
Enterprise PL/I for z/OS

Compiler and Run-Time Migration Guide

Version 3 Release 8

GC27-1458-07

���

Enterprise PL/I for z/OS

Compiler and Run-Time Migration Guide

Version 3 Release 8

GC27-1458-07

���

Tenth Edition (October 2008)

This edition applies to Version 3 Release 8 of Enterprise PL/I for z/OS, 5655-H31, and to any subsequent releases

until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for

the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address

your comments to:

 IBM Corporation, Department H150/090

 555 Bailey Ave

 San Jose, CA, 95141-1099

 United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999, 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Note!

Before using this information and the product it supports, be sure to read the general

information under Appendix G, “Notices,” on page 187.

Contents

Figures ix

About this book xi

Using your documentation xi

PL/I information xii

Language Environment information xii

How to send your comments xii

Part 1. Overview 1

Chapter 1. Do I need to recompile? . . . 3

Migration basics 4

Run-time migration - Moving to Language

Environment 4

Compiler migration 4

Migration Roadmap 5

Service support for OS PL/I and PL/I for MVS &

VM 5

Chapter 2. Introducing the new compiler

and run-time 7

Product relationships - compiler, run-time, debug . . 7

General PL/I compiler information 7

Language Environment’s run-time support for other

programs 8

Advantages of the new compiler and run-time . . . 8

Major changes with the new compiler and run-time . 9

General conversion tasks 10

Planning your strategy 10

Moving to the Language Environment run time 11

Recompiling your source with Enterprise PL/I . 11

Adding Enterprise PL/I programs to existing

applications 11

Part 2. Conversion Strategies . . . 13

Chapter 3. Planning the move to

Language Environment 15

Prepare to move to the Language Environment

run-time library 15

Installing Language Environment 15

Assessing storage requirements 15

Educating your programmers about Language

Environment 16

Take an inventory of your applications 16

Vendor tools, packages, and products 17

PL/I applications 17

Existing PL/I load modules 17

Decide how to phase in Language Environment . . 18

Multilanguage conversion 18

Determining how applications will have access to

the library 18

Set up a regression testing procedure 21

Take performance measurements 22

Cut over to production use 22

Chapter 4. Planning to move to the new

compiler 23

Prepare to move your source to the new compiler 23

Installing Enterprise PL/I 23

Assessing storage requirements 23

Educating your programmers on new compiler

features 23

Take an inventory of your applications 24

Taking an inventory of vendor tools, packages,

and products 24

Taking an inventory of PL/I applications . . . 24

Prioritizing your applications 25

Setting up move/no move categories 25

Make application program updates 26

Part 3. Moving existing applications

to Language Environment 29

Chapter 5. Running existing

applications under Language

Environment 31

Invoke existing applications 31

For non-CICS applications 31

For CICS applications 32

Link-edit existing applications 32

Chapter 6. Considerations Before

Migrating 35

Differences in Run-Time Options 35

Deleted run-time options 35

Replaced run-time options 35

New run-time options 36

Differences in Condition Handling 37

Timing differences 37

Unhandled condition differences 38

IBMBXITA and IBMBEER differences 38

ABEND U4039 differences 38

Severity differences 38

Differences in PLICALLA and PLICALLB Support 38

PLICALLA Considerations 39

PLICALLB Considerations 39

Differences in Preinitialization Support 41

Differences in PLISRTx Support 42

Differences in Multitasking Support 42

Differences in OS PL/I Shared Library support . . 42

Differences in DATE/TIME Built-In Functions . . . 42

Differences in User Return Code 42

Differences in the opening of PRINT files 43

Differences in Run-Time Messages 43

Differences in PLIDUMP 44

© Copyright IBM Corp. 1999, 2008 iii

Differences in Storage Report 45

Differences in Interlanguage Communication

Support 45

Differences in Assembler Support 46

Assembler programs that find the main

parameter list 46

Chapter 7. Object and Load Module

Considerations 49

OS PL/I Version 1 Object Module and Load Module

Compatibility 49

OS PL/I Version 1 Release 5.1 49

OS PL/I Version 1 Release 5 50

OS PL/I Version 1 Release 3.0 - Release 4.0 . . . 51

OS PL/I Version 1 Prior to Release 3.0 51

OS PL/I Version 2 Object Module and Load Module

Compatibility 51

Summary of Support for OS PL/I Object and Load

Modules 51

Chapter 8. Link-Edit Considerations . . 53

SCEERUN 53

Symbol Table Considerations 53

NCAL Linkage Editor Option 53

ENTRY cards 54

Using OS PL/I Math Routines 54

Chapter 9. Subsystem Considerations 55

CICS Considerations 55

Updating CICS System Definition (CSD) File . . 55

Error Handling 55

Restrictions on User-Written Condition Handlers

under CICS 55

Macro-Level Interface 56

FETCHing a PL/I MAIN Procedure 56

STACK Run-Time Option 56

Run-Time Output 56

Abend Codes Used by PL/I under CICS . . . 57

IMS Considerations 57

Interfaces to IMS 57

SYSTEM(IMS) Compile-Time Option 57

PLICALLA Support in IMS 57

PSB Language Options Supported 57

Storage Usage Considerations 58

Coordinated Condition Handling under IMS . . 58

Performance Enhancement with Library

Retention(LRR) 59

DB2 Considerations 59

Part 4. Moving to the new compiler 61

Chapter 10. Understanding the

limitations of the new compiler 63

Language Environment Requirements 63

Language not supported 63

Multitasking 63

CHECK 63

CHARSET(48) and CHARSET(BCD) 63

EGCS 63

Fortran 63

Invalid code 63

Language restricted 64

RECORD I/O 64

STREAM I/O 64

Structure expressions 65

Array expressions 65

DEFAULT statement 65

Extents of automatic variables 66

Built-in functions 66

DEFINED BIT aggregates 66

OPTIONS(REENTRANT) 66

iSUB defining 66

LABEL arrays 66

DBCS 67

Macro preprocessor 67

Options restricted 67

Options not supported 68

Restrictions on other interfaces to the compiler . . 68

Batch compilation 68

Invoking the compiler from assembler 69

Compiling under TSO 69

Specifying INCLUDE dataset names 69

Compiler time and space requirements 70

AMODE(24) restrictions 70

EXTERNAL names restricted 70

Listing differences 71

Control block differences 71

ISAM support differences 71

Chapter 11. Understanding the new

compiler’s options 73

Understanding the effect of default options on

compatibility 73

BACKREG(5) 73

BIFPREC(15) 74

CMPAT(V2) 74

EXTRN(FULL) 75

LIMITS(EXTNAME(7)) 75

NORENT and WRITABLE 76

SYSTEM 76

Choosing non-default options for even more

compatibility 76

COMMON 77

DFT(NOBIN1ARG) 77

DEFAULT(LINKAGE(SYSTEM)) 77

DFT(OVERLAP) 77

NOREDUCE 77

NORESEXP 78

RULES(LAXCTL) 78

RULES(NOLAXINOUT NOLAXSEMI) 78

NOWRITABLE 78

Choosing options for improved performance . . . 79

ARCH 79

BIFPREC(31) 79

DEFAULT(NONASGN) 79

DEFAULT(CONNECTED) 79

DEFAULT(REORDER) 80

DEFAULT(NOOVERLAP) 80

OPTIMIZE(2)/OPTIMIZE(3) 80

REDUCE 80

iv Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

NORENT 81

RULES(NOLAXCTL) 82

TUNE 82

Choosing options for better quality 83

RULES(NOLAXDCL) 83

RULES(NOLAXIF) 83

RULES(NOLAXLINK) 84

RULES(NOLAXMARGINS) 84

RULES(LAXSTRZ) 85

RULES(NOMULTICLOSE) 85

Choosing options for test 85

CHECK(CONFORMANCE) 85

GONUMBER 86

PREFIX 86

TEST 86

Chapter 12. Understanding the new

compiler’s messages 87

IBM1044: one-byte FIXED BIN 87

IBM1053: scaled FIXED BIN evaluation 87

IBM1065: imprecise float constants 87

IBM1091: FIXED BIN precision warning 88

IBM1099: mixed FIXED 88

IBM1181: miscoded DO loops 89

IBM1206: misuse of BIT operators 90

IBM1208: incompletely initialized arrays 90

IBM1215: incomplete declares 91

IBM1216: incorrect structure declares 91

IBM1220: pointless comparisons 92

IBM1927: SIZE condition 92

IBM1948: restricted expression evaluation 93

IBM2063: invalid ALLOCATE 93

IBM2402: storage overlay 93

IBM2409: RETURN; in a function 94

IBM2410: No RETURN in a function 94

IBM2412: missing RETURNS option 94

IBM2421: CLOSE in ENDFILE 95

IBM2610: precision interpretation 95

IBM2611, IBM2612: duplicate whens 95

IBM2617: passing labels out of PL/I 96

IBM2621: missing ON ERROR SYSTEM 96

IBM2622: warning on poorly coded DO loops . . . 96

IBM2626: SUBSTR with a zero length 97

IBM2628: large BYVLAUE parameters 97

IBM2801: introduction of scaled FIXED BIN . . . 98

IBM2804: suboptimal compares 98

IBM2810: conversion of scaled FIXED BIN 98

IBM2811: use of PICTURE as DO control variables 99

IBM2812: poor TRANSLATE and VERIFY 99

PLIXOPT messages 99

Using the compiler user exit 100

Chapter 13. Understanding when

working code must be changed . . . 101

Incorrect code 101

Relying on the order of declarations 101

Using invalid FIXED DECIMAL data 101

Using invalid SUBSTR references 102

Using dissimilar EXTERNAL declares 102

Using an incorrect PLITABS declare 103

Initializing variables 103

Initializing AUTOMATIC 103

Initializing BASED 104

Initializing CONTROLLED 104

Initializing STATIC 104

Retaining unused declarations 104

Retaining unused INTERNAL STATIC 104

Incorrect code that will now raise exceptions . . . 104

FIXEDOVERFLOW when SIZE is disabled . . 104

Invalid allocations 106

UNDEFINEDFILE with PRINT files 106

Incorrect code that will now loop endlessly . . . 106

Even precision PICTURE loop control variables 106

Assignments that will produce different results . . 108

Source-target overlap 108

Float-to-float assignments 108

Other statements that will produce different results 110

STREAM I/O with unprintable characters . . . 110

Uninitialized EXTERNAL STATIC 110

Incompletely declared FILEs 110

Dummy arguments and alignment 111

Dummy arguments and CONTROLLED . . . 111

Pointer arithmetic 111

Code that will not perform as well 112

FIXED DEC as a loop control 112

FIXED BIN(15) as a loop control 112

I/O using TOTAL 112

Chapter 14. Understanding when

working code may need to be

changed 113

Code that will now raise an exception 113

ZERODIVIDE and OVERFLOW promoted to

ERROR 113

Conditions raised when disabled 113

Invalid RETURNs 114

GOTO holes 114

The scope of NOFOFL 114

Code that will now not raise exceptions 115

FIXEDOVERFLOW for FIXED BIN 115

CONVERSION when assigning blanks to

numeric variables 115

ERROR when mapping excessively large

aggregates 115

Storage mapped differently 116

One-byte FIXED BIN 116

Declarations handled differently 116

AREA with INITIAL 116

Conversions handled differently 117

Conversions from float to character 117

Conversions from scaled FIXED BINARY . . . 117

Built-in functions handled differently 118

Arithmetic built-ins with scale factors and

FIXED BIN 118

MACRO preprocessor differences 119

MACRO preprocessor and strings 119

Chapter 15. Linking your new objects 121

Prelinker and PDSE considerations 121

AMODE(24) considerations 121

Contents v

Using PLICALLA or PLICALLB Entry 121

CHANGE cards 121

Chapter 16. Using Language

Environment with the new compiler . . 123

Using the right run-time options 123

Calling PL/I from assembler main programs . . . 124

Understanding when your results may vary . . . 124

Return codes 124

When the run-time issues messages 124

What the run-time messages say 125

Where the run-time messages go 125

Math built-ins 125

Dumps 126

Storage reports 126

Prerequisite Language Environment PTFs 126

Chapter 17. Tuning for better CPU and

storage utilization 127

Improving CPU Utilization 127

Improving Storage Utilization 128

Improving Performance under Subsystems . . . 129

Chapter 18. Adding Enterprise PL/I

programs to existing PL/I applications 131

Object and load module considerations 131

Sharing SYSPRINT 132

Run-time option considerations 133

Condition handling considerations 133

Partitioning PL/I source programs into units of

execution 134

Chapter 19. Moving from VisualAge

PL/I or Enterprise PL/I V3R1, V3R2,

V3R3, V3R4, V3R5, V3R6 or V3R7 to

Enterprise PL/I V3R8 135

Migrating from VisualAge PL/I 135

Migrating from Enterprise PL/I V3R1 136

Migrating from Enterprise PL/I V3R2 136

Migrating from Enterprise PL/I V3R3 136

Migrating from Enterprise PL/I V3R4 137

Migrating from Enterprise PL/I V3R5 138

Migrating from Enterprise PL/I V3R6 138

Migrating from Enterprise PL/I V3R7 140

Compiler messages introduced by V3R4 141

Compiler messages introduced by V3R5 142

Compiler messages introduced by V3R6 143

Compiler messages introduced by V3R7 143

Compiler messages introduced by V3R8 144

Object compatibility 145

Run-time changes 146

Part 5. Subsystem and other

language considerations 147

Chapter 20. Assembler considerations

for PL/I applications 149

Considerations for assembler programs mimicking

PL/I main procedures 149

Calling PL/I from assembler and Language

Environment conforming assembler 149

Condition handling and assembler programs . . . 150

Considerations for using assembler user exits . . 150

Specific considerations 150

Chapter 21. CICS considerations for

PL/I applications 151

General CICS considerations 151

Updating CICS System Definition (CSD) file . . 151

Macro-level interface 152

Compiler options for programs that run under

CICS 152

Linking CICS applications and run-time

considerations 152

Error-handling 152

FETCHing a PL/I MAIN procedure 152

Run-time output 152

Abend codes used by PL/I under CICS . . . 153

Migrating to the integrated CICS preprocessor . . 153

Chapter 22. IMS considerations for

PL/I applications 155

Interfaces to IMS 155

SYSTEM(IMS) compile-time option 155

PLICALLA support in IMS 155

PSB language options supported 156

Storage usage considerations 156

Coordinated condition handling under IMS . . . 156

Performance enhancement with Library Retention

(LRR) 157

Chapter 23. DB2 Considerations for

PL/I applications 159

General DB2 considerations 159

Migrating to the integrated SQL preprocessor . . 159

Programming and compilation considerations 159

FOR BIT DATA assignment notes 160

Part 6. Appendixes 161

Appendix A. Conversion and

Migration Aids 163

OS PL/I Routine Replacement Tool 163

OS PL/I Version 1 Release 5.1 main load module

ZAP 164

OS PL/I Shared library replacement tool 164

OS PL/I Object Module Relinking Tool - APAR

PN69803 165

ILC Applications 165

PLISRTx Applications 165

EDGE Portfolio Analyzer 166

Vendor products 166

Appendix B. Compiler elements

comparison 167

vi Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Appendix C. Compiler option

comparison 169

Appendix D. Compiler limit

comparison 177

Appendix E. Batch processing sample 183

Appendix F. Debugging tool

comparison 185

Differences between debugging tools 185

Appendix G. Notices 187

Programming interface information 188

Trademarks 188

Appendix H. Bibliography 189

Enterprise PL/I publications 189

PL/I for MVS & VM 189

z/OS Language Environment 189

CICS Transaction Server 189

DB2 UDB for OS/390 and z/OS 189

DFSORT 189

IMS/ESA 190

z/OS MVS 190

z/OS UNIX System Services 190

z/OS TSO/E 190

z/Architecture 190

Unicode and character representation 190

Index 191

Contents vii

viii Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Figures

1. CESE Output Data Queue 56 2. CESE output data queue 153

© Copyright IBM Corp. 1999, 2008 ix

x Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

About this book

This book provides information to help you to move from a pre-Language

Environment run-time library to IBM Language Environment for z/OS and to

upgrade your source programs to IBM Enterprise PL/I for z/OS Version 3 Release

8. It suggests solutions to problems that arise because of differences in support

between previous releases of PL/I (OS PL/I, PL/I for MVS & VM, and VisualAge

PL/I) and Enterprise PL/I.

IMPORTANT

The information in this book discusses migration considerations using

Enterprise PL/I V3R8M0 and z/OS V1R8 Language Environment or later.

These two products must be installed in order to take advantage of the

migration enhancements discussed in this book. The use of Enterprise PL/I

will always refer to Version 3 Release 8 unless indicated otherwise. The use of

Language Environment will always refer to z/OS V1R8 Language

Environment or later unless indicated otherwise.

 This book is for system programmers, application programmers, and IBM support

personnel who are involved in PL/I product migration. Prerequisite knowledge for

using this book is:

v A general understanding of your operating system

v Some knowledge of the PL/I language and options

v Some knowledge of how PL/I uses Language Environment for its run-time

environment

Using your documentation

The publications provided with Enterprise PL/I are designed to help you program

with PL/I. The publications provided with Language Environment are designed to

help you manage your run-time environment for applications generated with

Enterprise PL/I. Each publication helps you perform a different task.

The following tables show you how to use the publications you receive with

Enterprise PL/I and Language Environment. You’ll want to know information

about both your compiler and run-time environment. For the complete titles and

order numbers of these and other related publications, see Appendix H,

“Bibliography,” on page 189.

© Copyright IBM Corp. 1999, 2008 xi

PL/I information

 Table 1. How to use Enterprise PL/I publications

To... Use...

Evaluate Enterprise PL/I Fact Sheet

Understand warranty information Licensed Programming Specifications

Plan for and install Enterprise PL/I Enterprise PL/I Program Directory

Understand compiler and run-time changes and

adapt programs to Enterprise PL/I and Language

Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on

compiler options

Programming Guide

Get details on PL/I syntax and specifications of

language elements

Language Reference

Diagnose compiler problems and report them to

IBM

Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment information

 Table 2. How to use z/OS Language Environment publications

To... Use...

Evaluate Language Environment Concepts Guide

Plan for Language Environment Concepts Guide

Run-Time Migration Guide

Install Language Environment on z/OS z/OS Program Directory

Customize Language Environment on z/OS Customization

Understand Language Environment program

models and concepts

Concepts Guide

Programming Guide

Find syntax for Language Environment run-time

options and callable services

Programming Reference

Develop applications that run with Language

Environment

Programming Guide and your language

Programming Guide

Debug applications that run with Language

Environment, get details on run-time messages,

diagnose problems with Language Environment

Debugging Guide and Run-Time Messages

Develop interlanguage communication (ILC)

applications

Writing Interlanguage Applications

Migrate applications to Language Environment Run-Time Application Migration Guide and the

migration guide for each Language

Environment-enabled language

How to send your comments

Your feedback is important in helping us to provide accurate, high-quality

information. If you have comments about this document or any other PL/I

documentation, contact us in one of these ways:

v Use the Online Readers’ Comment Form at

www.ibm.com/software/awdtools/rcf/

or send an e-mail to

comments@us.ibm.com

About this book

xii Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Be sure to include the name of the document, the publication number of the

document, the version of PL/I, and, if applicable, the specific location (for

example, page number) of the text that you are commenting on.

v Fill out the Readers’ Comment Form at the back of this document, and return it

by mail or give it to an IBM representative. If the form has been removed,

address your comments to:

International Business Machines Corporation

Reader Comments

H150/090

555 Bailey Avenue

San Jose, CA 95141-1003

USA

v Fax your comments to this U.S. number: (800)426-7773.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

How to send your comments

About this book xiii

xiv Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Part 1. Overview

© Copyright IBM Corp. 1999, 2008 1

2 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 1. Do I need to recompile?

Ideally, programs should be compiled with IBM Enterprise PL/I for z/OS and run

with the supported run-time library (Language Environment). You can reach this

ideal state gradually, by starting with a run-time migration followed by a compiler

migration.

The remainder of this chapter explains when and why you might want to migrate

your applications (run-time or source). It includes the following topics:

v Migration basics

v Migration Roadmap

v Service support for OS PL/I and PL/I for MVS & VM.

Terminology clarification

In this book, we use the term Enterprise PL/I as a general reference to:

v IBM Enterprise PL/I for z/OS Version 3 Release 8

In this book, we use the term PL/I as a general reference to:

v OS PL/I

v PL/I for MVS & VM

v VisualAge PL/I

v Enterprise PL/I

Also, in this book, we refer to the ’old’ and ’new’ PL/I compilers in the

course of the discussions. For the purposes of this book, the ’old’ PL/I

compilers refer to

v OS PL/I V3R2 and before

v PL/I for MVS & VM

while the ’new’ PL/I compilers refer to

v VisualAge PL/I

v Enterprise PL/I

Important Migration Note:

It is important to understand, from the very beginning, that the ‘old’ and

‘new’ PL/I compilers are completely different from each other. The ‘new’

PL/I compilers are written in PL/I, and do not make use of certain

techniques that the ‘old’ PL/I compilers did. They are so different, in fact,

that from the perspective of Language Environment they are considered

different languages, each with its own signature CSECT.

In the past, migrating from an ‘old’ PL/I compiler to another ‘old’ PL/I

compiler was not that difficult. With the introduction of the new Enterprise

PL/I compiler the migration process may be much more complicated than

before. Migrating to the ‘new’ Enterprise PL/I compiler must be a well

researched, planned and executed project if you wish to have a smooth

transition.

© Copyright IBM Corp. 1999, 2008 3

Migration basics

The migration process involves run-time migration (moving your applications to a

new run-time) and compiler migration (compiling your source programs with the

new compiler). As part of the migration process, you’ll also need to do inventory

assessment and testing. As stated previously, you are not required to migrate your

run-time and source concurrently.

For more details on the migration process, see “General conversion tasks” on page

10.

For information on performing an inventory assessment and test plan, see “Take an

inventory of your applications” on page 16.

Run-time migration - Moving to Language Environment

Every PL/I program requires run-time library routines to execute.

Do not make more than one PL/I run-time library available to your applications at

execution time. For example, there should be one and only one PL/I run-time

library, such as SCEERUN for Language Environment, in LNKLST. If you have

more than one you will either get hard-to-find errors or you will have an unused

load library in your concatenation. In addition, if you have more than one run-time

library in your concatenation, then you have an invalid configuration that is not

supported by IBM.

If you have not already moved to Language Environment and are using a

pre-Language Environment PL/I compiler, such as OS PL/I V2R3, you will need to

read Chapter 3, “Planning the move to Language Environment,” on page 15.

If you have already moved to Language Environment and are migrating to the

new IBM Enterprise PL/I for z/OS compiler, you can begin reading about

compiler migration in Chapter 4, “Planning to move to the new compiler,” on page

23.

Compiler migration

It is strongly recommended that you recompile all your source with the new

Enterprise PL/I compiler (unless you have already recompiled all your source with

VisualAge PL/I). Since the Enterprise PL/I compiler is a completely different

compiler from the ’old’ PL/I compilers, recompiling your source would the best

way to avoid the limitations imposed by mixing ’new’ PL/I with ’old’ PL/I object

and load modules.

Compiler migration can be done all at once or by separate execution units. How to

divide up your PL/I source into separate execution units is described in

“Partitioning PL/I source programs into units of execution” on page 134.

If you decide to mix old PL/I modules with Enterprise PL/I modules, there are

limited circumstances in which this mix will work. These limitations are described

in “Object and load module considerations” on page 131.

In a few cases, some changes to your code will be necessary when moving from

OS PL/I to Enterprise PL/I. These cases are described in Chapter 13,

“Understanding when working code must be changed,” on page 101 and

Chapter 14, “Understanding when working code may need to be changed,” on

page 113.

4 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

If you have already moved to Language Environment and are migrating to the

new IBM Enterprise PL/I for z/OS compiler, you can begin reading about

migrating to the new compiler in Chapter 4, “Planning to move to the new

compiler,” on page 23.

If you are migrating to the PL/I for MVS & VM compiler, you should be using the

IBM PL/I for MVS & VM Compiler and Run-Time Migration Guide.

Migration Roadmap

Here is a short summary of migration possibilities.

v If you are migrating from OS PL/I or PL/I for MVS & VM and

– Are NOT currently migrated to Language Environment then

- If you intend to migrate to Language Environment and then to Enterprise

PL/I for z/OS, you want to begin with Chapter 3, “Planning the move to

Language Environment,” on page 15 and then continue with Part 3,

“Moving existing applications to Language Environment,” on page 29

- If you are migrating from OS PL/I we recommend migration to PL/I for

MVS & VM first, in which case you would use the IBM PL/I for MVS & VM

Compiler and Run-Time Migration Guide

– If you have already migrated to Language Environment then

- If you intend to migrate to Enterprise PL/I for z/OS, you want to begin

withChapter 2, “Introducing the new compiler and run-time,” on page 7

and then continue with Chapter 4, “Planning to move to the new

compiler,” on page 23 and Part 4, “Moving to the new compiler,” on page

61
v If you are migrating from VisualAge PL/I or an earlier release of Enterprise

PL/I, then

– You will want to review Part 4, “Moving to the new compiler,” on page 61

paying special attention to Chapter 19, “Moving from VisualAge PL/I or

Enterprise PL/I V3R1, V3R2, V3R3, V3R4, V3R5, V3R6 or V3R7 to Enterprise

PL/I V3R8,” on page 135.

Additional information concerning subsystems can be found inPart 5,

“Subsystem and other language considerations,” on page 147.

Service support for OS PL/I and PL/I for MVS & VM

Note: The CICS TS (Transaction Server) release that follows CICS TS Version 2

Release 2 will not support OS PL/I modules. You must move from OS PL/I

to an LE-enabled PL/I compiler to use CICS after CICS TS V2 R2.

IBM will continue to provide service support for the execution of programs

compiled with the OS PL/I compiler when these programs use the Language

Environment run-time library versions of the PL/I library routines.

For more information about this support and its restrictions, refer to Chapter 7,

“Object and Load Module Considerations,” on page 49.

Chapter 1. Do I need to recompile? 5

6 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 2. Introducing the new compiler and run-time

This chapter provides an overview of the Enterprise PL/I compiler, (IBM

Enterprise PL/I for z/OS) and the common run time (Language Environment)

and introduces you to the terminology used throughout this book. This chapter

includes information on the following:

v Product relationships - compiler, run-time, debug

v General PL/I compiler information

v Language Environment’s run-time support for other programs

v Advantages of the new compiler and run-time

v Major changes with the new compiler and run-time

v General conversion tasks

Product relationships - compiler, run-time, debug

IBM Enterprise PL/I for z/OS is IBM’s strategic PL/I compiler for the zSeries

platform. Enterprise PL/I is comprised of features from OS PL/I, PL/I for MVS &

VM, and VisualAge PL/I with additional features such as Unicode support, XML

parsing capabilities, improved C and Java interoperability, integrated CICS

preprocessor, and integrated SQL preprocessor.

Language Environment provides a single language run-time environment for

COBOL, PL/I, C, and FORTRAN. In addition to support for existing applications,

Language Environment also provides common condition handling, improved

interlanguage communication (ILC), reusable libraries, and more efficient

application development of interlanguage applications. Application development is

simplified by the use of common conventions, common run-time facilities, and a

set of shared callable services. Language Environment is required to run Enterprise

PL/I programs.

Debug Tool provides significantly improved debugging function over previous

PL/I debugging tools, and you can use it to debug Enterprise PL/I programs and

other Language Environment-conforming language programs including COBOL

and C/C++.

Debug Tool is included with the full-function version of the compiler.

General PL/I compiler information

You must have access to Language Environment when you compile your

Enterprise PL/I application. When you compile your application and you use

existing JCL, be sure your STEPLIB or JOBLIB statement includes SCEERUN

(Language Environment run-time library) or that SCEERUN is in LNKLST. You can

use the IBMZC cataloged procedure to compile PL/I applications.

Your compile step should include the following:

//PLI EXEC PGM=IBMZPLI,REGION=4000K

//STEPLIB DD DSN=&LNGPRFX;.SIBMZCMP,DISP=SHR

// DD DSN=&LIBPRFX;.SCEERUN,DISP=SHR

© Copyright IBM Corp. 1999, 2008 7

Reading about the cataloged procedures provided with Enterprise PL/I can help

you understand the use of SCEERUN during compilation. See “Using PL/I

Cataloged Procedures” in Enterprise PL/I for z/OS Programming Guide for more

details.

When you link-edit your Enterprise PL/I application with Language Environment

and you use existing JCL, be sure your SYSLIB statement includes SCEELKED

(Language Environment link-time library).

Language Environment’s run-time support for other programs

Enterprise PL/I uses Language Environment as its run-time environment.

Language Environment is the common run-time environment for the following

language compilers:

 C/370

 C/C⁺⁺

 COBOL for MVS & VM

 COBOL for OS/390 & VM

 Fortran

 PL/I for MVS & VM

 Enterprise PL/I

It provides a common set of run-time options and callable services. It also

improves interlanguage communication (ILC) between high-level languages (HLL)

and assembler by eliminating language-specific initialization and termination on

each ILC invocation. Language Environment provides compatibility support for

existing applications with a few restrictions.

Advantages of the new compiler and run-time

The new IBM Enterprise PL/I for z/OS compiler has many new features and

advantages, including the following:

v FETCH improvements:

– FETCHed routines may FETCH other routines

– FETCHed routines can perform same I/O as MAIN

– FETCHed routines may have their own CONTROLLED
v 31 digit DECIMAL and PICTURE precision

v Increased limits:

– internal and external names may have up to 100 characters

– no compiler limit on the number of FILEs and CONTROLLED variables

– up to 4095 parameters allowed per PROCEDURE
v Support for many new 390 instructions (such as AHI and ALCR)

v Support for writeable reentrant static and DLLs

v Easier compatibility and interoperability with C/C++

v Better integer support:

– maximum precision of 63 for signed FIXED BIN

– UNSIGNED attribute supported (with a maximum precision of 64)

– signed FIXED BIN(7) mapped to one byte (as is UNSIGNED FIXED BIN(8))
v Many powerful new language features, including:

– PACKAGEs (the ANSI alternative to secondary ENTRYs)

– DO FOREVER (as a good alternate to DO WHILE(1 = 1);)

8 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

– Delimiting strings with ″ (double quotes)

– Using underscores to make constants more readable (e.g. ″0011_0101″b)

– Compound assignments (e.g. x += 1;)

– RESIGNAL (for more powerful exception handling)
v Many powerful new attributes, including:

– ABNORMAL (like volatile in C)

– NONASSIGNABLE (like const in C)

– BYVALUE

– LIMITED ENTRY (for C function pointers)

– ORDINAL (for strongly-typed enums)

– RESERVED (for C-like static)

– UNION

– UNSIGNED

– VALUE (for named constants)

– VARYINGZ (for C-style null-terminated strings)
v Over 100 new built-in functions, including:

– HEX and HEXIMAGE (for debugging)

– PROCNAME and SOURCELINE (for tracing)

– PLIMOVE, PLIFILL and COMPARE (like memcpy, memset and memcmp)

– IAND, IOR, IEOR and NOT (for bitwise integer operations)

– COPY (the ″nice″ REPEAT as defined by ANSI)
v Full z/OS UNIX System Services support, including

– Source, object and listing files in HFS

– I/O to HFS files
v Improved macro facility:

– Deck file preserves case of source

– Macro variables may now be arrays

– Many more built-in functions supported

– Support for the ANSWER statement

– WHILE,UNTIL and LOOP keywords supported in %DO statements

– SELECT statement supported (in open code and in macros)

– ITERATE statement supported

– LEAVE statement supported

– REPLACE statement supported
v Support for Multithreading

v Support for UTF-16 Unicode

v Support for IEEE floating-point

v SAX-style XML parsing

v XML generation

v Integrated CICS Preprocessor

v Integrated SQL Preprocessor

For more information on these items see the PL/I Language Reference and the

Enterprise PL/I for z/OS Programming Guide.

Major changes with the new compiler and run-time

With Enterprise PL/I, you will find that existing PL/I applications are affected by

several areas such as removed or changed compiler options, different default

compiler options, and restrictions in combining old and new load modules.

Chapter 2. Introducing the new compiler and run-time 9

The following list of concerns is merely a representative list that reflects what has

been important to some customers. It may not indicate what is important to any

one individual customer. More details are provided in the rest of this book.

v Enterprise PL/I supports only Language Environment releases currently in

support.

v Enterprise PL/I has no support for VM.

v Enterprise PL/I has no support for multitasking (but it does support

multithreading).

v Code that is incorrect or invalid (for instance, code that uses uninitialized

variables) may not run the same. This may not seem like an important problem,

but it has been a significant issue for most of the customers that have migrated.

v You may need to specify some non-default options to get the most compatible

behavior from the compiler and to get the best performance from the compiler.

v Programs may need to be tuned for optimal performance. In particular, the use

of the runtime option RPTSTG(ON), while useful when tuning, is much more

costly now to leave on in a production program.

v Recompiling all your PL/I source is recommended. If this isn’t done, you need

to carefully select the compiler options for compiling Enterprise PL/I code that

will be mixed with older PL/I objects. You will also need to divide your source

into partitions according to how they use FILEs, CONTROLLED variables and

conditions. For more information, see “Object and load module considerations”

on page 131.

General conversion tasks

Depending on your shop’s needs, you will most likely need to complete one or

more of the general conversion tasks, which include:

v Planning your strategy

v Moving to the Language Environment run-time library

v Recompiling your source with Enterprise PL/I

v Adding Enterprise PL/I programs to existing applications

Planning your strategy

Before moving to the Language Environment run-time library or recompiling your

source programs with Enterprise PL/I, develop a conversion strategy. A thorough

strategy will help ensure a smooth transition to the new compiler and run time.

Your conversion strategy might be to move to Language Environment, and then

gradually recompile your existing applications with Enterprise PL/I as needed.

This book provides separate strategies for moving to the new run time and for

recompiling your PL/I source.

If you are not currently on Language Environment and want information on how

to plan your move, see Chapter 3, “Planning the move to Language Environment,”

on page 15.

If you have already moved to Language Environment and want information on

moving to the new compiler, see Chapter 4, “Planning to move to the new

compiler,” on page 23.

10 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Moving to the Language Environment run time

You can run existing load modules under Language Environment and receive the

same results as with pre-Language Environment libraries. For important

compatibility information, see Chapter 5, “Running existing applications under

Language Environment,” on page 31.

For information on moving applications that are running under older PL/I

run-times, see Chapter 6, “Considerations Before Migrating,” on page 35.

In almost all cases, you will need to link-edit existing applications with Language

Environment or recompile programs with Enterprise PL/I. To determine which

programs require link-editing with Language Environment, see Chapter 8,

“Link-Edit Considerations,” on page 53.

Recompiling your source with Enterprise PL/I

The new Enterprise PL/I compiler has many powerful, new features of which you

may want to take advantage. There are also some differences between this new

compiler and the previous PL/I compilers.

To read about the differences between the Enterprise PL/I compiler and the

previous PL/I compilers, see Chapter 10, “Understanding the limitations of the

new compiler,” on page 63.

To find out more about the new compiler options, see Chapter 11, “Understanding

the new compiler’s options,” on page 73.

To determine which programs must be changed and then recompiled with

Enterprise PL/I, see Chapter 13, “Understanding when working code must be

changed,” on page 101 and Chapter 14, “Understanding when working code may

need to be changed,” on page 113.

Adding Enterprise PL/I programs to existing applications

You can create new Enterprise PL/I programs (or recompile existing programs

with Enterprise PL/I) and run them with existing applications under Language

Environment.

When adding Enterprise PL/I programs to existing applications, you need to be

aware of the limitations of mixing old and new PL/I modules. For details, see

Chapter 18, “Adding Enterprise PL/I programs to existing PL/I applications,” on

page 131.

Chapter 2. Introducing the new compiler and run-time 11

12 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Part 2. Conversion Strategies

© Copyright IBM Corp. 1999, 2008 13

14 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 3. Planning the move to Language Environment

This chapter describes a general strategy for moving your run-time environment to

Language Environment. The following tasks are necessary, and should be

performed in roughly the following order:

v Prepare to move to the Language Environment run-time library

v Take an inventory of your applications

v Decide how to phase in Language Environment

v Set up a regression testing procedure

v Cut over to production use

If you have already moved to Language Environment you do not need to read this

chapter and can proceed to reading about planning for the new compiler in

Chapter 4, “Planning to move to the new compiler,” on page 23.

Important

v Enterprise PL/I programs can only run with the Language Environment

element of z/OS Version 1 Release 7 or later.

Prepare to move to the Language Environment run-time library

In preparing to move to Language Environment, you need to perform the

following tasks, which can be done concurrently:

v Install Language Environment

v Educate your programmers about Language Environment

v Assess storage requirements.

Installing Language Environment

On z/OS

To install z/OS, including the Language Environment element, refer to

either the z/OS Program Directory or consult your ServerPac: Installing Your

Order.

On OS/390

To install OS/390, including the Language Environment element, refer to

either the OS/390 Program Directory or consult your ServerPac: Installing

Your Order.

 Important: To ensure that the Language Environment run-time results are

compatible with pre-Language Environment results, you may need to change the

default run-time options. See “Differences in Run-Time Options” on page 35 for

more details.

Assessing storage requirements

Storage requirements for Language Environment are larger than for pre-Language

Environment PL/I libraries.

© Copyright IBM Corp. 1999, 2008 15

DASD storage requirements

During conversion you will need DASD storage for the Language Environment

run-time as well as any pre-Language Environment run-time libraries. When you

have finished moving to Language Environment, you will be able to free the

storage reserved for the previous PL/I run-time libraries.

To determine the amount of DASD storage required by Language Environment,

see:

v On z/OS: z/OS Program Directory

v On OS/390: OS/390 Program Directory

Virtual storage requirements

Virtual storage requirements for running PL/I programs with Language

Environment will increase over the OS PL/I run-time. For both CICS and

non-CICS applications, the amount of increase depends on many factors, such as:

v The values used for the Language Environment run-time storage options:

STACK, LIBSTACK, HEAP, ANYHEAP, BELOWHEAP.

v The value used for the Language Environment run-time option ALL31.

v Which run-time routines are in the LPA (link pack area) or the ELPA (extended

link pack area)

Note: You can use the information generated by the Language Environment

RPTSTG(ON) run-time option to help tune your storage options during the

tuning phase. For details, see the z/OS Language Environment Programming

Reference. Be sure to reset this option to RPTSTG(OFF) before putting the

PL/I application into production, as it will greatly worsen performance.

Educating your programmers about Language Environment

Before moving to Language Environment, ensure that your application

programmers are familiar with the features of Language Environment and the

differences between the pre-Language Environment run-time and the Language

Environment run time.

Once your programmers are familiar with Language Environment, they can better

prepare for the move to Language Environment. For example, they can assist in

taking an inventory of applications.

For information on Enterprise PL/I and Language Environment education

available through IBM, you can call 1-800-IBM-TEACH. You can also get

information directly from Language Environment publications, from user groups

(such as SHARE), and from the Web at www.ibm.com/s390/le.

Take an inventory of your applications

While planning your move to the Language Environment run time, you need to

take a comprehensive inventory of the applications that you intend to run on

Language Environment. Include in this inventory:

v Vendor tools, packages, and products

v PL/I applications

The Edge Portfolio Analyzer can aid in taking an inventory of your existing load

modules. See “EDGE Portfolio Analyzer” on page 166 for more information.

16 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Vendor tools, packages, and products

Before you can begin moving your run time to Language Environment, you need

to know if your vendor tools, packages, and products are designed to run under

Language Environment. Verify that:

v All packages will run under Language Environment, especially if you do not

have the source code for them.

v Source code for packages, if you do have the source, is able to be compiled with

the Enterprise PL/I compiler.

v Code generators generate source code that is able to be compiled with the

Enterprise PL/I compiler.

v Development tools and debuggers that issue their own ESPIE or ESTAE

coordinate with Language Environment.

For information on how to obtain a list of vendor products that are enabled for

Language Environment, see “Vendor products” on page 166.

PL/I applications

When taking an inventory of your PL/I applications, you need to gather

information about the program attributes that affect moving to Language

Environment. This information includes how and what to test and what will affect

performance under Language Environment. For your inventory, determine:

For moving your applications to Language Environment:

v Which programs have been compiled with OS PL/I and which programs have

been compiled with PL/I for MVS & VM

v Which programs have been linked with PL/I shared libraries

v Run-time options used (and how specified)

v Which PL/I programs call or are called by assembler programs

v Which PL/I programs are multitasking.

v Which PL/I programs use interlanguage communication (COBOL, C, or

FORTRAN)

v Which PL/I programs are used under CICS, IMS, DB2, or other subsystems

v Frequency and types of abends expected

For regression testing:

v Test cases required and available

For performance measurements:

v Amount of storage used

v Frequency of execution of reusable/common modules

v Program execution time (both CPU and elapsed)

Existing PL/I load modules

Knowing what versions of PL/I load modules you have in your libraries is

important in planning your migration to Language Environment. As mentioned

above, the Edge Portfolio Analyzer can aid in taking an inventory of your existing

load modules.

Another tool that will give you some information about your load modules is the

AMBLIST utility. AMBLIST is provided by IBM and is usually found in

SYS1.LINKLIST. Using the LISTIDR control statement you can obtain listings of

Chapter 3. Planning the move to Language Environment 17

selected CSECT identification records (IDR). One of the fields in the IDR contains

the name of the translator, or compiler in the case of PL/I, that was used to

compile the CSECT. Sample output from AMBLIST would look like this:

CSECT TRANSLATOR VR.MD YR/DY

MYPLI 5655-H31 32.00 2003/171

MYPLI2 5655-B22 22.01 2001/073

D1 566896201 02.01 1972/271

UNRES 566896201 02.01 1992/034

Using the text in the TRANSLATOR column you can determine which PL/I

compiler created the module. Refer to Table 3 for the Translator field values for the

various PL/I compilers.

 Table 3. PL/I compiler IDR values

PL/I Compiler Version Translator Identification Record

OS PL/I V1 Release 5.1 5734-PL1

OS PL/I V2.3 5668-910

PL/I for MVS & VM 5688-235

VisualAge PL/I for OS/390 V2R2 5655-B22

Enterprise PL/I for z/OS Version 4 5655-H31

Decide how to phase in Language Environment

When you are ready to use Language Environment in production mode, you need

to:

v Determine how to handle multilanguage conversion

v Determine how applications will have access to the library

Multilanguage conversion

If you have PL/I applications with ILC, move them to the Language Environment

run time after you have converted each of the languages involved. For example,

move a PL/I-COBOL application to Language Environment after you have moved

your PL/I-only and COBOL-only applications to Language Environment.

Note: Do not install two different libraries for a given language in

LNKLST/LPALST. For example, if you install Language Environment with

the PL/I component in LNKLST/LPALST, do not have the OS PL/I library

or the PL/I for MVS & VM library installed in LNKLST/LPALST.

After Language Environment has been installed in LNKLST, all of your PL/I

applications will run under Language Environment by default.

Determining how applications will have access to the library

Two general methods are available for moving Language Environment into

production: adding Language Environment to the LNKLST/LPALST or using a

STEPLIB approach.

LNKLST/LPALST

After you add Language Environment to the LNKLST/LPALST, Language

Environment is available to all of your applications. To ensure that all applications

are functioning correctly under Language Environment before adding Language

18 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Environment to your LNKLST/LPALST, you can temporarily install Language

Environment in LNKLST/LPALST or use STEPLIB.

Do not make more than one PL/I run-time library available to your applications at

execution time. For example, there should be one and only one PL/I run-time

library, such as SCEERUN for Language Environment, in LNKLST. If you have

more than one, you will either get hard-to-find errors or you will have an unused

load library in your concatenation. When you add Language Environment to

LNKLST/LPALST, remove any other PL/I run-time libraries.

Temporary installation in LNKLST/LPALST or use STEPLIB: Suggestions for

temporarily installing Language Environment in LNKLST/LPALST include:

v Install Language Environment in LNKLST/LPALST on a test or development

machine first.

v Use the SETPROG MVS system command to temporarily modify the LNKLST or

LPA, without having to IPL the system. For information on using the SETPROG

command, see z/OS MVS System Commands, SA22-7627 or OS/390 MVS System

Commands, GC28-1781.

v IPL over a weekend and install Language Environment in LNKLST/LPALST.

Verify over the weekend that your applications run under Language

Environment.

