT(RETURNS(BYADDR)) or

change the ″fixed bin″ to ″fixed bin byaddr″.

 a: proc;

 return;

 b: entry returns(fixed bin);

 return(1729);

 end;

IBM1671I S The source in a structure assignment

must be a scalar expression or a

matching structure.

Explanation: The source in a structure assignment

cannot be an array of scalars or a structure that does

not match the target.

IBM1672I S In multiple BY NAME assignments, if

one target is an array of structures, then

all must be.

Explanation: A BY NAME assignment may have not

have a mixture of array and non-array targets.

 dcl 1 a, 2 a1 fixed bin, 2 a2 fixed bin;

 dcl 1 b(3), 2 a1 fixed bin, 2 a2 fixed bin;

 dcl 1 c, 2 a1 fixed bin, 2 a2 fixed bin;

 a,b = c, by name;

IBM1673I S The target in a compound concatenate

and assign must be a VARYING or

VARYINGZ string.

Explanation: Only the simple assignment operator can

be used to assign to a NONVARYING string.

IBM1674I S Target in assignment contains UNIONs.

Explanation: The target in an assignment must not

contain any UNIONs.

IBM1675I S FROMALIEN option cannot be used

with MAIN.

Explanation: These two options are mutually

exclusive.

IBM1676I S Source in assignment to LIMITED

ENTRY must be either a non-nested

ENTRY constant or another LIMITED

ENTRY.

Explanation: ENTRY constants representing nested

procedures and ENTRY variables not declared with the

LIMITED attribute cannot be assigned to variables with

the attributes LIMITED ENTRY.

Chapter 6. Compiler Severe Messages (1500-2399) 63

IBM1677I S Assignment of ENTRY to target type is

invalid. If the ENTRY should be

invoked, an argument list must be

provided.

Explanation: An ENTRY constant or variable without

an argument list will not be invoked and hence can be

assigned only to an ENTRY variable.

IBM1678I S Assignment of source type to target type is

invalid.

Explanation: The target attributes conflict with the

source attributes.

IBM1679I S Assignment of POINTER to OFFSET is

invalid unless the OFFSET is declared

with an AREA qualifier.

Explanation: POINTER expressions can be converted

to OFFSET only if the OFFSET is declared with an

AREA qualifier.

IBM1680I S Assignment of OFFSET to POINTER is

invalid unless the OFFSET is declared

with an AREA qualifier.

Explanation: OFFSET variables can be converted to

POINTER only if the OFFSET is declared with an

AREA qualifier.

IBM1681I S The number of preprocessor invocations

specified exceeds the maximum number

(25) allowed.

Explanation: A maximum of 25 preprocessor

invocations can be specified in the PP option or in

combination with the MACRO option.

IBM1682I S The target in a BY NAME assignment

must be a structure.

Explanation: The target in a BY NAME assignment

cannot be an array or a scalar.

IBM1683I S Set of matching names in the expansion

of BY NAME assignment must contain

either all structures or no structures.

Explanation: For instance, in the assignment, x = y, by

name, if both x and y immediately contain a member z,

then either both x.z and y.z are structures or neither x.z

and y.z is a structure.

IBM1684I S Number of dimensions in the BY

NAME corresponding elements variable

name and variable name do not match.

Explanation: In a BY NAME assignment, arrays with

matching names must have the same number of

dimensions.

 dcl

 1 a,

 2 b(4,5) bin(31,0),

 2 c bin(31,0);

 dcl

 1 x,

 2 b(4) bin(31,0),

 2 c bin(31,0);

 a = x, by name;

IBM1685I S Upper and lower bounds in BY NAME

corresponding elements variable name

and variable name do not match.

Explanation: In a BY NAME assignment, arrays with

matching names must have the same lower and upper

bounds.

 dcl

 1 a,

 2 b(1:5) bin(31,0),

 2 c bin(31,0);

 dcl

 1 x,

 2 b(0:4) bin(31,0),

 2 c bin(31,0);

 a = x, by name;

IBM1686I S BY NAME assignment contains

UNIONs.

Explanation: The target structure in a BY NAME

assignment must not contain any UNIONs even if no

names in those UNIONs match names in the source.

The source expression also must contain any unions or

structures containing unions.

IBM1687I S reserved name cannot be declared with

OPTIONS other than ASM.

Explanation: If the DLI compiler option is specified,

PLITDLI cannot be declared with any OPTIONS other

than OPTIONS(ASM).

IBM1688I S reserved name cannot be declared with an

entry description list.

Explanation: If the DLI compiler option is specified,

PLITDLI cannot be declared with an entry description

list.

64 PL/I Messages and Codes

IBM1689I S reserved name cannot be declared as a

function.

Explanation: If the DLI compiler option is specified,

PLITDLI cannot be declared as a function.

IBM1690I S OPTIONS(language-name) is not

supported for functions.

Explanation: Functions, i.e. entrys declared with the

RETURNS attribute, cannot be declared with

OPTIONS(ASM) or OPTIONS(COBOL).

IBM1691I S Extents in ENTRY descriptors must be

asterisks or restricted expressions with

computational type.

Explanation: In ENTRY descriptors, each array bound,

string length and AREA size must be specified either

with an asterisk or with a restricted expression that has

computational type.

IBM1692I S An ENTRY invoked as a function must

have the RETURNS attribute.

Explanation: There is no default RETURNS attribute.

 dcl e entry;

 a = e();

IBM1693I S call-option option repeated in CALL

statement.

Explanation: The TASK, EVENT and PRIORITY

options may be specified only once in any CALL

statement.

IBM1694I S Reference in CALL statement must not

be a built-in function.

Explanation: CALL x is invalid unless x is a built-in

subroutine, an ENTRY constant, or an ENTRY variable.

Built-in functions are not built-in references. For

example, ″Call SQRT(x)″ is invalid.

IBM1695I S Reference in CALL statement must

either be a built-in subroutine or have

type ENTRY.

Explanation: CALL x is invalid unless x is a built-in

subroutine, an ENTRY constant, or an ENTRY variable.

IBM1696I S RETURN statement without an

expression is invalid inside a

subprocedure that specified the

RETURNS attribute.

Explanation: All RETURN statements inside functions

must specify a value to be returned.

 a: proc returns(fixed bin);

 return;

IBM1697I S RETURN statement is invalid inside a

PROCEDURE that did not specify the

RETURNS attribute.

Explanation: A statement of the form RETURN(x) is

valid inside only PROCEDUREs that are defined with a

RETURNS attribute.

IBM1698I S RETURN statement with an expression

is invalid inside a BEGIN in a

PROCEDURE that does not have the

RETURNS(BYADDR) attribute.

Explanation: A statement of the form RETURN(x) is

valid inside a BEGIN block only if the PROCEDURE

enclosing that BEGIN block has the

RETURNS(BYADDR) attribute explicitly or by default.

IBM1699I S Argument number argument-number in

ENTRY reference ENTRY name is an

aggregate. This conflicts with the

BYVALUE option.

Explanation: Arrays, structures, and unions cannot be

passed BYVALUE.

IBM1700I S Argument number argument-number in

ENTRY reference ENTRY name is an

AREA reference with unknown size.

This conflicts with the BYVALUE

option.

Explanation: Only AREA variables with constant size

can be passed BYVALUE.

IBM1701I S Argument number argument-number in

ENTRY reference ENTRY name is a

string with unknown size. This conflicts

with the BYVALUE option.

Explanation: Only strings with constant size can be

passed BYVALUE.

IBM1702I S The attribute keyword attribute is invalid

as a RETURNS subattribute.

Explanation: Structures and union may not be

returned.

Chapter 6. Compiler Severe Messages (1500-2399) 65

IBM1703I S Reference in CALL statement must not

be an aggregate reference.

Explanation: CALL references must be scalars.

 dcl ea(10) entry;

 call ea;

IBM1704I S Too many argument lists have been

specified for the variable variable name.

Explanation: A function can have only one argument

list unless it returns an ENTRY, in which case it can

have only two argument lists unless the returned

ENTRY returns an ENTRY, and so on.

IBM1705I S RETURN expression with attribute

source type is invalid for RETURNS

options specifying the attribute target

type.

Explanation: The RETURN expression must have a

type that can be converted to the type indicated in the

RETURNS option.

 a: proc returns(pointer)

 return(0);

 end;

IBM1706I S RETURN expression with attribute

source type is invalid for RETURNS

options specifying the attribute target

type. If the ENTRY should be invoked,

an argument list must be provided.

Explanation: The RETURN expression must have a

type that can be converted to the type indicated in the

RETURNS option.

 a: proc returns(pointer)

 dcl f entry returns(pointer);

 return(f);

 end;

IBM1707I S RETURN expression with attribute

source type is invalid for RETURNS

options specifying the attribute

LIMITED ENTRY.

Explanation: Only an EXTERNAL ENTRY

CONSTANT, an ENTRY CONSTANT representing a

non-nested PROCEDURE, or an ENTRY VARIABLE

with the LIMITED attribute can be specified as the

RETURNS expression in a function that returns a

LIMITED ENTRY.

IBM1708I S RETURN expression with attribute

POINTER is invalid for RETURNS

options specifying the attribute OFFSET

since the OFFSET attribute is not

declared with an AREA qualifier.

Explanation: POINTER expressions can be converted

to OFFSET only if the offset is declared with an AREA

qualifier.

IBM1709I S RETURN expression with attribute

OFFSET is invalid for RETURNS

options specifying the attribute

POINTER since the OFFSET expression

is not an OFFSET variable declared with

an AREA qualifier.

Explanation: OFFSET variables can be converted to

POINTER only if the OFFSET is declared with an

AREA qualifier.

IBM1710I S ORDINAL type in RETURN expression

and RETURNS option must match.

Explanation: In a function that returns an ordinal, the

ORDINAL type in any RETURN expression must be

the same as returned by the function.

 a: proc returns(ordinal color);

 dcl i ordinal intensity;

 return(i);

 end;

IBM1711I S Expression in RETURN statement must

be scalar.

Explanation: The expression in a RETURN statement

must not be an array, a structure, or an union.

IBM1712I S External name specification must be a

non-null string.

Explanation: EXTERNAL(’’) is invalid.

IBM1713I S Function function name contains no

RETURN statement.

Explanation: Functions must contain at least one

RETURN statement.

66 PL/I Messages and Codes

IBM1714I S Extents in RETURNS descriptors must

be constants.

Explanation: In RETURNS descriptors, each array

bound, string length, and AREA size must be specified

with a restricted expression that has computational

type. Unlike ENTRY descriptors, asterisks are not

permitted.

IBM1715I S Exit from an ON-unit via RETURN is

invalid.

Explanation: RETURN statements are not permitted in

an ON-unit or any of its contained BEGIN blocks

unless the contained block is also contained in a

procedure defined in the ON-unit.

IBM1716I S FORMAT expression must be a scalar

value.

Explanation: Expressions in FORMAT lists, including

SKIP clauses, must represent scalar values.

IBM1717I S FORMAT expression must have

computational type.

Explanation: Expressions in FORMAT lists, including

SKIP clauses, must have computational type so that the

expression can be converted to FIXED BIN(31).

IBM1718I S source type is invalid as a boolean

expression.

Explanation: The expression in an IF, WHILE, UNTIL,

SELECT, or WHEN clause must have computational

type so that it can be converted to BIT(1).

IBM1719I S ENTRY is invalid as a boolean

expression. If an ENTRY should be

invoked, an argument list must be

provided.

Explanation: The expression in an IF, WHILE, UNTIL,

SELECT, or WHEN clause must have computational

type so that it can be converted to BIT(1). An ENTRY

cannot be used as a boolean expression. If the ENTRY

is a function which should be invoked, an argument

list, even if it consists only of a left and right

parenthesis, must be provided.

IBM1720I S Expression for calculating size of

variable with adjustable extents is too

complicated. Variable may be defined in

terms of itself.

Explanation: An expression used in calculating the

size of a variable must not depend on any values that

the variable may have because those values do not

exist until storage can be allocated for the variable.

IBM1721I S Expression contains too many nested

subexpressions.

Explanation: The compiler’s space for evaluating

expressions has been exhausted. Rewrite the expression

in terms of simpler expressions.

IBM1722I S The number of error messages allowed

by the MAXMSG option has been

exceeded.

Explanation: Compilation will terminate when the

number of messages has exceeded the limit set in the

MAXMSG compiler option.

IBM1723I S Result of concatenating two literals is

too long.

Explanation: The length of the string literal produced

by concatenating two string literals must not be greater

than the maximum allowed for a literal with the

derived string type.

IBM1724I S Addition of source type and target type is

invalid.

Explanation: One of the operands in an addition must

be computational and the other must be either

computational or a locator.

IBM1725I S Addition of source type and target type is

invalid. If an ENTRY should be

invoked, an argument list must be

provided.

Explanation: An ENTRY cannot be used as an

arithmetic operand. If the ENTRY is a function which

should be invoked, an argument list, even if it consists

only of a left and right parenthesis, must be provided.

IBM1726I S Subtraction of target type from source type

is invalid.

Explanation: The first operand in a subtraction must

be computational or a locator. The second operand can

be a locator only if the first is a locator. Otherwise, the

second operand must be computational.

IBM1727I S Subtraction of target type from source type

is invalid. If an ENTRY should be

invoked, an argument list must be

provided.

Explanation: An ENTRY cannot be used as an

arithmetic operand. If the ENTRY is a function which

should be invoked, an argument list, even if it consists

only of a left and right parenthesis, must be provided.

Chapter 6. Compiler Severe Messages (1500-2399) 67

IBM1728I S Multiplication of source type by target

type is invalid.

Explanation: Both operands in a multiplication must

be computational.

IBM1729I S Multiplication of source type by target

type is invalid. If an ENTRY should be

invoked, an argument list must be

provided.

Explanation: An ENTRY cannot be used as an

arithmetic operand. If the ENTRY is a function which

should be invoked, an argument list, even if it consists

only of a left and right parenthesis, must be provided.

IBM1730I S Division of source type by target type is

invalid.

Explanation: Both operands in a division must be

computational.

IBM1731I S Division of source type by target type is

invalid. If an ENTRY should be

invoked, an argument list must be

provided.

Explanation: An ENTRY cannot be used as an

arithmetic operand. If the ENTRY is a function which

should be invoked, an argument list, even if it consists

only of a left and right parenthesis, must be provided.

IBM1732I S Unsupported use of aggregate

expression.

Explanation: Aggregate expressions are supported

only as the source in an assignment statement and,

with some limitations, as an argument to the ANY or

ALL built-in functions.

IBM1733I S Concatenate operands must have

computational type.

Explanation: Only expressions having string or

numeric type may be concatenated.

IBM1734I S Operand in a prefix expression is not

computational.

Explanation: The prefix operators (plus, minus, and

logical not) may be applied only to expressions having

string or numeric type.

IBM1735I S AREA variables may not be compared.

Explanation: No relational operations are defined for

AREA variables.

IBM1736I S Comparison of source type to target type is

invalid.

Explanation: Computational types can be compared

only with other computational types, and

non-computational types can be compared only with

like non-computational types.

IBM1737I S Comparison of ENTRY to target type is

invalid. If the ENTRY should be

invoked, an argument list must be

provided.

Explanation: ENTRYs can be compared only with

other ENTRYs. If the ENTRY is a function which

should be invoked, an argument list, even if it consists

only of a left and right parenthesis, must be provided.

IBM1738I S Comparison of source type to ENTRY is

invalid. If the ENTRY should be

invoked, an argument list must be

provided.

Explanation: ENTRYs can be compared only with

other ENTRYs. If the ENTRY is a function which

should be invoked, an argument list, even if it consists

only of a left and right parenthesis, must be provided.

IBM1739I S TASK variables may not be compared.

Explanation: No relational operations are defined for

TASK variables.

IBM1740I S Comparison of an OFFSET to a

POINTER is invalid since the OFFSET

comparand is not an OFFSET variable

declared with an AREA qualifier.

Explanation: An OFFSET can be compared with a

POINTER as long as the OFFSET can be converted to a

POINTER. This requires that the OFFSET is declared

with an AREA qualifier.

IBM1741I S Operands in comparison have differing

strong types.

Explanation: Comparisons of strongly-typed variables

are invalid unless both have the same type.

 dcl hp handle point;

 dcl hr handle rectangle;

 if hp = hr then

 ...

68 PL/I Messages and Codes

IBM1742I S Compared ORDINALs must have the

same ORDINAL type.

Explanation: ORDINALs cannot be compared with

other ORDINALs having a different ORDINAL type.

IBM1743I S Source and target in assignment have

differing strong types.

Explanation: Assignments of strongly-typed variables

are invalid unless both have the same type.

IBM1744I S Conversion of ORDINALs is invalid

unless both have the same ORDINAL

type.

Explanation: ORDINALs cannot be assigned to other

ORDINALs having different ORDINAL type.

IBM1745I S In a function that returns a strong type,

the type in any RETURN expression

must be the same as that returned by

the function.

Explanation: For instance, in a function that returns a

typed structure, any RETURN expression must have

the same structure type.

IBM1746I S VALUE and STATIC INITIAL

expressions must be constant.

Explanation: These expressions must be reducible to a

constant at compile-time.

 dcl a fixed bin static nonassignable init(0);

 dcl m fixed bin value(a);

 dcl n fixed bin static init(a);

IBM1747I S Function cannot be used before the

function’s descriptor list has been

scanned.

Explanation: This is a compiler restriction. Reorder the

declarations and blocks in your program. For example,

the following declarations should be in reverse order.

 dcl a char(csize(x, y));

 dcl csize entry(char(2), fixed bin)

 returns(fixed bin);

IBM1748I S Extents of automatic variables must not

depend on the extents of automatic

variables declared later in the same

block.

Explanation: Reorder the declarations in your

program. For example, the following declarations

should be in reverse order.

 dcl a char(length(b)) auto;

 dcl b char(10) auto;

IBM1749I S VALUE and INITIAL expressions must

be scalars.

Explanation: Aggregate expressions are not valid as

INITIAL and VALUE expressions.

IBM1750I S INITIAL attribute is invalid for the

STATIC LABEL variable variable-name

since it has the MEMBER attribute.

Explanation: LABEL variables require block activation

information; they cannot be initialized at compile-time.

If the variable were not a member of a structure, the

storage class would be changed to AUTOMATIC and

an E-level message would be issued instead.

IBM1751I S INITIAL attribute is valid for the

STATIC ENTRY variable variable-name

only if it has the LIMITED attribute.

Explanation: ENTRY variables that don’t have the

LIMITED attribute require block activation information,

and hence they cannot be initialized at compile-time.

IBM1753I S INITIAL attribute is invalid for the

STATIC FORMAT variable variable-name.

Explanation: FORMAT variables require block

activation information, and hence they cannot be

initialized at compile-time. If the variable were not a

member of a structure, the storage class would be

changed to AUTOMATIC and an error message would

be issued instead.

IBM1754I S An asterisk iteration factor can be

applied only to the last expression in

the INITIAL item list for variable-name.

Explanation: Since an asterisk iteration factor

completes the initialization of a variable, it cannot be

followed by more initial values.

 dcl a(10) fixed bin init(1, 2, (*) 0, 8);

IBM1755I S An asterisk iteration factor cannot be

used in the nested INITIAL item list for

variable-name.

Explanation: An asterisk iteration can be used only in

a non-nested INITIAL item list. The following example

is invalid.

Chapter 6. Compiler Severe Messages (1500-2399) 69

dcl a(20) fixed bin init((2) (1, (*) 2));

IBM1756I S The scalar variable variable-name has an

INITIAL list with more than one item.

Explanation: Only arrays can have an INITIAL list

with more than one element.

 dcl a fixed bin init(1, 2);

IBM1757I S LABEL constant in STATIC INITIAL for

the variable variable-name must be in the

same block as the LABEL being

initialized.

Explanation: Change the storage class to

AUTOMATIC.

 lx:;

 subproc: proc;

 dcl la static label init(lx);

 end;

IBM1758I S Only one element in the STATIC

UNION variable-name may have the

INITIAL attribute.

Explanation: If more than one element in a STATIC

UNION had an INITIAL value, it would not be clear

which should take precedence.

 dcl

 1 a union static,

 2 b fixed bin(31) init(17),

 2 c fixed bin(15) init(19);

IBM1759I S Non-null INITIAL values are not

supported for the STATIC

NONCONNECTED array variable-name

since it has the attributes UNALIGNED

BIT.

Explanation: The only supported INITIAL values for a

STATIC UNALIGNED BIT variable with inherited

dimensions are bit strings equal to ’’b.

 dcl

 1 a(10,2) static,

 2 b1 bit(1) init((20) ’1’b),

 2 b2 bit(1) init((20) ’0’b);

IBM1760I S LABEL constant in the STATIC INITIAL

list for variable-name must not be an

element of a LABEL CONSTANT array.

Explanation: Replace the subscripted LABEL with an

unsubscripted one or change the storage class to

AUTOMATIC.

 lx(1):;

 lx(2):;

 dcl la(2) static label init(lx(2), lx(1));

IBM1761I S ENTRY reference in INITIAL clause for

the STATIC ENTRY variable

variable-name must not be FETCHABLE.

Explanation: The variable y in DCL x ENTRY

LIMITED INIT(y) must not be FETCHABLE; y must

not be used in a FETCH or RELEASE statement, and y

must not have the OPTIONS(FETCHABLE) attribute.

IBM1762I S INITIAL iteration factor must have

computational type.

Explanation: Iteration factors in INITIAL lists must

have numeric or string types.

IBM1763I S INITIAL iteration factor must be a

scalar.

Explanation: An iteration factor in an INITIAL list

must not be an array, structure, or union.

IBM1764I S The BYVALUE attribute is invalid for

strings of nonconstant length.

Explanation: Strings with nonconstant length must be

passed and received by address.

 a: proc(x);

 dcl x char(*) byvalue;

IBM1765I S Length of string with the VALUE

attribute must be a constant or an

asterisk.

Explanation: Named strings must have a constant

length or a length determined from their VALUE.

70 PL/I Messages and Codes

dcl a fixed bin automatic;

 dcl s char(a) value(’variable length’);

IBM1766I S VALUE for variable-name must be

evaluated before its first use.

Explanation: Named constants must be evaluated

before they are used. Reorder the declarations so that

each named constant is declared before its first use.

 dcl a char(n) static init(’tooSoon’);

 dcl n fixed bin value(7);

IBM1767I S Control variable in DO statement must

not be a named constant.

Explanation: Named constants may not be used as

control variables in DO loops.

 dcl n fixed bin value(7);

 do n = 1 to 5;

IBM1768I S Control variable in DO statement must

have VARIABLE attribute.

Explanation: Constants may not be used as control

variables in DO loops.

 dcl ex external entry, (ev1, ev2) entry;

 do ex = ev1, ev2;

IBM1769I S Control variable has type POINTER, but

TO expression does not.

Explanation: If the control variable in a DO loop has

POINTER type, the TO expression must have POINTER

type. Implicit conversion from OFFSET to POINTER is

not supported in this context.

IBM1770I S Control variable in loop with TO clause

must have computational or locator

type.

Explanation: In a DO loop with a TO clause, the

control variable must have a type that allows a

comparison of less than and greater than. This is

possible only for computational and locator types.

IBM1771I S The variable name BUILTIN function may

be used as a pseudovariable in a

DO-loop only if the length of the

pseudovariable reference is known at

compile time.

Explanation: SUBSTR and UNSPEC may be used as

pseudovariables in DO-loops only if their derived

length is known at compile time.

IBM1772I S Source in DO loop initialization must

be scalar.

Explanation: In a DO loop of the form DO a = b TO c,

b must be a scalar.

IBM1773I S Control variable in DO statement must

be a scalar.

Explanation: In a DO loop of the form DO x = .., x

must be a scalar.

IBM1774I S Compiler restriction: control variable in

DO statement must not be a BASED or

CONTROLLED string or area that has

non-constant extent.

Explanation: In a DO loop of the form DO x = .., if x

is a string or an area, then it must have constant size or

must be static, automatic, or defined.

IBM1775I S BY expression must have computational

type.

Explanation: The expression in the BY clause of a DO

loop must have a string or numeric type. It cannot

have a locator type because it must be comparable to

zero.

IBM1776I S BY expression must not be COMPLEX.

Explanation: The expression in the BY clause of a DO

loop must be REAL.

 dcl z cplx float;

 do jx = 1 to 10 by z;

IBM1777I S TO expression must not be COMPLEX.

Explanation: The expression in the TO clause of a DO

loop must be REAL

 dcl z cplx float;

 do jx = 1 to z;

Chapter 6. Compiler Severe Messages (1500-2399) 71

IBM1778I S Control variable in loop with TO clause

must not be COMPLEX.

Explanation: In a DO loop with a TO clause, the

control variable must have a type that allows a

comparison of less than and greater than. This is

possible for numeric types only if the numeric type is

REAL.

IBM1779I S TO expression must have computational

type.

Explanation: The expression in the TO clause of a DO

loop must have a string or numeric type.

IBM1780I S SIGNAL ANYCONDITION is invalid.

Explanation: ON ANYCONDITION may be used to

trap conditions not otherwise trapped, but

ANYCONDITION may not be signalled.

IBM1781I S And, or and exclusive-or of source type

and target type is invalid.

Explanation: Bitwise operands must have a

computational type.

IBM1782I S And, or and exclusive-or of source type

and target type is invalid. If an ENTRY

should be invoked, an argument list

must be provided.

Explanation: An ENTRY cannot be used as a bitwise

operand. If the ENTRY is a function which should be

invoked, an argument list, even if it consists only of a

left and right parenthesis, must be provided.

IBM1783I S BASED variable without an implicit

qualifier must be explicitly qualified.

Explanation: A variable declared as BASED instead of

as BASED(reference) must always be explicitly

qualified. This is necessary even when the variable is

an argument to built-in functions such as STORAGE.

IBM1784I S The ENTRY variable-name may not be

used as a locator qualifier since it does

not have the RETURNS attribute.

Explanation: Functions, but not subprocedures, can be

used as locator qualifiers (and then only if they return

a locator).

IBM1785I S The variable variable-name is used as a

locator qualifier, but it is not a scalar.

Explanation: Only scalars can be used as locator

qualifiers.

IBM1786I S BUILTIN name built-in may not be used

as a locator qualifier.

Explanation: The named built-in function cannot be

used as a locator qualifier since it does not return a

POINTER.

IBM1787I S The ENTRY variable-name may not be

used as a locator qualifier.

Explanation: x(...)->y is invalid unless x returns a

POINTER or an OFFSET declared with a qualifying

AREA.

IBM1789I S The qualifier variable-name does not have

locator type.

Explanation: Only POINTERs and OFFSETs declared

with a qualifying AREA can be used as locator

qualifiers.

IBM1790I S Locator qualification is invalid for

variable-name.

Explanation: Locator qualification is valid only for

BASED variables.

IBM1791I S The locator qualified reference reference

name is ambiguous.

Explanation: All references must be unambiguous.

IBM1792I S The locator qualified reference reference

name is unknown.

Explanation: Locator qualified references must be

explicitly declared. BASED variables may not be

implicitly declared.

IBM1793I S The variable name BUILTIN function may

not be used as a pseudovariable in a

DO-loop.

Explanation: Only IMAG, REAL, SUBSTR and

UNSPEC may be used as pseudovariables in DO loops.

IBM1794I S Too many implicit locators are needed to

resolve the qualification for a variable.

Variable may be based on itself.

Explanation: An implicitly qualified variable must

require no more than 15 qualifiers to be completely

qualified. If it requires more, this may indicate its

qualifiers are too interdependent.

 dcl a pointer based(b);

 dcl b pointer based(a);

 a = null();

72 PL/I Messages and Codes

IBM1795I S The OFFSET variable variable-name may

not be used as a locator qualifier since it

was not declared with an AREA

specification.

Explanation: An OFFSET variable can be used as a

locator qualifier only if it can be converted to a pointer

value. This requires that the offset be declared with an

AREA qualification.

IBM1796I S Qualifier must be a scalar.

Explanation: Arrays, structures, and unions may not

be used as locator qualifiers.

IBM1797I S BASED variables may not contain

extents with nonconstant values if other

extents use the REFER option.

Explanation: The REFER option cannot be used in a

BASED variable which also has an extent that is set by

a non-constant expression.

IBM1798I S Invalid scale factor in PICTURE

specification.

Explanation: The picture character F specifies a

picture scaling factor for fixed-point decimal numbers.

The number of digits following the V picture character,

minus the integer specified with F, must be between

-128 and 127.

IBM1799I S Invalid characters in PICTURE

specification.

Explanation: The picture specification can contain

only A X 9 for the Character Data, and only 9 V Z * , .

/ B S + - $ CR DB Y K E F < > for the Numeric Data.

The characters between the insertion characters < > are

not affected by this rule.

IBM1800I S Invalid characters in the F scaling factor.

Explanation: The picture character F specifies a

picture scaling factor for fixed-point decimal numbers.

The format is F(n) where n can be any signed integer

between -128 and 127 inclusively.

IBM1801I S A character PICTURE string may have

only A, X, or 9.

Explanation: The picture specification can contain

only A, X, or 9 for the character data. Other characters

are not permitted.

IBM1802I S Invalid precision in PICTURE fixed

decimal precision.

Explanation: The number of digits for the precision

field within a numeric data picture specification must

be between one and the maximum allowed by the

LIMITS(FIXEDDEC) option.

IBM1803I S Too many T, I, or R appear in the

PICTURE specification.

Explanation: T, I, or R are the overpunched characters

in the picture specification. Only one overpunched

character can appear in the specification for a fixed

point number. A floating-point specification can contain

two (One in the mantissa field and one in the exponent

field).

IBM1804I S PICTURE specifications in C-format

items must be arithmetic.

Explanation: Character PICTURE specifications are

not permitted in C-format items.

IBM1805I S Precision in numeric PICTURE must

NOT be less than 1.

Explanation: The precision field within a numeric data

picture specification must contain at least one digit.

IBM1806I S The precision in FIXED DECIMAL

PICTURE is too big.

Explanation: The precision in the fixed decimal

picture specification must not exceed that specified in

the LIMITS compiler option.

IBM1807I S Precision in FLOAT DECIMAL

PICTURE is too big.

Explanation: The precision in the float decimal picture

specification is limited by the hardware to 18 digits.

IBM1808I S PICTURE string is empty.

Explanation: Null picture strings (’’P) are invalid.

IBM1809I S Exponent in FLOAT PICTURE is too

long. Exponent will be truncated to fit.

Explanation: The number of digits in the exponent of

the float decimal picture specification is limited to 4.

IBM1810I S Exponent in FLOAT PICTURE has no

digits.

Explanation: The exponent in the float decimal picture

specification is missing. It must be entered even if it is

zero.

Chapter 6. Compiler Severe Messages (1500-2399) 73

IBM1811I S Exponent in PICTURE specification

cannot contain V.

Explanation: V specifies an implicit decimal point.

Therefore, it is not permitted in the exponent field.

IBM1812I S FLOAT PICTURE cannot contain CR,

DB or F.

Explanation: Credit (CR), debit (DB), and scale factor

(F) are only allowed in the FIXED picture specification.

IBM1813I S PICTURE specification is too long.

Excess characters are truncated on the

right.

Explanation: The compiler restrictions on the length of

the picture specification are:

 fixed decimal: 254

 float decimal: 253

 character data: 511

IBM1814I S PICTURE string has an invalid floating

insertion character string.