Note: Although many elements of z/OS and OS/390 depend on the Language

Environment run-time library, both z/OS and OS/390 do not require

Language Environment to be installed in LNKLST. (However, Language

Environment must be installed in the same zone as z/OS and OS/390.) If

you choose not to place Language Environment in LNKLST, you must

STEPLIB Language Environment in the individual z/OS or OS/390 PROCs

that required Language Environment. For information on which elements

require Language Environment, see:

v z/OS Program Directory for z/OS Version 1 Release 1 or OS/390 Program

Directory for OS/390 Version 2 Release 10

STEPLIB

You can choose to phase in Language Environment gradually by using the

STEPLIB approach. When you STEPLIB to the Language Environment run time,

you phase in one region (CICS or IMS), batch (group of applications), or user

(TSO) at a time.

Although using STEPLIB means changing your JCL, a gradual conversion can be

easier than moving all of your applications at one time. Also note that when using

STEPLIB, programs will run slower than when they access the run-time library

through LNKLST/LPALST and more virtual storage will be used.

Note: If you have multiple processors linked together with channel-to-channel

connections, you must treat the entire system as one processor and should

convert subsystem by subsystem. In addition to revising your JCL to

STEPLIB to the Language Environment run time during initial setup, you

might also need to specify CEEDUMP DD if the default allocation for

CEEDUMP does not meet your shop’s needs. (CEEDUMP is the ddname

where Language Environment writes its dump output.)

Problems with STEPLIB and IMS programs

When you use STEPLIB on IMS/DC online to access the Language Environment

run time, any Language Environment library routines that you have preloaded will

Chapter 3. Planning the move to Language Environment 19

not be loaded into read-only storage. If your application has an error and

overwrites non-application storage, preloaded run-time routines can become

corrupted and eventually cause abends when used. At refresh time, these

preloaded routines marked reentrant are not refreshed unless loaded from the LPA

or the LNKLST/LPALST. Thus, the abends will recur.

Note: This is a 20-year-old problem with MVS (OS/390), IMS, and STEPLIB, and is

mentioned here because of the proposed STEPLIB approach for gradually

moving to Language Environment.

You can use either of the following methods to prevent this problem:

v Install Language Environment into the LNKLST/LPALST.

v Do not preload any run-time routines. (This will slow performance.)

How to minimize the impact::

v Keep your certification of Language Environment as short as possible. (The

sooner it is certified, the sooner you can install in LNKLST/LPALST.)

v Watch for different applications abending in the same region, which would

indicate that you need to follow the recovery procedure.

How to recover: If you do notice several different applications abending in the

same region, stop the region and restart with these IMS commands:

1. Determine the region number by issuing: ’/DISPLAY ACTIVE’

2. Stop the region by issuing: ’/STOP REGION region#’

3. Restart the region by issuing: ’/START REGION region-name’

STEPLIB example

Here is one example of how to phase in Language Environment using the STEPLIB

method: for an organization that has a central development center (all compiling

and linking is done in one location) and separate production sites. This is a very

conservative approach, but it has been used by many customers who require

absolutely no disruption in production applications.

1. Certify Language Environment and Enterprise PL/I at the central development

center.

v Run tests with captured data on your current run time, and save all results.

v Install Language Environment in a STEPLIB environment. This means that

unchanged jobs will run with your current run time, and that some users can

use the Language Environment run time by using STEPLIB JCL to access the

Language Environment run-time library.

v Run tests with captured data on the Language Environment run time, using

the STEPLIB environment, and compare the results to your current run time.

Run parallel tests throughout the certification cycle to ensure that your

applications produce the same results when run with Language Environment

as they did with your current run time.

v Finally, compile your test applications using Enterprise PL/I. STEPLIB to the

Language Environment run-time library, and rerun the certification tests.
2. Install Language Environment on the central development center’s system and

test.

v Run parallel tests of the nonconverted versions of your existing applications

using STEPLIB to access your current run time.

v Run all new applications in the Language Environment run-time

environment before releasing to production runs.
3. Prepare a backout strategy

20 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v Save the procedures for installing your current run time in case you need to

back out the Language Environment run time.
4. Install the Language Environment run time at one production site.

v Continue to run parallel tests of the nonconverted versions of your existing

applications with your current run time in the STEPLIB environment.

v Run the Language Environment run time for one month at this production

site.
5. Install the Language Environment run time at all production sites.

v Optional: continue to run parallel tests of the nonconverted versions of your

existing applications with your current run time in the STEPLIB

environment.

v Run the Language Environment run time for one month at all production

sites.

v After one month, delete the entire contents of your current run time library.

Try to move the largest units of work that you can. Moving entire online regions,

applications, or run units at once ensures that interactions between programs

within an application or run unit can be tested.

Set up a regression testing procedure

Although most applications will run under Language Environment with the same

results as on their existing run-time, results could differ depending on coding

styles, resource utilization, performance, abend behavior, or more strict adherence

to IBM conventions in Language Environment. For information on situations where

existing code may behave differently, see Chapter 14, “Understanding when

working code may need to be changed,” on page 113.

Because there are so many possible combinations of coding techniques, the only

way to determine if your applications will run under Language Environment and

receive the expected results, is to set up a procedure for regression testing. Move

your applications to a test environment, and ensure that you receive the expected

results when running under Language Environment.

Regression testing will help to identify if there are:

v Source code changes required as indicated in Chapter 14, “Understanding when

working code may need to be changed,” on page 113.

v Storage usage differences between your current run time and the Language

Environment run time.

v CPU time differences between your current run time and the Language

Environment run time.

During testing, run your existing applications in parallel on both your current run

time and under the Language Environment run time to verify that the results are

the same. Take performance measurements of your existing applications to

compare with Language Environment.

After the program runs correctly, test it separately and also test it with other

programs in a run unit. By testing it against a variety of data, you can exercise all

the program processing features to help ensure that there are no unexpected

execution differences.

Chapter 3. Planning the move to Language Environment 21

Analyze program output and, if the results are not correct, use Debug Tool or

Language Environment dump output to uncover any errors and correct those

errors. Make any further changes that you need and then rerun, and, if necessary,

continue to debug.

Take performance measurements

After your applications are running under Language Environment in a test

environment, take performance measurements—especially on any time-critical or

response-critical applications.

After you compare run-time performance between Language Environment and

your current run time environment and have identified which applications, if any,

need performance improvements, you can investigate the methods available to

tune your programs and improve performance. For example, you can modify

storage values using the Language Environment run-time options.

Cut over to production use

When your testing shows the entire application (or group of applications, if

running more than one application in an IMS region, or on TSO) receives the

expected results, you can move the entire unit over to production use. However, in

case of unexpected errors, be prepared for recovery:

v Under z/OS and OS/390, run the old version as a substitute from the latest

productivity checkpoint.

v Under DB2, CICS, and IMS, return to the last commit point and then continue

processing from that point using the unmigrated PL/I program. (For DB2, use

an SQL ROLLBACK WORK statement.)

v For batch applications, use your shop’s backup and restore facilities to recover.

After you move your existing applications to production use under the Language

Environment run time, monitor your applications for a short time to ensure that

they continue to work properly. Then, you can run with the confidence that you

had in your previous run time.

22 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 4. Planning to move to the new compiler

This chapter describes a general strategy for moving your source programs to

Enterprise PL/I. The following tasks are necessary, and should be performed in

roughly the following order:

1. Prepare to move your source to the new compiler

2. Take an inventory of your applications.

3. Make application program updates.

Because of the loss of service support for older PL/I compilers, you should

eventually move all of your PL/I source programs to the new compiler. Although

this is not an immediate requirement, at some future date the older compilers and

any supported fixes will not be available. At that point, you will be forced to do a

’quick’ migration, and this might be a very inconvenient time.

Before you can move your source programs to the new compiler, you must move

your applications to Language Environment.

Prepare to move your source to the new compiler

In preparing to move your source to the new Enterprise PL/I compiler, you need

to perform the following tasks, which can be done concurrently:

v Install Enterprise PL/I

v Assess storage requirements

v Educate your programmers on new compiler features

Installing Enterprise PL/I

If you haven’t already done so, install the compiler:

v For z/OS or OS/390, see the Program Directory for your product.

Assessing storage requirements

Enterprise PL/I object programs may execute in 31-bit addressing mode and can

reside above the 16-MB line, which frees storage below the 16-MB line. You can use

the freed storage for programs or data that must reside below the 16-MB line.

During the compiler migration, you will need DASD storage for your current PL/I

compilers as well as for the Enterprise PL/I compiler. When you have completed

the compiler migration, and if you have moved all of your OS PL/I, PL/I for MVS

& VM, or VisualAge PL/I programs to Enterprise PL/I, you will be able to free the

storage reserved for your current PL/I compiler.

The load module produced from the same source code when compiled with

Enterprise PL/I may be larger than when compiled with OS PL/I or PL/I for MVS

& VM.

Educating your programmers on new compiler features

Early in the conversion effort, ensure that your application programmers are

familiar with the features of Enterprise PL/I and the relationship and

interdependencies between Enterprise PL/I, Language Environment, and Debug

Tool and any other application productivity tools your shop uses.

© Copyright IBM Corp. 1999, 2008 23

In addition, your programmers will need to be familiar with Language

Environment run-time options, condition handling and callable services.

Choosing the right compiler options for your environment is a critical task. The

options you choose can vary widely depending on whether you are looking for

optimum performance or maximum compatibility with previous versions of PL/I.

For more information on choosing compiler options see Chapter 11,

“Understanding the new compiler’s options,” on page 73.

For information on Enterprise PL/I and Language Environment education

available through IBM, you can call 1-800-IBM-TEACH. You can also get

information directly from Language Environment publications or technical

conferences such as SHARE, or the IBM Technical Interchange.

After your programmers are familiar with Enterprise PL/I features, they can assist

you in taking the inventory of programs as described in “Take an inventory of

your applications.”

Take an inventory of your applications

In planning to move your PL/I source programs to Enterprise PL/I, you need to

take a comprehensive inventory of applications in which you have programs that

you intend to compile with Enterprise PL/I. By taking an inventory of your

applications, you get a detailed picture of the work that is required. You need to

take an inventory of:

v Vendor tools, packages, and products

v PL/I applications

The Edge Portfolio Analyzer can aid in taking an inventory of your existing load

modules, see “EDGE Portfolio Analyzer” on page 166 for more information.

Taking an inventory of vendor tools, packages, and products

Before you can begin moving your source, you need to know if your vendor tools,

packages, and products are designed to work with Enterprise PL/I. Verify that:

v PL/I code generators generate PL/I programs that can be compiled with

Enterprise PL/I.

v PL/I packages can be compiled with Enterprise PL/I.

Taking an inventory of PL/I applications

For each program in your PL/I applications, include at least the following

information in your inventory:

OS PL/I, PL/I for MVS & VM and VisualAge PL/I:

v Programmer responsible

v Compiler used

v Compiler options used, especially CMPAT

v Precompiler options used

v PL/I modules

v INCLUDE library members used in PL/I programs

v Called or FETCHed subprograms

v Calling or FETCHing programs

v Frequency of execution

v Test cases required and available

24 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

If you are planning to mix ’old’ PL/I modules with Enterprise PL/I modules, you

will also want this information in your inventory:

v Use of CONTROLLED variables

v Use of FILE variables and constants

For information on the partitioning of PL/I source programs into units of

execution based on the above information, see “Partitioning PL/I source programs

into units of execution” on page 134.

Prioritizing your applications

Using the complete inventory, you can now prioritize the conversion effort.

1. Assign complexity ratings to each item in your completed inventory and

determine each program or application’s resulting overall complexity rating.

2. Determine the conversion priority of each program or application.

Determining conversion priority

After you have determined the complexity rating for each program in your

inventory, you can make informed decisions about the programs that you want to

move to the new Enterprise PL/I compiler, and the order in which you want to

move them.

Consider the following when deciding on conversion priorities:

v If your application is at the limits of the storage available below the 16-MB line,

it is a prime candidate for conversion to Enterprise PL/I. With z/OS or OS/390

architecture you can obtain virtual storage constraint relief.

v If the program cannot run under Language Environment, you must convert it.

After you determine the priority of each program that you need to move and the

effort required to move those programs, you can decide the order in which you

want to convert your applications and programs.

Setting up move/no move categories

By using the conversion priorities that you have established, and taking into

account program importance and frequency of execution, you can list most of your

programs in the order that you want to convert them to Enterprise PL/I.

There might be some programs that you do not want to convert at all, such as:

v Programs for which you have no source code, that will never need

recompilation, and that run correctly under Language Environment.

v Programs of low importance to your organization that run correctly under

Language Environment and that would take a very high conversion effort.

v Programs that are being phased out of production.

Note, however, that there might be restrictions on running existing modules mixed

with programs that have been moved to the new Enterprise PL/I compiler. See

Chapter 18, “Adding Enterprise PL/I programs to existing PL/I applications,” on

page 131.

Chapter 4. Planning to move to the new compiler 25

Make application program updates

The following application programming tasks are necessary when converting your

source. You must decide what size your program updates will be. For example,

you can choose to update programs along with your regular maintenance, or you

can divide your programs into functional groups and update the source group by

group. Some customers have followed the ’big bang’ process and have made all

their program updates at once. However you decide to proceed, these tasks should

be performed in roughly the following order:

Save the existing source as a back-up—a benchmark to compare to and a version

to recover to—if the converted modules have problems.

1. Update the job and module documentation.

It is extremely important that all updates be properly documented. PL/I itself

is reasonably self-documenting. However, keep a log of the compiler options

you specify and the reasons for specifying them. Also document any special

system considerations. This is an iterative process and should be performed

throughout the conversion programming task.

2. Update the available source code.

Update the source code manually or with tools that you have developed. For

information on when source code must or may need to be changed, see

Chapter 13, “Understanding when working code must be changed,” on page

101 and Chapter 14, “Understanding when working code may need to be

changed,” on page 113.

3. Compile, link-edit, and run.

After the source has been updated, you can process the program as you would

a newly written Enterprise PL/I program. (You need the Language

Environment run time installed.) If, during the compile process, you see new

messages and wish to understand them better, see Chapter 12, “Understanding

the new compiler’s messages,” on page 87.

4. Debug.

Analyze program output and, if the results are not correct, use Debug Tool or

Language Environment dump output to uncover any errors.

5. Test the converted programs.

After moving your source to Enterprise PL/I, set up a procedure for regression

testing. Regression testing will help to identify:

v Code that must be changed.

v File attribute mismatches.

v Storage initialization issues.

v Performance differences.

v AMODE issues.

After you have established a regression testing procedure, and after your

programs run correctly, test them against a variety of data:

v Locally—each program separately

v Globally—programs in a run unit in interaction with each other

In this way, you can exercise all the program processing features to help ensure

that there are no unexpected execution differences.

The importance of regression testing cannot be stressed enough. You should

consider the move from an ’old’ PL/I compiler to Enterprise PL/I as a move to

a different, though similar, language and plan your testing accordingly.

6. Repeat when necessary.

26 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Make any further corrections that you need, and then recompile, relink, rerun,

and, if necessary, continue to debug.

7. Cut over to production mode.

When your testing shows that the entire application receives the expected

results, you can move the entire unit over to production mode. (This assumes

your production system is already using the Language Environment run time.

If not, STEPLIB to the Language Environment run time. See “STEPLIB” on page

19.)

In case of unexpected errors, be prepared for recovery:

v Under z/OS or OS/390, run the old version as a substitute from the latest

productivity checkpoint.

v Under DB2 and IMS return to the last commit point and then continue

processing from that point using the unmigrated PL/I program. (For DB2,

use an SQL ROLLBACK WORK statement.)

v For non-CICS applications, use your shop’s backup and restore facilities to

recover.
8. Run in production mode.

After cut over, monitor the application for a short time to ensure that you are

getting the results expected. After that, your source conversion task is

completed.

Chapter 4. Planning to move to the new compiler 27

28 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Part 3. Moving existing applications to Language Environment

Important

This part is intended for users who are migrating from OS PL/I and are not

currently on Language Environment. If you are currently using PL/I for MVS

& VM, VisualAge PL/I, or Enterprise PL/I you may go directly to Part 4,

“Moving to the new compiler,” on page 61.

© Copyright IBM Corp. 1999, 2008 29

30 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 5. Running existing applications under Language

Environment

Depending on the characteristics of your applications, you might need to make

application modifications and perform some of the following Language

Environment customization tasks to ensure that your current applications run

under Language Environment:

v Invoke existing applications

v Link-edit existing applications

Other factors also apply to ensure compatibility, depending on if you are moving

your run-time from OS PL/I or PL/I for MVS & VM. For details, see:

v Chapter 6, “Considerations Before Migrating,” on page 35

Invoke existing applications

To access Language Environment you will need to change the procedures you use

for invoking applications. The procedures required for non-CICS applications are

different than the procedures for CICS applications.

Note: Make sure your program names do not begin with AFH, CEE, EDC, IBM,

IGZ, ILB, or FOR. These prefixes are reserved for Language Environment

library routine module names.

For non-CICS applications

The following sections detail the changes required for non-CICS applications. For

more information on how to prepare and run your programs with Language

Environment, see the z/OS Language Environment Programming Guide.

Specify the correct library

To invoke existing applications when running under Language Environment, you

need to replace your current library with the Language Environment SCEERUN

library.

Specify alternate DDNAMES (optional)

With Language Environment, you can indicate the destination for Language

Environment output by changing the ddname in the MSGFILE run-time option to

the ddname you want. Table 4 lists the default ddnames for Language

Environment output.

 Table 4. Specification of new DDNAMEs

Output Default ddname

Messages SYSOUT

Run-time options report (RPTOPTS) SYSOUT

Storage reports (RPTSTG) SYSOUT

Dumps CEEDUMP

All of the ddnames in the above table are dynamically allocated.

© Copyright IBM Corp. 1999, 2008 31

You do not need to alter your JCL, CLISTs, or Rexx EXECs to define the ddnames

for Language Environment messages, reports, or dumps unless the defaults used by

Language Environment do not meet the needs of your shop. The Language

Environment default destinations are:

v On z/OS and OS/390: SYSOUT=*

For CICS applications

To run Language Environment on CICS, you need to perform several required

steps. For details on how to invoke PL/I applications running on CICS under

Language Environment, including how to specify the Language Environment

run-time library SCEERUN, see:

v For z/OS, z/OS Language Environment Customization

v For OS/390, Language Environment for OS/390 Customization

Output differences when using Language Environment on CICS

Under CICS, Language Environment output goes to a transient data queue named

CESE. Each record written to the file has a header that includes the terminal ID,

the transaction ID, date, and time. The transient data queue (CESE) receives the

following types of Language Environment output:

v Messages

v Run-time options report (RPTOPTS)

v Storage reports (RPTSTG)

v Dumps

v PL/I Stream output

Link-edit existing applications

After determining which of your existing applications either require or will benefit

from link-editing with Language Environment, you need to specify the correct

library name. The Language Environment link-edit library is the same for

non-CICS applications as for CICS applications.

Under z/OS and OS/390

Include the Language Environment SCEELKED in the SYSLIB

concatenation.

Note: If you link-edit with the NCAL linkage editor option, ensure that all of the

required run-time routines from SCEELKED are included in the load

module. Otherwise, unpredictable errors will occur (typically a program

check).

There are some names in the SCEELKED library that do not follow IBM naming

conventions, and that can conflict with your subprogram names. For example, if

you have a statically called subroutine named DUMP and if SCEELKED is ahead

of your private subroutine library in the concatenation at link-edit time, then your

references to DUMP will be resolved in SCEELKED. In this example, the

FORTRAN routine AFHUDUMS will be link-edited in, and you could get incorrect

results, loss of function, or slower performance as a result. (Another common name

is ABORT, which is an entry point in EDC4$05C, a C run-time library routine.)

There are a couple of ways to avoid these problems:

32 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v You can check the names in the SCEELKED data set against the names of your

private subroutines. If there are any duplicates, you can rename your private

subroutines so that they do not have the same names as the names in the

SCEELKED data set.

v Another way is to place your private subroutine libraries before SCEELKED in

the SYSLIB concatenation. However, doing this could result in losing function

that is available under Language Environment if your application contains

Fortran or C/C++ programs. Changing the name of your subroutine to avoid

the conflict with the Language Environment subroutine is preferable to placing

your private subroutine libraries ahead of SCEELKED.

To determine which applications require link-editing with Language Environment,

see Chapter 8, “Link-Edit Considerations,” on page 53.

Chapter 5. Running existing applications under Language Environment 33

34 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 6. Considerations Before Migrating

Language Environment is now part of z/OS and OS/390 and you can start

migrating your applications to Language Environment prior to installing a

Language Environment-enabled PL/I compiler such as PL/I for MVS & VM,

VisualAge PL/I or Enterprise PL/I. This chapter discusses the functional

differences between OS PL/I run-time and Language Environment. These

differences should be considered before migrating your applications to Language

Environment.

Differences in Run-Time Options

Language Environment run-time options replace PL/I run-time options. Most PL/I

run-time options have an equivalent Language Environment run-time option that

provides the same function. This section describes differences in the use of

run-time options.

You should adapt your applications to allow for the following differences:

Deleted run-time options

v The OS PL/I COUNT option is ignored.

v The OS PL/I FLOW option is ignored.

v The OS PL/I HEAP option is always in effect. This means that when you

allocate storage for BASED and CONTROLLED variables, the storage always

comes from HEAP storage. The storage does not come from a PL/I Initial

Storage Area (ISA). HEAP(0) is not supported and, if used, is ignored.

Replaced run-time options

v The Language Environment NATLANG option replaces the OS PL/I

LANGUAGE option.

v The Language Environment RPTSTG option replaces the OS PL/I REPORT

option.

v The Language Environment TRAP option replaces both OS PL/I SPIE and STAE

options. The following table shows how the OS PL/I SPIE and STAE options

map to Language Environment’s TRAP option:

 Table 5. Mapping of SPIE and STAE Options to the TRAP Option

OS PL/I

Language

Environment

Action

SPIE|NOSPIE TRAP(ON|OFF) If SPIE|NOSPIE is specified in input, TRAP is set

according to the option: TRAP(ON) for SPIE, and

TRAP(OFF) for NOSPIE.

STAE|NOSTAE TRAP(ON|OFF) If STAE|NOSTAE is specified in input, then TRAP is

set according to the option: TRAP(ON) for STAE, and

TRAP(OFF) for NOSTAE.

SPIE STAE or

SPIE NOSTAE or

STAE NOSPIE

NOSPIE NOSTAE

TRAP(ON)

TRAP(OFF)

If both SPIE|NOSPIE and STAE|NOSTAE are

specified together in input, TRAP is set according to

both options: TRAP(OFF) when both options are

negative, and TRAP(ON) otherwise. TRAP(ON) must

be in effect for applications to run successfully.

© Copyright IBM Corp. 1999, 2008 35

Note: Applications performing their own condition management often conflict

with Language Environment condition management. See your z/OS

Language Environment Programming Guide for more information on

Language Environment condition handling.

v The Language Environment STACK option replaces both OS PL/I ISASIZE and

ISAINC options. You do not need to change and recompile source code that

contains ISASIZE and ISAINC. In addition, object modules and/or load modules

containing the PLIXOPT string will run under Language Environment with the

ISASIZE and ISAINC honored as before.

STACK(,,ANY) can be used for an OS PL/I application relinked with Language

Environment that does not contain any edited stream I/O.

Your application must run in AMODE(31) to use STACK(,,ANY).

Under CICS, ALL31(ON) and STACK(,,ANY) are the defaults; however, because

STACK(,,BELOW) is required for OS PL/I applications that have not been

relinked with Language Environment, you must change the default to

STACK(,,BELOW) during installation or explicitly specify STACK(,,BELOW) for

any OS PL/I applications that have not been relinked.

New run-time options

v The Language Environment ABTERMENC option controls which type of

return/abend code your application receives at abnormal termination.

ABTERMENC(RETCODE) allows your application to receive a run-time return

code, which is equivalent to the way OS PL/I worked.

v The Language Environment ERRCOUNT option limits the number of conditions

that are handled at run time. ERRCOUNT(0) specifies that there is no limit,

which is equivalent to the way the OS PL/I worked.

v The Language Environment DEPTHCONDLMT option limits the extent to which

conditions can be nested. To maintain compatibility, specify

DEPTHCONDLMT(0), which means there is an unlimited depth.

v The Language Environment XUFLOW option determines if the UNDERFLOW

condition is raised when underflow occurs. XUFLOW(AUTO) preserves PL/I

semantics with regard to raising the UNDERFLOW condition.

v The Language Environment ALL31 option controls AMODE switching among

library routines. You should set ALL31(0N) if all of your applications are

AMODE(31).

When you pass run-time options in the MVS GO step, your run-time options string

must end with a slash (/) to distinguish it from a main procedure parameter

string. If you omit the slash, the string is passed as the main procedure parameter.

The following run-time options are needed to provide compatibility with OS PL/I:

v ABTERMENC(RETCODE)

v ERRCOUNT(0)

v DEPTHCONDLMT(0)

v STORAGE(,,CLEAR)

v TRAP(ON)

v XUFLOW(AUTO | ON)

36 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Note that before you use the CLEAR suboption of the STORAGE option, you must

have the appropriate PTFs for APAR PK02614 installed. Also, the use of the option

may not be entirely effective for Enterprise PL/I code: see the discussion later in

this book on initializing variables.

For more information about run-time options, see the z/OS Language Environment

Programming Reference.

For OS PL/I applications, the options specified in the PLIXOPT string is processed

as the application-specific options. If you provide the Language Environment

CEEUOPT, CEEUOPT is ignored.

If the main load module contains ILC, the PLIXOPT string is ignored. In this case,

you must provide CEEUOPT for the application-specific options.

Differences in Condition Handling

Timing differences

PL/I condition handling semantics remain supported under Language

Environment; however, the timing of issuing the run-time message for an ERROR

condition with respect to the ERROR ON-Unit is different in the following way:

v The run-time message for an ERROR condition is issued only if there is no

ERROR ON-Unit established, or if the ERROR ON-Unit does not recover from

the condition by using a GOTO out of block. You can use a GOTO out of the

ERROR ON-Unit to avoid a message for a PL/I ERROR condition.

For PL/I conditions whose implicit action includes issuing a message and raising

the ERROR condition, the timing of issuing the message is unchanged.

Table 6 shows when the run-time message for an ERROR condition is issued under

OS PL/I with respect to the ERROR On-Unit.

 Table 6. OS PL/I Version 2 Release 3 ERROR ON-Unit and Message for an ERROR

condition

 Condition No

ON-Units

ERROR ON-Unit No

GOTO

 ERROR ON-Unit

 GOTO

ERROR condition raised1 Message Message prior to ON-unit Message prior to ON-unit

ZERODIVIDE condition

raised2

Message Message prior to ON-unit Message prior to ON-unit

Notes:

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR

condition is raised.

Table 7 shows when the run-time message for an ERROR condition is issued under

Language Environment with respect to the ERROR On-Unit.

Chapter 6. Considerations Before Migrating 37

Table 7. Language Environment ERROR ON-Unit and Message for an ERROR Condition

Condition

 No

ON-units

ERROR ON-unit

 No GOTO

 ERROR ON-unit

 GOTO

ERROR condition raised1 Message Message after ON-unit No message

ZERODIVIDE condition

raised2

Message Message prior to ON-unit Message prior to ON-unit

Notes:

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR

condition is raised.

The SNAP traceback message produced by ON ERROR SNAP continues to be

issued before the ERROR ON-unit receives control. The SNAP traceback message is

not identical to the regular ERROR message.

Unhandled condition differences

If your OS PL/I application used to force an abend for an unhandled condition

under OS PL/I run-time using OS PL/I assembler user exit IBMBXITA or abend

exit IBMBEER, use the following ways to force an abend under Language

Environment:

v Run your application with Language Environment ABTERMENC(ABEND)

option. You cannot specify your own abend code via the run-time option.

v Use Language Environment assembler user exit CEEBXITA to force an abend

with your own abend code.

IBMBXITA and IBMBEER differences

Language Environment provides limited support for OS PL/I IBMBXITA and

IBMBEER. See “Considerations for using assembler user exits” on page 150 for

details.

ABEND U4039 differences

An UNHANDLED condition of severity 2 or higher now produces an abend U4039

and optionally a system dump if SYSUDUMP or SYSABEND ddname is present. If

ABTERMENC(RETCODE) is in effect, your application continues the termination

with an abend code. If you don’t want to see the U4039 abend, Language

Environment provides you the facilities to suppress it.

See “Abnormal Termination Exit” in z/OS Language Environment Installation and

Customization under OS/390 or z/OS Language Environment Customization for ways to

suppress or change the U4039 abend.

Severity differences

Severities of some PL/I conditions are different under Language Environment. See

PL/I Language Reference for the severities.

Differences in PLICALLA and PLICALLB Support

The interfaces in the following sections are not recommended for use under

Language Environment.

38 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

PLICALLA Considerations

Language Environment provides support for OS PL/I applications that use the

PLICALLA entry point. You can also relink your program under Language

Environment. See “OS PL/I Routine Replacement Tool” on page 163 about details

on how to relink an application under Language Environment.

You can use PLICALLA as the primary entry point of a FETCHed/CALLed PL/I

main load module; however, the calling routine must pass only user arguments

which are passed to a subroutine. If run-time options are passed, they are treated

as user arguments.

If you develop a new PL/I application and you want the main procedure to

receive user arguments like a subroutine, do one of the following:

v Receive control directly from IMS by

– Using CEESTART or PLISTART as the primary entry point of the load module

– Specifying the SYSTEM(IMS) compile-time option
v Receive control from an assembler program or a procedure using a FETCH or

CALL statement by:

– Using CEESTART or PLISTART as the primary entry point of the load module

– Specifying the NOEXECOPS option and the SYSTEM(MVS) compile-time

option

– Specifying either the BYADDR option or the BYVALUE option as necessary

and/or appropriate for the mechanism the assembler code used to pass the

parameters.

Language Environment support of PLICALLA is not available in the following

environments:

 CICS environment

 Preinitialized environment

 Nested enclave environment except the PL/I FETCHable main.

PLICALLB Considerations

Language Environment provides support for PL/I applications that use the

PLICALLB entry point. The following table shows the PLICALLB parameter

mapping between OS PL/I and Language Environment:

 Table 8. Differences in PLICALLB Argument List Support

OS PL/I Language Environment

Address of the length of ISA storage for a

nonmultitasking program or the major task in a

multitasking program

Mapped to STACK(init_size)

Address of ISA storage Used as the initial STACK segment

Address of the length of ISA storage for each

subtask

Mapped to NONIPTSTACK(init_size)

Address of the maximum number of concurrent

subtasks

Mapped to PLITASKCOUNT(max_thread)

Chapter 6. Considerations Before Migrating 39

Table 8. Differences in PLICALLB Argument List Support (continued)

OS PL/I Language Environment

Address of the options word, in which the

following run-time options can be specified:

 REPORT

SPIE|STAE

COUNT

FLOW

HEAP suboptions

TASKHEAP suboptions

Supported as follows:

REPORT mapped to RPTSTG

SPIE|STAE mapped to TRAP

COUNT ignored

FLOW ignored

HEAP(,,KEEP|FREE)|(,,ANY|BELOW)

THREADHEAP(,,KEEP|FREE)|(,,ANY|BELOW)

Address of HEAP storage length for a

nonmultitasking program or the major task in a

multitasking program

Mapped to HEAP(init_size)

Address of HEAP storage Used as the initial HEAP segment

Address of HEAP increment for a nonmultitasking

program or the major task in a multitasking

program

Mapped to HEAP(,incr_size)

Address of HEAP for subtasks Mapped to THREADHEAP(,increment)

Address of ISA increment for a nonmultitasking

program or the major task in a multitasking

program

Mapped to STACK(,incr_size)

Address of ISA increment for each subtask

(optional for a nontasking application)

Mapped to NONIPTSTACK(,incr_size)

When the above argument list is passed in via the PLICALLB entry point, the

argument in the list must either point to an address or be zero. The high-order bit

ON in an argument indicates the end of the argument list. R1 must contain the

address of the argument list.

With Language Environment, the run-time options passed via the PLICALLB entry

point are processed as options specified on invocation of the application and have

a higher precedence than CEEUOPT or PLIXOPT options. The assembler user exit

cannot be used to alter the run-time options passed through the PLICALLB

invocation.

To summarize, the run-time options passed in have the following precedence (from

highest to lowest) among Language Environment option specification methods:

1. Options defined at installation time that have the non-overrideable attribute

2. Options specified via the PLICALLB entry point

3. Options specified in the PLIXOPT string or in CEEUOPT

4. Option defaults defined at installation time

The user arguments passed to the PL/I main routine have the following

precedence (from highest to lowest):

1. Output from CXIT_PARM or AUE_PARM of the assembler user exit

2. User arguments passed in via the PLICALLB entry

Note: The input to CXIT_PARM or AUE_PARM of the assembler user exit is the

first argument in the PLICALLB parameter list, that is, the address of a

vector of user argument addresses.

Language Environment encourages the use of above-16M-line storage. For

compatibility with OS PL/I, Language Environment maps the user-supplied ISA

and HEAP storage to STACK and HEAP. With this mapping, however, Language

Environment still needs to issue some GETMAINs. Since user-supplied ISA/HEAP

40 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

storage is usually below the 16M line, below-16M-line storage can be quickly

consumed under Language Environment. How Language Environment manages

storage is described in the z/OS Language Environment Programming Guide.

Language Environment manages storage differently than OS PL/I. It divides

storage into more categories than the OS PL/I supported ISA and HEAP. As a

result, mapping the user-supplied OS PL/I ISA or HEAP storage to Language

Environment STACK or HEAP storage still requires GETMAINs during run time.

Further, Language Environment provides diagnostics to ensure the user-supplied

length of ISA or HEAP storage is a multiple of 8 bytes and the address is on a

double-word boundary.

Language Environment also ensures that the location of the user-supplied ISA or

HEAP storage matches the location specification in the STACK or HEAP run-time

option. The user-supplied HEAP storage is ignored when all ofthe following are

true:

1. User-supplied heap storage is above the 16M line

2. The ANYWHERE suboption of the HEAP option is in effect

3. The main program is in AMODE(24)

Language Environment allocates below-16M-line storage using the init_sz24 and

incr_sz24 suboptions specified in the HEAP option.

Language Environment support of PLICALLB is not available in the following

environments:

 CICS

 IMS

 Preinitialized environment

 Nested enclave environment

Differences in Preinitialization Support

Enterprise PL/I does not support the old preinitialization scheme and you may

want to consider redesigning your applications. Language Environment

preinitialization services should be used with Enterprise PL/I in the redesigned

applications. However, if you want to run your preinitialized programs under

Language Environment in the interim while waiting for them to be redesigned, this

section describes the differences that you may want to consider prior to the

migration.

The PL/I preinitialized program interface is supported with the following changes:

v The PL/I preinitialized program interface no longer supports the REINITIALIZE

request modifier code. If you attempt to use this function, it is diagnosed with

the 4093-136 abend code.

v If the routine specified in the CALL request is not statically linked with the

assembler driver and it contains ILC, you must ensure the ILC environment is

initialized by including the same ILC in the routine specified in the INIT

request.

v The TERM request no longer returns 1000 return code as OS PL/I run time did.

v Some of the return and reason codes for the service vector defined by OS PL/I

have changed. You must use the return and reason codes for the service vector

defined by Language Environment preinitialization services as described in z/OS

Language Environment Programming Reference.

Chapter 6. Considerations Before Migrating 41

Language Environment preinitialization services support multiple preinitialization

environments under the same TCB. Multiple preinitialization environments under

the same TCB is not supported by OS PL/I. To understand how the service works,

see “Using Preinitialization Services” in z/OS Language Environment Programming

Guide.

Differences in PLISRTx Support

OS PL/I applications containing PLISRTx invocations are supported by Language

Environment for OS/390 & VM Release 1.4 or later; however, you must relink your

applications if you are using Release 1.3 of Language Environment as your run

time. It is a good idea to relink your load module with Language Environment,

regardless of therelease you are using, for the following reasons:

v Relinking allows the library routine to access the Language Environment-
provided DFSORT interface for a more integrated language and sort

environment.

v Relinking allows the library routine to replace the 24-bit DFSORT parameter list

with the extended 31-bit DFSORT parameter list.

You can relink your OS PL/I PLISRTx applications using one of the following

methods:

v For object module relinking, use OS PL/I Object Module Relinking Tool - APAR

PN69803 described on “OS PL/I Object Module Relinking Tool - APAR

PN69803” on page 165.

v For library routine replacement, use OS PL/I Routine Replacement Tool

described on “OS PL/I Routine Replacement Tool” on page 163.

v Relinking the object module directly with Language Environment.

Differences in Multitasking Support

Enterprise PL/I does not support multitasking. You must change your applications

to use multithreading or else use the PL/I for MVS compiler. Note also that

Enterprise PL/I multithreading code must use the POSIX(ON) run-time option.

Differences in OS PL/I Shared Library support

Enterprise PL/I does not support the old OS PL/I shared library.

Differences in DATE/TIME Built-In Functions

The DATETIME and TIME built-in functions now return the number of

milliseconds in all environments. The syntax and description of these built-in

functions are in PL/I Language Reference.

Differences in User Return Code

Language Environment supports a FIXED BIN(31) four-byte user return code value

for PLIRETC, PLIRETV, and OPTIONS(RETCODE). This support removes the

restriction of maximum value 999. OS PL/I applications must be relinked with

Language Environment in order to take advantage of the four-byte user

return-code value.

42 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

The following table shows how PL/I user return code is supported:

 Table 9. Return Code Behavior under Language Environment

Function

OS PL/I

load module

OS PL/I object

module linked

with Language

Environment

Enterprise PL/I

load module

PLIRETC

built-in function

2-byte value with

restriction of 999

4-byte value without

restriction of 999

4-byte value without

restriction of 999

PLIRETV

built-in function

2-byte value Lower 2 bytes of a

4-byte value

4-byte value

RETCODE option Lower 2 bytes

 of R15

Lower 2 bytes

 of R15

2-byte value

For PLIRETC, relinked OS PL/I load modules can set a 4-byte user return code

value.

Under Language Environment, the PL/I user return code is always reset to zero

upon return from the PLISRTx invocation. This is not the case with OS PL/I run

time.

Differences in the opening of PRINT files

PRINT files must be declared and/or allocated with the attribute ″A″ (for

example, FBA or VBA) to allow for the control character in column 1. With

pre-VisualAge PL/I, there were cases where the ″A″ attribute was forced onto

PRINT files that didn’t have it specified (for example, FB or VB), but this can

cause confusion as the file is opened with attributes other than that specified by

the user. Starting with VisualAge PL/I, the UNDEFINEDFILE condition will be

raised if a PRINT file is not specified with the ″A″ attribute.

Differences in Run-Time Messages

The format and content of run-time messages are different. If you have

applications that analyze run-time messages, you must change the applications to

allow for the differences. The differences include:

v The message number in the message prefix is four digits instead of three digits

in the form IBMnnnnx, where nnnn represents the message number and x

represents the severity of the message.

v The message severity in the message prefix can be I, W, E, S, or C.

v The message text of some mixed-case English and Japanese messages has been

enhanced. The message text of uppercase English messages remains unchanged.

Details are provided in Language Environment Debugging Guide and Run-Time

Messages.

Under Language Environment, run-time messages go to the MSGFILE destination

specified in the run-time option MSGFILE. The default for MSGFILE destination is

SYSOUT. The user output still goes to SYSPRINT. MSGFILE(SYSPRINT) is

supported under Enterprise PL/I only after applying the PTFs for the runtime

APAR PQ78307. For more information about the MSGFILE option, refer to z/OS

Language Environment Programming Guide.

Chapter 6. Considerations Before Migrating 43

Differences in PLIDUMP

PLIDUMP now produces a Language Environment-style dump. The way you use

PLIDUMP and the dump output is different. The following list the differences in

the way you use PLIDUMP and the output produced. Compile unit refers to the

primary entry point of the external procedure and Compile unit name refers to the

name of the external procedure.

v The ddname of the dump output file can be CEEDUMP, PLIDUMP, or

PL1DUMP. If you do not define one of these files, Language Environment

creates a default CEEDUMP file to contain the dump output. The LRECL of the

dump output file must be at least 133 bytes to prevent dump records from

wrapping, not the 121 bytes required by OS PL/I.

v When you use the hexadecimal (H) option of PLIDUMP, you must specify the

ddname CEESNAP for MVS, or the file name CEESNAP for VM; otherwise the

H option is ignored. This data set contains the SNAP dump output.

When you specify the hexadecimal (H) option under MVS, the output from

SNAP includes all system control program information (SDATA=ALL). OS PL/I

provides only partial information (SDATA=CB, Q, and TRT).

v When you use ILC, the dump output contains information related to other

languages (for example, C/C⁺⁺ or COBOL).

v The identifier character string is limited to 60 bytes rather than the 90 bytes OS

PL/I supported.

v The traceback section lists the compile-unit name associated with each entry

point name. When the entry point is a secondary entry point, the primary entry

point name associated with the actual entry point is not listed.

The traceback section also contains offsets relative to the address of the compile

unit, as well as offsets relative to the address of the real entry point.

v Run-time messages are in a separate section; they are no longer part of the

traceback section.

v When you specify the BLOCK (B) option of PLIDUMP, the condition handler

save areas appear in the block section of the dump. If you do not specify the

BLOCK option of PLIDUMP, the condition handler save areas do not appear in

the dump.

v If the program was compiled with the TEST compile-time option, and a

begin-block has a label, the begin-block is identified as Label:BEGIN block..

Otherwise, the begin-block is identified as %BLOCKnn, where nn is the block count

for the begin-block.

v Compiler-generated ILC subroutines now appear in the traceback section. They

are identified as the compile unit name concatenated with the suffix ILC.

v PL/I library routines that have Language Environment-defined Program

Prologue Areas (PPAs) are identified by name in the dump. If the library

routines do not have Language Environment PPAs, they are identified as

Library(PL/I).

v A HEX dump of STATIC storage is included in the Language Environment

formatted dump. If more than one routine from a compilation unit is on the

stack when a dump is produced, static will be dumped only once for that

compilation unit.

v Assembler routines that conform to the rules for mimicking PL/I routines are

identified by their CSECT names in the dump output.

v PLIDUMP now conforms to National Language Support standards.

44 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v PLIDUMP can supply information across multiple Language Environment

enclaves. For example, if an application running in one enclave FETCHes a main

procedure (an action that creates another enclave), PLIDUMP contains

information about both procedures.

Differences in Storage Report

The format, contents, and destination of the run-time storage report have changed.

Language Environment provides storage information equivalent to OS PL/I. The

details of the storage report is described in z/OS Language Environment Programming

Reference.

The PLIXHD declaration is no longer used to provide the heading for the run-time

storage report. Instead, use Language Environment’s Callable Service, CEE3RPH,

to specify the heading. If you do not use CEE3RPH, the heading includes the main

procedure name, date, and time of execution.

Differences in Interlanguage Communication Support

There are some restrictions on support for ILC applications containing OS PL/I

and other pre-Language Environment language programs. The restrictions fall into

three groups:

v Fully supported load modules

Load modules containing OS PL/I and pre-Language Environment C/370

programs are supported under Language Environment.

v Load modules you must relink

Load modules containing OS PL/I and VS COBOL II Release 3 (or later)

programs must be relinked with Language Environment.

OS PL/I Version 2 Release 3 provides a migration aid, APARs PN69803 and

PN69804, to allow you to do relinking while you are under OS PL/I Version 2

Release 3 environment. As long as the application is relinked with PN69803 and

PN69804 under OS PL/I Version 2 Release 3, the application is supported under

Language Environment. See “OS PL/I Object Module Relinking Tool - APAR

PN69803” on page 165 for details of the migration aid.

v Unsupported ILC

ILC between OS PL/I and the following languages is not supported:

– Fortran (prior to Language Environment Release 5)

– OS/VS COBOL

– VS COBOL II Version 1 Release 2 or earlier releases

For more information, see Language Environment for OS/390 & VM Writing

Interlanguage Communication Applications or z/OS Language Environment Writing

Interlanguage Applications.

The behavior of certain applications that use ILC might be different. For example:

v Condition handling might behave differently. The major causes of differences in

condition handling are that the INTER option is now ignored, and that PL/I

condition handling facilities can deal with conditions occurring in non-PL/I

routines whether or not you specify INTER.

v Under OS PL/I, in applications that used ILC, the environment initialization and

termination of the involved languages, including PL/I, could occur multiple

times. With Language Environment, there is only one run-time environment, and

language-specific initialization and termination occurs only once. Changes in

Chapter 6. Considerations Before Migrating 45

behavior that you might see include opening and closing of files, releasing of

allocated storage, and invocation of establish ON-units.

Note: If you have designed your own code to manage your run-time

environments, you should remove it as part of your migration efforts.

This private code is incompatible with Language Environment and will

conflict with the run-time environment.

For a complete description of how ILC works in the Language Environment

run-time environment, see either Language Environment for OS/390 & VM Writing

Interlanguage Communication Applications or z/OS Language Environment Writing

Interlanguage Applications.

Differences in Assembler Support

With Language Environment, assembler programs that call a PL/I routine must

follow the calling conventions defined by Language Environment. For example,

Register 13 pointing to a save area, save areas properly back-chained, and the first

word of the save area being zero. For detailed information, see the z/OS Language

Environment Programming Guide.

If your OS PL/I main program is called by an assembler program and you want to

convert your assembler program to use Language Environment-conforming

assembler, you must either recompile your OS PL/I program without

OPTIONS(MAIN) or ensure the entry point receiving control is the real entry point

of the PL/I program. In either case, the called PL/I program is treated as a

subroutine. Either of these programs run under the same Language Environment

enclave where the assembler program is the main program and the called PL/I

program is a subroutine.

Your Language Environment-conforming assembler main program must explicitly

include the Language Environment-PL/I for MVS & VM signature CSECT,

CEESG010, when calling an OS PL/I subroutine to ensure the Language

Environment-PL/I-specific run-time environment is initialized. There are three

ways Language Environment-conforming assembler can pass control to an OS PL/I

subroutine:

1. Branch to a statically linked PL/I subroutine.

2. Use the Language Environment macro CEELOAD and branch to a separately

linked PL/I subroutine.

3. Use assembler instructions such as LOAD and BALR to a separately linked

PL/I subroutine.

The condition-handling behavior of the LINK from assembler is now clearly

defined. For detailed information, see z/OS Language Environment Programming

Guide.

Assembler programs that find the main parameter list

Assembler programs called from PL/I that use the save area back chain to find the

parameter list passed to the PL/I main program will no longer work when

running on Language Environment. This is because the number of save areas

between the assembler program and the save area of the program that invoked the

PL/I main program has changed.

46 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Assembler programs that need to find the parameter list passed to the PL/I main

program can use the CEEEDB_R13_PARENT field in the Language Environment

EDB to obtain the save area address of the program that invoked the PL/I main

program.

Chapter 6. Considerations Before Migrating 47

48 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 7. Object and Load Module Considerations

This chapter describes factors that affect the compatibility of OS PL/I object and

load modules in Language Environment. The discussions include both OS PL/I

Version 1 and OS PL/I Version 2 object and load modules.

All of the library routines in a load module must be from the same release of the

run-time library. For example, Language Environment stubs, OS PL/I Shared

Library stubs, and OS PL/I resident library routines cannot exist in the same load

module.

To find out what tools are available to help you migrate your libraries to the

Language Environment run-time environment, see Appendix A, “Conversion and

Migration Aids,” on page 163.

OS PL/I Version 1 Object Module and Load Module Compatibility

Language Environment supports object modules and load modules for OS PL/I

Version 1 with some restrictions. You can continue to use most of your Version 1

object and load modules if you observe the rules described in the following

sections.

If a load module contains an OS PL/I Version 1 object module but is linked with

OS PL/I Version 2 resident library, the load module is considered an OS PL/I

Version 2 load module and the rules for OS PL/I Version 2 apply. If the load

module contains OS PL/I Version 1 Release 1.0 - 2.3 object modules, however, the

object module must be recompiled.

If a load module contains the OS PL/I abend exit, IBMBEER, the abend exit is

ignored by Language Environment. See “Considerations for using assembler user

exits” on page 150 for more information on this topic.

OS PL/I Version 1 Release 5.1

Object Module

The object module is supported.

Load Module Not Using Shared Library:

v Main load module for MVS non-CICS nonmultitasking

The OS PL/I bootstrap routine, IBMBPIRA, always linked with a user load

module, contains features such as the fast initialization and termination that are

not compatible with Language Environment. A sample ZAP, IBMRZAPM, is

provided in Language Environment SCEESAMP to help you deactivate those

incompatible features. The sample ZAP is described in “OS PL/I Version 1

Release 5.1 main load module ZAP” on page 164.

ZAPped load modules continue to work under OS PL/I V1.5.1 and V2, as well

as Language Environment; however, performance degradation might occur if the

original load module contains the fast initialization and termination feature.

If you do not ZAP your load module, you must do one of the following:

– Relink your object module with Language Environment or OS PL/I Version 2

© Copyright IBM Corp. 1999, 2008 49

– Use the OS PL/I Library Routine Replacement Tool described in “OS PL/I

Routine Replacement Tool” on page 163 to replace the library routines in the

load module with Language Environment stubs
v Main load module for MVS non-CICS multitasking

The load module is supported.

v Main load module under CICS

The load module is supported.

v Main load module under VM

The OS PL/I VM-specific bootstrap routine, DMSIBM, contains features that are

not compatible with Language Environment. A sample ZAP, IBMRZAPV, is

provided in Language Environment SCEESAMP to help you deactivate the

incompatible features. The sample ZAP is described in “OS PL/I Version 1

Release 5.1 main load module ZAP” on page 164.

The ZAPped load module is supported under Language Environment only. It no

longer works under OS PL/I Version 1 or Version 2. If you do not ZAP your

load module, you must do one of the following:

– Relink your object module with Language Environment or OS PL/I Version 2

– Use the OS PL/I Library Routine Replacement Tool to replace the library

routines in the load module with Language Environment stubs See “OS PL/I

Routine Replacement Tool” on page 163 for a description of this tool.
v FETCHed subroutine load module

The load module is supported.

Load Module Using the Shared Library

The load module is supported as long as the OS PL/I V1R5.1 Shared Library was

created with all PLRSHR options and the Shared Library, including the

multitasking Shared Library, is replaced with Language Environment stubs. The

Shared Library needs to be replaced only once during Language Environment

installation.

If the Shared Library was not created with all PLRSHR options or the Shared

Library is not replaced with Language Environment stubs, the object module must

be relinked with Language Environment or OS PL/I Version 2, or you can replace

the Shared Library stubs in the load module with Language Environment stubs.

After the object module is relinked or the load module is replaced, the OS PL/I

Shared Library feature is no longer used.

Note that Enterprise PL/I doesn’t support the shared library. If you intend to

migrate to Enterprise PL/I, you should stop using the shared library. Under

Language Environment, PL/I uses stubs instead of full size resident modules and

there is no need to use the shared library.

OS PL/I Version 1 Release 5

OS PL/I Version 1 Release 5 provides support only for MVS applications. VM and

CICS are not supported in Release 5.0.

Object Module

The object module is supported.

Load Module

The load module is not supported, whether or not you use the Shared Library. You

must relink your object module with Language Environment or OS PL/I Version 2,

or you can use the OS PL/I Library Routine Replacement Tool to replace the

50 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

library routines in the load module with Language Environment stubs. See “OS

PL/I Routine Replacement Tool” on page 163 for a description of this tool.

OS PL/I Version 1 Release 3.0 - Release 4.0

Object Module

v Under MVS

The object module is supported except for the CICS macro language.

v Under VM

The object module is supported.

Load Module

The load module is not supported, whether or not you use the Shared Library. You

must relink your object module with Language Environment or OS PL/I Version 2,

or you can use the OS PL/I Library Routine Replacement Tool to replace the

library routines in the load module with Language Environment stubs. See “OS

PL/I Routine Replacement Tool” on page 163 for a description of this tool.

OS PL/I Version 1 Prior to Release 3.0

Object modules or load modules created prior to Release 3.0 are not supported and

you must recompile your application with a Language Environment supported

PL/I compiler. or OS PL/I Version 2.

OS PL/I Version 2 Object Module and Load Module Compatibility

In most cases, object modules and load modules created with OS PL/I Version 2

do not require relinking. Earlier sections of this migration guide discuss OS PL/I

features in more detail. Some of these features do require relinking, however, and a

few are no longer supported.

Language Environment supports OS PL/I applications that contain the PL/I

assembler user exit, IBMxXITA. See “Considerations for using assembler user exits”

on page 150 for more information on this topic.

Summary of Support for OS PL/I Object and Load Modules

The following table summarizes the PL/I object- and load-module support

described in this chapter. Exceptions to support are shown in the footnotes and are

described elsewhere in a related section.

 Table 10. Summary of Object and Load Module Support by Language Environment

Support description

V2

V1R5.1

V1R5.0

V1R3.0-

V1R4.0

Prior to

V1R3.0

Main load module Yes3 Yes1,3 No No No

Fetched subroutine

load module

Yes3 Yes3 No No No

Object module Yes Yes Yes Yes2 No

Chapter 7. Object and Load Module Considerations 51

Table 10. Summary of Object and Load Module Support by Language

Environment (continued)

Support description

V2

V1R5.1

V1R5.0

V1R3.0-

V1R4.0

Prior to

V1R3.0

Exceptions:

1MVS non-CICS nonmultitasking load modules and VM load modules are not supported unless specific

action is taken. Review “Load Module Not Using Shared Library:” on page 49 for what action you need

to take to enable support for these modules.

2CICS macro language is not supported as described in Object Module under “OS PL/I Version 1

Release 3.0 - Release 4.0” on page 51.

3Shared Library must be created with all PLRSHR options and must be replaced with Language

Environment stubs. Review “Differences in OS PL/I Shared Library support” on page 42 for actions you

need to take to make this happen.

52 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 8. Link-Edit Considerations

This chapter describes factors you must consider when you link-edit an object

module produced by OS PL/I. Topics discussed include symbol tables and math

routines.

SCEERUN

When you run your OS PL/I application under Language Environment and you

use existing JCL, be sure your STEPLIB or JOBLIB statement includes SCEERUN,

unless you TASKLIB or LINKLIB which already includes SCEERUN.

Symbol Table Considerations

If you link-edit an object module produced by different releases of PL/I, and the

object module contains symbol tables for external variables, the symbol table that

appears in the resultant load module must be the one produced by the most recent

release of PL/I.

The compiler produces an object module that contains external symbol table

control sections (CSECTs) if your program includes one or more of the following

PL/I features for external variables:

v GET DATA statements

v PUT DATA statements

v The TEST(SYM) compile-time option

If your program uses one or more of these features with external variables, you

must ensure that the correct symbol table appears in your load module. Place the

object module produced by the most recent release of PL/I ahead of all other

object modules in the link-edit job stream. If more than one object module

produces a symbol table CSECT with the same name, the linkage editor keeps the

symbol table CSECT that it encounters first and discards the other symbol tables.

For example, suppose you link-edit an object module produced by OS PL/I

Version 1 Release 5.1 with an object module produced by OS PL/I Version 2

Release 3. Put the object module produced by OS PL/I Version 2 Release 3 ahead

of the object module produced by OS PL/I Version 1 Release 5.1 in the link-edit

job stream. By doing this, the linkage editor keeps the symbol table produced by

OS PL/I Version 2 Release 3 if both object modules produce symbol tables.

NCAL Linkage Editor Option

Under Language Environment, the NCAL linkage editor option continues to be

required when you link-edit your subroutine object modules for the future use.

Load modules must not contain Language Environment stubs and OS PL/I

resident library routines.

© Copyright IBM Corp. 1999, 2008 53

ENTRY cards

The entry point for a MAIN program compiled with the OS PL/I compiler is

PLISTART, but the entry point is CEESTART if the MAIN is compiled with the

PL/I for MVS compiler or any later compiler.

If an ENTRY card must be used during the building of a batch application, then

you should not use CEESTART for a program compiled with the OS PL/I

compiler.

Using OS PL/I Math Routines

Language Environment provides a set of math routines, including routines for

exponentiation. For most commonly used routines, Language Environment

produces more accurate results than OS PL/I. Some of the Language Environment

routines also have better performance than OS PL/I. You should use the Language

Environment-provided math routines.

Language Environment also provides the OS PL/I math routines to help you to

migrate to Language Environment; however, the OS PL/I math routines are

provided for compatibility only and will be withdrawn in the future.

If your application must use the OS PL/I math routines under Language

Environment, place SIBMMATH in front of SCEELKED when you link-edit your

object module.

54 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 9. Subsystem Considerations

This chapter discusses subsystem-specific considerations that you need to know

when you migrate your applications running under CICS, IMS, and DB2.

CICS Considerations

Language Environment provides the same level of OS PL/I object and load

module support as for non-CICS. See Chapter 7, “Object and Load Module

Considerations,” on page 49 for details. If you are running under CICS Version 3

Release 3, you must ensure the CICS APAR PN38032 is installed. Without

PN38032, your application trying to use Language Environment will receive the

APLE abend.

The CICS Storage Protect facility was introduced under CICS 3.3. This provides

more data integrity and security for the application program and especially for the

entire CICS region. Because of the new feature, you might discover that some of

the successfully running OS PL/I applications start to fail with ASRA(0C4) abend

and the CICS message DFHSR0622.

If the above problem is happening in your OS PL/I application program, either of

the following two methods might be able to fix your problem:

1. Set the CICS system initialization parameter RENTPGM=NOPROTECT. This

sets the protection of the user program in user key. The default for RENTPGM

is PROTECT.

2. Relink your OS PL/I application program under Language Environment with

APAR PN38032 installed.

If the stream output function is used in your OS PL/I CICS application, especially

the PUT DATA; statement, it might trigger the above error. PL/I stream output

function is intended for debugging purposes only. For performance reasons, we

recommend that you don’t use it in production programs.

Updating CICS System Definition (CSD) File

When you bring up a CICS region with Language Environment, you must ensure

the module names listed in Language Environment CEECCSD are defined in the

CSD. You can locate CEECCSD in SCEESAMP. If you use CICS Version 4

autoinstall facility, you do not need to define Language Environment modules

manually in the CSD.

Error Handling

A diagnostic message is issued only if there is no ERROR ON-unit established in

the program, or the ERROR ON-unit does not recover from the condition by using

a GOTO out of block.

Restrictions on User-Written Condition Handlers under CICS

The following EXEC CICS commands cannot be used within a user-written

condition handler established using CEEHDLR, or within any routine called by the

user-written condition handler:

v EXEC CICS ABEND

© Copyright IBM Corp. 1999, 2008 55

v EXEC CICS HANDLE AID

v EXEC CICS HANDLE ABEND

v EXEC CICS HANDLE CONDITION

v EXEC CICS IGNORE CONDITION

v EXEC CICS POP HANDLE

v EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within a user-written condition

handler. However, they must be coded using the NOHANDLE option, the RESP

option, or the RESP2 option. This prevents additional conditions being raised due

to a CICS service failure.

Macro-Level Interface

The CICS macro-level interface is not supported.

FETCHing a PL/I MAIN Procedure

CICS does not support PL/I FETCHing a PL/I MAIN procedure.

STACK Run-Time Option

Language Environment supports PL/I for MVS & VM applications that use the

run-time option STACK(,,ANY). Language Environment also supports

STACK(,,ANY) for OS PL/I applications that have been relinked with Language

Environment as long as the applications meet the following conditions:

v Contains no edited stream I/O (for example, EDIT was not used in a PUT

statement)

v Specifies AMODE(31)

Run-Time Output

When a program is compiled with DISPLAY(STD), all run-time output is

transmitted to a CICS transient data queue CESE.

When a program is compiled with DISPLAY(WTO), the DISPLAY output is routed

to the CICS JESLOG. All other run-time output is transmitted to a CICS transient

data queue CESE.

Language Environment ignores the MSGFILE option under CICS. Figure 1 shows

format of the output data queue.

In addition, PL/I transient queues CPLI and CPLD are no longer used. As a result,

you do not need to specify entries for the CPLI and CPLD in the CICS Destination

Control Table (DCT).

┌────┬─────────┬───────────┬──┬───────────────┬──┬─────┐

│ │Terminal │Transaction│B │ DateTime │B │Data │

│ASA │ id │ id │ │ YYYYMMDDHHMMSS│ │ │

│ │ │ │ │ │ │ │

└────┴─────────┴───────────┴──┴───────────────┴──┴─────┘

Figure 1. CESE Output Data Queue

56 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Abend Codes Used by PL/I under CICS

The APLx abend codes that were issued under OS PL/I Version 2 are no longer

issued. Instead, Language Environment-defined abend codes are issued. For more

information about Language Environment abend codes, see z/OS Language

Environment Run-Time Messages.

IMS Considerations

Language Environment provides the same level of OS PL/I object and load

module support for IMS as for non-IMS. See Chapter 7, “Object and Load Module

Considerations,” on page 49 for details.

Interfaces to IMS

Language Environment supports the PLITDLI, ASMTDLI, and EXEC DLI interfaces

from a PL/I routine.

SYSTEM(IMS) Compile-Time Option

The SYSTEM(IMS) option, available in OS PL/I Version 2, was supported for PL/I

IMS applications only. The main procedure of an IMS application must use the

POINTER data type for its parameters.

PLICALLA Support in IMS

The OS PL/I PLICALLA entry point is supported under Language Environment;

however, it is not a recommended interface for IMS and support can be withdrawn

at any time. Instead use the SYSTEM(IMS) compile-time option and the PLISTART

or CEESTART entry point.

Language Environment provides the same support for OS PL/I PLICALLA

applications; however, if you recompile your main load module with PL/I for MVS

& VM and want to continue to use PLICALLA, you must follow additional rules.

See “PLICALLA Considerations” on page 39 for details.

PSB Language Options Supported

Language Environment supports PL/I applications with the following PSBGEN

LANG options in the supported releases of IMS:

IMS/ESA Version 4

Table 11 shows support for PSB LANG options in IMS/ESA Version 4.

 Table 11. PSB LANG Options for IMS/ESA Version 4 Release 1

SYSTEM option Entry point LANG=

IMS CEESTART, PLISTART PLI or other values except

PASCAL

IMS PLICALLA1 PLI

Omitted CEESTART, PLISTART Illegal

Omitted PLICALLA1 PLI

Note:

1Supported only for compatibility.

IMS/ESA Version 3 Release 1

Table 12 on page 58 shows support for PSB LANG options in IMS/ESA

Version 3 Release 1.

Chapter 9. Subsystem Considerations 57

Table 12. PSB LANG Options for IMS/ESA Version 3 Release 1

SYSTEM option Entry point LANG=

IMS CEESTART, PLISTART PLI

IMS PLICALLA1 PLI

Omitted CEESTART, PLISTART Illegal

Omitted PLICALLA1 PLI

Note:

1Supported only for compatibility.

Storage Usage Considerations

With IMS/ESA Version 3 Release 1, the parameters passed to the IMS interfaces are

no longer restricted to the area below the 16M line. The parameters will most

likely be placed above the 16M line if you use the following methods:

v Use the ANYWHERE suboption of the HEAP run-time option. It applies to

variables with the CONTROLLED or BASED attribute because their storage is

obtained from the heap.

v Use the ANYWHERE suboption of the STACK run-time option. If you relink

your OS PL/I application with Language Environment and your application

does not use any edited stream I/O, or you recompile your application with

PL/I for MVS & VM, you can use STACK(,,ANYWHERE) if your application is

AMODE(31). In this case, the variables in automatic storage are placed above the

16M line.

v Place parameters in static storage and make sure the load module attribute used

is RMODE(ANY).

Coordinated Condition Handling under IMS

Language Environment and IMS condition handling is coordinated, meaning that if

a program interrupt or abend occurs when your application is running in an IMS

environment, the Language Environment condition manager is informed whether

the problem occurred in your application or in IMS. If the problem occurs in IMS,

Language Environment, as well as any invoked HLL-specific condition handler,

percolates the condition back to IMS.

With Language Environment run-time option TRAP(ON), Language Environment

continues to support coordinated condition handling for the PLITDLI and

ASMTDLI interface invoked from a PL/I routine.

With IMS/ESA Version 3 with PTF UN4928 or IMS/ESA Version 4, Language

Environment also supports the coordinated condition handling for CEETDLI,

CTDLI from a C routine, CBLTDLI from a COBOL program, AIBTDLI from a PL/I

program, and ASMTDLI from a non-PL/I program.

Note that if a program interrupt or abend occurs in your application outside of

IMS, or if a software condition of severity 2 or greater is raised outside of IMS, the

Language Environment condition manager takes normal condition handling actions

described in the z/OS Language Environment Programming Guide. In this case, in

order to give IMS a chance to do database rollback, you must do one of the

following:

v Resolve the error completely so that your application can continue.

v Issue a rollback call to IMS, and then terminate the application.

58 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v Make sure that the application terminates abnormally by using the

ABTERMENC(ABEND) run-time option to transform all abnormal terminations

into system abends in order to cause IMS rollbacks.

v Make sure that the application terminates abnormally by providing a modified

assembler user exit (CEEBXITA) that transforms all abnormal terminations into

system abends in order to cause IMS rollbacks.

The assembler user exit you provide should check the return code and reason

code or the CEEAUE_ABTERM bit, and requests an abend by setting the

CEEAUE_ABND flag to ON, if appropriate. See the z/OS Language Environment

Programming Guide for details.

Performance Enhancement with Library Retention(LRR)

If you use LRR, you can get an improvement in performance. See “Improving CPU

Utilization” on page 127 for details.

DB2 Considerations

There are no special considerations for using DB2 other than the considerations

described in “IMS Considerations” on page 57.

Chapter 9. Subsystem Considerations 59

60 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Part 4. Moving to the new compiler

© Copyright IBM Corp. 1999, 2008 61

62 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 10. Understanding the limitations of the new compiler

In addition to not supporting VM, the new compiler has various other limitations

that you should understand. This chapter lists and explains these differences.

Language Environment Requirements

Enterprise PL/I V3R7 is supported only on Language Environment for z/OS 1.8 or

later.

Language not supported

The compiler will flag any language that is not supported.

Multitasking

The multitasking language supported by the old compilers is not supported by the

new compiler.

However, the new compiler does support multithreading. But, in order to use the

multithreading facilities, your code must run with the POSIX(ON) option.

For more information on the multithreading statements, see the PL/I Language

Reference.

CHECK

PL/I for MVS & VM dropped support for the CHECK statement, the CHECK

prefix, and the CHECK condition, and the new compiler also does not support

these constructs.

CHARSET(48) and CHARSET(BCD)

Support for these options were dropped by OS PL/I Version 2. However, there is

an IBM-supplied tool that will convert your source.

EGCS

OS PL/I Version 1 supported EGCS, which was a precursor to the GRAPHIC

support in OS PL/I Version 2, which dropped the support for EGCS. The new

compiler also does not support EGCS.

Fortran

The new compiler does not suppport the remapping of Fortran parameters. In

particular, a two-dimensional array passed from Fortran to PL/I will be seen by

PL/I as if it were transposed.

Invalid code

The new compiler does not suppport invalid code even if it was sometimes

accepted by the old compiler. For example, the old compiler would allow the

CHAR built-in function to be applied to a FILE VARIABLE (even though the old

compiler documented that the arguments to the CHAR built-in must have have

computational type). The new compiler will flag such invalid code with a severe

message.

© Copyright IBM Corp. 1999, 2008 63

Language restricted

Except where indicated, the compiler will flag the use of any language that is

restricted.

RECORD I/O

RECORD I/O is supported, but with the following restrictions:

v REGIONAL(1) files larger than 2.1 Gigabytes are not supported.

v The EVENT clause on READ/WRITE statements is not supported.

v The UNLOCK statement is not supported.

v The following file attributes are not supported:

– BACKWARDS

– EXCLUSIVE

– TRANSIENT
v The following options of the ENVIRONMENT attribute are not supported, but

their use is flagged only under LANGLVL(NOEXT):

– ADDBUFF

– ASCII

– BUFFERS

– BUFND

– BUFNI

– BUFOFF

– INDEXAREA

– LEAVE

– NCP

– NOWRITE

– REGIONAL(2)

– REGIONAL(3)

– REREAD

– SIS

– SKIP

– TOTAL

– TP

– TRKOFL

Note that since the TOTAL option of the ENVIRONMENT attribute is not

supported, I/O to files using the TOTAL option will generally not perform as well

as under the old compilers. However, the support of the TOTAL option also meant

that the old compilers had to use I/O buffers that were always below the line, and

the new compiler does not have this restriction.

STREAM I/O

STREAM I/O is supported, but the following restrictions apply to PUT/GET

DATA statements:

v DEFINED is not supported if both of the following are true:

– the DEFINED variable is BIT or GRAPHIC

– the DEFINED variable has the POSITION attribute
v DEFINED is not supported if its base variable is an array slice or an array with

a different number of dimensions than the defined variable.

64 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Structure expressions

Structure expressions as arguments are not supported unless both of the following

conditions are true:

v There is a parameter description.

v The parameter description specifies all constant extents.

However, structure expressions are not supported in any GENERIC reference.

Mismatched parameter and argument structures are also not supported in any

GENERIC reference.

Array expressions

An array expression is not allowed as an argument to a user function unless it is

an array of scalars of known size. Consequently, any array of scalars of arithmetic

type may be passed to a user function, but there may be problems with arrays of

varying-length strings.

However, array expressions are not supported in any GENERIC reference.

Mismatched parameter and argument arrays are also not supported in any

GENERIC reference.

The following example shows a numeric array expression supported in a call:

 dcl x entry, (y(10),z(10)) fixed bin(31);

 call x(y + z);

The following unprototyped call would be flagged since it requires a string

expression of unknown size:

 dcl a1 entry;

 dcl (b(10),c(10)) char(20) var;

 call a1(b || c);

However, the following prototyped call would not be flagged:

 dcl a2 entry(char(30) var);

 dcl (b(10),c(10)) char(20) var;

 call a2(b || c);

DEFAULT statement

Factored default specifications are not supported.

For example, a statement such as the following is not supported:

 default (range(a:h), range(p:z)) fixed bin;

But you could change the above statement to the following equivalent and

supported statement:

 default range(a:h) fixed bin, range(p:z) fixed bin;

The use of a ″(″ after the DEFAULT keyword is reserved for the same purpose as

under the ANSI standard: after the DEFAULT keyword, the standard allows a

parenthesized logical predicate in attributes.

Chapter 10. Understanding the limitations of the new compiler 65

Extents of automatic variables

An extent of an automatic variable cannot be set by a function nested in the

procedure where the automatic variable is declared or by an entry variable unless

the entry variable is declared before the automatic variable.

Built-in functions

Built-in functions are supported with the following exceptions/restrictions:

v The PLITEST built-in function is not supported.

v Pseudovariables permitted in DO loops are restricted to:

– IMAG

– REAL

– SUBSTR

– UNSPEC
v The POLY built-in function has the following restrictions:

– The first argument must be REAL FLOAT.

– The second argument must be scalar.
v The COMPLEX pseudovariable is not supported.

v Under the RULES(NOLAXDCL) option, the compiler will flag any declare of a

name, such as DISPLAY, as a built-in function if there is no such PL/I built-in

function. Even under the more forgiving RULES(LAXDCL) option, the compiler

will flag any declare of a name, such as DISPLAY, as a built-in function if there

is no such PL/I built-in function if the code attempts to use the name as a

built-in function (rather than merely declare it).

DEFINED BIT aggregates

If a DEFINED variable is a structure or union containing any elements which are

UNALIGNED NONVARYING BIT, then all array bounds and string lengths in the

DEFINED variable must be specified as constants. The compiler will issue the

S-level message IBM1900I when this restriction is violated.

OPTIONS(REENTRANT)

This option is as part of the OPTIONS for a PROCEDURE or BEGIN statement, but

it is ignored. On the z/OS platform, all programs compiled with the RENT

compiler option are reentrant, and other programs are reentrant if they do not alter

any static variables (which may require use of the NOWRITABLE compiler option).

iSUB defining

Support for iSUB defining is limited to arrays of scalars.

LABEL arrays

The Enterprise PL/I compiler does not require that arrays of statement labels be

declared. If such an array is declared, it should either be declared without a

storage class (and without an active DEFAULT statement that would imply a

storage class) or it should be declared as STATIC. The old PL/I compiler would

require either the former or that the array be declared as AUTOMATIC. Hence if

you want your code to be accepted by both compilers, you must declare such an

array, but you should declare it neither as AUTOMATIC nor as STATIC.

66 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

DBCS

DBCS can be used only in the following:

v G and M constants

v Identifiers

v Comments

G literals can start and end with a DBCS quote followed by either a DBCS G or an

SBCS G.

Macro preprocessor

Suffixes that follow string constants are not replaced by the macro

preprocessor—whether or not these are legal PL/I suffixes—unless you insert a

delimiter between the ending quotation mark of the string and the first letter of the

suffix.

Note that the OS PL/I V2R1 compiler introduced this change, and so this is not a

difference between the Enterprise PL/I compiler and either the PL/I for MVS &

VM compiler or the OS PL/I V2Rx compilers. This restriction is consequently not

flagged.

As an example, consider:

 %DCL (GX, XX) CHAR;

 %GX='||FX';

 %XX='||ZZ';

 DATA = 'STRING'GX;

 DATA = 'STRING'XX;

 DATA = 'STRING' GX;

 DATA = 'STRING' XX;

Under OS PL/I V1, this produces the source:

 DATA = 'STRING'||FX;

 DATA = 'STRING'||ZZ;

 DATA = 'STRING' ||FX;

 DATA = 'STRING' ||ZZ;

whereas, under Enterprise PL/I it produces:

 DATA = 'STRING'GX;

 DATA = 'STRING'XX;

 DATA = 'STRING' ||FX;

 DATA = 'STRING' ||ZZ;

Options restricted

The following compiler options are restricted:

v INCLUDE

The NOINCLUDE option is not supported, and the old INCLUDE option is

essentially always enabled.

v LANGLVL

The NOSPROG and SPROG suboptions are not supported - SPROG is always in

effect.

v LIST

The LIST option is supported, but no suboptions of the LIST option are

supported - under the new compiler, the psuedo-assembly listing always

appears in one column.

v STMT

Chapter 10. Understanding the limitations of the new compiler 67

The STMT option is supported, but it currently has no effect on the output

produced by the LIST, MAP or OFFSET options.

v SYSTEM

The CMS and CMSTPL options are not supported (since VM is not supported).

Options not supported

The following compiler options are not supported:

v CONTROL

v COUNT

The COUNT options is not supported, and it is also not supported by the PL/I

for MVS & VM compiler.

v DECK

v ESD

The ESD option is not supported, but an External Symbol Dictionary is

produced if either the LIST or MAP option is in effect.

v FLOW

The FLOW option is not supported, and it is also not supported by the PL/I for

MVS & VM compiler.

v GOSTMT

The GOSTMT option is not supported, but the GONUMBER option is supported

(and can be used even if the STMT option is in effect).

v LMESSAGE

v SEQUENCE

v SIZE

v SMESSAGE

Restrictions on other interfaces to the compiler

Batch compilation

Compilation is not performed in PROCESS-delimited chunks, and this difference

has the following consequences:

v Options on later sets of PROCESS statements are ignored

v One TEXT deck or .o is produced

v One listing file with one set of messages is produced

v External variables with the same name must match

The following example demonstrates a batch compilation. In this case, the

mismatches in b and x would be flagged by the new compiler only.

 *process opt(0);

 a: proc;

 dcl b ext entry(1,2 char(2), 2 char(2));

 dcl

 1 x ext,

 2 x1a char(2),

 2 x1b char(2);

 call b(x);

 end;

 *process opt(2);

68 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

b: proc(p);

 dcl p pointer;

 dcl

 1 x ext,

 2 x1a bit(16),

 2 x1b bit(16);

 end;

You can imitate how batch compilations worked by using a program like the one

in Appendix E, “Batch processing sample,” on page 183.

Invoking the compiler from assembler

The new compiler cannot be invoked from assembler by calling IEL0AA.

The new DD option can be used to specify a list of alternate ddnames for the

compiler to use. This provides the key functionality offered by invoking the old

compiler from assembler and should alleviate the need to invoke the compiler

from assembler.

Note also that the compiler can be invoked from an Enterprise PL/I program by

using the SYSTEM built-in function.

However, if you must invoke the compiler from assembler, you can do so as long

as your assembler code satisfies these requirements:

v the assembler code must be LE-enabled

v it must load IBMZPLI using CEEFETCH

v when it calls IBMZPLI, register 1 must point to the address of a varying string

containing the options to be passed in the compilation

Compiling under TSO

There is no support for compilations under TSO.

This means that the ISPF 4.5 option is useless with Enterprise PL/I. You should

probably disable this option or use it for another purpose.

However, you can invoke the compiler under z/OS UNIX using the pli command.

For more information on using the compiler under z/OS UNIX, see the Enterprise

PL/I for z/OS Programming Guide.

Specifying INCLUDE dataset names

The DD statement corresponding to a %INCLUDE statement should specify the

name of the PDS (or PDSE) containing the file to be included, but it must not

specify the name of the member file. For example, to include the file DEBUG from

the dataset INCLUDE.PLI using the TEST DD statement, the %INCLUDE

statement would be:

 %INCLUDE TEST(DEBUG);

The corresponding DD statement would be

TEST DD DISP=SHR,DSN=INCLUDE.PLI

The following DD statement would not be accepted by the new compiler.

TEST DD DISP=SHR,DSN=INCLUDE.PLI(DEBUG)

Chapter 10. Understanding the limitations of the new compiler 69

Compiler time and space requirements

The LRECL for the compiler SYSPRINT dataset is 137.

The new compiler can require much more time and use much more storage when

generating your code. This is especially true under OPT(2) or OPT(3), in which

case some compiles may need a region greater than 100M and may possibly

require several minutes to compile. Using the options OPT(2) or OPT(3) without

the option DFT(REORDER) can easily lead to this problem and should be avoided.

When the region size is too small for a compile, the compilation will often end

with this message:

 IBM1936I S Invocation of compiler backend ended abnormally.

In these situations, you will also find in SYSOUT the following message from the

compiler backend:

 SEVERE ERROR IBM5002: Virtual storage exceeded.

If you see this combination of messages, you should either split your program into

several smaller programs or recompile using a larger region size.

The new compiler always runs with ALL31(ON) and with HEAP and STACK

obtained from above the 16MB line.

AMODE(24) restrictions

AMODE(31) and RMODE(ANY) are the default settings for Enterprise PL/I

applications. To run an application in AMODE(24), you must:

1. compile all the PL/I source with the compiler option NORENT

2. link with the SIBMAM24 dataset concatenated in front of the SCEELKED

dataset

3. run with the Language Environment run-time option ALL31(OFF),

HEAP(,,BELOW,,,) and STACK=(,,BELOW,,,)

Notes:

1. There is no support for AMODE(24) in ILC applications, including those

involving both Enterprise PL/I and older PL/I. The single exception to this

restriction is ILC between Enterprise PL/I and supported High-Level

Assembler releases.

2. When you include the SIBMAM24 library in the SYSLIB concatenation for the

binder, you are making available library modules which have mode switching

capability. However, including the SIBMAM24 library will not by itself cause

the resulting load module to be AMODE(24).

3. If you try to run an Enterprise PL/I program in AMODE(24) without linking

the SIBMAM24 library before the SCEELKED dataset in the SYSLIB

concatenation for the binder, your application is invalid and can lead to obscure

abends. For example, the first out-of-block GOTO will most likely cause an

abend in the library STEEJMP routine.

EXTERNAL names restricted

You must not declare as EXTERNAL a variable whose name, unless it is the name

of an IBM provided function such as PLIXOPT or PLITDLI, begins with any of the

following:

v @@

70 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v CEE

v IBM

v PLI

The code generator for the new compiler uses C functions to perform some tasks,

particularly under OPT(0). As a result, unless you are intending to invoke the C

function directly, you must not declare as EXTERNAL a variable with any of the

following names:

v LONGJMP

v MEMCCPY

v MEMCHR

v MEMCMP

v MEMCPY

v MEMMOVE

v MEMSET

v SETJMP

v STRLEN

v SYSTEM

The PLIXHD variable is no longer used as the heading in storage reports.

Consequently, the identifier PLIXHD is no longer reserved, and you can declare it

and use it as you would declare and use any other variable (as long as you don’t

declare it EXTERNAL).

Listing differences

The new compiler produces a listing that is significantly different from the listing

produced by the old compiler. Some of the differences include:

v the LRECL for the listing is 137

v the first line of the source will not be reflected in the first line of the first page,

but the first 43 (or the first 25 if the DBCS option is in effect) characters from

that line will be incorporated into the header line of the following pages (except

for some parts of the pseudoassembler listing)

Control block differences

The new compiler uses some different internal control blocks in its generated code

than did the old compiler. If you had code that knew the layout and meaning of

such control blocks, that code is highly likely not to work now and will probably

have to be changed. Some examples where these differences would require code

changes:

v assembler code that ″knows″ the layout of a PL/I label variable and uses that to

try to branch back from assembler into PL/I code

v assembler code that ″knows″ the layout of a PL/I file variable and associated file

control block and uses that to try to get the DCB for a file

ISAM support differences

The Enterprise PL/I compiler provides no support for ISAM datasets.

Chapter 10. Understanding the limitations of the new compiler 71

72 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 11. Understanding the new compiler’s options

This section describes some important compiler options, and after a description of

some important defaults, it describes choices you can make to improve:

v compatibility

v performance

v quality

v test

If you want to ignore all the discussion below and blindly try to maximize

compatibility at all costs, you should:

1. use the following default options:

v BACKREG(5)

v BIFPREC(15)

v CMPAT(V2) or CMPAT(V1)

v EXTRN(FULL)

v LIMITS(EXTNAME(7))

v NORENT
2. specify the following additional, non-default options:

v COMMON

v DFT(NOBIN1ARG)

v DFT(LINKAGE(SYSTEM))

v DFT(OVERLAP)

v NOREDUCE

v NORESEXP

v RULES(LAXCTL)

v RULES(NOLAXINOUT NOLAXSEMI)

v STATIC(FULL)

v NOWRITABLE(PRV)

The rest of this section will describe these and other options in detail so that you

can understand the consequences of your choices.

Note that you can also change the IBM defaults for the compiler option by running

the job IBMZWIOP when you install the compiler or by applying a usermod to the

module IBMZIOP after you have installed the compiler.

Understanding the effect of default options on compatibility

This section describes some of the default settings for the compiler options and

why you might want to use them.

BACKREG(5)

The BACKREG option controls the backchain register, which is the register used to

pass the address of a parent routine’s automatic storage when a nested routine is

invoked.

For best compatibility with PL/I for MVS & VM, OS PL/I V2R3 and earlier

compilers, BACKREG(5) should be used.

© Copyright IBM Corp. 1999, 2008 73

All routines that share an ENTRY VARIABLE must be compiled with the same

BACKREG option, and it is strongly recommended that all code in application be

compiled with the same BACKREG option.

Note that code compiled with VisualAge PL/I effectively used the BACKREG(11)

option. Code compiled with Enterprise PL/I V3R1 or V3R2 also used the

BACKREG(11) option by default.

BIFPREC(15)

The BIFPREC option controls the precision of the FIXED BIN result returned by the

following built-in functions:

v COUNT

v INDEX

v LENGTH

v LINENO

v ONCOUNT

v PAGENO

v SEARCH

v SEARCHR

v SIGN

v VERIFY

v VERIFYR

The effect of the BIFPREC compiler option is most visible when the result of one of

the above built-in functions is passed to an external function that has been

declared without a parameter list. For example, consider the following code

fragment:

 dcl parm char(40) var;

 dcl funky ext entry(pointer, fixed bin(15));

 dcl beans ext entry;

 call beans(addr(parm), verify(parm),’ ’));

If the function beans actually declares its parameters as POINTER and FIXED

BIN(15), then if the code above were compiled with the option BIFPREC(31) and if

it were run on a big-endian system such as z/OS, the compiler would pass a

four-byte integer as the second argument and the second parameter would appear

to be zero.

Note that the function funky would work on all systems with either option.

The BIFPREC option does not affect the built-in functions DIM, HBOUND and

LBOUND. The CMPAT option determines the precision of the FIXED BIN result

returned these three functions: under CMPAT(V1), these array-handling functions

return a FIXED BIN(15) result, while under CMPAT(V2) and CMPAT(LE), they

return a FIXED BIN(31) result.

CMPAT(V2)

With V3R2 of Enterprise PL/I, CMPAT(V2) became the default (previously

CMPAT(LE) was the default). This default will ease your migration because under

CMPAT(V2),

v all descriptors will be the same as those generated by the OS PL/I V2R3 and

PL/I for MVS & VM compilers

v functions returning a string will also use a string locator descriptor (as did the

old compilers) for the return value

74 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

CMPAT(V1) still limits array bounds to halfword values.

CMPAT(V2) and CMPAT(V1) will not prevent the use of any new feature of

Enterprise PL/I. However, if you have assembler code that examines or builds

PL/I descriptors (even if only for strings), the CMPAT(V2) (or CMPAT(V1)) option

must be used. For example, DB2 contains such assembler code where it invokes

PL/I stored procedures and hence your stored procedures written in PL/I must be

compiled with CMPAT(V1) or CMPAT(V2).

Unlike CMPAT(V1) and CMPAT(V2), there is no feature that will work only with

CMPAT(LE). Do not use it.

If any suboption will be dropped later, it will be the LE suboption.

EXTRN(FULL)

By default, the Enterprise compiler will not discard unused EXTERNAL ENTRYs.

This would cause problems if the EXTRN for a discarded entry was used to force

the linker to resolve other references. For example, this would cause problems if

your program called the secondary entry point B inside a procedure called A, but

contained a declare but no references for A itself.

Note, however, this option will cause EXTRNs to be emitted for all declared

external ENTRYs. If you include a file with all the declares potentially used by

your code, this can populate your text decks with a large number of EXTRNs.

LIMITS(EXTNAME(7))

With V3R2 of Enterprise PL/I, LIMITS(EXTNAME(7)) became the default

(previously LIMITS(EXTNAME(100)) was the default). This default will ease your

migration because this will make the default under the new compiler match what

the old compilers always did - they had a limit of 7 characters in an external name

and no option that allowed for a higher limit.

Also note that any n > 8 in LIMITS(EXTNAME(n)) requires the prelinker to be

used or your modules to be stored in PDSEs.

Additionally, under LIMITS(EXTNAME(7)) (and under all the old compilers), if an

8-character name is declared as EXTERNAL, the compiler will take the first 4 and

last 3 characters to make a 7-character name which it will pass to the linker.

However, under LIMITS(EXTNAME(8)), the full 8-character name would be passed

to the linker, thereby creating an incompatibility with the code generated by the

old compilers.

For example, if the name DEZEMBER is declared as EXTERNAL, then under

LIMITS(EXTNAME(7)), the linker will see the name DEZEBER, while under

LIMITS(EXTNAME(8)), it would see DEZEMBER.

Consequently, for compatibility, do not use LIMITS(EXTNAME(8)) - use the default

of LIMITS(EXTNAME(7)).

Finally note that LIMITS(EXTNAME(7)) applies only to PL/I names; assembler and

COBOL routines can have 8 characters (exactly as they could with the old

compilers).

Chapter 11. Understanding the new compiler’s options 75

NORENT and WRITABLE

With V3R2 of Enterprise PL/I, NORENT became the default (previously RENT

was the default). This default will ease your migration because now, by default, the

new compiler, just like the old compilers, will not generate any extra code to make

your static variables writeable and still REENTRANT (which is what the RENT

option does).

Also note that using the RENT option requires the prelinker to be used or your

modules to be stored in PDSEs.

The new WRITABLE option is also the default since it gives you the best

performance in combination with NORENT.

But if you are using the NORENT option, then you must also use the

NOWRITABLE option if both of the following are true:

1. your code must be REENTRANT

2. your code uses CONTROLLED variables or FILEs

With Enterprise V3R4, the NOWRITABLE option has two suboptions which can

also make your code more (or less) compatible:

FWS The NOWRITABLE(FWS) option will make your code compatible with the

code generated by earlier releases of Enterprise PL/I under the

NOWRITABLE option, but it does not allow CONTROLLED variables to

be shared between code generated by Enterprise PL/I and code generated

by the PL/I for MVS & VM and earlier compilers.

PRV The NOWRITABLE(PRV) option will allow code compiled by Enterprise

PL/I to share CONTROLLED variables with code compiled by the old

PL/I compilers. However, it will also impose the same limits as imposed

by those compilers on using CONTROLLED with FETCH.

SYSTEM

The SYSTEM option generally effects only the way parameters are passed to

MAIN. The default is SYSTEM(MVS), and this option should be used for all

programs except as noted below.

SYSTEM(CICS)

The SYSTEM(CICS) option should be used for all CICS MAIN programs.

SYSTEM(IMS)

The SYSTEM(IMS) option should be used only for those IMS MAIN programs to

which IMS will pass parameters BYVALUE.

SYSTEM(OS)

The SYSTEM(OS) option should be used only for those z/OS UNIX MAIN

programs that want to receive the parameter list built by z/OS UNIX. For more

discussion of this option, see the Enterprise PL/I for z/OS Programming Guide.

Choosing non-default options for even more compatibility

This section describes some of the options that you can choose to increase the

compatibility between the old and new compilers.