Explanation: The floating insertion string is delimited

by < >. Floating is done by the > character. The string

can contain any character with one exception: the

delimiters themselves. In order to include the

characters < and > in the floating insertion string, these

angle brackets must be used in an escaped format. <<

must be used to specify the character <, and <> must

be used to specify the character >. So, for example,

<aaa<<bbb<>ccc> denotes the insertion string

aaa<bbb>ccc.

IBM1815I S BUILTIN name is a built-in subroutine. It

should be used only in CALL

statements and not as a function.

Explanation: Built-in subroutines cannot be used as

functions - they can only be called. For instance, the

following code is invalid

 dcl pliretc builtin;

 rc = pliretc(16);

IBM1816I S keyword item variable name is not

computational.

Explanation: The expression must be arithmetic or

string.

 dcl x label variable;

 put list(x);

IBM1817I S The KEYTO reference must be of type

CHARACTER or GRAPHIC.

Explanation: The KEYTO reference should have the

data type character or graphic. The reference can also

be a variable with a non-numeric picture string

specification.

IBM1818I S I/O-option conflicts with previous

options on the I/O-stmt statement.

Explanation: An option on the I/O statement conflicts

with prior options.

 open file(f1) input output;

 read file(f) into(x) set(p);

IBM1819I S The I/O-option option is multiply

specified on the I/O-stmt statement.

Explanation: Each option may be specified only once.

 read file(f1) ignore(1) ignore(2);

IBM1820I S Mandatory I/O-option option not

specified on the I/O-stmt statement.

Explanation: A required statement element has not

been specified.

 open output;

 write file(x);

IBM1821I S Reference for from-into-option is an

invalid element or aggregate type.

Explanation: An invalid scalar or aggregate reference

has been specified for the FROM or INTO clause in a

record I/O statement. The example below will cause

this message to be issued.

 dcl f1 file;

 read file(f1) into(f1);

IBM1822I S The keyword-type expression must be

computational.

Explanation: The expression in a KEY or KEYFROM

record I/O statement option must be computational

data.

IBM1823I S SET reference must have locator type.

Explanation: In the SET clause of an ALLOCATE or

LOCATE statement, the reference must have the type

POINTER or OFFSET.

74 PL/I Messages and Codes

IBM1824I S keyword expression must be scalar.

Explanation: The expression in the named keyword

clause must be scalar. This keyword clause could be an

IF, UNTIL, WHILE, WHEN, KEY, KEYFROM or

KEYTO clause.

 dcl f1 file;

 dcl x char(10);

 dcl z(10) char(10);

 read file(f1) into(x) key(z);

IBM1825I S The reference in the keyword clause

cannot be a built-in function reference.

Explanation: The references for the KEYTO, FROM,

INTO, and SET record I/O options cannot be built-in

functions. The example below will cause this message

to be issued.

 dcl f1 file;

 dcl x char(10);

 read file(f1) into(hex(x));

IBM1826I S The reference in the keyword clause

cannot be a function invocation.

Explanation: The references for the KEYTO, FROM,

INTO, and SET record I/O options cannot be entry.

IBM1827I S The reference in the keyword clause must

have CHARACTER type.

Explanation: The specified reference is invalid. It must

be of type character. The example below will cause this

message to be issued.

 dcl p pointer;

 display (’what is your name?’) reply(p);

IBM1828I S The reference in the keyword clause must

be a scalar variable.

Explanation: The specified reference is invalid. It must

be a scalar. The example below will cause this message

to be issued.

 dcl z(10) char(10);

 display (’what is your name?’) reply(z);

IBM1829I S The attributes of the argument in the

clause clause conflict with its usage.

Explanation: The declared attributes conflict with their

use in the statement.

 dcl f file stream;

 read file(f) into(x);

IBM1830I S keyword expression is not computational.

Explanation: The expression must be arithmetic or

string.

 dcl p pointer;

 put list(ptradd(p,2));

IBM1831I S The LOCATE reference variable-name is

not implicitly qualified and is invalid

without a SET clause.

Explanation: Provide a SET clause in the LOCATE

statement.

 dcl f file;

 dcl x char(10) based;

 locate x file(f1);

IBM1832I S SET reference must have POINTER

type.

Explanation: The reference in the SET clause of a

FETCH statement must have the POINTER type.

OFFSET types are not supported in this context.

IBM1833I S The aggregate reference in the from-into

clause clause must be CONNECTED.

Explanation: The specified reference in the FROM or

INTO record I/O option is invalid. The reference must

be connected. The example below will cause this

message to be issued.

 dcl f1 file;

 dcl 1 a(3),

 2 b(4) char(4),

 2 c(4) char(4);

 read file(f1) into(b);

IBM1834I S The expression in IGNORE must be

computational.

Explanation: The specified expression in the IGNORE

option of the READ statement must be computational.

The example below will cause this message to be

issued.

 dcl a area;

 read file(f1) ignore(a);

IBM1835I S The LOCATE reference variable-name is

not a level-1 BASED variable.

Explanation: The LOCATE reference may not be a

structure member and must have the storage attribute

BASED.

Chapter 6. Compiler Severe Messages (1500-2399) 75

IBM1836I S INITIAL attribute is invalid for

structures.

Explanation: The INITIAL attribute is valid only for

scalars and arrays of scalars.

IBM1837I S The reference in the keyword clause

cannot be a named constant.

Explanation: The specified reference is invalid. It

cannot be a named constant. The example below will

cause this message to be issued.

 dcl f1 file;

 dcl x char(2);

 dcl val fixed bin(15) value(4);

 read file(f1) into(x) keyto(val);

IBM1838I S The attributes of argument-number

conflict with its usage in data directed

I/O.

Explanation: Only AUTOMATIC, CONTROLLED,

PARAMETER, STATIC and and implicitly qualified

BASED variables are supported in data directed I/O.

 dcl q based;

 put data(q);

IBM1839I S DATA-directed I/O does not support

references with locators.

Explanation: Use a temporary or use LIST- or EDIT

directed I/O.

IBM1840I S Subscripted references are not allowed

in GET DATA.

Explanation: Use a temporary or use GET LIST or

GET EDIT.

IBM1841I S The first argument in the keyword-format

item is invalid.

Explanation: The format argument is outside the valid

range.

 put edit(’hi’) (a(-1));

IBM1842I S The field width specified in the

keyword-format item is too small for

complete input or output of the data

item.

Explanation: The width specified is too small for

complete processing.

 put edit(10190) (f(3));

IBM1843I S The fractional digits specified in the

keyword-format item is invalid.

Explanation: The fractional number of digits must be

less than or equal to the field width and non-negative.

IBM1844I S The argument in the R-format item is

not a format constant or format variable.

Explanation: The argument to the R-format item must

be either a format constant or a format variable.

IBM1845I S The significant digits specified in

E-format item is invalid.

Explanation: The number of significant digits must be

greater than or equal to the number of fractional digits,

less than or equal to the field width and non-negative.

IBM1846I S The format-item format item is invalid

with GET/PUT STRING.

Explanation: G, L, PAGE, LINE, SKIP, and COLUMN

format items may not be used in GET/PUT EDIT

statements using the STRING option.

IBM1847I S GOTO target is inside a (different) DO

loop.

Explanation: The target of a GOTO cannot be inside a

DO loop unless the GOTO itself is in the same DO

loop.

IBM1848I S The INCLUDE file for include-stmt-arg

could not be found.

Explanation: The INCLUDE file could not be found or

opened.

IBM1849I S Under CMPAT(V1), bounds must not be

greater than 32767.

Explanation: Under CMPAT(V1), bounds must be

between -32768 and 32767 inclusive. To use bounds

outside this range, specify a different CMPAT option.

IBM1850I S Under CMPAT(V1), bounds must not be

less than -32768.

Explanation: Under CMPAT(V1), bounds must be

between -32768 and 32767 inclusive. To use bounds

outside this range, specify a different CMPAT option.

IBM1851I S The INCLUDE file include-file-name

could not be opened.

Explanation: An unexpected error occurred while

trying to open an include source file.

76 PL/I Messages and Codes

IBM1852I S The preprocessor preprocessor is not

known to the compiler.

Explanation: A preprocessor specified in the PP

compiler option is unknown.

IBM1853I S Variable in statement statement must be

a FETCHABLE entry constant.

Explanation: The argument in the FETCH and

RELEASE statements must be a FETCHABLE entry

constant.

IBM1854I S Fetch of the PP name preprocessor failed

with ONCODE= oncode.

Explanation: The compiler attempted to load the

module specified in the PP-DEF installation option for

the preprocessor.

IBM1855I S Preprocessor PP name terminated

abnormally with ONCODE=

oncode-value.

Explanation: A terminating error was detected in a

preprocessor invoked by the compiler.

IBM1856I S Fetch of the user exit initialization

routine failed with ONCODE= oncode.

Explanation: The compiler was unable to load the

user exit.

IBM1857I S User exit routine terminated abnormally

with ONCODE= oncode-value.

Explanation: The compiler detected a terminating

error in the user exit.

IBM1858I S Compile aborted by user exit.

Explanation: The user exit aborted the compile by

setting the return code to 16.

IBM1859I S The first statement must be a

PROCEDURE or PACKAGE statement.

Explanation: All other statements must be enclosed in

a PACKAGE or PROCEDURE statement.

IBM1860I S PACKAGE statement must be the first

statement in the program.

Explanation: PACKAGE statements cannot follow any

other statements in the program.

IBM1861I S All statements other than DECLARE,

DEFAULT and PROCEDURE statements

must be contained inside a

PROCEDURE.

Explanation: This message can occur, for instance, if

the first PROCEDURE statement is invalid or if a

PROCEDURE contains too many END statements.

IBM1862I S Statements are nested too deep.

Explanation: The nesting of PROCEDURE, DO,

SELECT and similar statements is greater than that

supported by the compiler. Rewrite the program so that

it is less complicated.

IBM1863I S Variables declared in a PACKAGE

outside of any PROCEDURE must have

the storage class STATIC, BASED or

CONTROLLED or must be DEFINED

on STATIC.

Explanation: AUTOMATIC variables must be declared

inside a PROCEDURE, and DEFINED variables

declared outside a PROCEDURE must be defined on

STATIC.

IBM1864I S The function name built-in is not

supported.

Explanation: Support for the indicated built-in

function has been discontinued.

IBM1865I S The only BASED variables supported in

data-directed i/o are those that have

constant extents and that are implicitly

qualified by simple variables.

Explanation: The variable implicitly qualifying the

BASED variable must be a scalar that is not part of an

array, structure or union, and it must be a POINTER

with either the AUTOMATIC or STATIC storage

attribute.

IBM1866I S The keyword statement is not supported.

Explanation: Support for the indicated statement has

been discontinued.

IBM1867I S The pseudovariable variable name is not

supported.

Explanation: Support for the indicated pseudovariable

has been discontinued.

IBM1868I S Invalid use of iSUB.

Explanation: iSUB references are permitted only in

DEFINED clauses.

Chapter 6. Compiler Severe Messages (1500-2399) 77

IBM1869I S ALLOCATE with attribute lists is not

supported.

Explanation: For example, neither of the following are

supported.

 allocate x(5);

 allocate y char(10);

IBM1870I S ON statement cannot specify both

SYSTEM and an ON-unit.

Explanation: If the SYSTEM action is specified in an

ON statement, an ON-unit may not be specified as

well.

 on error system stop;

IBM1871I S The reference in the CONDITION

condition must have type CONDITION.

Explanation: x in CONDITION(x) refers to a variable

that does not have the type CONDITION.

IBM1872I S The reference in the condition-name

condition must have type FILE.

Explanation: The reference in the named FILE

condition does not have the type FILE.

IBM1873I S Nesting of DO statements exceeds the

maximum.

Explanation: DO statements can be nested only 50

deep. Simplify the program.

IBM1874I S Nesting of IF statements exceeds the

maximum.

Explanation: IF statements can be nested only 50

deep. Simplify the program.

IBM1875I S Nesting of SELECT statements exceeds

the maximum.

Explanation: SELECT statements can be nested only

50 deep. Simplify the program.

IBM1876I S Nesting of blocks exceeds the

maximum.

Explanation: Blocks may be nested only 30 deep.

IBM1878I S The reference in the EVENT clause must

have type EVENT.

Explanation: A reference of any other type is invalid

and is invalid.

IBM1879I S The reference in the TASK clause must

have type TASK.

Explanation: A reference of any other type is invalid

and is invalid.

IBM1880I S Reference must have FILE type.

Explanation: A file variable or constant is required.

 dcl x format variable;

 open file(x);

IBM1881I S The reference reference name is

ambiguous.

Explanation: Enough qualification must be provided

to make any reference unique.

IBM1882I S The ALLOCATE reference variable-name

is not a level-1 BASED or

CONTROLLED variable.

Explanation: References in ALLOCATE statements

must be level-1 variable names, and those variables

must have the BASED or CONTROLLED attributes.

IBM1883I S The ALLOCATE reference variable-name

is not implicitly qualified and is invalid

without a SET clause.

Explanation: Provide a SET clause in the ALLOCATE

statement.

 dcl a based;

 allocate a;

IBM1884I S The reference variable-name in the

GENERIC attribute list is not a scalar

ENTRY reference.

Explanation: A reference of any other type is invalid.

IBM1885I S IN option reference must have AREA

type.

Explanation: A reference of any other type is invalid.

78 PL/I Messages and Codes

IBM1886I S The REFER object name reference name is

ambiguous.

Explanation: Provide enough qualification to make the

name unique.

 dcl

 1 a based,

 2 b1,

 3 c bit(8) aligned,

 3 d char(10),

 2 b2,

 3 c bit(8) aligned,

 3 d char(10),

 2 e(n refer(c)) char(10);

IBM1887I S The REFER object reference name must be

an element of the same structure where

it is used, and must precede its first

usage in that structure.

Explanation: The named REFER object cannot be

declared in another structure or in the same structure,

but after its first usage.

IBM1888I S The REFER object reference name must

have computational type.

Explanation: It must be possible to convert the REFER

object safely to and from REAL FIXED BIN(31,0).

 dcl

 1 a based,

 2 b,

 3 c pointer,

 3 d char(10),

 2 e(n refer(c)) char(10);

IBM1889I S The REFER object reference name must be

a scalar.

Explanation: The REFER object may not have any

dimensions in its declaration and neither may any of its

parents.

 dcl

 1 a based,

 2 b(8),

 3 c fixed bin,

 3 d char(10),

 2 e(n refer(c)) char(10);

IBM1890I S The REFER object reference name must

precede the first level-2 element

containing a REFER.

Explanation: Reorder the elements in the declaration

so that all REFER objects precede the first level-2

element containing a REFER.

 dcl

 1 a based,

 2 b fixed bin,

 2 c char(n refer(b)),

 2 d fixed bin,

 2 e char(n refer(d));

IBM1891I S REFER is not allowed on non-BASED

variables.

Explanation: REFER can be used only in declarations

of BASED variables.

IBM1892I S The REFER object reference name must

have constant length.

Explanation: If a REFER object is a string, it must

have constant length.

IBM1893I S REFER is allowed only on members of

structures and unions.

Explanation: REFER cannot be used only in

declarations of scalars or arrays of scalars.

IBM1894I S FREE references must not be

subscripted.

Explanation: In the statement FREE x, x must not

have any subscripts or arguments.

IBM1895I S Operations involving

OPTIONS(language-name) routines are

not supported if the DIRECTED option

applies.

Explanation: If the DIRECTED(ASM) option is used,

comparisons and assignments are not supported for

ENTRYs declared with OPTIONS(ASM). Similarly, if

the DIRECTED(COBOL) option is used, comparisons

and assignments are not supported for ENTRYs

declared with OPTIONS(COBOL).

IBM1896I S OPTIONS(language-name) is not

supported for ENTRY VARIABLEs if the

DIRECTED option applies.

Explanation: If the DIRECTED(ASM) option is used,

ENTRY VARIABLES may not be declared with

OPTIONS(ASM). Similarly, if the DIRECTED(COBOL)

option is used, ENTRY VARIABLES may not be

Chapter 6. Compiler Severe Messages (1500-2399) 79

declared with OPTIONS(COBOL).

IBM1897I S Simple defining is supported only for

scalars, for structures with constant

extents matching those in the base

variable, and for arrays of such scalars

and structures as long as the array is not

based on a controlled variable.

Explanation: If simple defining is not intended,

specify POSITION(1) to force string defining.

IBM1898I S The base reference in the DEFINED

attribute cannot be a built-in or type

function.

Explanation: You can define a variable only another

user variable.

IBM1899I S The base variable in the DEFINED

attribute cannot be BASED, DEFINED

or CONSTANT.

Explanation: Convert the DEFINED and base

variables into a UNION.

IBM1900I S Extents for DEFINED bit structures

must be constant.

Explanation: All bounds and string lengths for

DEFINED structures and unions consisting of bit

strings must be constant.

IBM1901I S POSITION attribute is invalid without

the DEFINED attribute.

Explanation: The POSITION attribute has no meaning

without DEFINED attribute.

IBM1902I S The expression in the POSITION

attribute must have computational type.

Explanation: The POSITION expression must have a

numeric or string type.

IBM1903I S The expression in the POSITION

attribute for bit string-overlay defining

must be an integer constant.

Explanation: The compiler must be able to evaluate

the expression to an integer constant when it scans the

POSITION attribute.

IBM1904I S Variable following the free clause clause

must be level-1 and either BASED or

CONTROLLED.

Explanation: A variable that is either based or

controlled should immediately follow the FREE

keyword.

IBM1905I S IN or SET option option invalid after the

CONTROLLED variable in the

ALLOCATE or FREE clause clause.

Explanation: An invalid option immediately follows a

controlled variable in an ALLOCATE or FREE

statement.

IBM1906I S The reference qualifying an OFFSET

attribute must be a scalar AREA

reference.

Explanation: Using the specified AREA reference to

qualify an OFFSET variable is invalid. The reference

must be scalar. The following example will issue this

message.

 dcl a(10) area;

 dcl o offset(a);

IBM1907I S Extents for CONTROLLED variables

cannot be specified using asterisks or

REFER.

Explanation: The extent specified for the controlled

variable is invalid. The following example will emit this

message.

 dcl c(*) char(10) controlled;

IBM1908I S Extents for attribute variables cannot be

specified using asterisks or REFER.

Explanation: Extents for AUTOMATIC and DEFINED

variables must be specified by expressions.

IBM1909I S The attribute attribute conflicts with the

attribute attribute.

Explanation: The named attributes, for example

PARAMETER and INITIAL, are mutually exclusive.

IBM1910I S The attributes given in the declaration

for identifier conflict with its use as a

parameter.

Explanation: Parameters can have no storage

attributes other than CONTROLLED. Parameters also

cannot have any of the attributes BUILTIN,

CONDITION, CONSTANT, EXTERNAL, and

GENERIC.

IBM1911I S Repeated specifications of the

unsubscripted statement label character

are in error.

Explanation: All statement labels in any block must be

unique.

80 PL/I Messages and Codes

IBM1912I S Indices specified for the LABEL character

have already been specified.

Explanation: All statement labels in any block must be

unique.

IBM1913I S ON-units may not be labeled. All such

labels will be ignored.

Explanation: A BEGIN block or a statement associated

with an ON clause may not have a label.

IBM1914I S GOTO target must be a LABEL

reference.

Explanation: x in GOTO x must have type LABEL. x

must not have type FORMAT.

IBM1915I S GOTO target must be a scalar.

Explanation: x in GOTO x must not be an array.

IBM1916I S The procedure/entry proc-name has

already been defined.

Explanation: Sister procedures must have different

names.

 a: proc;

 b: proc;

 end;

 b: proc;

 end;

 end;

IBM1917I S Program contains no valid source lines.

Explanation: The source contains either no statements

or all statements that it contains are invalid.

IBM1918I S All the names in the ORDINAL

ordinal-name have been previously

declared.

Explanation: None of the names in an ORDINAL

should have been declared elsewhere. If they are,

perhaps the ORDINAL definition has been accidentally

repeated.

IBM1919I S The EXTERNAL name string is specified

for the differing internal names name

and name.

Explanation: Each EXTERNAL name must have only

one INTERNAL name. So, for example, the following

declares would be illegal since the external name Z is

specified for two different internal names: X and Y.

 dcl X fixed bin(31) ext(’Z’);

 dcl Y fixed bin(31) ext(’Z’);

IBM1920I S FIXED BINARY constant contains too

many digits.

Explanation: The maximum precision of FIXED

BINARY constants is set by the FIXEDBIN suboption of

the LIMITS compiler option.

IBM1921I S FIXED DECIMAL constant contains too

many significant digits.

Explanation: The maximum precision of FIXED

DECIMAL constants is set by the FIXEDDEC suboption

of the LIMITS compiler option.

IBM1922I S Exponent in FLOAT BINARY constant

contains more digits than the

implementation maximum.

Explanation: The exponent in a FLOAT BINARY

constant may contain no more than 5 digits.

IBM1923I S Mantissa in FLOAT BINARY constant

contains more significant digits than the

implementation maximum.

Explanation: The mantissa in a FLOAT BINARY

constant may contain no more than 64 digits.

IBM1924I S Exponent in FLOAT DECIMAL constant

contains more digits than the

implementation maximum.

Explanation: The exponent in a FLOAT BINARY

constant may contain no more than 4 digits.

IBM1925I S Mantissa in FLOAT DECIMAL constant

contains more significant digits than the

implementation maximum.

Explanation: The mantissa in a FLOAT DECIMAL

constant may contain no more than maximum number

of digits allowed on the platform.

IBM1926I S Constants must not exceed 8192 bytes.

Explanation: The number of bytes used to represent a

constant in your program must not exceed 8192. This

limit holds even for bit strings where the internal

representation will consume only one-eighth the

number of bytes as the external representation does.

Chapter 6. Compiler Severe Messages (1500-2399) 81

IBM1927I S SIZE condition raised by attempt to

convert source-value to target-attributes

Explanation: The source value is not in the domain of

the target.

 dcl x fixed bin(15);

 x = 172900;

IBM1928I S ERROR raised while building

CEEUOPT from PLIXOPT.

Explanation: The ERROR condition was while the

compiler was trying to build CEEUOPT from PLIXOPT.

There may an error in the Language Environment APIs

used by the compiler. Contact IBM service.

IBM1929I S Unable to open file file-name in routine

proc-name(line-number).

Explanation: The compiler was unable to open the

named temporary file used to communicate with the

code generation module. Check the value of the TMP

environment variable.

IBM1930I S Unable to write to file file-name . Disk

may be full.

Explanation: The compiler was unable to write to a

temporary file used to communicate with the code

generation module. The disk to which the TMP

environment variable points may be full.

IBM1932I S Unable to close file file-name in routine

proc-name(line-number).

Explanation: The compiler was unable to close the

named temporary file used to communicate with the

code generation module. Check the value of the TMP

environment variable.

IBM1933I S Unable to open temporary files because

the path and filename are too long.

Explanation: Shorten the name of the source file or

the directory specified by the TMP variable.

IBM1934I S If a parameter is a structure with

nonconstant extents, only matching

structures are supported as arguments.

Explanation: Assign the structure to a temporary and

pass the temporary, or omit the parameter description

in the entry declaration.

IBM1935I S Structure expressions as arguments are

not supported for undescribed

parameters.

Explanation: Assign the structure to a temporary and

pass the temporary, or describe the parameter in the

entry declaration.

IBM1936I S Invocation of compiler backend ended

abnormally.

Explanation: The back end of the compiler either

could not be found or else it detected an error from

which it could not recover. The latter problem can

sometimes occur, on Intel, if your disk is short of free

space and, on the z/Series, if your job’s region size is

not large enough. Otherwise, report the problem to

IBM.

IBM1937I S Extents for parameters must be asterisks

or restricted expressions with

computational type.

Explanation: For parameters, each array bound, string

length and AREA size must be specified either with an

asterisk or with a restricted expression that has

computational type.

IBM1938I S Message file file name not found.

Explanation: The message must be in the current

directory or in one of the directories specified in the

DPATH environment variable.

IBM1939I S Exponentiation operands must have

computational type.

Explanation: The operands in an exponentiation must

have numeric or string type.

IBM1940I S note

Explanation: This message is used by %NOTE

statements with a return code of 12.

IBM1941I U note

Explanation: This message is used by %NOTE

statements with a return code of 16.

IBM1942I S The scale factor specified in BUILTIN

name built-in must be a restricted

expression with integer type.

Explanation: This applies to all the precision-handling

built-in functions.

82 PL/I Messages and Codes

IBM1943I S The number of error messages allowed

by the FLAG option has been exceeded.

Explanation: Compilation will terminate when the

number of messages has exceeded the limit set in the

FLAG compiler option.

IBM1944I S The precision specified in BUILTIN name

built-in must be a restricted expression

with integer type.

Explanation: This applies to all the precision-handling

built-in functions.

IBM1945I S Extents for BASED variable may not

contain asterisks.

Explanation: Extents in BASED variables must be

either constants or specified with the REFER option.

IBM1946I S Reference must be an AREA variable.

Explanation: The specified reference is invalid. An

AREA variable is needed.

IBM1947I S The reference to the GENERIC variable

GENERIC variable name cannot be

resolved.

Explanation: The argument list in a GENERIC

reference must match one of the generic descriptors in

one of that GENERIC’s WHEN clauses. If an

OTHERWISE clause was specified, the argument list

must have the same number of elements as the

OTHERWISE entry reference.

IBM1948I S condition-name condition with

ONCODE=oncode-value raised while

evaluating restricted expression.

Explanation: Compile-time evaluation of a restricted

expression raised a condition.

 display(1/0);

IBM1949I S Parameter name identifier appears more

than once in parameter list.

Explanation: Each identifier in a parameter list must

be unique.

 a: proc(b, c, b);

IBM1951I S storage class variables must be named.

Explanation: Variables with the CONTROLLED

attribute must be named, and a variable with the

EXTERNAL attribute may not have an * instead of a

name unless a name is given with the EXTERNAL

attribute itself.

IBM1952I S INITIAL CALL cannot be used to

initialize STATIC data.

Explanation: An INITIAL CALL must be evaluated at

run-time; it can be used to initialize only non-STATIC

data.

IBM1953I S The attributes of the EXTERNAL

variable variable name do not match those

in its previous declaration.

Explanation: EXTERNAL variables can be declared in

more than one procedure in a compilation unit, but the

attributes in those declarations must match.

IBM1954I S The base reference in the DEFINED

attribute must be CONNECTED.

Explanation: Variables cannot be DEFINED on

NONCONNECTED references.

IBM1955I S Repeated declarations of the

EXTERNAL attribute variable name are not

supported.

Explanation: EXTERNAL FILE constants and

CONDITIONs may be declared only once in a

compilation unit. Remove all but the outermost declare.

IBM1956I S ITERATE is valid only for iterative

DO-groups.

Explanation: ITERATE is not valid inside type-I do

groups.

IBM1957I S The WAIT event number specification

must be computational.

Explanation: The expression representing the number

of items to wait for in a WAIT statement is invalid. The

expression must be of computational type. The

following example will issue this message.

 dcl e event;

 dcl p pointer:

 wait (e) (p);

IBM1958I S References in the WAIT statement must

be of type EVENT.

Explanation: The event reference in the WAIT

statement is invalid. It must be of type EVENT. The

Chapter 6. Compiler Severe Messages (1500-2399) 83

following example will issue this message.

 dcl e entry;

 wait (e);

IBM1959I S Invalid aggregate expression specified

in WAIT statement.

Explanation: References in WAIT statements can be

scalars. The only valid aggregate reference is a simple

array of events. Structures, unions, and arrays of

structures or unions would be flagged as as errors.

IBM1960I S type type type type name is not defined.

Explanation: If ORDINAL x is used in a declaration, x

must be a defined ORDINAL type.

IBM1961I S INITIAL values for type type type type

name must be in increasing order.

Explanation: Any values specified in INITIAL clauses

in an ORDINAL definition must be in strictly

increasing order.

IBM1962I S INITIAL values for type type type type

name must be less than 2G.

Explanation: ORDINAL values must fit in the range

of a FIXED BIN(31) variable.

IBM1963I S BUILTIN name argument must have

ORDINAL type.

Explanation: An expression contains the named

built-in function with an argument that is not an

ORDINAL. This message applies, for example, to the

ORDINALNAME, ORDINALPRED and

ORDINALSUCC built-in functions.

IBM1964I S The attributes derived from the

PROCEDURE statement for the ENTRY

constant variable name do not match

those in its explicit declaration.

Explanation: A label on a PROCEDURE statement

constitutes a declaration for an ENTRY constant with

that name. That name also appears in a DECLARE

statement, but the attributes in those two declarations

do not match.

IBM1965I S There is more than one element named

reference name in the class structure name.

Explanation: All references must be unambiguous.

IBM1966I S There is no element named reference

name in the class structure name.

Explanation: HANDLE qualified references must be

explicitly declared.

IBM1967I S The ENTRY variable-name may not be

used as a handle since it does not have

the RETURNS attribute.

Explanation: Functions, but not subprocedures, can be

used as handles (and then only if they return a handle).

IBM1968I S The ENTRY variable-name may not be

used as a handle.

Explanation: x(...)=>y is invalid unless x returns a

HANDLE.

IBM1969I S The variable variable-name is used as a

handle, but it is not a scalar.

Explanation: Only scalars can be used as handles.

IBM1970I S BUILTIN name built-in may not be used

as a handle.

Explanation: The named built-in function cannot be

used as a handle.

IBM1971I S The GENERIC variable variable-name

may not be used as a handle.

Explanation: GENERIC references may not be used as

handles.

IBM1972I S variable-name may not be used as a

handle.

Explanation: x=>y is invalid unless x has the

HANDLE attribute

IBM1976I S DBCS characters are allowed only in G

and M constants.

Explanation: Hex strings (strings ending in one of the

suffixes X, BX, B4, GX or XN), bit strings, (strings

ending in the suffix B), and character strings not

ending in the suffix M must contain only SBCS

characters.

IBM1977I S SBCS characters are not allowed in G

constants.

Explanation: Mixed SBCS and DBCS is allowed only

in M constants.

84 PL/I Messages and Codes

IBM1978I S Invalid use of SBCS encoded as DBCS.

Explanation: Outside of comments, SBCS can be

encoded as DBCS only as part of an identifier.

IBM1981I S BUILTIN function may not be used

outside a procedure.

Explanation: The named built-in function may be

used only inside procedures.

IBM1984I S File filename could not be opened.

Explanation: The named file could not be opened.

Make sure that the file is named correctly, that it exists,

that it has the proper attributes and that you have the

needed permissions to access it.

IBM1985I S File filename could not be found.

Explanation: The file does not exist in the current

directory, in the path specified by the appropriate

environment variable. Check to see that the file name

was entered correctly.

IBM1986I S The path for file filename could not be

found.

Explanation: The path does not exist for the drive

specified, or the path was entered incorrectly.

IBM1987I S File filename could not be opened

because too many files have been

opened.

Explanation: The maximum number of open files has

been reached. On some platforms, there is a system

limit on the number of open files, but the compiler also

has a limit of 2047 include files.

IBM1988I S File filename could not be opened due to

an access violation.

Explanation: Either the file is in use or you tried to

open a file for which you do not have sufficient

privilege.

IBM1989I S File name or extension for filename is too

long.

Explanation: The length of the file name or extension

is greater than the maximum allowed.

IBM1990I S File name filename has invalid format.

Explanation: Apart from z/OS UNIX, file names

should not contain quotes. Under z/OS UNIX, if the

file name does contain quotes, it should specify a PDS

member.