76 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

COMMON

The COMMON option specifies that the compiler should generate CM linkage

records for uninitialized EXTERNAL STATIC. This option can it make it easier to

migrate your code if you declare an EXTERNAL STATIC variable in more than one

routine but initialize it in only one.

Please note however that this option is valid only if both the NORENT and

LIMITS(EXTNAME(7)) options are in effect.

DFT(NOBIN1ARG)

The DFT(NOBIN1ARG) compiler option will generally increase the compatibility of

your code, but at the expense of limiting the use of some new function.

For more discussion of this option, see “One-byte FIXED BIN” on page 116.

DEFAULT(LINKAGE(SYSTEM))

DFT(LINKAGE(SYSTEM)) causes the parameter list to be built in the same way

that it was built by the old compilers (including turning on the high-order bit of

the address of the last parameter).

This is not the default linkage used by C or JAVA; their default linkage is what

you get with the new compiler’s default of DFT(LINKAGE(OPTLINK)). Under

the OPTLINK linkage, the last parameter may not even be an address (for instance,

if it is a BYVALUE FIXED BIN(31)), and its high-order bit will not turned on even

when it is an address. Furthermore, under the OPTLINK linkage, the return value,

if any, may be returned in Register 15.

The SYSTEM linkage is assumed for any OPTIONS(COBOL) or OPTIONS(ASM)

routine.

When one PL/I routine calls another, it does not matter what linkage they use as

long as they match. However, some non-PL/I routines are not declared as

OPTIONS(ASM) but do use the SYSTEM linkage. So, for easiest compatibility and

migration, you should probably use the DFT(LINKAGE(SYSTEM)) option.

However if you make the SYSTEM linkage your default, you will need to add

OPTIONS(LINKAGE(OPTLINK)) to the declares of any functions (such as the C

library function fread) that use that linkage. For example, you would declare fread

as follows:

 dcl fread ext entry(...) options(linkage(optlink));

DFT(OVERLAP)

The DFT(OVERLAP) compiler option will generally increase the compatibility of

your code, but at some expense to performance.

For more discussion of this option, see “Source-target overlap” on page 108.

NOREDUCE

The NOREDUCE compiler option will slightly increase the compatibility of your

code, but at a significant expense to performance.

For more discussion of this option, see “REDUCE” on page 80.

Chapter 11. Understanding the new compiler’s options 77

NORESEXP

The NORESEXP compiler option will increase the compatibility of your code if

your code intentionally forces a ZERODIVIDE condition:

The RESEXP compiler option allows the compiler to evaluate all restricted

expressions at compiler time. For example, programs with the following code

would fail at compile-time with an S-level message:

if somevariable = goodvalue then;

 else

 put skip list(1 / 0);

Under the NORESEXP compiler option, the compiler would not flag this statement

and the ZERODIVIDE condition would be raised at run-time, as originally

intended.

RULES(LAXCTL)

The RULES(LAXCTL) compiler option will slightly increase the compatibility of

your code, but at a significant expense to performance.

For more discussion of this option, see “RULES(NOLAXCTL)” on page 82.

RULES(NOLAXINOUT NOLAXSEMI)

These suboptions of the RULES option have no effect on object compatibility since

they do not change the code that is generated. But if you specify them, the new

compiler will act more like the old because it will then issue two messages that the

old compiler would issue; in particular, the compiler will issue a W-level message

under:

RULES(NOLAXINOUT)

if it finds a possibly uninitialized scalar passed as an ASSIGNABLE

BYADDR parameter

RULES(NOLAXSEMI)

if it finds a semicolon inside a comment

NOWRITABLE

You should choose the NORENT option for the greatest compatibility with your

old modules.

The NORENT WRITABLE options allow the compiler to use a static pointer

v as the base for the stack that tracks a CONTROLLED variable

v as the handle for the storage that represents a FILE

Under the NOWRITABLE option, the compiler will not use a static pointer for

either of these purposes, but it has to generate more lines of code to provide the

same function.

But you must use the NOWRITABLE option if both of the following are true:

1. your code must be REENTRANT

2. your code uses CONTROLLED variables or FILEs

However, the NOWRITABLE(FWS) option can have a potentially very strong

negative impact on performance, so do not use it if either of the above items does

not apply to you.

78 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Choosing options for improved performance

This section describes some of the options that you can choose to improve the

performance of the compiler generated code.

If you want to ignore all the discussion below and blindly try to improve

performance at all costs, you should:

1. use the following default options:

v REDUCE

v NORENT

v RULES(NOLAXCTL)
2. specify the following additional, non-default options:

v ARCH(5)

v BIFPREC(31)

v DFT(NONASGN)

v DFT(CONNECTED)

v DFT(REORDER)

v DFT(NOOVERLAP)

v OPT(3)

v TUNE(5)

However, while there are considerations (discussed below) that may make you

choose not to use all of the above options, unless you use both DFT(REORDER)

and at least OPT(2), you will not get good performance from the generated code.

ARCH

The default since Enterprise PL/I V3R2 is ARCH(2). You should not use a lower

value for the ARCH option since Enterprise PL/I requires Language Environment

1.3 (and later) and Language Environment 1.3 requires machines that support

ARCH(2).

Note that if you specify an ARCH level that is greater than the lowest level of any

machine on which your code runs, then it is likely that your code will abend with

a specification exception on those machines.

If you specify a value of 0 or 1, the compiler will reset the value to 2.

BIFPREC(31)

Specifying the BIFPREC(31) will make your code perform better if you use of the

built-in functions to which it applies. However, as discussed above, the

BIFPREC(15) option will give you better compatibility if you use unprototyped

ENTRY declarations.

DEFAULT(NONASGN)

The option DFT(NONASGN) will add the NONASSIGNABLE attribute to all

STATIC variables not explicitly declared as ASSIGNABLE. If your STATIC variables

are, in fact, not altered, using this option will allow the compiler to put them in

read-only storage and that will give you better performance (particularly if you use

the RENT option).

DEFAULT(CONNECTED)

Nonconnected arrays are arrays whose elements do not occupy adjacent pieces of

storage. Nonconnected arrays are passed by both of these calls:

Chapter 11. Understanding the new compiler’s options 79

dcl a(3,4) fixed bin;

 dcl 1 x(5), 2 y fixed bin, 2 z fixed bin;

 call f(a(*,1));

 call f(x.y);

The new and old compilers fully support nonconnected arrays, and in fact, the

compilers assume that any array parameter is not connected - that there may be

other bytes between successive array elements.

This assumption slows down the compiler and requires more code to be generated

which slows down your application.

If you use the new DFT(CONNECTED) compiler option, the compiler will assume

that all arrays received are connected and will generate much better code. Hence, if

you never pass a discontiguous slice of an array (such as a column), use this

option for better performance.

DEFAULT(REORDER)

If you do not use DFT(REORDER) and either OPTIMIZE(2) or OPTIMIZE(3), you

will not get good performance from the compiler generated code.

Also, do not use OPT(2) or OPT(3) without DFT(REORDER) - the compiler will

generate worse code and take much longer to do so.

DEFAULT(NOOVERLAP)

While you may want to use the DFT(OVERLAP) option for compatibility, using the

DFT(NOOVERLAP) option will give you much better performance.

For more discussion of this option, see “Source-target overlap” on page 108.

OPTIMIZE(2)/OPTIMIZE(3)

If you do not use DFT(REORDER) and either OPTIMIZE(2) or OPTIMIZE(3), you

will not get good performance from the compiler generated code.

Also, do not use OPT(2) or OPT(3) without DFT(REORDER) - the compiler will

generate worse code and take much longer to do so.

Note that OPT(3) will produce slightly better code than OPT(2), but the compiler

will take much longer to compiler programs (especially large programs) under

OPT(3) than under OPT(2). For this reason, the compiler maps OPT(TIME) to

OPT(2).

REDUCE

The REDUCE option specifies that the compiler is permitted to reduce an

assignment of a null string to a structure into fewer, simpler operations - even if

that means padding bytes might be overwritten.

The REDUCE option will cause fewer lines of code to be generated for an

assignment of a null string to a structure, and that will usually mean your

compilation will be quicker and your code will run much faster. However, padding

bytes may be zeroed out.

80 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

For instance, in the following structure, there is one byte of padding between

field11 and field12:

dcl

1 sample ext,

 5 field10 bin fixed(31),

 5 field11 dec fixed(13),

 5 field12 bin fixed(31),

 5 field13 bin fixed(31),

 5 field14 bit(32),

 5 field15 bin fixed(31),

 5 field16 bit(32),

 5 field17 bin fixed(31);

Now consider the assignment sample = ’’;

Under the NOREDUCE option, it will cause eight assignments to be generated, but

the padding byte will be unchanged.

However, under REDUCE, the assignment would be reduced to three operations.

With NOREDUCE, you get code that looks like:

 00004C 5810 3056 00015 | L r1,=A(@CONSTANT_AREA)(,r3,86)

 000050 58E0 305A 00015 | L r14,=A(SAMPLE)(,r3,90)

 000054 4100 0000 00015 | LA r0,0

 000058 D206 E004 1000 00015 | MVC FIELD11(7,r14,4),+CONSTANT_AREA(r1,0)

 00005E 5000 E000 00015 | ST r0,<s9:d0:l4>(,r14,0)

 000062 5000 E00C 00015 | ST r0,<s9:d12:l4>(,r14,12)

 000066 5000 E010 00015 | ST r0,<s9:d16:l4>(,r14,16)

 00006A 5000 E014 00015 | ST r0,<s9:d20:l4>(,r14,20)

 000072 5000 E018 00015 | ST r0,<s9:d24:l4>(,r14,24)

 000076 5000 E01C 00015 | ST r0,<s9:d28:l4>(,r14,28)

 00007A 5000 E020 00015 | ST r0,<s9:d32:l4>(,r14,32)

But with REDUCE, you get code like:

 00004C 5810 3042 00015 | L r1,=A(SAMPLE)(,r3,66)

 000050 58E0 3046 00000 | L r14,=A(@CONSTANT_AREA)(,r3,70)

 000054 D703 1000 1000 00015 | XC _shadow1(4,r1,0),_shadow1(r1,0)

 00005A D206 1004 E000 00015 | MVC _shadow1(7,r1,4),+CONSTANT_AREA(r14,0)

 000060 D717 100C 100C 00015 | XC _shadow1(24,r1,12),_shadow1(r1,12)

Consequently, for best performance use the REDUCE compiler option.

NORENT

While the NORENT option is now one of the compiler defaults because its use

increases the compatibility of the object code generated, it may also significantly

improve the performance of your code - as long as you do not also use the

NOWRITABLE option.

The reasons for this performance improvement are that, under the RENT option,

the initialization of every load module takes more time and the code length is

longer both for calls and for references to static variables.

However, please note that if your code must be REENTRANT and if your code

uses CONTROLLED variables or FILEs, then you must use either the RENT option

or both the NORENT and NOWRITABLE options.

If you use NOWRITABLE with NORENT and your application consists of many

programs using CONTROLLED variables, then you will get better performance if

you use NOWRITABLE(PRV) than if you use NOWRITABLE(FWS). However, as

Chapter 11. Understanding the new compiler’s options 81

discussed earlier in this chapter, using NOWRITABLE(PRV) will also impose all the

old limits on using CONTROLLED variables with FETCH.

RULES(NOLAXCTL)

Using RULES(LAXCTL) can significantly slow the compiler and cause it to

generate more copious and more time-consuming code

For one large customer program, this reduced the compile-time by 40% and

run-time by 50%.

To understand this option, consider the following declaration:

 DCL

 01 VTAB(*) CTL, /* VALOREN-TABLE */

 02 WA0102 CHAR(26), /* MUTATIONSDATUM DB2-TIMESTAMP */

 02 WA0104I BIN FIXED(31), /* PKEY AKTIONSNR-ID: */

 02 WA0104K CHAR(1), /* PKEY VALOREN-KNZ: */

 02 WA0104V DEC FIXED(15,0), /* PKEY VALORENNR */

 02 WA0104L BIN FIXED(15), /* PKEY VV_SEG_LFNR */

 02 WA0104A CHAR(4); /* PKEY TERM_ID */

The bounds of VTAB are clearly not known at compile-time. But is the length of

WA0104K really 1 ? The structure would normally be allocated with a statement

like one of the following two statements:

 ALLOC VTAB(100);

 ALLOC VTAB(N + M);

After either of these allocations, WA0104K would have length 1.

But the structure could be allocated as follows:

 ALLOC

 1 VTAB(17),

 2 WA0102,

 2 WA0140I,

 2 WA0104K CHAR(29);

But then WA0104K has length 29 !

The compiler option RULES(LAXCTL) permits allocations such as the one

immediately above despite the fact that the original declared length for the string

was a constant. However, using this option will also force the compiler to generate

much longer code sequences.

In contrast, the compiler option RULES(NOLAXCTL) assumes that all lengths and

bounds that are declared as constant are, in fact, constants. - and any ALLOCATE

statement that violated this assumption will be flagged with an S-level message

IBM2063.

Consequently, using this option will not leave you with any run-time surprises,

and it will give you much better performance, both at compile-time and at

run-time.

TUNE

The default since Enterprise PL/I V3R2 is TUNE(2). You should not use a lower

value for the TUNE option since Enterprise PL/I requires Language Environment

1.3 (and later) and Language Environment 1.3 requires machines that support

ARCH(2).

82 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Note that unlike the ARCH option, specifying too high a value for the TUNE

option will not cause your program to abend: the TUNE option merely directs the

compiler to generate code that favors certain machine levels, but it does not cause

the compiler to generate code that requires any particular machine levels.

If you specify a value of 0 or 1, the compiler will reset the value to 2.

Choosing options for better quality

This section describes some of the options that you can choose to improve or

insure the quality of your code.

RULES(NOLAXDCL)

RULES(LAXDCL) causes the compiler to emit only an I-level message for each

undeclared variable. But, under RULES(NOLAXDCL), you get an E-level message.

If your code is to have any reasonable quality, you should always compile with

RULES(NOLAXDCL).

However, when we made this the default on Windows, too many users objected,

and it is now not the default.

Under RULES(NOLAXDCL), compiling:

 x: proc(starting_role) returns(fixed bin(31));

 dcl starting_role fixed bin(31);

 return(starring_role + 1);

 end;

will cause the compiler to issue an E-level message saying that starring_role is

undeclared. This would alert you to the fact that this name is almost certainly a

typo, and this is an example of why you want to use this compiler option.

The option RULES(NOLAXDCL) may also flag ″working″ code:

 read_in = fileread(file_in, addr(buffer), stg(buffer));

 if read_in = 0 then

 leave;

If read_in is undeclared, the code will work; however, read_in will have FLOAT as

an attribute and that is probably not what you want.

RULES(NOLAXIF)

The expressions in IF, WHILE, UNTIL and undominated WHEN clauses should

have the attributes BIT(1) NONVARYING; however, all the new and old compilers

would allow any computational expression in these clauses. For example, you

could write:

 dcl x fixed bin(31);

 if x then ...

You may have intended this IF statement to mean the same as the following

statement:

 if x ¬= 0 then

But the old and new compilers will interpret the statement as:

 if abs(x) ¬= 0 then

Chapter 11. Understanding the new compiler’s options 83

It would be much better to code this statement and similar statements so that the

conditional expression was a boolean.

Under the compiler option RULES(NOLAXIF), the compiler will flag with an

E-level message any conditional expression that does not have the attributes BIT(1)

NONVARYING. Hence you can use this option to enforce this good coding

practice.

Under RULES(NOLAXIF), the compiler will also flag an IF clause consisting of just

a reference to a BIT(8) variable, say Y. In this case, the generated code will treat the

expression as true if any of the 8 bits is on, but it might be better to change this IF

clause to Y ^= ’’b.

Note that the RULES(NOLAXIF) option will have effect on the code generated for

any statement that it flags.

RULES(NOLAXLINK)

Specifying the option RULES(LAXLINK) causes the compiler to ignore the

LINKAGE and other options specified in the declarations of two ENTRY variables

or constants when you assign or compare them.

For example, if you use the RULES(LAXLINK) option, the following incorrect

program, which would almost certainly cause an abend if executed, would not be

flagged:

 dcl funtion ext entry returns(char(20));

 dcl subrtn entry variable;

 subrtn = function;

 call subrtn;

You should use the RULES(NOLAXLINK) option to catch these errors and to

enforce basic coding standards.

However, it is probably not a good idea to use the RULES(NOLAXLINK) option in

programs containing EXEC CICS statements because the CICS preprocessor

generates these declares:

 DCL DFHEI0 ENTRY VARIABLE INIT(DFHEI01) AUTO;

 DCL DFHEI01 ENTRY OPTIONS(INTER ASSEMBLER);

Since the variable DFHEI0 is then used in the code that the CICS preprocessor

generates for EXEC CICS statements, the compiler will flag under

RULES(NOLAXLINK) that the entry DFHEI01 which is declared with

OPTIONS(INTER ASSEMBLER), but assigned to DFHEI0 which is declared

without any OPTIONS attribute.

RULES(NOLAXMARGINS)

Under the option RULES(NOLAXMARGINS), any line with non-blanks after the

right margin will be flagged.

This can help detect problems when code, especially an end-of-comment marker,

has been accidentally shifted too far right.

However, since many source files have serial numbers or other data after the right

margin, RULES(LAXMARGINS) is the default.

84 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

RULES(LAXSTRZ)

The new compiler will flag any string assignment where the source has a known

length, the target has a known maximum length, and the source length is greater

than the maximum target length. Unfortunately, this will cause the compiler to flag

even those assignments where the trailing bits or characters are ″uninteresting″.

The compiler option RULES(LAXSTRZ) can help reduce this ″noise″: under

RULES(LAXSTRZ), no message will be issued in an initial clause or an assignment

if :

v a bit variable has a source that is too long but whose excess bits are all 0’s

v a character variable has a source that is too long but whose excess characters are

all blanks

Consequently, under RULES(LAXSTRZ), only the second of the following

statements would be flagged:

 dcl a char(4) init(’ok ’);

 dcl b char(4) init(’error’);

The default option is RULES(NOLAXSTRZ), but using RULES(LAXSTRZ) might

give you better quality by letting you focus on the truly problematic assignments.

RULES(NOMULTICLOSE)

The new and old compilers all allow you to close more than one DO, SELECT,

BEGIN or PROCEDURE group with one END statement, although the new

compiler will issue an I-level message.

However, closing multiple groups with one END statement is not a good

programming practice, and the compiler option RULES(NOMULTICLOSE) allows

you to force the compiler to flag such code with an E-level message. For example,

under this option the compiler would object to the following code:

 a: do i = 1 to 17;

 b: do j = 1 to 29;

 t = x(i,j); /* transpose i and j

 x(i,j) = x(j,i);

 x(j,i) = t;

 end b; /* end of loop */

 end a;

Note that since the first comment is unclosed, the end a; closes both DO loops.

Choosing options for test

This section describes some of the options that you can choose during

development when you want to test your code.

CHECK(CONFORMANCE)

Specifying the CONFORMANCE suboption of the CHECK option will cause the

compiler to generate extra code in the prologue of some procedures to check that

the parameters passed match what those procedures expect.

The Programming Guide describes in more detail when this option applies and

what it will do, and it can be a very useful tool in development to test your code.

Chapter 11. Understanding the new compiler’s options 85

GONUMBER

When you specify the compiler option GONUMBER, the compiler generates a

″statement number table″. This table allows the error handler, when it needs to

produce a message for a condition that has been raised, to identify where the

condition occurred not only by its offset within the containing procedure, but also

by its location within your source program.

This extra information can be very useful in helping you analyze errors in your

program. If you choose not to use this option, you should probably use the

OFFSET option so that the compiler will produce a table that you can use to

determine the source statement from the entry offset.

PREFIX

The PREFIX compiler option allows you to enable PL/I conditions without editing

your source. The following three conditions are particularly useful to enable during

test:

v SIZE

v STRINGRANGE

v STRINGSIZE

v SUBSCRIPTRANGE

However, all these conditions will cause the compiler to generate more code and

will sometimes cause the performance of the generated code to be significantly

worse. Enabling the SIZE condition for an entire compilation can be especially

expensive, and it is not recommended that you use this option with production

programs.

TEST

Finally, if you are using Debug Tool, you should use the TEST option so that the

compiler will generate symbol tables and other information needed for the

debugger. However, this is another option that you should probably not use with

production programs.

86 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 12. Understanding the new compiler’s messages

The new compiler issues many messages that are very similar to those issued by

the old compilers. However, it also issues many new messages, some of which can

be very important as you migrate to the new compiler. Paying attention to

messages such as these can alert you to possible migration problems. This section

will attempt to explain some of the more important of these messages.

Many of the messages discussed here are I-level and W-level messages, but that

does not mean you should ignore them. In fact, these messages are highlighting

probable errors in your ″working″ code.

IBM1044: one-byte FIXED BIN

This I-level message alerts you to a difference between Enterprise PL/I and the old

PL/I compilers. The message produced by the new compiler looks like:

 IBM1044I I FIXED BINARY with precision 7 or less is mapped to 1 byte.

This is a feature of Enterprise PL/I: it supports one-byte integers. This is a very

useful feature, especially when exchanging data with C or JAVA.

However, this is also a difference between the old and the new compilers: under

the old compilers, a variable declared as, for example, FIXED BIN(7) would have

been allocated 2 bytes which meant that unless SIZE was enabled, it could have

assumed values ranging from -32768 to 32767 rather than the much smaller range

of --128 to 127 allowed by a one-byte integer.

Unless you are intentionally exploiting this new feature, you should probably use

the EXIT option to increase the severity of this message and then change all code

that produces the message.

IBM1053: scaled FIXED BIN evaluation

When compiling some of your code, you may see the following message:

IBM1053I I Scaled FIXED operation evaluated as FIXED DECIMAL.

For an example of the code that will produce this message, and for an explanation

of what to do, see “Arithmetic built-ins with scale factors and FIXED BIN” on page

118.

IBM1065: imprecise float constants

This I-level message alerts you to a potential source of problems with Enterprise

PL/I:

 IBM1065I I Float constant ... would be more precise if specified as a long float.

Floating point constants can represent binary fractions (such .1E0b and .001E0b)

very well, but in general, they cannot represent decimal fractions (such .1E0 and

3.1415E0) precisely. This message alerts you to the fact that if such fractions were

specified as long-floating point (for instance by specifying more than 6 decimal

digits), then the fraction would be more precisely represented.

© Copyright IBM Corp. 1999, 2008 87

IBM1091: FIXED BIN precision warning

This W-level message alerts you to what is at best poor programming and at worst

a source of problems. The message produced by the new compiler looks like:

 IBM1091I W FIXED BIN precision less than storage allows.

The Enterprise PL/I compiler will produce this message whenever a SIGNED

FIXED BIN variable is declared with a precision other than 7, 15, 31 or 63 or

whenever an UNSIGNED FIXED BIN variable is declared with a precision other

than 8, 16, 32 or 64. The compiler will also issue this message if a built-in function

such as BIN, ADD, DIVIDE, etc has a FIXED BIN result but specifies one of the

above precisions.

For example, if you declare a variable as FIXED BIN(5), the compiler will flag the

declare, and you should probably change the declare to the intended FIXED

BIN(15).

IBM1099: mixed FIXED

When compiling some of your code, you may see messages such as:

 IBM1099I W FIXED DEC(7,2) operand will be converted to FIXED

 BIN(25,7). Significant digits may be lost.

The attributes in your messages may vary, but a sample piece of code that would

produce exactly this message is:

 DCL

 1 REC_OUT,

 03 AVAIL FIXED BIN(31),

 03 TOTAL_SPARE FIXED DECIMAL(7,2),

 03 WORK_TOTAL FIXED DECIMAL(7,2);

 AVAIL = 17;

 WORK_TOTAL = 12.2;

 TOTAL_SPARE = AVAIL + WORK_TOTAL;

The new and old compilers implement the final assignment in exactly the same

way and both would leave TOTAL_SPARE with the value of 29.19 (not 29.20 as

you might expect). However, only the new compiler issues a message to tell you

that you might want to examine this statement more closely.

To understand what this message is telling you and why the result of the

statement above is correct when it seems to be wrong, you need to recall these

PL/I rules for arithmetic operations other than exponentiation:

1. if either operand is FLOAT, any FIXED is converted to FLOAT

2. if either operand is BINARY, any DECIMAL is converted to BINARY

3. DECIMAL(p,q) is converted to BINARY(1+log(10)*p, log(10)*q)

So, adding the FIXED BIN(31,0) variable AVAIL to the FIXED DEC(7,2) variable

WORK_TOTAL will force, by the above rules, the DEC(7,2) operand to be

converted to BIN(25,7).

But 12.20 cannot be exactly represented as a BIN(25,7), and is actually converted

via

 (bin(12.20,31,0) * 2**7) / 10**2

88 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

This yields a value that is approximately 12.195.

Then adding 17 and converting back results in 29.19.

The compiler behavior in all of the above is correct, but perhaps not what you

want. If it is, in fact, not what you want, you could force the operation to be

evaluated in DECIMAL by either applying the DECIMAL built-in function to the

BINARY operand or by specifying the new compiler option RULES(ANS).

Under RULES(ANS), scaled FIXED BIN is not permitted and the conversion rules

are more what a naive user might expect:

 if both operands are FIXED, then

 if either has a non-zero scale, any BIN becomes DEC

So when adding BIN(31,0) to DEC(7,2), the BIN(31,0) is converted to DEC(10,0)

and nothing is lost.

The same considerations as detailed above also apply to the following customer

code fragment:

 dcl a dec fixed(15,3) init(2500000);

 dcl zero bin fixed(31) init(0);

 if (a ¬= zero) then

 put skip edit(’dec fixed ¬= Zero’)(a);

 else

 put skip edit(’dec fixed = Zero’)(a);

The DEC(15,3) operand gets converted to BIN(31,10).

But BIN(31,10) can hold up to 2**21 or 2_097_152.

Consequently, this conversion cannot be made successfully, and the SIZE condition

would be raised if it were enabled. When the SIZE condition is not enabled, this

code is in error and the CVB instruction that is generated to perform the

conversion raises the ZERODIVIDE condition.

Again, the new compiler issues an appropriate message:

 IBM1099I W FIXED DEC(15,3) operand will be converted

 to FIXED BIN(31,10). Significant digits may be lost.

Finally, using RULES(ANS) compiler option or applying the DEC built-in function

to the BINARY operand would again fix this code.

IBM1181: miscoded DO loops

Some programs that have always compiled cleanly may now produce this

message:

 IBM1181I W A WHILE or UNTIL option at the end of a series DO specifications

 applies only to the last specification.

This message is produced for statements such as the following:

DO I = 1, 2 WHILE(X = ’Z’);

This message says that this DO-loop will be executed once with I equal to 1

(whether or not X = ’Z’ is true) and then, if X = ’Z’ is true, with I equal to 2. This

DO statement is not the same as this statement (although this is probably what the

author intended:

Chapter 12. Understanding the new compiler’s messages 89

DO I = 1 WHILE(X = ’Z’), 2 WHILE(X = ’Z’)

If this was what you intended, it would probably be best to code the statement as:

DO I = 1 TO 2 WHILE(X = ’Z’);

And, if you did want to test if X = ’Z’ only before the second iteration of the

DO-group, then it would be best to code the statement as:

DO I = 1 TO 2 UNTIL(X ^= ’Z’);

IBM1206: misuse of BIT operators

This W-level message alerts you to likely coding errors. The message produced by

the new compiler looks like:

 IBM1206I W BIT operators should be applied only to BIT operands.

The code generated by the new compiler for statements where it produces this

message is the same as the code generated by the old compiler, although the latter

issued no warning message.

As examples of where this message could arise and the likely coding errors that

led to them, consider this code

 dcl (x,y) fixed bin;

 if x = ¬y then

 ...

 if x ¬ y then

 ...

In the first IF statement, the bit prefix negation operator will be applied to the

FIXED BIN variable y, and most likely that is not what was meant. Similarly, in the

second IF statement, the bit infix exclusive-or operator will be applied to the

FIXED BIN variables x and y, and most likely that is again not what was meant. In

fact, both statements most likely contain typographical errors and were meant to

test if the variables x and y were unequal.

Note also that if the bitwise operations were really intended here, it would

probably be best to use the BIT built-in function (or possibly the INOT and IEOR

built-in functions) to make that clear.

IBM1208: incompletely initialized arrays

When compiling some of your code, you may also see the following new message:

 IBM1208I W INITIAL list for the array WPPXS_TAB

 contains only one item.

For instance, this message would be produced if the variable in the following

declaration is used in your program:

 DCL WPPXS_TAB(15) CHAR(3500) INIT((15)’ ’);

The INIT((15)’ ’) attribute does not specify 15 instances of a string consisting of

one blank. The 15 is a string repetition factor, and so this INIT clause specifies only

one string (of 15 blanks).

To initialize the whole array to blanks, you should code:

 DCL WPPXS_TAB(15) CHAR(3500) INIT((*) (’’));

90 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

The new compiler will also produce this message for many other similar declares,

such as:

 DCL LISTE(4,60:73) CHAR(50) INIT(’’);

 DCL SPRACH_TAB(4) CHAR(15) INIT(’’);

Finally, if this array is part of a structure, the compiler will flag any subsequent

occurrences of this problem in that structure withe message IBM2603. Hence, you

can use the EXIT option to reduce the number of times this problem is flagged to

once per structure.

IBM1215: incomplete declares

When compiling some of your old code, you may additionally see a message such

as the following:

 IBM1215I W The variable I is declared without any data attributes.

The new compiler would issue this message, for example, for this declaration:

 DCL I, J FIXED BIN;

While the older compilers would produce no message for this declare, the new

compiler issues the message above because this declare is not equivalent to DCL

(I,J) FIXED BIN;: it’s actually equivalent to DCL I; DCL J FIXED BIN;.

IBM1216: incorrect structure declares

Similarly, consider the following declare:

 DCL

 1 S,

 2 A CHAR(10),

 2 B,

 2 C CHAR(3),

 2 D CHAR(3);

The older compilers would produce no message for this declare. However, the new

compiler will produce the message:

 IBM1216I W The structure member B is declared without any data

 attributes. A level number may be incorrect.

This message is pointing at some probable errors in the declare, namely that C and

D should be declared at level 3 rather than level 2. But given the declare above,

since they are at the same structure level as B, B is not their parent and gets the

default attributes of FLOAT! This is almost certainly not what you intended, and

this new message is directing your attention to this likely problem.

The compiler also issued this message for the following customer code:

 DCL PARDIASE CHAR (20);

 DCL 1 INDIASE1 BASED (PTPDIASE),

 2 C1CODIA CHAR (1),

 2 C1FECDI DEC FIXED (9),

 2 C1DIADI CHAR (9),

 2 C1ABRDI CHAR (3),

 2 C1RESDI;

 DCL PTPDIASE POINTER;

 PTPDIASE = ADDR (PARDIASE);

 . . .

 INDIASE1 = ’’;

Chapter 12. Understanding the new compiler’s messages 91

The message flags the fact that the variable C1RESDI is declared with out any data

attributes. Hence it gets the default attributes of FLOAT DEC(6), and that means

that the structure INDIASE1 then occupies 22 bytes. But since the structure is

based on a pointer that has been assigned the address of a CHAR(20) field, the

assignment INDIASE1 = ’’; will blank out 2 bytes of storage used by some other

variable. In the customer’s code this led to an abend in a library routine. Note that

f C1RESDI had been declared as CHAR(2) or even as CHAR(0) (and CHAR(0) is

legitimate PL/I), then there would have been no problem.

So, even though this message, like many of the other messages discussed in this

chapter, is not an E-level message, it would be very good to change your code so

that your compilation is free of this message.

IBM1220: pointless comparisons

When compiling some of your code, you may also see the following new message:

 IBM1220I W Result of comparison is always constant

For example, the following code would cause the new compiler to produce this

message:

 DCL ZWSTRING CHAR(80);

 DCL ZWSTRING2 CHAR(8);

 ZWSTRING = ’E R R O R’;

 IF ZWSTRING2 = ’E R R O R’ THEN

This message is produced because ’E R R O R’ is CHAR(9) with its last character a

non-blank, and hence it could never equal a CHAR(8) field.

Any code that produces this message is problematic and should be closely

examined. In fact, ignoring this message when it points at a DO-loop statement

means that your code could go into an infinite loop. For example, the compiler

would produce this message for all three of these executable statements, and in the

last case, the loop would run endlessly unless exited with a LEAVE statement:

 DCL ZZ9 PIC’ZZ9’;

 DCL N FIXED BIN(15);

 IF ZZ9 < 0 THEN ...

 IF ZZ9 <= 999 THEN ...

 DO N = 1 TO 32768; ...; END;

Note that if you have a loop that you want to run ″endlessly″ until exited by a

LEAVE (or GOTO) statement, it would be best to code that loop statement using

DO FOREVER.

IBM1927: SIZE condition

When compiling some of your ″working″ code, you may also see a message such

as the following:

 IBM1927I S SIZE condition raised by attempt to convert

 32777 to SIGNED FIXED BIN(15)

Some sample code that would produce this message is:

 DCL I BIN FIXED(15);

 DCL

92 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

1 S,

 2 A CHAR(10),

 2 B CHAR(32767);

 I = STG(S);

Note that in the assignment above:

v the source STG(S) is equal to 32777

v the target I has the attributes FIXED BIN(15)

The old compilers would have issued no message.

The new compiler is telling you that 32777 is too large to be converted to FIXED

BIN(15) (since a FIXED BIN(15) variable can hold no value larger than 32767).

This message points to a problem you should not ignore, and since it is an S-level

message, you will be forced to change your code.

IBM1948: restricted expression evaluation

When compiling some of your code, you may see the following message:

IBM1948I S ZERODIVIDE condition with ONCODE=320 raised while

 evaluating restricted expression.

For an example of the code that will produce this message, and for an explanation

of what to do, see “NORESEXP” on page 78.

IBM2063: invalid ALLOCATE

When compiling some of your code, you may see the following message:

IBM2063I S Specification of extent for variable-name in

 ALLOCATE statement is invalid since it was declared

 with a constant extent.

For an example of the code that would produce this message, and for an

explanation of what to do, see “RULES(NOLAXCTL)” on page 82.

IBM2402: storage overlay

This message alerts you to a potentially important coding error:

 IBM2402I E <variable x> is declared as BASED on the ADDR of <variable y>,

 but <variable x> requires more storage tha <variable y>.

The importance of this message depends on how the variables are used in your

program. For instance, if X is a 100-byte structure and Y is declared as CHAR(200)

BASED(ADDR(X)), then the compiler will issue this message. If your program also

contains the statement Y = ’’, then you have a severe problem (because that

assignment will wipe out 100 bytes of storage that the compiler is likely to be

using for other purposes). You must correct this kind of problem.

However, your program might use Y only in the statements such as:

v SUBSTR(Y,1,STG(X)) = ’’;

v SUBSTR(Y,1,STG(X)) = LOW(STG(X));

In this case, your code does not need to be changed.

Chapter 12. Understanding the new compiler’s messages 93

However, in this case, you could change the declare of Y to eliminate these

messages: if you declare Y after X, you could then declare Y as CHAR(STG(X))

BASED(ADDR(X)). This would eliminate this occurrence of the message without

your having to make any changes to your code. But, if you wanted, you could also

then simplify the above assignment statements to:

v Y = ’’;

v Y = LOW(STG(X));

IBM2409: RETURN; in a function

This message alerts you what is probably a coding error:

 IBM2409I E RETURN statement without an expression is invalid inside a

 subprocedure that specified the RETURNS attribute.

The compiler issues this message when it finds a RETURN; statement inside a

function (i.e. inside a PROCEDURE that has the RETURNS options). If this

statement were executed, then the caller of the function would, if it used the result

of the function, use an uninitialized value, and that could have unpredictable and

arbitrarily bad consequences.

Code that produces this message should be corrected.

IBM2410: No RETURN in a function

This message alerts you to another coding error:

 IBM2410I E Function F contains no valid RETURN statement.

The compiler issues this message when it finds no RETURN statement inside a

function (i.e. inside a PROCEDURE that has the RETURNS options). If this

function were called, then the caller of the function would, if it used the result of

the function, use an uninitialized value, and that could have unpredictable and

arbitrarily bad consequences.

Code that produces this message should be corrected.

IBM2412: missing RETURNS option

This message alerts you to a related coding error:

 IBM2412I E Procedure has no RETURNS attribute, but contains a RETURN statement.

 A RETURNS attribute will be assumed.

This is the inverse problem to the problem that message IBM2409 flags: here there

is a RETURN statement with an expression, but it is inside a PROCEDURE that is

a subroutine rather than a function (i.e. inside a PROCEDURE that does not have

the RETURNS options). The compiler will assume a RETURNS attribute for the

PROCEDURE, but these assumed attributes may not be what you intended. More

importantly, if the invoker of this routine invoked it via a CALL statement, then if

this RETURN statement were executed, it would assign the return value to storage

allocated for other purposes, and that could have unpredictable and arbitrarily bad

consequences.

Code that produces this message should be corrected.

94 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

IBM2421: CLOSE in ENDFILE

This message alerts you to a subtle coding error:

 IBM2421I E A file should not be closed in its ENDFILE block.

While it may be tempting to close a file in your ENDFILE block for that file, you

should not do this since doing so will lead to internal library errors. Instead, it is

best to write your ENDFILE block so that it does nothing more than set a flag that

will be tested after the READ or GET statement for the file. You should then close

the file in the mainline code when it sees that this flag has been turned on.

Code that produces this message should be corrected.

IBM2610: precision interpretation

This message alerts you to a possible misunderstanding of PL/I rules and,

consequently, a possible source of problems:

 IBM2610I W One argument to BUILTIN X is FIXED DEC while the other is FIXED BIN

 or FLOAT. Compiler will not interpret precision as FIXED DEC.

This message applies to the MULTIPLY, DIVIDE, ADD and SUBSTRACT built-in

functions. You are most likely to see it if

1. the built-in function has either 3 arguments or 4 arguments the last of which is

zero

2. one argument is FIXED DEC(p1,0)

3. one argument is FIXED BIN(p2,0)

If, for instance, X is FIXED BIN(31), the compiler would flag the expression

MULTIPLY(X, 1000, 15) with this message (even if this expression is assigned to a

FIXED DEC(15) variable) because the result of this built-in has the attributes

FIXED BIN(15). If you had intended that this built-in function produce a FIXED

DEC(15) result (because, for example, you knew the result of the multiplication

might be greater than 2G), this code would not perform the way you had intended

and might result in the loss of significant data.

Note that if you want to force the result of this MULTIPLY to be FIXED DEC, you

could apply the DECIMAL built-in to the FIXED BIN argument (as in MULTIPLY(

DEC(X), 1000, 15). You also use the PRECTYPE compiler option to change how the

compiler interprets the precision, but that would, of course, potentially change the

interpretation of other statements.

IBM2611, IBM2612: duplicate whens

When compiling some of your ″working″ code, you may also see a message such

as one of the following:

 IBM2611I W The binary value ... appears in more than one WHEN clause.

 IBM2612I W The character string ... appears in more than one WHEN clause.

This message is easier to understand than some of the others discussed in this

section and would be produced by code such as the following:

 SELECT(OPT);

 WHEN(’f’,’F’)

 BUFROM = ETOS(OPTARG);

 WHEN(’T’,’T’)

 BUTO = ETOS(OPTARG);

Chapter 12. Understanding the new compiler’s messages 95

WHEN(’n’,’N’)

 MAXRECIN = ETOL(OPTARG);

 WHEN(’k’,’K’)

 KFLG = ^KFLG;

 WHEN(’m’,’M’)

 MAXERR = ETOL(OPTARG);

 OTHERWISE;

 /* ungueltige Option */

 END;

The message is indicating that the second WHEN clause above is probably meant

to be coded as WHEN(’t’, ’T’)

The old compilers would have issued no message, and perhaps the code as written

is not incorrect; however, it would probably be worthwhile to examine closely any

code producing this message.

IBM2617: passing labels out of PL/I

This message alerts you to a bad coding practice that may require you to edit some

of your source code.

In general, the use of GOTO statements is a very poor programming practice, but

if you pass a LABEL constant or variable to an ENTRY declared with

OPTIONS(ASM), OPTIONS(COBOL) or OPTIONS(FORTRAN), you must not

attempt to do a GOTO from that non-PL/I code back into your PL/I code by using

the passed label. If you have code that is doing this, you must change it.

IBM2621: missing ON ERROR SYSTEM

When compiling some of your ″working″ code, you may also now see this

message:

 IBM2621I W ON ERROR block does not start with ON ERROR SYSTEM.

 An error inside the block may lead to an infinite loop.

The new compiler will produce this message for any ON ERROR block for which

does not start with the statement ON ERROR SYSTEM. If an ON ERROR block

does not start with this statement, then if there is an error in the ON ERROR block,

the block will most likely be reentered and an ″infinite″ loop would result.

Code that produces this message should be corrected.

IBM2622: warning on poorly coded DO loops

When compiling some of your ″working″ code, you may also now see this more

obscure message:

 IBM2622I W ENTRY used to set the initial value in a DO loop will

 be invoked after any TO or BY values are set.

The new compiler will produce this message for code such as the following:

 dcl jx fixed bin;

 dcl last fixed bin init(10);

 do jx = f() to last;

 put skip list(jx);

 end;

96 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

f: proc returns(fixed bin);

 last = 4;

 return(2);

 end;

Note that in this code the function f that sets the initial value in the loop also

changes the value of the variable last that sets the final value in the loop. The

message is alerting you to the fact that this change to the variable last will be made

after the compiler has already used that variable to set the final value for the loop.

In the concrete terms of this example, the loop will run from 2 to 10, not 2 to 4.

This is different than what the old compiler would have done for such code: under

the compiler, this loop would have run from 2 to 4.

So to make this code behave the same as it did under the old compiler, it would be

necessary for you to change your source code. This would be a good idea in any

case since it is not good programming practice to have functions that have side

effects such as changing other variables in their calling routine. The code as written

above is also not very transparent, and unclear code with obscure effects is never

good.

IBM2626: SUBSTR with a zero length

If you have some especially poor code, you may also now see this message:

 IBM2626I W Use of SUBSTR with a third argument equal to 0 is

 somewhat pointless since the result will always be a

 null string.

If the compiler flags any if your code with this message, it has almost certainly

found an error in your code that you should promptly fix.

IBM2628: large BYVLAUE parameters

Since the old compiler had only very limited support for the BYVALUE attribute,

you are not likely to see this message when compiling old code:

 IBM2628I W BYVALUE parameters should ideally be no larger than 32 bytes.

However as you start to use the BYVALUE attribute more, you may see this

message, and in that case you should heed it. You should reserve the use of the

BYVALUE attribute for small scalars and ideally for variables that could be passed

in a register. Typically these would be declared as

v REAL FIXED BIN

v REAL FLOAT

v POINTER

v OFFSET

v HANDLE

v ORDINAL

v CHAR(1)

v ALIGNED BIT(1)

v ALIGNED BIT(8)

You should never use the BYVALUE attribute with strings or aggreates that are

larger than 4096 bytes in size.

Chapter 12. Understanding the new compiler’s messages 97

IBM2801: introduction of scaled FIXED BIN

This message alerts you to a possible misunderstanding of PL/I rules and,

consequently, a possible source of problems:

 IBM2801I I FIXED DEC(p1,q1) operand will be converted to FIXED BIN(p2,q2).

 This introduces a non-zero scale factor into an integer operation

 and will produce a result with the attributes FIXED BIN(r,s).

This message applies to arithmetic operations where one operand is scaled FIXED

DEC and one is unscaled FIXED BIN. By PL/I rules, under the RULES(IBM)

compiler option, if one operand in an arithmetic operation is DECIMAL and one is

BINARY, then the result is BINARY. This applies even if the DECIMAL operand is

FIXED DEC with a non-zero scale factor and the BINARY operand is FIXED BIN

with a scale factor of zero.

For example, if X is FIXED DEC(5,1) and Y is FIXED BIN(15), then in evaluating

the expression X+Y, X will be converted to FIXED BIN(18,4), and the result will

have the attributes FIXED BIN(20,4). The compiler will also issue the W-level

message IBM1099I because a FIXED DEC(5,1) value whose fractional is not .0 or .5

can not be exactly represented in FIXED BIN.

If you want to eliminate this message and avoid the problems it hints at, you may

apply the DECIMAL built-in function to the FIXED BIN operand. For example,

X+DEC(Y) would produce a result with the attributes FIXED DEC(8,1).

IBM2804: suboptimal compares

This I-level message alerts you to a poor programming practice and possible error:

 IBM2804I I Boolean is compared with something other than ’1’b or ’0’b.

A boolean is a result of a comparison of two expressions or the result of anding,

oring or negating booleans. As such, a boolean can have only the values ’1’b or

’0’b. If your code compares a boolean with something other than one of these

values, it may reflect a problem (for instance, maybe the expression (a > b) = c was

meant to be (a + b) = c).

Note that the compiler will produce this message even if you compare a boolean to

a value declared as BIT(1) STATIC INIT(’1’b). In this situation there is no

programming error, but the compiler cannot generate as good as code as it would

generate if the value were declared as BIT(1) VALUE(’1’b).

IBM2810: conversion of scaled FIXED BIN

When compiling some of your code, you may see the following message:

IBM2810I I Conversion of FIXED BIN(31,16) to FIXED DEC(15,12) may

 produce a more accurate result than under the old

 compiler.

For an example of the code that will produce this message, and for an explanation

of what to do, see “Conversions from scaled FIXED BINARY” on page 117.

98 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

IBM2811: use of PICTURE as DO control variables

This message alerts you to a poor coding practice that may require you to edit

some of your source code: even under OPT(0), the new compiler will flag any DO

loop where the control variable has the PICTURE attribute. The compiler will issue

this informational message:

IBM2811I I Use of PICTURE as DO control variable is not recommended.

In general, the use of PICTURE variables as DO loop control variables is a very

poor programming practice (especially because it can lead to poor performance),

and it would be best to change such code to use FIXED BIN variables as the loop

control variables.

IBM2812: poor TRANSLATE and VERIFY

This message alerts you to a coding practice that was ok under the old compiler,

but for which there is a much better alternative with the new compiler: rather than

declaring named constants with the attributes STATIC INIT, you can now with the

attribute VALUE.

This change will particularly help code such as:

 test: proc(c);

 dcl c char(20);

 dcl upper char(26) static init(’ABCDEFGHIJKLMNOPQRSTUVWXYZ’);

 dcl lower char(26) static init(’abcdefghijklmnopqrstuvwxyz’);

 c = translate(c, upper, lower);

 end;

Since the named constants upper and lower are declared as STATIC INIT, both the

old and new compilers will build the translate table at run time. This is expensive.

However, the new compiler will also issue these informational messages:

IBM2812I I Argument number 2 to TRANSLATE built-in would lead to

 much better code if declared with the VALUE attribute.

 IBM2812I I Argument number 3 to TRANSLATE built-in would lead to

 much better code if declared with the VALUE attribute.

If you change the STATIC INIT in both declares to VALUE, these messages will be

eliminated and the compiler will generate much better code.

PLIXOPT messages

The PLIXOPT variable is a varying-length character string that contains run-time

options which you can specify at compile time. The messages that the compiler

produces to diagnose errors in these options are different than the messages

produced by the old compilers. In most cases, the PL/I messages now list an

associated Language Environment message that you should read for more

information.

A module containing a PLIXOPT declare will also now contain a

compiler-generated CEEUOPT CSECT that contains the Language Environment

encoding of the run-time options specified in the PLIXOPT string. For small

modules, this CSECT can cause a substantial increase in the object size of the

modules.

Chapter 12. Understanding the new compiler’s messages 99

Using the compiler user exit

When looking at some of the above messages, you may wish that they had a

higher severity. The new compiler option EXIT makes it very easy for you to raise

the severity of any informational, warning or error message.

For more information on how to use this option, see the Enterprise PL/I for z/OS

Programming Guide.

100 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 13. Understanding when working code must be

changed

This chapter documents situations where the new compiler generates different

code than the old compilers. The problems discussed in this chapter have been

important to customers who have already migrated to Enterprise PL/I, and you

should read this chapter closely to see if they might affect you.

Some of the problematic code discussed in the sections that follow is flagged by

the compiler, and you should examine (and change as appropriate) the code

associated with the messages issued. In particular, you should examine any

compilations producing the following messages:

v IBM1063

v IBM1089

Note also that using the options DECIMAL(NOFOFLONASGN) DFT(OVERLAP)

and STATIC(FULL) may eliminate some of these problems.

Incorrect code

Your code must be correct code that conforms to the rules of PL/I. The Enterprise

PL/I compiler may produce different results (including abends) than the old

compiler for code that is incorrect. You may get ″lucky″ in that some incorrect code

does what you intended, but you must not rely on this. You must change your

incorrect code.

These rules may seem obvious: for example, no user would expect to write to an

element of an array using an index that is outside of the bounds of that array.

However, in some cases, the fact that code is incorrect and needs to be changed

may be less obvious. This section will attempt to describe some instances of

incorrect code that must be changed; however, it is not a list of all incorrect code

since the opportunities for writing bad code are endless.

Relying on the order of declarations

If you declare one variable after another, you must not presume that they are

contiguous in storage or even that the second variable is in storage after the first.

For example, in the following code, the storage allocated to the variable a may not

immediately follow the storage allocated to the variable b, and hence the

assignment could overlay 100 bytes of storage allocated to some other variable.

 dcl a char(100);

 dcl b char(100);

 dcl c char(200) based;

 addr(a)->c = ’’;

In fact, if the variable b is unused, the compiler will most likely allocate no storage

to it!

Using invalid FIXED DECIMAL data

All FIXED DECIMAL variables that you use must be used only when they contain

valid data.

© Copyright IBM Corp. 1999, 2008 101

If a FIXED DECIMAL variable contains invalid data (such as bad numeric digits or

a bad sign nibble), any use of that variable may lead to a data exception. Even the

assignment of such a variable to another variable with a similar precision and scale

may lead to a data exception - even though the assignment could be done via a

byte move.

Conversely, you should not presume that a data exception will be raised on the

first use of such a variable: for example, the assignment described above may be

done with a byte move under some circumstances, and in that case, a data

exception would not occur until it was used in an arithmetic operation or a

compare etc.

Using invalid SUBSTR references

Any SUBSTR reference that you use must be such that its use would not raise the

STRINGRANGE condition if that condition were enabled.

If the STRINGRANGE condition is not enabled (and by default, it is not), then a

SUBSTR reference that is invalid can cause the compiled code to overwrite storage

allocated for other purposes and that, in turn, can lead to data corruptions or

abends.

For example, in the following code, if the value in the variable n is larger than 100,

then the SUBSTR reference is invalid and the generated code may overwrite

storage allocated to other variables.

 dcl f ext entry;

 dcl a char(100);

 call f(’test’ || substr(a,1,n));

You can easily detect such bad code during test by compiling your programs with

the PREFIX(STRINGRANGE) compiler option.

The SUBSTR suboption introduced in V3R8 to the USAGE compiler option can

allow some of this incorrect code to be accepted. However, it would be best not to

use this option and instead to correct your code by, for example, changing the

declare of a above to have a length at least as large as the largest value that n

could assume and if the maximum value for n is unknown, then by changing the

declare of a to have a length of 32767.

In some situations, the old compiler also generated code for SUBSTR references of

the form SUBSTR(X,1,N) where X was CHAR and N was greater than 32767.

However, such references are invalid and would have raised STRINGSIZE if it

were enabled. The new compiler enforces the restriction that the length of a

SUBSTR reference must be less than 32768 for CHAR and BIT references and less

than 16384 for GRAPHIC and WIDECHAR references, and you must correct any

code that does not conform to these rules.

Using dissimilar EXTERNAL declares

If you declare an EXTERNAL variable in more than one compilation unit, then

those declares must match. In particular, all the attributes in the two declares must

match.

For example, if you declare an EXTERNAL FILE in one compilation unit with the

attributes KEYED ENV(VSAM), then you must declare it with the same attributes

in any other program linked with the first.

102 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Using an incorrect PLITABS declare

If your code contains a declare for PLITABS, not only must the pagesize, linesize

and other values be valid, but the first field in the PLITABS structure must also be

valid. This field is supposed to hold the offset to the field specifying the number of

tabs set by the structure, and the Enterprise PL/I library code will not work

correctly if this is not true.

Initializing variables

You must not use a variable before it has been initialized. Any program that uses

an uninitialized variable is invalid and must be corrected. The best way to correct

such code is to add the INITIAL attribute to those variables that need it. However,

there are also some other ways to initialize your variables, and the rest of this

subsection discusses them.

Initializing AUTOMATIC

The compiler option INITAUTO will add an appropriate INITIAL attribute to any

AUTOMATIC variable that does not have an INITIAL attribute if the variable has

one of the attributes

v FIXED or FLOAT

v PICTURE, CHAR, BIT, GRAPHIC or WIDECHAR

v POINTER or OFFSET

See the Programming Guide for more details.

The compiler option DFT(INITFILL) will fill all AUTOMATIC storage will a

specified byte value (or to ’00’x if no byte value is specified). This can be used to

initialize variables with these attributes

v FIXED BIN

v FLOAT

v VARYING or VARYINGZ

v POINTER or OFFSET

The compiler option INITFILL will also fill all other AUTOMATIC variables with

the specified (or default) byte value, but these variables would not really be

properly initialized. For example, use of a FIXED DEC variable initialized via

DFT(INITFILL) will lead immediately to a data exception.

Setting the third suboption of the runtime option to 00 (as in STORAGE(,,00)) will

fill all AUTOMATIC storage in all the routines (including library routines) with the

hex value 00. This has the same effects and validity as the DFT(INITFILL) compiler

option except that it applies to all routines in the application and has a dreadfully

bad impact on performance. Furthermore, since the compiler does not know if this

option is being used, it may not have the desired effect for code compiled with

OPT(2) or OPT(3): the fact that a variable is uninitialized makes the code invalid

and may lead the optimizer to make choices about how to optimize the code that

cannot be repaired by using this runtime option.

Setting the third suboption of the runtime option to CLEAR (as in

STORAGE(,,CLEAR)) will fill all AUTOMATIC storage with the hex value 00

before MAIN is invoked. This has the same effects and validity as the

DFT(INITFILL) compiler option except that it applies only to the MAIN routine.

Furthermore, since the compiler does not know if this option is being used, it may

not have the desired effect for code compiled with OPT(2) or OPT(3): the fact that

Chapter 13. Understanding when working code must be changed 103

a variable is uninitialized makes the code invalid and may lead the optimizer to

make choices about how to optimize the code that cannot be repaired by using this

runtime option.

Initializing BASED

The compiler option INITBASED does for BASED what INITAUTO does for

AUTOMATIC.

Initializing CONTROLLED

The compiler option INITCTL does for CONTROLLED what INITAUTO does for

AUTOMATIC.

Initializing STATIC

The compiler option INITSTATIC does for STATIC what INITAUTO does for

AUTOMATIC.

Without this option, all uninitialized STATIC storage will be filled with binary

zeros. Of course, as was true with the compiler DFT(INITFILL) and runtime

STORAGE options discussed above, this means that many variables, e.g. FIXED

DEC variables, would have invalid values.

Retaining unused declarations

Retaining unused INTERNAL STATIC

If an INTERNAL static variable is unused, the compiler will not allocate any

storage for it.

For example, if the following declaration is the only reference to the variable

build_data, then no storage would be allocated for this variable and its initial value

would not be in the generated text.

 dcl build_data char(30) var static

 init(’Compiled in build 17’);

If the ABNORMAL attribute is specified on a level-1 static variable, the compiler

will allocate storage for the variable. For example, to keep the variable above, you

could change the declaration above to:

 dcl build_data char(30) var static abnormal

 init(’Compiled in build 17’);

Do not apply the ABNORMAL attribute indiscriminately to all variables or all

static variables - this will both slow down your compilation and worsen the

performance of the generated code.

If you specify the compiler option STATIC(FULL), the compiler will apply the

abnormal attribute to all static. This is a coarse solution and is not recommended.

Incorrect code that will now raise exceptions

FIXEDOVERFLOW when SIZE is disabled

Under both the old and new compilers, if you try to assign a source to a numeric

target and the source is too big, the SIZE condition will be raised if it is enabled.

104 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

However, if the SIZE condition is NOT enabled, your program is in error and what

happens is unpredictable. You should correct such a program.

Under the old compiler, sometimes no condition would be raised. For example,

consider the following program:

 dcl A fixed dec(3);

 dcl B pic’9’;

 A = 123;

 B = A;

The value in the source A is too large to fit into B, and if SIZE is enabled, it would

be raised. However, when SIZE is disabled, the old compiler raises no condition.

That does not mean your program is correct - in fact, it is incorrect and should be

changed. For instance, if you wished to set B to just the ones digit of A, you could

change the above code to:

 dcl A fixed dec(3);

 dcl B pic’9’;

 A = 123;

 B = mod(A,10);

Moreover, under the old compiler, sometimes a condition would be raised for very

similar code. For example, consider the following program:

 dcl X fixed dec(5);

 dcl Y fixed dec(4);

 dcl Z fixed dec(5);

 X = 99999;

 Y = X + 1;

 Z = X + 1;

The value of the expression X + 1 is too large to fit into either Y or Z, and if SIZE

is enabled, it would be raised for both statements. However, when SIZE is

disabled, the old compiler raises no condition for the assignment to Y and raises

FIXEDOVERFLOW for the assignment to Z. Again your program is incorrect and

should be changed.

The new compiler handles these statements consistently, but the results depend on

the target attributes and the compiler options in effect: when the SIZE condition is

disabled,

v if the target has the PICTURE attribute, the generated code will not raise the

FIXEDOVERFLOW condition

More precisely, the generated code will not raise the FIXEDOVERFLOW

condition when SIZE is disabled when assigning a source expression with any of

the following data types to a non-floating point PICTURE target:

– FIXED BIN

– FIXED DEC

– non-floating point PICTURE
v if the target has the FIXED DEC attribute, then

– if the default compiler option DECIMAL(FOFLONASGN) is in effect, then the

generated code will raise the FIXEDOVERFLOW condition

– if the compiler option DECIMAL(NOFOFLONASGN) is in effect, then the

generated code will not raise the FIXEDOVERFLOW condition

Chapter 13. Understanding when working code must be changed 105

Note that the above discussion applies to assignments only: if an operation such as

addition or multiplication produces a result requiring more than 15 digits (or more

than 31 if the LIMITS(FIXEDDEC(15,31)) option is in effect), then an exception will

be raised. The exception raised will usually be FIXEDOVERFLOW, but depending

on the machine instructions generated, other exceptions, such as a specification

exception, may be raised.

Invalid allocations

Under the old compilers, the following piece of code ″worked″:

 dcl vdptr pointer;

 dcl vdcom char(2000) based(vdptr);

 dcl

 1 vdcommarea based(addr(vdcom)),

 2 vda char(1000),

 2 vdb char(1000),

 2 vdz char(1);

 alloc vdcom;

 vdcommarea = ’’;

This code is not valid PL/I code because you must not use a 2001 byte area to

overlay a 2000 byte allocated piece of storage. By luck, this ″worked″ under the OS

PL/I V2R3 run-time, but under the Language Environment run-time, this code fails

miserably.

UNDEFINEDFILE with PRINT files

The UNDEFINEDFILE condition will now be raised if you attempt to open a

PRINT file that has the record format VB or FB. PRINT files must have the record

format FBA or VBA - the ″A″ will not be forced onto existing files.

Incorrect code that will now loop endlessly

Even precision PICTURE loop control variables

Consider the following program to initialize an array:

 winter: proc;

 dcl n pic’99’;

 dcl a(0:99) fixed bin ext;

 do n = 0 to 99;

 a(n) = n;

 end;

 end;

This code is not valid PL/I since if the SIZE condition were enabled, it would be

raised after n became equal to 99 (since the next value, 100, it would assume is too

large for a PIC’99’ variable).

For best performance, using a PICTURE variable for a loop control variable is

usually not a good idea. However, for the code above it is a very bad idea since

the new compiler will generate code that will make this loop run endlessly.

By the definition of the DO statement, this loop is equivalent to the following code

which will loop infinitely under both the old and new compiler.

106 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

n = 0;

 if n > 99 then go to loop_exit;

 loop_body:;

 a(n) = n;

 n = n + 1;

 if n <= 99 then go to loop_body;

 loop_exit:;

However, for the original code using the DO-loop, the old compiler cheats and

generates code that is, strictly speaking, incorrect.

The new compiler will try to alert you to this situation by issuing the following

messages:

 IBM1089I W Control variable in DO loop cannot

 exceed TO value, and loop may be infinite.

 IBM1220I W Result of comparison is always constant.

 IBM1220I W Result of comparison is always constant.

You should closely examine (and probably change) any code that causes the

compiler to issue message IBM1089. You could also use the EXIT option to raise

the severity of this message.

To correct your code, you could change the attributes for the DO-loop control

variable from PICTURE to FIXED BIN(31).

Finally, note that this problem will occur in any loop where the DO-loop control

variable is PICTURE’(n)9’ when n is an even number and the loop limit is equal to

10**n-1.

This problem could also occur in forms which would not be flagged by the

compiler. For example, consider the following program to initialize an array:

 sommer: proc;

 dcl n pic’999’;

 dcl a(0:999) fixed bin ext;

 do n = 0 to 998 by 2;

 a(n) = n;

 end;

 end;

In this case, since the TO value of 998 is less than the maximum value that n could

assume, the compiler will not issue message IBM1089. However, after n assumes

the value 998, the next time through the loop n will be assigned the value 0 and

the loop will repeat.

This problem could also occur when the BY value was negative:

 eiki: proc;

 dcl n pic’999’;

 dcl a(0:99) fixed bin ext;

 do n = 79 to 1 by -2;

 a(n) = n;

 end;

 end;

However, after n assumes the value 1, the next time through the loop n will be

decremented by 2 and assigned the value 1 and the loop will repeat.

Chapter 13. Understanding when working code must be changed 107

Assignments that will produce different results

Source-target overlap

Consider the assignment P->Z = Q->Z; where Z is CHAR(6) BASED.

Under OPT(0), the old compiler would assign the source first to a 6-byte

temporary and then assign the temporary to the target.

However under OPT(2), the old compiler would perform the assignment with one

MVC.

These different implementations lead to different results if the source and target

overlap.

The new compiler controls this behavior via the OVERLAP suboption of the

DEFAULT compiler option:

v under DFT(NOOVERLAP), the compiler will assume the source and target never

overlap.

v under DFT(OVERLAP), the compiler will generate more conservative code

whenever necessary.

For example, for the assignment SUBSTR(A,4,6) = SUBSTR(A,3,6);, if A =

’abcdefghijklm’, then

v the old compiler sets A = ’abccdefghjklm’

v the new compiler under DFT(OVERLAP), sets A = ’abccdefghjklm’

v the new compiler under DFT(NOOVERLAP), sets A = ’abcccccccjklm’

Consequently, for the most compatibility with the least work, you might want to

specify the compiler option DFT(OVERLAP).

But specifying this option will also force the compiler to generate slower code in

situations where you know the source and target do not overlap and it will also

cause the compiler to forego some other optimizations. You would be much better

off if you changed your code to avoid source and target overlap and then use

DFT(NOOVERLAP).

For instance, the assignment:

 SUBSTR(A,4,6) = SUBSTR(A,3,6);

could be replaced by the assignments:

 temp_Char6 = SUBSTR(A,3,6);

 SUBSTR(A,4,6) = temp_Char6;

Float-to-float assignments

The new compiler converts a FLOAT DECIMAL literal, such as 3.1415926E0 or

1E-02, to its internal floating-point representation solely by examining the literal’s

attributes and not by examining the context in which it used.

For example, 3.1415296E0 has the attributes FLOAT DEC(8), and hence the new

compiler will convert it to long floating point. But, 1E-02 has the attributes FLOAT

DEC(1), and hence the new compiler will convert it to short floating point.

108 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

If the literal is used in an assignment or an initial clause, the compiler will then

convert, if necessary, its floating-point value to the attributes of the target of the

assignment or initialization.

However, the old compilers would examine the context in which such a literal is

used and convert the literal directly to the attributes of its target. The behavior of

the old compilers does not strictly follow the rules for PL/I expression evaluation

and can lead to different results than those produced by the new compiler.

Consider this code fragment:

 dcl z float dec(06) init(0);

 dcl s float dec(06);

 dcl q float dec(17);

 s = 1e-2;

 q = s;

 put skip data(q);

 q = 1e-2;

 put skip data(q);

 q = 1e-2 + z;

 put skip data(q);

In all three assignments to q above, the attributes of the source are those of a short

floating-point number, and the value of the source should be the same. However,

the results of the three PUT statements under the old compilers are:

 Q= 9.999997913837432861E-03;

 Q= 9.999999999999999999E-03;

 Q= 9.999999999999999999E-03;

The results of the three PUT statements under the new compiler are:

 Q= 9.999997913837432860E-03;

 Q= 9.999997913837432860E-03;

 Q= 9.999997913837432860E-03;

This kind of difference occurs only for float literals that cannot be exactly

represented (such as fractions like 1E-2 that cannot be equated to a binary

fraction).

To alert you to situations such as the above, the compiler will issue message

IBM1065I when it detects short-floating point literals that cannot be exactly

represented.

To get the same results as under the old compilers, you would have to change

your source in one of the following ways:

1. specify the constant via the FLOAT built-in function applied to a FIXED

DECIMAL literal and with the desired precision

for example, you would specify 1E-2 as FLOAT(.01,7) to make it a long

floating-point value and as FLOAT(.01,17) to make it an extended floating-point

value

2. add enough zeroes to the literal to give it the desired precision

for example, you would specify 1E-2 as 1.000000E-2 to make it a long

floating-point value and as 1.0000000000000000E-2 to make it an extended

floating-point value

3. use the new D or Q format to indicate the desired precision

for example, you would specify 1E-2 as 1D-2 to make it a long floating-point

value and as 1Q-2 to make it an extended floating-point value

Chapter 13. Understanding when working code must be changed 109

Note that the first two changes in the above list would be accepted by the old and

new compilers (and would produce the same results under each), but the third

change would work only under the new compiler.

Other statements that will produce different results

STREAM I/O with unprintable characters

If a character with the value ’00’x, ’0C’x through ’0F’x or ’15’x is part of the output

of a PUT FILE statement, then a period (’4B’x) will be output instead under these

scenarios:

v The code is running under batch and is compiled with the STDSYS option, the

file is SYSPRINT, and SYSPRINT is directed to SYSOUT

v The code is running under z/OS UNIX, and the file is a STREAM OUTPUT file

being written to the command window

v The code is running under TSO, and the file is a STREAM OUTPUT file being

written to the TSO terminal

Uninitialized EXTERNAL STATIC

Under the old compiler, a variable declared as EXTERNAL STATIC but with no

INITIAL value(s) specified for it was not allocated any storage (and a linkage

editor ESD of type CM was issued). The storage for it must have been defined in

some other program object that will be linked with it. In fact, the storage that was

actually allocated may be bigger than what its declare specified (or implied). For

example, consider the following code declares

dcl testpcl ext static, pcl char(16) based(addr(testpcl));

The variable testpcl has the (implied) attributes of FLOAT DEC(6) and hence

would seem to be allocated only 4 bytes of storage. If all the programs linked with

this one also declare testpcl with the same PL/I declare, then exactly 4 bytes will

be allocated to it. However, if it is linked with, say, an assembler that defined

testpcl as a 16-byte CSECT, then the linker would allocate 16 bytes to it.

The new compiler will currently allocate 4 bytes to such a variable (and issue a

linkage editor ESD of type SD and length 4). An attempt to use it as the base for,

say, a 16-byte area will lead to errors.

If you want to declare a variable but have its storage allocation be determined by

its declaration in another module, you should declare it with the RESERVED

option. For example, the declare above should be:

dcl testpcl ext static reserved, pcl char(16) based(addr(testpcl));

If, however, you compile with the option COMMON, then the Enterprise compiler

will also issue a linkage editor ESD of type CM, and the code would work as it

did with the old compiler.

Incompletely declared FILEs

Under the old compiler, if you declared an EXTERNAL FILE in one routine with

some attributes, such as RECORD, but in another routine linked with the first

routine, you did not declare the file or declared it with no attributes (other than

FILE), then the second routine would use the attributes declared in the first routine

even if the second routine opened the file first.

110 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Enterprise PL/I would handle this differently: the second routine would not ″see″

the attributes from the first routine and would instead apply the default attributes,

such as STREAM, to the file. This can lead to problems.

You should correct this code by declaring the FILE identically in all routines; in

fact, all EXTERNAL variables should be declared identically in all routines.

Dummy arguments and alignment

According to the Language Reference Manual, a dummy argument will be created

if an argument differs from its parameter description in its alignment. However,

the old compiler followed this rule for CHARACTER NONVARYING, but not for

CHARACTER VARYING. The new compiler applies the rule consistently.

So, for example, given the following code

dcl x entry(unaligned char(8));

dcl y entry(unaligned char(8) varying);

dcl a aligned char(8);

dcl b aligned char(8) varying;

call x(a);

call y(b);

Dummy arguments should be created for both CALL statements, but only the

Enterprise compiler will create a dummy argument for the second CALL.

Note that you can use the DEFAULT(DUMMY(UNALIGNED)) compiler option to

make the compiler ignore alignment mismatches when deciding when to create

dummy arguments. If this option were in effect, the compiler would not create a

dummy argument for either of the CALLs in the above example.

Dummy arguments and CONTROLLED

According to the Language Reference Manual, a dummy argument will be created

if an argument is a CONTROLLED string or area (because an ALLOCATE

statement could have changed the length or extent and hence have caused the

string length or area size to be different than required by the called routine).

Under Enterprise PL/I, this is true unless the RULES(NOLAXCTL) option is in

effect and the string length or area size is a constant. However, the old compiler

was not always consistent about following this rule (which should always have

applied since the old compiler had no equivalent to the RULES(NOLAXCTL)

option.) The new compiler applies the rule consistently.

So, for example, given the following code

dcl x entry(char(8));

dcl a controlled char(8);

dcl 1 b(2) controlled, 2 c char(8);

call x(a);

call y(b(1).c);

Dummy arguments should be created for both CALL statements, but only the

Enterprise compiler will create a dummy argument for the second CALL.

Pointer arithmetic

In expressions involving pointer arithmetic, it is presumed that the pointers are

addresses. Consequently, when adding a value to a pointer, the result pointer may

not have the high order bit on even though the source pointer did have the high

order bit on.

Chapter 13. Understanding when working code must be changed 111

Code that will not perform as well

FIXED DEC as a loop control

A DO-loop that has a FIXED DECIMAL or PICTURE control variable will perform

much worse than a loop that has a FIXED BINARY control variable.

You can get significantly better code if you change the declarations for your loop

control variables from FIXED DEC to FIXED BIN(31).

FIXED BIN(15) as a loop control

A DO-loop that has a FIXED BIN(15) control variable will perform worse than a

loop that has a FIXED BIN(31) control variable.

Under OPT(2) or OPT(3), the compiler will issue I-level message IBM1063 to flag

code that uses FIXED BIN(15) control variables. You can get better code if you

change the declarations for your loop control variables from FIXED BIN(15) to

FIXED BIN(31).

I/O using TOTAL

Since the TOTAL option of the ENVIRONMENT attribute is not supported, I/O to

files using it will generally not perform as well.

112 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 14. Understanding when working code may need to

be changed

This chapter documents more situations where the new compiler generates

different code than the old compilers. But unlike the previous chapter, these

differences are somewhat obscure; they are included in this document for

completeness and because they could potentially affect you.

Code that will now raise an exception

ZERODIVIDE and OVERFLOW promoted to ERROR

Under the old compiler if ZERODIVIDE or OVERFLOW were raised and there was

an ON-unit for the condition, then if the END statement for the ON-unit was

reached, your program would continue with the next machine instruction after the

one that raised the condition.

If the condition was raised by a hardware exception, this meant that your program

continued on with some unknown value as the result of the operation, and this

often led to more errors.

Under the new compiler, if either ZERODIVIDE or OVERFLOW is left unhandled

by an ON-unit, then the condition will be promoted to ERROR.

Conditions raised when disabled

Under the old compiler, if a condition such as CONVERSION or

SUBSCRIPTRANGE was disabled, the condition would almost never be raised.

Under the new compiler, disabling a condition asserts that the condition will not

occur. However, the condition may still be raised.

For some code sequences, this allows the compiler to generate faster code. For

example, for an assignment of a CHAR(1) to a FIXED BIN, if CONVERSION is

enabled, the conversion will be done by a library call. But if CONVERSION is

disabled, the conversion will be done by very simple inline code that ″ands out″

the left nibble in the CHAR(1) value. This code is possible only because

NOCONVERSION asserts that a conversion condition could not occur in this

statement. If this assertion is not true, your program is invalid.

However, for an assignment of a CHAR(2) to a FIXED BIN, the conversion will

always be done by a library call (because there are too many possibilities for what

may be held in those two characters), and even if NOCONVERSION is in effect,

the CONVERSION condition will be raised if the source does not contain a valid

numeric value. (Note also that if you know that the CHAR(2) source contains only

numeric digits, you could avoid this library call by using an appropriate picture

string in either the EDIT built-in function or in a variable declared as based on or

unioned with the source.)

Similarly, if SUBSCRIPTRANGE is disabled, you are asserting that all subscripts

are valid. For most statements, this means the compiler will not generate any code

to check the validity of the subscripts, and if any subscripts are invalid, your

program is in error. However, if a subscripted reference is used in a PUT DATA

© Copyright IBM Corp. 1999, 2008 113

statement, a library routine will evaluate that reference, and if any subscript is

invalid, the SUBSCRIPTRANGE condition will be raised - even if disabled.

Invalid RETURNs

Consider the following somewhat senseless, but illustrative, code fragment:

 call y;

 x: proc returns(pointer);

 y: entry;

 return(sysnull());

 end;

This program fragment is in error because when the procedure is entered at Y no

value should be returned, but the code attempts to return a value nonetheless.

Under the old compiler, no condition would be intentionally raised when the

invalid return was attempted, and the program might fail in any number of ways

(and it might even complete ″successfully″).

Under the new compiler, the ERROR condition would be intentionally raised by

the generated code with ONCODE=9004.

GOTO holes

Consider the following code fragment:

 dcl x(4) label;

 goto x(n);

 x(4):;

 put skip list(n);

 x(3):;

 put skip list(n);

 x(2):;

 put skip list(n);

 x(1):;

 put skip list(n);

Note that if n < 1 or if n > 4, and if the SUBSCRIPTRANGE condition is not

enabled, then your program was in error.

Under the old compiler, a protection exception usually resulted.

Under the new compiler, the ERROR condition will be raised with ONCODE=9003

with the following message:

IBM0751S ONCODE=9003 A GOTO was attempted to an element of a label constant

 array, but the subscripts for the element were not those of any

 label in that array.

The scope of NOFOFL

As documented elsewhere, under Enterprise PL/I, the FIXEDOVERFLOW/
NOFIXEDOVERFLOW (or FOFL/NOFOFL) prefix applies only to FIXED

DECIMAL operations.

However, it should also be noted that the (NO)FOFL prefix when applied to a

PROCEDURE or BEGIN statement applies only to that block and to the blocks

statically contained within it. The prefix does not apply to any other code

dynamically called from within these blocks.

114 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Similarly, if the (NO)FOFL prefix is applied to a CALL statement or a statement

containing a function invocation, the setting in the prefix does not apply to the

code in the invoked routine: it applies only to any FIXED DECIMAL calculations

before or after the routine is invoked.

Code that will now not raise exceptions

FIXEDOVERFLOW for FIXED BIN

Under the old compiler, the FIXEDOVERFLOW (or FOFL) condition would be

raised if any FIXED BIN operation produced a result that required more than 31

binary digits. For example, if you multiplied a FIXED BIN variable equal to

100_000 by itself, then the FOFL condition would be raised.

Under the new compiler, the FOFL condition will not be raised for any FIXED BIN

computation (but it will still be raised for FIXED DEC computations when

needed). This makes the PL/I language match the C and JAVA languages, and it

also enables the compiler to generate inline code to perform adds and subtracts on

8-byte integers.

In fact, during run-time initialization, the bit in the PSW that enables integer FOFL

will not be set if all your code has been compiled by the C or by the new PL/I

compilers. It will be set on if there is any old PL/I code in the main module, and

that can have some negative performance consequences for some of your new

code.

CONVERSION when assigning blanks to numeric variables

Under the old compiler, the CONVERSION (or CONV) condition would be raised

if a character string consisting of one or more blanks (and nothing else) was

assigned to a numeric variable. However if a varying character string of length

zero was assigned to a numeric variable, CONVERSION would not have been

raised (even though a zero-length character string compares equal to character

string consisting only of blanks).

Under the new compiler, the CONVERSION condition will not be raised by the

assignment to a numeric variable of any character string that would compare equal

to a blank string.

ERROR when mapping excessively large aggregates

If your code declares an aggregate with adjustable extents, its size will be

determined at runtime. If its size would be greater than 2G and the compiler

generates a call to a library routine to map the variable, then the ERROR condition

will be raised.

However, for a simple aggregate with adjustable extents, the compiler will generate

inline code to determine the variable’s size - unless the SIZE condition is enabled.

If such a variable had a size greater than 2G and SIZE was not enabled, then no

condition would be raised and your program would be invalid. Of course, if your

aggregates are reasonable in size, you will get far better performance if SIZE is not

enabled.

Chapter 14. Understanding when working code may need to be changed 115

Storage mapped differently

One-byte FIXED BIN

If you have any variables declared as FIXED BIN with a precision of 7 or less, they

occupy one byte of storage under Enterprise PL/I instead of two as under PL/I for

MVS & VM and earlier. If the variable is part of a structure, this usually changes

how the structure is mapped, and that could affect how your program runs. For

example, if the structure were read in from a file, fewer bytes would be read in

under Enterprise PL/I than under PL/I for MVS & VM or earlier PL/I release.

To avoid this difference, you could change the precision of the variable to a value

between 8 and 15 (inclusive).

To help you locate where you might have problems because of this difference, the

compiler will flag any FIXED BIN with precision <= 7 with message IBM1044.

The (NO)BIN1ARG suboption of the DEFAULT compiler option controls how the

compiler handles one-byte REAL FIXED BIN arguments passed to an

unprototyped function:

v Under BIN1ARG, the compiler will pass a FIXED BIN argument as is to an

unprototyped function.

v But under NOBIN1ARG, the compiler will assign any one-byte REAL FIXED

BIN argument passed to an unprototyped function to a two-byte FIXED BIN

temporary and pass that temporary instead.

Consider the following example:

dcl f1 ext entry;

dcl f2 ext entry(fixed bin(15));

call f1(1b);

call f2(1b);

If you specified DEFAULT(BIN1ARG), the compiler would pass the address of a

one-byte FIXED BIN(1) argument to the routine f1 and the address of a two-byte

FIXED BIN(15) argument to the routine f2. However, if you specified

DEFAULT(NOBIN1ARG), the compiler would pass the address of a two-byte

FIXED BIN(15) argument to both routines.

Note that if the routine f1 was a COBOL routine, passing a one-byte integer

argument to it would cause problems since COBOL has no support for one-byte

integers. In this case, using DEFAULT(NOBIN1ARG) might be helpful; but it

would be better to specify the argument attributes in the entry declare.

So, while BIN1ARG is the default suboption, you may find it useful to specify the

NOBIN1ARG suboption for increased compatibility.

Declarations handled differently

AREA with INITIAL

The new compiler ignores the INITIAL attribute for AREAs, and you should

convert any INITIAL clauses for AREAs into assignment statements.

For example, in the following code fragment, the elements of the array are not

initialized to a1, a2, a3, and a4:

116 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

dcl (a1,a2,a3,a4) area;

 dcl a(4) area init(a1, a2, a3, a4);

However, you can rewrite the code as follows so that the array is initialized as

desired:

 dcl (a1,a2,a3,a4) area;

 dcl a(4) area;

 a(1) = a1;

 a(2) = a2;

 a(3) = a3;

 a(4) = a4;

The compiler will flag any declare of AREA with INITIAL with message IBM1196.

Conversions handled differently

Conversions from float to character

In some conversions from FLOAT (BIN or DEC) to CHARACTER, there may be a

difference of one in the last digit between the result produced under the old and

new compiler.

This difference does not reflect a difference in the underlying floating-point value

or in the calculations that led up to it. It is generally safe to ignore this difference.

Conversions from scaled FIXED BINARY

It is generally best to avoid scaled FIXED BINARY since its use generally causes

the compiler to produce less efficient code. Additionally, in some conversions of

scaled FIXED BINARY to FIXED DECIMAL, the new compiler may produce a

different (but more accurate) result than the old compiler.

For example, consider the following code

 dcl i fixed bin(15) init(290);

 dcl s fixed bin(31,16);

 dcl d fixed dec(15,12);

 d = i / 365;

 put skip data(d);

 s = i / 365;

 d = s;

 put skip data(d);

The results of the two PUT statements under the old compilers are:

 D= 0.794509887700;

 D= 0.794509887700;

The results of the two PUT statements under the new compiler are:

 D= 0.794509887695;

 D= 0.794509887695;

Note that while the second assignment above clearly involves a conversion of

scaled FIXED BIN to FIXED DEC, the first assignment also involves such a

conversion since the attributes of the expression i / 365 are, by the PL/I rules for

expression evaluation, FIXED BIN(31,16).

To understand what is happening here, it will help to look at the contents of the

variable s after it is assigned the result of the divide. s will then hold the hex value

Chapter 14. Understanding when working code may need to be changed 117

0000CB65. If viewed as a FIXED BIN(31,0) number, this would be the value 52069,

but since it has scale factor 16, it represents the value 52069/2**16. That value is

mathematically equivalent to 52069*5**16/10**16. So, to convert it from base 2 to

base 10, the compiler multiplies the value by 5**16 (or 152587890625). That would

produce a FIXED DEC value with scale factor 16; hence to produce the target

result with scale factor 12, the last 4 digits are dropped.

As can be verified on a calculator, 52069 times 5**16 is 7945098876953125, and

dropping the last digits yields the result produced by the new compiler.

The reason the old compiler produced a different result is that its generated code

multiplied s not by 152587890625, but 152587890626. This leads to a less accurate

result.

You can avoid this problem entirely by insuring that all divisions that could yield a

fractional result are performed in decimal. Using the DECIMAL built-in function is

one easy way to do this. For example, if, in the first assignment above, the

expression i / 365 were changed to dec(i) / 365 , the result of the assignment would

be 0.794520547945.

To alert you to situations such as the above, the compiler will issue message

IBM2810I when it detects conversions of scaled FIXED BIN to FIXED DEC.

Built-in functions handled differently

Arithmetic built-ins with scale factors and FIXED BIN

Under the RULES(IBM) compile-time option, which is the default, variables can be

declared as FIXED BIN with a nonzero scale factor. Infix, prefix, and comparison

operations are performed on scaled FIXED BIN using the same semantics as the

old compilers.

However, the ADD, DIVIDE, or MULTIPLY built-in functions will not produce

FIXED BIN results with nonzero scale factors.

The new compiler evaluates these built-in function as FIXED DEC rather than as

FIXED BIN as the old compilers did if either of the following is true:

v their arguments are FIXED BIN with nonzero scale factors

v their arguments are FIXED BIN with zero scale factors but a nonzero value is

specified as their fourth argument

For example, the new compiler would evaluate the DIVIDE built-in function in the

assignment statement below as a FIXED DEC expression:

 dcl (i,j) fixed bin(15);

 dcl x fixed bin(15,2);

 ...

 x = divide(i,j,15,2);

Note that in most cases where this message appears, no change is necessary; this is

usually what the programmer thought was happening. For example, in the above

code, it would be the rare program that actually wanted the result of that divide to

have the attributes FIXED BIN(15,2) rather than FIXED DEC(15,2).

The compiler will flag this difference with message IBM1053.

118 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

MACRO preprocessor differences

MACRO preprocessor and strings

Under the old compiler, the MACRO preprocessor would uppercase all text except

for text enclosed in strings and comments. But the old compiler recognized only

text delimited by ’...’ as strings: text delimited by ″...″ was not recognized as a

string and was uppercased.

The new compiler will, under the default preprocessor option of CASE(UPPER)

also uppercase all text except for text enclosed in strings and comments. However,

the new compiler recognizes both text delimited by ’...’ and text delimited by ″...″

as strings and will not uppercase either.

This difference could cause a problem if you were running the MACRO

preprocessor before the SQL preprocessor and if you also had code in your SQL

statements such as:

 WHERE "system" = ’Wilmer’

Under the old compiler, this would have become:

 WHERE "SYSTEM" = ’Wilmer’

But under the old compiler, this becomes:

 WHERE "system" = ’Wilmer’

The latter would probably not produce the results you want from DB2. If this is

the case, you must change your source so that the text delimited by ″...″ is in

uppercase (before any preprocessing).

Chapter 14. Understanding when working code may need to be changed 119

120 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 15. Linking your new objects

This chapter describes factors you must consider when you link-edit an object

module produced by the new Enterprise PL/I compiler.

For more information on linking your code, refer to the Enterprise PL/I for z/OS

Programming Guide.

Prelinker and PDSE considerations

As long as you use the Enterprise PL/I default compiler options of NORENT and

LIMITS(EXTNAME(7)), you do not need to use either the prelinker or PDSEs.

AMODE(24) considerations

For AMODE(24) support you must link your application program with SIBMAM24

concatenated in front of SCEELKED.

For more information on building AMODE(24) applications, refer to “AMODE(24)

restrictions” on page 70.

Using PLICALLA or PLICALLB Entry

If you use PLICALLA or PLICALLB as a main entry point in an Enterprise PL/I

program, you must concatenate SIBMCAL2 in front of SCEELKED.

CHANGE cards

Enterprise PL/I does not support the use of CHANGE cards during link-edit if

either the RENT option is specified or the LIMITS(EXTNAME(n)) option is

specified with a value of n greater than 8.

© Copyright IBM Corp. 1999, 2008 121

122 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 16. Using Language Environment with the new

compiler

Many of the same considerations that were discussed in Chapter 6, “Considerations

Before Migrating,” on page 35 apply to the new compiler as well. Please refer to

that chapter for run-time considerations when using the new compiler.

Chapter 13, “Understanding when working code must be changed,” on page 101

also contains useful information about differences between Enterprise PL/I

run-time results and previous versions of PL/I.

Using the right run-time options

Under Language Environment, some of the options available under the OS PL/I

run-time are no longer available, and some have been renamed, redefined, or

merged with other options. In addition, some important new options are now

available.

The dropped options are:

v COUNT

v FLOW

The renamed and merged options are:

v HEAP redefines HEAP

v NATLANG replaces LANGUAGE

v RPTSTG replaces REPORT

v STACK merges ISASIZE and ISAINC

v TRAP merges SPIE and STAE

Some of the important new options are:

v ABTERMENC

v ALL31

v DEPTHCONDLMT

v ERRCOUNT

v MSGFILE

v STORAGE

v XUFLOW

For more and complete information about run-time options, see the z/OS Language

Environment Programming Reference, but note the following key points:

v For compatibility with OS PL/I, use the following options:

– ABTERMENC(RETCODE)

– DEPTHCONDLMT(0)

– ERRCOUNT(0)

– TRAP(ON)

– XUFLOW(ON)
v You must specify the following options in your AMODE(24) applications:

– ALL31(OFF)

– HEAP(,,BELOW)

– STACK(,,BELOW)
v Never use RPTSTG(ON) in any performance-critical application.

© Copyright IBM Corp. 1999, 2008 123

v Never use STORAGE(,,00) in any performance-critical application.

v You must specify POSIX(ON) in any multi-threaded application.

Calling PL/I from assembler main programs

There are three ways Language Environment-conforming assembler routines can

pass control to a Enterprise PL/I subroutine:

1. Branch to a statically-linked Enterprise PL/I subroutine.

2. Use the Language Environment macro CEEFETCH to branch to a

separately-linked Enterprise PL/I subroutine.

3. Use assembler instructions such as LOAD and BALR to branch to a

separately-linked Enterprise PL/I subroutine.

In this case, your must explicitly link in the Language Environment-Enterprise

PL/I signature CSECT, CEESG011, to ensure the Language

Environment-PL/I-specific run-time environment is initialized.

For information on other assembler issues, see “Differences in Assembler Support”

on page 46.

Understanding when your results may vary

Return codes

The PLIRETC built-in subroutine will now accept a FIXED BIN(31) argument and

does not require the value to be <= 999.

Correspondingly, the PLIRETV built-in function will now return a FIXED BIN(31)

value.

The Language Environment run-time adds 3000 to the user return code for severity

3 conditions, and Language Environment classifies all PL/I conditions as severity 3

except:

v ATTENTION (when raised by a SIGNAL statement)

v CONDITION

v ENDPAGE

v FINISH

v NAME

v PENDING

v STRINGRANGE

v STRINGSIZE

v UNDERFLOW

When the run-time issues messages

Under Language Environment, there is a small difference in the timing of when

some run-time messages are issued for conditions with ON-units:

v without Language Environment, if a condition such as ZERODIVIDE or ERROR

occurred, the run-time would issue a message before invoking the ON-unit for

the condition

v with Language Environment, if a condition such as ZERODIVIDE or ERROR

occurs, the run-time will issue a message only if the END statement in the

ON-unit is executed

124 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

This change gives you the chance to handle a condition (and issue your own

message if you wish) and to continue your application via a GOTO without the

run-time also issuing its own message.