IBM1991I S The load of the SQL preprocessor failed

with ONCODE= oncode. DB2/2 must be

properly installed before the SQL

preprocessor can be loaded.

Explanation: The compiler attempted to load the SQL

preprocessor but was unable to do so. Check that

DB2/2 is properly installed.

IBM1992I S A file name must be specified.

Explanation: The command syntax is:

 PLI {d:}{path}filename{.ext} {(options}

IBM1993I S Compilation terminated by

ATTENTION condition.

Explanation: If you hit CTL-BRK during the

compilation, the compilation will stop.

IBM1994I S Internal compiler error: storage header

has been overwritten

Explanation: This message indicates that there is an

error in the front end of the compiler. Please report the

problem to IBM.

IBM1995I S Internal compiler error: storage tail has

been overwritten.

Explanation: This message indicates that there is an

error in the front end of the compiler. Please report the

problem to IBM.

IBM1996I S Internal compiler error: free amount free

request size does not match allocated size

allocated size.

Explanation: This message indicates that there is an

error in the front end of the compiler. Please report the

problem to IBM.

IBM1997I S Internal compiler error: no WHEN

clause satisfied within module name

Explanation: This message indicates that there is an

error in the front end of the compiler. Please report the

problem to IBM.

IBM1998I S Internal compiler error: protection

exception in module name

Explanation: This message indicates that there is an

error in the front end of the compiler. Please report the

problem to IBM.

Chapter 6. Compiler Severe Messages (1500-2399) 85

IBM1999I S note

Explanation: This message indicates that there is an

error in the back end of the compiler. Please report the

problem to IBM.

IBM2001I S A LICENSE REQUEST WAS DENIED

FOR PL/I, PID 5655-B22. THE REQUEST

ENDED WITH STATUS CODE STATUS

CODE AND RETURN CODE RETURN

CODE. THE COMPILATION WILL BE

TERMINATED.

Explanation: IBM License Manager is installed on

your system, but the request to verify that you have a

license to use the PL/I compiler has failed.

IBM2002I S Close of file filename failed. There may

be a space problem.

Explanation: An error has occurred while attempting

to close a file.

IBM2003I S Write to file filename failed. There may

be a space problem.

Explanation: An error has occurred while attempting

to write to a file.

IBM2004I S ATTACH reference must be declared

with either a null argument list or with

an argument list specifying only one

argument.

Explanation: If the ATTACH reference is declared

without an argument list, change the declare to specify

a null argument list by adding a pair of parentheses.

IBM2005I S ATTACH reference must be an ENTRY

reference.

Explanation: GENERIC references and built-in

subroutines may not be attached.

IBM2006I S ATTACH reference cannot be a function

reference.

Explanation: An ATTACH reference must not have the

RETURNS attribute, even if the value returned is an

ENTRY.

IBM2007I S ATTACH reference must use

LINKAGE(SYSTEM).

Explanation: Unless the default linkage is overridden,

OPTIONS(LINKAGE(SYSTEM)) must be specified on

the declare for the ATTACH reference.

IBM2008I S ATTACH reference cannot be

FETCHABLE.

Explanation: An ATTACH reference may not be used

in a FETCH or RELEASE statement.

IBM2009I S ATTACH reference cannot be a nested

procedure.

Explanation: An ATTACH reference must be a level-1

procedure, although it does need to be external.

IBM2010I S ATTACH reference, if an ENTRY

variable, must be a LIMITED ENTRY.

Explanation: Specify the LIMITED attribute in the

declare for the ENTRY VARIABLE.

IBM2011I S ATTACH reference, if it has an

argument, must declare that argument as

POINTER BYVALUE.

Explanation: No other argument types are support in

ATTACH statements.

IBM2012I S The attribute keyword attribute is invalid

in an ALIAS descriptor.

Explanation: Like RETURNS descriptors, the attributes

STRUCTURE, UNION and DIMENSION are not

permitted. Hence, the following are invalid:

 define alias array (10) fixed bin;

 define alias point 1, 2 fixed bin, 2 fixed bin;

IBM2013I S Only one description is allowed in an

ALIAS definition.

Explanation: The syntax allows the name in an alias

definition to be followed by a description list, but that

description list must consist of exactly one description.

The following is invalid:

 define alias x fixed bin, float bin;

IBM2014I S Extents in type descriptors must be

constant.

Explanation: In ALIAS and STRUCTURE descriptors,

each string length and AREA size must be specified

with a restricted expression. Like RETURNS

descriptors, asterisks and non-constant expressions are

not permitted.

86 PL/I Messages and Codes

IBM2015I S VALUE attribute conflicts with data

type.

Explanation: The VALUE attribute is allowed only

with computational data types as well as pointer, offset,

handle and ordinal.

IBM2016I S VALUE and INITIAL attributes are not

allowed with typed structures.

Explanation: The VALUE attribute is valid only on

scalars, and the INITIAL attribute is not allowed on

typed structures.

IBM2017I S INITIAL TO is valid only for NATIVE

POINTER.

Explanation: INITIAL TO is not valid for

NONNATIVE POINTERs. It is also invalid for

non-POINTERs since they cannot be assigned

addresses.

IBM2018I S INITIAL TO is supported only for

STATIC variables.

Explanation: INITIAL TO is not supported for

variables belonging to any storage class other than

STATIC.

IBM2019I S Unsupported LINKAGE used with the

LIST attribute.

Explanation: Specify OPTIONS(LINKAGE(OPTLINK))

or, on WINDOWS, OPTIONS(LINKAGE(CDECL)) on

the PROCEDURE or ENTRY having a parameter with

the LIST attribute and then recompile.

IBM2020I S There is more than one element named

reference name in the typed structure

structure name.

Explanation: All references must be unambiguous.

IBM2021I S There is no element named reference

name in the structure structure name.

Explanation: All structure references must be

explicitly declared.

IBM2022I S The ENTRY variable-name may not be

used as a typed structure qualifier since

it does not have the RETURNS

attribute.

Explanation: Functions, but not subprocedures, can be

used as typed structure qualifiers (and then only if they

return a typed structure).

IBM2023I S The ENTRY variable-name may not be

used as a typed structure qualifier.

Explanation: x(...)=>y is invalid unless x returns a

typed structure.

IBM2024I S The array variable variable-name may be

used as a typed structure qualifier only

if it is completely subscripted before its

dot qualification.

Explanation: For instance, if x is an array of structure

t with member m, x.m(2) is invalid. However, x(2).m is

valid.

IBM2025I S BUILTIN name built-in may not be used

as a typed structure qualifier.

Explanation: The named built-in function cannot be

used as a typed structure qualifier.

IBM2026I S The GENERIC variable variable-name

may not be used as a typed structure

qualifier.

Explanation: GENERIC references may not be used as

typed structure qualifiers.

IBM2027I S variable-name may not be used as a

structure qualifier.

Explanation: x.y is invalid unless x is a structure, a

union or a function returning a typed structure.

IBM2028I S TYPEs must be defined before their use.

Explanation: The DEFINE STRUCTURE or DEFINE

ALIAS statement for a type x must precede any of use

of x as attribute type. The following two statements

should be in the opposite order.

 dcl x type point;

 define structure

 1 point

 2 x fixed bin(31),

 2 y fixed bin(31);

IBM2029I S DEFINE STRUCTURE must specify a

structure or union type.

Explanation: A DEFINE STRUCTURE statement must

specify a structure or union type with level numbers.

 define structure int fixed bin;

Chapter 6. Compiler Severe Messages (1500-2399) 87

IBM2030I S INITIAL attribute is invalid in structure

definitions.

Explanation: Defined structure types must be

initialized via assignments.

IBM2031I S Storage attributes are invalid in

structure definition.

Explanation: Storage attributes, such as AUTOMATIC

and BYADDR, must be specified with variables

declared with structure type.

IBM2032I S DEFINE STRUCTURE may not specify

an array of structures.

Explanation: The level 1 name in a structure definition

may not have the DIMENSION attribute.

IBM2033I S Only one description is allowed in a

structure definition.

Explanation: The syntax allows the name in a

structure definition to be followed by a description list,

but that description list must consist of exactly one

structure description. The following is invalid:

 define structure

 1 point

 2 x fixed bin(31),

 2 y fixed bin(31),

 1 rectangle

 2 upper_left type point,

 2 lower_right type point;

IBM2034I S The argument to the type function type

function must be an ordinal type name.

Explanation: The argument to the type functions

FIRST and LAST must be a type name, and that type

must be an ordinal type.

IBM2035I S The argument to the type function type

function must be a structure type name.

Explanation: The argument to the type function NEW

must be a type name, and that type must be a structure

type.

IBM2036I S The second argument to the type

function type function must have locator

type.

Explanation: The second argument to the BIND type

function must be a pointer or offset value that is to be

converted to a handle to the structure type named as

the first argument.

IBM2037I S The first argument to the type function

type function must be a structure type

name.

Explanation: The first argument to the type functions

BIND must be a type name, and that type must be a

structure type.

IBM2038I S BUILTIN name argument must have

HANDLE type.

Explanation: An expression contains the named

built-in function with an argument that is not a

HANDLE.

IBM2039I S Argument to variable name

pseudovariable must be a HANDLE.

Explanation: The TYPE pseudovariable can be applied

only to HANDLEs.

IBM2040I S The argument to the type function type

function must be a defined type.

Explanation: The first argument to the type function

SIZE must be the name of a defined type.

IBM2041I S The first argument to the type function

type function must be a defined type.

Explanation: The first argument to the type function

CAST must be the name of a defined type.

IBM2042I S The second argument to the type

function type function must be a scalar.

Explanation: The second argument to the type

function CAST must be a scalar.

IBM2043I S The second argument to the type

function type function must have the

same size as the first argument.

Explanation: The second argument to the type

function CAST must have the same size as the size of

the type that is the first argument.

IBM2044I S The get storage function to BUILTIN

name must be a LIMITED ENTRY with

LINKAGE(OPTLINK) and an

appropriate entry description list.

Explanation: The function should be declared as

 dcl get entry(pointer byvalue,

 fixed bin(31) byaddr,

 fixed bin(31) byaddr)

 returns(pointer);

88 PL/I Messages and Codes

IBM2045I S The free storage function to BUILTIN

name must be a LIMITED ENTRY with

LINKAGE(OPTLINK) and an

appropriate entry description list.

Explanation: The function should be declared as

 dcl free entry(pointer byvalue,

 pointer byvalue,

 fixed bin(31) byvalue);

IBM2046I S Descriptors must not be needed for any

parameter to an ENTRY with a variable

number of arguments.

Explanation: If an entry has a variable number of

arguments, i.e. its last parameter has the LIST attribute,

OPTIONS(NODESCRIPTOR) must be specified (and

valid) if any of the required parameters could have a

descriptor.

IBM2047I S The VARGLIST built-in function may

be used only inside procedures whose

last parameter had the LIST attribute.

Explanation: The VARGLIST built-in function obtains

the address of the variable argument list passed to

procedures whose last parameter had the LIST

attribute. It may not be used in subprocedures of such

routines or in procedures having either no parameters

or having no parameter declared with the LIST

attribute.

IBM2048I S The LIST attribute may be specified

only on non-nested procedures, external

entry constants, and limited entry

variables.

Explanation: The LIST attribute causes a variable

argument list to be built, and such argument lists are

permitted neither with nested procedures nor with

entry variables declared without the LIMITED attribute.

IBM2049I S The LIST attribute may be specified

only on the last element of an entry

description list.

Explanation: The LIST attribute indicates that zero or

more parameters may be specified after it, but those

parameters may not be described.

IBM2050I S Descriptors are supported for Fortran

only for scalar character strings.

Explanation: If OPTIONS(FORTRAN DESCRIPTOR)

applies, all parameters other than character strings

must have constant extents.

IBM2051I S Descriptors are not supported for

Fortran for routines defined by or

containing ENTRY statements.

Explanation: If OPTIONS(FORTRAN DESCRIPTOR)

applies to an ENTRY statement or to a procedure

containing an ENTRY statement, all parameters must

have constant extents.

IBM2052I S A function defined by a PROCEDURE

containing ENTRY statements must

return aggregate values BYADDR.

Explanation: Either BYADDR must be specified in the

RETURNS option of the PROCEDURE statement, or the

RETURNS(BYADDR) suboption of the DEFAULT

statement must be in effect.

IBM2053I S A function defined by an ENTRY

statement must return aggregate values

BYADDR.

Explanation: Either BYADDR must be specified in the

RETURNS option of the ENTRY statement, or the

RETURNS(BYADDR) suboption of the DEFAULT

statement must be in effect.

IBM2054I S A PROCEDURE containing ENTRY

statements must receive all non-pointer

parameters BYADDR.

Explanation: Either BYADDR must be specified in the

declares for the parameters, or the BYADDR suboption

of the DEFAULT statement must be in effect.

IBM2055I S An ENTRY statement must receive all

parameters BYADDR.

Explanation: Either BYADDR must be specified in the

declares for the parameters, or the BYADDR suboption

of the DEFAULT statement must be in effect.

IBM2056I S ENTRY statement is not allowed in DO

loops.

Explanation: ENTRY statements are allowed in

non-iterative DO groups, but not in iterative DO loops.

IBM2057I S RETURN statement is invalid inside a

BEGIN in a PROCEDURE that contains

ENTRY statements.

Explanation: A RETURN statement is valid inside a

BEGIN block only if the PROCEDURE enclosing that

BEGIN block contains no ENTRY statements.

Chapter 6. Compiler Severe Messages (1500-2399) 89

IBM2058I S In a PROCEDURE without the

RETURNS option, any ENTRY

statement must use BYADDR for its

RETURNS value.

Explanation: Either BYADDR must be specified in the

RETURNS option of the ENTRY statement, or the

RETURNS(BYADDR) suboption of the DEFAULT

statement must be in effect.

IBM2059I S OPTIONS(FORTRAN) is invalid if any

parameters are UNALIGNED BIT.

Explanation: Only ALIGNED BIT strings with

constant length are valid with OPTIONS(FORTRAN).

IBM2060I S Attributes may not be specified in

ALLOCATEs of BASED variables.

Explanation: Attributes may be specified only in

ALLOCATEs of CONTROLLED variables.

IBM2061I S Attributes specified for variable-name in

ALLOCATE statement do not match

those in its declaration.

Explanation: An attribute, such as CHARACTER, may

be specified in an ALLOCATE statement only if it is

also specified in the declaration of the variable to be

allocated.

IBM2062I S Structuring specified in ALLOCATE of

variable-name does not match that in its

declaration.

Explanation: In an ALLOCATE statement for a

structure, all the levels specified in its declaration must

be specified, and no new levels may be specified.

IBM2063I S Specification of extent for variable-name

in ALLOCATE statement is invalid since

it was declared with a constant extent.

Explanation: An attribute, such as CHARACTER, may

be specified in an ALLOCATE statement only if it is

also specified in the declaration of the variable to be

allocated with either an asterisk or a non-constant

expression.

IBM2064I S The extent specified for the lower

bound for dimension dimension-value of

variable-name in ALLOCATE statement is

invalid since that variable was declared

with a different constant extent.

Explanation: If a bound for a CONTROLLED variable

is declared as a constant, then it must be specified as

the same constant value in any ALLOCATE statement

for that variable.

IBM2065I S The extent specified for the upper

bound for dimension dimension-value of

variable-name in ALLOCATE statement is

invalid since that variable was declared

with a different constant extent.

Explanation: If a bound for a CONTROLLED variable

is declared as a constant, then it must be specified as

the same constant value in any ALLOCATE statement

for that variable.

IBM2075I S ENTRY types and arguments in type

function must be LIMITED.

Explanation: A ENTRY type or argument used with

the type function CAST must have the attribute

LIMITED.

IBM2076I S FLOAT types and arguments in type

function must be NATIVE REAL.

Explanation: A FLOAT type or argument used with

the type function CAST must have the attributes

NATIVE REAL.

IBM2077I S FIXED BIN types and arguments in type

function must be REAL with scale factor

zero.

Explanation: A FIXED BIN type or argument used

with the type function CAST must have the attributes

REAL PRECISION(p,0).

IBM2078I S Types with the attributes attributes are

not supported as the target of the type

function function.

Explanation: The first argument to the type function

CAST must be a type with one of the following sets of

attributes: REAL FIXED BIN(p,0) or NATIVE REAL

FLOAT.

IBM2079I S Arguments with the attributes attributes

are not supported as the source in the

type function function.

Explanation: The second argument to the type

function CAST must have one of the following sets of

attributes: REAL FIXED BIN(p,0) or NATIVE REAL

FLOAT.

IBM2080I S DATE pattern is invalid.

Explanation: See the Language Reference Manual for

a list of the supported DATE patterns.

90 PL/I Messages and Codes

IBM2081I S DATE attribute is valid only with

NONVARYING CHARACTER, FIXED

DECIMAL and arithmetic PICTURE.

Explanation: The DATE attribute cannot be used on

any other than the named types.

IBM2082I S DATE attribute conflicts with non-zero

scale factor.

Explanation: The DATE attribute can be used on a

numeric only if it has a scale factor of zero.

IBM2083I S DATE attribute conflicts with

COMPLEX attribute.

Explanation: The DATE attribute can be used on a

numeric only if it is REAL.

IBM2084I S DATE attribute conflicts with PICTURE

string containing characters other than 9.

Explanation: The DATE attribute can be used on a

PICTURE only if the PICTURE consists entirely of 9’s.

IBM2085I S Length of DATE pattern and base

precision do not match.

Explanation: The DATE attribute can be used on a

numeric only if its precision equals the length of the

DATE pattern.

IBM2086I S Length of DATE pattern and base length

do not match.

Explanation: The DATE attribute can be used on a

string only if its length equals the length of the DATE

pattern.

IBM2087I S DATE attribute conflicts with adjustable

length.

Explanation: The DATE attribute can be used on a

string only if the string is declared with a constant

length.

IBM2088I S Response file is too large. Excess will be

ignored.

Explanation: The options string built from the

response file must be less than 32767 characters long.

IBM2089I S Line in response file is longer than 100

characters. That line and rest of file will

be ignored.

Explanation: All lines in any response file must

contain no more than 100 characters.

IBM2090I S The keyword statement cannot be used

under SYSTEM(CICS).

Explanation: The named statement cannot be used

under CICS.

IBM2091I S DISPLAY with REPLY cannot be used

under SYSTEM(CICS).

Explanation: DISPLAY with REPLY cannot be used

under CICS.

IBM2092I S The BUILTIN name built-in function

cannot be used under SYSTEM(CICS).

Explanation: The named built-in function cannot be

used under CICS.

IBM2093I S The keyword statement cannot be used

under SYSTEM(CICS) except with

SYSPRINT.

Explanation: The named I/O statement cannot be

used under CICS unless the file used in the statement

is SYSPRINT.

IBM2094I S Source in CAST to FLOAT must be

FLOAT, FIXED or ORDINAL.

Explanation: The source in a CAST to a FLOAT must

be FLOAT, FIXED or ORDINAL.

IBM2095I S Target in CAST from FLOAT must be

FLOAT, FIXED BIN or ORDINAL.

Explanation: The target in a CAST from a FLOAT

must be FLOAT, FIXED BIN or ORDINAL.

IBM2096I S Target in CAST from FIXED DEC must

be FLOAT, FIXED BIN or ORDINAL.

Explanation: The target in a CAST from a FIXED DEC

must be FLOAT, FIXED BIN or ORDINAL.

IBM2097I S FIXED DEC types and arguments in type

function must be REAL with

non-negative scale factor.

Explanation: A FIXED DEC type or argument used

with the type function CAST must have the attributes

REAL PRECISION(p,q) with p >= q and q >= 0.

IBM2098I S Source in CAST to FIXED DEC must be

FLOAT, FIXED or ORDINAL.

Explanation: The source in a CAST to a FIXED DEC

must be FLOAT, FIXED or ORDINAL.

Chapter 6. Compiler Severe Messages (1500-2399) 91

IBM2099I S CASEX strings must have the same

length.

Explanation: The two strings in the CASEX option

must have the same length. The second argument is the

uppercase value of the first. If a character in the first

string does not have an uppercase value, use the

character itself as the uppercase value.

IBM2100I S The ORDINAL types do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2101I S The HANDLE types do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2102I S The STRUCTURE types do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2103I S Alignment does not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2104I S Number and attributes of structure

members do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2105I S Number of dimensions do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2106I S Lower bounds do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2107I S Upper bounds do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2108I S RETURNS attributes do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2109I S BYVALUE/BYADDR attributes in

RETURNS do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2110I S LINKAGE values do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2111I S OPTIONS values do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2112I S Parameter counts do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2113I S BYVALUE/BYADDR attributes in

parameter parameter-number do not

match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2114I S Number of dimensions for parameter

parameter-number do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2115I S Lower bounds for parameter

parameter-number do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2116I S Upper bounds for parameter

parameter-number do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2117I S Alignment of parameter

parameter-number does not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2118I S Number and attributes of structure

members in parameter parameter-number

do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

92 PL/I Messages and Codes

IBM2119I S Attributes of parameter parameter-number

do not match.

Explanation: This message is issued in explanation of

the message immediately preceding it in the listing.

IBM2127I S The ENTRY named ENTRY variable name

matches the reference to the GENERIC

variable GENERIC variable name, but

while the GENERIC reference is used as

a function, the matching ENTRY does

not have the RETURNS attribute.

Explanation: A match for the GENERIC reference has

been found, but the match is not suitable because while

the GENERIC reference is used as a function, the

matching ENTRY is not a function. For example, the

first GENERIC reference below is invalid, while the

second is ok.

 dcl e1 entry(fixed bin);

 dcl e2 entry(fixed bin, fixed bin)

 returns(fixed bin);

 dcl gp generic(e1 when(*),

 e2 when(*, *));

 rc = gp(0);

 rc = gp(0, 0);

IBM2128I S The ENTRY named ENTRY variable name

matches the reference to the GENERIC

variable GENERIC variable name, but

while the GENERIC reference is used as

a function acting as a locator qualifier,

the matching ENTRY does not return a

POINTER.

Explanation: A match for the GENERIC reference has

been found, but the match is not suitable because while

the GENERIC reference is used as a locator, the

matching ENTRY is not a function returning a

POINTER. For example, the first GENERIC reference

below is invalid, while the second is ok.

 dcl f1 entry(fixed bin)

 returns(fixed bin);

 dcl f2 entry(fixed bin, fixed bin)

 returns(pointer);

 dcl bx based fixed bin;

 dcl gf generic(f1 when(*),

 f2 when(*, *));

 rc = gf(0)->bx;

 rc = gf(0, 0)->bx;

IBM2129I S The ENTRY named ENTRY variable name

matches the reference to the GENERIC

variable GENERIC variable name, but

while the GENERIC reference is used as

a repeating function reference, the

matching ENTRY cannot be so used.

Explanation: A match for the GENERIC reference has

been found, but the match is not suitable because while

the GENERIC reference is used as a function whose

return value is a function that is invoked (and so on, as

the number of argument lists mandates), the matching

ENTRY cannot be so used. For example, the first

GENERIC reference below is invalid, while the second

is ok.

 dcl x1 entry(fixed bin)

 returns(entry);

 dcl x2 entry(fixed bin, fixed bin)

 returns(entry returns(fixed bin));

 dcl gx generic(x1 when(*),

 x2 when(*, *));

 rc = gx(0)();

 rc = gx(0, 0)();

IBM2130I S iSUB defining is not valid with the

POSITION attribute.

Explanation: The POSITION attribute can be used

only with string overlay defining.

 dcl b(4) char(2) pos(2) def(a(1sub,1sub));

IBM2131I S In iSUB defining, the base and

DEFINED variables must match.

Explanation: The defined and base arrays in iSUB

defining must have identical attributes apart from the

dimension attribute.

 dcl a(4) fixed bin(31);

 dcl b(4) fixed bin(15) def(a(1sub,1sub));

IBM2132I S The i in an iSUB reference must not

exceed the dimensionality of the

DEFINED variable.

Explanation: The i in an iSUB reference must refer to

a subscript of the DEFINED variable and hence must

not be greater than the number of dimensions for that

variable.

Chapter 6. Compiler Severe Messages (1500-2399) 93

dcl a(4,4) fixed bin(31);

 dcl b(4) fixed bin(15) def(a(1sub,2sub));

IBM2133I S An iSUB variable cannot be defined on

a cross-section of its base.

Explanation: In an iSUB variable, no asterisks may

appear in the specification of the base array.

 dcl a(4,4) fixed bin(31);

 dcl b(4) fixed bin(15) def(a(1sub,*));

IBM2134I S iSUB defining is supported only for

arrays of scalars.

Explanation: iSUB defining is not supported for

structures and unions.

IBM2135I S DFT(DESCLIST) conflicts with

CMPAT(cmpat-suboption).

Explanation: If CMPAT(V1) or CMPAT(V2) is

specified, then DFT(DESCLOCATOR) must be in effect

(as it is by default on z/OS).

IBM2136I S The number of indices specified for the

LABEL identifier does not match the

number previously specified.

Explanation: The number of indices given for an

element of a label constant array must not vary.

 a(1,1):

 a(1,2):

 a(3):

IBM2137I S Indices have been specified for the

LABEL identifier when it was previously

specified without indices.

Explanation: A label constant cannot be subscripted if

its first use contains no subscripts.

 a:

 a(3):

IBM2138I S Indices have not been specified for the

LABEL identifier when it was previously

specified with indices.

Explanation: A label constant must be subscripted if

its first use contains subscripts.

 a(3):

 a:

IBM2139I S The Language Environment runtime is

not current enough.

Explanation: You are using Language Environment

2.10 (or earlier!), which is not supported by the

compiler.

IBM2140I S Length of second argument to the

REPLACEBY2 built-in must be twice

that of the third.

Explanation: The second argument to the

REPLACEBY2 built-in function provides the set of pairs

of characters which are to replace the corresponding

characters in the third argument, and hence the length

of the second string must be twice that of the third.

IBM2141I S First argument to the BUILTIN name

built-in must be a structure.

Explanation: The first argument to the named built-in

subroutine must be a structure supplying the event

handlers for the SAX parser.

IBM2142I S Event structure argument to the BUILTIN

name built-in has too few elements.

Explanation: The first argument to the named built-in

subroutine must be a structure supplying the event

handlers for the SAX parser, and that structure must

exactly the right number of members. See the Language

Reference Manual for more details.

IBM2143I S Event structure argument to the BUILTIN

name built-in has too many elements.

Explanation: The first argument to the named built-in

subroutine must be a structure supplying the event

handlers for the SAX parser, and that structure must

exactly the right number of members. See the Language

Reference Manual for more details.

IBM2144I S Member member-number in the event

structure argument to the BUILTIN name

built-in is not a scalar.

Explanation: The first argument to the named built-in

subroutine must be a structure supplying the event

handlers for the SAX parser, and each element of that

structure must be a scalar. See the Language Reference

Manual for more details.

94 PL/I Messages and Codes

IBM2145I S Member member-number in the event

structure argument to the BUILTIN name

built-in must be a LIMITED ENTRY.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

be a LIMITED ENTRY. See the Language Reference

Manual for more details.

IBM2146I S Member member-number in the event

structure argument to the BUILTIN name

built-in must return BYVALUE a

NATIVE FIXED BIN(31).

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

be a function returning BYVALUE a NATIVE FIXED

BIN(31). See the Language Reference Manual for more

details.

IBM2147I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a non-empty entry

description list.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a non-empty entry description list. See the

Language Reference Manual for more details.

IBM2148I S Member member-number in the event

structure argument to the BUILTIN name

built-in has a parameter count of

specified-parm-count when the correct

parameter count is required-parm-count .

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have the correct number of parameters. See the

Language Reference Manual for more details.

IBM2149I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE

POINTER as its first parameter.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE POINTER as its first parameter. See

the Language Reference Manual for more details.

IBM2150I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE

POINTER as its second parameter.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE POINTER as its second parameter.

See the Language Reference Manual for more details.

IBM2151I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE NATIVE

FIXED BIN(31) as its third parameter.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE NATIVE FIXED BIN(31) as its third

parameter. See the Language Reference Manual for

more details.

IBM2152I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE

POINTER as its fourth parameter.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE POINTER as its fourth parameter.

See the Language Reference Manual for more details.

IBM2153I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE NATIVE

FIXED BIN(31) as its fifth parameter.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE NATIVE FIXED BIN(31) as its fifth

parameter. See the Language Reference Manual for

more details.

IBM2154I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE

POINTER as its second parameter.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE POINTER as its second parameter.

See the Language Reference Manual for more details.

IBM2155I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE NATIVE

FIXED BIN(31) as its fourth parameter.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE NATIVE FIXED BIN(31) as its fourth

parameter. See the Language Reference Manual for

more details.

IBM2156I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE NATIVE

FIXED BIN(31) as its second parameter.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE NATIVE FIXED BIN(31) as its second

Chapter 6. Compiler Severe Messages (1500-2399) 95

parameter. See the Language Reference Manual for

more details.

IBM2157I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE

CHAR(1) or BYVALUE WCHAR(1) as its

second parameter.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE CHAR (or BYVALUE WIDECHAR)

of length one as its second parameter. See the Language

Reference Manual for more details.

IBM2158I S Member member-number in the event

structure argument to the BUILTIN name

built-in has the wrong linkage.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have the PL/I default linkage. See the Language

Reference Manual for more details.

IBM2159I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have the

NODESCRIPTOR option.

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have the NODESCRIPTOR option. See the Language

Reference Manual for more details.

IBM2160I S All members of the input structure to

the BUILTIN name built-in must have

computational type.

Explanation: The XMLCHAR built-in function cannot

be applied to structures containing noncomputational

types.

IBM2161I S The input structure to the BUILTIN name

built-in must not be a UNION or

contain any UNIONs.

Explanation: The XMLCHAR built-in function cannot

be applied to unions or to structures containing unions.

IBM2162I S The input structure to the BUILTIN name

built-in must not contain any GRAPHIC

elements.

Explanation: The XMLCHAR built-in function cannot

be applied to structures containing any GRAPHIC data.

IBM2163I S The input structure to the BUILTIN name

built-in must not contain any

WIDECHAR elements.

Explanation: The XMLCHAR built-in function cannot

be applied to structures containing any WIDECHAR

data.

IBM2164I S The input structure to the BUILTIN name

built-in must not contain any unnamed

substructures.

Explanation: The XMLCHAR built-in function cannot

be applied to structures containing substructures using

an asterisk as a name.

IBM2165I S PRV support is provided only if the

LIMITS(EXTNAME(7)) option is in

effect.

Explanation: Support for long external names is

incompatible with support for using the PRV to address

CONTROLLED variables.

IBM2166I S PRV support is provided only if the

NORENT option is in effect.

Explanation: Support for the RENT option is

incompatible with support for using the PRV to address

CONTROLLED variables.

IBM2167I S PRV support is provided only if the

CMPAT(V1) or CMPAT(V2) option is in

effect.

Explanation: Support for the CMPAT(LE) option is

incompatible with support for using the PRV to address

CONTROLLED variables.

IBM2170I S Too many INTERNAL CONTROLLED

variables.

Explanation: When using the PRV to address

CONTROLLED variables, there may be no more than

568 INTERNAL CONTROLLED variables.

IBM2171I S Under the NOWRITABLE option, no

FETCHABLE ENTRY may be declared at

the PACKAGE level.

Explanation: Under the NOWRITABLE option, every

FETCHABLE ENTRY constant must be declared inside

a PROCEDURE.

IBM2172I S Under the NOWRITABLE option, no

FILE CONSTANT may be declared at

the PACKAGE level.

Explanation: Under the NOWRITABLE option, every

96 PL/I Messages and Codes

FILE CONSTANT must be declared inside a

PROCEDURE.

IBM2173I S Under the NOWRITABLE option, no

CONTROLLED may be declared at the

PACKAGE level.

Explanation: Under the NOWRITABLE option, every

CONTROLLED variable must be declared inside a

PROCEDURE.

IBM2174I S Result of REPLACEBY2 is too long.

Explanation: The length of the string literal produced

by applying the REPLACEBY2 built-in function to 3

literals must not be greater than the maximum allowed

for a character literal.

IBM2175I S The second and third arguments to

REPLACEBY2 must be restricted

expressions.

Explanation: The REPLACEBY2 built-in function

currently supports only second and third arguments

that have a length and value known at compile time.

IBM2176I S The result of the BUILTIN name built-in

would require more than 32767 bytes.

Explanation: The HEX and HEXIMAGE built-in

functions cannot be applied to strings using more than

16383 bytes of storage.

IBM2177I S The file filename is a PDS member and

hence cannot be used for SYSADATA.

Explanation: The named file is the file intended to be

used as the SYSADATA file, but such a file must not be

a member of a PDS.

IBM2178I S INCLUDE statements are not supported

when the LINEDIR option is in effect.

Explanation: When the LINEDIR option is in effect,

your source must contain no INCLUDE statements.

IBM2179I S There is too little room between the

margins for the LINE directive. The

PPTRACE option will be turned off.

Explanation: The %LINE directive generated by the

PPTRACE must fit on one line. You must either make

the margins wide enough to allow this or make the

source file names short enough.

IBM2180I S Use of the KEYED DIRECT file filename

in a keyword statement without a

KEY/KEYFROM clause is invalid.

Explanation: Any input/output operation using a

KEYED DIRECT file must include the key of the record

to which the the operation is to be applied.

IBM2181I S First argument to BUILTIN name built-in

must have type CHARACTER.

Explanation: This applies to the PICSPEC built-in

function, for example.

IBM2182I S Second argument to BUILTIN name

built-in must be a constant.

Explanation: This applies to the PICSPEC built-in

function, for example.

IBM2183I S The first argument to BUILTIN name

built-in must have constant length equal

to that of the second argument.

Explanation: This applies to the PICSPEC built-in

function, for example.

IBM2184I S Compiler input files must have less

then 1000000 lines.

Explanation: Break up the source files into smaller

files.

IBM2185I S Argument to BUILTIN name built-in

must have type REAL DECIMAL

FLOAT, and the DFP option must be in

effect.

Explanation: This applies to the ISFINITE and similar

built-in functions.

IBM2186I S BUILTIN name is not supported for DFP.

Explanation: The named built-in function is not

supported for float using DFP. This message applies,

for instance, to the SQRTF built-in functions

IBM2187I S The exponent in the literal value is too

large for DECIMAL FLOAT with

precision precision.

Explanation: A DFP literal value when adjusted to

have no decimal point (e.g. 3.14E0 would be adjusted

to 314E-2) must have an exponent no larger than the

maximum for its precision. For precision <= 7, the

maximum is 90. For 7 < precision <= 16, the maximum

is 369. For 16 < precision, the maximum is 6111.

Chapter 6. Compiler Severe Messages (1500-2399) 97

IBM2188I S The exponent in the literal value is too

small for DECIMAL FLOAT with

precision precision.

Explanation: A DFP literal value when adjusted to

have no decimal point (e.g. 3.14E0 would be adjusted

to 314E-2) must have an exponent no smaller than the

minimum for its precision. For precision <= 7, the

minimum is -95. For 7 < precision <= 16, the minimum

is -383. For 16 < precision, the minimum is -6143.

IBM2189I S Under CMPAT(V2) and CMPAT(LE),

bounds must not be greater than

+2147483647.

Explanation: Under CMPAT(V2) and CMPAT(LE),

bounds must be between -2147483648 and +2147483647.

IBM2190I S Under CMPAT(V2) and CMPAT(LE),

bounds must not be less than

-2147483648.

Explanation: Under CMPAT(V2) and CMPAT(LE),

bounds must be between -2147483648 and +2147483647.

IBM2191I S No valid character specified in the option

option.

Explanation: You must specify at least one valid

character in each of the OR, NOT and QUOTE or

NAMES compiler options.

IBM2192I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE

POINTER as parameter number

parameter-number .

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE POINTER in the specified parameter

position. See the Programming Guide for more details.

IBM2193I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE NATIVE

FIXED BIN(31) as parameter number

parameter-number .

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE NATIVE FIXED BIN(31) in the

specified parameter position. See the Programming

Guide for more details.

IBM2194I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYADDR

POINTER as parameter number

parameter-number .

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYADDR POINTER in the specified parameter

position. See the Programming Guide for more details.

IBM2195I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYADDR NATIVE

FIXED BIN(31) as parameter number

parameter-number .

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYADDR NATIVE FIXED BIN(31) in the

specified parameter position. See the Programming

Guide for more details.

IBM2196I S Member member-number in the event

structure argument to the BUILTIN name

built-in must have a BYVALUE

ALIGNED BIT(8) as parameter number

parameter-number .

Explanation: The indicated element of the structure

supplying the event handlers for the SAX parser must

have a BYVALUE ALIGNED BIT(8) in the specified

parameter position. See the Programming Guide for

more details.

IBM2197I S Argument to BUILTIN name built-in

must have type CHAR or WIDECHAR.

Explanation: This applies to the UVALID and

ULENGTH built-in functions, for example.

IBM2198I S First argument to BUILTIN name built-in

must have type CHAR or WIDECHAR.

Explanation: This applies to the UPOS and UWIDTH

built-in functions, for example.

IBM2199I S The run-time option XPLINK(ON) must

be in effect if object code is to be

generated.

Explanation: The compiler backend requires the

XPLINK(ON) option to be in effect.

98 PL/I Messages and Codes

Chapter 7. MACRO and CICS Preprocessor Messages

(3000-3999)

IBM3000I I note

Explanation: This message is used by %NOTE

statements with a return code of 0.

IBM3020I I Comment spans line-count lines.

Explanation: A comment ends on a different line than

it begins. This may indicate that an end-of-comment

delimiter is missing.

IBM3021I I String spans line-count lines.

Explanation: A string ends on a different line than it

begins. This may indicate that a closing quote is

missing.

IBM3250I W note

Explanation: This message is used by %NOTE

statements with a return code of 4.

IBM3251I W identifier is multiply defined, but with

different attributes. The declaration is

ignored.

Explanation: Attributes and declares must be

consistent.

 %a: proc;

 %end;

 %dcl a;

IBM3252I W The attribute character conflicts with

previous attributes and is ignored.

Explanation: Attributes must be consistent.

 dcl a fixed char;

IBM3253I W Comment spans more than one file.

Explanation: A comment ends in a different file than

it begins. This may indicate that an end-of-comment

statement is missing.

IBM3254I W String spans more than one file.

Explanation: A string ends in a different file than it

begins. This may indicate that a closing quote is

missing.

IBM3255I W Delimiter missing between nondelimiter

and nondelimiter. A blank is assumed.

Explanation: A delimiter (for example, a blank or a

comma) is required between all identifiers and

constants.

 dcl 1 a, 2 b, 3c;

IBM3256I W Multiple closure of groups. END

statements will be inserted to close

intervening groups.

Explanation: Using one END statement to close more

than one group of statements is permitted, but it may

indicate a coding error.

IBM3257I W Missing character assumed.

Explanation: The indicated character is missing, and

there are no more characters in the source. The missing

character has been inserted by the parser in order to

correct your source.

IBM3258I W Missing character assumed before

character.

Explanation: The indicated character is missing and

has been inserted by the parser in order to correct your

source.

 %dcl jump fixed;

 %skip

 %jump = 2;

IBM3260I W Syntax of the %CONTROL statement is

incorrect.

Explanation: The %CONTROL statement must be

followed by FORMAT or NOFORMAT option enclosed

in parentheses and then a semicolon.

IBM3265I W Number of lines specified with %SKIP

must be between 0 and 999 inclusive.

Explanation: Skip amounts greater than 999 are not

supported.

© Copyright IBM Corp. 1999, 2008 99

%skip(2000);

IBM3270I W ’EXEC CICS’ encountered, but the CICS

option is not in effect. Command

ignored.

Explanation: The CICS option must be in effect if the

source contains EXEC CICS statements.

IBM3271I W ’EXEC CSPM’ encountered, but the

CSPM option is not in effect. Command

ignored.

Explanation: The CSPM option must be in effect if the

source contains EXEC CSPM statements.

IBM3272I W ’EXEC DLI’ encountered, but the DLI

option is not in effect. Command

ignored.

Explanation: The DLI option must be in effect if the

source contains EXEC DLI statements.

IBM3281I W SELECT statement contains no WHEN

or OTHERWISE clauses.

Explanation: WHEN or OTHERWISE clauses are not

required on SELECT statements, but their absence may

indicate a coding error.

IBM3283I W SELECT statement contains no WHEN

clauses.

Explanation: SELECT statements do not require

WHEN clauses, but their absence may indicate a

coding error.

IBM3285I W FIXED BINARY constant contains too

many digits. Excess nonsignificant digits

will be ignored.

Explanation: A FIXED BINARY constant must contain

31 or fewer digits.

IBM3286I W FIXED DECIMAL constant contains too

many digits. Excess nonsignificant digits

will be ignored.

Explanation: The maximum precision for FIXED

DECIMAL constants is specified by the FIXEDDEC

suboption of the LIMITS compiler option.

IBM3287I W Mantissa in FLOAT BINARY constant

contains more digits than the

implementation maximum. Excess

nonsignificant digits will be ignored.

Explanation: Float binary constants are limited to 64

digits.

IBM3288I W Mantissa in FLOAT DECIMAL constant

contains more digits than the

implementation maximum. Excess

nonsignificant digits will be ignored.

Explanation: Float decimal constants are limited to 18

digits.

IBM3289I W FLOAT literal is too big for its implicit

precision. An appropriate HUGE value

is assumed.

Explanation: The precision for a float literal is implied

by the number of digits in its mantissa. For instance

1e99 is implicitly FLOAT DECIMAL(1), but the value

1e99 is larger than the largest value a FLOAT

DECIMAL(1) can hold.

IBM3291I W The OPTIONS option option-name

conflicts with the LANGLVL compiler

option. The option will be applied.

Explanation: The named option is not part of the PL/I

language definition as specified in the LANGLVL

compiler option.

IBM3292I W suboption is not a valid suboption for

option.

Explanation: The specified suboption is not one of the

supported suboptions of the named option.

 *process pp(macro(’fixed(long)’));

IBM3293I W A required suboption is missing for the

suboption option.

Explanation: The named option requires a suboption.

 *process pp(macro(’fixed’));

IBM3294I W A closing parenthesis is missing in the

specification of the option option. One is

assumed.

Explanation: A closing parenthesis is missing in the

specification of the named option.

 *process pp(macro(’fixed(bin’));

IBM3295I W option is not a supported option.

Explanation: The named option is not, in fact, an

option.

 *process pp(macro(’float’));

100 PL/I Messages and Codes

IBM3299I W Syntax of the %LINE directive is

incorrect.

Explanation: The %LINE directive must be followed,

with optional intervening blanks, by a parenthesis, a

line number, a comma, a file name and a closing

parenthesis.

 %line(19, test.pli);

IBM3300I W identifier has not been declared.

CHARACTER attribute assumed.

Explanation: All variables should be declared.

IBM3300I W Operand to LENGTH built-in should

have string type.

Explanation: If the operand has a numeric type, the

result is the length that value would have after it was

converted to string. The length of a numeric type is

NOT the same as its storage requirement.

IBM3310I W First argument to BUILTIN name built-in

should have string type.

Explanation: To eliminate this message, apply the

CHAR or BIT built-in function to the first argument.

 dcl i fixed bin;

 display(substr(i,4));

IBM3311I W Argument number to the BUILTIN name

built-in function is missing. A null

value will be passed for the missing

argument.

Explanation: An argument to the function reference is

missing. A null string or zero will be passed, as

appropriate, for the missing argument.

 %dcl a fixed;

 %a = max(n,);

IBM3311I W LEAVE will exit noniterative DO-group.

Explanation: This message is not produced if the

LEAVE statement specifies a label. In the following

loop, the LEAVE statement will cause only the

immediately enclosing DO-group to be exited; the loop

will not be exited.

 do i = 1 to n;

 if a(i) > 0 then

 do;

 call f;

 leave;

 end;

 else;

 end;

IBM3312I W Result of comparison is always constant.

Explanation: This message is produced when a

variable is compared to a constant equal to the largest

or smallest value that the variable could assume. In the

following loop, the variable x can never be greater than

99, and hence the implied comparison executed each

time through the loop will always result in a ’1’b.

 do x pic’99’;

 do x = 1 to 99;

 end;

IBM3320I W RETURNS attribute in ENTRY declare

ignored.

Explanation: ENTRY declares should not specify a

RETURNS attribute. In the example below, the ″returns(

char)″ should be omitted.

 %dcl a entry returns(char);

IBM3321I W RETURNS option assumed to enclose

attribute in PROCEDURE statement.

Explanation: In a PROCEDURE statement, any

RETURNS attribute should be enclosed in parentheses

following the RETURNS keyword. In the example

below, the ″char″ attribute should be specified as

″returns(char)″.

 %a: proc char ;

 return(’1729’);

 %end;

IBM3322I W Argument list for PROCEDURE identifier

is missing. It will be invoked without

any arguments.

Explanation: References in open code to

PROCEDUREs that have parameters should always

include at least an empty argument list. For example,

the ″display(a)″ below should be ″display(a())″.

 %a: proc(x) char ;

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 101

dcl x char;

 return(’1729’);

 %end;

 %act a;

 display(a);

IBM3323I W Too few arguments for PROCEDURE

identifier. Null values will be passed for

the missing arguments.

Explanation: There are too few arguments for the

specified procedure. Null strings or zeros will be

passed, as appropriate, for the missing arguments.

 %a: proc(x) char ;

 dcl x char;

 return(’1729’);

 %end;

 %act a;

 display(a());

IBM3324I W Too many arguments for PROCEDURE

identifier. Excess ignored.

Explanation: There are too many arguments for the

specified procedure. The excess arguments will be

ignored.

 %a: proc(x) char ;

 dcl x char;

 return(’1729’);

 %end;

 %act a;

 display(a(1,2));

IBM3325I W No data attributes specified in declare

for identifier.

Explanation: Preprocessor variables should be

declared with an attribute such as CHAR or FIXED.

This message could indicate that there is an extraneous

comma in the declare statement as in this example.

 %dcl a, char;

IBM3500I E note

Explanation: This message is used by %NOTE

statements with a return code of 8.

IBM3510I E keyword statement is not allowed where

an executable statement is required. A

null statement will be inserted before

the keyword statement.

Explanation: In certain contexts, for example after an

IF-THEN clause, only executable statements are

permitted. A DECLARE, DEFINE, DEFAULT or

FORMAT statement has been found in one of these

contexts. A null statement, (a statement consisting of

only a semicolon) will be inserted before the offending

statement.

IBM3511I E COUNTER value would exceed 99999. It

will be reset to 0.

Explanation: The COUNTER built-in function should

not be invoked more than 99999 times.

IBM3512I E Multiple closure of groups is not

allowed under

RULES(NOMULTICLOSE).

Explanation: Under RULES(NOMULTICLOSE), there

should be no multiple closure of groups in your source

program.

IBM3514I E Second argument to BUILTIN name

built-in is negative. It will be changed

to 0.

Explanation: The second argument to built-in

functions such as COPY and REPEAT must be

nonnegative.

 x = copy(y, -1);

IBM3517I E Sole bound specified for dimension

dimension number of array variable name is

less than 1. An upper bound of 1 is

assumed.

Explanation: The default lower bound is 1, but the

upper bound must be greater than the lower bound.

 dcl x(-5) fixed bin;

IBM3519I E Characters in B3 literals must be 0-7.

Explanation: In a B3 literal, each character must be

either 0-7.

102 PL/I Messages and Codes

IBM3522I E A DECIMAL exponent is required.

Explanation: An E in a FLOAT constant must be

followed by at least one decimal digit (optionally

preceded by a sign).

IBM3523I E A second argument to the BUILTIN name

built-in must be supplied for arrays

with more than one dimension. A value

of 1 is assumed.

Explanation: The LBOUND, HBOUND, and

DIMENSION built-in functions require two arguments

when applied to arrays having more than one

dimension.

 dcl a(5,10) fixed bin;

 do i = 1 to lbound(a);

IBM3524I E Second argument to BUILTIN name

built-in is not positive. A value of 1 is

assumed.

Explanation: The DIMENSION, HBOUND and

LBOUND built-in functions require that the second

argument be positive.

IBM3525I E Second argument to BUILTIN name

built-in is greater than the number of

dimensions for the first argument. A

value of dimension count is assumed.

Explanation: The second argument to the LBOUND,

HBOUND, and DIMENSION built-in functions must be

no greater than the number of dimensions of their

array arguments.

 dcl a(5,10) fixed bin;

 do i = 1 to lbound(a,3);

IBM3526I E Repeated declaration of identifier is

invalid and will be ignored.

Explanation: Level 1 variable names must not be

repeated in the same block.

 dcl a char, a fixed;

IBM3527I E Missing THEN assumed.

Explanation: THEN keyword must be part of any IF

statement.

IBM3530I E identifier is an array. ACTIVATE and

DEACTIVATE are invalid for arrays.

Explanation: Only scalars may be activated.

IBM3531I E identifier is a statement label. ACTIVATE

and DEACTIVATE are invalid for labels.

Explanation: Labels may not be activated.

IBM3533I E THEN clause outside of an open IF

statement is ignored.

Explanation: THEN clauses are valid only

immediately after an IF <expression>.

 %if a > b; %then;

IBM3534I E ELSE clause outside of an open

IF-THEN statement is ignored.

Explanation: ELSE clauses are valid only immediately

after an IF-THEN statement.

 do; if a > b then; end; else a = 0;

IBM3536I E END label is not a label on any open

group.

Explanation: A Label on END statement must match a

LABEL on an open DO, PROCEDURE, or SELECT

statement.

 a: do;

 ...

 end b;

IBM3537I E An END statement may be missing after

an OTHERWISE unit. One will be

inserted.

Explanation: After an OTHERWISE unit in a SELECT

statement, only an END statement is valid.

 select;

 when (...)

 do;

 end;

 otherwise

 do;

 end;

 display(...);

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 103

IBM3538I E %END statement found without any

open %PROCEDURE, %DO or

%SELECT statements. It will be ignored.

Explanation: Any %END statement should be part of

a %PROCEDURE-%END, %DO-%END or

%SELECT-%END group.

IBM3539I E STRINGSIZE condition raised while

evaluating expression. Result is

truncated.

Explanation: During the conversion of a user

expression during the compilation, the target string was

found to be shorter than the source, thus causing the

STRINGSIZE condition to be raised.

IBM3540I E STRINGRANGE condition raised while

evaluating expression. Arguments are

adjusted to fit.

Explanation: If all the arguments in a SUBSTR

reference are constants or restricted expressions, the

reference will be evaluated at compile- time and the

STRINGRANGE condition will occur if the arguments

do not comply with the rules described for the SUBSTR

built-in function.

 a = substr(’abcdef’, 5, 4);

IBM3542I E LEAVE/ITERATE label is not a label on

any open DO group.

Explanation: LEAVE/ITERATE must specify a label on

an open DO loop.

 %a: do jx = 1 to 1729;

 %leave b;

 %end;

IBM3543I E ITERATE/LEAVE statement is invalid

outside an open DO statement. The

statement will be ignored.

Explanation: ITERATE/LEAVE statements are valid

only inside DO groups.

 %a: do jx = 1 to 1729;

 %end;

 %leave a;

IBM3544I E GX literals should contain a multiple of

4 hex digits.

Explanation: GX literals must represent graphic

strings and hence must contain a multiple of 4 hex

digits.

 x = ’00’gx;

IBM3545I E Upper bound for dimension dimension

number of array variable name is less than

lower bound. Bounds will be reversed.

Explanation: A variable has been declared with an

upper bound that is less than its lower bound. The

upper and lower bounds will be swapped in order to

correct this. For example, DECLARE x(3:1) will be

changed to DECLARE x(1:3).

IBM3546I E Identifier is too long. It will be

collapsed to identifier.

Explanation: All identifiers must be contained in 31

bytes or less. PL/I DBCS identifiers must have 14 or

fewer DBCS characters.

IBM3547I E B assumed to complete iSUB.

Explanation: There is no language element of the form

1su.

 dcl a(10) def b(1su, 1sub);

IBM3548I E Digit in BINARY constant is not zero or

one.

Explanation: In a BINARY constant, each digit must

be a zero or one.

IBM3549I E Characters in BIT literals must be 0 or 1.

Explanation: In a BIT literal, each character must be

either zero or one.

IBM3550I E Character with decimal value n does not

belong to the PL/I character set. It will

be ignored.

Explanation: The indicated character is not part of the

PL/I character set. This can occur if a program

containing NOT or OR symbols is ported from another

machine and those symbols are translated to a

character that is not part of the PL/I character set.

Using the NOT and OR compiler options can help

avoid this problem.

104 PL/I Messages and Codes

IBM3551I E Characters in hex literals must be 0-9 or

A-F.

Explanation: In a hex literal, each character must be

either 0-9 or A-F.

IBM3552I E The statement element character is

invalid. The statement will be ignored.

Explanation: The statement entered could not be

parsed because the specified element is invalid.

IBM3553I E Use of underscore as initial character in

an identifier accepted although invalid

under LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), identifiers must

start with an alphabetic character or with one of the

extralingual characters. They may not start with an

underscore. Under LANGLVL(SAA2), identifiers may

start with an underscore, although names starting with

_IBM are reserved for use by IBM.

IBM3556I E Character with decimal value n does not

belong to the PL/I character set. It is

assumed to be an OR symbol.

Explanation: The indicated character is not part of the

PL/I character set, but was immediately followed by

the same character. This can occur if a program

containing an OR symbol is ported from another

machine and this symbol is translated to a character

that is not part of the PL/I character set. Using the OR

compiler option can help avoid this problem.

IBM3557I E Character with decimal value n does not

belong to the PL/I character set. It is

assumed to be a NOT symbol.

Explanation: The indicated character is not part of the

PL/I character set, but was immediately followed by an

=, < or > symbol. This can occur if a program

containing a NOT symbol is ported from another

machine and this symbol is translated to a character

that is not part of the PL/I character set. Using the

NOT compiler option can help avoid this problem.

IBM3565I E Statement type resolution requires too

many lexical units to be examined. The

statement will be ignored.

Explanation: To determine if a statement is an

assignment or another PL/I statement, many elements

of the statement may need to be examined. If too many

have to be examined, the compiler will flag the

statement as in error. For instance, the following

statement could be a DECLARE until the equal sign is

encountered by the lexer.

 dcl (a, b, c) = d;

IBM3567I E Statements inside a SELECT must be

preceded by a WHEN or an

OTHERWISE clause.

Explanation: A WHEN or OTHERWISE may be

missing.

 select;

 i = i + 1;

 when (a > 0)

 ...

IBM3570I E Extent expression is negative. It will be

replaced by the constant 1.

Explanation: Extents must be positive.

 dcl x char(-10);

IBM3580I E Parameter keyword may not be set more

than once. First setting is assumed.

Explanation: In a statement-form procedure

invocation, each parameter may be specified only once.

Any subsequent specifications will be ignored. In the

example code, 17 would be returned for both

invocations of P.

 %p: proc(a) stmt returns(char);

 dcl a char;

 return(a);

 %end;

 %act p;

 display(p a(17) a(29););

 display(p(17) a(29););

IBM3581I E Unknown keyword in statement-form

procedure invocation. keyword and any

argument are ignored.

Explanation: In a statement-form procedure

invocation, any keyword specified must be the name of

a parameter for that procedure.

 %p: proc(a) stmt returns(char);

 dcl a char;

 return(a);

 %end;

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 105

%act p;

 display(p a(17) b(29););

IBM3582I E Parameter identifier is not declared.

Explanation: Each parameter in a procedure should be

declared.

 %a: proc(b, c);

 dcl b fixed;

 %end;

IBM3583I E Labels on keyword statements are invalid

and ignored.

Explanation: Labels are not permitted on DECLARE

statements or on WHEN and OTHERWISE clauses.

IBM3589I E The identifier identifier is not the name

of a built-in function. The BUILTIN

attribute will be ignored.

Explanation: The BUILTIN attribute can be applied

only to identifiers that are the names of built-in

functions or subroutines.

IBM3590I E The attribute keyword is not supported

and will be ignored.

Explanation: The named attribute is not supported by

the macro facility.

 %dcl a char external;

IBM3591I E Right parenthesis will be assumed at

end of argument list.

Explanation: A right parenthesis is probably missing.

If this occurs in the source, all the characters after the

unmatched left parenthesis in the source will be

interpreted as parameters to the function. If this occurs

in a replacement string, all the characters after the

unmatched left parenthesis in the string will be

interpreted as parameters to the function.

IBM3603I E The end of the source was reached

before the logical end of the program.

Null statements and END statements

will be inserted as necessary to

complete the program.

Explanation: The source should contain END

statements for all PROCEDUREs, DO groups, and

SELECT statements, as well as statements for all

IF-THEN and ELSE clauses.

IBM3604I E The procedure name proc-name has

already been declared. The explicit

declaration of the procedure name will

not be accepted.

Explanation: Declarations for internal procedures are

not permitted.

 a: proc;

 dcl b entry options(byvalue);

 b: proc;

IBM3609I E A SELECT statement may be missing. A

SELECT statement, without an

expression, will be inserted.

Explanation: A WHEN or OTHERWISE clause has

been found outside of a SELECT statement.

IBM3610I E Semicolon inserted after ELSE keyword.

Explanation: An END statement enclosing a statement

such as DO or SELECT has been found before the

statement required after ELSE.

 do;

 if a > b then

 ...

 else

 end;

IBM3612I E Semicolon inserted after OTHERWISE

keyword.

Explanation: An END statement may be misplaced or

a semicolon may be missing.

IBM3613I E Semicolon inserted after THEN

keyword.

Explanation: An END statement may be misplaced or

a semicolon may be missing.

IBM3614I E Semicolon inserted after WHEN clause.

Explanation: An END statement may be misplaced or

a semicolon may be missing.

IBM3615I E Source file does not end with the logical

end of the program.

Explanation: The source file contains statements after

the END statement that closed the first PACKAGE or

PROCEDURE. These statements will be ignored, but

their presence may indicate a programming error.

106 PL/I Messages and Codes

IBM3616I E Subscripts have been specified for the

variable variable name, but it is not an

array variable.

Explanation: Subscripts can be specified only for

elements of an array.

IBM3617I E Second argument in SUBSTR reference

is less than 1. It will be replaced by 1.

Explanation: Otherwise the STRINGRANGE condition

would be raised.

IBM3618I E Second argument in SUBSTR reference

is too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition

would be raised.

IBM3619I E Third argument in SUBSTR reference is

less than 0. It will be replaced by 0.

Explanation: Otherwise the STRINGRANGE condition

would be raised.

IBM3620I E Third argument in SUBSTR reference is

too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition

would be raised.

IBM3621I E More than 15 dimensions have been

specified. Excess will be ignored.

Explanation: The maximum number of dimensions

allowed for a variable, including all inherited

dimensions, is 15.

IBM3624I E End-of-comment marker found when

there are no open comments. Marker

will be ignored.

Explanation: An */ was found when there was no

open comment.

IBM3625I E There is no compiler directive directive.

Input up to the next semicolon will be

ignored.

Explanation: See the Language Reference Manual for the

list of supported compiler directives.

IBM3626I E Listing control statement must start with

a percent symbol.

Explanation: A listing control statement, even when in

a preprocessor procedure, must be preceded by a ″%″.

 %a: proc;

 skip;

 %end;

IBM3628I E X literals should contain a multiple of 2

hex digits.

Explanation: An X literal may not contain an odd

number of digits.

IBM3638I E Excess arguments for ENTRY ENTRY

name ignored.

Explanation: More arguments were specified in an

ENTRY reference than were defined as parameters in

that ENTRY’s declaration.

 dcl e entry(fixed bin);

 call e(1, 2);

IBM3639I E Excess arguments for BUILTIN name

built-in ignored.

Explanation: More arguments were specified for the

indicated built-in function than are supported by that

built-in function.

 i = acos(j, k);

IBM3650I E keyword keyword accepted although

invalid under LANGLVL(SAA).

Explanation: The indicated keyword (UNSIGNED in

the example below) is not defined in the SAA level-1

language.

 dcl x fixed bin unsigned;

IBM3651I E Use of S, D and Q constants accepted

although invalid under

LANGLVL(SAA).

Explanation: The definition of the SAA level-1

language does not include S, D, and Q floating-point

constants.

IBM3652I E Use of underscores in constants accepted

although invalid under

LANGLVL(SAA).

Explanation: The definition of the SAA level-1

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 107

language does not permit using underscores in numeric

and hex constants.

IBM3653I E Use of asterisks for names in declares

accepted although invalid under

LANGLVL(SAA).

Explanation: The definition of the SAA level-1

language does not permit using asterisks for structure

element names.

IBM3654I E Use of XN constants accepted although

invalid under LANGLVL(SAA).

Explanation: The definition of the SAA level-1

language does not include XN constants.

IBM3656I E Use of 3 arguments with BUILTIN name

built-in accepted although invalid under

LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the VERIFY and

INDEX built-in functions are supposed to have exactly

2 arguments.

 i = verify(s, j, k);

IBM3657I E Use of 1 argument with BUILTIN name

built-in accepted although invalid under

LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the DIM,

LBOUND and HBOUND built-in functions are

supposed to have 2 arguments.

 i = dim(a);

IBM3750I S note

Explanation: This message is used by %NOTE

statements with a return code of 12.

IBM3760I S Too few arguments have been specified

for the ENTRY ENTRY name.

Explanation: The number of arguments must match

the number of parameters in the ENTRY declaration.

IBM3761I S Procedures may not be nested.

Explanation: Macro procedures may not be nested.

IBM3762I S No percent statements are allowed

inside procedures.

Explanation: Inside a procedure, statements should

not begin with a percent. The %DCL in the example

below should be just DCL.

 %a: proc(x) returns(char);

 %dcl x char;

 return(’<’ || x || ’>’);

 %end;

IBM3763I S Not enough virtual memory is available

to continue the compile.

Explanation: The compilation requires more virtual

memory than is available. It may help to specify one or

more of the following compiler options: NOTEST,

NOXREF, NOATTRIBUTES, and/or NOAGGREGATE

IBM3764I S BUILTIN name argument must be a

parameter.

Explanation: An expression contains the named

built-in function with an argument that is not a

parameter.

IBM3765I S BUILTIN name argument must be a

reference.

Explanation: An expression contains the named

built-in function with an argument that is not a

reference.

IBM3768I S The use of asterisks as subscripts is not

permitted in the macro facility.

Explanation: In the macro facility, all subscripts must

be scalar expressions.

IBM3769I S Argument to BUILTIN name built-in

must have type CHARACTER(1)

NONVARYING.

Explanation: This applies to the RANK built-in

function.

IBM3770I S First argument to BUILTIN name built-in

must be an array.

Explanation: An expression contains the named

built-in function with a first argument that is not an

array. This message applies, for instance, to the

DIMENSION, HBOUND, and LBOUND built-in

functions.