There is no change to the run-time behavior when there is no ON-unit.

Also, the SNAP traceback message produced by ON ERROR SNAP continues to be

issued before the ERROR ON-unit receives control.

When running Enterprise PL/I programs under Language Environment, some file

I/O errors are now detected during the OPEN process, which results in a different

but more meaningful error message and error code. As a result, the error will

result in an UNDEFINEDFILE condition instead of a TRANSMIT or other

condition that was received with older PL/I.

What the run-time messages say

PL/I for MVS & VM and Enterprise PL/I share the same set of run-time messages,

and this can lead to messages that should be read with understanding and

flexibility. For example, when the run-time issues a message for UNDEFINEDFILE

in an Enterprise PL/I program, the message will mention both MVS and VM

constructs even though Enterprise PL/I does not currently support VM. The

meaning should be clear nonetheless.

Also, if you compile with the compiler GONUMBER option, the run-time messages

will refer to a ″statement″ where your exception has occurred. This ″statement″ is,

for Enterprise PL/I, the line number in the source program of the statement that

raised the exception.

Finally, the format and content of run-time messages are different under the

Language Environment run-time than under the OS PL/I run-time. You can find

complete descriptions of the run-time messages in z/OS Language Environment

Run-Time Messages.

Where the run-time messages go

Under Language Environment, run-time messages go to the destination specified

in the run-time option MSGFILE. The default MSGFILE destination is SYSOUT, not

SYSPRINT, as it was under the old run-time. MSGFILE(SYSPRINT) is supported

under Enterprise PL/I only after applying the PTFs for the runtime APAR

PQ78307.

Math built-ins

The new compiler invokes the Language Environment-provided routines to

evaluate the mathematical built-in functions (such as SIN or COS) and for float

exponentiation. These routines are more precise than the routines provided with

the OS PL/I V2R3 library and can sometimes produce results with a different last

digit.

As an example of this difference, consider the following program which produces

the kind of table seen at the back of trigonometric textbooks:

 trigtab: proc options(main);

 dcl degrees fixed dec(5,1);

 dcl minutes fixed dec(3,1);

 do degrees = 0 to 359;

Chapter 16. Using Language Environment with the new compiler 125

put skip edit(degrees) (f(5));

 do minutes = 0 to .9 by .1;

 put edit(sind(degrees+minutes)) (f(9,4));

 end;

 end;

 end;

The output of this program looks like:

 0 0.0000 0.0017 0.0035 0.0052 0.0070 ...

 1 0.0175 0.0192 0.0209 0.0227 0.0244 ...

The table produced depends on which math library is used, and even then there

are only 5 different values. For instance, with the old compilers using the pre-LE

math library, the result for 140.1 is 0.6414, while with the old compilers using the

Language Environment math library, the result is 0.6415. Since the new compiler

uses only the Language Environment math library, the result with it is also 0.6415.

Dumps

Calling PLIDUMP still produces a dump, but the format, contents, and destination

of dumps are now controlled by Language Environment. For more information on

the many resultant, but mostly small, differences, see “Differences in PLIDUMP”

on page 44.

Storage reports

The format, contents, and destination of the run-time storage report have changed.

For more and complete information about the run-time storage report, see the

description of the RPTSTG option in the z/OS Language Environment Programming

Reference.

Note that Language Environment does not use the PLIXHD declaration to provide

the heading for the run-time storage report. You can, however, specify the heading

via Language Environment’s callable service CEE3RPH.

Prerequisite Language Environment PTFs

The following PTFs are required to compile and run PL/I applications using

Enterprise PL/I.

v For z/OS, Version 1 Release 4: PTF UQ70042 (APAR PQ66155) and PTF UQ88264

(APAR PQ88268).

v For z/OS, Version 1 Release 5: PTF UQ80236 (APAR PQ78173) and PTF UQ88263

(APAR PQ88065).

v For z/OS, Version 1 Release 6: PTFs UQ92073 and UQ92088 (APARs PQ92870

and PQ93118).

v For z/OS, Version 1 Release 7: PTF UK06652 (APAR PK10630).

126 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 17. Tuning for better CPU and storage utilization

After you migrate to Language Environment, you should retune your applications

to maximize the performance. When you retune an application, it is not always

possible to maximize CPU and storage at the same time. Often you will find that,

in order to obtain better CPU, you need to use more storage, or vice versa. This

section provides general tips to help you to retune your applications under

Language Environment.

For information on choosing compiler options for improved performance see

“Choosing options for improved performance” on page 79.

For more information on tools you can use to improve performance for your

applications, see z/OS Language Environment Programming Guide, z/OS Language

Environment Installation and Customization under OS/390 or z/OS Language

Environment Customization, and Enterprise PL/I for z/OS Programming Guide.

Improving CPU Utilization

The following discussion shows ways to help you obtain better CPU utilization:

v Reduce the number of GETMAINs and FREEMAINs issued by Language

Environment.

Use the Language Environment RPTSTG(ON) option to produce the storage

report. Specify the reported storage amount in the corresponding Language

Environment storage run-time options.

v Reduce the number of LOADs and DELETEs issued by Language Environment.

Put the commonly used Language Environment library routines in (E)LPA. The

following lists the recommended candidates for PL/I:

– CEEBINIT (LPA)

– CEEPLPKA (ELPA)

– CEEEV010 (ELPA) if you still have OS PL/I applications

– CEEEV011 (ELPA) for Enterprise PL/I applications

– CEEBLIIA (LPA) for OS PL/I applications not relinked

– IBMRLIB1 (LPA)

See z/OS Language Environment Installation and Customization under OS/390 or

z/OS Language Environment Customization for a complete list of library routines

that can be put in (E)LPA.

v Avoid AMODE switching between library routines.

Use AMODE(31) for your application, if possible, so you can specify Language

Environment ALL31(ON) option. If ALL31(ON) is in effect, there will be no

AMODE switching among library routines.

v Avoid overuse of PL/I conditions.

All PL/I condition handling is expensive and should only be used where

appropriate. Overuse of PL/I condition handling will degrade the performance

of your application.

v Use DF/SMS-provided system-determined BLKSIZE.

On MVS, use BLKSIZE(0) for an output file that can be blocked. DF/SMS

determines the optimal block size for you which can improve the file

performance.

v Use Language Environment Library Routine Retention facility (LRR).

© Copyright IBM Corp. 1999, 2008 127

You can get a better CPU performance if you use LRR. When LRR is used,

Language Environment keeps certain Language Environment resources in

storage when an application ends. Subsequent invocations of programs that use

LRR is much faster because the Language Environment resources left in storage

are reused.

For example, you can use LRR for your IMS/DC environment to improve

performance.

Note that because LRR leaves Language Environment resources in the storage

for a long period of time, you must assess your storage availability to

accommodate the situation.

Improving Storage Utilization

The following discussion helps you to obtain better storage utilization:

v Relink with Language Environment if you have not recompiled your OS PL/I

programs

The relinked OS PL/I load module has a smaller size because it contains the

Language Environment stubs only.

v Make your application AMODE(31) and RMODE(ANY).

Most likely the application will be loaded above the 16M line. You can specify

the Language Environment ALL31(ON) option which allows Language

Environment to allocate some of its control blocks above the 16M line.

v Avoid use of the HEAPPOOLS(ON) option.

The HEAPPOOLS option applies to Enterprise PL/I (although not to PL/I for

MVS and earlier PL/I code). Specifying the HEAPPOOLS(ON) option may lead

to a very large amount of storage being allocated to ANYHEAP.

v Use Language Environment option HEAP(,,ANY) option, if possible.

For PL/I, Language Environment will allocate the heap storage above the 16M

line if the following is true:

– The requestor is in AMODE(31)

– HEAP(,,ANY) is in effect

– The main program is in AMODE(31)
v Use Language Environment STACK(,,ANY) option, if possible.

Your application must be in AMODE(31). For PL/I, Language Environment will

allocate the stack storage above the 16M line if your application is relinked with

Language Environment and contains no edited stream I/O.

v Analyze the IBM-supplied default values in Language Environment storage

options and change them, if possible and as necessary, to make them optimal for

your applications.

Note that specifying a smaller value is not always better: if you use a smaller

value, Language Environment will allocate less storage initially, but this could

result in more GETMAINs and FREEMAINs being issued over the life of the

application - and GETMAINs are very expensive.

v Put commonly used Language Environment library modules in the (E)LPA.

The library routines in (E)LPA do not occupy storage in your application region,

so your application has more storage to use. See the recommended library

routines for (E)LPA in “Improving CPU Utilization” on page 127.

128 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Improving Performance under Subsystems

The following discussion helps you to obtain better performance under specific

subsystems:

v Under CICS

Use the PL/I FETCH/CALL statement instead of EXEC CICS LINK. The PL/I

FETCH/CALL statement has a much shorter path length than the path length of

EXEC CICS LINK.

v Under IMS

Use Language Environment Library Routine Retention (LRR) facility to reduce

the number of LOADs/DELETEs and GETMAINs/FREEMAINs issued by

Language Environment for each transaction.

Preload commonly used Language Environment library modules and frequently

used top-level applications.

In particular, it is especially beneficial for programs with any I/O to preload the

module IBMPOIOA or to put IBMPOIOA in the LPA.

Chapter 17. Tuning for better CPU and storage utilization 129

130 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 18. Adding Enterprise PL/I programs to existing PL/I

applications

When you add an Enterprise PL/I program to an existing application, you are

either recompiling an existing program with Enterprise PL/I or including a newly

written Enterprise PL/I program. When you add Enterprise PL/I programs to

your existing applications, you have the ability to upgrade your existing programs

incrementally, as your shop’s needs dictate.

Important

After you add an Enterprise PL/I program to an existing application, that

application must run under Language Environment.

 This chapter includes information on the following topics:

v Object and load module considerations

v Condition handling in mixed applications

Please also note these important points:

v You cannot mix new and old object code if the old code does any multitasking.

v If you mix old and new code, you cannot do any FETCH from FETCH.

Object and load module considerations

While recompiling all your PL/I source is strongly recommended, if this isn’t done,

the following options must be used when compiling Enterprise PL/I code that will

be mixed with older PL/I objects:

v CMPAT(V2) (or CMPAT(V1) if that’s what you are currently using with old

PL/I)

v LIMITS(EXTNAME(7))

v NORENT

v BACKREG(5)

v BIFPREC(15)

In addition, as discussed in Chapter 11, “Understanding the new compiler’s

options,” on page 73, you may also want to use some or all of these options:

v COMMON

v DEFAULT(LINKAGE(SYSTEM))

v DEFAULT(OVERLAP)

v EXTRN(FULL)

v NOWRITABLE(PRV)

Note that unless you use the NOWRITABLE(PRV) option, CONTROLLED

variables cannot be shared between old and new code.

Even if all the options listed above are used, there are some restrictions on mixing

old and new object code:

© Copyright IBM Corp. 1999, 2008 131

v FILE variables and constants cannot be shared between old and new code with

one exception: SYSPRINT can be shared by old and new code if the old code

was linked under LE. However, a file written out by old code can be read by

new code - and vice-versa.

v Whenever old code is used, all fetch/release restrictions from the older product

apply. In particular, if a new MAIN does successfully FETCH and CALL an old

module, then the old module cannot perform a subsequent FETCH of another

module.

v If any old code is present in an application, DLL code cannot be invoked.

v For old code compiled with OS PL/I V2R3 or earlier:

– An old MAIN not linked with Language Environment cannot FETCH a new

module.

– A new MAIN cannot CALL or FETCH an old module unless either

1. the new MAIN has the signature CSECT CEESG010 linked in, or

2. the old module has been relinked with SCEELKED either

a. after the PTF for APAR PK23270 has been applied, or

b. with an explicit INCLUDE SYSLIB(CEESG010)

Previously, Enterprise PL/I had the restriction that if your old code did any I/O,

then MAIN must have been compiled with an old compiler. This restriction is no

longer valid if you have recent library maintenance applied.

Sharing SYSPRINT

With the enhancement shipped via co-req APAR PK01919 (Enterprise PL/I) and

PK016197 (PL/I for MVS & VM), SYSPRINT can be shared between Enterprise

PL/I and PL/I for MVS & VM at the enclave level and also in a multi-enclave

environment.

Below are the restrictions and the extent to which this shared SYSPRINT is

supported:

v Only the default option DISPLAY(WTO) is supported. Neither of the compiler

options STDSYS nor DISPLAY(STD) should be used.

v SYSPRINT must have the default or declared attributes : EXTERNAL, STREAM,

OUTPUT, PRINT.

v The shared SYSPRINT could be directed to SYSOUT or to a permanent data set.

v Shared SYSPRINT is supported when MSGFILE(SYSPRINT) is specified

provided that there are no preinitialized programs and/or stored procedures in

the mix.

v In a multi-enclave environment, the first SYSPRINT that is opened will

determine the attributes of SYSPRINT. The second and subsequent SYSPRINT

will inherit all attributes from the first SYSPRINT.

v SYSPRINT will remain opened during the entire application. At enclave

termination, all other files will get closed except for SYSPRINT which will only

be closed at process termination.

v An explicit close of the shared SYSPRINT by either Enterprise PL/I or PL/I for

MVS & VM is honored. Any attempt to write to SYSPRINT afterward requires

SYSPRINT to be explicitly or implicitly opened again. If SYSPRINT was routed

to a data set which is reused for the second open, data previously written might

be lost.

v SYSPRINT can only be opened (explicitly or implicitly) by the initial thread

(Enterprise PL/I multithreading) or by the main task (PL/I for MVS & VM

132 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

multi-tasking). Secondary thread and subtask should not explicitly or implicitly

open SYSPRINT and should not explicitly close SYSPRINT.

v SYSPRINT cannot be shared with older PL/I under TSO.

With support for shared SYSPRINT, the overriding of attributes has changed in the

following ways:

v when SYSPRINT is routed to SYSOUT, the SYSPRINT attributes specified via the

ENVIRONMENT option or the OPEN statement are allowed to override those

options specified on the DD statement

v when SYSPRINT is routed to a dataset (either TEMPORARY, NEW or OLD) any

mismatch between the attributes specified by the program and those specified

on the DD statment will cause the UNDEFINEDFILE condition to be raised

To aid in migration, APAR PK63659 introduces a new temporary environment

variable, PLI_SYSPRINT_ATTR_OVERRIDE. To get the same behavior as before the

shared SYSPRINT changes, specify PLI_SYSPRINT_ATTR_OVERRIDE=YES in the

PARM parameter or in the PLIXOPT string. This will allow attribute overrides

when SYSPRINT is routed to a TEMPORARY or NEW dataset. Note that attribute

overriding is never allowed when SYSPRINT is routed to an existing or 0LD

dataset and that it is always allowed when SYSPRINT is routed to SYSOUT.

Also note that support for this new environment variable is only temporary.

Starting with LE 1.10Z this environment variable will be ignored. Affected

programs and JCL will need to be changed or the UNDEFINEDFILE condition will

be raised.

Run-time option considerations

The HEAPPOOLS option cannot be used in mixed old and new PL/I code if the

old PL/I code tries to free storage allocated by new PL/I code.

Condition handling considerations

For the purposes of condition handling you must consider old PL/I programs and

Enterprise PL/I programs as separate languages. Both old PL/I and Enterprise PL/I

have their own signature CSECTs (CEESG010 for OS PL/I and PL/I for MVS &

VM and CEESG011 for VisualAge PL/I and Enterprise PL/I), and separate

run-time libraries in Language Environment.

This implies that when software conditions are raised in a PL/I source program on

one side (either old or new PL/I) and is expected to be handled by a PL/I source

program on the other side (new PL/I if it was raised in old PL/I, or old PL/I if it

was raised in new PL/I), the program that is supposed to handle the exception

will not even know about it because it uses a completely separate run-time library

than the program that raised the condition.

Hardware conditions (such as ZERODIVIDE) have a better chance of being

handled correctly across the old PL/I/new PL/I boundary because Language

Environment gets involved and bridges the gap between the two separate PL/I

run-time libraries.

Chapter 18. Adding Enterprise PL/I programs to existing PL/I applications 133

Partitioning PL/I source programs into units of execution

You will need to partition your PL/I source programs into units of execution to

accommodate the restrictions on mixing and condition handling between old and

new PL/I modules as described above.

Careful attention must be paid when partitioning your PL/I source programs into

units of execution. Your goal is to contain any restrictions on mixing old and new

PL/I modules within the boundaries of the units of execution that you define. For

example, if Program A defines a CONTROLLED EXTERNAL variable and Program

B references this variable and Program B also creates a file variable that it shares

with Program C, then all three Programs A, B, and C must be compiled with

Enterprise PL/I in order to work correctly.

Finally, note that when mixing old and new code, you must pay attention to the

differences between how the new and old compilers handle various language

constructs, as described in Chapter 13, “Understanding when working code must

be changed,” on page 101.

134 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 19. Moving from VisualAge PL/I or Enterprise PL/I

V3R1, V3R2, V3R3, V3R4, V3R5, V3R6 or V3R7 to Enterprise

PL/I V3R8

This book concentrates on the migration effort in moving from OS PL/I or PL/I

for MVS & VM to Enterprise PL/I V3R8. If you have already moved to VisualAge

PL/I, Enterprise PL/I V3R1, V3R2, V3R3, V3R4, V3R5, V3R6 or V3R7, migration to

Enterprise PL/I V3R8 will be relatively easy.

This chapter focuses on differences in the compiler options and in the compiler

messages, but there are two other differences in the compiler output that may

affect users of earlier release of Enterprise PL/I:

v Listings will now include 7 columns for the line number in a file

v The MAP output will now also include a list in order of storage offset (per

block) of the AUTOMATIC storage used by the block

v The length of the mnemonic field in the assembler listing has been increased to

allow for better support of the new z/OS instructions that have long

mnemonics.

v More of the right margin is used in the attributes, cross-reference and message

listings.

v there have been some small changes in the SYSADATA produced by the

compiler

– the chaining of the procedure records and their associated statements has

been changed so that the block structure of a compilation is readily

determined (more details are available in the appendix in the Programming

Guide)

– the edition and sysadata level numbers have been updated (and these values

could be used to allow code to handle both the old and new chaining of the

procedure recodes)

Migrating from VisualAge PL/I

There have been some important changes since VisualAge PL/I:

v The LRECL for the compiler SYSPRINT dataset is now 137.

v The defaults have been changed for the following compiler options to::

– ARCH(2)

– BACKREG(5)

– BIFPREC(15)

– CMPAT(V2)

– CSECT

– EXTRN(FULL)

– FLOAT(AFP)

– LIMITS(EXTNAME(7))

– NORENT

– TUNE(3)

There have also been smaller changes to the set of compiler options:

v The OFFSET option now has the same meaning it had in the compilers before

VisualAge PL/I: specifying it will now cause the compiler to produce a

statement offset table.

© Copyright IBM Corp. 1999, 2008 135

v The FLAG option now has the same meaning it had in the compilers before

VisualAge PL/I. The new MAXMSG option now controls the behavior that the

FLAG option controlled under VisualAge PL/I.

v The new USAGE option now controls some of the behavior that the

RULES(IBM/ANS) option controlled under VisualAge PL/I.

Migrating from Enterprise PL/I V3R1

There have been some important changes since Enterprise PL/I V3R1:

v The LRECL for the compiler SYSPRINT dataset is now 137.

v The defaults have been changed for the following compiler options to::

– ARCH(2)

– BACKREG(5)

– BIFPREC(15)

– CMPAT(V2)

– CSECT

– FLOAT(AFP)

– EXTRN(FULL)

– LIMITS(EXTNAME(7))

– NORENT

– TUNE(3)

There have also been some smaller changes to the set of compiler options:

v The OFFSET option now has the same meaning it had in the compilers before

VisualAge PL/I: specifying it will now cause the compiler to produce a

statement offset table.

v The FLAG option now has the same meaning it had in the compilers before

VisualAge PL/I. The new MAXMSG option now controls the behavior that the

FLAG option controlled under Enterprise PL/I V3R1.

v The new USAGE option now controls some of the behavior that the

RULES(IBM/ANS) option controlled under Enterprise PL/I V3R1.

Migrating from Enterprise PL/I V3R2

There have been some important changes since Enterprise PL/I V3R2:

v The defaults have been changed for the following compiler options to:

– BACKREG(5)

– BIFPREC(15)

– EXTRN(FULL)
v Unless you explicitly used these options when compiling with V3R2, you should

now compile with the following options:

– BACKREG(11)

– BIFPREC(31)

– EXTRN(SHORT)

Migrating from Enterprise PL/I V3R3

While Enterprise PL/I V3R8 contains some new options and some old options

with new suboptions, the defaults for these new options and suboptions will make

the compiler produce executable code that is compatible with the code produced

by the Enterprise PL/I V3R3 compiler - with one exception:

v an undocumented feature of the DISPLAY(STD) compiler option was that it also

effectively turned on the STDSYS option.

136 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v the DISPLAY(STD) compiler option no longer has any effect on the STDSYS

option.

So, if you use the default options, you can freely mix code compiled with V3R3

and V3R8. Hence, if you are moving from V3R3 to V3R8, you do not have to

recompile all your code. Even if you are moving from V3R2 to V3R8, you do not

need to recompile all your code as long as you heed the warnings in the previous

section about the BACKREG, BIFPREC and EXTRN options.

There are some differences in the listing, however:

v the listing will always include any options specified at compile-time as well as

those specified at install-time (and in z/OS UNIX, those specified via the options

environment variable)

v the assembler listing will, with V3R4, appear to be shifted one column in

comparison to a listing produced by the earlier Enterprise compilers.

v the column in the assembler listing that holds that line number will now display

6 instead of 5 digits

v there will be a line after the code for each procedure (or begin block) that will

give the offset of the start of the procedure from the start of the module - this

will make it much easier to convert between block offsets and module offsets

v the output of the STORAGE option has been reformatted to be a little nicer

Also, even if you use the defaults for the new options and suboptions, the V3R4

compiler may issue messages where the earlier Enterprise compilers did not issue

any messages. For example, the V3R4 compiler will flag the misuse of RETURN

statements while the previous Enterprise compilers would flag this misuse only if

the RULES(NOLAXLINK) option were in effect.

Of course, if you turn on some of the new RULES suboption, for example by

specifying RULES(NOLAXSEMI) or RULES(NOLAXINOUT), the V3R4 compiler

will also issue messages where the earlier Enterprise compilers did not issue any

messages.

Migrating from Enterprise PL/I V3R4

While Enterprise PL/I V3R8 contains some new options and some old options

with new suboptions, the defaults for these new options and suboptions will make

the compiler produce executable code that is compatible with the code produced

by the Enterprise PL/I V3R4 (or V3R3) compiler - with one exception:

v an undocumented feature of the DISPLAY(STD) compiler option was that it also

effectively turned on the STDSYS option.

v the DISPLAY(STD) compiler option no longer has any effect on the STDSYS

option.

So, if you use the default options, you can freely mix code compiled with V3R4

and V3R8. Hence, if you are moving from V3R4 (or V3R3) to V3R8, you do not

have to recompile all your code.

Even if you are moving from V3R2 to V3R8, you do not need to recompile all your

code as long as you heed the warnings in the previous section about the

BACKREG, BIFPREC and EXTRN options.

V3R5 also changed how the compiler behaved when you specify the PP option

more than once. Previous to V3R5, the last specification would replace any

Chapter 19. Moving from earlier VisualAge or Enterprise PL/I to Enterprise PL/I V3R8 137

previous specification, but with V3R5, the option is, additive (as are the RULES

and other options). So, if you specify PP(CICS) PP(SQL), it is the same as if you

specify PP(CICS SQL).

V3R5 also stopped support for these compiler options:

v BLOCKEDIO

v INCLUDE

Migrating from Enterprise PL/I V3R5

While Enterprise PL/I V3R8 contains some new options and some old options

with new suboptions, the defaults for these new options and suboptions will make

the compiler produce executable code that is compatible with the code produced

by the Enterprise PL/I V3R5 (or V3R3 or V3R4) compiler - with one exception:

v an undocumented feature of the DISPLAY(STD) compiler option was that it also

effectively turned on the STDSYS option. The DISPLAY(STD) compiler option no

longer has any effect on the STDSYS option.

So, if you use the default options, you can freely mix code compiled with V3R5

and V3R8. Hence, if you are moving from V3R5 (or V3R4 or V3R3) to V3R8, you

do not have to recompile all your code.

Even if you are moving from V3R2 to V3R8, you do not need to recompile all your

code as long as you heed the warnings in the previous section about the

BACKREG, BIFPREC and EXTRN options.

V3R6 also made these changes to the compiler options:

v the ARCH default is now 5

v the ARCH option now accepts 7 as an architecture level

v the CEESTART option is now supported

v the PPCICS, PPINCLUDE, PPMACRO and PPSQL options are now supported

v the TEST option now accepts SEPNAME as a suboption

v the TUNE default is now 5

v the TUNE option now accepts 7 as an architecture level

Note that under V3R6, the default for CEESTART option was CEESTART(LAST).

This will make the compiler place the CEESTART CSECT at the end of its

generated object deck. While this is required if you are using linker CHANGE

cards, it is different than what was done under earlier releases of the compiler.

Moreover, if you do not use an ENTRY CEESTART linker card when binding your

objects, this will cause your code to behave incorrectly. Most customers will

probably prefer to use the CEESTART(FIRST) option.

Migrating from Enterprise PL/I V3R6

While Enterprise PL/I V3R8 contains some new options and some old options

with new suboptions, the defaults for these new options and suboptions will make

the compiler produce executable code that is compatible with the code produced

by the Enterprise PL/I V3R6 (or V3R3 or V3R4 or V3R5) compiler - with two

exceptions:

v an undocumented feature of the DISPLAY(STD) compiler option was that it also

effectively turned on the STDSYS option. The DISPLAY(STD) compiler option no

longer has any effect on the STDSYS option.

138 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v The default for the CEESTART compiler option has been changed to FIRST. This

makes the compiler order the CEESTART CSECT in the same way as it did

under V3R3 and V3R4 (but not the same as it did under V3R6 when the default

was LAST).

So, with the above caveats, if you use the default options, you can freely mix code

compiled with V3R6 and V3R8. Hence, if you are moving from V3R6 (or V3R5 or

V3R4 or V3R3) to V3R8, you do not have to recompile all your code.

Even if you are moving from V3R2 to V3R8, you do not need to recompile all your

code as long as you heed the warnings in the previous section about the

BACKREG, BIFPREC and EXTRN options.

V3R7 also made these changes to the compiler options:

v the ARCH option now no longer accepts a value smaller than 5

v the new MAXNEST option may flag some old code if its has too-deep nesting of

DO, IF or PROCEDURE statements

v the TUNE option now no longer accepts a value smaller than 5

V3R7 also introduced, as described in the Programming Guide, some new options

and added suboptions to some old options, but the defaults for these will make the

compiler produce the same code as under the V3R6 and earlier compilers. The new

options are:

v MAXNEST

v QUOTE

The options with new suboption are:

v CODEPAGE

v FLOAT

v RULES

v TEST

v XML

Finally, Enterprise PL/I previously supported a ″fast″ version of some of the

mathematical built-in functions (such as COS). These versions had no error

checking and were useful, if at all, only on hardware where there were

corresponding machine instructions. Documentation for the following list of these

built-in functions has been removed, and support will be removed in a future

release.

v ACOSF

v ASINF

v ATANF

v COSF

v EXPF

v LOGF

v LOG10F

v SINF

v TANF

Chapter 19. Moving from earlier VisualAge or Enterprise PL/I to Enterprise PL/I V3R8 139

Migrating from Enterprise PL/I V3R7

The V3R8 compiler, like the V3R7 compiler, must be installed in a PDSE. Also (and

again like the V3R7 compiler), the LE runtime option XPLINK must be ON

whenever you invoke the compiler. If you invoke the compiler under batch via

IBMZPLI or under Unix System Servies via the pli command, the compiler itself

will insure that it runs with XPLINK(ON). But if you are invoking the compiler in

some other fashion, you must insure that XPLINK(ON) is in effect.

Because of the new V3 suboption to CMPAT, some of the message inserts

generated by the Enterprise PL/I V3R8 compiler will be 8-byte integers of type

FIXED BIN(63). This change should have no effect unless you have written your

own routine to be invoked by the compiler EXIT option. In this case, if you have a

SELECT statement for the possible types of message inserts, you would probably

have to add a new WHEN clause to that SELECT statement.

While Enterprise PL/I V3R8 contains some new options and some old options

with new suboptions, the defaults for these new options and suboptions will make

the compiler produce executable code that is compatible with the code produced

by the Enterprise PL/I V3R7 (or V3R3 or V3R4 or V3R5 or V3R6) compiler.

So, with the above caveats, if you use the default options, you can freely mix code

compiled with V3R7 and V3R8. Hence, if you are moving from V3R7 (or V3R6 or

V3R5 or V3R4 or V3R3) to V3R8, you do not have to recompile all your code.

Even if you are moving from V3R2 to V3R8, you do not need to recompile all your

code as long as you heed the warnings in the previous section about the

BACKREG, BIFPREC and EXTRN options.

V3R8 also introduced, as described in the Programming Guide, some new options

and added suboptions to some old options, but the defaults for these will make the

compiler produce the same code as under the V3R8 and earlier compilers. The new

options are:

v DDSQL

v GOFF

v HGPR

v LISTVIEW

The options with new suboption are:

v ARCH

v CMPAT

v DECIMAL

v DEFAULT

v RULES

v TEST

v TUNE

v USAGE

In brief, the changes to these options are:

v ARCH supports 8 as a suboption

v CMPAT supports V3 as a suboption

v DECIMAL support (NO)FOFLONMULT as a suboption

140 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v DEFAULT supports (NO)NULLSTRADDR as a suboption

v RULES supports (NO)LAXENTRY as a suboption

v TEST dropped the AFTERMACRO, etc options since they moved to the new

LISTVIEW option

v TUNE supports 8 as a suboption

v USAGE supports HEX and SUBSTR as suboptions

The V3R8 compiler also dropped support for the SCHEDULER option.

In V3R7, the documentation for the following built-in funcstions was removed, and

with V3R8, they are no longer supported.

v ACOSF

v ASINF

v ATANF

v COSF

v EXPF

v LOGF

v LOG10F

v SINF

v TANF

Compiler messages introduced by V3R4

The following are new messages introduced with V3R4. Many of these messages

will be produced only when certain compiler options are in effect. For an exact and

a fuller explanation, see the Messages and Codes manual.

v IBM2165: flags use of NOWRITABLE(PRV) with LIMITS(EXTNAME(n)) if n is

bigger than 7

v IBM2166: flags use of NOWRITABLE(PRV) with RENT

v IBM2167: flags use of NOWRITABLE(PRV) with CMPAT(LE)

v IBM2170: flags too many instances of INTERNAL CONTROLLED

v IBM2171: flags any FETCHABLE ENTRY declared at the PACKAGE level if the

NOWRITABLE option is in effect

v IBM2172: flags any FILE CONSTANT declared at the PACKAGE level if the

NOWRITABLE option is in effect

v IBM2173: flags any CONTROLLED VARIABLE declared at the PACKAGE level

if the NOWRITABLE option is in effect

v IBM2174: flags REPLACEBY2 built-in function references where the result would

be longer than CHAR(32767)

v IBM2175: flags REPLACEBY2 built-in function references where the second and

third arguments are not restricted expressions

v IBM2176: flags HEX and HEXIMAGE built-in function references where the

result would require more than 32767 characters

v IBM2402: flags the declaration of one variable as based on the address of a

second variable when the second variable is not large enough to contain the first

variable

v IBM2403: flags the use of *PROCESS statements

Chapter 19. Moving from earlier VisualAge or Enterprise PL/I to Enterprise PL/I V3R8 141

v IBM2404: flags the declaration of one variable as based on the address of a

second variable when the structure containing the second variable is not large

enough to contain the first variable

v IBM2405: flags declares and built-in functions that specify an even FIXED DEC

precision

v IBM2406: flags arithmetic precision specified in a DEFAULT statement but

outside of a VALUE clause

v IBM2407: flags string length specified in a DEFAULT statement but outside of a

VALUE clause

v IBM2408: flags AREA size specified in a DEFAULT statement but outside of a

VALUE clause

v IBM2409: flags RETURN; statements in functions

v IBM2410: flags the lack of any RETURN statements inside a function

v IBM2411: flags STRING of GRAPHIC aggregates that contain VARYING strings

or NONCONNTECT array slices

v IBM2412: flags RETURN statements that specify an expression if the containing

PROCEDURE statement does not specify the RETURNS option

v IBM2413: flags use of CONNECTED apart from on parameters and in descriptor

lists

v IBM2604: flags FIXED DEC assignments that could raise SIZE

v IBM2605: flags invalid carriage control characters

v IBM2607: flags PIC to FIXED DEC assignments that could raise SIZE

v IBM2608: flags PIC to PIC assignments that could raise SIZE

v IBM2609: flags semicolons in comments

v IBM2610: flags MULTIPLY, DIVIDE, ADD and SUBTRACT built-in function

references where one operand is FIXED DEC and the other is FIXED BIN or

FLOAT

v IBM2611: flags duplicate binary or bit WHEN values and identifies the duplicate

value

v IBM2612: flags duplicate character WHEN values and identifies the duplicate

value

v IBM2613: flags possibly uninitialized scalars used as ASGN BYADDR arguments

v IBM2614: flags expressions where the results of two compares are compared

v IBM2801: flags any arithmetic operation where one operand is FIXED BIN with

zero scale factor and the other is FIXED DEC with non-zero scale factor, thus

producing a FIXED BIN result with non-zero scale factor

v IBM2802: flags aggregate mapping done by library call

v IBM2803: flags statements where GET/PUT STRING EDIT has been optimized

v IBM2804: flags suboptimal compares

v IBM3270: flags EXEC CICS statements when the CICS option is not in effect

v IBM3271: flags EXEC CSPM statements when the CSPM option is not in effect

v IBM3272: flags EXEC DLI statements when the DLI option is not in effect

Compiler messages introduced by V3R5

The following are new messages introduced with V3R5. Many of these messages

will be produced only when certain compiler options are in effect. For an exact and

a fuller explanation, see the Messages and Codes manual.

v IBM2177: flags using a PDS member as the SYSADATA dataset

142 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v IBM2178: flags %INCLUDE statements when the LINEDIR option is in effect

v IBM2179: flags %LINE directives that are too large for the margins

v IBM2416: flags using the LINEDIR option with the TEST(SEPARATE) option

v IBM2417: flags ALLOCATE and FREE of non-PARAMETER CONTROLLED in

FETCHABLE using PRV

v IBM2418: flags unreferenced variables

v IBM2615: flags one-time DO loops

v IBM2616: flags use of SIZE against CHAR(*) NONVARYING parameter in an

OPTIONS(NODESCRIPTOR) procedure

v IBM2617: flags passing a label as a parameter to a non-PL/I routine

v IBM2618: flags invalid suboptions of compiler suboptions

v IBM2805: flags conversions done by library call when the target can be named

v IBM2806: flags passing a label as a parameter

v IBM2809: flags implicit FIXED DEC to 8-byte integer conversions

v IBM2810: flags difference in conversion of scaled FIXED BIN to FIXED DEC

Compiler messages introduced by V3R6

The following are new messages introduced with V3R6. Many of these messages

will be produced only when certain compiler options are in effect. For an exact and

a fuller explanation, see the Messages and Codes manual.

v IBM2180: flags use of KEYED DIRECT files without a KEY/KEYFROM clause

v IBM2181: flags invalid first argument to PICSPEC

v IBM2182: flags invalid second argument to PICSPEC

v IBM2183: flags mismatching arguments in PICSPEC

v IBM2619: flags unreferenced INCLUDE files

v IBM2620: flags structure assignments that would alter REFER objects

v IBM2811: flags use of PICTURE as a loop control variable

Compiler messages introduced by V3R7

The following are new messages introduced with V3R7. Many of these messages

will be produced only when certain compiler options are in effect. For an exact and

a fuller explanation, see the Messages and Codes manual.

v IBM2184: flags source files with too many lines

v IBM2185: flags invalid arguments to ISFINITE etc

v IBM2186: flags DFP arguments to SQRTF etc

v IBM2187: flags DFP literals with too large exponents

v IBM2188: flags DFP literals with too small exponents

v IBM2420: flags FLOAT(DFP) without ARCH(7)

v IBM2421: flags CLOSE of a file in its ENDFILE block

v IBM2422: flags use of HEX attribute with FLOAT DEC under FLOAT(DFP)

v IBM2423: flags use of IEEE attribute with FLOAT DEC under FLOAT(DFP)

v IBM2424: flags scale factors in FLOAT declarations

v IBM2425: flags ELSE-IF statements when RULES(NOELSEIF) applies

v IBM2426: flags excessive nesting of DO statements

v IBM2427: flags excessive nesting of IF statements

v IBM2428: flags excessive nesting of BEGIN/PROC statements

Chapter 19. Moving from earlier VisualAge or Enterprise PL/I to Enterprise PL/I V3R8 143

v IBM2621: flags ON ERROR blocks not starting with ON ERROR SYSTEM

v IBM2622: flags use of function to set the initial value in a DO loop

v IBM2623: flags mixing of FLOAT DEC and FIXED BIN under DFP

v IBM2624: flags mixing of FLOAT DEC and BIT under DFP

v IBM2625: flags mixing of FLOAT DEC and FLOAT BIN under DFP

v IBM2626: flags SUBSTR where third argument is 0

v IBM2627: flags REFER structures not supported by XINFO(XMI)

v IBM2628: flags BYVALUE parameters larger than 32 bytes

v IBM2629: flags variables for which no symbol table information is generated

v IBM2812: flags use of AUTO (and STATIC) variables as tables in TRANSLATE

and VERIFY

v IBM3325: flags %DECLARE without any data attributes

v IBM3820: flags invalid use under INCONLY suboption of PP(MACR0) of

INCLUDE or XINCLUDE as a macro procedure name

v IBM3821: flags invalid use under INCONLY suboption of PP(MACR0) of

INCLUDE or XINCLUDE as a macro statement label

v IBM3822: flags invalid use under INCONLY suboption of PP(MACR0) of

INCLUDE or XINCLUDE as a macro variable name

Compiler messages introduced by V3R8

The following are new messages introduced with V3R8. Many of these messages

will be produced only when certain compiler options are in effect. For an exact and

a fuller explanation, see the Messages and Codes manual.

v IBM2189: flags arrays with bounds greater than 2G-1

v IBM2190: flags arrays with bounds less than -2G

v IBM2191: flags OR, NOT or QUOTE with no valid characters

v IBM2192: flags invalid PLISAXC event structures

v IBM2193: flags invalid PLISAXC event structures

v IBM2194: flags invalid PLISAXC event structures

v IBM2195: flags invalid PLISAXC event structures

v IBM2196: flags invalid PLISAXC event structures

v IBM2197: flags invalid arguments to some UTF functions

v IBM2198: flags invalid arguments to some UTF functions

v IBM2199: flags code generation without XPLINK(ON)

v IBM2429: flags CMPAT(V3) without LIMITS(FIXEDBIN(*,63))

v IBM2430: flags mismatches between LINESIZE and RECSIZE

v IBM2431: flags options invalid with GOFF

v IBM2432: flags INITIAL with PARAMETER

v IBM2433: flags INITIAL with DEFINED

v IBM2434: flags unprototyped ENTRYs under RULES(NOLAXENTRY)

v IBM2630: flags operations producing FIXED(p,q) with q larger than p

v IBM2631: flags built-in functions mixing FIXED DEC and FLOAT BIN

v IBM2632: flags built-in functions mixing FIXED DEC and FLOAT DEC

v IBM2633: flags POINTER or OFFSET variables based on FIXED BIN variables

v IBM2634: flags FIXED BIN variables based on POINTER or OFFSET variables

v IBM2814: flags allocations where an aggregate is mapped via a library call

144 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Object compatibility

If you want to maintain object compatibility with code generated by VisualAge

PL/I or earlier Enterprise PL/I releases, it is imperative that you use, with this

Enterprise PL/I release, the same value from each of the following set of options

that you used with the earlier compiler:

v BACKREG(5) or BACKREG(11)

v BIFPREC(15) or BIFPREC(31)

v CMPAT(V2) or CMPAT(V1) or CMPAT(LE)

v CSECT or NOCSECT

v LIMITS(EXTNAME(n))

v NORENT or RENT

v WRITABLE or NOWRITABLE

The PTF for APAR PQ66252 changed VisualAge PL/I 2.2.1 (and corresponding

PTFs changed Enterprise PL/I 3.1 and 3.2) so that the results of conversions of

FLOAT to FIXED DEC and PICTURE would match those produced by the old

compilers.

This can cause a small difference in some conversions. For example given:

 dcl f float dec(16);

 dcl d2 dec(15,2);

 f = 1.4417e+04;

 f = f / 100;

 d2 = f;

all the compilers will now assign the value 144.17 to d2, while before this PTF, the

new compilers would have assigned the value 144.16 to d2.

With APAR PK17575 (which applied to V3R3, V3R4, and V3R5), the compiler

generated code will set a flag in the CAA if MAIN contains an ON FINISH block.

With a corresponding library APAR, the library will check for this flag and unless

it is on, it will not raise FINISH. This pair of changes can yield signicificant

performance improvements. However, this alsos means that once you apply this

library APAR, you must recompile any old Enterprise PL/I objects that have an

ON FINISH block or else the ON FINISH block will not be entered.

Apart from these changes, there is complete object compatibility between code

compiled by the Enterprise PL/I V3R2 compiler and code compiled by either the

VisualAge PL/I or the Enterprise PL/I V3R1 compiler as long as you adhere to

these limitations:

v you must not mix code compiled with different CMPAT options

v you may mix RENT and NORENT code subject to the same restrictions as

before:

– code compiled with RENT cannot be mixed with code compiled with

NORENT if they share any EXTERNAL STATIC variables

– code compiled with RENT cannot call an ENTRY VARIABLE set in code

compiled with NORENT

– code compiled with RENT cannot call an ENTRY CONSTANT that was

FETCHed in code compiled with NORENT

– code compiled with RENT can FETCH a module containing code compiled

with NORENT if one of the following is true

Chapter 19. Moving from earlier VisualAge or Enterprise PL/I to Enterprise PL/I V3R8 145

- all the code in the FETCHed module was compiled with NORENT

- the code containing the entry point to the module was compiled with

RENT
– code compiled with NORENT code cannot FETCH a module containing any

code compiled with RENT

– code compiled with NORENT WRITABLE cannot be mixed with code

compiled with NORENT NOWRITABLE if they share any external

CONTROLLED variables or any external FILEs

It remains our recommendation that all code be compiled with the same settings

for the RENT/NORENT and WRITABLE/NOWRITABLE options.

Run-time changes

Finally, the only change to the run-time (apart from bug fixes and performance

enhancements) that affects the behavior of your code is that the SIZE condition is

no longer promoted to the ERROR condition if unhandled.

However, some of the compiler changes made in V3R5, V3R6 and V3R7 require

corresponding library changes. So, if you are using V3R5, V3R6 or V3R7 compiled

code, you must have the PTFs for these APARs installed:

v PQ97843 - for support of TEST(NOHOOK)

v PQ98938 - for support of less code for REFER

v PK03093 - for support of DebugTool starting after MAIN

v PK04110 - for support of PLITABS

v PK11161 - for support of alternate packed decimal signs in FIXED DEC(31)

operations

v PK12504 - for support of the DB2 date-time patterns

v PK12833 - for support of TEST(SEPARATE)

v PK50199 - for support of Turkish code pages

v PK50714 - for support of ONOFFSET built-in function

v PK50715 - for support of DFP built-in functions PRED, SUCC etc

v PK50717 - for support of DFP conversions via library code

v PK50718 - to report DFP setting in PLIDUMP output

v PK68704 - for support of the PLISAXC and ONLINE built-in functions

v PK68705 - for support of the UTF handling built-in functions

v PK68708 - for support of the DFP math built-in functions and CMPAT(V3)

146 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Part 5. Subsystem and other language considerations

© Copyright IBM Corp. 1999, 2008 147

148 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 20. Assembler considerations for PL/I applications

This chapter contains information for applications that contain mixed PL/I

programs and assembler programs. It includes information on:

v Considerations for assembler programs mimicking PL/I main procedures

v Calling PL/I from assembler and Language Environment conforming assembler

v Condition handling and assembler programs

v Considerations for using assembler user exits

The new compiler uses some different internal control blocks in its generated code

than did the old compiler. If you had assembler code that knew the layout and

meaning of such control blocks, that code is highly likely not to work now and

will probably have to be changed. Some examples where where these differences

would require code changes:

v assembler code that ″knows″ the layout of a PL/I label variable and uses that to

try to branch back from assembler into PL/I code

v assembler code that ″knows″ the layout of a PL/I file variable and associated file

control block and uses that to try to get the DCB for a file

Considerations for assembler programs mimicking PL/I main

procedures

If you have an assembler program mimicking a PL/I MAIN procedure you must

convert that assembler program to an Language Environment-conforming

assembler program that is MAIN.