108 PL/I Messages and Codes

IBM3772I S Third argument to BUILTIN name

built-in would force STRINGRANGE.

Explanation: If a third argument is given for one of

the built-in functions INDEX or VERIFY, it must be

positive.

IBM3773I S Second argument to BUILTIN name

built-in must be nonnegative.

Explanation: The second argument for the built-in

functions CHARACTER, BIT, and GRAPHIC must be

zero or greater.

IBM3774I S Too few arguments have been specified

for the BUILTIN name built-in.

Explanation: Supply the minimum number of

arguments required.

IBM3778I S Syntax of the %INCLUDE statement is

incorrect.

Explanation: %INCLUDE must be followed by a name

and either a semicolon or else a second name in

parenthesis and then a semicolon.

IBM3779I S File specification after %INCLUDE is

too long.

Explanation: The maximum length of the file

specification is 8 characters.

IBM3780I S File specification missing after

%INCLUDE.

Explanation: %INCLUDE must be followed by a file

name, not just a semicolon.

IBM3781I S Procedures may have no more than 63

parameters.

Explanation: The excess parameters will be removed

from the proc statement.

IBM3789I S Index number index number into the

variable variable name is less than the

lower bound for that dimension.

Explanation: Executing such a statement would most

likely cause a protection exception.

 %dcl a(5:10) fixed;

 %a(1) = 0;

IBM3790I S Index number index number into the

variable variable name is greater than the

upper bound for that dimension.

Explanation: Executing such a statement would most

likely cause a protection exception.

 %dcl a(5:10) fixed;

 %a(20) = 0;

IBM3791I S Each dimension of an array must

contain no more than 2147483647

elements.

Explanation: It must be possible to compute the value

of the DIMENSION built-in function for an array. In

DECLARE x(x:y), (y-x+1) must be less than 214748648.

IBM3792I S Array variable name has too many

elements. Bounds set to 1.

Explanation: Arrays are limited to 2**20 elements.

IBM3793I S Too few subscripts specified for the

variable variable name.

Explanation: The number of subscripts given for a

variable must match that variable’s number of

dimensions

IBM3794I S Too many subscripts specified for the

variable variable name.

Explanation: The number of subscripts given for a

variable must match that variable’s number of

dimensions

IBM3796I S Array expressions cannot be assigned to

non-arrays, and if any target in a

multiple assignment is an array, then all

the targets must arrays.

Explanation: Array expressions may not, for instance,

be assigned to structures or scalars.

IBM3797I S RETURN statement without an

expression is invalid inside a

PROCEDURE that specified the

RETURNS attribute.

Explanation: All RETURN statements inside functions

must specify a value to be returned.

 %a: proc returns(fixed);

 return;

 %end;

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 109

IBM3798I S RETURN statement with an expression

is invalid inside a PROCEDURE that

did not specify the RETURNS attribute.

Explanation: A statement of the form RETURN(x) is

valid inside only PROCEDUREs that are defined with a

RETURNS attribute.

 %a: proc;

 return(’this is invalid’);

 %end;

IBM3800I S Function function name contains no

RETURN statement.

Explanation: Functions must contain at least one

RETURN statement.

IBM3801I S Target in assignment is invalid.

Explanation: The target in an assignment must be

character or fixed element reference. Pseudovariables

are not supported.

IBM3802I S Statement labels may not be used in

expressions.

Explanation: Statement labels may be used only in

GOTO, LEAVE and ITERATE statements.

IBM3803I S Target in concatenate-equals assignment

must have type char.

Explanation: Compound concatenate assignments

with fixed targets are not supported.

 %dcl a fixed;

 %a = ’0’;

 %a ||= ’1’;

IBM3804I S Target in arithmetic-equals assignment

must have type fixed.

Explanation: Compound arithmetic assignments with

character targets are not supported.

 %dcl a char;

 %a = ’0’;

 %a += ’1’;

IBM3811I S Expression contains too many nested

subexpressions.

Explanation: The compiler’s space for evaluating

expressions has been exhausted. Rewrite the expression

in terms of simpler expressions.

IBM3812I S Result of concatenating a string of

length string length to a string of length

string length would produce a string that

is too long.

Explanation: The result of a concatenation must not

have a length greater than the maximum allowed for a

string.

IBM3813I S Result of BUILTIN name applied

repetition value times to a string of length

string length would produce a string that

is too long.

Explanation: The result of COPY and REPEAT must

not have a length greater than the maximum allowed

for a string.

IBM3814I S Unsupported use of aggregate

expression.

Explanation: The only valid aggregate expression is

the use of an array name as the first argument to the

HBOUND or LBOUND built-in functions.

IBM3815I S Operand in bit operation must have

length less than 32768.

Explanation: Bit operations are limited to strings of

length 32767 or less.

IBM3816I S Second and third arguments to the

TRANSLATE built-in function must

have length less than 32768.

Explanation: The TRANSLATE built-in function is not

supported if the second or third argument is longer

than 32767 characters.

IBM3817I S Result of BUILTIN name would exceed

maximum string length.

Explanation: The result of a COMMENT or QUOTE

built-in function must not be a string that would have

length greater than the supported maximum.

IBM3820I S Under the INCONLY option, the use of

INCLUDE or XINCLUDE as a macro

procedure name is invalid unless the

colon follows immediately after the

name.

Explanation: If you must use INCLUDE or

110 PL/I Messages and Codes

XINCLUDE as a macro name, put the colon on the

same line as the name.

IBM3821I S Under the INCONLY option, the use of

INCLUDE or XINCLUDE as a macro

statement label is invalid unless the

colon follows immediately after the

name.

Explanation: If you must use INCLUDE or

XINCLUDE as a macro statement label, put the colon

on the same line as the name.

IBM3822I S Under the INCONLY option, the use of

INCLUDE or XINCLUDE as a macro

variable that is the target of an

assignment is invalid unless the equals

sign follows immediately after the

name.

Explanation: If you must use INCLUDE or

XINCLUDE as a macro variable name, put the equals

sign in the assignment on the same line as the name.

For example, change the first assignment below into the

second.

 %xinclude

 = 17;

 %xinclude = 17;

IBM3837I S GOTO target is inside a (different) DO

loop.

Explanation: The target of a GOTO cannot be inside a

DO loop unless the GOTO itself is in the same DO

loop.

IBM3841I S The INCLUDE file include-file-name

could not be opened.

Explanation: The INCLUDE file could not be found,

or if found, it could not be opened.

IBM3842I S Statements are nested too deep.

Explanation: The nesting of PROCEDURE, DO,

SELECT and similar statements is greater than that

supported by the compiler. Rewrite the program so that

it is less complicated.

IBM3844I S The function name built-in is not

supported.

Explanation: Support for the indicated built-in

function has been discontinued.

IBM3846I S The keyword statement is not supported.

Explanation: Support for the indicated statement has

been discontinued.

IBM3848I S Use of iSUB is not supported.

Explanation: iSUB is only supported in syntax

checking.

IBM3853I S Nesting of DO statements exceeds the

maximum.

Explanation: DO statements can be nested only 100

deep. Simplify the program.

IBM3854I S Nesting of IF statements exceeds the

maximum.

Explanation: IF statements can be nested only 100

deep. Simplify the program.

IBM3855I S Nesting of SELECT statements exceeds

the maximum.

Explanation: SELECT statements can be nested only

50 deep. Simplify the program.

IBM3856I S Nesting of blocks exceeds the

maximum.

Explanation: Blocks may be nested only 30 deep.

IBM3870I S The fetch of the CICS backend failed.

Explanation: Check that the CICS modules are

accessible, otherwise report this error to IBM.

IBM3871I S The CICS backend reported an internal

error while attempting to perform its

initialization.

Explanation: Report this error to IBM.

IBM3872I S The CICS backend reported an internal

error while attempting to parse its

options.

Explanation: Report this error to IBM.

IBM3873I S The CICS backend reported an internal

error while attempting to build and emit

the local declares.

Explanation: Report this error to IBM.

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 111

IBM3874I S The CICS backend reported an internal

error while attempting to translate an

EXEC statement.

Explanation: Report this error to IBM.

IBM3875I S The CICS backend reported an internal

error while attempting to translate a

CICS macro (such as DFHVALUE).

Explanation: Report this error to IBM.

IBM3876I S The CICS backend reported an internal

error while attempting to perform its

termination.

Explanation: Report this error to IBM.

IBM3909I S The attribute attribute conflicts with the

attribute attribute.

Explanation: The named attributes, for example

PARAMETER and INITIAL, are mutually exclusive.

IBM3911I S The statement label character has already

been declared.

Explanation: All statement labels in any block must be

unique.

IBM3914I S GOTO target must be a LABEL

reference.

Explanation: x in GOTO x must have type LABEL. x

must not have type FORMAT.

IBM3915I S GOTO target must be a scalar.

Explanation: x in GOTO x must not be an array.

IBM3916I S The procedure proc-name has already

been defined.

Explanation: Sister procedures must have different

names.

 % b: proc;

 % end;

 % b: proc;

 % end;

IBM3917I S Program contains no valid source lines.

Explanation: The source contains either no statements

or all statements that it contains are invalid.

IBM3920I S FIXED BINARY constant contains too

many digits.

Explanation: A FIXED BINARY constant must contain

31 or fewer digits.

IBM3921I S FIXED DECIMAL constant contains too

many significant digits.

Explanation: The maximum precision of FIXED

DECIMAL constants is set by the FIXEDDEC suboption

of the LIMITS compiler option.

IBM3922I S Exponent in FLOAT BINARY constant

contains more digits than the

implementation maximum.

Explanation: The exponent in a FLOAT BINARY

constant may contain no more than 5 digits.

IBM3923I S Mantissa in FLOAT BINARY constant

contains more significant digits than the

implementation maximum.

Explanation: The mantissa in a FLOAT BINARY

constant may contain no more than 64 digits.

IBM3924I S Exponent in FLOAT DECIMAL constant

contains more digits than the

implementation maximum.

Explanation: The exponent in a FLOAT BINARY

constant may contain no more than 4 digits.

IBM3925I S Mantissa in FLOAT DECIMAL constant

contains more significant digits than the

implementation maximum.

Explanation: The mantissa in a FLOAT BINARY

constant may contain no more than 18 digits.

IBM3926I S Constants must not exceed 30720 bytes.

Explanation: The number of bytes used to represent a

constant in your program must not exceed 30720. This

limit holds even for bit strings where the internal

representation will consume only one-eighth the

number of bytes as the external representation does.

IBM3927I S Numeric constants must be real,

unscaled and fixed.

Explanation: Any complex, scaled or floating point

constant will be converted to an integer value.

 %a = 3.1415;

112 PL/I Messages and Codes

IBM3928I S Only B, BX and X string suffixes are

supported.

Explanation: G, GX, M, A and E string suffixes are not

supported.

 %a = ’31’e;

IBM3930I S Invalid syntax in statement-form of

procedure invocation. Text up to next

semicolon will be ignored.

Explanation: In the invocation of a statement-form

procedure, all characters that are not part of comments

or key names should be enclosed in parentheses

following one of the keys. For example, the ″+″ in the

display statement below should not be present.

 %a: proc(x) stmt returns(char);

 dcl x char;

 return(1729);

 %end;

 %act a;

 display(a + x(5););

IBM3931I S Under the FIXED(DEC) option, decimal

constants must have no more than 5

digits.

Explanation: Under the FIXED(BIN), decimal

constants that represent any valid FIXED BIN(31)

number are supported.

IBM3943I S The number of error messages allowed

by the FLAG option has been exceeded.

Explanation: Compilation will terminate when the

number of messages has exceeded the limit set in the

FLAG compiler option.

IBM3948I S condition-name condition with

ONCODE=oncode-value raised while

evaluating expression.

Explanation: Evaluation of an expression raised the

named condition.

 %a = a / 0;

IBM3949I S Parameter name identifier appears more

than once in parameter list.

Explanation: Each identifier in a parameter list must

be unique.

 a: proc(b, c, b);

IBM3956I S ITERATE is valid only for iterative

DO-groups.

Explanation: ITERATE is not valid inside type-I do

groups.

IBM3957I S RETURN statement outside of a

PROCEDURE is invalid.

Explanation: RETURN statements are valid only

inside procedures.

IBM3958I S INCLUDE statement inside of a

PROCEDURE is invalid.

Explanation: INCLUDE statements are permitted only

outside any preprocessor procedures.

 %a: proc;

 include sample;

 %end;

IBM3959I S Length of parameter exceeds 32767

bytes.

Explanation: Parameters to macro procedures must be

no longer than 32767 bytes.

IBM3960I S End-of-source has been encountered

after an unmatched comment marker.

Explanation: An end-of-comment marker is probably

missing.

IBM3961I S End-of-source has been encountered

after an unmatched quote.

Explanation: A closing quote is probably missing.

IBM3962I S Replacement value contains no

end-of-comment delimiter. A comment

delimiter will be assumed at the end of

the replacement value.

Explanation: An end-of-comment marker is probably

missing.

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 113

IBM3963I S Replacement value contains no

end-of-string delimiter. A string

delimiter will be assumed at the end of

the replacement value.

Explanation: A closing quote is probably missing.

IBM3964I S ANSWER statement outside of a

PROCEDURE is invalid.

Explanation: ANSWER statements are valid only

inside procedures.

IBM3965I S ANSWER statement inside of a

PROCEDURE with RETURNS is

invalid.

Explanation: ANSWER statements are not valid inside

functions.

 %a: proc returns(char);

 answer(’this is invalid’);

 return(’this is ok however’);

 %end;

 %b: proc;

 answer(’this is valid’);

 %end;

IBM3966I S Source has caused too many rescans.

Explanation: A rescan of a replacement string or a

rescan of a string returned by a preprocessor has

caused further replacement leading to another rescan

etc., and the maximum depth of rescanning was

exceeded.

 For instance, the following macro, which is meant to

count the number of dcl statements in a compilation,

would produce this message. If the %ACTIVATE

statement specified NORESCAN, it would work

correctly.

 %dcl dcl_Count fixed;

 %dcl_Count = 0;

 %dcl: proc returns(char);

 dcl_count = dcl_count + 1;

 return(’dcl’);

 %end;

 %activate dcl;

IBM3974I S Every shift-in character after the left

margin of a source line must have a

matching shift-out character before the

right margin of the same line.

Explanation: DBCS shift codes must be paired.

IBM3975I S Every shift-in character within a string

generated for rescan must have a

matching shift-out character within that

same string.

Explanation: DBCS shift codes must be paired.

IBM3976I S DBCS characters are allowed only in G

and M constants.

Explanation: Hex strings (strings ending in one of the

suffixes X, BX, B4, GX or XN), bit strings, (strings

ending in the suffix B), and character strings not

ending in the suffix M must contain only SBCS

characters.

IBM3977I S SBCS characters are not allowed in G

constants.

Explanation: Mixed SBCS and DBCS is allowed only

in M constants.

IBM3978I S Invalid use of SBCS encoded as DBCS.

Explanation: Outside of comments, SBCS can be

encoded as DBCS only as part of an identifier.

IBM3980I S Recursion of procedures is not allowed.

Explanation: A procedure must not invoke itself

directly or indirectly.

IBM3981I S BUILTIN function may not be used

outside a procedure.

Explanation: The named built-in function may be

used only inside procedures.

IBM3982I S Procedure procedure-name is undefined

and cannot be invoked.

Explanation: A procedure must be defined (correctly)

before it can be invoked.

IBM3983I S Premature end-of-source in scan.

Explanation: The source ended during a scan when a

right parenthesis or semicolon was required.

 %a: proc() stmt returns(char);

 return(’1729’);

 %end;

 %dcl a entry;

 a /* and no more source follows */

114 PL/I Messages and Codes

IBM3984I S File filename could not be opened.

Explanation: The named source file could not be

opened. Make sure that the file is named correctly, that

it exists and that it is readable.

IBM3997I S Internal preprocessor error: no WHEN

clause satisfied within module name

Explanation: This message indicates that there is an

error in the macro preprocessor. Please report the

problem to IBM.

IBM3998I S Internal preprocessor error: protection

exception in module name

Explanation: This message indicates that there is an

error in the front end of the compiler. Please report the

problem to IBM.

IBM3999I U note

Explanation: This message is used by %NOTE

statements with a return code of 16.

Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999) 115

116 PL/I Messages and Codes

Chapter 8. Code Generation Messages (5000-5999)

IBM5001 INTERNAL COMPILER ERROR: text

Explanation:

 An internal compiler error occurred during

compilation.

 Contact your Service Representative.

IBM5002 Virtual storage exceeded.

Explanation:

 The compiler ran out of memory trying to compile the

file. This sometimes happens with large files or

programs with large functions. Note that very large

programs limit the amount of optimization that can be

done.

 Shut down any large processes that are running, ensure

your swap path is large enough, turn off optimization,

and redefine your virtual storage to a larger size. You

can also divide the file into several small sections or

shorten the function.

IBM5003 text

Explanation:

 General error message.

IBM5031 Unable to open file filename.

Explanation:

 The compiler could not open the specified file.

 Ensure the file name is correct. Ensure that the correct

file is specified. If the file is located on a LAN drive,

ensure the LAN is working properly. Also, the file may

be locked by another process or access may be denied

because of insufficient permission.

IBM5032 An error occurred while reading file

filename.

Explanation:

 The compiler detected an error while reading from the

specified file.

 Ensure that the correct file is being read and has not

been damaged. If the file is located on a LAN drive,

ensure the LAN is working properly.

IBM5033 An error occurred while writing to file

filename.

Explanation:

The compiler detected an error while writing to the

specified file.

 Ensure that the correct file is specified. If the file is

located on a LAN drive, ensure the LAN is working

properly.

IBM5034 Read-only pointer initialization of

dynamically allocated object name is not

valid.

Explanation:

 The value of a read-only pointer must be known at

compile time; a pointer cannot be read-only and point

to a dynamically allocated object at the same time

because the address of the pointee is known at run

time only.

 Modify the code so that the pointer is initialized with a

read-only value or make the pointer read-write.

IBM5051 Function function-name exceeds size

limit.

Explanation:

 The ACU for the function exceeds the LIMIT specified

in the INLINE suboption.

 Increase LIMIT if feasible to do so.

IBM5052 Function function-name is (or grows) too

large to be inlined.

Explanation:

 A function is too large to be inlined into another

function.

IBM5053 Some calls to function function-name

cannot be inlined.

Explanation:

 At least one call is either directly recursive, or the

wrong number of parameters were specified.

 Check all calls to the function specified and make that

number of parameters match the function definition.

IBM5054 Automatic storage for function

function-name increased to over value.

Explanation:

 The size of automatic storage for function increased by

at least 4 KB due to inlining.

© Copyright IBM Corp. 1999, 2008 117

Avoid inlining of functions which have large automatic

storage.

IBM5055 Parameter area overflow while

compiling function-name. Parameter area

size exceeds the allowable limit of value.

Explanation:

 The parameter area for a function resides in the first 4K

of automatic storage for that function. This message

indicates that the parameter area cannot fit into 4K.

 Reduce the size of the parameter area by passing fewer

parameters or by passing the address of a large

structure rather than the structure itself.

IBM5057 name section size cannot exceed 16777215

bytes. Total section size is value bytes.

Explanation:

 A Data or Code section cannot exceed 16M in size.

 Partition input source files into multiple source files

which can be compiled separately.

IBM5101 Maximum spill size of value is exceeded

in function function-name.

Explanation:

 Spill size is the size of the spill area. Spill area is the

storage allocated if the number of machine registers is

not sufficient for program translation.

 Reduce the complexity of the program and recompile.

IBM5102 Spill size for function function-name is

not sufficient. Recompile specifying

option SPILL(n) where lower-limit < n <=

upper-limit.

Explanation:

 Spill size is the size of the spill area. Spill area is the

storage allocated if the number of machine registers is

not sufficient for program translation.

 Recompile using the SPILL(n) option lower-limit < n <=

upper-limit or with a different OPT level.

IBM5103 Internal error while compiling function

function-name text.

Explanation:

 An internal compiler error occurred during

compilation.

 Contact your Service Representative or compile with a

different OPT level.

IBM5104 Internal error while compiling function

function-name text. Compilation

terminated.

Explanation:

 An internal compiler error of high severity has

occurred.

 Contact your Service Representative. Be prepared to

quote the text of this message.

IBM5105 Constant table overflow compiling

function function-name. Compilation

terminated.

Explanation:

 The constant table is the table that stores all the integer

and floating point constants.

 Reduce the number of constants in the program and

recompile.

IBM5106 Instruction in function function-name on

line value is too complex. Compilation

terminated.

Explanation:

 The specified instruction is too complex to be

optimized.

 Reduce the complexity of the instruction and recompile,

or recompile with a different OPT level.

IBM5107 Program too complex in function

function-name.

Explanation:

 The specified function is too complex to be optimized.

 Reduce the complexity of the program and recompile,

or recompile with a different OPT level.

IBM5108 Expression too complex in function

function-name. Some optimizations not

performed.

Explanation:

 The specified expression is too complex to be

optimized.

 Reduce the complexity of the expression or compile

with a different OPT level.

IBM5109 Infinite loop detected in function

function-name. Program may not stop.

Explanation:

 A loop which may be infinite has been detected in the

given function, and your code may need to be changed.

However, sometimes the compiler will issue this

118 PL/I Messages and Codes

message when your code is OK. For example, if the

loop is exited via a GOTO out of an ON-unit, the

compiler may issue this message although you would

not need to change your code.

 Recode the loop so that it will end.

IBM5110 Loop too complex in function

function-name. Some optimizations not

performed.

Explanation:

 The specified loop is too complex to be optimized.

 No action is required.

IBM5111 Division by zero detected in function

function-name. Runtime exception may

occur.

Explanation:

 A division by zero has been detected in the given

function.

 Recode the expression to eliminate the divide by zero.

IBM5112 Exponent is non-positive with zero as

base in function function-name. Runtime

exception may occur.

Explanation:

 This is a possible floating-point divide by zero.

 Recode the expression to eliminate the divide by zero.

IBM5113 Unsigned division by zero detected in

function function-name. Runtime

exception may occur.

Explanation:

 A division by zero has been detected in the given

function.

 Recode the expression to eliminate the divide by zero.

IBM5114 Internal error while compiling function

function-name text.

Explanation:

 An internal compiler error of low severity has occurred.

 Contact your Service Representative or compile with a

different OPT level.

IBM5115 Control flow too complex in function

function-name; number of basic blocks or

edges exceeds value.

Explanation:

 Basic blocks are segments of executable code without

control flow. Edges are the possible paths of control

flow between basic blocks.

 Reduce the complexity of the program and recompile.

IBM5116 Too many expressions in function

function-name; number of symbolic

registers exceeds value.

Explanation:

 Symbolic registers are the internal representation of the

results of computations.

 Reduce the complexity of the program and recompile.

IBM5117 Too many expressions in function

function-name; number of computation

table entries exceeds value.

Explanation:

 The computation table contains all instructions

generated in the translation of a program.

 Reduce the complexity of the program and recompile.

IBM5118 Too many instructions in function

function-name; number of procedure list

entries exceeds value.

Explanation:

 The procedure list is the list of all instructions

generated by the translation of each subprogram.

 Reduce the complexity of the program and recompile.

IBM5119 Number of labels in function

function-name exceeds value.

Explanation:

 Labels are used whenever the execution path of the

program could change; for example: if statements,

switch statements, loops or conditional expressions.

 Reduce the complexity of the program and recompile.

IBM5120 Too many symbols in function

function-name; number of dictionary

entries exceeds value.

Explanation:

 Dictionary entries are used for variables, aggregate

members, string literals, pointer dereferences, function

names and internal compiler symbols.

 Compile the program at a lower level of optimization

or simplify the program by reducing the number of

variables or expressions.

Chapter 8. Code Generation Messages (5000-5999) 119

IBM5121 Program is too complex in function

function-name. Specify MAXMEM option

value greater than value.

Explanation:

 Some optimizations not performed.

 Recompile specifying option MAXMEM with the

suggested value for additional optimization.

IBM5122 Parameter area overflow while

compiling name. Parameter area size

exceeds value.

Explanation:

 The parameter area is used to pass parameters when

calling functions. Its size depends on the number of

reference parameters, the number and size of value

parameters, and on the linkage used.

 Reduce the size of the parameter area by passing fewer

parameters or by passing the address of a large

structure rather than the structure itself.

IBM5123 Spill size for function function-name is

exceeded. Recompile specifying option

SPILL(n) where lower-limit < n <=

upper-limit for faster spill code.

Explanation:

 Spill size is the reserved size of the primary spill area.

Spill area is the storage allocated if the number of

machine registers is not sufficient for program

translation.

 Recompile using the SPILL(n) option with lower-limit <

n <= upper-limit for improved spill code generation.

IBM5130 An error occurred while opening file

filename.

Explanation:

 The compiler could not open the specified file.

 Ensure the file name is correct. Ensure that the correct

file is being opened and has not been damaged. If the

file is located on a LAN drive, ensure the LAN is

working properly. Also, the file may be locked by

another process or access may be denied because of

insufficient permission.

IBM5131 An error occurred while writing file

filename.

Explanation:

 The compiler could not read from the specified file.

 Ensure the file name is correct. Ensure that the correct

file is being written to and has not been damaged. If

the file is located on a LAN drive, ensure the LAN is

working properly. Also, the file may be locked by

another process or access may be denied because of

insufficient permission.

IBM5132 An error occurred while closing file

filename.

Explanation:

 The compiler could not write to the specified file.

 Ensure the file name is correct. Ensure that the correct

file is being closed and has not been damaged. If the

file is located on a LAN drive, ensure the LAN is

working properly. Also, the file may be locked by

another process or access may be denied because of

insufficient permission.

IBM5141 Automatic area for function-name is too

large

Explanation:

 Automatic data resides in the stack; the stack size is

limited by the target machine addressabilty.

 Avoid large structures and large arrays as local

variables; try using dynamically allocated data.

Alternatively, try to break down the procedure into

several smaller procedures.

120 PL/I Messages and Codes

Chapter 9. SQL Preprocessor Messages (7000-7999)

IBM7021I E No PROCEDURE or PACKAGE

statements were found.

Explanation: The SQL preprocessor expects to find

either a PROCEDURE statement or a PACKAGE

statement in the program.

IBM7022I W No SQL statements were found in the

program.

Explanation: The source program contains no SQL

statements.

IBM7028I W Reference var-name is ambiguous.

Explanation: All references must be unambiguous.

IBM7029I E Host structure var-name contains a

non-scalar member.

Explanation: A host structure must contain only scalar

members.

IBM7030I E The indicator variable var-name is not

declared as a scalar.

Explanation: An indicator variable must be declared

as FIXED BIN(15).

IBM7031I E Some members of the indicator variable

array var-name are out of sequence.

Explanation: Indicator variables specified in an array

must be sequential beginning with 1.

IBM7032I I SQL comment is used.

Explanation: The characters after the two hyphens (--)

toward the end of the line are treated as comments.

IBM7034I W Host variables can not be arrays.

Explanation: Arrays as host variables are not allowed.

IBM7035I E Host variable var-name does not have a

valid host data type.

Explanation: Invalid host data type used for host

variable.

IBM7036I E Host structure member var-name does

not have a valid host data type.

Explanation: Invalid host data type used for host

structure member.

IBM7037I I DECLARE TABLE statement is ignored.

Explanation: The DECLARE TABLE statement is

treated as a documentation only statement. It is ignored

and does not have any effect on the program.

IBM7038I I DECLARE STATEMENT statement is

ignored.

Explanation: The DECLARE STATEMENT statement

is treated as a documentation only statement. It is

ignored and does not have any effect on the program.

IBM7040I I sql-message

Explanation: An SQL informational message has been

returned.

IBM7041I W sql-message

Explanation: An SQL warning message has been

returned.

IBM7042I E sql-message

Explanation: An SQL error message has been

returned.

IBM7043I S sql-message

Explanation: An SQL severe error message has been

returned.

IBM7044I U sql-message

Explanation:

IBM7045I U Fatal SQL Error var-name was returned

from the Database.

Explanation: A fatal database error occurred. Check to

see that the database is installed correctly.

IBM7046I U Fatal Error - PL/I User DB2 Logon Exit

failed to load.

Explanation: A fatal SQL Preprocessor occurred.

Check that the file IBMSUDB2.DLL is present.

IBM7047I U Fatal Error - PL/I User DB2 Logon Exit

caused an error.

Explanation: A fatal SQL Preprocessor occurred.

Contact the provider of IBMSUDB2.DLL.

© Copyright IBM Corp. 1999, 2008 121

IBM7050I U SQL Preprocessor Internal Error

error_number occurred.

Explanation: The SQL Preprocessor detects an error in

its own code.

IBM7053I E The string beginning with var-name does

not have an ending string delimiter.

Explanation: Examine the statement for missing end

delimiters for the indicated string. The statement

cannot be processed.

IBM7054I E The comment is not terminated.

Explanation: The comment is not terminated properly.

The statement cannot be processed.

IBM7055I E File . var-name could not be opened.

Explanation: The file ″<filename>″ was requested but

could not be opened. The source program could not be

processed.

IBM7056I E A memory allocation error has occurred.

Explanation: During processing, there was not enough

memory to continue processing.

IBM7057I W Precompilation has completed with

var-name errors and var-name warnings.

Explanation: The precompilation has completed with

the stated number of errors and warnings.

IBM7058I E The statement is too long or too

complex.

Explanation: The statement could not be processed

because it exceeds a system limit for either length or

complexity. The statement cannot be processed.

IBM7059I E An unexpected token var-name was

found following var-name . Expected

tokens may include: var-name .

Explanation: The syntax error in the SQL statement

was detected at the specified token following the text

″<text>″. The ″<text>″ field indicates the characters of

the SQL statement that preceded the token that is not

valid. The statement cannot be processed.

IBM7060I E The name var-name is too long. The

maximum length is var-name .

Explanation: The name returned as ″<name>″ is too

long. The maximum length permitted for names of that

type is indicated by ″<length>″. The statement cannot

be processed.

IBM7061I E The host variable var-name is undefined.

Explanation: The host variable ″<name>″ is not

declared any DECLARE SECTION. The statement

cannot be processed.

IBM7062I W The host variable var-name is already

defined.

Explanation: The host variable ″<name>″ has already

been declared in a DECLARE SECTION. The statement

cannot be processed.

IBM7063I E The limit on the number of host

variables has been reached.

Explanation: The limit on the number of host

variables is dependent on how many will fit in the

HOST_VARS column of SYSPLAN. This limit has been

reached. The source program could not be processed.

IBM7064I E The host variable var-name is incorrectly

declared.

Explanation: The host variable ″<name>″ is not

declared correctly. Some possible reasons may be that

the type specified is not one that is supported, that the

length specification is 0, negative, or too large, that an

initializer is used, or that an incorrect syntax is

specified. The variable remains undefined. The source

program could not be processed.

IBM7065I E No END DECLARE SECTION was

found after a BEGIN DECLARE

SECTION.

Explanation: The end of input was reached during

processing of a DECLARE SECTION. The source

program could not be processed.

IBM7066I E The ″SQLAINIT″ function has not been

called.

Explanation: Precompiler Services must be initialized

before the requested function call can be processed. The

source program could not be processed.

IBM7067I E Unable to use file var-name .

Explanation: While reading or writing file ″<name>″,

an error was encountered. The source program could

not be processed.

IBM7068I E The load of the DB2 Precompiler

Services module (DSNHPSRV) failed.

Explanation: An error was encountered while trying

to load the DB2 Precompiler Services module

(DSNHPSRV). Check that the dataset concatenation in

122 PL/I Messages and Codes

your job is correct. The source program could not be

processed.

IBM7069I E The DBRM Library was not found.

Explanation: An error was encountered while trying

to locate the DBRM library. Check that there is a

DBRMLIB DD card included in your job. The source

program could not be processed.

IBM7070I E The FLOAT option is inconsistent.

Explanation: The PL/I Compiler option

DEFAULT(IEEE|HEXADEC) does not match the PL/I

SQL Preprocessor option FLOAT(IEEE|S390). Make

sure they are consistent and resubmit your job. The

source program could not be processed.

Chapter 9. SQL Preprocessor Messages (7000-7999) 123

124 PL/I Messages and Codes

Chapter 10. Condition codes

Condition codes listed in this section reflect an aggregate of condition codes

generated by all implementations. Some might not be generated for a particular

platform.

The following is a summary of all condition codes in numerical sequence.

Conditions 1 through 50

3 This condition is raised if, in a SELECT group, no WHEN clause is selected

and no OTHERWISE clause is present.

4 SIGNAL FINISH, or STOP statement executed.

9 SIGNAL ERROR statement executed.

10 SIGNAL NAME statement executed.

20 SIGNAL RECORD statement executed.

21 Record variable smaller than record size. Either:

v The record is larger than the variable in a READ INTO statement; the

remainder of the record is lost.

v The record length specified for a file with fixed-length records is larger

than the variable in a WRITE, REWRITE, or LOCATE statement; the

remainder of the record is undefined. If the variable is a varying-length

string, RECORD is not raised if the SCALARVARYING option is applied

to the file.

22 Record variable larger than record size. Either:

v The record length specified for a file with fixed-length records is smaller

than the variable in a READ INTO statement; the remainder of the

variable is undefined. If the variable is a varying-length string, RECORD

is not raised if the SCALARVARYING option is applied to the file.

v The maximum record length is smaller than the variable in a WRITE,

REWRITE, or LOCATE statement. For WRITE or REWRITE, the

remainder of the variable is lost; for LOCATE, the variable is not

transmitted.

v The variable in a WRITE or REWRITE statement indicates a zero length;

no transmission occurs. If the variable is a varying-length string,

RECORD is not raised if the SCALARVARYING option is applied to the

file.

23 Record variable length is either zero or too short to contain the embedded

key.

 The variable in a WRITE or REWRITE statement is too short to contain the

data set embedded key; no transmission occurs. (This case currently

applies only to indexed key-sequenced data sets.)

24 Zero length record was read from a REGIONAL data set.

40 SIGNAL TRANSMIT statement executed.

41 Uncorrectable transmission error in output data set.

© Copyright IBM Corp. 1999, 2008 125

42 Uncorrectable transmission error in input data set.

43 Uncorrectable transmission error on output to index set.

44 Uncorrectable transmission error on input from index set.

45 Uncorrectable transmission error on output to indexed consecutive data

set.

46 Uncorrectable transmission error on input from consecutive data set.

50 SIGNAL KEY statement executed.

Condition codes 51 through 100

51 Key specified cannot be found.

52 Attempt to add keyed record that has same key as a record already present

in data set; or, in a REGIONAL(1) data set, attempt to write into a region

already containing a record.

53 Value of expression specified in KEYFROM option during sequential

creation of INDEXED or REGIONAL data set is less than value of

previously specified key or region number.

54 Key conversion error, possibly due to region number not being numeric

character.

55 Key specification is null string or begins (8)'1'B or a change of embedded

key has occurred on a sequential REWRITE[FROM] for an INDEXED or

key-sequenced data set.

56 Attempt to access a record using a key that is outside the data set limits.

57 No space available to add a keyed record on INDEXED insert.

58 Key of record to be added lies outside the range(s) specified for the data

set.

70 SIGNAL ENDFILE statement executed.

80 SIGNAL UNDEFINEDFILE statement executed.

81 Conflict in file attributes exists at open time between attributes in

DECLARE statement and those in explicit or implicit OPEN statement.

82 Conflict between file attributes and physical organization of data set (for

example, between file organization and device type), or indexed data set

has not been loaded.

83 After merging ENVIRONMENT options with DD statement and data set

label, data set specification is incomplete; for example, block size or record

format has not been specified.

84 No DD statement associating file with a data set.

85 During initialization of a DIRECT OUTPUT file associated with a

REGIONAL data set, an input/output error occurred.

86 LINESIZE greater than implementation-defined maximum, or invalid value

in an ENVIRONMENT option.

87 After merging ENVIRONMENT options with DD statement and data set

label, conflicts exist in data set specification; the value of LRECL, BLKSIZE

or RECSIZE are incompatible with one another or the DCB FUNCTION

specified.

Condition codes

126 PL/I Messages and Codes

88 After merging ENVIRONMENT options with DD statement and data set

label, conflicts exist in data set specification; the resulting combination of

MODE/FUNCTION and record format are invalid.

89 Password invalid or not specified.

90 SIGNAL ENDPAGE statement executed.

91 ENVIRONMENT option invalid for file accessing indexed data set.

92 The requested data set was not available.

93 Error detected by the operating system while opening a data set.

Subcode1 Meaning

50 A nonexistent ISAM file is being opened for input.

51 An unexpected error occurred when opening an ISAM file.

Subcode2 gives the return code from ISAM.

52,53 An unexpected error occurred when opening a native or

REGIONAL(1) file.

54 A nonexistent BTRIEVE file is being opened for input.

55 An unexpected error occurred when opening a BTRIEVE

file. Subcode2 gives the return code from BTRIEVE.

56 An unexpected error occurred when opening a DDM file.

57,58 An unexpected error occurred when opening a DDM

sequential, DDM relative or DDM indexed file. Subcode2

gives the return code from DDM.

59 An attempt was made to open a file that was already open.

60 A file of invalid type is being opened. An example of this

is opening a VSAM file under z/OS UNIX System Services.

VSAM files are not supported under z/OS UNIX System

Services.

66 Open of a VSAM file failed. Subcode2 gives the feedback

code.

76 A retry attempt at opening an SFS file failed.

79 An SFS file opened for input or update could not be found.

94 REUSE specified for a nonreusable data set.

95 Alternate index specified for an index data set is empty.

96 Incorrect environment variable.

99 File cannot be opened.

Subcode1 Meaning

1 or 2 The extended attributes (EAs) for an existing

REGIONAL(1) file could not be located and no

RECCOUNT or RECSIZE values were given via the

ENVIRONMENT or SET DD option.

3 A positioning error occurred for a sequential output file.

4 TYPE (FIXED) was specified for a native file, but the file

size was not a multiple of RECSIZE.

Condition codes

Chapter 10. Condition codes 127

5 or 13 A positioning error occurred for a REGIONAL(1) file.

6–12 A positioning error occurred for an output file.

21-23 AMTHD(DDM) was specified on the SET DD statement for

a file, but the DDM DDLs (DUBRUN and DUBLDM) could

not be found or accessed.

24 Incorrect extended attribute on a DDM file.

25 The ORGANIZATION option of the ENVIRONMENT

attribute conflicts with the type of data set (DDM or

native).

26 Conflicts exist with how the file is being used.

27 A composite key was detected with a keyed-opening.

28-30 A new DDM file could not be created.

31 A positioning error occurred for a DDM file.

35 AMTHD(BTRIEVE) was specified on the DD environment

variable but the BTRIEVE loadable component

(BTRCALLS) could not be found or could not be accessed

on the system.

36 Unexpected error occurred when opening a BTRIEVE file.

37 A new BTRIEVE file could not be created.

38 A positioning error occurred for a BTRIEVE file.

40 AMTHD(ISAM) was specified on the DD environment

variable but the ISAM non-multithreading loadable

components (IBMWS20F and IBMWS20G) or the ISAM

multithreading loadable components (IBMWM20F and

IBMWM20G) could not be found or could not be accessed

on the system.

41 Unexpected error occurred when opening an ISAM file.

42 A new ISAM file could not be created.

43 A positioning error occurred for an ISAM file.

60 A file of invalid type is being opened. An example of this

is opening a VSAM file under z/OS UNIX System Services.

VSAM files are not supported under z/OS UNIX System

Services.

62 Query for file information failed for a VSAM file under

MVS batch.

63 A non-VSAM file is being opened as a VSAM file under

MVS batch.

64 A VSAM file is being opened with an invalid type (that is,

the file is not a KSDS, ESDS or RRDS file).

65 A VSAM file is being opened in a non-MVS batch

environment. VSAM files are supported only under MVS

batch.

66 Open of a VSAM file failed. Subcode 2 gives the feedback

code.

Condition codes

128 PL/I Messages and Codes

67 A VSAM file is being opened as a non-VSAM file under

MVS batch.

68 An invalid VSAM file is being opened.

69 Query for file information failed for a native file under

MVS batch.

70 Positioning for a VSAM file failed.

71 A VSAM file is being opened under a non-MVS batch

environment.

72 An invalid PL/I file is being opened.

73 The SFS library cannot be loaded.

74 The DCE library cannot be loaded.

75 A new SFS file could not be created.

77 Positioning for an SFS file failed.

78 Not enough storage below the line.

80 There was an error processing an empty VSAM file opened

for update. Oncode 82 should have been issued.

Condition codes 100 through 520

150 SIGNAL STRINGSIZE statement executed or STRINGSIZE condition

occurred.

151 Truncation occurred during assignment of a mixed character string.

290 SIGNAL INVALIDOP statement was executed or INVALIDOP exception

occurred.

300 SIGNAL OVERFLOW statement executed or OVERFLOW condition

occurred.

310 SIGNAL FIXEDOVERFLOW statement executed or FIXEDOVERFLOW

condition occurred.

320 SIGNAL ZERODIVIDE statement executed or ZERODIVIDE condition

occurred.

330 SIGNAL UNDERFLOW statement executed or UNDERFLOW condition

occurred.

340 SIGNAL SIZE statement executed; or high-order nonzero digits have been

lost in an assignment to a variable or temporary, or significant digits have

been lost in an input/output operation.

341 High order nonzero digits have been lost in an input/output operation.

350 SIGNAL STRINGRANGE statement executed or STRINGRANGE condition

occurred.

360 Attempt to allocate a based variable within an area that contains

insufficient free storage for allocation to be made.

361 Insufficient space in target area for assignment of source area.

362 SIGNAL AREA statement executed.

400 SIGNAL ATTENTION statement executed.

Condition codes

Chapter 10. Condition codes 129

450 SIGNAL STORAGE statement executed.

451 ALLOCATE statement or ALLOCATE built-in function failed; insufficient

storage to satisfy request.

500 SIGNAL CONDITION (name) statement executed.

520 SIGNAL SUBSCRIPTRANGE statement executed, or subscript has been

evaluated and found to lie outside its specified bounds.

Condition codes 600 through 650

600 SIGNAL CONVERSION statement executed.

601 Invalid conversion attempted during input/output of a character string.

603 Error during processing of an F-format item for a GET STRING statement.

604 Error during processing of an F-format item for a GET FILE statement.

605 Error during processing of an F-format item for a GET FILE statement

following a TRANSMIT condition.

606 Error during processing of an E-format item for a GET STRING statement.

607 Error during processing of an E-format item for a GET FILE statement.

608 Error during processing of an E-format item for a GET FILE statement

following a TRANSMIT condition.

609 Error during processing of a B-format item for a GET STRING statement.

610 Error during processing of a B-format item for a GET FILE statement.

611 Error during processing of a B-format item for a GET FILE statement

following TRANSMIT condition.

612 Error during character value to arithmetic conversion.

613 Error during character value to arithmetic conversion for a GET or PUT

FILE statement.

614 Error during character value to arithmetic conversion for a GET or PUT

FILE statement following a TRANSMIT condition.

615 Error during character value to bit value conversion.

616 Error during character value to bit value conversion for a GET or PUT

FILE statement.

617 Error during character value to bit value conversion for a GET or PUT

FILE statement following a TRANSMIT condition.

618 Error during character value to picture conversion.

619 Error during character value to picture conversion for a GET or PUT FILE

statement.

620 Error during character value to picture conversion for a GET or PUT FILE

statement following a TRANSMIT condition.

621 Error in decimal P-format item for a GET STRING statement.

622 Error in decimal P-format input for a GET FILE statement.

623 Error in decimal P-format input for a GET FILE statement following a

TRANSMIT condition.

624 Error in character P-format input for a GET FILE statement.

Condition codes

130 PL/I Messages and Codes

625 Error exists in character P-format input for a GET FILE statement.

626 Error exists in character P-format input for a GET FILE statement following

a TRANSMIT condition.

627 A graphic or mixed character string encountered in a nongraphic

environment.

628 A graphic or mixed character string encountered in a nongraphic

environment on input.

629 A graphic or mixed character string encountered in a nongraphic

environment on input after TRANSMIT was detected.

633 An invalid character detected in a X, BX, or GX string constant.

634 An invalid character detected in a X, BX, or GX string constant on input.

635 An invalid character detected in a X, BX, or GX string constant on input

after TRANSMIT was detected.

640 Conversion from picture contained an invalid character.

641 Conversion from picture contained an invalid character on input or output.

642 Conversion from picture contained an invalid character on input after

TRANSMIT was detected.

643 Error during processing of a graphic F-format item for a GET STRING

statement.

644 Error during processing of a graphic F-format item for a GET FILE

statement.

645 Error during processing of a graphic F-format item for a GET FILE

statement following a TRANSMIT condition.

646 Error during processing of a graphic E-format item for a GET STRING

statement.

647 Error during processing of a graphic E-format item for a GET FILE

statement.

648 Error during processing of a graphic E-format item for a GET FILE

statement following a TRANSMIT condition.

649 Error during processing of a graphic B-format item for a GET STRING

statement.

650 Error during processing of a graphic B-format item for a GET FILE

statement.

Condition codes 651 through 672

651 Error during processing of a graphic B-format item for a GET FILE

statement following TRANSMIT condition.

652 Error during graphic character value to arithmetic conversion.

653 Error during graphic character value to arithmetic conversion for a GET or

PUT FILE statement.

654 Error during graphic character value to arithmetic conversion for a GET or

PUT FILE statement following a TRANSMIT condition.

655 Error during graphic character value to bit value conversion.

Condition codes

Chapter 10. Condition codes 131

656 Error during graphic character value to bit value conversion for a GET or

PUT FILE statement.

657 Error during graphic character value to bit value conversion for a GET or

PUT FILE statement following a TRANSMIT condition.

658 Error during graphic character value to picture conversion.

659 Error during graphic character value to picture conversion for a GET or

PUT FILE statement.

660 Error during graphic character value to picture conversion for a GET or

PUT FILE statement following a TRANSMIT condition.

661 Error in decimal graphic P-format item for a GET STRING statement.

662 Error in decimal graphic P-format input for a GET FILE statement.

663 Error in decimal graphic P-format input for a GET FILE statement

following a TRANSMIT condition.

664 Error in character graphic P-format input for a GET FILE statement.

665 Error exists in character graphic P-format input for a GET FILE statement.

666 Error exists in character graphic P-format input for a GET FILE statement

following a TRANSMIT condition.

667 No SBCS equivalent in the GRAPHIC conversion to character.

668 No SBCS equivalent in the GRAPHIC conversion to character on input.

669 No SBCS equivalent in the GRAPHIC conversion to character on input

following a TRANSMIT condition.

670 Unknown source attributes.

671 Unknown source attributes on input.

672 Unknown source attributes on input following a TRANSMIT condition.

673 Error during WIDECHAR value to character conversion.

674 Error during WIDECHAR value to character conversion for a GET or PUT

FILE statement.

675 Error during WIDECHAR value to character conversion for a GET or PUT

FILE statement following a TRANSMIT condition.

676 Error during WIDECHAR value to arithmetic conversion.

677 Error during WIDECHAR value to arithmetic conversion for a GET or PUT

FILE statement.

678 Error during WIDECHAR value to arithmetic conversion for a GET or PUT

FILE statement following a TRANSMIT condition.

679 Error during WIDECHAR value to bit value conversion.

680 Error during WIDECHAR value to bit value conversion for a GET or PUT

FILE statement.

681 Error during WIDECHAR value to bit value conversion for a GET or PUT

FILE statement following a TRANSMIT condition.

682 Error during WIDECHAR value to picture conversion.

683 Error during WIDECHAR value to picture conversion for a GET or PUT

FILE statement.

Condition codes

132 PL/I Messages and Codes

684 Error during WIDECHAR value to picture conversion for a GET or PUT

FILE statement following a TRANSMIT condition.

Condition codes 1002 through 1107

1002 GET or PUT STRING specifies data exceeding size of string.

1003 Further output prevented by TRANSMIT or KEY conditions previously

raised for the data set.

1004 Attempt to use PAGE, LINE, or SKIP <= 0 for nonprintable file.

1005 In a DISPLAY(expression) REPLY (character-reference) statement,

expression or character-reference is zero length.

1007 A REWRITE or a DELETE statement not preceded by a READ.

1008 Unrecognized field preceding the assignment symbol in a string specified

in a GET STRING DATA statement.

1009 An input/output statement specifies an operation or an option which

conflicts with the file attributes.

1010 A built-in function or pseudovariable referenced an unopened file.

1011 Data management detected an input/output error but is unable to provide

any information about its cause.

1013 Previous input operation incomplete; REWRITE or DELETE statement

specifies data which has been previously read in by a READ statement

with an EVENT option, and no corresponding WAIT has been executed.

1014 Attempt to initiate further input/output operation when number of

incomplete operations equals number specified by ENVIRONMENT option

NCP(n) or by default.

1015 Event variable specified for an input/output operation when already in

use.

1016 After UNDEFINEDFILE condition raised as a result of an unsuccessful

attempt to implicitly open a file, the file was found unopened on normal

return from the ON-unit.

1018 End of file or string encountered in data before end of data-list or in

edit-directed transmission format list.

1019 Attempt to close file not opened in current process.

1020 Further input/output attempted before WAIT statement executed to ensure

completion of previous READ.

1021 Attempt to access a record locked by another file in this process.

1022 Unable to extend indexed data set.

1023 Exclusive file closed while records still locked in a subtask

1024 Incorrect sequence of I/O operations on device-associated file.

1025 Insufficient virtual storage available to complete request.

1026 No position established in index data set.

1027 Record control interval already held in exclusive control.

1028 Requested record lies on an unmounted volume.

1029 Attempt to reposition in index data set failed.

Condition codes

Chapter 10. Condition codes 133

1030 An error occurred during index upgrade on a index data set.

1031 Invalid sequential write attempted on index data set.

1040 A data set open for output used all available space.

1041 An attempt was made to write a record containing a record delimiter.

1042 Record in data set is not properly delimited.

1102 An error occurred in storage management. Storage to be freed was pointed

to by an invalid address.

1104 An internal error occurred in the library.

1105 Unable to create an object window.

1106 Insufficient space available to satisfy a storage allocation request.

1107 There was a problem during free storage processing.

Condition codes 1500 through 1550

1500 Computational error; short floating-point argument of SQRT built-in

function is less than zero.

1501 Computational error; long floating-point argument of SQRT built-in

function is less than zero.

1502 Computational error; extended floating-point argument of SQRT built-in

function is less than zero.

1503 Computational error in LOG, LOG2, or LOG10 built-in function; extended

floating-point argument is less than zero.

1504 Computational error in LOG, LOG2, or LOG10 built-in function; short

floating-point argument is less than zero.

1505 Computational error in LOG, LOG2 or LOG10 built-in function; long

floating-point argument is less than zero.

1506 Computational error in SIN, COS, SIND, or COSD built-in function;

absolute value of short floating-point argument exceeds (2**63) (SIN and

COS) or (2**63)*180 (SIND and COSD).

1507 Computational error in SIN, COS, SIND, or COSD built-in function;

absolute value of long floating-point argument exceeds (2**63) (SIN and

COS) or (2**63)*180 (SIND and COSD).

1508 Computational error; absolute value of short floating-point argument of

TAN or TAND built-in function is greater than or equal to (2**63).

1509 Computational error; absolute value of long floating-point argument of

TAN or TAND built-in function exceeds, respectively, (2**63) or (2**63)*180.

1510 Computational error; short floating-point arguments of ATAN or ATAND

built-in function both invalid.

1511 Computational error; long floating-point arguments of ATAN or ATAND

built-in function both invalid.

1514 Computational error; absolute value of short floating-point argument of

ATANH built-in function >1.

1515 Computational error; absolute value of long floating-point argument of

ATANH built-in function >1.

Condition codes

134 PL/I Messages and Codes

1516 Computational error; absolute value of extended floating-point argument

of ATANH built-in function >1.

1517 Computational error in SIN, COS, SIND, or COSD built-in function;

argument of extended floating-point argument exceeds (2**64).

1518 Computational error; absolute value of short floating-point argument of

ASIN or ACOS built-in function exceeds 1.

1519 Computational error; absolute value of long floating-point argument of

ASIN or ACOS built-in function exceeds 1.

1520 Computational error; absolute value of extended floating-point argument

of ASIN, ACOS built-in function exceeds 1.

1521 Computational error; extended floating-point arguments of ATAN or

ATAND built-in function both invalid.

1522 Computational error; absolute value of extended floating-point argument

of TAN or TAND built-in function >= (2**64) or (2**64)*180, respectively.

1523 Computational error; absolute value of real short floating-point argument

of SINH or COSH built-in function greater than 89.41.

1524 Absolute value of real long floating-point argument of SINH or COSH

argument greater than or equal to 710.47.

1525 Absolute value of real extended floating-point argument of SINH or COSH

greater than or equal to 11357.22.

1526 Computational error; absolute value of real short floating-point argument

of COTAN or COTAND greater than or equal to (2**63).

1527 Computational error; absolute value of real long floating-point argument of

COTAN or COTAND greater than or equal to (2**63).

1528 Computational error; absolute value of real extended floating-point

argument of COTAN or COTAND greater than or equal to (2**64).

1529 Computational error in SIN, COS, SIND, or COSD built-in function;

absolute value of the real part of complex short floating-point argument

greater than or equal to (2**63)

1530 Computational error in SIN, COS, SIND, or COSD built-in function;

absolute value of the real part of complex long floating-point argument

greater than or equal to (2**63).

1531 Computational error in SIN, COS, SIND, or COSD built-in function;

absolute value of the real part of complex extended floating-point

argument greater than or equal to (2**64).

1550 Computational error; during exponentiation, real short floating-point base

is zero and integer exponent is not positive.

Condition codes 1551 through 1600

1551 Computational error; during exponentiation, real long floating-point base is

zero and integer exponent is not positive.

1552 Computational error; during exponentiation, real short floating-point base

is zero and the floating-point or noninteger exponent is not positive.

1553 Computational error; during exponentiation, real long floating-point base is

zero and the floating-point or noninteger exponent is not positive.

Condition codes

Chapter 10. Condition codes 135

1554 Computational error; during exponentiation, complex short floating-point

base is zero and integer exponent is not positive.

1555 Computational error; during exponentiation, complex long floating-point

base is zero and integer exponent is not positive.

1556 Computational error; during exponentiation, complex short floating-point

base is zero and floating-point or noninteger exponent is not positive and

real.

1557 Computational error; during exponentiation, complex long floating-point

base is zero and floating-point or noninteger exponent is not positive and

real.

1558 Computational error; complex short floating-point argument of ATAN or

ATAND built-in function has value, respectively, of ±1I or ±1.

1559 Computational error; complex long floating-point argument of ATAN or

ATAND built-in function has value, respectively, of ±1I or ±1.

1560 Computational error; during exponentiation, real extended floating-point

base is zero and integer exponent not positive.

1561 Computational error; during exponentiation, real extended floating-point

base is zero and floating-point or noninteger exponent is not positive.

1562 Computational error; during exponentiation, complex extended

floating-point base is zero and integer exponent is not positive.

1563 Computational error; complex extended floating-point base is zero and

floating-point or nonintegral exponent is not positive.

1564 Computational error; complex extended floating-point argument of ATAN

or ATAND built-in function has value, respectively, of ±1I or ±1.

1565 Computational error; real short floating-point argument of EXP built-in

function was less than −87.33.

1566 Computational error; real long floating-point argument of EXP built-in

function was less than −708.39.

1567 Computational error; real extended floating-point argument of EXP built-in

function was less than −11355.13.

1568 Computational error EXP built-in function; absolute value of the imaginary

part of the complex short floating-point argument is greater than or equal

to (2**63).

1569 Computational error EXP built-in function; absolute value of the imaginary

part of the complex long floating-point argument is greater than or equal

to (2**63).

1570 Computational error EXP built-in function; absolute value of the imaginary

part of the complex extended floating-point argument is greater than or

equal to (2**64).

1571 Computational error GAMMA or LOGGAMMA built-in function; real short

floating point argument is greater than 35.04 (GAMMA) or 4.085E+36

(LOGGAMMA).

1572 Computational error GAMMA or LOGGAMMA built-in function; real long

floating point argument is greater than 171.62 (GAMMA) or 2.559E+305

(LOGGAMMA).

Condition codes

136 PL/I Messages and Codes

1573 Computational error GAMMA or LOGGAMMA built-in function; real

extended floating point argument is greater than 1755.54 (GAMMA) or

1.048E+4928 (LOGGAMMA).

1574 Computational error TANH built-in function; absolute value of the

imaginary part of the complex short floating-point argument is greater

than or equal to (2**63).

1575 Computational error TANH built-in function; absolute value of the

imaginary part of the complex long floating-point argument is greater than

or equal to (2**63).

1576 Computational error TANH built-in function; absolute value of the

imaginary part of the complex extended floating-point argument is greater

than or equal to (2**64).

1577 Computational error in LOG, LOG2, or LOG10 built-in function; real short

floating-point argument equal to plus or minus zero.

1578 Computational error in LOG, LOG2, or LOG10 built-in function; real long

floating-point argument equal to plus or minus zero.

1579 Computational error in LOG, LOG2, or LOG10 built-in function; real

extended floating-point argument equal to plus zero.

1600 Computational error in EXP built-in function; for complex long

floating-point arguments, the real argument was not plus or minus infinity,

and the imaginary argument was not zero.

Condition codes 1601 through 1650

1601 Computational error in EXP built-in function; for complex extended

floating-point arguments, the real argument was not plus or minus infinity,

and the imaginary argument was not zero.

1602 Computational error; real part of the complex short floating-point

argument for the EXP built-in function was not a valid IEEE number.

1603 Computational error; real part of the complex long floating-point argument

for the EXP built-in function was not a valid IEEE number.

1604 Computational error; real part of the complex extended floating-point

argument for the EXP built-in function was not a valid IEEE number.

1605 Computational error; imaginary part of the complex short floating-point

argument for the EXP built-in function was not a valid IEEE number.

1606 Computational error; imaginary part of the complex long floating-point

argument for the EXP built-in function was not a valid IEEE number.

1607 Computational error; imaginary part of the complex extended

floating-point argument for the EXP built-in function was not a valid IEEE

number.

1608 Computational error; both parts of the complex short floating-point

argument for the EXP built-in function were not valid IEEE numbers.

1609 Computational error; both parts of the complex long floating-point

argument for the EXP built-in function were not valid IEEE numbers.

1610 Computational error; both parts of the complex extended floating-point

argument for the EXP built-in function were not valid IEEE numbers.

Condition codes

Chapter 10. Condition codes 137

1611 Computational error; real short floating-point argument for EXP built-in

function greater than or equal to 88.73.

1612 Computational error; real long floating-point argument for EXP built-in

function greater than or equal to 709.79.

1613 Computational error; real extended floating-point argument for EXP

built-in function greater than or equal to 11356.53.

1614 Computational error; real short floating-point argument for EXP built-in

function is not a valid IEEE number.

1615 Computational error; real long floating-point argument for EXP built-in

function is not a valid IEEE number.

1616 Computational error; real extended floating-point argument for EXP

built-in function is not a valid IEEE number.

1617 Computational error in LOG built-in function; for complex short

floating-point arguments, the real argument was not plus or minus infinity,

and the imaginary argument was not zero.

1618 Computational error in LOG built-in function; for complex long

floating-point arguments, the real argument was not plus or minus infinity,

and the imaginary argument was not zero.

1619 Computational error in LOG, LOG2, or LOG10 built-in function; for

complex extended floating-point arguments, the real argument was not

plus or minus infinity, and the imaginary argument was not zero.

1620 Computational error in LOG, LOG2, or LOG10 built-in function; real part

of complex short floating-point argument was not a valid IEEE number.

1621 Computational error in LOG, LOG2, or LOG10 built-in function; real part

of complex long floating-point argument was not a valid IEEE number.

1622 Computational error in LOG, LOG2, or LOG10 built-in function; real part

of complex extended floating-point argument was not a valid IEEE

number.

1623 Computational error in LOG, LOG2, or LOG10 built-in function; imaginary

part of complex short floating-point argument was not a valid IEEE

number.

1624 Computational error in LOG, LOG2, or LOG10 built-in function; imaginary

part of complex long floating-point argument was not a valid IEEE

number.

1625 Computational error in LOG, LOG2, or LOG10 built-in function; imaginary

part of complex extended floating-point argument was not a valid IEEE

number.

1626 Computational error in LOG, LOG2, or LOG10 built-in function; both parts

of complex short floating-point argument were not valid IEEE numbers.

1627 Computational error in LOG, LOG2, or LOG10 built-in function; both parts

of complex long floating-point argument were not valid IEEE numbers.

1628 Computational error in LOG, LOG2, or LOG10 built-in function; both parts

of complex extended floating-point argument were not valid IEEE

numbers.

1629 Computational error in LOG, LOG2, or LOG10 built-in function; real short

floating-point argument is not a valid IEEE number.

Condition codes

138 PL/I Messages and Codes

1630 Computational error in LOG, LOG2, or LOG10 built-in function; real long

floating-point argument is not a valid IEEE number.

1631 Computational error in LOG, LOG2, or LOG10 built-in function; real

extended floating-point argument is not a valid IEEE number.

1650 Computational error; during exponentiation, real long floating-point base is

plus or minus infinity, and real long floating-point exponent is zero.

Condition codes 1651 through 1700

1651 Computational error; during exponentiation, real extended floating-point

base is plus or minus infinity, and real extended floating-point exponent is

zero.

1652 Computational error; during exponentiation for a real short floating-point

base with a real short floating-point exponent, the first argument was not a

valid IEEE number.

1653 Computational error; during exponentiation for a real long floating-point

base with a real long floating-point exponent, the first argument was not a

valid IEEE number.

1654 Computational error; during exponentiation for a real extended

floating-point base with a real extended floating-point exponent, the first

argument was not a valid IEEE number.

1655 Computational error; during exponentiation for a real short floating-point

base with a real short floating-point exponent, the second argument was

not a valid IEEE number.

1656 Computational error; during exponentiation for a real long floating-point

base with a real long floating-point exponent, the second argument was

not a valid IEEE number.

1657 Computational error; during exponentiation for a real extended

floating-point base with a real extended floating-point exponent, the

second argument was not a valid IEEE number.

1658 Computational error; during exponentiation for a real short floating-point

base with a real short floating-point exponent, both arguments were not

valid IEEE numbers.

1659 Computational error; during exponentiation for a real long floating-point

base with a real long floating-point exponent both arguments were not

valid IEEE numbers.

1660 Computational error; during exponentiation for a real extended

floating-point base with a real extended floating-point exponent, both

arguments were not valid IEEE numbers.

1661 Computational error; during exponentiation for complex short

floating-point base with integer value exponent, an argument plus or

minus infinity is specified.