An assembler program that is not LE-conforming cannot call a non-MAIN PL/I

procedure (unless it was called from a PL/I MAIN procedure).

For more information on this topic, refer to z/OS Language Environment

Programming Guide.

Calling PL/I from assembler and Language Environment conforming

assembler

With Language Environment, assembler programs that call a PL/I routine must

follow the calling conventions defined by Language Environment. For example,

Register 13 pointing to a save area, save areas properly back-chained, and the first

word of the save area being zero. For detailed information, see the z/OS Language

Environment Programming Guide.

If your PL/I main program is called by an assembler program and you want to

convert your assembler program to use Language Environment-conforming

assembler, you must either:

v Recompile your PL/I program with a newer PL/I compiler without

OPTIONS(MAIN), or

v Ensure the entry point receiving control is the real entry point of the PL/I

program.

© Copyright IBM Corp. 1999, 2008 149

In either case, the called PL/I program is treated as a subroutine. Either of these

programs run under the same Language Environment enclave where the assembler

program is the main program and the called PL/I program is a subroutine.

There are three ways Language Environment-conforming assembler can pass

control to an Enterprise PL/I subroutine:

1. Branch to a statically linked PL/I subroutine.

2. Use the Language Environment macro CEEFETCH to branch to a separately

linked Enterprise PL/I subroutine.

3. Use assembler instructions such as LOAD and BALR to a separately linked

Enterprise PL/I subroutine.

If you recompile PL/I subroutines that use method 1 or 2 with Enterprise PL/I

you don’t need to include CEESG011 with your assembler program. If your

assembler program uses instructions as described in method 3, you must always

include CEESG011 with your assembler program, even if you recompile your PL/I

subroutine with Enterprise PL/I.

Condition handling and assembler programs

The condition-handling behavior of the LINK from assembler is now clearly

defined. For detailed information, see z/OS Language Environment Programming

Guide.

Considerations for using assembler user exits

The only Assembler user exit supported by Enterprise PL/I is the Language

Environment user exit CEEBXITA. IBMBXITA and IBMFXITA are not supported.

For a detailed parameter description for CEEBXITA, see OS/390 Language

Environment Programming Guide..

Specific considerations

v The PL1DUMP, PLIDUMP or CEEDUMP file for the dump output is treated as a

process resource and must not be cleared during enclave termination.

v The OS PL/I abend exit IBMBEER is ignored under Language Environment. See

“Differences in Condition Handling” on page 37 for information on how to force

an abend under Language Environment.

For more information on assembler language user exits, see OS/390 Language

Environment Programming Guide..

150 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 21. CICS considerations for PL/I applications

This chapter explains the source language considerations for programs that run

under CICS. It describes the actions that you need to take for applications that use

either CICS source or Enterprise PL/I source and involve the following functions:

v General CICS considerations

v Compiler options for programs that run under CICS

v Linking CICS applications and run-time considerations

v Migrating to the integrated CICS preprocessor

General CICS considerations

The CICS Storage Protect facility was introduced under CICS 3.3. This provides

more data integrity and security for the application program and especially for the

entire CICS region. Because of the new feature, you might discover that some of

your successfully running PL/I applications start to fail with ASRA(0C4) abend

and the CICS message DFHSR0622.

If the above problem occurs in your PL/I applications, set the CICS system

initialization parameter RENTPGM=NOPROTECT. This sets the protection of the

user program in user key. The default for RENTPGM is PROTECT.

If PUT statements are used in your Enterprise PL/I CICS application, especially

the PUT DATA statement, it might trigger the above error.

Remember also that in CICS programs these PUT statements are intended for

debugging purposes only. They have a negative impact on performance, and we

recommend that you don’t use them in production programs.

If you mix old and new object code under CICS, you must adhere to all the rules

and restrictions described in “Object and load module considerations” on page 131.

Updating CICS System Definition (CSD) file

When you bring up a CICS region with Language Environment, you must ensure

the module names listed in Language Environment CEECCSD are defined in the

CSD. You can locate CEECCSD in SCEESAMP. If you use CICS Version 4

autoinstall facility, you do not need to define Language Environment modules

manually in the CSD.

In order to run a Enterprise PL/I CICS application, you need to define the

Enterprise PL/I member event handler CEEEV011 in the CICS CSD definition

table:

DEFINE PROGRAM(CEEEV011) GROUP(CEE) LANGUAGE(ASSEMBLER)

DEFINE PROGRAM(IBMPAM24) GROUP(CEE) LANGUAGE(ASSEMBLER)

In order to debug a PL/I transaction using Debug Tool, you need to define the

Debug Tool APIs in the CICS CSD definition table:

DEFINE PROGRAM(IBMPDAPI) GROUP(CEE) LANGUAGE(ASSEMBLER)

© Copyright IBM Corp. 1999, 2008 151

Macro-level interface

The CICS macro-level interface is not supported.

Compiler options for programs that run under CICS

The SYSTEM(CICS) or SYSTEM(MVS) option must be used when you compile

your CICS programs that are PL/I MAINs.

If a CICS program is to be reentrant (and most should be) and if it uses

CONTROLLED variables or FILEs, then it must also be compiled with the

NOWRITABLE option.

Linking CICS applications and run-time considerations

You are generally no longer required to take special action when you link an

Enterprise PL/I object module under CICS with the exception that for a routine

that is to be FETCHed, you must code the linkage editor ENTRY statement so that

it nominates the actual entry point.

PDSEs are supported by CICS Transaction Server 1.3 or later. Please refer to the

CICS Transaction Server for OS/390 Release Guide, GC34-5701, where there are

several references to PDSEs, and a list of prerequisite APAR fixes.

Error-handling

LE prohibits the use of the following EXEC CICS commands in any PL/I ON-unit

or in any code called from a PL/I ON-unit.

v EXEC CICS ABEND

v EXEC CICS HANDLE AID

v EXEC CICS HANDLE ABEND

v EXEC CICS HANDLE CONDITION

v EXEC CICS IGNORE CONDITION

v EXEC CICS POP HANDLE

v EXEC CICS PUSH HANDLE

All other EXEC CICS commands are allowed within an ON-unit. However, they

must be coded using the NOHANDLE option, the RESP option or the RESP2

option.

FETCHing a PL/I MAIN procedure

CICS does not support PL/I FETCHing a PL/I MAIN procedure.

Run-time output

When a program is compiled with DISPLAY(STD), all run-time output is

transmitted to a CICS transient data queue CESE.

When a program is compiled with DISPLAY(WTO), the DISPLAY output is routed

to the CICS JESLOG. All other run-time output is transmitted to a CICS transient

data queue CESE.

Language Environment ignores the MSGFILE option under CICS. Figure 2 on page

153 shows format of the output data queue.

152 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

In addition, the PL/I transient queues CPLI and CPLD are no longer used. As a

result, you do not need to specify entries for the CPLI and CPLD in the CICS

Destination Control Table (DCT).

Abend codes used by PL/I under CICS

The APLx abend codes that were issued under OS PL/I Version 2 are no longer

issued. Instead, Language Environment-defined abend codes are issued. For more

information about Language Environment abend codes, see z/OS Language

Environment Run-Time Messages.

Migrating to the integrated CICS preprocessor

When you are developing programs for execution under CICS, all the EXEC CICS

commands must be translated in one of two ways:

v by the command language translator provided by CICS in a job step prior to the

PL/I compilation

v by the PL/I CICS preprocessor as part of the PL/I compilation (this requires

CICS TS 2.2 or later)

To use the CICS preprocessor, you must also specify the PP(CICS) compile-time

option.

If your CICS program is a MAIN procedure, you must also compile it with the

SYSTEM(CICS) option. NOEXECOPS is implied with this option, and all

parameters passed to the MAIN procedure must be POINTERs.

If your CICS program includes any files or uses any macros that contain EXEC

CICS statements, you must also run the MACRO preprocessor before your code is

translated (in either of the ways described above). If you are using the CICS

preprocessor, you can specify this with one PP option as illustrated in the

following example:

 pp (macro(...) cics(...))

Finally, in order to use the CICS preprocessor, you must have the CICS

SDFHLOAD dataset as part of the STEPLIB DD for the PL/I compiler.

For more information about the integrated PL/I CICS preprocessor, refer to the

Enterprise PL/I for z/OS Programming Guide.

┌────┬─────────┬───────────┬──┬───────────────┬──┬─────┐

│ │Terminal │Transaction│B │ DateTime │B │Data │

│ASA │ id │ id │ │ YYYYMMDDHHMMSS│ │ │

│ │ │ │ │ │ │ │

└────┴─────────┴───────────┴──┴───────────────┴──┴─────┘

Figure 2. CESE output data queue

Chapter 21. CICS considerations for PL/I applications 153

154 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 22. IMS considerations for PL/I applications

This chapter explains the considerations for running Enterprise PL/I programs that

use IMS under Language Environment. The following topics are discussed:

v Interfaces to IMS

v SYSTEM(IMS) compile-time option

v PLICALLA support in IMS

v PSB language options supported

v Storage usage considerations

v Coordinated condition handling under IMS

v Performance enhancement with Library Retention (LRR)

Interfaces to IMS

Language Environment supports the PLITDLI, ASMTDLI, and EXEC DLI interfaces

from a PL/I routine. It also supports CEETDLI interface from a Enterprise PL/I

routine running under IMS/ESA® Version 4.

Under Language Environment, CEETDLI is the recommended interface. CEETDLI

supports calls that use an Application Interface Block (AIB) or a Program

Communication Block (PCB). For more information about AIB and a complete

description of the CEETDLI interface, see IMS/ESA Version 4 Application

Programming Guide.

SYSTEM(IMS) compile-time option

The SYSTEM(IMS) option should be used when compiling all PL/I MAIN

programs invoked from IMS.

When you recompile your main procedure with Enterprise PL/I, the object module

assumes that the parameters are passed as BYVALUE. Language Environment

converts the parameters to the BYVALUE style for you, if necessary, so the

parameters are always passed correctly.

If the BYADDR attribute is specified or implied for the parameters to an IMS

MAIN routine, when you compile your main procedure with Enterprise PL/I, you

will receive an error message and the compiler will apply the BYVALUE attribute

instead.

Refer to the Enterprise PL/I for z/OS Programming Guide for more information on the

SYSTEM(IMS) compile-time option.

PLICALLA support in IMS

The PL/I PLICALLA entry point is supported under Language Environment.

See “PLICALLA Considerations” on page 39 for details.

© Copyright IBM Corp. 1999, 2008 155

PSB language options supported

Language Environment supports PL/I applications with the following PSBGEN

LANG options in the supported releases of IMS:

IMS/ESA Version 4

Table 13 shows support for PSB LANG options in IMS/ESA Version 4 and

later releases.

 Table 13. PSB LANG options for IMS/ESA Version 4 and later

SYSTEM option Entry point LANG=

IMS CEESTART PLI or other values except

PASCAL

IMS PLICALLA PLI

MVS PLICALLA PLI

MVS CEESTART PLI

Other - - Illegal

Storage usage considerations

With IMS/ESA Version 3 Release 1 or later, the parameters passed to the IMS

interfaces are no longer restricted to the area below the 16M line. The parameters

will be above the 16M line if you observe the following rules:

v If the parameters passed to IMS are in CONTROLLED or BASED storage,

specify the ANYWHERE suboption of the HEAP run-time option.

v If the parameters passed to IMS are in AUTOMATIC storage, specify the

ANYWHERE suboption of the STACK run-time option.

v If the parameters passed to IMS are in STATIC storage, link the load module

with the AMODE(31) attribute.

Coordinated condition handling under IMS

Language Environment and IMS condition handling are coordinated, which means

that if a program interrupt or abend occurs when your application is running in an

IMS environment, the Language Environment condition manager is informed

whether the problem occurred in your application or in IMS. If the problem occurs

in IMS, Language Environment, as well as any invoked HLL-specific condition

handler, percolates the condition back to IMS.

With Language Environment run-time option TRAP(ON), Language Environment

continues to support coordinated condition handling for the PLITDLI and

ASMTDLI interface invoked from a PL/I routine.

With IMS/ESA Version 3 with PTF UN4928 or IMS/ESA Version 4, Language

Environment also supports the coordinated condition handling for CEETDLI,

CTDLI from a C routine, CBLTDLI from a COBOL program, AIBTDLI from a PL/I

program, and ASMTDLI from a non-PL/I program.

Note that if a program interrupt or abend occurs in your application outside of

IMS, or if a software condition of severity 2 or greater is raised outside of IMS, the

Language Environment condition manager takes normal condition handling actions

156 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

described in the z/OS Language Environment Programming Guide. In this case, in

order to give IMS a chance to do database rollback, you must do one of the

following:

v Resolve the error completely so that your application can continue.

v Issue a rollback call to IMS, and then terminate the application.

v Make sure that the application terminates abnormally by using the

ABTERMENC(ABEND) run-time option to transform all abnormal terminations

into system abends in order to cause IMS rollbacks.

v Make sure that the application terminates abnormally by providing a modified

assembler user exit (CEEBXITA) that transforms all abnormal terminations into

system abends in order to cause IMS rollbacks.

The assembler user exit you provide should check the return code and reason

code or the CEEAUE_ABTERM bit, and requests an abend by setting the

CEEAUE_ABND flag to ON, if appropriate. See the z/OS Language Environment

Programming Guide for details.

Performance enhancement with Library Retention (LRR)

If you use LRR, you can get an improvement in performance. See “Improving CPU

Utilization” on page 127 for details.

Chapter 22. IMS considerations for PL/I applications 157

158 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Chapter 23. DB2 Considerations for PL/I applications

This chapter explains the source language considerations for programs that run

with DB2. The following topics are discussed:

v General DB2 considerations

v Migrating to the integrated SQL preprocessor

General DB2 considerations

If you write a user-defined function in PL/I, DB2 passes some string-locator

descriptors to the PL/I procedure.

In order for such a program to run correctly under Enterprise PL/I, you must

compile the program with the CMPAT(V2) or CMPAT(V1) option.

Migrating to the integrated SQL preprocessor

The integrated PL/I SQL preprocessor approach eliminates the need for a separate

precompilation step with the DB2 precompiler in PL/I programs containing SQL

statements.

Note: You must have DB2 for OS/390 Version 7 Release 1 or later to use the SQL

preprocessor.

Note: The PL/I SQL Preprocessor currently does not support DBCS.

Programming and compilation considerations

When you use the PL/I SQL Preprocessor the PL/I compiler handles your source

program containing embedded SQL statements at compile time, without your

having to use a separate precompile step. Although the use of a separate

precompile step continues to be supported, use of the PL/I SQL Preprocessor is

recommended. Interactive debugging with Debug Tool is enhanced when you use

the PL/I SQL Preprocessor because you see only the SQL statements while

debugging (and not the generated PL/I source).

In addition, using the PL/I SQL Preprocessor lifts some of the DB2 precompiler’s

restrictions on SQL programs. When you process SQL statements with the PL/I

SQL Preprocessor, you can now

v use fully-qualified names for structured host variables

v include SQL statements at any level of a nested PL/I program, instead of in only

the top-level source file

v use nested SQL INCLUDE statements

The PL/I compiler listing includes the error diagnostics (such as syntax errors in

the SQL statements) that the PL/I SQL Preprocessor generates.

To use the PL/I SQL Preprocessor, you need to do the following things:

v Specify the following option when you compile your program

 PP(SQL(’options’))

© Copyright IBM Corp. 1999, 2008 159

This compiler option indicates that you want the compiler to invoke the PL/I

SQL preprocessor. Specify a list of SQL processing options in the parenthesis

after the SQL keyword. The options can be separated by a comma or by a space

but must be enclosed in single or double quotes.

For example, PP(SQL('DATE(USA),TIME(USA)') tells the preprocessor to use the

USA format for both DATE and TIME data types.

In addition, for LOB support you must specify the option

 LIMITS(FIXEDBIN(31,63) FIXEDDEC(31))

v Include DD statements for the following data sets in the JCL for your compile

step:

– DB2 load library (prefix.SDSNLOAD)

The PL/I SQL preprocessor calls DB2 modules to do the SQL statement

processing. You therefore need to include the name of the DB2 load library

data set in the STEPLIB concatenation for the compile step.

– Library for SQL INCLUDE statements

If your program contains SQL INCLUDE member-name statements that specify

secondary input to the source program, you need to include the name of the

data set that contains member-name in the SYSLIB concatenation for the

compile step.

– DBRM library

The compilation of the PL/I program generates a DB2 database request

module (DBRM) and the DBRMLIB DD statement is required to designate the

data set to which the DBRM is written.

– For example, you might have the following lines in your JCL:

//STEPLIB DD DSN=DSN710.SDSNLOAD,DISP=SHR

//SYSLIB DD DSN=PAYROLL.MONTHLY.INCLUDE,DISP=SHR

//DBRMLIB DD DSN=PAYROLL.MONTHLY.DBRMLIB.DATA(MASTER),DISP=SHR

FOR BIT DATA assignment notes

The old DB2 Precompiler services did not know about or handle CCSID values for

host variables. Because of this lack of knowledge, you could update FOR BIT

DATA columns with CHARACTER data.

The new DB2 V7.1 or later DB2 Precompiler services does know about CCSID

values and will assign them to host variables using the default CCSID value. This

will cause problems if you have code that updates FOR BIT DATA columns with

CHARACTER data. The integrated PL/I SQL preprocessor has created a new

option, CCSID0 / NOCCSID0 to handle these cases. The CCSID0 option, the

default, will cause a CCSID of 0 to be assigned to host variables allowing the

assignment of CHARACTER variables to FOR BIT DATA database columns.

 For more information about the integrated PL/I SQL preprocessor, refer to the

Enterprise PL/I for z/OS Programming Guide.

160 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Part 6. Appendixes

© Copyright IBM Corp. 1999, 2008 161

162 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Appendix A. Conversion and Migration Aids

This section describes the conversion and migration tools available for your

assistance during the actual conversion and migration activities. These tools are:

v OS PL/I Routine Replacement Tool

v OS PL/I V1R5.1 main load module ZAP

v OS PL/I Shared library replacement tool

v OS PL/I object module relinking tool - APARs PN69803

v EDGE Portfolio Analyzer

v Vendor products

OS PL/I Routine Replacement Tool

Language Environment does not support OS PL/I Version 1 Release 3.0 - 5.0 load

modules. For these load modules, you can do one of the following:

v Relink the object modules directly with Language Environment.

v Replace the library routines in the load module with the Language Environment

stubs.

Language Environment provides two samples, located in SCEESAMP, that replace

the library routines in your OS PL/I Version 1 Release 3.0 - 5.1 and Version 2 load

modules with corresponding Language Environment stubs. These samples contain

a list of linkage editor REPLACE control statements that replace each library

routine in your load module with the corresponding stub in Language

Environment and are described as follows:

v IBMWRLK is for MVS non-CICS and VM.

For MVS non-CICS, use it to replace OS PL/I V1R3.0 - V1R5.1 and V2 load

modules, both multitasking and nonmultitasking. It contains a CHANGE

statement to rename the OS PL/I HLL user exit IBMBINT to CEEBINT.

v IBMWRLKC is for CICS.

Use it to replace OS PL/I V1R3.0 - V1R5.1 and V2 load modules. It contains a

CHANGE statement to rename the OS PL/I HLL user exit IBMBINT to

CEEBINT and PLIMAIN to CEEMAIN. It also contains INCLUDE statements to

ensure the load module works under CICS.

The CICS macro language is not supported.

The MVS JCL example below shows the replacement of run-time library routines

from a user load module while retaining the user object module. In the example,

MYPDS.LOAD is the data-set name of a load module library that contains the load

module with the name MYLMOD.

//RELINK EXEC PGM=IEWL,PARM=’LIST,MAP,XREF,SIZE(3072K,4K)’,REGION=5M

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=CEE.V1R4M0.SCEELKED,DISP=SHR

//SAMPLIB DD DSN=CEE.V1R4M0.SCEESAMP,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,200))

//SYSLMOD DD DSN=MYPDS.LOAD,DISP=OLD

//SYSLIN DD *

 INCLUDE SAMPLIB(IBMWRLK)

 INCLUDE SYSLMOD(MYLMOD)

 NAME MYLMOD(R)

© Copyright IBM Corp. 1999, 2008 163

If you replace a load module under CICS, the CICS SDFHLOAD data set must be

specified in the SYSLIB.

OS PL/I Version 1 Release 5.1 main load module ZAP

Language Environment supports OS PL/I Version 1 Release 5.1 main load module

with the following restriction:

v If the main load module is for MVS non-Shared Library, non-CICS and

nonmultitasking, or VM, it must first be ZAPped with one of the Language

Environment-provided samples located in Language Environment SCEESAMP.

Detailed instructions for using the ZAP are provided in IBMRZAPM and

IBMRZAPV. The following describes each sample:

– IBMRZAPM for MVS non-Shared Library, non-CICS, nonmultitasking

The ZAPped main load module, including one that contains the OS PL/I fast

initialization and termination feature, continues to run under OS PL/I Version

1 Release 5.1 and Version 2. When the ZAPped main load module contains

the OS PL/I fast initialization and termination feature, it always dynamically

loads the OS PL/I run-time initialization routine IBMBPIIA once. IBMBPIIA is

not deleted until the task terminates. This one-time loading of IBMBPIIA

might affect the performance of your application. If you put IBMBPIIA in

LPA, the performance effect can be minimized.

The ZAPped main load module is supported by Language Environment

unless the load module contains the OS PL/I fast initialization and

termination feature. Language Environment always dynamically loads the

initialization and termination routines. If you put the Language Environment

library routines and CEEBLIIA in LPA(E) as recommended in z/OS Language

Environment Installation and Customization under OS/390 and z/OS Language

Environment Customization, the performance effect can be minimized.

– IBMRZAPV for VM

The ZAPped main load module is not supported under OS PL/I Version 1

Release 5.1 or Version 2. It is supported only under Language Environment.

If you do not ZAP your main load module, read “OS PL/I Routine Replacement

Tool” on page 163 to understand what else you can do. You can also recompile

your application with Enterprise PL/I or OS PL/I Version 2. See Chapter 7, “Object

and Load Module Considerations,” on page 49 to understand how Language

Environment supports OS PL/I object and load modules.

The sample ZAP is available in the IBM Support Center for customers who do not

have Language Environment but want to prepare to migrate to Language

Environment.

OS PL/I Shared library replacement tool

In order to support OS PL/I Version 1 Release 5.1 and Version 2 load modules that

use the Shared Library, the library module in that Shared Library must be replaced

with Language Environment stubs.

Language Environment provides the following two sample JCL, located in

SCEESAMP, to replace the Shared Library:

v IBMRLSLA for OS PL/I Version 1 Release 5.1 MVS CICS or multitasking and OS

PL/I Version 2 Shared Library

164 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

v IBMRLSLB for OS PL/I Version 1 Release 5.1 MVS non-CICS nonmultitasking

Shared Library

You must understand how Language Environment supports OS PL/I Shared

Library before you use the JCL.

OS PL/I Object Module Relinking Tool - APAR PN69803

OS PL/I Version 2 Release 3 provides APAR PN69803 help you migrate your

PL/I-COBOL ILC applications and PLISRTx applications.

ILC Applications

Language Environment does not support the OS PL/I-COBOL ILC applications.

You must relink any OS PL/I object module in a PL/I-COBOL ILC application. See

“Differences in Interlanguage Communication Support” on page 45 for ILC

support under Language Environment. If you relink your OS PL/I object module

in the PL/I-COBOL ILC application with PN69803, however, the resultant load

module is supported by Language Environment. PN69803 provides you the

flexibility to prepare the PL/I-COBOL ILC relinking while you are using OS PL/I

Version 2 Release 3. When you complete the relinking, you can switch to Language

Environment whenever you are ready.

Before you relink your PL/I-COBOL ILC applications with PN69803, you must first

apply the following PL/I-COBOL ILC APARs to PL/I and COBOL:

 OS PL/I V2R3 common library: PN36844

 VS COBOL II V1R3.0 library: PN13459

 VS COBOL II V1R3.1 library: PN04721

 VS COBOL II V1R3.2 library: PN09732

Note: VS COBOL II V1R4.0 has the above COBOL APARs in its base code.

If you have not applied the above APARs, PN69803 will not work. The above

APARs are not required if your applications do not contain PL/I-COBOL ILC.

Even though your PL/I-COBOL ILC applications are relinked with PN69803, you

might still be required to link them with Language Environment if they contain a

function described in this book or in COBOL for OS/390 & VM Migration Guide that

requires relinking. For example, you will still have to relink your application if it

contains any COBOL NORES or the load module contains an OS PL/I object

module that is not supported by Language Environment. In the latter case, you

must recompile your OS PL/I object module with Enterprise PL/I or OS PL/I

Version 2.

PLISRTx Applications

While OS PL/I applications that use PLISRTx are supported by Language

Environment for OS/390 & VM Release 1.4 and later, we recommend that you

relink your applications that use PLISRTx. See “Differences in PLISRTx Support”

on page 42 for the reasons. The recommended relinking can be done either with

Language Environment or with PN69803 on OS PL/I Version 2 Release 3. Either

method gives your load module the benefits of exploiting the Language

Environment DFSORT interface support.

Appendix A. Conversion and Migration Aids 165

EDGE Portfolio Analyzer

The Edge Portfolio Analyzer helps you to take an inventory of your existing OS

PL/I and PL/I for MVS & VM load modules. The Edge Portfolio Analyzer can:

v Determine which version and release of the OS PL/I compiler or the PL/I for

MVS & VM compiler created the load module

v Determine which compiler options were specified when the load module was

compiled

v Determine which load modules call for the current system date

v Determine which CSECTs need to be replaced

Note: The Edge Portfolio Analyzer is no longer sold by IBM, but you can still

purchase the product from Edge directly. For more information you can visit

their Web site at: www.edge-information.com

Vendor products

A number of non-IBM conversion tools are available to help you upgrade your

source programs to Enterprise PL/I programs and move to Language

Environment. IBM has compiled a list of vendor products enabled to work with

Language Environment and Enterprise PL/I in the Language Environment Enabled

Vendor Tools and Application Packages document. You can get this information: on the

Web at http://www.ibm.com/s390/le then go to the Library link.

166 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Appendix B. Compiler elements comparison

Enterprise PL/I has renamed its parts so that, if you want to, you can install it in

the same SMP/E zone as OS PL/I or PL/I for MVS & VM. To help you identify

the elements of each product, the following table lists the name differences:

 Table 14. PL/I element names

OS PL/I PL/I for MVS & VM Enterprise PL/I

IEL0AA IEL1AA IBMZPLI

IKJEN00n IEL1IKJn

IEL0nn IEL1nn IBMZnn

PLInnnnn IEL1Mnnn IBMZMnnn

PLIXnnn IEL1nnn IBMZnnn

PLIHELP IEL1PLIH --

© Copyright IBM Corp. 1999, 2008 167

168 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Appendix C. Compiler option comparison

This appendix briefly describes which compiler options are available in the OS

PL/I PL/I for MVS & VM, VisualAge PL/I and Enterprise PL/I compilers.

Important

For complete descriptions of the Enterprise PL/I options, see the Enterprise

PL/I for z/OS Programming Guide.

 Table 15. Compiler option comparison

Option

Available in

Abbreviated option description OS PL/I

PL/I for

MVS &

VM

VisualAge

PL/I

Enterprise

PL/I

AGGREGATE

NOAGGREGATE

X X X X Creates an aggregate length table that gives

the lengths of arrays and major structures.

ARCH X X Specifies the architecture for which the

executable program’s instructions are to be

generated.

ATTRIBUTES

NOATTRIBUTES

X X X X Specifies that the compiler includes a table of

source-program identifiers and their

attributes in the compiler listing.

BACKREG X Controls the backchain register

BIFPREC X Controls the precision of the FIXED BIN

result returned by various built-in functions.

BLANK X Specifies up to ten alternate symbols for the

blank character.

BLKOFF

NOBLKOFF

X Controls whether the offsets shown in the

psuedo-assembler listing are from the start of

the current module or from the start of the

current procedure.

CEESTART X Specifies whether the compiler should place

the CEESTART csect before or after all of the

other generated object code.

CHECK X X Alters the behavior of the ALLOCATE and

FREE statements.

CMPAT X X X X Controls object compatibility between

releases of PL/I.

CODEPAGE X Specifies the code page used for conversions

between CHARACTER and WIDECHAR and

used by the PLISAX built-in subroutines.

COMMON X Directs the compiler to generate CM linkage

records for EXTERNAL STATIC variables.

COMPACT X Influences the size and speed of code that the

compiler generates.

© Copyright IBM Corp. 1999, 2008 169

Table 15. Compiler option comparison (continued)

Option

Available in

Abbreviated option description OS PL/I

PL/I for

MVS &

VM

VisualAge

PL/I

Enterprise

PL/I

COMPILE

NOCOMPILE

X X X X Controls whether the compiler stops or

continues when it produces a message of the

specified severity.

COPYRIGHT

NOCOPYRIGHT

X Places a string in the object module, if

generated.

CSECT

NOCSECT

X X Controls the generation of named CSECTs.

CSECTCUT X Controls how the compiler, when processing

the CSECT option, handles long names.

CONTROL X X Specifies that any compile-time options

deleted for your installation are available for

this compilation.

CURRENCY X X Allows you to specify an alternate character

for the dollar sign.

DBCS

NODBCS

X Ensures that the listing, if generated, is

sensitive to the possible presence of DBCS

even though the GRAPHIC options has not

been specified.

DD X X Allows you to specify alternate DD names

for the compiler listing, the primary source

file, the default include dataset and the

MDECK dataset.

DDSQL X Allows you to specify alternate DD names

for the dataset to be used by the SQL

preprocessor when resolving EXEC SQL

INCLUDE statements.

DECIMAL X Specifies how the compiler should handle

certain FIXED DECIMAL operations and

assignments.

DECK

NODECK

X X Specifies that the compiler produces an object

module in the form of 80-character records

and store it in the SYSPUNCH dataset.

DEFAULT X X Specifies defaults for attributes.

DISPLAY X X Determines where output of the DISPLAY

statement is directed.

DLLINIT

NODLLINIT

X X Applies OPTIONS(FETCHABLE) to all

external procedures that are not MAIN.

ESD

NOESD

X X Specifies that the external symbol dictionary

(ESD) is listed in the compiler listing.

EXIT

NOEXIT

X X Enables the compiler user exit to be invoked.

EXTRN X X Controls when EXTRNs are emitted for

external entry constants.

FLAG X X X X Specifies the minimum severity of error that

requires a message listed in the compiler

listing.

170 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Table 15. Compiler option comparison (continued)

Option

Available in

Abbreviated option description OS PL/I

PL/I for

MVS &

VM

VisualAge

PL/I

Enterprise

PL/I

FLOAT X X Controls the use of additional floating-point

registers.

FLOATINMATH X Specifies the precision that the compiler

should use when invoking the mathematical

built-in functions.

GOFF

NOGOFF

X Instructs the compiler to produce an object

file in the Generalized Object File Format.

GONUMBER

NOGONUMBER

X X X X Specifies that the compiler produces

additional information that allows line

numbers for the source program to be

included in run-time messages.

GOSTMT

NOGOSTMT

X X Specifies that the compiler produces

additional information that allows statement

numbers for the source program to be

included in run-time messages.

GRAPHIC

NOGRAPHIC

X X X X Specifies that the source program can contain

double-byte characters.

HGPR

NOHGPR

X Specifies that the compiler is permitted to

exploit 64-bit General Purpose Registers

(GPRs) in 32-bit programs targeting

z/Architecture hardware.

IMPRECISE

NOIMPRECISE

X X Specifies that the compiler includes extra text

in the object module to localize imprecise

interrupts when executing the program with

an IBM System/390 Model 165 or 195.

INCAFTER X X Specifies a file to be included after a

particular statement in your source program.

INCDIR X X Includes a directory in the search path for the

location of include files.

INCLUDE X X X Specifies the file name extensions under

which include files are searched.

INCPDS X Specifies a PDS from which the compiler will

include files when compiling a program

under z/OS UNIX.

INITAUTO X Directs the compiler to add an INITIAL

attribute to any AUTOMATIC variable

declared without an INITIAL attribute.

INITBASED X Directs the compiler to add an INITIAL

attribute to any BASED variable declared

without an INITIAL attribute.

INITCTL X Directs the compiler to add an INITIAL

attribute to any CONTROLLED variable

declared without an INITIAL attribute.

INITSTATIC X Directs the compiler to add an INITIAL

attribute to any STATIC variable declared

without an INITIAL attribute.

Appendix C. Compiler option comparison 171

Table 15. Compiler option comparison (continued)

Option

Available in

Abbreviated option description OS PL/I

PL/I for

MVS &

VM

VisualAge

PL/I

Enterprise

PL/I

INSOURCE

NOINSOURCE

X X X X Specifies that the compiler should include a

listing of the source program before the PL/I

macro preprocessor translates it.

INTERRUPT

NOINTERRUPT

X X X X Causes the compiled program to respond to

attention requests (interrupts).

LANGLVL X X X X Specifies the level of PL/I language

definition that you want the compiler to

accept.

LIMITS X X Specifies implementation limits for

EXTERNAL name, FIXED DECIMAL,

SIGNED FIXED BINARY, and NAME in your

source program.

LINECOUNT X X X X Specifies the number of lines per page for

compiler listings, including blank and

heading lines.

LINEDIR

NOLINEDIR

X Specifies that the compiler should accept

&LINE directives.

LIST

NOLIST

X X X X Provides a psuedo-assembler listing.

LISTVIEW X Specifies whether the compiler should show

the source in the source listing or whether it

should show the source after it has been

processed by one or more of the

preprocessors.

LMESSAGE

SMESSAGE

X X Produce messages in a long form (specify

LMESSAGE) or in a short form (specify

SMESSAGE).

MACRO

NOMACRO

X X X X Invokes the MACRO preprocessor.

MAP

NOMAP

X X X X Specifies that the compiler produces

additional information that can be used to

locate static and automatic variables in

dumps.

MARGINI

NOMARGINI

X X X X Provides a specified character in the column

preceding the left-hand margin, and also in

the column following the right-hand margin,

of the listings produced by the INSOURCE

and SOURCE options.

MARGINS X X X X Specifies which part of each compiler input

record contains PL/I statements, and the

position of the ANS control character that

formats the listing.

MAXMEM X X When compiling with OPTIMIZE, this option

limits the amount of memory used for local

tables of specific, memory intensive

optimizations to the specified number of

kilobytes.

172 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Table 15. Compiler option comparison (continued)

Option

Available in

Abbreviated option description OS PL/I

PL/I for

MVS &

VM

VisualAge

PL/I

Enterprise

PL/I

MAXMSG X Specifies the maximum number of messages

with a given severity (or higher) that the

compilation should produce.

MAXNEST X Specifies the maximum nesting of various

kinds of statements that should be allowed

before the compiler flags your program as

too complex.

MAXSTMT X Under the MAXSTMT option, optimization

will be turned off for any block that has

more than the specified number of

statements.

MAXTEMP X Determines when the compiler flags

statements using an excessive amount of

storage for compiler-generated temporaries.

MDECK

NOMDECK

X X X X Specifies that the preprocessor produces a

copy of its output.

NAMES X X Specifies the extralingual characters that are

allowed in identifiers.

NAME

NONAME

X X X X Specifies that the TEXT file created by the

compiler will contain a NAME record.

NATLANG X Specifies the ″language″ for compiler

messages, headers, etc.

NEST

NONEST

X X X X Specifies that the listing resulting from the

SOURCE option indicates the block level and

the do-group level for each statement.

NOT X X X Specifies up to seven alternate symbols that

can be used as the logical NOT operator.

NUMBER

NONUMBER

X X X X Specifies that statements in the source

program are to be identified by the line and

file number of the file from which they

derived.

OBJECT

NOOBJECT

X X X X Specifies that the compiler creates an object

module.

OFFSET

NOOFFSET

X X X Specifies that the compiler is to print a table

of line numbers for each procedure and

BEGIN block with their offset addresses

relative to the primary entry point of the

procedure.

OPTIMIZE

NOOPTIMIZE

X X X X Specifies the type of optimization required.

OPTIONS

NOOPTIONS

X X X X Specifies that the compiler includes a list

showing the compile-time options to be used

during this compilation in the compiler

listing.

OR X X X Specifies up to seven alternate symbols as the

logical OR operator.

Appendix C. Compiler option comparison 173

Table 15. Compiler option comparison (continued)

Option

Available in

Abbreviated option description OS PL/I

PL/I for

MVS &

VM

VisualAge

PL/I

Enterprise

PL/I

PP

NOPP

X X Specifies which (and in what order)

preprocessors are invoked prior to

compilation.

PPCICS

NOPPCICS

X Specifies options to be passed to the CICS

preprocessor if it is invoked.

PPINCLUDE

NOPPINCLUDE

X Specifies options to be passed to the

INCLUDE preprocessor if it is invoked.

PPMACRO

NOPPMACRO

X Specifies options to be passed to the MACRO

preprocessor if it is invoked.

PPSQL

NOPPSQL

X Specifies options to be passed to the SQL

preprocessor if it is invoked.

PPTRACE

NOPPTRACE

X X Specifies that, when a deck file is written for

a preprocessor, every nonblank line in that

file is preceded by a line containing a %LINE

directive.

PRECTYPE X Determines how the compiler derives the

attributes for the MULTIPLY, DIVIDE, ADD

and SUBTRACT built-in functions when the

operands are FIXED and at least one is

FIXED BIN.

PREFIX X X Enables or disables the specified PL/I

conditions in the compilation unit being

compiled without you having to changed the

source program.

PROCEED

NOPROCEED

X X Stops the compiler after processing by a

preprocessor is completed depending on the

severity of messages issued by previous

preprocessors.

PROCESS X Determines if *PROCESS statements are

allowed and, if they are allowed, if they are

written to the MDECK file.

QUOTE X Specifies up to seven alternate symbols that

can be used as the quote character.

REDUCE

NOREDUCE

X Specifies that the compiler is permitted to

reduce an assignment of a null string to a

structure into a simple copy operation - even

if that means padding bytes might be

overwritten.

RENT

NORENT

X X Specifies that the compiler is to take code

that is not naturally reentrant and make it

reentrant. compiler listing.

RESEXP

NORESEXP

X Controls whether the compiler is permitted

to evaluate all restricted expressions at

compile-time.

RESPECT X X Causes the compiler to honor any

specification of the DATE attribute and to

apply the DATE attribute to the result of the

DATE built-in function.

174 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Table 15. Compiler option comparison (continued)

Option

Available in

Abbreviated option description OS PL/I

PL/I for

MVS &

VM

VisualAge

PL/I

Enterprise

PL/I

RULES X X Allows certain language capabilities and lets

you choose semantics when alternatives are

available.

SEMANTIC

NOSEMANTIC

X X Specifies that the execution of the compiler’s

semantic checking stage depends on the

severity of messages issued prior to this

stage of processing.

SEQUENCE

NOSEQUENCE

X X Defines the section of the input record from

which the compiler takes the sequence

numbers.

SERVICE

NOSERVICE

X Places a string in the object module, if

generated.

SIZE X X Limits the amount of main storage the

compiler uses.

SOURCE

NOSOURCE

X X X X Specifies that the compiler includes a listing

of the source program in the compiler listing.

SPILL X Specifies the size of the spill area to be used

for the compilation.

STATIC X Controls whether INTERNAL STATIC

variables are retained in the object module

even if unreferenced.

STDSYS

NOSTDSYS

X Specifies that the compiler should cause the

SYSPRINT file to be equated to the C stdout

file.

STMT

NOSTMT

X X X Specifies that statements in the source

program are to be counted and that this

″statement number″ is used to identify

statements in the compiler listing.

STORAGE

NOSTORAGE

X X X X Determines whether or not the compiler

produces a report in the listing that gives the

approximate amount of stack storage used by

each block in your program.

STRINGOFGRAPHIC X Determines whether the result of the STRING

built-in function when applied to a

GRAPHIC aggregate has the attribute

CHARACTER or GRAPHIC.

SYNTAX

NOSYNTAX

X X X X Specifies that the compiler continues into

syntax checking after preprocessing.

SYSPARM X X Allows you to specify the value of the string

that is returned by the macro facility built-in

function SYSPARM.

SYSTEM X X X X Specifies the format used to pass parameters

to the MAIN PL/I procedure, and generally

indicates the host system under which the

program runs.

Appendix C. Compiler option comparison 175

Table 15. Compiler option comparison (continued)

Option

Available in

Abbreviated option description OS PL/I

PL/I for

MVS &

VM

VisualAge

PL/I

Enterprise

PL/I

TERMINAL

NOTERMINAL

X X X X Determines whether or not diagnostic and

information messages produced during

compilation are displayed on the terminal.

TEST

NOTEST

X X X X Specifies the level of testing capability that

the compiler generates as part of the object

code.

TUNE X X Specifies the architecture for which the

executable program will be optimized.

USAGE X Lets you choose IBM or ANS semantics for

the ROUND and UNSPEC built-in functions.

WIDECHAR X X Specifies the format in which WIDECHAR

data will be stored.

WINDOW X X Sets the value for the window argument used

in various date-related built-in functions.

WRITABLE

NOWRITABLE

X Specifies that the compiler may treat static

storage as writable.

XINFO X X Specifies that the compiler should generate

additional files with extra information about

the current compilation unit.

XML X Allows the choice of the case of the names in

the XML generated by the XMLCHAR

built-in function.

XREF

NOXREF

X X X X Provides a cross-reference table of names

used in the program.

176 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Appendix D. Compiler limit comparison

The following table lists the compiler implementation limits for OS PL/I, PL/I for

MVS & VM, VisualAge PL/I, and Enterprise PL/I.