1662 Computational error; during exponentiation for complex long

floating-point base with integer value exponent, an argument plus or

minus infinity is specified.

1663 Computational error; during exponentiation for complex extended

floating-point base with integer value exponent, an argument plus or

minus infinity is specified.

Condition codes

Chapter 10. Condition codes 139

1664 Computational error; during exponentiation for complex short

floating-point base with integer value exponent, the real part of the

complex argument is not a valid IEEE number.

1665 Computational error; during exponentiation for complex long

floating-point base with integer value exponent, the real part of the

complex argument is not a valid IEEE number.

1666 Computational error; during exponentiation for complex extended

floating-point base with integer value exponent, the real part of the

complex argument is not a valid IEEE number.

1667 Computational error; during exponentiation for complex short

floating-point base with integer value exponent, the imaginary part of the

complex argument is not a valid IEEE number.

1668 Computational error; during exponentiation for complex long

floating-point base with integer value exponent, the imaginary part of the

complex argument is not a valid IEEE number.

1669 Computational error; during exponentiation for complex extended

floating-point base with integer value exponent, the imaginary part of the

complex argument is not a valid IEEE number.

1670 Computational error; during exponentiation for complex short

floating-point base with integer value exponent, both parts of the complex

argument are not valid IEEE numbers.

1671 Computational error; during exponentiation for complex long

floating-point base with integer value exponent, both parts of the complex

argument are not valid IEEE numbers.

1672 Computational error; during exponentiation for complex extended

floating-point base with integer value exponent, both parts of the complex

argument are not valid IEEE numbers.

1673 Computational error; during exponentiation, integer base is zero and

integer exponent is not positive.

1674 Computational error; during exponentiation, integer base is not plus or

minus 1 and integer exponent is not positive.

1675 Computational error; during exponentiation, real short floating-point base

was plus or minus infinity and integer exponent is equal to plus or minus

zero.

1676 Computational error; during exponentiation, real long floating-point base

was plus or minus infinity and integer exponent is equal to plus or minus

zero.

1677 Computational error; during exponentiation, real extended floating-point

base was plus or minus infinity and integer exponent is equal to plus or

minus zero.

1678 Computational error; during exponentiation for a real short floating-point

base with an integer exponent, the first argument was not a valid IEEE

number.

1679 Computational error; during exponentiation for a real long floating-point

base with an integer exponent, the first argument was not a valid IEEE

number.

Condition codes

140 PL/I Messages and Codes

1680 Computational error; during exponentiation for a real extended

floating-point base with an integer exponent, the first argument was not a

valid IEEE number.

1681 Computational error in the EXP built-in function; for complex short

floating-point arguments, the real argument was not plus or minus infinity,

and the imaginary argument was not zero.

1700 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, imaginary

parts of both complex arguments are not valid IEEE numbers.

Condition codes 1701 through 1750

1701 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent,

imaginary parts of both complex arguments are not valid IEEE numbers.

1702 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, real part

of first complex argument and imaginary part of second complex argument

are not valid IEEE numbers.

1703 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, real part

of first complex argument and imaginary part of second complex argument

are not valid IEEE numbers.

1704 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, real

part of first complex argument and imaginary part of second complex

argument are not valid IEEE numbers.

1705 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent,

imaginary part of first complex argument and real part of second complex

argument are not valid IEEE numbers.

1706 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, imaginary

part of first complex argument and real part of second complex argument

are not valid IEEE numbers.

1707 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent,

imaginary part of first complex argument and real part of second complex

argument are not valid IEEE numbers.

1708 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, real part

of first complex argument was the only valid IEEE number.

1709 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, real part

of first complex argument was the only valid IEEE number.

1710 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, real

part of first complex argument was the only valid IEEE number.

1711 Computational error; during exponentiation for a complex short

Condition codes

Chapter 10. Condition codes 141

floating-point base with a complex short floating-point exponent,

imaginary part of first complex argument was the only valid IEEE number.

1712 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, imaginary

part of first complex argument was the only valid IEEE number.

1713 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent,

imaginary part of first complex argument was the only valid IEEE number.

1714 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, real part

of second complex argument was the only valid IEEE number.

1715 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, real part

of second complex argument was the only valid IEEE number.

1716 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, real

part of second complex argument was the only valid IEEE number.

1717 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent,

imaginary part of second complex argument was the only valid IEEE

number.

1718 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, imaginary

part of second complex argument was the only valid IEEE number.

1719 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent,

imaginary part of second complex argument was the only valid IEEE

number.

1720 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, both

parts of both complex arguments were not valid IEEE numbers.

1721 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, both parts

of both complex arguments were not valid IEEE numbers.

1722 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, both

parts of both complex arguments were not valid IEEE numbers.

1723 Computational error; during exponentiation, real short floating-point base

plus or minus infinity and real short floating-point exponent is an invalid

32-bit integer.

1724 Computational error; during exponentiation, real long floating-point base is

plus or minus infinity and real long floating-point exponent is an invalid

32-bit integer.

1725 Computational error; during exponentiation, real extended floating-point

base plus or minus infinity and real extended floating-point exponent is an

invalid 32-bit integer.

1726 Computational error; during exponentiation, real short floating-point base

plus 1 and real short floating-point exponent is plus or minus infinity.

Condition codes

142 PL/I Messages and Codes

1727 Computational error; during exponentiation, real long floating-point base is

+1 and real long floating-point exponent is plus or minus infinity.

1728 Computational error; during exponentiation, real extended floating-point

base is +1 and real extended floating-point exponent is plus or minus

infinity.

1729 Computational error; during exponentiation, real short floating-point base

is zero and real short floating-point exponent is not positive or zero.

1730 Computational error; during exponentiation, real long floating-point base is

zero and real long floating-point exponent is not positive or zero.

1731 Computational error; during exponentiation, real short floating-point base

plus or minus infinity and real short floating-point exponent is zero.

1750 Computational error; the first real short floating-point argument for SCALE

was not a valid IEEE number.

Condition codes 1751 through 1800

1751 Computational error; the real short floating-point argument for ASIN(X) or

ACOS(X) was not a valid IEEE number.

1752 Computational error; the real long floating-point argument for ASIN(X) or

ACOS(X) was not a valid IEEE number.

1753 Computational error; the real extended floating-point argument for

ASIN(X) or ACOS(X) was not a valid IEEE number.

1754 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, an

argument exceeded the limit.

1755 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, an

argument exceeded the limit.

1756 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, an

argument exceeded the limit.

1757 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, plus or

minus infinity was specified as an argument.

1758 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, plus or

minus infinity was specified as an argument.

1759 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, plus

or minus infinity was specified as an argument.

1760 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, the real

part of the first complex argument is not a valid IEEE number.

1761 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, the real

part of the first complex argument is not a valid IEEE number.

1762 Computational error; during exponentiation for a complex extended

Condition codes

Chapter 10. Condition codes 143

floating-point base with a complex extended floating-point exponent, the

real part of the first complex argument is not a valid IEEE number.

1763 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, the real

part of the second complex argument is not a valid IEEE number.

1764 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, the real

part of the second complex argument is not a valid IEEE number.

1765 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, the

real part of the second complex argument is not a valid IEEE number.

1766 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, the

imaginary part of the first complex argument is not a valid IEEE number.

1767 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, the

imaginary part of the first complex argument is not a valid IEEE number.

1768 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, the

imaginary part of the first complex argument is not a valid IEEE number.

1769 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, the

imaginary part of the second complex argument is not a valid IEEE

number.

1770 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, the

imaginary part of the second complex argument is not a valid IEEE

number.

1771 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, the

imaginary part of the second complex argument is not a valid IEEE

number.

1772 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, both

parts of the first complex argument are not valid IEEE numbers.

1773 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, both parts

of the first complex argument are not valid IEEE numbers.

1774 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, both

parts of the first complex argument are not valid IEEE numbers.

1775 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, both

parts of the second complex argument are not valid IEEE numbers.

1776 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, both parts

of the second complex argument are not valid IEEE numbers.

1777 Computational error; during exponentiation for a complex extended

Condition codes

144 PL/I Messages and Codes

floating-point base with a complex extended floating-point exponent, both

parts of the second complex argument are not valid IEEE numbers.

1778 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent, real parts

of both complex arguments are not valid IEEE numbers.

1779 Computational error; during exponentiation for a complex long

floating-point base with a complex long floating-point exponent, real parts

of both complex arguments are not valid IEEE numbers.

1780 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, real

parts of both complex arguments are not valid IEEE numbers.

1781 Computational error; during exponentiation for a complex short

floating-point base with a complex short floating-point exponent,

imaginary parts of both complex arguments are not valid IEEE numbers.

1800 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex extended floating-point argument both parts of the argument are

not valid IEEE numbers.

Condition codes 1801 through 1850

1801 Computational error in SIN, COS, SIND, or COSD built-in function;

absolute value of real short floating-point argument is not a valid IEEE

number.

1802 Computational error in SIN, COS, SIND, or COSD built-in function;

absolute value of real long floating-point argument is not a valid IEEE

number.

1803 Computational error in SIN, COS, SIND, or COSD built-in function;

absolute value of real extended floating-point argument is not a valid IEEE

number.

1804 The calculated result of real extended floating-point arguments for TANH

overflowed the output field.

1808 Computational error; for real short floating-point arguments of ATAN or

ATAND built-in function, the first argument was not a valid IEEE number.

1809 Computational error; for real long floating-point arguments of ATAN or

ATAND built-in function, the first argument was not a valid IEEE number.

1810 Computational error; for real extended floating-point argument of ATAN or

ATAND built-in function, the first argument was not a valid IEEE number.

1811 Computational error; for real short floating-point arguments of ATAN or

ATAND built-in function, the second argument was not a valid IEEE

number.

1812 Computational error; for real long floating-point arguments of ATAN or

ATAND built-in function, the second argument was not a valid IEEE

number.

1813 Computational error; for real extended floating-point argument of ATAN or

ATAND built-in function, the second argument was not a valid IEEE

number.

1814 Computational error; both real short floating-point arguments of ATAN or

ATAND built-in function were not valid IEEE numbers.

Condition codes

Chapter 10. Condition codes 145

1815 Computational error; both real long floating-point arguments of ATAN or

ATAND built-in function were not valid IEEE numbers.

1816 Computational error; both real extended floating-point arguments of ATAN

or ATAND built-in function were not valid IEEE numbers.

1817 Computational error; complex short floating-point argument of ATAN or

ATAND built-in function does not have value of (plus infinity, 0i) or

(minus infinity, 0i).

1818 Computational error; complex long floating-point argument of ATAN or

ATAND built-in function does not have value of (plus infinity, 0i) or

(minus infinity, 0i).

1819 Computational error; complex extended floating-point argument of ATAN

or ATAND built-in function does not have value of (plus infinity, 0i) or

(minus infinity, 0i).

1820 Computational error; real part of complex short floating-point argument of

ATAN or ATAND built-in function is not a valid IEEE number.

1821 Computational error; real part of complex long floating-point argument of

ATAN or ATAND built-in function is not a valid IEEE number.

1822 Computational error; real part of complex extended floating-point

argument of ATAN or ATAND built-in function is not a valid IEEE

number.

1823 Computational error; imaginary part of complex short floating-point

argument of ATAN or ATAND built-in function is not a valid IEEE

number.

1824 Computational error; imaginary part of complex long floating-point

argument of ATAN or ATAND built-in function is not a valid IEEE

number.

1825 Computational error; imaginary part of complex extended floating-point

argument of ATAN or ATAND built-in function is not a valid IEEE

number.

1826 Computational error; both parts of complex short floating-point argument

of ATAN or ATAND built-in function were not valid IEEE numbers.

1827 Computational error; both parts of complex long floating-point argument

of ATAN or ATAND built-in function were not valid IEEE numbers.

1828 Computational error; both parts of complex extended floating-point

argument of ATAN or ATAND built-in function were not valid IEEE

numbers.

1829 Computational error; the real short floating-point argument of ATAN(X) or

ATAND(X) built-in function was not a valid IEEE number.

1830 Computational error; the real long floating-point argument of ATAN(X) or

ATAND(X) built-in function was not a valid IEEE number.

1831 Computational error; the real extended floating-point argument of

ATAN(X) or ATAND(X) built-in function was not a valid IEEE number.

1850 Computational error; real short floating-point argument of COTAN or

COTAND was not a valid IEEE number.

Condition codes

146 PL/I Messages and Codes

Condition codes 1851 through 1900

1851 Computational error; real long floating-point argument of COTAN or

COTAND was not a valid IEEE number.

1852 Computational error; real extended floating-point argument of COTAN or

COTAND was not a valid IEEE number.

1853 Computational error in TAN or TAND; for complex short floating-point

argument, absolute value of the real part of argument greater than or equal

to (2**63).

1854 Computational error in TAN or TAND; for complex long floating-point

argument, absolute value of the real part of argument greater than or equal

to (2**63).

1855 Computational error in TAN or TAND; for complex extended

floating-point argument, absolute value of the real part of argument greater

than or equal to (2**64).

1856 Computational error in TAN or TAND; for complex short floating-point

argument both parts of the argument were plus or minus infinity.

1857 Computational error in TAN or TAND; for complex long floating-point

argument both parts of the argument were plus or minus infinity.

1858 Computational error in TAN or TAND; for complex extended

floating-point argument both parts of the argument were plus or minus

infinity.

1859 Computational error in TAN or TAND; for complex short floating-point

argument real part of argument not a valid IEEE number.

1860 Computational error in TAN or TAND; for complex long floating-point

argument real part of argument not a valid IEEE number.

1861 Computational error in TAN or TAND; for complex extended

floating-point argument real part of argument not a valid IEEE number.

1862 Computational error in TAN or TAND; for complex short floating-point

argument imaginary part of argument not a valid IEEE number.

1863 Computational error in TAN or TAND; for complex long floating-point

argument imaginary part of argument not a valid IEEE number.

1864 Computational error in TAN or TAND; for complex extended

floating-point argument imaginary part of argument not a valid IEEE

number.

1865 Computational error in TAN or TAND; for complex short floating-point

argument both parts of the argument were not valid IEEE numbers.

1866 Computational error in TAN or TAND; for complex long floating-point

argument both parts of the argument were not valid IEEE numbers.

1867 Computational error in TAN or TAND; for complex extended

floating-point argument both parts of the argument were not valid IEEE

numbers.

1868 Computational error in TAN or TAND; real short floating-point argument

not a valid IEEE number.

1869 Computational error in TAN or TAND; real long floating-point argument

not a valid IEEE number.

Condition codes

Chapter 10. Condition codes 147

1870 Computational error in TAN or TAND; real extended floating-point

argument not a valid IEEE number.

1871 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex short floating-point argument both parts of the argument were

plus or minus infinity.

1872 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex long floating-point argument both parts of the argument were

plus or minus infinity.

1873 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex extended floating-point argument both parts of the argument

were plus or minus infinity.

1874 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex short floating-point argument the real part of the argument was

not a valid IEEE number.

1875 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex long floating-point argument the real part of the argument was

not a valid IEEE number.

1876 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex extended floating-point argument the real part of the argument

was not a valid IEEE number.

1877 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex short floating-point argument the imaginary part of the argument

was not a valid IEEE number.

1878 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex long floating-point argument the imaginary part of the argument

was not a valid IEEE number.

1879 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex extended floating-point argument the imaginary part of the

argument was not a valid IEEE number.

1880 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex short floating-point argument both parts of the argument were

not valid IEEE numbers.

1881 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex long floating-point argument both parts of the argument were not

valid IEEE numbers.

1900 Computational error in TANH; for complex long floating-point argument

the real part of the argument was not equal to plus or minus infinity, and

the imaginary part of the argument was not zero.

Condition codes 1901 through 1950

1901 Computational error in TANH; for complex extended floating-point

argument the real part of the argument was not equal to plus or minus

infinity, and the imaginary part of the argument was not zero.

1902 Computational error in TANH; for complex short floating-point argument

real part of argument not a valid IEEE number.

1903 Computational error in TANH; for complex long floating-point argument

real part of argument not a valid IEEE number.

Condition codes

148 PL/I Messages and Codes

1904 Computational error in TANH; for complex extended floating-point

argument real part of argument not a valid IEEE number.

1905 Computational error in TANH; for complex short floating-point argument

the imaginary part of the argument was not a valid IEEE number.

1906 Computational error in TANH; for complex long floating-point argument

the imaginary part of the argument was not a valid IEEE number.

1907 Computational error in TANH; for complex extended floating-point

argument the imaginary part of the argument was not a valid IEEE

number.

1908 Computational error in TANH; for complex short floating-point argument

both parts of the argument were not valid IEEE numbers.

1909 Computational error in TANH; for complex long floating-point argument

both parts of the argument were not valid IEEE numbers.

1910 Computational error in TANH; for complex extended floating-point

argument both parts of the argument were not valid IEEE numbers.

1911 Computational error; real short floating-point argument of TANH built-in

function not a valid IEEE number.

1912 Computational error; real long floating-point argument of TANH built-in

function not a valid IEEE number.

1913 Computational error; real extended floating-point argument of TANH

built-in function not a valid IEEE number.

1914 Computational error; absolute value of imaginary part of complex short

floating-point argument of SINH or COSH built-in function was greater

than or equal to (2**63).

1915 Computational error; absolute value of the imaginary part of complex long

floating-point argument of SINH or COSH built-in function was greater

than or equal to (2**63).

1916 Computational error; absolute value of the imaginary part of complex

extended floating-point argument of SINH or COSH built-in function was

greater than or equal to (2**64).

1917 Computational error; for complex short floating-point argument of SINH or

COSH built-in function real argument was not plus or minus infinity and

imaginary argument was not zero.

1918 Computational error; for complex long floating-point argument of SINH or

COSH built-in function real argument was not plus or minus infinity and

imaginary argument was not zero.

1919 Computational error; for complex extended floating-point argument of

SINH or COSH built-in function real argument was not plus or minus

infinity and imaginary argument was not zero.

1920 Computational error; for complex short floating-point argument of SINH or

COSH built-in function real part of argument not valid IEEE number.

1921 Computational error; for complex long floating-point argument of SINH or

COSH built-in function real part of argument not valid IEEE number.

1922 Computational error; for complex extended floating-point argument of

SINH or COSH built-in function real part of argument not valid IEEE

number.

Condition codes

Chapter 10. Condition codes 149

1923 Computational error; for complex short floating-point argument of SINH or

COSH built-in function imaginary part of argument not valid IEEE

number.

1924 Computational error; for complex long floating-point argument of SINH or

COSH built-in function imaginary part of argument not valid IEEE

number.

1925 Computational error; for complex extended floating-point argument of

SINH or COSH built-in function imaginary part of argument not valid

IEEE number.

1926 Computational error; for complex short floating-point argument of SINH or

COSH built-in function both parts of argument not valid IEEE numbers.

1927 Computational error; for complex long floating-point argument of SINH or

COSH built-in function both parts of argument not valid IEEE numbers.

1928 Computational error; for complex extended floating-point argument of

SINH or COSH built-in function both parts of argument not valid IEEE

numbers.

1929 Computational error; real short floating-point argument of SINH or COSH

built-in function was not a valid IEEE number.

1930 Computational error; real long floating-point argument of SINH or COSH

built-in function was not a valid IEEE number.

1931 Computational error; real extended floating-point argument of SINH or

COSH built-in function was not a valid IEEE number.

1950 Computational error in SQRT; for complex extended floating-point

argument real part was not equal to plus or minus infinity, and imaginary

part was not equal to zero.

Condition codes 1951 through 2000

1951 Computational error in SQRT; real part of complex short floating-point

argument was not a valid IEEE number.

1952 Computational error in SQRT; real part of complex long floating-point

argument was not a valid IEEE number.

1953 Computational error in SQRT; real part of complex extended floating-point

argument was not a valid IEEE number.

1954 Computational error in SQRT; imaginary part of complex short

floating-point argument was not a valid IEEE number.

1955 Computational error in SQRT; imaginary part of complex long

floating-point argument was not a valid IEEE number.

1956 Computational error in SQRT; imaginary part of complex extended

floating-point argument was not a valid IEEE number.

1957 Computational error in SQRT; both parts of complex short floating-point

argument were not valid IEEE numbers.

1958 Computational error in SQRT; both parts of complex long floating-point

argument were not valid IEEE numbers.

1959 Computational error in SQRT; both parts of complex extended

floating-point argument were not valid IEEE numbers.

Condition codes

150 PL/I Messages and Codes

1960 Computational error in SQRT; real short floating-point argument is equal to

minus zero.

1961 Computational error in SQRT; real long floating-point argument is equal to

minus zero.

1962 Computational error in SQRT; real extended floating-point argument is

equal to minus zero.

1963 Computational error in SQRT; real short floating-point argument was not a

valid IEEE number.

1964 Computational error in SQRT; real long floating-point argument was not a

valid IEEE number.

1965 Computational error in SQRT; real extended floating-point argument was

not a valid IEEE number.

1966 Computational error; complex short floating-point argument of ATANH

included plus or minus infinity.

1967 Computational error; complex long floating-point argument of ATANH

included plus or minus infinity.

1968 Computational error; complex extended floating-point argument of

ATANH included plus or minus infinity.

1969 Computational error; real part of complex short floating-point argument of

ATANH was not a valid IEEE number.

1970 Computational error; real part of complex long floating-point argument of

ATANH was not a valid IEEE number.

1971 Computational error; real part of complex extended floating-point

argument of ATANH was not a valid IEEE number.

1972 Computational error; imaginary part of complex short floating-point

argument of ATANH was not a valid IEEE number.

1973 Computational error; imaginary part of complex long floating-point

argument of ATANH was not a valid IEEE number.

1974 Computational error; imaginary part of complex extended floating-point

argument of ATANH was not a valid IEEE number.

1975 Computational error; both parts of complex short floating-point argument

of ATANH were not valid IEEE numbers.

1976 Computational error; both parts of complex long floating-point argument

of ATANH were not valid IEEE numbers.

1977 Computational error; both parts of complex extended floating-point

argument of ATANH were not valid IEEE numbers.

1978 Computational error; floating-point argument of ATANH was not a valid

IEEE number.

1979 Computational error; long floating-point argument of ATANH was not a

valid IEEE number.

1980 Computational error; extended floating-point argument of ATANH was not

a valid IEEE number.

1981 Computational error in TANH; for complex short floating-point argument

the real part of the argument was not equal to plus or minus infinity, and

the imaginary part of the argument was not zero.

Condition codes

Chapter 10. Condition codes 151

Condition codes 2002 through 2150

2002 WAIT statement cannot be executed because of restricted system facility.

2101 Greenwich mean time was not available for the RANDOM built-in

function.

2102 An invalid seed value was detected in the RANDOM built-in function. The

random number was set to -1.

2103 Local time was unavailable.

2104 The value of y in the SECSTODATE, DAYS, DAYSTODATE, or DATETIME

built-in function contained an invalid picture string specification.

2105 The value of x in the DAYS built-in function contained an invalid day

value; the valid range is 15 October 1582 to 31 December 9999.

2106 The value of x in the DAYS built-in function contained an invalid month

value; the valid range is October 1582 to December 9999.

2107 The value of x in the DAYS built-in function contained an invalid year

value; the valid range is 1582 to 9999.

2108 The value of x in the DAYSTODATE built-in function was outside the

supported range; the valid range is from 1 to 3,074,324.

2109 The value of x in the SECSTODATE built-in function was outside the

supported range; the valid range is from 86,400 to 265,621,679,999.999.

2110 The value of x in the DAYSTODATE built-in function could not be

converted to a valid Japanese or Republic of China Era.

2111 The difference between the current local time and the Greenwich Mean

Time was unavailable.

2112 The value of x in the SECS or DAYS built-in function was outside the

supported range; the valid range is from 15 October 1582 to 31 December

9999.

2113 The value of x in the SECS built-in function contained an invalid seconds

value; the valid range is from 0 to 59.

2114 The value of x in the SECS built-in function contained an invalid minutes

value; the valid range is from 0 to 59.

2115 The value of x in the SECS built-in function contained an invalid hour

value; the valid range is from 0 to 23 or from 0 to 12 (if the AP field is

present).

2116 The value of x in the DAYS built-in function did not match the given

picture specification.

2117 The value of x in the SECS built-in function did not match the given

picture specification.

2118 The date string returned by the DAYSTODATE built-in function was

truncated.

2119 The timestamp returned by the DATETIME or SECSTODATE built-in

function was truncated.

2120 The value of x in the SECSTODATE or DATETIME built-in function

contained an invalid value for the number of seconds with the range of

supported Japanese or Republic of China Eras.

Condition codes

152 PL/I Messages and Codes

2121 Insufficient data was passed to the DAYS or SECS built-in function; the

picture string did not contain enough information.

2122 The value of x in the SECS or DAYS built-in function contained an invalid

Era name.

2150 Computational error; in MOD(x,y) built-in function the second argument

was equal to zero.

Condition codes 2151 through 2200

2151 Computational error in ABS built-in function; real part of complex short

floating-point argument was not a valid IEEE number.

2152 Computational error in ABS built-in function; real part of complex long

floating-point argument was not a valid IEEE number.

2153 Computational error in ABS built-in function; real part of complex

extended floating-point argument was not a valid IEEE number.

2154 Computational error in ABS built-in function; imaginary part of complex

short floating-point argument was not a valid IEEE number.

2155 Computational error in ABS built-in function; imaginary part of complex

long floating-point argument was not a valid IEEE number.

2156 Computational error in ABS built-in function; imaginary part of complex

extended floating-point argument was not a valid IEEE number.

2157 Computational error in ABS built-in function; both parts of complex short

floating-point argument were not valid IEEE numbers.

2158 Computational error in ABS built-in function; both parts of complex long

floating-point argument were not valid IEEE numbers.

2159 Computational error in ABS built-in function; both parts of complex

extended floating-point argument were not valid IEEE numbers.

2160 Computational error in ABS built-in function; integer argument is equal to

(−2**31).

2161 Computational error in ABS built-in function; real short floating-point

argument was not a valid IEEE number.

2162 Computational error in ABS built-in function; real long floating-point

argument was not a valid IEEE number.

2163 Computational error in ABS built-in function; real extended floating-point

argument was not a valid IEEE number.

2164 Computational error GAMMA or LOGGAMMA built-in function; real

extended floating point argument is less than zero.

2165 Computational error GAMMA or LOGGAMMA built-in function; real short

floating point argument is less than or equal to zero.

2166 Computational error GAMMA or LOGGAMMA built-in function; real long

floating point argument is less than or equal to zero.

2167 Computational error GAMMA or LOGGAMMA built-in function; real

extended floating point argument is equal to zero.

2168 Computational error GAMMA or LOGGAMMA built-in function; real short

floating point argument is not a valid IEEE number.

Condition codes

Chapter 10. Condition codes 153

2169 Computational error GAMMA or LOGGAMMA built-in function; real long

floating point argument is not a valid IEEE number.

2170 Computational error GAMMA or LOGGAMMA built-in function; real

extended floating point argument is not a valid IEEE number.

2171 Computational error in ERFC built-in function; real short floating-point

argument was greater than 9.19.

2172 Computational error in ERFC built-in function; real long floating-point

argument was greater than 26.54.

2173 Computational error in ERFC built-in function; real extended floating-point

argument was greater than 106.53.

2174 Computational error in ERFC built-in function; real short floating-point

argument was not a valid IEEE number.

2175 Computational error in ERFC built-in function; real long floating-point

argument was not a valid IEEE number.

2176 Computational error in ERFC built-in function; real extended floating-point

argument was not a valid IEEE number.

2177 Real short floating-point argument in ERF was not a valid IEEE number.

2178 Real long floating-point argument in ERF was not a valid IEEE number.

2179 Real extended floating-point argument in ERF was not a valid IEEE

number.

2180 Computational error in SQRT; for complex short floating-point argument,

real part was not equal to plus or minus infinity, and imaginary part was

not equal to zero.

2181 Computational error in SQRT; for complex long floating-point argument,

real part was not equal to plus or minus infinity, and imaginary part was

not equal to zero.

2200 Computational error; during multiplication real part of first complex long

floating-point argument was the only valid IEEE number.

Condition codes 2201 through 2250

2201 Computational error; during multiplication real part of first complex

extended floating-point argument was the only valid IEEE number.

2202 Computational error; during multiplication the imaginary part of the first

complex short floating-point argument was the only valid IEEE number.

2203 Computational error; during multiplication the imaginary part of the first

complex long floating-point argument was the only valid IEEE number.

2204 Computational error; during multiplication the imaginary part of the first

complex extended floating-point argument was the only valid IEEE

number.

2205 Computational error; during multiplication the real part of the second

complex short floating-point argument was the only valid IEEE number.

2206 Computational error; during multiplication the real part of the second

complex long floating-point argument was the only valid IEEE number.

Condition codes

154 PL/I Messages and Codes

2207 Computational error; during multiplication the real part of the second

complex extended floating-point argument was the only valid IEEE

number.

2208 Computational error; during multiplication the imaginary part of the

second complex short floating-point argument was the only valid IEEE

number.

2209 Computational error; during multiplication the imaginary part of the

second complex long floating-point argument was the only valid IEEE

number.

2210 Computational error; during multiplication the imaginary part of the

second complex extended floating-point argument was the only valid IEEE

number.

2211 Computational error; during multiplication both parts of both complex

short floating-point arguments were not valid IEEE numbers.

2212 Computational error; during multiplication both parts of both complex

long floating-point arguments were not valid IEEE numbers.

2213 Computational error; during multiplication both parts of both complex

extended floating-point arguments were not valid IEEE numbers.

2214 The real short floating-point argument for TRUNC was plus or minus

infinity.

2215 The real long floating-point argument for TRUNC was plus or minus

infinity.

2216 The real extended floating-point argument for TRUNC was plus or minus

infinity.

2217 The real short floating-point argument for TRUNC was not a valid IEEE

number.

2218 The real long floating-point argument for TRUNC was not a valid IEEE

number.

2219 The real extended floating-point argument for TRUNC was not a valid

IEEE number.

2220 Computational error; in MOD(x,y) built-in function real short floating-point

arguments, the first argument was plus or minus infinity, or the second

argument was plus or minus zero.

2221 Computational error; in MOD(x,y) built-in function real long floating-point

arguments, the first argument was plus or minus infinity, or the second

argument was plus or minus zero.

2222 Computational error; in MOD(x,y) built-in function real extended

floating-point arguments, the first argument was plus or minus infinity, or

the second argument was plus or minus zero.

2223 Computational error; in MOD(x,y) built-in function real short floating-point

arguments, the first argument was not a valid IEEE number.

2224 Computational error; in MOD(x,y) built-in function real long floating-point

arguments, the first argument was not a valid IEEE number.

2225 Computational error; in MOD(x,y) built-in function real extended

floating-point arguments, the first argument was not a valid IEEE number.

Condition codes

Chapter 10. Condition codes 155

2226 Computational error; in MOD(x,y) built-in function real short floating-point

arguments, the second argument was not a valid IEEE number.

2227 Computational error; in MOD(x,y) built-in function real long floating-point

arguments, the second argument was not a valid IEEE number.

2228 Computational error; in MOD(x,y) built-in function real extended

floating-point arguments, the second argument was not a valid IEEE

number.

2229 Computational error; in MOD(x,y) built-in function real short floating-point

arguments, both arguments were not valid IEEE numbers.

2230 Computational error; in MOD(x,y) built-in function real long floating-point

arguments, both arguments were not valid IEEE numbers.

2231 Computational error; in MOD(x,y) built-in function real extended

floating-point arguments, both arguments were not valid IEEE numbers.

2250 Computational error; during multiplication for complex extended

floating-point arguments plus or minus infinity was specified.

Condition codes 2251 through 2300

2251 Computational error; during multiplication the real part of the first

complex short floating-point argument was not a valid IEEE number.

2252 Computational error; during multiplication the real part of the first

complex long floating-point argument was not a valid IEEE number.

2253 Computational error; during multiplication the real part of the first

complex extended floating-point argument was not a valid IEEE number.

2254 Computational error; during multiplication the real part of the second

complex short floating-point argument was not a valid IEEE number.

2255 Computational error; during multiplication the real part of the second

complex long floating-point argument was not a valid IEEE number.

2256 Computational error; during multiplication the real part of the second

complex extended floating-point argument was not a valid IEEE number.

2257 Computational error; during multiplication the imaginary part of the first

complex short floating-point argument was not a valid IEEE number.

2258 Computational error; during multiplication the imaginary part of the first

complex long floating-point argument was not a valid IEEE number.

2259 Computational error; during multiplication the imaginary part of the first

complex extended floating-point argument was not a valid IEEE number.

2260 Computational error; during multiplication the imaginary part of the

second complex short floating-point argument was not a valid IEEE

number.

2261 Computational error; during multiplication the imaginary part of the

second complex long floating-point argument was not a valid IEEE

number.

2262 Computational error; during multiplication the imaginary part of the

second complex extended floating-point argument was not a valid IEEE

number.

2263 Computational error; during multiplication both parts of first complex

short floating-point arguments were not valid IEEE numbers.

Condition codes

156 PL/I Messages and Codes

2264 Computational error; during multiplication both parts of first complex long

floating-point arguments were not valid IEEE numbers.

2265 Computational error; during multiplication both parts of first complex

extended floating-point arguments were not valid IEEE numbers.

2266 Computational error; during multiplication both parts of second complex

short floating-point arguments were not valid IEEE numbers.

2267 Computational error; during multiplication both parts of second complex

long floating-point arguments were not valid IEEE numbers.

2268 Computational error; during multiplication both parts of second complex

extended floating-point arguments were not valid IEEE numbers.

2269 Computational error; during multiplication real parts of both complex

short floating-point arguments were not valid IEEE numbers.

2270 Computational error; during multiplication real parts of both complex long

floating-point arguments were not valid IEEE numbers.

2271 Computational error; during multiplication real parts of both complex

extended floating-point arguments were not valid IEEE numbers.

2272 Computational error; during multiplication imaginary parts of both

complex short floating-point arguments were not valid IEEE numbers.

2273 Computational error; during multiplication imaginary parts of both

complex long floating-point arguments were not valid IEEE numbers.

2274 Computational error; during multiplication imaginary parts of both

complex extended floating-point arguments were not valid IEEE numbers.

2275 Computational error; during multiplication real part of first complex short

floating-point argument and imaginary part of second complex short

floating-point argument were not valid IEEE numbers.

2276 Computational error; during multiplication real part of first complex long

floating-point argument and imaginary part of second complex long

floating-point argument were not valid IEEE numbers.

2277 Computational error; during multiplication real part of first complex

extended floating-point argument and imaginary part of second complex

extended floating-point argument were not valid IEEE numbers.

2278 Computational error; during multiplication imaginary part of first complex

short floating-point argument and real part of second complex short

floating-point argument were not valid IEEE numbers.

2279 Computational error; during multiplication imaginary part of first complex

long floating-point argument and real part of second complex long

floating-point argument were not valid IEEE numbers.

2280 Computational error; during multiplication imaginary part of first complex

extended floating-point argument and real part of second complex

extended floating-point argument were not valid IEEE numbers.

2281 Computational error; during multiplication real part of first complex short

floating-point argument was the only valid IEEE number.

2300 Computational error; during division real parts of both complex short

floating-point arguments were not valid IEEE numbers.

Condition codes

Chapter 10. Condition codes 157

Condition codes 2301 through 2350

2301 Computational error; during division real parts of both complex long

floating-point arguments were not valid IEEE numbers.

2302 Computational error; during division real parts of both complex extended

floating-point arguments were not valid IEEE numbers.

2303 Computational error; during division imaginary parts of both complex

short floating-point arguments were not valid IEEE numbers.

2304 Computational error; during division imaginary parts of both complex long

floating-point arguments were not valid IEEE numbers.

2305 Computational error; during division imaginary parts of both complex

extended floating-point arguments were not valid IEEE numbers.

2306 Computational error; during division real part of first complex short

floating-point argument and imaginary part of second complex short

floating-point argument were not valid IEEE numbers.

2307 Computational error; during division real part of first complex long

floating-point argument and imaginary part of second complex long

floating-point argument were not valid IEEE numbers.

2308 Computational error; during division real part of first complex extended

floating-point argument and imaginary part of second complex extended

floating-point argument were not valid IEEE numbers.

2309 Computational error; during division imaginary part of first complex short

floating-point argument and real part of second complex short

floating-point argument were not valid IEEE numbers.

2310 Computational error; during division imaginary part of first complex long

floating-point argument and real part of second complex long

floating-point argument were not valid IEEE numbers.

2311 Computational error; during division imaginary part of first complex

extended floating-point argument and real part of second complex

extended floating-point argument were not valid IEEE numbers.

2312 Computational error; during division real part of first complex short

floating-point argument was the only valid IEEE number.

2313 Computational error; during division real part of first complex long

floating-point argument was the only valid IEEE number.

2314 Computational error; during division real part of first complex extended

floating-point argument was the only valid IEEE number.

2315 Computational error; during division imaginary part of first complex short

floating-point argument was the only valid IEEE number.

2316 Computational error; during division imaginary part of first complex long

floating-point argument was the only valid IEEE number.

2317 Computational error; during division imaginary part of first complex

extended floating-point argument was the only valid IEEE number.

2318 Computational error; during division real part of second complex short

floating-point argument was the only valid IEEE number.

2319 Computational error; during division real part of second complex long

floating-point argument was the only valid IEEE number.

Condition codes

158 PL/I Messages and Codes

2320 Computational error; during division real part of second complex extended

floating-point argument was the only valid IEEE number.

2321 Computational error; during division imaginary part of second complex

short floating-point argument was the only valid IEEE number.

2322 Computational error; during division imaginary part of second complex

long floating-point argument was the only valid IEEE number.

2323 Computational error; during division imaginary part of second complex

extended floating-point argument was the only valid IEEE number.

2324 Computational error; during division both parts of both complex short

floating-point argument were not valid IEEE numbers.

2325 Computational error; during division both parts of both complex long

floating-point argument were not valid IEEE numbers.

2326 Computational error; during division both parts of both complex extended

floating-point argument were not valid IEEE numbers.

2327 Computational error; during multiplication complex short floating-point

arguments equal to the limits.

2328 Computational error; during multiplication complex long floating-point

arguments equal to the limits.

2329 Computational error; during multiplication complex extended

floating-point arguments equal to the limits.

2330 Computational error; during multiplication for complex short floating-point

arguments plus or minus infinity was specified.

2331 Computational error; during multiplication for complex long floating-point

arguments plus or minus infinity was specified.

2350 Computational error; the first real long floating-point argument for SCALE

was not a valid IEEE number.

Condition codes 2351 through 2400

2351 Computational error; the first real extended floating-point argument for

SCALE was not a valid IEEE number.

2352 X in CEIL(X) or FLOOR(X) was invalid for a real short floating-point

argument because the argument was plus or minus infinity.

2353 X in CEIL(X) or FLOOR(X) was invalid for a real long floating-point

argument because the argument was plus or minus infinity.

2354 X in CEIL(X) or FLOOR(X) was invalid for a real extended floating-point

argument because the argument was plus or minus infinity.

2355 X in CEIL(X) or FLOOR(X) was invalid for a real short floating-point

argument because the argument was not a valid IEEE number.

2356 X in CEIL(X) or FLOOR(X) was invalid for a real long floating-point

argument because the argument was not a valid IEEE number.

2357 X in CEIL(X) or FLOOR(X) was invalid for a real extended floating-point

argument because the argument was not a valid IEEE number.

2358 Computational error; during division complex short floating-point

arguments equal to the limits.

Condition codes

Chapter 10. Condition codes 159

2359 Computational error; during division complex long floating-point

arguments equal to the limits.

2360 Computational error; during division complex extended floating-point

arguments equal to the limits.

2361 Computational error; during division for complex short floating-point

arguments plus or minus infinity was specified.

2362 Computational error; during division for complex long floating-point

arguments plus or minus infinity was specified.

2363 Computational error; during division for complex extended floating-point

arguments plus or minus infinity was specified.

2364 Computational error; during division real part of first complex short

floating-point argument was not a valid IEEE number.

2365 Computational error; during division real part of first complex long

floating-point argument was not a valid IEEE number.

2366 Computational error; during division real part of first complex extended

floating-point argument was not a valid IEEE number.

2367 Computational error; during division real part of second complex short

floating-point argument was not a valid IEEE number.

2368 Computational error; during division real part of second complex long

floating-point argument was not a valid IEEE number.

2369 Computational error; during division real part of second complex extended

floating-point argument was not a valid IEEE number.

2370 Computational error; during division imaginary part of first complex short

floating-point argument was not a valid IEEE number.

2371 Computational error; during division imaginary part of first complex long

floating-point argument was not a valid IEEE number.

2372 Computational error; during division imaginary part of first complex

extended floating-point argument was not a valid IEEE number.

2373 Computational error; during division imaginary part of second complex

short floating-point argument was not a valid IEEE number.

2374 Computational error; during division imaginary part of second complex

long floating-point argument was not a valid IEEE number.

2375 Computational error; during division imaginary part of second complex

extended floating-point argument was not a valid IEEE number.

2376 Computational error; during division both parts of first complex short

floating-point argument were not valid IEEE numbers.

2377 Computational error; during division both parts of first complex long

floating-point argument were not valid IEEE numbers.

2378 Computational error; during division both parts of first complex extended

floating-point argument were not valid IEEE numbers.

2379 Computational error; during division both parts of second complex short

floating-point argument were not valid IEEE numbers.

2380 Computational error; during division both parts of second complex long

floating-point argument were not valid IEEE numbers.

Condition codes

160 PL/I Messages and Codes

2381 Computational error; during division both parts of second complex

extended floating-point argument were not valid IEEE numbers.

Condition codes 2403 through 2450

2403 Computational error; real extended floating point argument of GAMMA or

LOGGAMMA built-in function was less than or equal to minus zero.

2404 Computational error; real extended floating point argument of GAMMA or

LOGGAMMA built-in function was equal to zero.

2407 The calculated result of real short floating-point arguments for EXP

overflowed the output field.

2408 The calculated result of real long floating-point arguments for EXP

overflowed the output field.

2409 The calculated result of real extended floating-point arguments for EXP

overflowed the output field.

2410 The calculated result of real short floating-point arguments for SCALE

overflowed the output field.

2411 The calculated result of real long floating-point arguments for SCALE

overflowed the output field.

2412 The calculated result of real extended floating-point arguments for SCALE

overflowed the output field.

2413 Computational error; complex short floating-point argument in LOG,

LOG2, or LOG10 built-in function was zero.

2414 Computational error; complex long floating-point argument in LOG, LOG2,

or LOG10 built-in function was zero.

2415 Computational error; complex extended floating-point argument in LOG,

LOG2, or LOG10 built-in function was zero.

2416 The calculated result of real short floating-point arguments for SINH or

COSH calculated result overflowed output field.

2417 The calculated result of real long floating-point arguments for SINH or

COSH calculated result overflowed output field.

2418 The calculated result of real extended floating-point arguments for SINH or

COSH calculated result overflowed output field.

2419 The calculated result of real short floating-point arguments for COTAN or

COTAND calculated result overflowed output field.

2420 The calculated result of real long floating-point arguments for COTAN or

COTAND calculated result overflowed output field.

2421 The calculated result of real extended floating-point arguments for COTAN

or COTAND calculated result overflowed output field.

2422 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex short floating-point argument the calculated result overflowed

output field.

2423 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex long floating-point argument the calculated result overflowed

output field.

Condition codes

Chapter 10. Condition codes 161

2424 Computational error in SIN, COS, SIND, or COSD built-in function; for

complex extended floating-point argument the calculated result overflowed

output field.

2425 Computational error in SIN, COS, SIND, or COSD built-in function; real

short floating-point argument is equal to plus or minus infinity.

2426 Computational error in SIN, COS, SIND, or COSD built-in function; real

long floating-point argument is equal to plus or minus infinity.

2427 Computational error in TAN or TAND built-in function; real short

floating-point argument equal to plus or minus infinity.

2428 Computational error in TAN or TAND built-in function; real long

floating-point argument equal to plus or minus infinity.

2429 Computational error in COTAN or COTAND built-in function; real short

floating-point argument is equal to plus or minus zero, or plus or minus

infinity.

2430 Computational error in COTAN or COTAND built-in function; real long

floating-point argument is equal to plus or minus zero, or plus or minus

infinity.

2431 Computational error in COTAN or COTAND built-in function; real

extended floating-point argument is equal to plus or minus zero.

2450 Computational error in EXPONENT built-in function; for complex long

floating-point base with integer exponent, the calculated result was infinity.

Condition codes 2451 through 2500

2451 Computational error in EXPONENT built-in function; for complex

extended floating-point base with integer exponent, the calculated result

was infinity.

2452 Computational error in EXP built-in function; for complex short

floating-point argument, the calculated result was infinity.

2453 Computational error in EXP built-in function; for complex long

floating-point argument, the calculated result was infinity.

2454 Computational error in EXP built-in function; for complex extended

floating-point argument, the calculated result was infinity.

2455 Computational error during division; for complex short floating-point

argument, the calculated result was infinity.

2456 Computational error during division; for complex long floating-point

argument, the calculated result was infinity.

2457 Computational error during division; for complex extended floating-point

argument, the calculated result was infinity.

2458 Computational error in SQRT built-in function; for real short floating-point

arguments, the ONCODE value was infinity.

2459 Computational error in SQRT built-in function; for real long floating-point

arguments, the ONCODE value was infinity.

2460 Computational error in SQRT built-in function; for real extended

floating-point arguments, the ONCODE value was infinity.

2461 Computational error in LOG built-in function; for real short floating-point

arguments, the calculated result was infinity.

Condition codes

162 PL/I Messages and Codes

2462 Computational error in LOG built-in function; for real long floating-point

arguments, the calculated result was infinity.

2463 Computational error in LOG built-in function; for real extended

floating-point arguments, the calculated result was infinity.

2464 Computational error in ATANH built-in function; for real short

floating-point arguments, calculated result was infinity.

2465 Computational error in ATANH built-in function; for real long

floating-point arguments, the calculated result was infinity.

2466 Computational error in ATANH built-in function; for real extended

floating-point arguments, the calculated result was infinity.

2467 Computational error in SINH or COSH built-in function; for real short

floating-point arguments, the calculated result was infinity.

2468 Computational error in SINH or COSH built-in function; for real long

floating-point arguments, the calculated result was infinity.

2469 Computational error in SINH or COSH built-in function; for real extended

floating-point arguments, the calculated result was infinity.

2470 Computational error in GAMMA or LOGGAMMA built-in function; for

real short floating-point argument, the calculated result was infinity.

2471 Computational error in GAMMA or LOGGAMMA built-in function; for

real long floating-point argument, the calculated result was infinity.

2472 Computational error in GAMMA or LOGGAMMA built-in function; for

real extended floating-point argument, the calculated result was infinity.

2473 Computational error in EXPONENT built-in function; for real short

floating-point base with real short floating-point exponent, the calculated

result was infinity.

2474 Computational error in EXPONENT built-in function; for real long

floating-point base with real long floating-point exponent, the calculated

result was infinity.

2475 Computational error in EXPONENT built-in function; for real extended

floating-point base with real extended floating-point exponent, the

calculated result was infinity.

2476 Computational error in EXPONENT built-in function; for real short

floating-point base with integer exponent, the calculated result was infinity.

2477 Computational error in EXPONENT built-in function; for real long

floating-point base with integer exponent, the calculated result was infinity.

2478 Computational error in EXPONENT built-in function; for real extended

floating-point base with integer exponent, the calculated result was infinity.

2479 Computational error in EXP built-in function; for real short floating-point

argument, the calculated result was infinity.

2480 Computational error in EXP built-in function; for real long floating-point

argument, the calculated result was infinity.

2481 Computational error in EXP built-in function; for real extended

floating-point argument, the calculated result was infinity.

Condition codes

Chapter 10. Condition codes 163

Condition codes 2504 through 2999

2504 Computational error in ABS built-in function; for real short floating-point

arguments, the calculated result was infinity.

2505 Computational error in ABS built-in function; for real long floating-point

arguments, the calculated result was infinity.

2506 Computational error in ABS built-in function; for real extended

floating-point arguments, the calculated result was infinity.

2507 Computational error in ABS built-in function; for complex short

floating-point arguments, the calculated result was infinity.

2508 Computational error in ABS built-in function; for complex long

floating-point arguments, the calculated result was infinity.

2509 Computational error in ABS built-in function; for complex extended

floating-point arguments, the calculated result was infinity.

2510 Computational error in SCALE built-in function; for real short

floating-point arguments, the calculated result was infinity.

2511 Computational error in SCALE built-in function; for real long

floating-point arguments, the calculated result was infinity.

2512 Computational error in SCALE built-in function; for real extended

floating-point arguments, the calculated result was infinity.

2513 Computational error in SQRT built-in function; for complex short

floating-point arguments, the calculated result was infinity.

2514 Computational error in SQRT built-in function; for complex long

floating-point arguments, the calculated result was infinity.

2515 Computational error in SQRT built-in function; for complex extended

floating-point arguments, the calculated result was infinity.

2516 Computational error during multiplication; for complex short floating-point

argument, the calculated result was infinity.

2517 Computational error during multiplication; for complex long floating-point

argument, the calculated result was infinity.

2518 Computational error during multiplication; for complex extended

floating-point argument, the calculated result was infinity.

2519 Computational error in LOG built-in function; for complex short

floating-point arguments, the calculated result was infinity.

2520 Computational error in LOG built-in function; for complex long

floating-point arguments, the calculated result was infinity.

2521 Computational error in LOG built-in function; for complex extended

floating-point arguments, the calculated result was infinity.

2522 Computational error in ATANH built-in function; for complex short

floating-point arguments, the calculated result was infinity.

2523 Computational error in ATANH built-in function; for complex long

floating-point arguments, the calculated result was infinity.

2524 Computational error in ATANH built-in function; for complex extended

floating-point arguments, the calculated result was infinity.

Condition codes

164 PL/I Messages and Codes

2525 Computational error in SINH or COSH built-in function; for complex short

floating-point arguments, the calculated result was infinity.

2526 Computational error in SINH or COSH built-in function; for complex long

floating-point arguments, the calculated result was infinity.

2527 Computational error in SINH or COSH built-in function; for complex

extended floating-point arguments, the calculated result was infinity.

2528 Computational error in EXPONENT built-in function; for complex short

floating-point base with complex short floating-point exponent, the

calculated result was infinity.

2529 Computational error in EXPONENT built-in function; for complex long

floating-point base with complex long floating-point exponent, the

calculated result was infinity.

2530 Computational error in EXPONENT built-in function; for complex

extended floating-point base with complex extended floating-point

exponent, the calculated result was infinity.

2531 Computational error in EXPONENT built-in function; for complex short

floating-point base with integer exponent, the calculated result was infinity.

Condition codes 3000 through 3900

3000 Field width, number of fractional digits, and number of significant digits

(w, d, and s) specified for E-format item in edit-directed input/output

statement do not allow transmission without loss of significant digits or

sign.

3002 memconvert built-in returned a bad return code.

3003 No room for shift-in after Unicode conversion.

3006 Picture description of target does not match non-character-string source.

3009 A mixed-character string contained a shift-out, then ended before a shift-in

was found.

3010 During processing of a mixed-character constant, one of the following

occurred:

v A shift-in present in the SBCS portion.

v A shift-out present in the graphic (double-byte) portion. (A shift-out

cannot appear in either byte of a graphic character).

v A shift-in present in the second byte of a graphic character.

3011 MPSTR built-in function contains an invalid character (or a null function

string, or only blanks) in the expression that specifies processing rules.

(Only V, v, S, s, and blank are valid characters.)

3013 An assignment attempted to a graphic target with a length greater than

16,383 characters (32,766 bytes).

3014 A graphic or mixed string did not conform to the continuation rules.

3015 A X or GX constant has an invalid number of digits.

3016 Improper use of graphic data in stream I/O. Graphic data can only be

used as part of a variable name or string.

3018 Invalid UTF-8 data was detected.

3019 An invalid byte 2 in a UTF-8 character was detected.

Condition codes

Chapter 10. Condition codes 165

3020 An invalid byte 3 in a UTF-8 character was detected.

3021 An invalid byte 4 in a UTF-8 character was detected.

3022 An incomplete UTF-8 character was detected.

3023 Invalid UTF-16 data was detected.

3024 An incomplete UTF-16 character was detected.

3025 USUBSTR reference is invalid.

3500 Error detected by the operating system while processing WAIT statement.

3501 Error detected by the operating system while processing DETACH

statement.

3502 Error detected by the operating system while processing ATTACH

statement.

3503 Error detected by the operating system while processing STOP statement.

3797 Attempt to convert to or from graphic data.

3798 ONCHAR, ONSOURCE, or ONGSOURCE pseudovariable used out of

context.

3799 The source was not modified in the CONVERSION ON-unit. Retry was not

attempted. An ON-unit was entered as a result of the CONVERSION

condition being raised by an invalid character in the string being

converted. The character was not corrected in an ON-unit using the

ONSOURCE, ONGSOURCE, or ONCHAR pseudovariables.

3800 Length of data aggregate exceeds system limit of 2**24 bytes.

3808 Aggregate cannot be mapped in COBOL or FORTRAN.

3809 A data aggregate exceeded the maximum length.

3810 An array has an extent that exceeds the allowable maximum.

Condition codes 3901 through 4000

3901 Attempt to invoke process using a process variable that is already

associated with an active process.

3904 Event variable referenced as argument to COMPLETION pseudovariable

while already in use for a DISPLAY statement.

3906 Assignment to an event variable that is already active.

3907 Attempt to associate an event variable that is already associated with an

active process.

3909 Attempt to create a subtask (using CALL statement) when insufficient

main storage available.

3910 Attempt to attach a process (using CALL statement) when number of

active processes was already at limit defined by ISASIZE parameter of

EXEC statement.

3911 WAIT statement in ON-unit references an event variable already being

waited for in process from which ON-unit was entered.

3912 Attempt to execute CALL with TASK option in block invoked while

executing PUT FILE(SYSPRINT) statement.

3913 CALL statement with TASK option specifies an unknown entry point.

Condition codes

166 PL/I Messages and Codes

3914 Attempt to call FORTRAN or COBOL routines in two processes

simultaneously.

3915 Attempt to call a process when the multitasking library was not selected in

the link-edit step.

3920 An out-of-storage abend occurred.

Condition codes 4001 through 9999

4001 Attempt to assign data to an unallocated CONTROLLED variable occurred

on a GET DATA statement.

4002 Attempt to output an unallocated CONTROLLED variable occurred on a

PUT DATA statement.

4003 Attempt to assign from an unallocated CONTROLLED variable occurred

on a PUT DATA statement with the STRING option.

8091 Operation exception.

8092 Privileged operation exception.

8093 EXECUTE exception.

8094 Protection exception.

8095 Addressing exception.

8096 Specification exception.

8097 Data exception.

8098 Insufficient stack storage

9002 Attempt to execute GO TO statement referencing label in an inactive block.

9003 Attempt to execute a GO TO statement to a nonexistent label constant.

9050 Program terminated by an abend.

9051 An error occurred in CICS. It is highly likely that parameters, particularly

pointers, specified on the EXEC CICS command do not point at storage

owned by the PL/I program. The ERROR on-unit is not given control.

When the TEST run-time option is in effect, PLITEST allows the user to

examine variables, etc. but the execution cannot be continued.

9200 Program check in SORT/MERGE program.

9201 SORT not supported in CMS.

9202 RECORD TYPE string missing in the PLISRTx call.

9203 Incorrect record type specified in the PLISRTx call.

9204 LENGTH= missing from RECORD TYPE string specification in the

PLISRTB or PLISRTD call.

9205 Length specified in the LENGTH= parameter of the PLISRTx call is not

numeric.

9206 Incorrect return code received from E15 or E35 data-handling routine.

9207 DFSORT failed with the return code displayed in the message.

9208 PLISRTx invoked in an environment other than ADMVS.

9249 Routine cannot be released.

Condition codes

Chapter 10. Condition codes 167

9250 Procedure to be fetched cannot be found.

9251 Permanent transmission error when fetching a procedure.

9252 FETCH/RELEASE not supported in CMS.

9253 PLITEST unavailable.

9254 Under CICS, an attempt was made to fetch a MAIN procedure from a PL/I

routine.

9999 A failure occurred in invocation of a Language Environment service.

Condition codes

168 PL/I Messages and Codes

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Corporation

 J74/G4

 555 Bailey Avenue

 San Jose, CA 95141-1099

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES

 THIS PUBLICATION ,AS IS, WITHOUT WARRANTY OF ANY KIND,

 EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED

 TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999, 2008 169

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 IBM

The IBM logo

ibm.com

AIX

CICS

CICS/ESA

DB2

DFSMS

DFSORT

IMS

IMS/ESA

Language Environment

MVS

OS/390

RACF

System/390

VisualAge

z/OS

Intel is a registered trademark of Intel Corporation in the United States and other

countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States and other countries.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in

the United States and other countries.

Pentium is a registered trademark of Intel Corporation in the United States and

other countries.

Unicode is a trademark of the Unicode Consortium.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product or service names may be the trademarks or service marks

of others.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

170 PL/I Messages and Codes

Bibliography

Enterprise PL/I publications

 Programming Guide, SC27-1457

 Language Reference, SC27-1460

 Messages and Codes, SC27-1461

 Compiler and Run-Time Migration Guide, GC27-1458

PL/I for MVS & VM

 Installation and Customization under MVS, SC26-3119

 Language Reference, SC26-3114

 Compile-Time Messages and Codes, SC26-3229

 Diagnosis Guide, SC26-3149

 Migration Guide, SC26-3118

 Programming Guide, SC26-3113

 Reference Summary, SX26-3821

z/OS Language Environment

 Concepts Guide, SA22-7567

 Debugging Guide, GA22-7560

 Run-Time Messages, SA22-7566

 Customization, SA22-7564

 Programming Guide, SA22-7561

 Programming Reference, SA22-7562

 Run-Time Application Migration Guide, GA22-7565

 Writing Interlanguage Communication Applications, SA22-7563

CICS Transaction Server

 Application Programming Guide, SC33-1687

 Application Programming Reference, SC33-1688

 Customization Guide, SC33-1683

 External Interfaces Guide, SC33-1944

DB2 UDB for OS/390 and z/OS

 Administration Guide, SC26-9931

 An Introduction to DB2 for OS/390, SC26-9937

 Application Programming and SQL Guide, SC26-9933

 Command Reference, SC26-9934

 Messages and Codes, GC26-9940

 SQL Reference, SC26-9944

DFSORT™

 Application Programming Guide, SC33-4035

 Installation and Customization, SC33-4034

© Copyright IBM Corp. 1999, 2008 171

IMS/ESA®

 Application Programming: Database Manager, SC26-8015

 Application Programming: Database Manager Summary, SC26-8037

 Application Programming: Design Guide, SC26-8016

 Application Programming: Transaction Manager, SC26-8017

 Application Programming: Transaction Manager Summary, SC26-8038

 Application Programming: EXEC DL/I Commands for CICS and IMS™, SC26-8018

 Application Programming: EXEC DL/I Commands for CICS and IMS Summary,

SC26-8036

z/OS MVS

 JCL Reference, SA22-7597

 JCL User’s Guide, SA22-7598

 System Commands, SA22-7627

z/OS UNIX System Services

 z/OS UNIX System Services Command Reference, SA22-7802

 z/OS UNIX System Services Programming: Assembler Callable Services Reference,

SA22-7803

 z/OS UNIX System Services User’s Guide, SA22-7801

z/OS TSO/E

 Command Reference, SA22-7782

 User’s Guide, SA22-7794

z/Architecture

 Principles of Operation, SA22-7832

Unicode® and character representation

 OS/390 Support for Unicode: Using Conversion Services, SC33-7050

172 PL/I Messages and Codes

Readers’ Comments — We’d Like to Hear from You

Enterprise PL/I for z/OS

PL/I for AIX

Rational Developer for System z PL/I for Windows

Messages and Codes

Version 3 Release 8

 Publication No. SC27-1461-08

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send a fax to the following number: 1-800-426-7773

v Send your comments via e-mail to: comments@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC27-1461-08

SC27-1461-08

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department H150/090

555 Bailey Ave.

San Jose, CA

 95141-1099

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-H31

Printed in USA

Enterprise PL/I for z/OS Library

SC27-1456

Licensed Program Specifications

SC27-1457

Programming Guide

GC27-1458

Compiler and Run-Time Migration Guide

SC27-1460

Language Reference

SC27-1461

Compile-Time Messages and Codes

SC27-1461-08

	Contents
	Part 1. Messages and Codes
	Chapter 1. Compiler and preprocessor messages
	Format of messages
	Message inserts
	Contacting IBM for support

	Chapter 2. How to send your comments
	Chapter 3. Compiler Informational Messages (1000-1076, 2800-2999)
	Chapter 4. Compiler Warning Messages (1078-1225, 2600-2799)
	Chapter 5. Compiler Error Messages (1226-1499, 2400-2599)
	Chapter 6. Compiler Severe Messages (1500-2399)
	Chapter 7. MACRO and CICS Preprocessor Messages (3000-3999)
	Chapter 8. Code Generation Messages (5000-5999)
	Chapter 9. SQL Preprocessor Messages (7000-7999)
	Chapter 10. Condition codes
	Conditions 1 through 50
	Condition codes 51 through 100
	Condition codes 100 through 520
	Condition codes 600 through 650
	Condition codes 651 through 672
	Condition codes 1002 through 1107
	Condition codes 1500 through 1550
	Condition codes 1551 through 1600
	Condition codes 1601 through 1650
	Condition codes 1651 through 1700
	Condition codes 1701 through 1750
	Condition codes 1751 through 1800
	Condition codes 1801 through 1850
	Condition codes 1851 through 1900
	Condition codes 1901 through 1950
	Condition codes 1951 through 2000
	Condition codes 2002 through 2150
	Condition codes 2151 through 2200
	Condition codes 2201 through 2250
	Condition codes 2251 through 2300
	Condition codes 2301 through 2350
	Condition codes 2351 through 2400
	Condition codes 2403 through 2450
	Condition codes 2451 through 2500
	Condition codes 2504 through 2999
	Condition codes 3000 through 3900
	Condition codes 3901 through 4000
	Condition codes 4001 through 9999

	Notices
	Trademarks

	Bibliography
	Enterprise PL/I publications
	PL/I for MVS & VM
	z/OS Language Environment
	CICS Transaction Server
	DB2 UDB for OS/390 and z/OS
	DFSORT™
	IMS/ESA®
	z/OS MVS
	z/OS UNIX System Services
	z/OS TSO/E
	z/Architecture
	Unicode® and character representation

	Readers’ Comments — We'd Like to Hear from You