 Table 16. Language element limits

Language

Element

Description OS PL/I PL/I for

MVS&VM

VisualAge

PL/I

Enterprise

PL/I

Arrays Maximum

number of

dimensions

for an array

15 15 15 15

Minimum

lower bound

-2147483648 -2147483648 -2147483648 -2147483648

Maximum

upper bound

+2147483647 +2147483647 +2147483647 +2147483647

Structures Maximum

number of

levels in a

structure

15 15 15 15

Maximum

level-number

in a structure

255 255 255 255

Arithmetic

Precisions

Maximum

precision for

FIXED DEC

15 15 31 31

Maximum

precision for

FIXED

BINARY

31 31 63 63

Maximum

precision for

FLOAT DEC

33 33 33 33

Maximum

precision for

FLOAT

BINARY

109 109 109 109

Maximum

scale factor

for FIXED

data

127 127 127 127

Minimum

scale factor

for FIXED

data

-128 -128 -128 -128

© Copyright IBM Corp. 1999, 2008 177

Table 16. Language element limits (continued)

Language

Element

Description OS PL/I PL/I for

MVS&VM

VisualAge

PL/I

Enterprise

PL/I

String and

AREA

Variables or

Constants

Maximum

length of

CHARACTER

32767 32767 32767 32767

Maximum

length of BIT

32767 32767 32767 32767

Maximum

length of

GRAPHIC

16383 16383 16383 16383

Maximum

length of

WIDECHAR

n/a n/a 16383 16383

Maximum

size of AREA

2147483647 2147483647 2147483647 2147483647

Built-In

Functions

Maximum

number of

arguments to

the IAND,

IOR, MAX,

and MIN

functions

64 64 64 64

178 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Table 16. Language element limits (continued)

Language

Element

Description OS PL/I PL/I for

MVS&VM

VisualAge

PL/I

Enterprise

PL/I

Program Size Maximum

length of an

identifier

31 31 100 100

Maximum

number of

procedures in

a program

255 255 255 255

Maximum

number of

DEFAULT

statements in

a block

31 31 31 31

Maximum

nesting of

%INCLUDE

statements

8 8 2046 2046

Maximum

number of

lines in any

source file

65,535 65,535 1048575 1048575

Maximum

number of

statements

32,767 32,767 16777215 16777215

Maximum

number of

LIKE-
attributes in a

block

63 63 63 63

Maximum

number of

output

expressions in

a data-list

60 60 60 60

Maximum

number of

repetitive

DO-

specifications

in a data-list

25 25 50 50

Appendix D. Compiler limit comparison 179

Table 16. Language element limits (continued)

Language

Element

Description OS PL/I PL/I for

MVS&VM

VisualAge

PL/I

Enterprise

PL/I

Program Size Maximum

size of a data

aggregate

containing no

unaligned

bits

2147483648 2147483648 2147483647 2147483647

Maximum

size of a data

aggregate

containing

some

unaligned

bits

268435455 268435455 268435455 268435455

Maximum

number of

arguments in

a CALL or

function

reference

64 64 255 255

Maximum

number of

parameters

for a

procedure

64 63 4095 4095

Maximum

nesting of

factored

attributes

15 15 15 15

Maximum

nesting of

BEGIN and

PROCEDURE

statements

42 42 30 30

Maximum

nesting of

DO-groups

38 38 49 49

Maximum

nesting of IF

statements

80 80 49 49

Maximum

nesting of

SELECT-
statements

50 50 49 49

Maximum

length of

%NOTE

message

256 256 32767 32767

180 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Table 16. Language element limits (continued)

Language

Element

Description OS PL/I PL/I for

MVS&VM

VisualAge

PL/I

Enterprise

PL/I

Miscellaneous Maximum

number of

picture

characters in

a character

picture

511 511 511 511

Maximum

number of

bytes in a

numeric

picture

256 256 253 253

Maximum

number of

numeric

picture

characters in

a numeric

picture

15 15 31 31

Maximum

length for a

KEYTO

character

string

120 120 120 120

Maximum

length for a

KEYTO

graphic or

widechar

string

60 60 60 60

Maximum

KEY length

8 8 32763 32763

Maximum

line size for

LINESIZE

32,000 32,000 32,000 32,759 for

F-format or

U-format,

and 32,751

for V-format

Minimum

line size for

LINESIZE

10 10 1 1

Maximum

page size for

PAGESIZE

32,000 32,000 32,767 32,767

Appendix D. Compiler limit comparison 181

Table 16. Language element limits (continued)

Language

Element

Description OS PL/I PL/I for

MVS&VM

VisualAge

PL/I

Enterprise

PL/I

Miscellaneous Minimum

page size for

PAGESIZE

1 1 1 1

Maximum

size of

DISPLAY

character

string

126 126 126 126

Maximum

DISPLAY

reply

message.

72 72 72 72

182 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Appendix E. Batch processing sample

The following code samples show how to implement a ’batch compiler’ with

Enterprise PL/I.

 batch: proc options(main);

 dcl eof bit(1);

 dcl rc fixed bin(15);

 dcl system builtin;

 dcl source char(80);

 dcl sysutz file output record sequential

 env(fb,recsize(80));

 dcl compin file input record sequential;

 dcl plixopt ext static char(40) var

 init(’errcount(0),heap(2m,1m,any,free)’);

 open file(compin);

 rc = 0;

 eof = ’0’b;

 data_read = ’0’b;

 on endfile(compin) eof = ’1’b;

 data_read = ’0’b;

 open file(sysutz);

 read file(compin) into(source);

 do while(eof = ’0’b);

 if substr(source,1,8) = ’*PROCESS’ then

 if data_read then

 do;

 close file(sysutz);

 rc = max(rc, system(’ibmzpli @dd:options’));

 data_read = ’0’b;

 open file(sysutz);

 end;

 else;

 else

 data_read = ’1’b;

 write file(sysutz) from(source);

 read file(compin) into(source);

 end;

 close file(sysutz);

 rc = max(rc, system(’ibmzpli @dd:options’));

 call pliretc(rc);

 end;

This program when compiled and linked could be used as a ″batch compiler″ if the

following JCL were used when the program is run.

 //SYSPRINT DD SYSOUT=*

 //OPTIONS DD *

 dd(*,sysutz) name

 limits(extname(7)) norent cmpat(v2)

 //COMPIN DD *

 *PROCESS X(F);

 x: proc;

 dcl a ext char(80);

© Copyright IBM Corp. 1999, 2008 183

end;

 *PROCESS NORENT;

 y: proc;

 dcl b ext char(40);

 end;

 //SYSLIN DD DSN=...,DISP=(MOD)

 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,

 // SPACE=(1024,(200,50),,CONTIG,ROUND),DCB=BLKSIZE=1024

 //SYSUTZ DD DSN=&&SOURCE,DISP=(NEW),UNIT=SYSSQ,

 // SPACE=(CYL,(3,1))

The first line in the OPTIONS DD specifies the DD(*,SYSUTZ) and NAME and is

necessary to make the program work as a batch compiler. The second line is used

merely as an example.

184 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Appendix F. Debugging tool comparison

Debug Tool is a program analyzer that runs within Language Environment and

supports a number of high level languages, including Enterprise PL/I.

For Enterprise PL/I, Debug Tool is orderable as a feature of the compiler.

Differences between debugging tools

IBM Debug Tool is the interactive debugger that supports PL/I and Language

Environment. Debug Tool functions are equivalent to PLITEST functions. Some

names of PLITEST commands, however, have changed in Debug Tool and are no

longer accepted. These are listed in Table 17.

You must have Language Environment for OS/390 & VM Release 4 or later

installed on your system before you can use Debug Tool with your OS PL/I

applications.

 Table 17. PLITEST Commands and Their Debug Tool Equivalents

PLITEST Command Equivalent Debug Tool Command

CLEAR ON CLEAR AT OCCURENCE

LIST %FPRS LIST SHORT FLOATING

LIST %LPRS LIST LONG FLOATING

LIST %GPRS LIST REGISTERS

LIST SNAP LIST CALLS

MOVECURS CURSER

ON AT OCCURENCE

QUERY AT LIST AT

QUERY ATTRIBUTES DESCRIBE ATTRIBUTES

QUERY BEARINGS QUERY LOCATION

QUERY ENVIRONMENT DESCRIBE ENVIRONMENT

QUERY MONITOR LIST MONITOR

QUERY NAMES 'pattern' LIST NAMES 'pattern'

QUERY NAMES PROCEDURE LIST PROCEDURE

QUERY PROGRAM DESCRIBE PROGRAM

QUERY STATEMENT NUMBERS LIST STATEMENT NUMBERS

SEARCH FIND

SET GRAPHIC SET DBCS

SET LANGUAGE SET NATIONAL LANGUAGE

SET LAST n SET HISTORY n

SET FILE SET LOG

SIGNAL (ON cond) PROGRAM TRIGGER (ON cond)

SIGNAL (ON cond) TEST TRIGGER AT OCCURENCE (ON cond)

SIGNAL (AT cond) TEST TRIGGER AT (AT cond)

© Copyright IBM Corp. 1999, 2008 185

Table 17. PLITEST Commands and Their Debug Tool Equivalents (continued)

PLITEST Command Equivalent Debug Tool Command

VTRACE STEP

WINDOWS LAYOUT

186 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Appendix G. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation

 J74/G4

 555 Bailey Avenue

 P.O. Box 49023

© Copyright IBM Corp. 1999, 2008 187

San Jose, CA 95161-9023

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

This book is intended to help the customer migrate from previous releases of PL/I

to Enterprise PL/I and z/OS Language Environment. This publication documents

intended Programming Interfaces that allow the customer to write programs to

obtain the services of Enterprise PL/I.

Trademarks

The following terms are registered trademarks or trademarks of the IBM

Corporation in the United States or other countries or both:

 IBM

The IBM logo

ibm.com

AIX

CICS

CICS/ESA

DB2

DFSMS

DFSORT

IMS

IMS/ESA

Language Environment

MVS

OS/390

RACF

System/390

VisualAge

z/OS

Windows is a trademark of Microsoft Corporation in the United States and/or

other countries.

188 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Appendix H. Bibliography

Enterprise PL/I publications

 Programming Guide, SC27-1457

 Language Reference, SC27-1460

 Messages and Codes, SC27-1461

 Compiler and Run-Time Migration Guide, GC27-1458

PL/I for MVS & VM

 Installation and Customization under MVS, SC26-3119

 Language Reference, SC26-3114

 Compile-Time Messages and Codes, SC26-3229

 Diagnosis Guide, SC26-3149

 Migration Guide, SC26-3118

 Programming Guide, SC26-3113

 Reference Summary, SX26-3821

z/OS Language Environment

 Concepts Guide, SA22-7567

 Debugging Guide, GA22-7560

 Run-Time Messages, SA22-7566

 Customization, SA22-7564

 Programming Guide, SA22-7561

 Programming Reference, SA22-7562

 Run-Time Application Migration Guide, GA22-7565

 Writing Interlanguage Communication Applications, SA22-7563

CICS Transaction Server

 Application Programming Guide, SC33-1687

 Application Programming Reference, SC33-1688

 Customization Guide, SC33-1683

 External Interfaces Guide, SC33-1944

DB2 UDB for OS/390 and z/OS

 Administration Guide, SC26-9931

 An Introduction to DB2 for OS/390, SC26-9937

 Application Programming and SQL Guide, SC26-9933

 Command Reference, SC26-9934

 Messages and Codes, GC26-9940

 SQL Reference, SC26-9944

DFSORT™

 Application Programming Guide, SC33-4035

 Installation and Customization, SC33-4034

© Copyright IBM Corp. 1999, 2008 189

IMS/ESA®

 Application Programming: Database Manager, SC26-8015

 Application Programming: Database Manager Summary, SC26-8037

 Application Programming: Design Guide, SC26-8016

 Application Programming: Transaction Manager, SC26-8017

 Application Programming: Transaction Manager Summary, SC26-8038

 Application Programming: EXEC DL/I Commands for CICS and IMS™, SC26-8018

 Application Programming: EXEC DL/I Commands for CICS and IMS Summary,

SC26-8036

z/OS MVS

 JCL Reference, SA22-7597

 JCL User’s Guide, SA22-7598

 System Commands, SA22-7627

z/OS UNIX System Services

 z/OS UNIX System Services Command Reference, SA22-7802

 z/OS UNIX System Services Programming: Assembler Callable Services Reference,

SA22-7803

 z/OS UNIX System Services User’s Guide, SA22-7801

z/OS TSO/E

 Command Reference, SA22-7782

 User’s Guide, SA22-7794

z/Architecture

 Principles of Operation, SA22-7832

Unicode® and character representation

 OS/390 Support for Unicode: Using Conversion Services, SC33-7050

190 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Index

A
abend codes

CICS considerations 57, 153

ABTERMENC run-time option 36, 123

ADDBUFF ENVIRONMENT option 64

ALL31 run-time option 36, 123, 127

AMODE(24)
link-edit considerations 121

mixing with 31-bit data 26

support 70

AMODE(31)
ALL31 considerations 36

APARs
Prerequisite LE 126

ARCH compiler option 135, 136

AREA
with INITIAL 116

array expressions restrictions 65

ASCII ENVIRONMENT option 64

ASMTDLI IMS interface 57, 155

assembler support
calling PL/I 124

IMS considerations 57, 156

invocation of PL/I 46, 149

invoking the compiler from 69

main parameter list 46

need to link CEESG011 124

PLIMAIN entry point 46

PLISTART entry point 46

user exits
specific considerations 150

B
BACKWARDS file attribute 64

batch compilation
example 183

restrictions 68

BUFFERS ENVIRONMENT option 64

BUFND ENVIRONMENT option 64

BUFNI ENVIRONMENT option 64

BUFOFF ENVIRONMENT option 64

built-in functions
DATE/TIME 42

math 125

over 100 new 8

restricted 66

with scaled FIXED BIN 118

C
CEEBXITA user exit 150

CEESTART
and PLICALLA 39

using 46

CEEUOPT
and PLICALLB 39

and run-time options 36

CICS considerations
abend codes used by PL/I 57, 153

CICS considerations (continued)
CSD file, updating 55, 151

discussion of 55, 151

dropping support for OS PL/I 5

error handling 55

integrated pr eprocessor 8

integrated preprocessor 153

invoking existing CICS

applications 32

linking Enterprise PL/I

applications 152

macro-level interface 56, 152

run-time output 56, 152

STACK run-time option, using 56

SYSTEM compiler option 152

CMPAT compiler option 74, 131, 135,

136

DB2 considerations 159

compatibility
compiler options

BIFPREC(15) 73

CMPAT(V*) 73

DFT(LINKAGE(SYSTEM)) 73, 77

DFT(NOBIN1ARG) 77

DFT(OVERLAP) 73, 77

EXTRN(FULL) 73, 75

LIMITS(EXTNAME(7)) 73, 75

NOREDUCE 73, 77

NORENT 73, 76

NORESEXP 73, 78

NOWRITABLE 78

RULES(LAXCTL) 73, 78

considerations
PLICALLA entry point 39

PLICALLB entry point 39

run-time options needed
ABTERMENC(RETCODE) 123

DEPTHCONDLMT(0) 123

ERRCOUNT(0) 123

TRAP(ON) 123

XUFLOW(ON) 123

compile unit definition 44

compiler advantages
FETCH 8

integrated preprocessors 8

multithreading, support of 8

new built-in functions 8

compiler limits 177

compiler messages
2603 90

EXIT option 100

IBM1044 87

IBM1053 87, 118

IBM1063 112

IBM1065 87

IBM1089 107

IBM1091 88

IBM1099 88

IBM1181 89

IBM1196 117

IBM1206 90

compiler messages (continued)
IBM1208 90

IBM1215 91

IBM1216 91

IBM1220 92, 107

IBM1927 92

IBM1936 70

IBM1948 93

IBM2063 82, 93

IBM2402 93

IBM2409 94

IBM2410 94

IBM2412 94

IBM2421 95

IBM2610 95

IBM2611 95

IBM2617 96

IBM2621 96

IBM2622 96

IBM2626 97

IBM2628 97

IBM2801 98

IBM2804 98

IBM2810 98

IBM2811 99

IBM2812 99

IBM5002 70

compiler options
ARCH 135, 136

BACKREG 73

BIFPREC 74

CMPAT 74, 131, 135, 136

compiler comparison 169

CSECT 135, 136

DEFAULT
LINKAGE 77, 131

NOBIN1ARG 77

NONASGN 79

NONCONNECTED 79

NOOVERLAP 80

OVERLAP 77, 131

REORDER 80

EXTRN 75, 131

FLAG 135, 136

FLOAT 135, 136

GONUMBER 86

LIMITS
EXTNAME 75, 131, 135, 136

MAXMSG 135, 136

NOREDUCE 77, 80

NORENT 76, 81, 131, 135, 136, 145

NOWRITABLE 76, 78, 146

OFFSET 135, 136

OPTIMIZE 80

PREFIX 86

REDUCE 80

RENT 76, 145

restricted 67

RULES 136

LAXCTL 78

LAXSTRZ 85

© Copyright IBM Corp. 1999, 2008 191

compiler options (continued)
RULES (continued)

NOLAXCTL 82

NOLAXDCL 83

NOLAXIF 83

NOLAXLINK 84

NOLAXMARGINS 84

NOMULTICLOSE 85

SYSTEM 76

TEST 86

TUNE 135, 136

unsupported 68

USAGE 136

WRITABLE 76, 146

compiler options restricted
INCLUDE 67

LANGLVL 67

LIST 67

STMT 67

SYSTEM 68

compiler options unsupported
CONTROL 68

COUNT 68

DECK 68

ESD 68

FLOW 68

GOSTMT 68

LMESSAGE 68

SEQUENCE 68

SIZE 68

SMESSAGE 68

compiler restrictions
array expressions 65

built-in functions 66

DBCS 67

DEFAULT statement 65

extents of automatic variables 66

iSUB defining 66

LABEL arrays 66

MACRO preprocessor 67

multitasking facility 42

OPTIONS(REENTRANT) 66

pseudovariables 66

RECORD I/O 64

STREAM I/O 64

structure expressions 65

VM 9

compiler support dropped
CHARSET(48) 63

CHECK 63

EGCS 63

Fortran 63

invalid code 63

multitasking 63

VM 9

condition handling
differences 37

IBMBXITA and IBMBEER

differences 38

IMS considerations 58, 156

severity differences 38

timing differences 37

U4039 differences 38

unhandled condition differences 38

conditions
ERROR 37

FIXEDOVERFLOW 104, 115

conditions (continued)
OVERFLOW 113

UNDERFLOW 36

ZERODIVIDE 113

considerations
before migrating 35

assembler 149

condition handling 37

DATE/TIME built-in functions 42

debugging tools 185

ILC differences 45

performance retuning 127

PLIDUMP 44

preinitialized program 41

run-time message 43

run-time options 35

storage report 45

storage use retuning 127

user return code 42

using sort program 42

installation
Enterprise PL/I 23

OS/390 requirements 7

product configuration 167

product configuration,

SCEELKED 7

product configuration,

SCEERUN 7

link-edit
CHANGE card 121

math routines 54

NCAL linkage editor option 53

PLICALLA and PLICALLB 121

symbol table 53

subsystem
CICS 55, 151

DB2 59, 159

IMS 57, 155

Considerations
Before Migrating

Run-time messages 124, 125

CONTROL compiler option 68

COUNT compiler option 68

COUNT run-time option 35, 123

CPU utilization, improving 127

CSD file, updating 55, 151

CSECT compiler option 135, 136

CSECTs
IDR information 17, 166

symbol table 53

D
data sets

load module considerations 49

new, OS/390 7

DATE/TIME built-in functions 42

DB2 considerations 59, 159

DBCS restrictions 67

SQL Preprocessor 159

Debug Tool 185

comparing with PLITEST 185

product relationships 7

debugging tools, differences in 185

DECK compiler option 68

DEFAULT compiler option
LINKAGE 77, 131

DEFAULT compiler option (continued)
NOBIN1ARG 77

NONASGN 79

NONCONNECTED 79

NOOVERLAP 80

OVERLAP 77, 108, 131

REORDER 80

DEFAULT statement restrictions 65

DEPTHCONDLMT run-time option 36,

123

DFSORT, using 42

dump differences 126

E
education

Enterprise PL/I 23

Language Environment 16

element names 166

elements 166

Enterprise PL/I for z/OS library xii

Enterprise PL/I library xii

ENVIRONMENT options not

supported 64

ERRCOUNT run-time option 36, 123

ERROR condition 37

error handling, CICS considerations 55

ESD compiler option 68

EXCLUSIVE file attribute 64

EXEC DLI interface 57, 155

EXEC SQL statements 159

EXTERNAL
uninitialized STATIC 110

EXTRN compiler option 75, 131

F
FETCH

compiler advantages 8

file attributes not supported
BACKWARDS 64

EXCLUSIVE 64

TRANSIENT 64

FIXED BIN
and FIXEDOVERFLOW 115

with precision <= 7 116

FIXEDOVERFLOW
and SIZE 104

restricted to FIXED DEC 115

FLAG compiler option 135, 136

FLOAT
assignments to FLOAT 108

FLOAT compiler option 135, 136

FLOW compiler option 68

FLOW run-time option 35, 123

G
GONUMBER compiler option 86

GOSTMT compiler option 68

H
HEAP run-time option 35, 123, 128

192 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

I
IBMBEER user exit

differences 38

installation considerations 150

IBMBXITA user exit 150

differences 38

IBMFXITA user exit 150

IBMRLSLx, replacing Shared

Library 164

IBMWRLKx, replacing library

routine 163

IEEE floating point
support of 8

ILC (interlanguage communication)
differences in 45

enabled languages 45

migration considerations 18

PLIXOPT considerations 36

implementation limits 177

IMS considerations
assembler language options

support 57, 156

condition handling 58, 156

discussion of 57, 155

interfaces 57, 155

interfaces to 57, 155

PLICALLA support 57, 155

PSB language options 57, 156

STEPLIB use and LE 19

storage usage 58, 156

SYSTEM compiler option 57, 155

INCLUDE compiler option 67

INDEXAREA ENVIRONMENT

option 64

installation
Language Environment 15

interlanguage communication (ILC)
differences in 45

enabled languages 45

introduction
PL/I run-time environment 8

ISAINC run-time option 123

ISASIZE run-time option 35, 123

iSUB defining restrictions 66

L
LABEL array restrictions 66

LANGLVL compiler option 67

Language Environment
educating programmers 16

Enterprise PL/I prerequisite level 15

invoking existing CICS

applications 32

invoking existing non-CICS

applications 31

planning move to 15

running existing applications 31

Language Environment library xii

LANGUAGE run-time option 35, 123

LEAVE ENVIRONMENT option 64

library routine replacement tool
using IBMWRLKx 163

LIMITS compiler option
EXTNAME 75, 131, 135, 136

link-edit considerations 121

link-edit
AMODE(24) considerations 121

and CHANGE 121

and PLICALLA 121

and PLICALLB 121

effects of LIMITS on 121

effects of RENT/NORENT on 121

existing applications with LE 32

math routines, using 54

NCAL option 53

symbol table 53

symbol tables
CSECT 53

discussion of 53

using NCAL option 53

linking applications under CICS 152

LIST compiler option 67

LMESSAGE compiler option 68

LNKLST
SCEERUN 4, 7

use in migration 18

load module
considerations for

data sets 49

OS PL/I Version 2 51

general considerations 49

identifying PL/I version 17, 166

IDR information 17, 166

Language Environment support
OS PL/I version 1 prior to release

3.0 51

OS PL/I version 1.3.0 - 1.4.0 51

OS PL/I version 1.5.0 50

OS PL/I version 1.5.1 49

OS PL/I version 2 51

loops
endless 106

LPALST
use in migration 18

LRECL
compiler SYSPRINT 70

M
macro-level interface, CICS

considerations 56, 152

main load module relinking aid
using sample ZAP 164

main load module, user
sample ZAP relinking aid 164

math built-ins
differences 125

math routines, using OS PL/I 54

MAXMSG compiler option 135, 136

messages
2603 90

EXIT option 100

IBM1044 87

IBM1053 87

IBM1065 87

IBM1091 88

IBM1099 88

IBM1181 89

IBM1206 90

IBM1208 90

IBM1215 91

IBM1216 91

messages (continued)
IBM1220 92

IBM1927 92

IBM1948 93

IBM2063 82, 93

IBM2402 93

IBM2409 94

IBM2410 94

IBM2412 94

IBM2421 95

IBM2610 95

IBM2611 95

IBM2617 96

IBM2621 96

IBM2622 96

IBM2626 97

IBM2628 97

IBM2801 98

IBM2804 98

IBM2810 98

IBM2811 99

IBM2812 99

migrating
to new compiler 23

migration
aid for replacing Shared Library 164

compiler, basics 4

cut to production 22

general tasks 10

ILC considerations 18

library routine replacement tool 163

LNKLST use 18

object module relinking tool 165

phasing in LE 18

PL/I application conversion 26

PL/I application priority 25

regression testing 21

relinking aid, using 165

relinking PLISRTx modules 165

run-time, basics 4

sample ZAP for relinking main load

module 164

STEPLIB example 20

STEPLIB use 19

taking application inventory 16, 24

tools and aids 163

MSGFILE run-time option 43, 123, 125

multitasking facility
support of 9

multithreading
support of 8

N
NATLANG run-time option 35, 123

NCAL linkage editor option 53

NCP ENVIRONMENT option 64

NOREDUCE compiler option 77, 80

NORENT compiler option 76, 81, 131,

135, 136, 145

link-edit considerations 121

notices 187

NOWRITABLE compiler option 76, 78,

146

NOWRITE ENVIRONMENT option 64

Index 193

O
object and load module

considerations 49, 53

object module
general considerations 49

ILC migration aid 165

Language Environment support
OS PL/I version 1 prior to release

3.0 51

OS PL/I version 1.3.0 - 1.4.0 51

OS PL/I version 1.5.0 50

OS PL/I version 1.5.1 49

OS PL/I version 2 51

OFFSET compiler option 135, 136

OPTIMIZE compiler option 80

OS PL/I
service 5

Version 2 load modules 51

OVERFLOW condition 113

P
performance

compiler options
DFT(NONASGN) 79

DFT(NONCONNECTED) 79

DFT(NOOVERLAP) 80

DFT(REORDER) 80

NORENT 81

OPTIMIZE(2) 80

REDUCE 80

RULES(NOLAXCTL) 82

CPU utilization 127

FIXED BIN(15) as a loop control 112

FIXED DEC as a loop control 112

retuning for 127

storage utilization 128

TOTAL environment option 112

under CICS, improving 129

under IMS, improving 129

PLICALLA entry point
IMS considerations 57, 155

support for 39

PLICALLB entry point
support for 39

PLIDUMP
differences 44, 126

output produced by 44

PLIMAIN entry point 46

PLISRTx module relinking tool 165

PLISRTx, using 42

PLISTART
and PLICALLA 39

entry point 46

PLITDLI IMS interface 57, 155

PLITEST
comparing with Debug Tool 185

PLIXHD 71, 126

PLIXOPT
and PLICALLB 39

and run-time options 36

PREFIX compiler option 86

preinitialized program 41

preprocessors
CICS preprocessor 153

SQL preprocessor 159

product configuration
data sets

new 7

OS/390 7

discussion of 167

product relationships
Debug Tool 7

programs, preinitialized 41

PSB language options, IMS

considerations 57, 156

pseudovariables restricted 66

PTFs
Prerequisite LE 126

R
recompile

do I need to 3

RECORD I/O
restrictions 64

REDUCE compiler option 80

REENTRANT procedure option 66

REGIONAL ENVIRONMENT option 64

relinking OS PL/I-COBOL ILC
using the relinking tool 165

relinking user main load module
sample ZAP relinking aid 164

RENT compiler option 76, 145

link-edit considerations 121

replacing library routines
using IBMWRLKx 163

replacing OS PL/I Shared Library
sample replacement aid 164

REPORT run-time option 35, 123

REREAD ENVIRONMENT option 64

retuning applications
CPU utilization 127

storage utilization, improving 128

under IMS, improving 129

return codes 124

RPTSTG run-time option 35, 123

using for tuning storage 16, 127

RULES compiler option 136

ANS 89

LAXCTL 78

LAXSTRZ 85

NOLAXCTL 82

NOLAXDCL 83

NOLAXIF 83

NOLAXLINK 84

NOLAXMARGINS 84

NOMULTICLOSE 85

run-time environment
for PL/I 8

run-time message differences 43

Run-time messages 124, 125

run-time options
ABTERMENC 36, 123

ALL31 36, 123, 127

COUNT 35, 123

DEPTHCONDLMT 36, 123

differences 35

ERRCOUNT 36, 123

FLOW 35, 123

HEAP 35, 123, 128

ISASIZE 35

LANGUAGE 35

run-time options (continued)
MSGFILE 43, 123, 125

NATLANG 35, 123

REPORT 35

RPTSTG 9, 35, 123, 127

SPIE 35

STACK 35, 123, 128

STAE 35

STORAGE 123

TRAP 35, 123

XUFLOW 36, 123

run-time output, CICS

considerations 56, 152

S
SCEELKED

and non-IBM names 32

configuration 7

SCEERUN
configuration 7

in LNKLST 4

in STEPLIB or JOBLIB 53

SEQUENCE compiler option 68

service
CICS support 5

OS PL/I 5

Shared Library replacement aid
using IBMRLSLx 164

Shared Library support 42

Shared Library, OS PL/I
sample replacement aid 164

SIS ENVIRONMENT option 64

SIZE
and FIXEDOVERFLOW 104

SIZE compiler option 68

SKIP ENVIRONMENT option 64

SMESSAGE compiler option 68

SPIE run-time option 35, 123

SQL preprocessor
EXEC SQL statements 159

new, integrated 8

SQL Preprocessor
restrictions lifted 159

using 159

STACK run-time option 35, 56, 123, 128

STAE run-time option 35, 123

STATIC
retaining unused INTERNAL 104

uninitialized EXTERNAL 110

writeable reentrant 8

STEPLIB
migration example 20

use in migration 19

STMT compiler option 67

storage
DASD requirements 15

Enterprise PL/I requirements 23

usage
IMS considerations 58, 156

retuning for 127

virtual requirements 16

storage report differences 45, 126

STORAGE run-time option 123

storage utilization, improving 128

STREAM I/O
restrictions 64

194 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

STREAM I/O (continued)
unprintable characters 110

structure expression restrictions 65

subsystem considerations
CICS 55, 151

DB2 59, 159

IMS 57, 155

subsystem performance, improving 129

symbol tables
considerations for 53

CSECT 53

SYSPRINT
LRECL value 70, 135, 136

sharing between old and new

PL/I 132

support for MSGFILE(SYSPRINT) 43,

125

SYSTEM compiler option 68, 76

CICS considerations 152

IMS considerations 57, 155

T
TEST compiler option 86

TOTAL environment option 112

TOTAL ENVIRONMENT option 64

TP ENVIRONMENT option 64

TRANSIENT file attribute 64

TRAP run-time option 35, 123

TRKOFL ENVIRONMENT option 64

TSO 69

TUNE compiler option 135, 136

U
U4039 ABEND 38

UNDERFLOW condition 36

UNICODE
support of 8

UNLOCK statement 64

USAGE compiler option 136

user exits
assembler

specific considerations 150

CEEBINT 150

CEEBXITA 150

IBMBEER 150

IBMBXITA 150

IBMFXITA 150

installation considerations 150

user exits 150

user information xi

user main load module
sample ZAP relinking aid 164

user return code differences 42

V
VisualAge PL/I

moving to Enterprise PL/I 135

VM
support of 9

W
WRITABLE compiler option 76, 146

X
XUFLOW run-time option 36, 123

Z
ZAP, main load module relinking

aid 164

ZERODIVIDE condition 113

Index 195

196 Enterprise PL/I for z/OS V3.8 Compiler and Runtime Migration Guide

Readers’ Comments — We’d Like to Hear from You

Enterprise PL/I for z/OS

Compiler and Run-Time Migration Guide

Version 3 Release 8

 Publication No. GC27-1458-07

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send a fax to the following number: 1-800-426-7773

v Send your comments via e-mail to: comments@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 GC27-1458-07

GC27-1458-07

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department H150/090

555 Bailey Ave.

San Jose, CA

 95141-1099

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-H31

Printed in USA

Enterprise PL/I for z/OS Library

SC27-1456

Licensed Program Specifications

SC27-1457

Programming Guide

GC27-1458

Compiler and Run-Time Migration Guide

SC27-1460

Language Reference

SC27-1461

Compile-Time Messages and Codes

Enterprise PL/I for z/OS Library

SC27-1456

Licensed Program Specifications

SC27-1457

Programming Guide

GC27-1458

Compiler and Run-Time Migration Guide

GC27-1459

Diagnosis Guide

SC27-1460

Language Reference

SC27-1461

Compile-Time Messages and Codes

GC
27
-1
45
8-
07

	Contents
	Figures
	About this book
	Using your documentation
	PL/I information
	Language Environment information

	How to send your comments

	Part 1. Overview
	Chapter 1. Do I need to recompile?
	Migration basics
	Run-time migration - Moving to Language Environment
	Compiler migration

	Migration Roadmap
	Service support for OS PL/I and PL/I for MVS & VM

	Chapter 2. Introducing the new compiler and run-time
	Product relationships - compiler, run-time, debug
	General PL/I compiler information
	Language Environment's run-time support for other programs
	Advantages of the new compiler and run-time
	Major changes with the new compiler and run-time
	General conversion tasks
	Planning your strategy
	Moving to the Language Environment run time
	Recompiling your source with Enterprise PL/I
	Adding Enterprise PL/I programs to existing applications

	Part 2. Conversion Strategies
	Chapter 3. Planning the move to Language Environment
	Prepare to move to the Language Environment run-time library
	Installing Language Environment
	Assessing storage requirements
	DASD storage requirements
	Virtual storage requirements

	Educating your programmers about Language Environment

	Take an inventory of your applications
	Vendor tools, packages, and products
	PL/I applications
	Existing PL/I load modules

	Decide how to phase in Language Environment
	Multilanguage conversion
	Determining how applications will have access to the library
	LNKLST/LPALST
	STEPLIB
	Problems with STEPLIB and IMS programs
	STEPLIB example

	Set up a regression testing procedure
	Take performance measurements

	Cut over to production use

	Chapter 4. Planning to move to the new compiler
	Prepare to move your source to the new compiler
	Installing Enterprise PL/I
	Assessing storage requirements
	Educating your programmers on new compiler features

	Take an inventory of your applications
	Taking an inventory of vendor tools, packages, and products
	Taking an inventory of PL/I applications
	Prioritizing your applications
	Determining conversion priority

	Setting up move/no move categories

	Make application program updates

	Part 3. Moving existing applications to Language Environment
	Chapter 5. Running existing applications under Language Environment
	Invoke existing applications
	For non-CICS applications
	Specify the correct library
	Specify alternate DDNAMES (optional)

	For CICS applications
	Output differences when using Language Environment on CICS

	Link-edit existing applications

	Chapter 6. Considerations Before Migrating
	Differences in Run-Time Options
	Deleted run-time options
	Replaced run-time options
	New run-time options

	Differences in Condition Handling
	Timing differences
	Unhandled condition differences
	IBMBXITA and IBMBEER differences
	ABEND U4039 differences
	Severity differences

	Differences in PLICALLA and PLICALLB Support
	PLICALLA Considerations
	PLICALLB Considerations

	Differences in Preinitialization Support
	Differences in PLISRTx Support
	Differences in Multitasking Support
	Differences in OS PL/I Shared Library support
	Differences in DATE/TIME Built-In Functions
	Differences in User Return Code
	Differences in the opening of PRINT files
	Differences in Run-Time Messages
	Differences in PLIDUMP
	Differences in Storage Report
	Differences in Interlanguage Communication Support
	Differences in Assembler Support
	Assembler programs that find the main parameter list

	Chapter 7. Object and Load Module Considerations
	OS PL/I Version 1 Object Module and Load Module Compatibility
	OS PL/I Version 1 Release 5.1
	Object Module
	Load Module Not Using Shared Library:
	Load Module Using the Shared Library

	OS PL/I Version 1 Release 5
	Object Module
	Load Module

	OS PL/I Version 1 Release 3.0 - Release 4.0
	Object Module
	Load Module

	OS PL/I Version 1 Prior to Release 3.0

	OS PL/I Version 2 Object Module and Load Module Compatibility
	Summary of Support for OS PL/I Object and Load Modules

	Chapter 8. Link-Edit Considerations
	SCEERUN
	Symbol Table Considerations
	NCAL Linkage Editor Option
	ENTRY cards
	Using OS PL/I Math Routines

	Chapter 9. Subsystem Considerations
	CICS Considerations
	Updating CICS System Definition (CSD) File
	Error Handling
	Restrictions on User-Written Condition Handlers under CICS
	Macro-Level Interface
	FETCHing a PL/I MAIN Procedure
	STACK Run-Time Option
	Run-Time Output
	Abend Codes Used by PL/I under CICS

	IMS Considerations
	Interfaces to IMS
	SYSTEM(IMS) Compile-Time Option
	PLICALLA Support in IMS
	PSB Language Options Supported
	Storage Usage Considerations
	Coordinated Condition Handling under IMS
	Performance Enhancement with Library Retention(LRR)

	DB2 Considerations

	Part 4. Moving to the new compiler
	Chapter 10. Understanding the limitations of the new compiler
	Language Environment Requirements
	Language not supported
	Multitasking
	CHECK
	CHARSET(48) and CHARSET(BCD)
	EGCS
	Fortran
	Invalid code

	Language restricted
	RECORD I/O
	STREAM I/O
	Structure expressions
	Array expressions
	DEFAULT statement
	Extents of automatic variables
	Built-in functions
	DEFINED BIT aggregates
	OPTIONS(REENTRANT)
	iSUB defining
	LABEL arrays
	DBCS
	Macro preprocessor

	Options restricted
	Options not supported
	Restrictions on other interfaces to the compiler
	Batch compilation
	Invoking the compiler from assembler
	Compiling under TSO
	Specifying INCLUDE dataset names

	Compiler time and space requirements
	AMODE(24) restrictions
	EXTERNAL names restricted
	Listing differences
	Control block differences
	ISAM support differences

	Chapter 11. Understanding the new compiler's options
	Understanding the effect of default options on compatibility
	BACKREG(5)
	BIFPREC(15)
	CMPAT(V2)
	EXTRN(FULL)
	LIMITS(EXTNAME(7))
	NORENT and WRITABLE
	SYSTEM
	SYSTEM(CICS)
	SYSTEM(IMS)
	SYSTEM(OS)

	Choosing non-default options for even more compatibility
	COMMON
	DFT(NOBIN1ARG)
	DEFAULT(LINKAGE(SYSTEM))
	DFT(OVERLAP)
	NOREDUCE
	NORESEXP
	RULES(LAXCTL)
	RULES(NOLAXINOUT NOLAXSEMI)
	NOWRITABLE

	Choosing options for improved performance
	ARCH
	BIFPREC(31)
	DEFAULT(NONASGN)
	DEFAULT(CONNECTED)
	DEFAULT(REORDER)
	DEFAULT(NOOVERLAP)
	OPTIMIZE(2)/OPTIMIZE(3)
	REDUCE
	NORENT
	RULES(NOLAXCTL)
	TUNE

	Choosing options for better quality
	RULES(NOLAXDCL)
	RULES(NOLAXIF)
	RULES(NOLAXLINK)
	RULES(NOLAXMARGINS)
	RULES(LAXSTRZ)
	RULES(NOMULTICLOSE)

	Choosing options for test
	CHECK(CONFORMANCE)
	GONUMBER
	PREFIX
	TEST

	Chapter 12. Understanding the new compiler's messages
	IBM1044: one-byte FIXED BIN
	IBM1053: scaled FIXED BIN evaluation
	IBM1065: imprecise float constants
	IBM1091: FIXED BIN precision warning
	IBM1099: mixed FIXED
	IBM1181: miscoded DO loops
	IBM1206: misuse of BIT operators
	IBM1208: incompletely initialized arrays
	IBM1215: incomplete declares
	IBM1216: incorrect structure declares
	IBM1220: pointless comparisons
	IBM1927: SIZE condition
	IBM1948: restricted expression evaluation
	IBM2063: invalid ALLOCATE
	IBM2402: storage overlay
	IBM2409: RETURN; in a function
	IBM2410: No RETURN in a function
	IBM2412: missing RETURNS option
	IBM2421: CLOSE in ENDFILE
	IBM2610: precision interpretation
	IBM2611, IBM2612: duplicate whens
	IBM2617: passing labels out of PL/I
	IBM2621: missing ON ERROR SYSTEM
	IBM2622: warning on poorly coded DO loops
	IBM2626: SUBSTR with a zero length
	IBM2628: large BYVLAUE parameters
	IBM2801: introduction of scaled FIXED BIN
	IBM2804: suboptimal compares
	IBM2810: conversion of scaled FIXED BIN
	IBM2811: use of PICTURE as DO control variables
	IBM2812: poor TRANSLATE and VERIFY
	PLIXOPT messages
	Using the compiler user exit

	Chapter 13. Understanding when working code must be changed
	Incorrect code
	Relying on the order of declarations
	Using invalid FIXED DECIMAL data
	Using invalid SUBSTR references
	Using dissimilar EXTERNAL declares
	Using an incorrect PLITABS declare

	Initializing variables
	Initializing AUTOMATIC
	Initializing BASED
	Initializing CONTROLLED
	Initializing STATIC

	Retaining unused declarations
	Retaining unused INTERNAL STATIC

	Incorrect code that will now raise exceptions
	FIXEDOVERFLOW when SIZE is disabled
	Invalid allocations
	UNDEFINEDFILE with PRINT files

	Incorrect code that will now loop endlessly
	Even precision PICTURE loop control variables

	Assignments that will produce different results
	Source-target overlap
	Float-to-float assignments

	Other statements that will produce different results
	STREAM I/O with unprintable characters
	Uninitialized EXTERNAL STATIC
	Incompletely declared FILEs
	Dummy arguments and alignment
	Dummy arguments and CONTROLLED
	Pointer arithmetic

	Code that will not perform as well
	FIXED DEC as a loop control
	FIXED BIN(15) as a loop control
	I/O using TOTAL

	Chapter 14. Understanding when working code may need to be changed
	Code that will now raise an exception
	ZERODIVIDE and OVERFLOW promoted to ERROR
	Conditions raised when disabled
	Invalid RETURNs
	GOTO holes
	The scope of NOFOFL

	Code that will now not raise exceptions
	FIXEDOVERFLOW for FIXED BIN
	CONVERSION when assigning blanks to numeric variables
	ERROR when mapping excessively large aggregates

	Storage mapped differently
	One-byte FIXED BIN

	Declarations handled differently
	AREA with INITIAL

	Conversions handled differently
	Conversions from float to character
	Conversions from scaled FIXED BINARY

	Built-in functions handled differently
	Arithmetic built-ins with scale factors and FIXED BIN

	MACRO preprocessor differences
	MACRO preprocessor and strings

	Chapter 15. Linking your new objects
	Prelinker and PDSE considerations
	AMODE(24) considerations
	Using PLICALLA or PLICALLB Entry
	CHANGE cards

	Chapter 16. Using Language Environment with the new compiler
	Using the right run-time options
	Calling PL/I from assembler main programs
	Understanding when your results may vary
	Return codes
	When the run-time issues messages
	What the run-time messages say
	Where the run-time messages go
	Math built-ins
	Dumps
	Storage reports

	Prerequisite Language Environment PTFs

	Chapter 17. Tuning for better CPU and storage utilization
	Improving CPU Utilization
	Improving Storage Utilization
	Improving Performance under Subsystems

	Chapter 18. Adding Enterprise PL/I programs to existing PL/I applications
	Object and load module considerations
	Sharing SYSPRINT
	Run-time option considerations
	Condition handling considerations
	Partitioning PL/I source programs into units of execution

	Chapter 19. Moving from VisualAge PL/I or Enterprise PL/I V3R1, V3R2, V3R3, V3R4, V3R5, V3R6 or V3R7 to Enterprise PL/I V3R8
	Migrating from VisualAge PL/I
	Migrating from Enterprise PL/I V3R1
	Migrating from Enterprise PL/I V3R2
	Migrating from Enterprise PL/I V3R3
	Migrating from Enterprise PL/I V3R4
	Migrating from Enterprise PL/I V3R5
	Migrating from Enterprise PL/I V3R6
	Migrating from Enterprise PL/I V3R7
	Compiler messages introduced by V3R4
	Compiler messages introduced by V3R5
	Compiler messages introduced by V3R6
	Compiler messages introduced by V3R7
	Compiler messages introduced by V3R8
	Object compatibility
	Run-time changes

	Part 5. Subsystem and other language considerations
	Chapter 20. Assembler considerations for PL/I applications
	Considerations for assembler programs mimicking PL/I main procedures
	Calling PL/I from assembler and Language Environment conforming assembler
	Condition handling and assembler programs
	Considerations for using assembler user exits
	Specific considerations

	Chapter 21. CICS considerations for PL/I applications
	General CICS considerations
	Updating CICS System Definition (CSD) file
	Macro-level interface

	Compiler options for programs that run under CICS
	Linking CICS applications and run-time considerations
	Error-handling
	FETCHing a PL/I MAIN procedure
	Run-time output
	Abend codes used by PL/I under CICS

	Migrating to the integrated CICS preprocessor

	Chapter 22. IMS considerations for PL/I applications
	Interfaces to IMS
	SYSTEM(IMS) compile-time option
	PLICALLA support in IMS
	PSB language options supported
	Storage usage considerations
	Coordinated condition handling under IMS
	Performance enhancement with Library Retention (LRR)

	Chapter 23. DB2 Considerations for PL/I applications
	General DB2 considerations
	Migrating to the integrated SQL preprocessor
	Programming and compilation considerations
	FOR BIT DATA assignment notes

	Part 6. Appendixes
	Appendix A. Conversion and Migration Aids
	OS PL/I Routine Replacement Tool
	OS PL/I Version 1 Release 5.1 main load module ZAP
	OS PL/I Shared library replacement tool
	OS PL/I Object Module Relinking Tool - APAR PN69803
	ILC Applications
	PLISRTx Applications

	EDGE Portfolio Analyzer
	Vendor products

	Appendix B. Compiler elements comparison
	Appendix C. Compiler option comparison
	Appendix D. Compiler limit comparison
	Appendix E. Batch processing sample
	Appendix F. Debugging tool comparison
	Differences between debugging tools

	Appendix G. Notices
	Programming interface information
	Trademarks

	Appendix H. Bibliography
	Enterprise PL/I publications
	PL/I for MVS & VM
	z/OS Language Environment
	CICS Transaction Server
	DB2 UDB for OS/390 and z/OS
	DFSORT™
	IMS/ESA®
	z/OS MVS
	z/OS UNIX System Services
	z/OS TSO/E
	z/Architecture
	Unicode® and character representation

	Index
	Readers’ Comments — We'd Like to Hear from You

